xref: /linux/drivers/ata/libata-core.c (revision 7c7e33b799ac169e5fab8abfc6819fce8b26d53d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
502 static inline void ata_force_link_limits(struct ata_link *link) { }
503 static inline void ata_force_xfermask(struct ata_device *dev) { }
504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	0,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578  *	@dev: target device for the taskfile
579  *	@tf: taskfile to examine and configure
580  *
581  *	Examine the device configuration and tf->flags to determine
582  *	the proper read/write command and protocol to use for @tf.
583  *
584  *	LOCKING:
585  *	caller.
586  */
587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 				   struct ata_taskfile *tf)
589 {
590 	u8 cmd;
591 
592 	int index, fua, lba48, write;
593 
594 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 
598 	if (dev->flags & ATA_DFLAG_PIO) {
599 		tf->protocol = ATA_PROT_PIO;
600 		index = dev->multi_count ? 0 : 8;
601 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 		/* Unable to use DMA due to host limitation */
603 		tf->protocol = ATA_PROT_PIO;
604 		index = dev->multi_count ? 0 : 8;
605 	} else {
606 		tf->protocol = ATA_PROT_DMA;
607 		index = 16;
608 	}
609 
610 	cmd = ata_rw_cmds[index + fua + lba48 + write];
611 	if (!cmd)
612 		return false;
613 
614 	tf->command = cmd;
615 
616 	return true;
617 }
618 
619 /**
620  *	ata_tf_read_block - Read block address from ATA taskfile
621  *	@tf: ATA taskfile of interest
622  *	@dev: ATA device @tf belongs to
623  *
624  *	LOCKING:
625  *	None.
626  *
627  *	Read block address from @tf.  This function can handle all
628  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629  *	flags select the address format to use.
630  *
631  *	RETURNS:
632  *	Block address read from @tf.
633  */
634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 	u64 block = 0;
637 
638 	if (tf->flags & ATA_TFLAG_LBA) {
639 		if (tf->flags & ATA_TFLAG_LBA48) {
640 			block |= (u64)tf->hob_lbah << 40;
641 			block |= (u64)tf->hob_lbam << 32;
642 			block |= (u64)tf->hob_lbal << 24;
643 		} else
644 			block |= (tf->device & 0xf) << 24;
645 
646 		block |= tf->lbah << 16;
647 		block |= tf->lbam << 8;
648 		block |= tf->lbal;
649 	} else {
650 		u32 cyl, head, sect;
651 
652 		cyl = tf->lbam | (tf->lbah << 8);
653 		head = tf->device & 0xf;
654 		sect = tf->lbal;
655 
656 		if (!sect) {
657 			ata_dev_warn(dev,
658 				     "device reported invalid CHS sector 0\n");
659 			return U64_MAX;
660 		}
661 
662 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 	}
664 
665 	return block;
666 }
667 
668 /*
669  * Set a taskfile command duration limit index.
670  */
671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 	struct ata_taskfile *tf = &qc->tf;
674 
675 	if (tf->protocol == ATA_PROT_NCQ)
676 		tf->auxiliary |= cdl;
677 	else
678 		tf->feature |= cdl;
679 
680 	/*
681 	 * Mark this command as having a CDL and request the result
682 	 * task file so that we can inspect the sense data available
683 	 * bit on completion.
684 	 */
685 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687 
688 /**
689  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690  *	@qc: Metadata associated with the taskfile to build
691  *	@block: Block address
692  *	@n_block: Number of blocks
693  *	@tf_flags: RW/FUA etc...
694  *	@cdl: Command duration limit index
695  *	@class: IO priority class
696  *
697  *	LOCKING:
698  *	None.
699  *
700  *	Build ATA taskfile for the command @qc for read/write request described
701  *	by @block, @n_block, @tf_flags and @class.
702  *
703  *	RETURNS:
704  *
705  *	0 on success, -ERANGE if the request is too large for @dev,
706  *	-EINVAL if the request is invalid.
707  */
708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 		    unsigned int tf_flags, int cdl, int class)
710 {
711 	struct ata_taskfile *tf = &qc->tf;
712 	struct ata_device *dev = qc->dev;
713 
714 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 	tf->flags |= tf_flags;
716 
717 	if (ata_ncq_enabled(dev)) {
718 		/* yay, NCQ */
719 		if (!lba_48_ok(block, n_block))
720 			return -ERANGE;
721 
722 		tf->protocol = ATA_PROT_NCQ;
723 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724 
725 		if (tf->flags & ATA_TFLAG_WRITE)
726 			tf->command = ATA_CMD_FPDMA_WRITE;
727 		else
728 			tf->command = ATA_CMD_FPDMA_READ;
729 
730 		tf->nsect = qc->hw_tag << 3;
731 		tf->hob_feature = (n_block >> 8) & 0xff;
732 		tf->feature = n_block & 0xff;
733 
734 		tf->hob_lbah = (block >> 40) & 0xff;
735 		tf->hob_lbam = (block >> 32) & 0xff;
736 		tf->hob_lbal = (block >> 24) & 0xff;
737 		tf->lbah = (block >> 16) & 0xff;
738 		tf->lbam = (block >> 8) & 0xff;
739 		tf->lbal = block & 0xff;
740 
741 		tf->device = ATA_LBA;
742 		if (tf->flags & ATA_TFLAG_FUA)
743 			tf->device |= 1 << 7;
744 
745 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 		    class == IOPRIO_CLASS_RT)
747 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748 
749 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 			ata_set_tf_cdl(qc, cdl);
751 
752 	} else if (dev->flags & ATA_DFLAG_LBA) {
753 		tf->flags |= ATA_TFLAG_LBA;
754 
755 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 			ata_set_tf_cdl(qc, cdl);
757 
758 		/* Both FUA writes and a CDL index require 48-bit commands */
759 		if (!(tf->flags & ATA_TFLAG_FUA) &&
760 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 		    lba_28_ok(block, n_block)) {
762 			/* use LBA28 */
763 			tf->device |= (block >> 24) & 0xf;
764 		} else if (lba_48_ok(block, n_block)) {
765 			if (!(dev->flags & ATA_DFLAG_LBA48))
766 				return -ERANGE;
767 
768 			/* use LBA48 */
769 			tf->flags |= ATA_TFLAG_LBA48;
770 
771 			tf->hob_nsect = (n_block >> 8) & 0xff;
772 
773 			tf->hob_lbah = (block >> 40) & 0xff;
774 			tf->hob_lbam = (block >> 32) & 0xff;
775 			tf->hob_lbal = (block >> 24) & 0xff;
776 		} else {
777 			/* request too large even for LBA48 */
778 			return -ERANGE;
779 		}
780 
781 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 			return -EINVAL;
783 
784 		tf->nsect = n_block & 0xff;
785 
786 		tf->lbah = (block >> 16) & 0xff;
787 		tf->lbam = (block >> 8) & 0xff;
788 		tf->lbal = block & 0xff;
789 
790 		tf->device |= ATA_LBA;
791 	} else {
792 		/* CHS */
793 		u32 sect, head, cyl, track;
794 
795 		/* The request -may- be too large for CHS addressing. */
796 		if (!lba_28_ok(block, n_block))
797 			return -ERANGE;
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		/* Convert LBA to CHS */
803 		track = (u32)block / dev->sectors;
804 		cyl   = track / dev->heads;
805 		head  = track % dev->heads;
806 		sect  = (u32)block % dev->sectors + 1;
807 
808 		/* Check whether the converted CHS can fit.
809 		   Cylinder: 0-65535
810 		   Head: 0-15
811 		   Sector: 1-255*/
812 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 			return -ERANGE;
814 
815 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 		tf->lbal = sect;
817 		tf->lbam = cyl;
818 		tf->lbah = cyl >> 8;
819 		tf->device |= head;
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827  *	@pio_mask: pio_mask
828  *	@mwdma_mask: mwdma_mask
829  *	@udma_mask: udma_mask
830  *
831  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832  *	unsigned int xfer_mask.
833  *
834  *	LOCKING:
835  *	None.
836  *
837  *	RETURNS:
838  *	Packed xfer_mask.
839  */
840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 			       unsigned int mwdma_mask,
842 			       unsigned int udma_mask)
843 {
844 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849 
850 /**
851  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852  *	@xfer_mask: xfer_mask to unpack
853  *	@pio_mask: resulting pio_mask
854  *	@mwdma_mask: resulting mwdma_mask
855  *	@udma_mask: resulting udma_mask
856  *
857  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858  *	Any NULL destination masks will be ignored.
859  */
860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 	if (pio_mask)
864 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 	if (mwdma_mask)
866 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 	if (udma_mask)
868 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870 
871 static const struct ata_xfer_ent {
872 	int shift, bits;
873 	u8 base;
874 } ata_xfer_tbl[] = {
875 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 	{ -1, },
879 };
880 
881 /**
882  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883  *	@xfer_mask: xfer_mask of interest
884  *
885  *	Return matching XFER_* value for @xfer_mask.  Only the highest
886  *	bit of @xfer_mask is considered.
887  *
888  *	LOCKING:
889  *	None.
890  *
891  *	RETURNS:
892  *	Matching XFER_* value, 0xff if no match found.
893  */
894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 	int highbit = fls(xfer_mask) - 1;
897 	const struct ata_xfer_ent *ent;
898 
899 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 			return ent->base + highbit - ent->shift;
902 	return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905 
906 /**
907  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908  *	@xfer_mode: XFER_* of interest
909  *
910  *	Return matching xfer_mask for @xfer_mode.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching xfer_mask, 0 if no match found.
917  */
918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 				& ~((1 << ent->shift) - 1);
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929 
930 /**
931  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_shift for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_shift, -1 if no match found.
941  */
942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ent->shift;
949 	return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952 
953 /**
954  *	ata_mode_string - convert xfer_mask to string
955  *	@xfer_mask: mask of bits supported; only highest bit counts.
956  *
957  *	Determine string which represents the highest speed
958  *	(highest bit in @modemask).
959  *
960  *	LOCKING:
961  *	None.
962  *
963  *	RETURNS:
964  *	Constant C string representing highest speed listed in
965  *	@mode_mask, or the constant C string "<n/a>".
966  */
967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 	static const char * const xfer_mode_str[] = {
970 		"PIO0",
971 		"PIO1",
972 		"PIO2",
973 		"PIO3",
974 		"PIO4",
975 		"PIO5",
976 		"PIO6",
977 		"MWDMA0",
978 		"MWDMA1",
979 		"MWDMA2",
980 		"MWDMA3",
981 		"MWDMA4",
982 		"UDMA/16",
983 		"UDMA/25",
984 		"UDMA/33",
985 		"UDMA/44",
986 		"UDMA/66",
987 		"UDMA/100",
988 		"UDMA/133",
989 		"UDMA7",
990 	};
991 	int highbit;
992 
993 	highbit = fls(xfer_mask) - 1;
994 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 		return xfer_mode_str[highbit];
996 	return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999 
1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 	static const char * const spd_str[] = {
1003 		"1.5 Gbps",
1004 		"3.0 Gbps",
1005 		"6.0 Gbps",
1006 	};
1007 
1008 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 		return "<unknown>";
1010 	return spd_str[spd - 1];
1011 }
1012 
1013 /**
1014  *	ata_dev_classify - determine device type based on ATA-spec signature
1015  *	@tf: ATA taskfile register set for device to be identified
1016  *
1017  *	Determine from taskfile register contents whether a device is
1018  *	ATA or ATAPI, as per "Signature and persistence" section
1019  *	of ATA/PI spec (volume 1, sect 5.14).
1020  *
1021  *	LOCKING:
1022  *	None.
1023  *
1024  *	RETURNS:
1025  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027  */
1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 	/* Apple's open source Darwin code hints that some devices only
1031 	 * put a proper signature into the LBA mid/high registers,
1032 	 * So, we only check those.  It's sufficient for uniqueness.
1033 	 *
1034 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037 	 * spec has never mentioned about using different signatures
1038 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039 	 * Multiplier specification began to use 0x69/0x96 to identify
1040 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 	 * 0x69/0x96 shortly and described them as reserved for
1043 	 * SerialATA.
1044 	 *
1045 	 * We follow the current spec and consider that 0x69/0x96
1046 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 	 * SEMB signature.  This is worked around in
1049 	 * ata_dev_read_id().
1050 	 */
1051 	if (tf->lbam == 0 && tf->lbah == 0)
1052 		return ATA_DEV_ATA;
1053 
1054 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 		return ATA_DEV_ATAPI;
1056 
1057 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 		return ATA_DEV_PMP;
1059 
1060 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 		return ATA_DEV_SEMB;
1062 
1063 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 		return ATA_DEV_ZAC;
1065 
1066 	return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069 
1070 /**
1071  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072  *	@id: IDENTIFY DEVICE results we will examine
1073  *	@s: string into which data is output
1074  *	@ofs: offset into identify device page
1075  *	@len: length of string to return. must be an even number.
1076  *
1077  *	The strings in the IDENTIFY DEVICE page are broken up into
1078  *	16-bit chunks.  Run through the string, and output each
1079  *	8-bit chunk linearly, regardless of platform.
1080  *
1081  *	LOCKING:
1082  *	caller.
1083  */
1084 
1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 		   unsigned int ofs, unsigned int len)
1087 {
1088 	unsigned int c;
1089 
1090 	BUG_ON(len & 1);
1091 
1092 	while (len > 0) {
1093 		c = id[ofs] >> 8;
1094 		*s = c;
1095 		s++;
1096 
1097 		c = id[ofs] & 0xff;
1098 		*s = c;
1099 		s++;
1100 
1101 		ofs++;
1102 		len -= 2;
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106 
1107 /**
1108  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109  *	@id: IDENTIFY DEVICE results we will examine
1110  *	@s: string into which data is output
1111  *	@ofs: offset into identify device page
1112  *	@len: length of string to return. must be an odd number.
1113  *
1114  *	This function is identical to ata_id_string except that it
1115  *	trims trailing spaces and terminates the resulting string with
1116  *	null.  @len must be actual maximum length (even number) + 1.
1117  *
1118  *	LOCKING:
1119  *	caller.
1120  */
1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 		     unsigned int ofs, unsigned int len)
1123 {
1124 	unsigned char *p;
1125 
1126 	ata_id_string(id, s, ofs, len - 1);
1127 
1128 	p = s + strnlen(s, len - 1);
1129 	while (p > s && p[-1] == ' ')
1130 		p--;
1131 	*p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134 
1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 	if (ata_id_has_lba(id)) {
1138 		if (ata_id_has_lba48(id))
1139 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140 
1141 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 	}
1143 
1144 	if (ata_id_current_chs_valid(id))
1145 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 		       (u32)id[ATA_ID_CUR_SECTORS];
1147 
1148 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 	       (u32)id[ATA_ID_SECTORS];
1150 }
1151 
1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 	u64 sectors = 0;
1155 
1156 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 	sectors |= (tf->lbah & 0xff) << 16;
1160 	sectors |= (tf->lbam & 0xff) << 8;
1161 	sectors |= (tf->lbal & 0xff);
1162 
1163 	return sectors;
1164 }
1165 
1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 	u64 sectors = 0;
1169 
1170 	sectors |= (tf->device & 0x0f) << 24;
1171 	sectors |= (tf->lbah & 0xff) << 16;
1172 	sectors |= (tf->lbam & 0xff) << 8;
1173 	sectors |= (tf->lbal & 0xff);
1174 
1175 	return sectors;
1176 }
1177 
1178 /**
1179  *	ata_read_native_max_address - Read native max address
1180  *	@dev: target device
1181  *	@max_sectors: out parameter for the result native max address
1182  *
1183  *	Perform an LBA48 or LBA28 native size query upon the device in
1184  *	question.
1185  *
1186  *	RETURNS:
1187  *	0 on success, -EACCES if command is aborted by the drive.
1188  *	-EIO on other errors.
1189  */
1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 	unsigned int err_mask;
1193 	struct ata_taskfile tf;
1194 	int lba48 = ata_id_has_lba48(dev->id);
1195 
1196 	ata_tf_init(dev, &tf);
1197 
1198 	/* always clear all address registers */
1199 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200 
1201 	if (lba48) {
1202 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 		tf.flags |= ATA_TFLAG_LBA48;
1204 	} else
1205 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206 
1207 	tf.protocol = ATA_PROT_NODATA;
1208 	tf.device |= ATA_LBA;
1209 
1210 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 	if (err_mask) {
1212 		ata_dev_warn(dev,
1213 			     "failed to read native max address (err_mask=0x%x)\n",
1214 			     err_mask);
1215 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 			return -EACCES;
1217 		return -EIO;
1218 	}
1219 
1220 	if (lba48)
1221 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 	else
1223 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 		(*max_sectors)--;
1226 	return 0;
1227 }
1228 
1229 /**
1230  *	ata_set_max_sectors - Set max sectors
1231  *	@dev: target device
1232  *	@new_sectors: new max sectors value to set for the device
1233  *
1234  *	Set max sectors of @dev to @new_sectors.
1235  *
1236  *	RETURNS:
1237  *	0 on success, -EACCES if command is aborted or denied (due to
1238  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239  *	errors.
1240  */
1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 	unsigned int err_mask;
1244 	struct ata_taskfile tf;
1245 	int lba48 = ata_id_has_lba48(dev->id);
1246 
1247 	new_sectors--;
1248 
1249 	ata_tf_init(dev, &tf);
1250 
1251 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252 
1253 	if (lba48) {
1254 		tf.command = ATA_CMD_SET_MAX_EXT;
1255 		tf.flags |= ATA_TFLAG_LBA48;
1256 
1257 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 	} else {
1261 		tf.command = ATA_CMD_SET_MAX;
1262 
1263 		tf.device |= (new_sectors >> 24) & 0xf;
1264 	}
1265 
1266 	tf.protocol = ATA_PROT_NODATA;
1267 	tf.device |= ATA_LBA;
1268 
1269 	tf.lbal = (new_sectors >> 0) & 0xff;
1270 	tf.lbam = (new_sectors >> 8) & 0xff;
1271 	tf.lbah = (new_sectors >> 16) & 0xff;
1272 
1273 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 	if (err_mask) {
1275 		ata_dev_warn(dev,
1276 			     "failed to set max address (err_mask=0x%x)\n",
1277 			     err_mask);
1278 		if (err_mask == AC_ERR_DEV &&
1279 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 			return -EACCES;
1281 		return -EIO;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  *	ata_hpa_resize		-	Resize a device with an HPA set
1289  *	@dev: Device to resize
1290  *
1291  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292  *	it if required to the full size of the media. The caller must check
1293  *	the drive has the HPA feature set enabled.
1294  *
1295  *	RETURNS:
1296  *	0 on success, -errno on failure.
1297  */
1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 	bool print_info = ata_dev_print_info(dev);
1301 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 	u64 sectors = ata_id_n_sectors(dev->id);
1303 	u64 native_sectors;
1304 	int rc;
1305 
1306 	/* do we need to do it? */
1307 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 		return 0;
1311 
1312 	/* read native max address */
1313 	rc = ata_read_native_max_address(dev, &native_sectors);
1314 	if (rc) {
1315 		/* If device aborted the command or HPA isn't going to
1316 		 * be unlocked, skip HPA resizing.
1317 		 */
1318 		if (rc == -EACCES || !unlock_hpa) {
1319 			ata_dev_warn(dev,
1320 				     "HPA support seems broken, skipping HPA handling\n");
1321 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322 
1323 			/* we can continue if device aborted the command */
1324 			if (rc == -EACCES)
1325 				rc = 0;
1326 		}
1327 
1328 		return rc;
1329 	}
1330 	dev->n_native_sectors = native_sectors;
1331 
1332 	/* nothing to do? */
1333 	if (native_sectors <= sectors || !unlock_hpa) {
1334 		if (!print_info || native_sectors == sectors)
1335 			return 0;
1336 
1337 		if (native_sectors > sectors)
1338 			ata_dev_info(dev,
1339 				"HPA detected: current %llu, native %llu\n",
1340 				(unsigned long long)sectors,
1341 				(unsigned long long)native_sectors);
1342 		else if (native_sectors < sectors)
1343 			ata_dev_warn(dev,
1344 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345 				(unsigned long long)native_sectors,
1346 				(unsigned long long)sectors);
1347 		return 0;
1348 	}
1349 
1350 	/* let's unlock HPA */
1351 	rc = ata_set_max_sectors(dev, native_sectors);
1352 	if (rc == -EACCES) {
1353 		/* if device aborted the command, skip HPA resizing */
1354 		ata_dev_warn(dev,
1355 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 			     (unsigned long long)sectors,
1357 			     (unsigned long long)native_sectors);
1358 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 		return 0;
1360 	} else if (rc)
1361 		return rc;
1362 
1363 	/* re-read IDENTIFY data */
1364 	rc = ata_dev_reread_id(dev, 0);
1365 	if (rc) {
1366 		ata_dev_err(dev,
1367 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368 		return rc;
1369 	}
1370 
1371 	if (print_info) {
1372 		u64 new_sectors = ata_id_n_sectors(dev->id);
1373 		ata_dev_info(dev,
1374 			"HPA unlocked: %llu -> %llu, native %llu\n",
1375 			(unsigned long long)sectors,
1376 			(unsigned long long)new_sectors,
1377 			(unsigned long long)native_sectors);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385  *	@dev: device from which the information is fetched
1386  *	@id: IDENTIFY DEVICE page to dump
1387  *
1388  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389  *	page.
1390  *
1391  *	LOCKING:
1392  *	caller.
1393  */
1394 
1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 	ata_dev_dbg(dev,
1398 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400 		"88==0x%04x  93==0x%04x\n",
1401 		id[49], id[53], id[63], id[64], id[75], id[80],
1402 		id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404 
1405 /**
1406  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407  *	@id: IDENTIFY data to compute xfer mask from
1408  *
1409  *	Compute the xfermask for this device. This is not as trivial
1410  *	as it seems if we must consider early devices correctly.
1411  *
1412  *	FIXME: pre IDE drive timing (do we care ?).
1413  *
1414  *	LOCKING:
1415  *	None.
1416  *
1417  *	RETURNS:
1418  *	Computed xfermask
1419  */
1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 	unsigned int pio_mask, mwdma_mask, udma_mask;
1423 
1424 	/* Usual case. Word 53 indicates word 64 is valid */
1425 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 		pio_mask <<= 3;
1428 		pio_mask |= 0x7;
1429 	} else {
1430 		/* If word 64 isn't valid then Word 51 high byte holds
1431 		 * the PIO timing number for the maximum. Turn it into
1432 		 * a mask.
1433 		 */
1434 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 		if (mode < 5)	/* Valid PIO range */
1436 			pio_mask = (2 << mode) - 1;
1437 		else
1438 			pio_mask = 1;
1439 
1440 		/* But wait.. there's more. Design your standards by
1441 		 * committee and you too can get a free iordy field to
1442 		 * process. However it is the speeds not the modes that
1443 		 * are supported... Note drivers using the timing API
1444 		 * will get this right anyway
1445 		 */
1446 	}
1447 
1448 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449 
1450 	if (ata_id_is_cfa(id)) {
1451 		/*
1452 		 *	Process compact flash extended modes
1453 		 */
1454 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456 
1457 		if (pio)
1458 			pio_mask |= (1 << 5);
1459 		if (pio > 1)
1460 			pio_mask |= (1 << 6);
1461 		if (dma)
1462 			mwdma_mask |= (1 << 3);
1463 		if (dma > 1)
1464 			mwdma_mask |= (1 << 4);
1465 	}
1466 
1467 	udma_mask = 0;
1468 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470 
1471 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474 
1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 	struct completion *waiting = qc->private_data;
1478 
1479 	complete(waiting);
1480 }
1481 
1482 /**
1483  *	ata_exec_internal_sg - execute libata internal command
1484  *	@dev: Device to which the command is sent
1485  *	@tf: Taskfile registers for the command and the result
1486  *	@cdb: CDB for packet command
1487  *	@dma_dir: Data transfer direction of the command
1488  *	@sgl: sg list for the data buffer of the command
1489  *	@n_elem: Number of sg entries
1490  *	@timeout: Timeout in msecs (0 for default)
1491  *
1492  *	Executes libata internal command with timeout.  @tf contains
1493  *	command on entry and result on return.  Timeout and error
1494  *	conditions are reported via return value.  No recovery action
1495  *	is taken after a command times out.  It's caller's duty to
1496  *	clean up after timeout.
1497  *
1498  *	LOCKING:
1499  *	None.  Should be called with kernel context, might sleep.
1500  *
1501  *	RETURNS:
1502  *	Zero on success, AC_ERR_* mask on failure
1503  */
1504 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 				     struct ata_taskfile *tf, const u8 *cdb,
1506 				     int dma_dir, struct scatterlist *sgl,
1507 				     unsigned int n_elem, unsigned int timeout)
1508 {
1509 	struct ata_link *link = dev->link;
1510 	struct ata_port *ap = link->ap;
1511 	u8 command = tf->command;
1512 	int auto_timeout = 0;
1513 	struct ata_queued_cmd *qc;
1514 	unsigned int preempted_tag;
1515 	u32 preempted_sactive;
1516 	u64 preempted_qc_active;
1517 	int preempted_nr_active_links;
1518 	DECLARE_COMPLETION_ONSTACK(wait);
1519 	unsigned long flags;
1520 	unsigned int err_mask;
1521 	int rc;
1522 
1523 	spin_lock_irqsave(ap->lock, flags);
1524 
1525 	/* no internal command while frozen */
1526 	if (ata_port_is_frozen(ap)) {
1527 		spin_unlock_irqrestore(ap->lock, flags);
1528 		return AC_ERR_SYSTEM;
1529 	}
1530 
1531 	/* initialize internal qc */
1532 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533 
1534 	qc->tag = ATA_TAG_INTERNAL;
1535 	qc->hw_tag = 0;
1536 	qc->scsicmd = NULL;
1537 	qc->ap = ap;
1538 	qc->dev = dev;
1539 	ata_qc_reinit(qc);
1540 
1541 	preempted_tag = link->active_tag;
1542 	preempted_sactive = link->sactive;
1543 	preempted_qc_active = ap->qc_active;
1544 	preempted_nr_active_links = ap->nr_active_links;
1545 	link->active_tag = ATA_TAG_POISON;
1546 	link->sactive = 0;
1547 	ap->qc_active = 0;
1548 	ap->nr_active_links = 0;
1549 
1550 	/* prepare & issue qc */
1551 	qc->tf = *tf;
1552 	if (cdb)
1553 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554 
1555 	/* some SATA bridges need us to indicate data xfer direction */
1556 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 	    dma_dir == DMA_FROM_DEVICE)
1558 		qc->tf.feature |= ATAPI_DMADIR;
1559 
1560 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 	qc->dma_dir = dma_dir;
1562 	if (dma_dir != DMA_NONE) {
1563 		unsigned int i, buflen = 0;
1564 		struct scatterlist *sg;
1565 
1566 		for_each_sg(sgl, sg, n_elem, i)
1567 			buflen += sg->length;
1568 
1569 		ata_sg_init(qc, sgl, n_elem);
1570 		qc->nbytes = buflen;
1571 	}
1572 
1573 	qc->private_data = &wait;
1574 	qc->complete_fn = ata_qc_complete_internal;
1575 
1576 	ata_qc_issue(qc);
1577 
1578 	spin_unlock_irqrestore(ap->lock, flags);
1579 
1580 	if (!timeout) {
1581 		if (ata_probe_timeout)
1582 			timeout = ata_probe_timeout * 1000;
1583 		else {
1584 			timeout = ata_internal_cmd_timeout(dev, command);
1585 			auto_timeout = 1;
1586 		}
1587 	}
1588 
1589 	if (ap->ops->error_handler)
1590 		ata_eh_release(ap);
1591 
1592 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1593 
1594 	if (ap->ops->error_handler)
1595 		ata_eh_acquire(ap);
1596 
1597 	ata_sff_flush_pio_task(ap);
1598 
1599 	if (!rc) {
1600 		spin_lock_irqsave(ap->lock, flags);
1601 
1602 		/* We're racing with irq here.  If we lose, the
1603 		 * following test prevents us from completing the qc
1604 		 * twice.  If we win, the port is frozen and will be
1605 		 * cleaned up by ->post_internal_cmd().
1606 		 */
1607 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1608 			qc->err_mask |= AC_ERR_TIMEOUT;
1609 
1610 			if (ap->ops->error_handler)
1611 				ata_port_freeze(ap);
1612 			else
1613 				ata_qc_complete(qc);
1614 
1615 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1616 				     timeout, command);
1617 		}
1618 
1619 		spin_unlock_irqrestore(ap->lock, flags);
1620 	}
1621 
1622 	/* do post_internal_cmd */
1623 	if (ap->ops->post_internal_cmd)
1624 		ap->ops->post_internal_cmd(qc);
1625 
1626 	/* perform minimal error analysis */
1627 	if (qc->flags & ATA_QCFLAG_EH) {
1628 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1629 			qc->err_mask |= AC_ERR_DEV;
1630 
1631 		if (!qc->err_mask)
1632 			qc->err_mask |= AC_ERR_OTHER;
1633 
1634 		if (qc->err_mask & ~AC_ERR_OTHER)
1635 			qc->err_mask &= ~AC_ERR_OTHER;
1636 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1637 		qc->result_tf.status |= ATA_SENSE;
1638 	}
1639 
1640 	/* finish up */
1641 	spin_lock_irqsave(ap->lock, flags);
1642 
1643 	*tf = qc->result_tf;
1644 	err_mask = qc->err_mask;
1645 
1646 	ata_qc_free(qc);
1647 	link->active_tag = preempted_tag;
1648 	link->sactive = preempted_sactive;
1649 	ap->qc_active = preempted_qc_active;
1650 	ap->nr_active_links = preempted_nr_active_links;
1651 
1652 	spin_unlock_irqrestore(ap->lock, flags);
1653 
1654 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1655 		ata_internal_cmd_timed_out(dev, command);
1656 
1657 	return err_mask;
1658 }
1659 
1660 /**
1661  *	ata_exec_internal - execute libata internal command
1662  *	@dev: Device to which the command is sent
1663  *	@tf: Taskfile registers for the command and the result
1664  *	@cdb: CDB for packet command
1665  *	@dma_dir: Data transfer direction of the command
1666  *	@buf: Data buffer of the command
1667  *	@buflen: Length of data buffer
1668  *	@timeout: Timeout in msecs (0 for default)
1669  *
1670  *	Wrapper around ata_exec_internal_sg() which takes simple
1671  *	buffer instead of sg list.
1672  *
1673  *	LOCKING:
1674  *	None.  Should be called with kernel context, might sleep.
1675  *
1676  *	RETURNS:
1677  *	Zero on success, AC_ERR_* mask on failure
1678  */
1679 unsigned ata_exec_internal(struct ata_device *dev,
1680 			   struct ata_taskfile *tf, const u8 *cdb,
1681 			   int dma_dir, void *buf, unsigned int buflen,
1682 			   unsigned int timeout)
1683 {
1684 	struct scatterlist *psg = NULL, sg;
1685 	unsigned int n_elem = 0;
1686 
1687 	if (dma_dir != DMA_NONE) {
1688 		WARN_ON(!buf);
1689 		sg_init_one(&sg, buf, buflen);
1690 		psg = &sg;
1691 		n_elem++;
1692 	}
1693 
1694 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1695 				    timeout);
1696 }
1697 
1698 /**
1699  *	ata_pio_need_iordy	-	check if iordy needed
1700  *	@adev: ATA device
1701  *
1702  *	Check if the current speed of the device requires IORDY. Used
1703  *	by various controllers for chip configuration.
1704  */
1705 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1706 {
1707 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1708 	 * lead to controller lock up on certain controllers if the
1709 	 * port is not occupied.  See bko#11703 for details.
1710 	 */
1711 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1712 		return 0;
1713 	/* Controller doesn't support IORDY.  Probably a pointless
1714 	 * check as the caller should know this.
1715 	 */
1716 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1717 		return 0;
1718 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1719 	if (ata_id_is_cfa(adev->id)
1720 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1721 		return 0;
1722 	/* PIO3 and higher it is mandatory */
1723 	if (adev->pio_mode > XFER_PIO_2)
1724 		return 1;
1725 	/* We turn it on when possible */
1726 	if (ata_id_has_iordy(adev->id))
1727 		return 1;
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1731 
1732 /**
1733  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1734  *	@adev: ATA device
1735  *
1736  *	Compute the highest mode possible if we are not using iordy. Return
1737  *	-1 if no iordy mode is available.
1738  */
1739 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1740 {
1741 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1742 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1743 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1744 		/* Is the speed faster than the drive allows non IORDY ? */
1745 		if (pio) {
1746 			/* This is cycle times not frequency - watch the logic! */
1747 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1748 				return 3 << ATA_SHIFT_PIO;
1749 			return 7 << ATA_SHIFT_PIO;
1750 		}
1751 	}
1752 	return 3 << ATA_SHIFT_PIO;
1753 }
1754 
1755 /**
1756  *	ata_do_dev_read_id		-	default ID read method
1757  *	@dev: device
1758  *	@tf: proposed taskfile
1759  *	@id: data buffer
1760  *
1761  *	Issue the identify taskfile and hand back the buffer containing
1762  *	identify data. For some RAID controllers and for pre ATA devices
1763  *	this function is wrapped or replaced by the driver
1764  */
1765 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1766 				struct ata_taskfile *tf, __le16 *id)
1767 {
1768 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1769 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1770 }
1771 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1772 
1773 /**
1774  *	ata_dev_read_id - Read ID data from the specified device
1775  *	@dev: target device
1776  *	@p_class: pointer to class of the target device (may be changed)
1777  *	@flags: ATA_READID_* flags
1778  *	@id: buffer to read IDENTIFY data into
1779  *
1780  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1781  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1782  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1783  *	for pre-ATA4 drives.
1784  *
1785  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1786  *	now we abort if we hit that case.
1787  *
1788  *	LOCKING:
1789  *	Kernel thread context (may sleep)
1790  *
1791  *	RETURNS:
1792  *	0 on success, -errno otherwise.
1793  */
1794 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1795 		    unsigned int flags, u16 *id)
1796 {
1797 	struct ata_port *ap = dev->link->ap;
1798 	unsigned int class = *p_class;
1799 	struct ata_taskfile tf;
1800 	unsigned int err_mask = 0;
1801 	const char *reason;
1802 	bool is_semb = class == ATA_DEV_SEMB;
1803 	int may_fallback = 1, tried_spinup = 0;
1804 	int rc;
1805 
1806 retry:
1807 	ata_tf_init(dev, &tf);
1808 
1809 	switch (class) {
1810 	case ATA_DEV_SEMB:
1811 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1812 		fallthrough;
1813 	case ATA_DEV_ATA:
1814 	case ATA_DEV_ZAC:
1815 		tf.command = ATA_CMD_ID_ATA;
1816 		break;
1817 	case ATA_DEV_ATAPI:
1818 		tf.command = ATA_CMD_ID_ATAPI;
1819 		break;
1820 	default:
1821 		rc = -ENODEV;
1822 		reason = "unsupported class";
1823 		goto err_out;
1824 	}
1825 
1826 	tf.protocol = ATA_PROT_PIO;
1827 
1828 	/* Some devices choke if TF registers contain garbage.  Make
1829 	 * sure those are properly initialized.
1830 	 */
1831 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1832 
1833 	/* Device presence detection is unreliable on some
1834 	 * controllers.  Always poll IDENTIFY if available.
1835 	 */
1836 	tf.flags |= ATA_TFLAG_POLLING;
1837 
1838 	if (ap->ops->read_id)
1839 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1840 	else
1841 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1842 
1843 	if (err_mask) {
1844 		if (err_mask & AC_ERR_NODEV_HINT) {
1845 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1846 			return -ENOENT;
1847 		}
1848 
1849 		if (is_semb) {
1850 			ata_dev_info(dev,
1851 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1852 			/* SEMB is not supported yet */
1853 			*p_class = ATA_DEV_SEMB_UNSUP;
1854 			return 0;
1855 		}
1856 
1857 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1858 			/* Device or controller might have reported
1859 			 * the wrong device class.  Give a shot at the
1860 			 * other IDENTIFY if the current one is
1861 			 * aborted by the device.
1862 			 */
1863 			if (may_fallback) {
1864 				may_fallback = 0;
1865 
1866 				if (class == ATA_DEV_ATA)
1867 					class = ATA_DEV_ATAPI;
1868 				else
1869 					class = ATA_DEV_ATA;
1870 				goto retry;
1871 			}
1872 
1873 			/* Control reaches here iff the device aborted
1874 			 * both flavors of IDENTIFYs which happens
1875 			 * sometimes with phantom devices.
1876 			 */
1877 			ata_dev_dbg(dev,
1878 				    "both IDENTIFYs aborted, assuming NODEV\n");
1879 			return -ENOENT;
1880 		}
1881 
1882 		rc = -EIO;
1883 		reason = "I/O error";
1884 		goto err_out;
1885 	}
1886 
1887 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1888 		ata_dev_info(dev, "dumping IDENTIFY data, "
1889 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1890 			    class, may_fallback, tried_spinup);
1891 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1892 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1893 	}
1894 
1895 	/* Falling back doesn't make sense if ID data was read
1896 	 * successfully at least once.
1897 	 */
1898 	may_fallback = 0;
1899 
1900 	swap_buf_le16(id, ATA_ID_WORDS);
1901 
1902 	/* sanity check */
1903 	rc = -EINVAL;
1904 	reason = "device reports invalid type";
1905 
1906 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1907 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1908 			goto err_out;
1909 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1910 							ata_id_is_ata(id)) {
1911 			ata_dev_dbg(dev,
1912 				"host indicates ignore ATA devices, ignored\n");
1913 			return -ENOENT;
1914 		}
1915 	} else {
1916 		if (ata_id_is_ata(id))
1917 			goto err_out;
1918 	}
1919 
1920 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1921 		tried_spinup = 1;
1922 		/*
1923 		 * Drive powered-up in standby mode, and requires a specific
1924 		 * SET_FEATURES spin-up subcommand before it will accept
1925 		 * anything other than the original IDENTIFY command.
1926 		 */
1927 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1928 		if (err_mask && id[2] != 0x738c) {
1929 			rc = -EIO;
1930 			reason = "SPINUP failed";
1931 			goto err_out;
1932 		}
1933 		/*
1934 		 * If the drive initially returned incomplete IDENTIFY info,
1935 		 * we now must reissue the IDENTIFY command.
1936 		 */
1937 		if (id[2] == 0x37c8)
1938 			goto retry;
1939 	}
1940 
1941 	if ((flags & ATA_READID_POSTRESET) &&
1942 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1943 		/*
1944 		 * The exact sequence expected by certain pre-ATA4 drives is:
1945 		 * SRST RESET
1946 		 * IDENTIFY (optional in early ATA)
1947 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1948 		 * anything else..
1949 		 * Some drives were very specific about that exact sequence.
1950 		 *
1951 		 * Note that ATA4 says lba is mandatory so the second check
1952 		 * should never trigger.
1953 		 */
1954 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1955 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1956 			if (err_mask) {
1957 				rc = -EIO;
1958 				reason = "INIT_DEV_PARAMS failed";
1959 				goto err_out;
1960 			}
1961 
1962 			/* current CHS translation info (id[53-58]) might be
1963 			 * changed. reread the identify device info.
1964 			 */
1965 			flags &= ~ATA_READID_POSTRESET;
1966 			goto retry;
1967 		}
1968 	}
1969 
1970 	*p_class = class;
1971 
1972 	return 0;
1973 
1974  err_out:
1975 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1976 		     reason, err_mask);
1977 	return rc;
1978 }
1979 
1980 /**
1981  *	ata_read_log_page - read a specific log page
1982  *	@dev: target device
1983  *	@log: log to read
1984  *	@page: page to read
1985  *	@buf: buffer to store read page
1986  *	@sectors: number of sectors to read
1987  *
1988  *	Read log page using READ_LOG_EXT command.
1989  *
1990  *	LOCKING:
1991  *	Kernel thread context (may sleep).
1992  *
1993  *	RETURNS:
1994  *	0 on success, AC_ERR_* mask otherwise.
1995  */
1996 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1997 			       u8 page, void *buf, unsigned int sectors)
1998 {
1999 	unsigned long ap_flags = dev->link->ap->flags;
2000 	struct ata_taskfile tf;
2001 	unsigned int err_mask;
2002 	bool dma = false;
2003 
2004 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2005 
2006 	/*
2007 	 * Return error without actually issuing the command on controllers
2008 	 * which e.g. lockup on a read log page.
2009 	 */
2010 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2011 		return AC_ERR_DEV;
2012 
2013 retry:
2014 	ata_tf_init(dev, &tf);
2015 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2016 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2017 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2018 		tf.protocol = ATA_PROT_DMA;
2019 		dma = true;
2020 	} else {
2021 		tf.command = ATA_CMD_READ_LOG_EXT;
2022 		tf.protocol = ATA_PROT_PIO;
2023 		dma = false;
2024 	}
2025 	tf.lbal = log;
2026 	tf.lbam = page;
2027 	tf.nsect = sectors;
2028 	tf.hob_nsect = sectors >> 8;
2029 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2030 
2031 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2032 				     buf, sectors * ATA_SECT_SIZE, 0);
2033 
2034 	if (err_mask) {
2035 		if (dma) {
2036 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2037 			if (!ata_port_is_frozen(dev->link->ap))
2038 				goto retry;
2039 		}
2040 		ata_dev_err(dev,
2041 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2042 			    (unsigned int)log, (unsigned int)page, err_mask);
2043 	}
2044 
2045 	return err_mask;
2046 }
2047 
2048 static int ata_log_supported(struct ata_device *dev, u8 log)
2049 {
2050 	struct ata_port *ap = dev->link->ap;
2051 
2052 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2053 		return 0;
2054 
2055 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2056 		return 0;
2057 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2058 }
2059 
2060 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2061 {
2062 	struct ata_port *ap = dev->link->ap;
2063 	unsigned int err, i;
2064 
2065 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2066 		return false;
2067 
2068 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2069 		/*
2070 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2071 		 * with ACS-3 (ATA version 10). Warn about the missing log
2072 		 * for drives which implement this ATA level or above.
2073 		 */
2074 		if (ata_id_major_version(dev->id) >= 10)
2075 			ata_dev_warn(dev,
2076 				"ATA Identify Device Log not supported\n");
2077 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2078 		return false;
2079 	}
2080 
2081 	/*
2082 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2083 	 * supported.
2084 	 */
2085 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2086 				1);
2087 	if (err)
2088 		return false;
2089 
2090 	for (i = 0; i < ap->sector_buf[8]; i++) {
2091 		if (ap->sector_buf[9 + i] == page)
2092 			return true;
2093 	}
2094 
2095 	return false;
2096 }
2097 
2098 static int ata_do_link_spd_horkage(struct ata_device *dev)
2099 {
2100 	struct ata_link *plink = ata_dev_phys_link(dev);
2101 	u32 target, target_limit;
2102 
2103 	if (!sata_scr_valid(plink))
2104 		return 0;
2105 
2106 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2107 		target = 1;
2108 	else
2109 		return 0;
2110 
2111 	target_limit = (1 << target) - 1;
2112 
2113 	/* if already on stricter limit, no need to push further */
2114 	if (plink->sata_spd_limit <= target_limit)
2115 		return 0;
2116 
2117 	plink->sata_spd_limit = target_limit;
2118 
2119 	/* Request another EH round by returning -EAGAIN if link is
2120 	 * going faster than the target speed.  Forward progress is
2121 	 * guaranteed by setting sata_spd_limit to target_limit above.
2122 	 */
2123 	if (plink->sata_spd > target) {
2124 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2125 			     sata_spd_string(target));
2126 		return -EAGAIN;
2127 	}
2128 	return 0;
2129 }
2130 
2131 static inline u8 ata_dev_knobble(struct ata_device *dev)
2132 {
2133 	struct ata_port *ap = dev->link->ap;
2134 
2135 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2136 		return 0;
2137 
2138 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2139 }
2140 
2141 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2142 {
2143 	struct ata_port *ap = dev->link->ap;
2144 	unsigned int err_mask;
2145 
2146 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2147 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2148 		return;
2149 	}
2150 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2151 				     0, ap->sector_buf, 1);
2152 	if (!err_mask) {
2153 		u8 *cmds = dev->ncq_send_recv_cmds;
2154 
2155 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2156 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2157 
2158 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2159 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2160 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2161 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2162 		}
2163 	}
2164 }
2165 
2166 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2167 {
2168 	struct ata_port *ap = dev->link->ap;
2169 	unsigned int err_mask;
2170 
2171 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2172 		ata_dev_warn(dev,
2173 			     "NCQ Send/Recv Log not supported\n");
2174 		return;
2175 	}
2176 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2177 				     0, ap->sector_buf, 1);
2178 	if (!err_mask) {
2179 		u8 *cmds = dev->ncq_non_data_cmds;
2180 
2181 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2182 	}
2183 }
2184 
2185 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2186 {
2187 	struct ata_port *ap = dev->link->ap;
2188 	unsigned int err_mask;
2189 
2190 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2191 		return;
2192 
2193 	err_mask = ata_read_log_page(dev,
2194 				     ATA_LOG_IDENTIFY_DEVICE,
2195 				     ATA_LOG_SATA_SETTINGS,
2196 				     ap->sector_buf,
2197 				     1);
2198 	if (err_mask)
2199 		goto not_supported;
2200 
2201 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2202 		goto not_supported;
2203 
2204 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2205 
2206 	return;
2207 
2208 not_supported:
2209 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2210 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2211 }
2212 
2213 static bool ata_dev_check_adapter(struct ata_device *dev,
2214 				  unsigned short vendor_id)
2215 {
2216 	struct pci_dev *pcidev = NULL;
2217 	struct device *parent_dev = NULL;
2218 
2219 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2220 	     parent_dev = parent_dev->parent) {
2221 		if (dev_is_pci(parent_dev)) {
2222 			pcidev = to_pci_dev(parent_dev);
2223 			if (pcidev->vendor == vendor_id)
2224 				return true;
2225 			break;
2226 		}
2227 	}
2228 
2229 	return false;
2230 }
2231 
2232 static int ata_dev_config_ncq(struct ata_device *dev,
2233 			       char *desc, size_t desc_sz)
2234 {
2235 	struct ata_port *ap = dev->link->ap;
2236 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2237 	unsigned int err_mask;
2238 	char *aa_desc = "";
2239 
2240 	if (!ata_id_has_ncq(dev->id)) {
2241 		desc[0] = '\0';
2242 		return 0;
2243 	}
2244 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2245 		return 0;
2246 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2247 		snprintf(desc, desc_sz, "NCQ (not used)");
2248 		return 0;
2249 	}
2250 
2251 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2252 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2253 		snprintf(desc, desc_sz, "NCQ (not used)");
2254 		return 0;
2255 	}
2256 
2257 	if (ap->flags & ATA_FLAG_NCQ) {
2258 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2259 		dev->flags |= ATA_DFLAG_NCQ;
2260 	}
2261 
2262 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2263 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2264 		ata_id_has_fpdma_aa(dev->id)) {
2265 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2266 			SATA_FPDMA_AA);
2267 		if (err_mask) {
2268 			ata_dev_err(dev,
2269 				    "failed to enable AA (error_mask=0x%x)\n",
2270 				    err_mask);
2271 			if (err_mask != AC_ERR_DEV) {
2272 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2273 				return -EIO;
2274 			}
2275 		} else
2276 			aa_desc = ", AA";
2277 	}
2278 
2279 	if (hdepth >= ddepth)
2280 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2281 	else
2282 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2283 			ddepth, aa_desc);
2284 
2285 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2286 		if (ata_id_has_ncq_send_and_recv(dev->id))
2287 			ata_dev_config_ncq_send_recv(dev);
2288 		if (ata_id_has_ncq_non_data(dev->id))
2289 			ata_dev_config_ncq_non_data(dev);
2290 		if (ata_id_has_ncq_prio(dev->id))
2291 			ata_dev_config_ncq_prio(dev);
2292 	}
2293 
2294 	return 0;
2295 }
2296 
2297 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2298 {
2299 	unsigned int err_mask;
2300 
2301 	if (!ata_id_has_sense_reporting(dev->id))
2302 		return;
2303 
2304 	if (ata_id_sense_reporting_enabled(dev->id))
2305 		return;
2306 
2307 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2308 	if (err_mask) {
2309 		ata_dev_dbg(dev,
2310 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2311 			    err_mask);
2312 	}
2313 }
2314 
2315 static void ata_dev_config_zac(struct ata_device *dev)
2316 {
2317 	struct ata_port *ap = dev->link->ap;
2318 	unsigned int err_mask;
2319 	u8 *identify_buf = ap->sector_buf;
2320 
2321 	dev->zac_zones_optimal_open = U32_MAX;
2322 	dev->zac_zones_optimal_nonseq = U32_MAX;
2323 	dev->zac_zones_max_open = U32_MAX;
2324 
2325 	/*
2326 	 * Always set the 'ZAC' flag for Host-managed devices.
2327 	 */
2328 	if (dev->class == ATA_DEV_ZAC)
2329 		dev->flags |= ATA_DFLAG_ZAC;
2330 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2331 		/*
2332 		 * Check for host-aware devices.
2333 		 */
2334 		dev->flags |= ATA_DFLAG_ZAC;
2335 
2336 	if (!(dev->flags & ATA_DFLAG_ZAC))
2337 		return;
2338 
2339 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2340 		ata_dev_warn(dev,
2341 			     "ATA Zoned Information Log not supported\n");
2342 		return;
2343 	}
2344 
2345 	/*
2346 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2347 	 */
2348 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2349 				     ATA_LOG_ZONED_INFORMATION,
2350 				     identify_buf, 1);
2351 	if (!err_mask) {
2352 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2353 
2354 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2355 		if ((zoned_cap >> 63))
2356 			dev->zac_zoned_cap = (zoned_cap & 1);
2357 		opt_open = get_unaligned_le64(&identify_buf[24]);
2358 		if ((opt_open >> 63))
2359 			dev->zac_zones_optimal_open = (u32)opt_open;
2360 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2361 		if ((opt_nonseq >> 63))
2362 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2363 		max_open = get_unaligned_le64(&identify_buf[40]);
2364 		if ((max_open >> 63))
2365 			dev->zac_zones_max_open = (u32)max_open;
2366 	}
2367 }
2368 
2369 static void ata_dev_config_trusted(struct ata_device *dev)
2370 {
2371 	struct ata_port *ap = dev->link->ap;
2372 	u64 trusted_cap;
2373 	unsigned int err;
2374 
2375 	if (!ata_id_has_trusted(dev->id))
2376 		return;
2377 
2378 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2379 		ata_dev_warn(dev,
2380 			     "Security Log not supported\n");
2381 		return;
2382 	}
2383 
2384 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2385 			ap->sector_buf, 1);
2386 	if (err)
2387 		return;
2388 
2389 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2390 	if (!(trusted_cap & (1ULL << 63))) {
2391 		ata_dev_dbg(dev,
2392 			    "Trusted Computing capability qword not valid!\n");
2393 		return;
2394 	}
2395 
2396 	if (trusted_cap & (1 << 0))
2397 		dev->flags |= ATA_DFLAG_TRUSTED;
2398 }
2399 
2400 static void ata_dev_config_cdl(struct ata_device *dev)
2401 {
2402 	struct ata_port *ap = dev->link->ap;
2403 	unsigned int err_mask;
2404 	bool cdl_enabled;
2405 	u64 val;
2406 
2407 	if (ata_id_major_version(dev->id) < 12)
2408 		goto not_supported;
2409 
2410 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2411 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2412 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2413 		goto not_supported;
2414 
2415 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2416 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2417 				     ap->sector_buf, 1);
2418 	if (err_mask)
2419 		goto not_supported;
2420 
2421 	/* Check Command Duration Limit Supported bits */
2422 	val = get_unaligned_le64(&ap->sector_buf[168]);
2423 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2424 		goto not_supported;
2425 
2426 	/* Warn the user if command duration guideline is not supported */
2427 	if (!(val & BIT_ULL(1)))
2428 		ata_dev_warn(dev,
2429 			"Command duration guideline is not supported\n");
2430 
2431 	/*
2432 	 * We must have support for the sense data for successful NCQ commands
2433 	 * log indicated by the successful NCQ command sense data supported bit.
2434 	 */
2435 	val = get_unaligned_le64(&ap->sector_buf[8]);
2436 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2437 		ata_dev_warn(dev,
2438 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2439 		goto not_supported;
2440 	}
2441 
2442 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2443 	if (!ata_id_has_ncq_autosense(dev->id)) {
2444 		ata_dev_warn(dev,
2445 			"CDL supported but NCQ autosense is not supported\n");
2446 		goto not_supported;
2447 	}
2448 
2449 	/*
2450 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2451 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2452 	 */
2453 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2454 				     ATA_LOG_CURRENT_SETTINGS,
2455 				     ap->sector_buf, 1);
2456 	if (err_mask)
2457 		goto not_supported;
2458 
2459 	val = get_unaligned_le64(&ap->sector_buf[8]);
2460 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2461 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2462 		if (!cdl_enabled) {
2463 			/* Enable CDL on the device */
2464 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2465 			if (err_mask) {
2466 				ata_dev_err(dev,
2467 					    "Enable CDL feature failed\n");
2468 				goto not_supported;
2469 			}
2470 		}
2471 	} else {
2472 		if (cdl_enabled) {
2473 			/* Disable CDL on the device */
2474 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2475 			if (err_mask) {
2476 				ata_dev_err(dev,
2477 					    "Disable CDL feature failed\n");
2478 				goto not_supported;
2479 			}
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2485 	 * sense data for successful NCQ commands is enabled to work properly.
2486 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2487 	 * if supported.
2488 	 */
2489 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2490 		err_mask = ata_dev_set_feature(dev,
2491 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2492 		if (err_mask) {
2493 			ata_dev_warn(dev,
2494 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2495 				     err_mask);
2496 			goto not_supported;
2497 		}
2498 	}
2499 
2500 	/*
2501 	 * Allocate a buffer to handle reading the sense data for successful
2502 	 * NCQ Commands log page for commands using a CDL with one of the limit
2503 	 * policy set to 0xD (successful completion with sense data available
2504 	 * bit set).
2505 	 */
2506 	if (!ap->ncq_sense_buf) {
2507 		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2508 		if (!ap->ncq_sense_buf)
2509 			goto not_supported;
2510 	}
2511 
2512 	/*
2513 	 * Command duration limits is supported: cache the CDL log page 18h
2514 	 * (command duration descriptors).
2515 	 */
2516 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2517 	if (err_mask) {
2518 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2519 		goto not_supported;
2520 	}
2521 
2522 	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2523 	dev->flags |= ATA_DFLAG_CDL;
2524 
2525 	return;
2526 
2527 not_supported:
2528 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2529 	kfree(ap->ncq_sense_buf);
2530 	ap->ncq_sense_buf = NULL;
2531 }
2532 
2533 static int ata_dev_config_lba(struct ata_device *dev)
2534 {
2535 	const u16 *id = dev->id;
2536 	const char *lba_desc;
2537 	char ncq_desc[24];
2538 	int ret;
2539 
2540 	dev->flags |= ATA_DFLAG_LBA;
2541 
2542 	if (ata_id_has_lba48(id)) {
2543 		lba_desc = "LBA48";
2544 		dev->flags |= ATA_DFLAG_LBA48;
2545 		if (dev->n_sectors >= (1UL << 28) &&
2546 		    ata_id_has_flush_ext(id))
2547 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2548 	} else {
2549 		lba_desc = "LBA";
2550 	}
2551 
2552 	/* config NCQ */
2553 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2554 
2555 	/* print device info to dmesg */
2556 	if (ata_dev_print_info(dev))
2557 		ata_dev_info(dev,
2558 			     "%llu sectors, multi %u: %s %s\n",
2559 			     (unsigned long long)dev->n_sectors,
2560 			     dev->multi_count, lba_desc, ncq_desc);
2561 
2562 	return ret;
2563 }
2564 
2565 static void ata_dev_config_chs(struct ata_device *dev)
2566 {
2567 	const u16 *id = dev->id;
2568 
2569 	if (ata_id_current_chs_valid(id)) {
2570 		/* Current CHS translation is valid. */
2571 		dev->cylinders = id[54];
2572 		dev->heads     = id[55];
2573 		dev->sectors   = id[56];
2574 	} else {
2575 		/* Default translation */
2576 		dev->cylinders	= id[1];
2577 		dev->heads	= id[3];
2578 		dev->sectors	= id[6];
2579 	}
2580 
2581 	/* print device info to dmesg */
2582 	if (ata_dev_print_info(dev))
2583 		ata_dev_info(dev,
2584 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2585 			     (unsigned long long)dev->n_sectors,
2586 			     dev->multi_count, dev->cylinders,
2587 			     dev->heads, dev->sectors);
2588 }
2589 
2590 static void ata_dev_config_fua(struct ata_device *dev)
2591 {
2592 	/* Ignore FUA support if its use is disabled globally */
2593 	if (!libata_fua)
2594 		goto nofua;
2595 
2596 	/* Ignore devices without support for WRITE DMA FUA EXT */
2597 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2598 		goto nofua;
2599 
2600 	/* Ignore known bad devices and devices that lack NCQ support */
2601 	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2602 		goto nofua;
2603 
2604 	dev->flags |= ATA_DFLAG_FUA;
2605 
2606 	return;
2607 
2608 nofua:
2609 	dev->flags &= ~ATA_DFLAG_FUA;
2610 }
2611 
2612 static void ata_dev_config_devslp(struct ata_device *dev)
2613 {
2614 	u8 *sata_setting = dev->link->ap->sector_buf;
2615 	unsigned int err_mask;
2616 	int i, j;
2617 
2618 	/*
2619 	 * Check device sleep capability. Get DevSlp timing variables
2620 	 * from SATA Settings page of Identify Device Data Log.
2621 	 */
2622 	if (!ata_id_has_devslp(dev->id) ||
2623 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2624 		return;
2625 
2626 	err_mask = ata_read_log_page(dev,
2627 				     ATA_LOG_IDENTIFY_DEVICE,
2628 				     ATA_LOG_SATA_SETTINGS,
2629 				     sata_setting, 1);
2630 	if (err_mask)
2631 		return;
2632 
2633 	dev->flags |= ATA_DFLAG_DEVSLP;
2634 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2635 		j = ATA_LOG_DEVSLP_OFFSET + i;
2636 		dev->devslp_timing[i] = sata_setting[j];
2637 	}
2638 }
2639 
2640 static void ata_dev_config_cpr(struct ata_device *dev)
2641 {
2642 	unsigned int err_mask;
2643 	size_t buf_len;
2644 	int i, nr_cpr = 0;
2645 	struct ata_cpr_log *cpr_log = NULL;
2646 	u8 *desc, *buf = NULL;
2647 
2648 	if (ata_id_major_version(dev->id) < 11)
2649 		goto out;
2650 
2651 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2652 	if (buf_len == 0)
2653 		goto out;
2654 
2655 	/*
2656 	 * Read the concurrent positioning ranges log (0x47). We can have at
2657 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2658 	 * size, so use the size reported in the GPL directory. Reading beyond
2659 	 * the supported length will result in an error.
2660 	 */
2661 	buf_len <<= 9;
2662 	buf = kzalloc(buf_len, GFP_KERNEL);
2663 	if (!buf)
2664 		goto out;
2665 
2666 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2667 				     0, buf, buf_len >> 9);
2668 	if (err_mask)
2669 		goto out;
2670 
2671 	nr_cpr = buf[0];
2672 	if (!nr_cpr)
2673 		goto out;
2674 
2675 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2676 	if (!cpr_log)
2677 		goto out;
2678 
2679 	cpr_log->nr_cpr = nr_cpr;
2680 	desc = &buf[64];
2681 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2682 		cpr_log->cpr[i].num = desc[0];
2683 		cpr_log->cpr[i].num_storage_elements = desc[1];
2684 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2685 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2686 	}
2687 
2688 out:
2689 	swap(dev->cpr_log, cpr_log);
2690 	kfree(cpr_log);
2691 	kfree(buf);
2692 }
2693 
2694 static void ata_dev_print_features(struct ata_device *dev)
2695 {
2696 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2697 		return;
2698 
2699 	ata_dev_info(dev,
2700 		     "Features:%s%s%s%s%s%s%s%s\n",
2701 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2702 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2703 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2704 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2705 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2706 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2707 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2708 		     dev->cpr_log ? " CPR" : "");
2709 }
2710 
2711 /**
2712  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2713  *	@dev: Target device to configure
2714  *
2715  *	Configure @dev according to @dev->id.  Generic and low-level
2716  *	driver specific fixups are also applied.
2717  *
2718  *	LOCKING:
2719  *	Kernel thread context (may sleep)
2720  *
2721  *	RETURNS:
2722  *	0 on success, -errno otherwise
2723  */
2724 int ata_dev_configure(struct ata_device *dev)
2725 {
2726 	struct ata_port *ap = dev->link->ap;
2727 	bool print_info = ata_dev_print_info(dev);
2728 	const u16 *id = dev->id;
2729 	unsigned int xfer_mask;
2730 	unsigned int err_mask;
2731 	char revbuf[7];		/* XYZ-99\0 */
2732 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2733 	char modelbuf[ATA_ID_PROD_LEN+1];
2734 	int rc;
2735 
2736 	if (!ata_dev_enabled(dev)) {
2737 		ata_dev_dbg(dev, "no device\n");
2738 		return 0;
2739 	}
2740 
2741 	/* set horkage */
2742 	dev->horkage |= ata_dev_blacklisted(dev);
2743 	ata_force_horkage(dev);
2744 
2745 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2746 		ata_dev_info(dev, "unsupported device, disabling\n");
2747 		ata_dev_disable(dev);
2748 		return 0;
2749 	}
2750 
2751 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2752 	    dev->class == ATA_DEV_ATAPI) {
2753 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2754 			     atapi_enabled ? "not supported with this driver"
2755 			     : "disabled");
2756 		ata_dev_disable(dev);
2757 		return 0;
2758 	}
2759 
2760 	rc = ata_do_link_spd_horkage(dev);
2761 	if (rc)
2762 		return rc;
2763 
2764 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2765 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2766 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2767 		dev->horkage |= ATA_HORKAGE_NOLPM;
2768 
2769 	if (ap->flags & ATA_FLAG_NO_LPM)
2770 		dev->horkage |= ATA_HORKAGE_NOLPM;
2771 
2772 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2773 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2774 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2775 	}
2776 
2777 	/* let ACPI work its magic */
2778 	rc = ata_acpi_on_devcfg(dev);
2779 	if (rc)
2780 		return rc;
2781 
2782 	/* massage HPA, do it early as it might change IDENTIFY data */
2783 	rc = ata_hpa_resize(dev);
2784 	if (rc)
2785 		return rc;
2786 
2787 	/* print device capabilities */
2788 	ata_dev_dbg(dev,
2789 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2790 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2791 		    __func__,
2792 		    id[49], id[82], id[83], id[84],
2793 		    id[85], id[86], id[87], id[88]);
2794 
2795 	/* initialize to-be-configured parameters */
2796 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2797 	dev->max_sectors = 0;
2798 	dev->cdb_len = 0;
2799 	dev->n_sectors = 0;
2800 	dev->cylinders = 0;
2801 	dev->heads = 0;
2802 	dev->sectors = 0;
2803 	dev->multi_count = 0;
2804 
2805 	/*
2806 	 * common ATA, ATAPI feature tests
2807 	 */
2808 
2809 	/* find max transfer mode; for printk only */
2810 	xfer_mask = ata_id_xfermask(id);
2811 
2812 	ata_dump_id(dev, id);
2813 
2814 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2815 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2816 			sizeof(fwrevbuf));
2817 
2818 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2819 			sizeof(modelbuf));
2820 
2821 	/* ATA-specific feature tests */
2822 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2823 		if (ata_id_is_cfa(id)) {
2824 			/* CPRM may make this media unusable */
2825 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2826 				ata_dev_warn(dev,
2827 	"supports DRM functions and may not be fully accessible\n");
2828 			snprintf(revbuf, 7, "CFA");
2829 		} else {
2830 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2831 			/* Warn the user if the device has TPM extensions */
2832 			if (ata_id_has_tpm(id))
2833 				ata_dev_warn(dev,
2834 	"supports DRM functions and may not be fully accessible\n");
2835 		}
2836 
2837 		dev->n_sectors = ata_id_n_sectors(id);
2838 
2839 		/* get current R/W Multiple count setting */
2840 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2841 			unsigned int max = dev->id[47] & 0xff;
2842 			unsigned int cnt = dev->id[59] & 0xff;
2843 			/* only recognize/allow powers of two here */
2844 			if (is_power_of_2(max) && is_power_of_2(cnt))
2845 				if (cnt <= max)
2846 					dev->multi_count = cnt;
2847 		}
2848 
2849 		/* print device info to dmesg */
2850 		if (print_info)
2851 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2852 				     revbuf, modelbuf, fwrevbuf,
2853 				     ata_mode_string(xfer_mask));
2854 
2855 		if (ata_id_has_lba(id)) {
2856 			rc = ata_dev_config_lba(dev);
2857 			if (rc)
2858 				return rc;
2859 		} else {
2860 			ata_dev_config_chs(dev);
2861 		}
2862 
2863 		ata_dev_config_fua(dev);
2864 		ata_dev_config_devslp(dev);
2865 		ata_dev_config_sense_reporting(dev);
2866 		ata_dev_config_zac(dev);
2867 		ata_dev_config_trusted(dev);
2868 		ata_dev_config_cpr(dev);
2869 		ata_dev_config_cdl(dev);
2870 		dev->cdb_len = 32;
2871 
2872 		if (print_info)
2873 			ata_dev_print_features(dev);
2874 	}
2875 
2876 	/* ATAPI-specific feature tests */
2877 	else if (dev->class == ATA_DEV_ATAPI) {
2878 		const char *cdb_intr_string = "";
2879 		const char *atapi_an_string = "";
2880 		const char *dma_dir_string = "";
2881 		u32 sntf;
2882 
2883 		rc = atapi_cdb_len(id);
2884 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2885 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2886 			rc = -EINVAL;
2887 			goto err_out_nosup;
2888 		}
2889 		dev->cdb_len = (unsigned int) rc;
2890 
2891 		/* Enable ATAPI AN if both the host and device have
2892 		 * the support.  If PMP is attached, SNTF is required
2893 		 * to enable ATAPI AN to discern between PHY status
2894 		 * changed notifications and ATAPI ANs.
2895 		 */
2896 		if (atapi_an &&
2897 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2898 		    (!sata_pmp_attached(ap) ||
2899 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2900 			/* issue SET feature command to turn this on */
2901 			err_mask = ata_dev_set_feature(dev,
2902 					SETFEATURES_SATA_ENABLE, SATA_AN);
2903 			if (err_mask)
2904 				ata_dev_err(dev,
2905 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2906 					    err_mask);
2907 			else {
2908 				dev->flags |= ATA_DFLAG_AN;
2909 				atapi_an_string = ", ATAPI AN";
2910 			}
2911 		}
2912 
2913 		if (ata_id_cdb_intr(dev->id)) {
2914 			dev->flags |= ATA_DFLAG_CDB_INTR;
2915 			cdb_intr_string = ", CDB intr";
2916 		}
2917 
2918 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2919 			dev->flags |= ATA_DFLAG_DMADIR;
2920 			dma_dir_string = ", DMADIR";
2921 		}
2922 
2923 		if (ata_id_has_da(dev->id)) {
2924 			dev->flags |= ATA_DFLAG_DA;
2925 			zpodd_init(dev);
2926 		}
2927 
2928 		/* print device info to dmesg */
2929 		if (print_info)
2930 			ata_dev_info(dev,
2931 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2932 				     modelbuf, fwrevbuf,
2933 				     ata_mode_string(xfer_mask),
2934 				     cdb_intr_string, atapi_an_string,
2935 				     dma_dir_string);
2936 	}
2937 
2938 	/* determine max_sectors */
2939 	dev->max_sectors = ATA_MAX_SECTORS;
2940 	if (dev->flags & ATA_DFLAG_LBA48)
2941 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2942 
2943 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2944 	   200 sectors */
2945 	if (ata_dev_knobble(dev)) {
2946 		if (print_info)
2947 			ata_dev_info(dev, "applying bridge limits\n");
2948 		dev->udma_mask &= ATA_UDMA5;
2949 		dev->max_sectors = ATA_MAX_SECTORS;
2950 	}
2951 
2952 	if ((dev->class == ATA_DEV_ATAPI) &&
2953 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2954 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2955 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2956 	}
2957 
2958 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2959 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2960 					 dev->max_sectors);
2961 
2962 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2963 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2964 					 dev->max_sectors);
2965 
2966 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2967 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2968 
2969 	if (ap->ops->dev_config)
2970 		ap->ops->dev_config(dev);
2971 
2972 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2973 		/* Let the user know. We don't want to disallow opens for
2974 		   rescue purposes, or in case the vendor is just a blithering
2975 		   idiot. Do this after the dev_config call as some controllers
2976 		   with buggy firmware may want to avoid reporting false device
2977 		   bugs */
2978 
2979 		if (print_info) {
2980 			ata_dev_warn(dev,
2981 "Drive reports diagnostics failure. This may indicate a drive\n");
2982 			ata_dev_warn(dev,
2983 "fault or invalid emulation. Contact drive vendor for information.\n");
2984 		}
2985 	}
2986 
2987 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2988 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2989 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2990 	}
2991 
2992 	return 0;
2993 
2994 err_out_nosup:
2995 	return rc;
2996 }
2997 
2998 /**
2999  *	ata_cable_40wire	-	return 40 wire cable type
3000  *	@ap: port
3001  *
3002  *	Helper method for drivers which want to hardwire 40 wire cable
3003  *	detection.
3004  */
3005 
3006 int ata_cable_40wire(struct ata_port *ap)
3007 {
3008 	return ATA_CBL_PATA40;
3009 }
3010 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3011 
3012 /**
3013  *	ata_cable_80wire	-	return 80 wire cable type
3014  *	@ap: port
3015  *
3016  *	Helper method for drivers which want to hardwire 80 wire cable
3017  *	detection.
3018  */
3019 
3020 int ata_cable_80wire(struct ata_port *ap)
3021 {
3022 	return ATA_CBL_PATA80;
3023 }
3024 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3025 
3026 /**
3027  *	ata_cable_unknown	-	return unknown PATA cable.
3028  *	@ap: port
3029  *
3030  *	Helper method for drivers which have no PATA cable detection.
3031  */
3032 
3033 int ata_cable_unknown(struct ata_port *ap)
3034 {
3035 	return ATA_CBL_PATA_UNK;
3036 }
3037 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3038 
3039 /**
3040  *	ata_cable_ignore	-	return ignored PATA cable.
3041  *	@ap: port
3042  *
3043  *	Helper method for drivers which don't use cable type to limit
3044  *	transfer mode.
3045  */
3046 int ata_cable_ignore(struct ata_port *ap)
3047 {
3048 	return ATA_CBL_PATA_IGN;
3049 }
3050 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3051 
3052 /**
3053  *	ata_cable_sata	-	return SATA cable type
3054  *	@ap: port
3055  *
3056  *	Helper method for drivers which have SATA cables
3057  */
3058 
3059 int ata_cable_sata(struct ata_port *ap)
3060 {
3061 	return ATA_CBL_SATA;
3062 }
3063 EXPORT_SYMBOL_GPL(ata_cable_sata);
3064 
3065 /**
3066  *	ata_bus_probe - Reset and probe ATA bus
3067  *	@ap: Bus to probe
3068  *
3069  *	Master ATA bus probing function.  Initiates a hardware-dependent
3070  *	bus reset, then attempts to identify any devices found on
3071  *	the bus.
3072  *
3073  *	LOCKING:
3074  *	PCI/etc. bus probe sem.
3075  *
3076  *	RETURNS:
3077  *	Zero on success, negative errno otherwise.
3078  */
3079 
3080 int ata_bus_probe(struct ata_port *ap)
3081 {
3082 	unsigned int classes[ATA_MAX_DEVICES];
3083 	int tries[ATA_MAX_DEVICES];
3084 	int rc;
3085 	struct ata_device *dev;
3086 
3087 	ata_for_each_dev(dev, &ap->link, ALL)
3088 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
3089 
3090  retry:
3091 	ata_for_each_dev(dev, &ap->link, ALL) {
3092 		/* If we issue an SRST then an ATA drive (not ATAPI)
3093 		 * may change configuration and be in PIO0 timing. If
3094 		 * we do a hard reset (or are coming from power on)
3095 		 * this is true for ATA or ATAPI. Until we've set a
3096 		 * suitable controller mode we should not touch the
3097 		 * bus as we may be talking too fast.
3098 		 */
3099 		dev->pio_mode = XFER_PIO_0;
3100 		dev->dma_mode = 0xff;
3101 
3102 		/* If the controller has a pio mode setup function
3103 		 * then use it to set the chipset to rights. Don't
3104 		 * touch the DMA setup as that will be dealt with when
3105 		 * configuring devices.
3106 		 */
3107 		if (ap->ops->set_piomode)
3108 			ap->ops->set_piomode(ap, dev);
3109 	}
3110 
3111 	/* reset and determine device classes */
3112 	ap->ops->phy_reset(ap);
3113 
3114 	ata_for_each_dev(dev, &ap->link, ALL) {
3115 		if (dev->class != ATA_DEV_UNKNOWN)
3116 			classes[dev->devno] = dev->class;
3117 		else
3118 			classes[dev->devno] = ATA_DEV_NONE;
3119 
3120 		dev->class = ATA_DEV_UNKNOWN;
3121 	}
3122 
3123 	/* read IDENTIFY page and configure devices. We have to do the identify
3124 	   specific sequence bass-ackwards so that PDIAG- is released by
3125 	   the slave device */
3126 
3127 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
3128 		if (tries[dev->devno])
3129 			dev->class = classes[dev->devno];
3130 
3131 		if (!ata_dev_enabled(dev))
3132 			continue;
3133 
3134 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
3135 				     dev->id);
3136 		if (rc)
3137 			goto fail;
3138 	}
3139 
3140 	/* Now ask for the cable type as PDIAG- should have been released */
3141 	if (ap->ops->cable_detect)
3142 		ap->cbl = ap->ops->cable_detect(ap);
3143 
3144 	/* We may have SATA bridge glue hiding here irrespective of
3145 	 * the reported cable types and sensed types.  When SATA
3146 	 * drives indicate we have a bridge, we don't know which end
3147 	 * of the link the bridge is which is a problem.
3148 	 */
3149 	ata_for_each_dev(dev, &ap->link, ENABLED)
3150 		if (ata_id_is_sata(dev->id))
3151 			ap->cbl = ATA_CBL_SATA;
3152 
3153 	/* After the identify sequence we can now set up the devices. We do
3154 	   this in the normal order so that the user doesn't get confused */
3155 
3156 	ata_for_each_dev(dev, &ap->link, ENABLED) {
3157 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
3158 		rc = ata_dev_configure(dev);
3159 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
3160 		if (rc)
3161 			goto fail;
3162 	}
3163 
3164 	/* configure transfer mode */
3165 	rc = ata_set_mode(&ap->link, &dev);
3166 	if (rc)
3167 		goto fail;
3168 
3169 	ata_for_each_dev(dev, &ap->link, ENABLED)
3170 		return 0;
3171 
3172 	return -ENODEV;
3173 
3174  fail:
3175 	tries[dev->devno]--;
3176 
3177 	switch (rc) {
3178 	case -EINVAL:
3179 		/* eeek, something went very wrong, give up */
3180 		tries[dev->devno] = 0;
3181 		break;
3182 
3183 	case -ENODEV:
3184 		/* give it just one more chance */
3185 		tries[dev->devno] = min(tries[dev->devno], 1);
3186 		fallthrough;
3187 	case -EIO:
3188 		if (tries[dev->devno] == 1) {
3189 			/* This is the last chance, better to slow
3190 			 * down than lose it.
3191 			 */
3192 			sata_down_spd_limit(&ap->link, 0);
3193 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3194 		}
3195 	}
3196 
3197 	if (!tries[dev->devno])
3198 		ata_dev_disable(dev);
3199 
3200 	goto retry;
3201 }
3202 
3203 /**
3204  *	sata_print_link_status - Print SATA link status
3205  *	@link: SATA link to printk link status about
3206  *
3207  *	This function prints link speed and status of a SATA link.
3208  *
3209  *	LOCKING:
3210  *	None.
3211  */
3212 static void sata_print_link_status(struct ata_link *link)
3213 {
3214 	u32 sstatus, scontrol, tmp;
3215 
3216 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3217 		return;
3218 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3219 		return;
3220 
3221 	if (ata_phys_link_online(link)) {
3222 		tmp = (sstatus >> 4) & 0xf;
3223 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3224 			      sata_spd_string(tmp), sstatus, scontrol);
3225 	} else {
3226 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3227 			      sstatus, scontrol);
3228 	}
3229 }
3230 
3231 /**
3232  *	ata_dev_pair		-	return other device on cable
3233  *	@adev: device
3234  *
3235  *	Obtain the other device on the same cable, or if none is
3236  *	present NULL is returned
3237  */
3238 
3239 struct ata_device *ata_dev_pair(struct ata_device *adev)
3240 {
3241 	struct ata_link *link = adev->link;
3242 	struct ata_device *pair = &link->device[1 - adev->devno];
3243 	if (!ata_dev_enabled(pair))
3244 		return NULL;
3245 	return pair;
3246 }
3247 EXPORT_SYMBOL_GPL(ata_dev_pair);
3248 
3249 /**
3250  *	sata_down_spd_limit - adjust SATA spd limit downward
3251  *	@link: Link to adjust SATA spd limit for
3252  *	@spd_limit: Additional limit
3253  *
3254  *	Adjust SATA spd limit of @link downward.  Note that this
3255  *	function only adjusts the limit.  The change must be applied
3256  *	using sata_set_spd().
3257  *
3258  *	If @spd_limit is non-zero, the speed is limited to equal to or
3259  *	lower than @spd_limit if such speed is supported.  If
3260  *	@spd_limit is slower than any supported speed, only the lowest
3261  *	supported speed is allowed.
3262  *
3263  *	LOCKING:
3264  *	Inherited from caller.
3265  *
3266  *	RETURNS:
3267  *	0 on success, negative errno on failure
3268  */
3269 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3270 {
3271 	u32 sstatus, spd, mask;
3272 	int rc, bit;
3273 
3274 	if (!sata_scr_valid(link))
3275 		return -EOPNOTSUPP;
3276 
3277 	/* If SCR can be read, use it to determine the current SPD.
3278 	 * If not, use cached value in link->sata_spd.
3279 	 */
3280 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3281 	if (rc == 0 && ata_sstatus_online(sstatus))
3282 		spd = (sstatus >> 4) & 0xf;
3283 	else
3284 		spd = link->sata_spd;
3285 
3286 	mask = link->sata_spd_limit;
3287 	if (mask <= 1)
3288 		return -EINVAL;
3289 
3290 	/* unconditionally mask off the highest bit */
3291 	bit = fls(mask) - 1;
3292 	mask &= ~(1 << bit);
3293 
3294 	/*
3295 	 * Mask off all speeds higher than or equal to the current one.  At
3296 	 * this point, if current SPD is not available and we previously
3297 	 * recorded the link speed from SStatus, the driver has already
3298 	 * masked off the highest bit so mask should already be 1 or 0.
3299 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3300 	 * not previously recorded speed from SStatus.  Just return in this
3301 	 * case.
3302 	 */
3303 	if (spd > 1)
3304 		mask &= (1 << (spd - 1)) - 1;
3305 	else if (link->sata_spd)
3306 		return -EINVAL;
3307 
3308 	/* were we already at the bottom? */
3309 	if (!mask)
3310 		return -EINVAL;
3311 
3312 	if (spd_limit) {
3313 		if (mask & ((1 << spd_limit) - 1))
3314 			mask &= (1 << spd_limit) - 1;
3315 		else {
3316 			bit = ffs(mask) - 1;
3317 			mask = 1 << bit;
3318 		}
3319 	}
3320 
3321 	link->sata_spd_limit = mask;
3322 
3323 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3324 		      sata_spd_string(fls(mask)));
3325 
3326 	return 0;
3327 }
3328 
3329 #ifdef CONFIG_ATA_ACPI
3330 /**
3331  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3332  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3333  *	@cycle: cycle duration in ns
3334  *
3335  *	Return matching xfer mode for @cycle.  The returned mode is of
3336  *	the transfer type specified by @xfer_shift.  If @cycle is too
3337  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3338  *	than the fastest known mode, the fasted mode is returned.
3339  *
3340  *	LOCKING:
3341  *	None.
3342  *
3343  *	RETURNS:
3344  *	Matching xfer_mode, 0xff if no match found.
3345  */
3346 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3347 {
3348 	u8 base_mode = 0xff, last_mode = 0xff;
3349 	const struct ata_xfer_ent *ent;
3350 	const struct ata_timing *t;
3351 
3352 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3353 		if (ent->shift == xfer_shift)
3354 			base_mode = ent->base;
3355 
3356 	for (t = ata_timing_find_mode(base_mode);
3357 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3358 		unsigned short this_cycle;
3359 
3360 		switch (xfer_shift) {
3361 		case ATA_SHIFT_PIO:
3362 		case ATA_SHIFT_MWDMA:
3363 			this_cycle = t->cycle;
3364 			break;
3365 		case ATA_SHIFT_UDMA:
3366 			this_cycle = t->udma;
3367 			break;
3368 		default:
3369 			return 0xff;
3370 		}
3371 
3372 		if (cycle > this_cycle)
3373 			break;
3374 
3375 		last_mode = t->mode;
3376 	}
3377 
3378 	return last_mode;
3379 }
3380 #endif
3381 
3382 /**
3383  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3384  *	@dev: Device to adjust xfer masks
3385  *	@sel: ATA_DNXFER_* selector
3386  *
3387  *	Adjust xfer masks of @dev downward.  Note that this function
3388  *	does not apply the change.  Invoking ata_set_mode() afterwards
3389  *	will apply the limit.
3390  *
3391  *	LOCKING:
3392  *	Inherited from caller.
3393  *
3394  *	RETURNS:
3395  *	0 on success, negative errno on failure
3396  */
3397 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3398 {
3399 	char buf[32];
3400 	unsigned int orig_mask, xfer_mask;
3401 	unsigned int pio_mask, mwdma_mask, udma_mask;
3402 	int quiet, highbit;
3403 
3404 	quiet = !!(sel & ATA_DNXFER_QUIET);
3405 	sel &= ~ATA_DNXFER_QUIET;
3406 
3407 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3408 						  dev->mwdma_mask,
3409 						  dev->udma_mask);
3410 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3411 
3412 	switch (sel) {
3413 	case ATA_DNXFER_PIO:
3414 		highbit = fls(pio_mask) - 1;
3415 		pio_mask &= ~(1 << highbit);
3416 		break;
3417 
3418 	case ATA_DNXFER_DMA:
3419 		if (udma_mask) {
3420 			highbit = fls(udma_mask) - 1;
3421 			udma_mask &= ~(1 << highbit);
3422 			if (!udma_mask)
3423 				return -ENOENT;
3424 		} else if (mwdma_mask) {
3425 			highbit = fls(mwdma_mask) - 1;
3426 			mwdma_mask &= ~(1 << highbit);
3427 			if (!mwdma_mask)
3428 				return -ENOENT;
3429 		}
3430 		break;
3431 
3432 	case ATA_DNXFER_40C:
3433 		udma_mask &= ATA_UDMA_MASK_40C;
3434 		break;
3435 
3436 	case ATA_DNXFER_FORCE_PIO0:
3437 		pio_mask &= 1;
3438 		fallthrough;
3439 	case ATA_DNXFER_FORCE_PIO:
3440 		mwdma_mask = 0;
3441 		udma_mask = 0;
3442 		break;
3443 
3444 	default:
3445 		BUG();
3446 	}
3447 
3448 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3449 
3450 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3451 		return -ENOENT;
3452 
3453 	if (!quiet) {
3454 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3455 			snprintf(buf, sizeof(buf), "%s:%s",
3456 				 ata_mode_string(xfer_mask),
3457 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3458 		else
3459 			snprintf(buf, sizeof(buf), "%s",
3460 				 ata_mode_string(xfer_mask));
3461 
3462 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3463 	}
3464 
3465 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3466 			    &dev->udma_mask);
3467 
3468 	return 0;
3469 }
3470 
3471 static int ata_dev_set_mode(struct ata_device *dev)
3472 {
3473 	struct ata_port *ap = dev->link->ap;
3474 	struct ata_eh_context *ehc = &dev->link->eh_context;
3475 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3476 	const char *dev_err_whine = "";
3477 	int ign_dev_err = 0;
3478 	unsigned int err_mask = 0;
3479 	int rc;
3480 
3481 	dev->flags &= ~ATA_DFLAG_PIO;
3482 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3483 		dev->flags |= ATA_DFLAG_PIO;
3484 
3485 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3486 		dev_err_whine = " (SET_XFERMODE skipped)";
3487 	else {
3488 		if (nosetxfer)
3489 			ata_dev_warn(dev,
3490 				     "NOSETXFER but PATA detected - can't "
3491 				     "skip SETXFER, might malfunction\n");
3492 		err_mask = ata_dev_set_xfermode(dev);
3493 	}
3494 
3495 	if (err_mask & ~AC_ERR_DEV)
3496 		goto fail;
3497 
3498 	/* revalidate */
3499 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3500 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3501 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3502 	if (rc)
3503 		return rc;
3504 
3505 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3506 		/* Old CFA may refuse this command, which is just fine */
3507 		if (ata_id_is_cfa(dev->id))
3508 			ign_dev_err = 1;
3509 		/* Catch several broken garbage emulations plus some pre
3510 		   ATA devices */
3511 		if (ata_id_major_version(dev->id) == 0 &&
3512 					dev->pio_mode <= XFER_PIO_2)
3513 			ign_dev_err = 1;
3514 		/* Some very old devices and some bad newer ones fail
3515 		   any kind of SET_XFERMODE request but support PIO0-2
3516 		   timings and no IORDY */
3517 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3518 			ign_dev_err = 1;
3519 	}
3520 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3521 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3522 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3523 	    dev->dma_mode == XFER_MW_DMA_0 &&
3524 	    (dev->id[63] >> 8) & 1)
3525 		ign_dev_err = 1;
3526 
3527 	/* if the device is actually configured correctly, ignore dev err */
3528 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3529 		ign_dev_err = 1;
3530 
3531 	if (err_mask & AC_ERR_DEV) {
3532 		if (!ign_dev_err)
3533 			goto fail;
3534 		else
3535 			dev_err_whine = " (device error ignored)";
3536 	}
3537 
3538 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3539 		    dev->xfer_shift, (int)dev->xfer_mode);
3540 
3541 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3542 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3543 		ata_dev_info(dev, "configured for %s%s\n",
3544 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3545 			     dev_err_whine);
3546 
3547 	return 0;
3548 
3549  fail:
3550 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3551 	return -EIO;
3552 }
3553 
3554 /**
3555  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3556  *	@link: link on which timings will be programmed
3557  *	@r_failed_dev: out parameter for failed device
3558  *
3559  *	Standard implementation of the function used to tune and set
3560  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3561  *	ata_dev_set_mode() fails, pointer to the failing device is
3562  *	returned in @r_failed_dev.
3563  *
3564  *	LOCKING:
3565  *	PCI/etc. bus probe sem.
3566  *
3567  *	RETURNS:
3568  *	0 on success, negative errno otherwise
3569  */
3570 
3571 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3572 {
3573 	struct ata_port *ap = link->ap;
3574 	struct ata_device *dev;
3575 	int rc = 0, used_dma = 0, found = 0;
3576 
3577 	/* step 1: calculate xfer_mask */
3578 	ata_for_each_dev(dev, link, ENABLED) {
3579 		unsigned int pio_mask, dma_mask;
3580 		unsigned int mode_mask;
3581 
3582 		mode_mask = ATA_DMA_MASK_ATA;
3583 		if (dev->class == ATA_DEV_ATAPI)
3584 			mode_mask = ATA_DMA_MASK_ATAPI;
3585 		else if (ata_id_is_cfa(dev->id))
3586 			mode_mask = ATA_DMA_MASK_CFA;
3587 
3588 		ata_dev_xfermask(dev);
3589 		ata_force_xfermask(dev);
3590 
3591 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3592 
3593 		if (libata_dma_mask & mode_mask)
3594 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3595 						     dev->udma_mask);
3596 		else
3597 			dma_mask = 0;
3598 
3599 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3600 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3601 
3602 		found = 1;
3603 		if (ata_dma_enabled(dev))
3604 			used_dma = 1;
3605 	}
3606 	if (!found)
3607 		goto out;
3608 
3609 	/* step 2: always set host PIO timings */
3610 	ata_for_each_dev(dev, link, ENABLED) {
3611 		if (dev->pio_mode == 0xff) {
3612 			ata_dev_warn(dev, "no PIO support\n");
3613 			rc = -EINVAL;
3614 			goto out;
3615 		}
3616 
3617 		dev->xfer_mode = dev->pio_mode;
3618 		dev->xfer_shift = ATA_SHIFT_PIO;
3619 		if (ap->ops->set_piomode)
3620 			ap->ops->set_piomode(ap, dev);
3621 	}
3622 
3623 	/* step 3: set host DMA timings */
3624 	ata_for_each_dev(dev, link, ENABLED) {
3625 		if (!ata_dma_enabled(dev))
3626 			continue;
3627 
3628 		dev->xfer_mode = dev->dma_mode;
3629 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3630 		if (ap->ops->set_dmamode)
3631 			ap->ops->set_dmamode(ap, dev);
3632 	}
3633 
3634 	/* step 4: update devices' xfer mode */
3635 	ata_for_each_dev(dev, link, ENABLED) {
3636 		rc = ata_dev_set_mode(dev);
3637 		if (rc)
3638 			goto out;
3639 	}
3640 
3641 	/* Record simplex status. If we selected DMA then the other
3642 	 * host channels are not permitted to do so.
3643 	 */
3644 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3645 		ap->host->simplex_claimed = ap;
3646 
3647  out:
3648 	if (rc)
3649 		*r_failed_dev = dev;
3650 	return rc;
3651 }
3652 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3653 
3654 /**
3655  *	ata_wait_ready - wait for link to become ready
3656  *	@link: link to be waited on
3657  *	@deadline: deadline jiffies for the operation
3658  *	@check_ready: callback to check link readiness
3659  *
3660  *	Wait for @link to become ready.  @check_ready should return
3661  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3662  *	link doesn't seem to be occupied, other errno for other error
3663  *	conditions.
3664  *
3665  *	Transient -ENODEV conditions are allowed for
3666  *	ATA_TMOUT_FF_WAIT.
3667  *
3668  *	LOCKING:
3669  *	EH context.
3670  *
3671  *	RETURNS:
3672  *	0 if @link is ready before @deadline; otherwise, -errno.
3673  */
3674 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3675 		   int (*check_ready)(struct ata_link *link))
3676 {
3677 	unsigned long start = jiffies;
3678 	unsigned long nodev_deadline;
3679 	int warned = 0;
3680 
3681 	/* choose which 0xff timeout to use, read comment in libata.h */
3682 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3683 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3684 	else
3685 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3686 
3687 	/* Slave readiness can't be tested separately from master.  On
3688 	 * M/S emulation configuration, this function should be called
3689 	 * only on the master and it will handle both master and slave.
3690 	 */
3691 	WARN_ON(link == link->ap->slave_link);
3692 
3693 	if (time_after(nodev_deadline, deadline))
3694 		nodev_deadline = deadline;
3695 
3696 	while (1) {
3697 		unsigned long now = jiffies;
3698 		int ready, tmp;
3699 
3700 		ready = tmp = check_ready(link);
3701 		if (ready > 0)
3702 			return 0;
3703 
3704 		/*
3705 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3706 		 * is online.  Also, some SATA devices take a long
3707 		 * time to clear 0xff after reset.  Wait for
3708 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3709 		 * offline.
3710 		 *
3711 		 * Note that some PATA controllers (pata_ali) explode
3712 		 * if status register is read more than once when
3713 		 * there's no device attached.
3714 		 */
3715 		if (ready == -ENODEV) {
3716 			if (ata_link_online(link))
3717 				ready = 0;
3718 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3719 				 !ata_link_offline(link) &&
3720 				 time_before(now, nodev_deadline))
3721 				ready = 0;
3722 		}
3723 
3724 		if (ready)
3725 			return ready;
3726 		if (time_after(now, deadline))
3727 			return -EBUSY;
3728 
3729 		if (!warned && time_after(now, start + 5 * HZ) &&
3730 		    (deadline - now > 3 * HZ)) {
3731 			ata_link_warn(link,
3732 				"link is slow to respond, please be patient "
3733 				"(ready=%d)\n", tmp);
3734 			warned = 1;
3735 		}
3736 
3737 		ata_msleep(link->ap, 50);
3738 	}
3739 }
3740 
3741 /**
3742  *	ata_wait_after_reset - wait for link to become ready after reset
3743  *	@link: link to be waited on
3744  *	@deadline: deadline jiffies for the operation
3745  *	@check_ready: callback to check link readiness
3746  *
3747  *	Wait for @link to become ready after reset.
3748  *
3749  *	LOCKING:
3750  *	EH context.
3751  *
3752  *	RETURNS:
3753  *	0 if @link is ready before @deadline; otherwise, -errno.
3754  */
3755 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3756 				int (*check_ready)(struct ata_link *link))
3757 {
3758 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3759 
3760 	return ata_wait_ready(link, deadline, check_ready);
3761 }
3762 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3763 
3764 /**
3765  *	ata_std_prereset - prepare for reset
3766  *	@link: ATA link to be reset
3767  *	@deadline: deadline jiffies for the operation
3768  *
3769  *	@link is about to be reset.  Initialize it.  Failure from
3770  *	prereset makes libata abort whole reset sequence and give up
3771  *	that port, so prereset should be best-effort.  It does its
3772  *	best to prepare for reset sequence but if things go wrong, it
3773  *	should just whine, not fail.
3774  *
3775  *	LOCKING:
3776  *	Kernel thread context (may sleep)
3777  *
3778  *	RETURNS:
3779  *	Always 0.
3780  */
3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3782 {
3783 	struct ata_port *ap = link->ap;
3784 	struct ata_eh_context *ehc = &link->eh_context;
3785 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3786 	int rc;
3787 
3788 	/* if we're about to do hardreset, nothing more to do */
3789 	if (ehc->i.action & ATA_EH_HARDRESET)
3790 		return 0;
3791 
3792 	/* if SATA, resume link */
3793 	if (ap->flags & ATA_FLAG_SATA) {
3794 		rc = sata_link_resume(link, timing, deadline);
3795 		/* whine about phy resume failure but proceed */
3796 		if (rc && rc != -EOPNOTSUPP)
3797 			ata_link_warn(link,
3798 				      "failed to resume link for reset (errno=%d)\n",
3799 				      rc);
3800 	}
3801 
3802 	/* no point in trying softreset on offline link */
3803 	if (ata_phys_link_offline(link))
3804 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3805 
3806 	return 0;
3807 }
3808 EXPORT_SYMBOL_GPL(ata_std_prereset);
3809 
3810 /**
3811  *	sata_std_hardreset - COMRESET w/o waiting or classification
3812  *	@link: link to reset
3813  *	@class: resulting class of attached device
3814  *	@deadline: deadline jiffies for the operation
3815  *
3816  *	Standard SATA COMRESET w/o waiting or classification.
3817  *
3818  *	LOCKING:
3819  *	Kernel thread context (may sleep)
3820  *
3821  *	RETURNS:
3822  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3823  */
3824 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3825 		       unsigned long deadline)
3826 {
3827 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3828 	bool online;
3829 	int rc;
3830 
3831 	/* do hardreset */
3832 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3833 	return online ? -EAGAIN : rc;
3834 }
3835 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3836 
3837 /**
3838  *	ata_std_postreset - standard postreset callback
3839  *	@link: the target ata_link
3840  *	@classes: classes of attached devices
3841  *
3842  *	This function is invoked after a successful reset.  Note that
3843  *	the device might have been reset more than once using
3844  *	different reset methods before postreset is invoked.
3845  *
3846  *	LOCKING:
3847  *	Kernel thread context (may sleep)
3848  */
3849 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3850 {
3851 	u32 serror;
3852 
3853 	/* reset complete, clear SError */
3854 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3855 		sata_scr_write(link, SCR_ERROR, serror);
3856 
3857 	/* print link status */
3858 	sata_print_link_status(link);
3859 }
3860 EXPORT_SYMBOL_GPL(ata_std_postreset);
3861 
3862 /**
3863  *	ata_dev_same_device - Determine whether new ID matches configured device
3864  *	@dev: device to compare against
3865  *	@new_class: class of the new device
3866  *	@new_id: IDENTIFY page of the new device
3867  *
3868  *	Compare @new_class and @new_id against @dev and determine
3869  *	whether @dev is the device indicated by @new_class and
3870  *	@new_id.
3871  *
3872  *	LOCKING:
3873  *	None.
3874  *
3875  *	RETURNS:
3876  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3877  */
3878 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3879 			       const u16 *new_id)
3880 {
3881 	const u16 *old_id = dev->id;
3882 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3883 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3884 
3885 	if (dev->class != new_class) {
3886 		ata_dev_info(dev, "class mismatch %d != %d\n",
3887 			     dev->class, new_class);
3888 		return 0;
3889 	}
3890 
3891 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3892 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3893 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3894 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3895 
3896 	if (strcmp(model[0], model[1])) {
3897 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3898 			     model[0], model[1]);
3899 		return 0;
3900 	}
3901 
3902 	if (strcmp(serial[0], serial[1])) {
3903 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3904 			     serial[0], serial[1]);
3905 		return 0;
3906 	}
3907 
3908 	return 1;
3909 }
3910 
3911 /**
3912  *	ata_dev_reread_id - Re-read IDENTIFY data
3913  *	@dev: target ATA device
3914  *	@readid_flags: read ID flags
3915  *
3916  *	Re-read IDENTIFY page and make sure @dev is still attached to
3917  *	the port.
3918  *
3919  *	LOCKING:
3920  *	Kernel thread context (may sleep)
3921  *
3922  *	RETURNS:
3923  *	0 on success, negative errno otherwise
3924  */
3925 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3926 {
3927 	unsigned int class = dev->class;
3928 	u16 *id = (void *)dev->link->ap->sector_buf;
3929 	int rc;
3930 
3931 	/* read ID data */
3932 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3933 	if (rc)
3934 		return rc;
3935 
3936 	/* is the device still there? */
3937 	if (!ata_dev_same_device(dev, class, id))
3938 		return -ENODEV;
3939 
3940 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3941 	return 0;
3942 }
3943 
3944 /**
3945  *	ata_dev_revalidate - Revalidate ATA device
3946  *	@dev: device to revalidate
3947  *	@new_class: new class code
3948  *	@readid_flags: read ID flags
3949  *
3950  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3951  *	port and reconfigure it according to the new IDENTIFY page.
3952  *
3953  *	LOCKING:
3954  *	Kernel thread context (may sleep)
3955  *
3956  *	RETURNS:
3957  *	0 on success, negative errno otherwise
3958  */
3959 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3960 		       unsigned int readid_flags)
3961 {
3962 	u64 n_sectors = dev->n_sectors;
3963 	u64 n_native_sectors = dev->n_native_sectors;
3964 	int rc;
3965 
3966 	if (!ata_dev_enabled(dev))
3967 		return -ENODEV;
3968 
3969 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3970 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3971 		ata_dev_info(dev, "class mismatch %u != %u\n",
3972 			     dev->class, new_class);
3973 		rc = -ENODEV;
3974 		goto fail;
3975 	}
3976 
3977 	/* re-read ID */
3978 	rc = ata_dev_reread_id(dev, readid_flags);
3979 	if (rc)
3980 		goto fail;
3981 
3982 	/* configure device according to the new ID */
3983 	rc = ata_dev_configure(dev);
3984 	if (rc)
3985 		goto fail;
3986 
3987 	/* verify n_sectors hasn't changed */
3988 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3989 	    dev->n_sectors == n_sectors)
3990 		return 0;
3991 
3992 	/* n_sectors has changed */
3993 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3994 		     (unsigned long long)n_sectors,
3995 		     (unsigned long long)dev->n_sectors);
3996 
3997 	/*
3998 	 * Something could have caused HPA to be unlocked
3999 	 * involuntarily.  If n_native_sectors hasn't changed and the
4000 	 * new size matches it, keep the device.
4001 	 */
4002 	if (dev->n_native_sectors == n_native_sectors &&
4003 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4004 		ata_dev_warn(dev,
4005 			     "new n_sectors matches native, probably "
4006 			     "late HPA unlock, n_sectors updated\n");
4007 		/* use the larger n_sectors */
4008 		return 0;
4009 	}
4010 
4011 	/*
4012 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4013 	 * unlocking HPA in those cases.
4014 	 *
4015 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4016 	 */
4017 	if (dev->n_native_sectors == n_native_sectors &&
4018 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4019 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4020 		ata_dev_warn(dev,
4021 			     "old n_sectors matches native, probably "
4022 			     "late HPA lock, will try to unlock HPA\n");
4023 		/* try unlocking HPA */
4024 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4025 		rc = -EIO;
4026 	} else
4027 		rc = -ENODEV;
4028 
4029 	/* restore original n_[native_]sectors and fail */
4030 	dev->n_native_sectors = n_native_sectors;
4031 	dev->n_sectors = n_sectors;
4032  fail:
4033 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4034 	return rc;
4035 }
4036 
4037 struct ata_blacklist_entry {
4038 	const char *model_num;
4039 	const char *model_rev;
4040 	unsigned long horkage;
4041 };
4042 
4043 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4044 	/* Devices with DMA related problems under Linux */
4045 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4046 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4047 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4048 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4049 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4050 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4051 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4052 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4053 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4054 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4055 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4056 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4057 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4058 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4059 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4060 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4061 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4062 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4063 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4064 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4065 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4066 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4067 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4068 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4069 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4070 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4071 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4072 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4073 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4074 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4075 	/* Odd clown on sil3726/4726 PMPs */
4076 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4077 	/* Similar story with ASMedia 1092 */
4078 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4079 
4080 	/* Weird ATAPI devices */
4081 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4082 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4083 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4084 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4085 
4086 	/*
4087 	 * Causes silent data corruption with higher max sects.
4088 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4089 	 */
4090 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4091 
4092 	/*
4093 	 * These devices time out with higher max sects.
4094 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4095 	 */
4096 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4097 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4098 
4099 	/* Devices we expect to fail diagnostics */
4100 
4101 	/* Devices where NCQ should be avoided */
4102 	/* NCQ is slow */
4103 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4104 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4105 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4106 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4107 	/* NCQ is broken */
4108 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4109 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4110 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4111 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4112 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4113 
4114 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4115 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4116 						ATA_HORKAGE_FIRMWARE_WARN },
4117 
4118 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4119 						ATA_HORKAGE_FIRMWARE_WARN },
4120 
4121 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4122 						ATA_HORKAGE_FIRMWARE_WARN },
4123 
4124 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4125 						ATA_HORKAGE_FIRMWARE_WARN },
4126 
4127 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4128 	   the ST disks also have LPM issues */
4129 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4130 						ATA_HORKAGE_NOLPM },
4131 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4132 
4133 	/* Blacklist entries taken from Silicon Image 3124/3132
4134 	   Windows driver .inf file - also several Linux problem reports */
4135 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4136 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4137 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4138 
4139 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4140 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4141 
4142 	/* Sandisk SD7/8/9s lock up hard on large trims */
4143 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4144 
4145 	/* devices which puke on READ_NATIVE_MAX */
4146 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4147 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4148 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4149 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4150 
4151 	/* this one allows HPA unlocking but fails IOs on the area */
4152 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4153 
4154 	/* Devices which report 1 sector over size HPA */
4155 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4156 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4157 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4158 
4159 	/* Devices which get the IVB wrong */
4160 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4161 	/* Maybe we should just blacklist TSSTcorp... */
4162 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4163 
4164 	/* Devices that do not need bridging limits applied */
4165 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4166 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4167 
4168 	/* Devices which aren't very happy with higher link speeds */
4169 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4170 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4171 
4172 	/*
4173 	 * Devices which choke on SETXFER.  Applies only if both the
4174 	 * device and controller are SATA.
4175 	 */
4176 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4177 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4178 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4179 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4180 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4181 
4182 	/* These specific Pioneer models have LPM issues */
4183 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4184 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4185 
4186 	/* Crucial BX100 SSD 500GB has broken LPM support */
4187 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4188 
4189 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4190 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4191 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4192 						ATA_HORKAGE_NOLPM },
4193 	/* 512GB MX100 with newer firmware has only LPM issues */
4194 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4195 						ATA_HORKAGE_NOLPM },
4196 
4197 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4198 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4199 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4200 						ATA_HORKAGE_NOLPM },
4201 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4202 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4203 						ATA_HORKAGE_NOLPM },
4204 
4205 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4206 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4207 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4208 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4209 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4210 
4211 	/* devices that don't properly handle queued TRIM commands */
4212 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4213 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4214 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4215 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4216 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4217 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4218 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4219 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4220 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4221 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4222 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4223 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4224 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4225 						ATA_HORKAGE_NO_DMA_LOG |
4226 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4227 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4228 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4229 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4230 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4231 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4232 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4233 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4234 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4235 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4236 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4237 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4238 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4239 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4240 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4241 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4242 
4243 	/* devices that don't properly handle TRIM commands */
4244 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4245 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4246 
4247 	/*
4248 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4249 	 * (Return Zero After Trim) flags in the ATA Command Set are
4250 	 * unreliable in the sense that they only define what happens if
4251 	 * the device successfully executed the DSM TRIM command. TRIM
4252 	 * is only advisory, however, and the device is free to silently
4253 	 * ignore all or parts of the request.
4254 	 *
4255 	 * Whitelist drives that are known to reliably return zeroes
4256 	 * after TRIM.
4257 	 */
4258 
4259 	/*
4260 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4261 	 * that model before whitelisting all other intel SSDs.
4262 	 */
4263 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4264 
4265 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4266 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4267 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4268 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4269 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4270 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4271 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4272 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4273 
4274 	/*
4275 	 * Some WD SATA-I drives spin up and down erratically when the link
4276 	 * is put into the slumber mode.  We don't have full list of the
4277 	 * affected devices.  Disable LPM if the device matches one of the
4278 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4279 	 * lost too.
4280 	 *
4281 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4282 	 */
4283 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4284 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4285 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4286 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4287 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4288 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4289 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4290 
4291 	/*
4292 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4293 	 * log page is accessed. Ensure we never ask for this log page with
4294 	 * these devices.
4295 	 */
4296 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4297 
4298 	/* Buggy FUA */
4299 	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4300 	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4301 	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4302 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4303 
4304 	/* End Marker */
4305 	{ }
4306 };
4307 
4308 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4309 {
4310 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4311 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4312 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4313 
4314 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4315 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4316 
4317 	while (ad->model_num) {
4318 		if (glob_match(ad->model_num, model_num)) {
4319 			if (ad->model_rev == NULL)
4320 				return ad->horkage;
4321 			if (glob_match(ad->model_rev, model_rev))
4322 				return ad->horkage;
4323 		}
4324 		ad++;
4325 	}
4326 	return 0;
4327 }
4328 
4329 static int ata_dma_blacklisted(const struct ata_device *dev)
4330 {
4331 	/* We don't support polling DMA.
4332 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4333 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4334 	 */
4335 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4336 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4337 		return 1;
4338 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4339 }
4340 
4341 /**
4342  *	ata_is_40wire		-	check drive side detection
4343  *	@dev: device
4344  *
4345  *	Perform drive side detection decoding, allowing for device vendors
4346  *	who can't follow the documentation.
4347  */
4348 
4349 static int ata_is_40wire(struct ata_device *dev)
4350 {
4351 	if (dev->horkage & ATA_HORKAGE_IVB)
4352 		return ata_drive_40wire_relaxed(dev->id);
4353 	return ata_drive_40wire(dev->id);
4354 }
4355 
4356 /**
4357  *	cable_is_40wire		-	40/80/SATA decider
4358  *	@ap: port to consider
4359  *
4360  *	This function encapsulates the policy for speed management
4361  *	in one place. At the moment we don't cache the result but
4362  *	there is a good case for setting ap->cbl to the result when
4363  *	we are called with unknown cables (and figuring out if it
4364  *	impacts hotplug at all).
4365  *
4366  *	Return 1 if the cable appears to be 40 wire.
4367  */
4368 
4369 static int cable_is_40wire(struct ata_port *ap)
4370 {
4371 	struct ata_link *link;
4372 	struct ata_device *dev;
4373 
4374 	/* If the controller thinks we are 40 wire, we are. */
4375 	if (ap->cbl == ATA_CBL_PATA40)
4376 		return 1;
4377 
4378 	/* If the controller thinks we are 80 wire, we are. */
4379 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4380 		return 0;
4381 
4382 	/* If the system is known to be 40 wire short cable (eg
4383 	 * laptop), then we allow 80 wire modes even if the drive
4384 	 * isn't sure.
4385 	 */
4386 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4387 		return 0;
4388 
4389 	/* If the controller doesn't know, we scan.
4390 	 *
4391 	 * Note: We look for all 40 wire detects at this point.  Any
4392 	 *       80 wire detect is taken to be 80 wire cable because
4393 	 * - in many setups only the one drive (slave if present) will
4394 	 *   give a valid detect
4395 	 * - if you have a non detect capable drive you don't want it
4396 	 *   to colour the choice
4397 	 */
4398 	ata_for_each_link(link, ap, EDGE) {
4399 		ata_for_each_dev(dev, link, ENABLED) {
4400 			if (!ata_is_40wire(dev))
4401 				return 0;
4402 		}
4403 	}
4404 	return 1;
4405 }
4406 
4407 /**
4408  *	ata_dev_xfermask - Compute supported xfermask of the given device
4409  *	@dev: Device to compute xfermask for
4410  *
4411  *	Compute supported xfermask of @dev and store it in
4412  *	dev->*_mask.  This function is responsible for applying all
4413  *	known limits including host controller limits, device
4414  *	blacklist, etc...
4415  *
4416  *	LOCKING:
4417  *	None.
4418  */
4419 static void ata_dev_xfermask(struct ata_device *dev)
4420 {
4421 	struct ata_link *link = dev->link;
4422 	struct ata_port *ap = link->ap;
4423 	struct ata_host *host = ap->host;
4424 	unsigned int xfer_mask;
4425 
4426 	/* controller modes available */
4427 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4428 				      ap->mwdma_mask, ap->udma_mask);
4429 
4430 	/* drive modes available */
4431 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4432 				       dev->mwdma_mask, dev->udma_mask);
4433 	xfer_mask &= ata_id_xfermask(dev->id);
4434 
4435 	/*
4436 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4437 	 *	cable
4438 	 */
4439 	if (ata_dev_pair(dev)) {
4440 		/* No PIO5 or PIO6 */
4441 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4442 		/* No MWDMA3 or MWDMA 4 */
4443 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4444 	}
4445 
4446 	if (ata_dma_blacklisted(dev)) {
4447 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4448 		ata_dev_warn(dev,
4449 			     "device is on DMA blacklist, disabling DMA\n");
4450 	}
4451 
4452 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4453 	    host->simplex_claimed && host->simplex_claimed != ap) {
4454 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4455 		ata_dev_warn(dev,
4456 			     "simplex DMA is claimed by other device, disabling DMA\n");
4457 	}
4458 
4459 	if (ap->flags & ATA_FLAG_NO_IORDY)
4460 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4461 
4462 	if (ap->ops->mode_filter)
4463 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4464 
4465 	/* Apply cable rule here.  Don't apply it early because when
4466 	 * we handle hot plug the cable type can itself change.
4467 	 * Check this last so that we know if the transfer rate was
4468 	 * solely limited by the cable.
4469 	 * Unknown or 80 wire cables reported host side are checked
4470 	 * drive side as well. Cases where we know a 40wire cable
4471 	 * is used safely for 80 are not checked here.
4472 	 */
4473 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4474 		/* UDMA/44 or higher would be available */
4475 		if (cable_is_40wire(ap)) {
4476 			ata_dev_warn(dev,
4477 				     "limited to UDMA/33 due to 40-wire cable\n");
4478 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4479 		}
4480 
4481 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4482 			    &dev->mwdma_mask, &dev->udma_mask);
4483 }
4484 
4485 /**
4486  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4487  *	@dev: Device to which command will be sent
4488  *
4489  *	Issue SET FEATURES - XFER MODE command to device @dev
4490  *	on port @ap.
4491  *
4492  *	LOCKING:
4493  *	PCI/etc. bus probe sem.
4494  *
4495  *	RETURNS:
4496  *	0 on success, AC_ERR_* mask otherwise.
4497  */
4498 
4499 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4500 {
4501 	struct ata_taskfile tf;
4502 
4503 	/* set up set-features taskfile */
4504 	ata_dev_dbg(dev, "set features - xfer mode\n");
4505 
4506 	/* Some controllers and ATAPI devices show flaky interrupt
4507 	 * behavior after setting xfer mode.  Use polling instead.
4508 	 */
4509 	ata_tf_init(dev, &tf);
4510 	tf.command = ATA_CMD_SET_FEATURES;
4511 	tf.feature = SETFEATURES_XFER;
4512 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4513 	tf.protocol = ATA_PROT_NODATA;
4514 	/* If we are using IORDY we must send the mode setting command */
4515 	if (ata_pio_need_iordy(dev))
4516 		tf.nsect = dev->xfer_mode;
4517 	/* If the device has IORDY and the controller does not - turn it off */
4518  	else if (ata_id_has_iordy(dev->id))
4519 		tf.nsect = 0x01;
4520 	else /* In the ancient relic department - skip all of this */
4521 		return 0;
4522 
4523 	/*
4524 	 * On some disks, this command causes spin-up, so we need longer
4525 	 * timeout.
4526 	 */
4527 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4528 }
4529 
4530 /**
4531  *	ata_dev_set_feature - Issue SET FEATURES
4532  *	@dev: Device to which command will be sent
4533  *	@subcmd: The SET FEATURES subcommand to be sent
4534  *	@action: The sector count represents a subcommand specific action
4535  *
4536  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4537  *
4538  *	LOCKING:
4539  *	PCI/etc. bus probe sem.
4540  *
4541  *	RETURNS:
4542  *	0 on success, AC_ERR_* mask otherwise.
4543  */
4544 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4545 {
4546 	struct ata_taskfile tf;
4547 	unsigned int timeout = 0;
4548 
4549 	/* set up set-features taskfile */
4550 	ata_dev_dbg(dev, "set features\n");
4551 
4552 	ata_tf_init(dev, &tf);
4553 	tf.command = ATA_CMD_SET_FEATURES;
4554 	tf.feature = subcmd;
4555 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4556 	tf.protocol = ATA_PROT_NODATA;
4557 	tf.nsect = action;
4558 
4559 	if (subcmd == SETFEATURES_SPINUP)
4560 		timeout = ata_probe_timeout ?
4561 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4562 
4563 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4564 }
4565 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4566 
4567 /**
4568  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4569  *	@dev: Device to which command will be sent
4570  *	@heads: Number of heads (taskfile parameter)
4571  *	@sectors: Number of sectors (taskfile parameter)
4572  *
4573  *	LOCKING:
4574  *	Kernel thread context (may sleep)
4575  *
4576  *	RETURNS:
4577  *	0 on success, AC_ERR_* mask otherwise.
4578  */
4579 static unsigned int ata_dev_init_params(struct ata_device *dev,
4580 					u16 heads, u16 sectors)
4581 {
4582 	struct ata_taskfile tf;
4583 	unsigned int err_mask;
4584 
4585 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4586 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4587 		return AC_ERR_INVALID;
4588 
4589 	/* set up init dev params taskfile */
4590 	ata_dev_dbg(dev, "init dev params \n");
4591 
4592 	ata_tf_init(dev, &tf);
4593 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4594 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4595 	tf.protocol = ATA_PROT_NODATA;
4596 	tf.nsect = sectors;
4597 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4598 
4599 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4600 	/* A clean abort indicates an original or just out of spec drive
4601 	   and we should continue as we issue the setup based on the
4602 	   drive reported working geometry */
4603 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4604 		err_mask = 0;
4605 
4606 	return err_mask;
4607 }
4608 
4609 /**
4610  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4611  *	@qc: Metadata associated with taskfile to check
4612  *
4613  *	Allow low-level driver to filter ATA PACKET commands, returning
4614  *	a status indicating whether or not it is OK to use DMA for the
4615  *	supplied PACKET command.
4616  *
4617  *	LOCKING:
4618  *	spin_lock_irqsave(host lock)
4619  *
4620  *	RETURNS: 0 when ATAPI DMA can be used
4621  *               nonzero otherwise
4622  */
4623 int atapi_check_dma(struct ata_queued_cmd *qc)
4624 {
4625 	struct ata_port *ap = qc->ap;
4626 
4627 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4628 	 * few ATAPI devices choke on such DMA requests.
4629 	 */
4630 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4631 	    unlikely(qc->nbytes & 15))
4632 		return 1;
4633 
4634 	if (ap->ops->check_atapi_dma)
4635 		return ap->ops->check_atapi_dma(qc);
4636 
4637 	return 0;
4638 }
4639 
4640 /**
4641  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4642  *	@qc: ATA command in question
4643  *
4644  *	Non-NCQ commands cannot run with any other command, NCQ or
4645  *	not.  As upper layer only knows the queue depth, we are
4646  *	responsible for maintaining exclusion.  This function checks
4647  *	whether a new command @qc can be issued.
4648  *
4649  *	LOCKING:
4650  *	spin_lock_irqsave(host lock)
4651  *
4652  *	RETURNS:
4653  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4654  */
4655 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4656 {
4657 	struct ata_link *link = qc->dev->link;
4658 
4659 	if (ata_is_ncq(qc->tf.protocol)) {
4660 		if (!ata_tag_valid(link->active_tag))
4661 			return 0;
4662 	} else {
4663 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4664 			return 0;
4665 	}
4666 
4667 	return ATA_DEFER_LINK;
4668 }
4669 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4670 
4671 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4672 {
4673 	return AC_ERR_OK;
4674 }
4675 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4676 
4677 /**
4678  *	ata_sg_init - Associate command with scatter-gather table.
4679  *	@qc: Command to be associated
4680  *	@sg: Scatter-gather table.
4681  *	@n_elem: Number of elements in s/g table.
4682  *
4683  *	Initialize the data-related elements of queued_cmd @qc
4684  *	to point to a scatter-gather table @sg, containing @n_elem
4685  *	elements.
4686  *
4687  *	LOCKING:
4688  *	spin_lock_irqsave(host lock)
4689  */
4690 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4691 		 unsigned int n_elem)
4692 {
4693 	qc->sg = sg;
4694 	qc->n_elem = n_elem;
4695 	qc->cursg = qc->sg;
4696 }
4697 
4698 #ifdef CONFIG_HAS_DMA
4699 
4700 /**
4701  *	ata_sg_clean - Unmap DMA memory associated with command
4702  *	@qc: Command containing DMA memory to be released
4703  *
4704  *	Unmap all mapped DMA memory associated with this command.
4705  *
4706  *	LOCKING:
4707  *	spin_lock_irqsave(host lock)
4708  */
4709 static void ata_sg_clean(struct ata_queued_cmd *qc)
4710 {
4711 	struct ata_port *ap = qc->ap;
4712 	struct scatterlist *sg = qc->sg;
4713 	int dir = qc->dma_dir;
4714 
4715 	WARN_ON_ONCE(sg == NULL);
4716 
4717 	if (qc->n_elem)
4718 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4719 
4720 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4721 	qc->sg = NULL;
4722 }
4723 
4724 /**
4725  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4726  *	@qc: Command with scatter-gather table to be mapped.
4727  *
4728  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4729  *
4730  *	LOCKING:
4731  *	spin_lock_irqsave(host lock)
4732  *
4733  *	RETURNS:
4734  *	Zero on success, negative on error.
4735  *
4736  */
4737 static int ata_sg_setup(struct ata_queued_cmd *qc)
4738 {
4739 	struct ata_port *ap = qc->ap;
4740 	unsigned int n_elem;
4741 
4742 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4743 	if (n_elem < 1)
4744 		return -1;
4745 
4746 	qc->orig_n_elem = qc->n_elem;
4747 	qc->n_elem = n_elem;
4748 	qc->flags |= ATA_QCFLAG_DMAMAP;
4749 
4750 	return 0;
4751 }
4752 
4753 #else /* !CONFIG_HAS_DMA */
4754 
4755 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4756 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4757 
4758 #endif /* !CONFIG_HAS_DMA */
4759 
4760 /**
4761  *	swap_buf_le16 - swap halves of 16-bit words in place
4762  *	@buf:  Buffer to swap
4763  *	@buf_words:  Number of 16-bit words in buffer.
4764  *
4765  *	Swap halves of 16-bit words if needed to convert from
4766  *	little-endian byte order to native cpu byte order, or
4767  *	vice-versa.
4768  *
4769  *	LOCKING:
4770  *	Inherited from caller.
4771  */
4772 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4773 {
4774 #ifdef __BIG_ENDIAN
4775 	unsigned int i;
4776 
4777 	for (i = 0; i < buf_words; i++)
4778 		buf[i] = le16_to_cpu(buf[i]);
4779 #endif /* __BIG_ENDIAN */
4780 }
4781 
4782 /**
4783  *	ata_qc_free - free unused ata_queued_cmd
4784  *	@qc: Command to complete
4785  *
4786  *	Designed to free unused ata_queued_cmd object
4787  *	in case something prevents using it.
4788  *
4789  *	LOCKING:
4790  *	spin_lock_irqsave(host lock)
4791  */
4792 void ata_qc_free(struct ata_queued_cmd *qc)
4793 {
4794 	qc->flags = 0;
4795 	if (ata_tag_valid(qc->tag))
4796 		qc->tag = ATA_TAG_POISON;
4797 }
4798 
4799 void __ata_qc_complete(struct ata_queued_cmd *qc)
4800 {
4801 	struct ata_port *ap;
4802 	struct ata_link *link;
4803 
4804 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4805 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4806 	ap = qc->ap;
4807 	link = qc->dev->link;
4808 
4809 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4810 		ata_sg_clean(qc);
4811 
4812 	/* command should be marked inactive atomically with qc completion */
4813 	if (ata_is_ncq(qc->tf.protocol)) {
4814 		link->sactive &= ~(1 << qc->hw_tag);
4815 		if (!link->sactive)
4816 			ap->nr_active_links--;
4817 	} else {
4818 		link->active_tag = ATA_TAG_POISON;
4819 		ap->nr_active_links--;
4820 	}
4821 
4822 	/* clear exclusive status */
4823 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4824 		     ap->excl_link == link))
4825 		ap->excl_link = NULL;
4826 
4827 	/* atapi: mark qc as inactive to prevent the interrupt handler
4828 	 * from completing the command twice later, before the error handler
4829 	 * is called. (when rc != 0 and atapi request sense is needed)
4830 	 */
4831 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4832 	ap->qc_active &= ~(1ULL << qc->tag);
4833 
4834 	/* call completion callback */
4835 	qc->complete_fn(qc);
4836 }
4837 
4838 static void fill_result_tf(struct ata_queued_cmd *qc)
4839 {
4840 	struct ata_port *ap = qc->ap;
4841 
4842 	qc->result_tf.flags = qc->tf.flags;
4843 	ap->ops->qc_fill_rtf(qc);
4844 }
4845 
4846 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4847 {
4848 	struct ata_device *dev = qc->dev;
4849 
4850 	if (!ata_is_data(qc->tf.protocol))
4851 		return;
4852 
4853 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4854 		return;
4855 
4856 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4857 }
4858 
4859 /**
4860  *	ata_qc_complete - Complete an active ATA command
4861  *	@qc: Command to complete
4862  *
4863  *	Indicate to the mid and upper layers that an ATA command has
4864  *	completed, with either an ok or not-ok status.
4865  *
4866  *	Refrain from calling this function multiple times when
4867  *	successfully completing multiple NCQ commands.
4868  *	ata_qc_complete_multiple() should be used instead, which will
4869  *	properly update IRQ expect state.
4870  *
4871  *	LOCKING:
4872  *	spin_lock_irqsave(host lock)
4873  */
4874 void ata_qc_complete(struct ata_queued_cmd *qc)
4875 {
4876 	struct ata_port *ap = qc->ap;
4877 
4878 	/* Trigger the LED (if available) */
4879 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4880 
4881 	/* XXX: New EH and old EH use different mechanisms to
4882 	 * synchronize EH with regular execution path.
4883 	 *
4884 	 * In new EH, a qc owned by EH is marked with ATA_QCFLAG_EH.
4885 	 * Normal execution path is responsible for not accessing a
4886 	 * qc owned by EH.  libata core enforces the rule by returning NULL
4887 	 * from ata_qc_from_tag() for qcs owned by EH.
4888 	 *
4889 	 * Old EH depends on ata_qc_complete() nullifying completion
4890 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4891 	 * not synchronize with interrupt handler.  Only PIO task is
4892 	 * taken care of.
4893 	 */
4894 	if (ap->ops->error_handler) {
4895 		struct ata_device *dev = qc->dev;
4896 		struct ata_eh_info *ehi = &dev->link->eh_info;
4897 
4898 		if (unlikely(qc->err_mask))
4899 			qc->flags |= ATA_QCFLAG_EH;
4900 
4901 		/*
4902 		 * Finish internal commands without any further processing
4903 		 * and always with the result TF filled.
4904 		 */
4905 		if (unlikely(ata_tag_internal(qc->tag))) {
4906 			fill_result_tf(qc);
4907 			trace_ata_qc_complete_internal(qc);
4908 			__ata_qc_complete(qc);
4909 			return;
4910 		}
4911 
4912 		/*
4913 		 * Non-internal qc has failed.  Fill the result TF and
4914 		 * summon EH.
4915 		 */
4916 		if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4917 			fill_result_tf(qc);
4918 			trace_ata_qc_complete_failed(qc);
4919 			ata_qc_schedule_eh(qc);
4920 			return;
4921 		}
4922 
4923 		WARN_ON_ONCE(ata_port_is_frozen(ap));
4924 
4925 		/* read result TF if requested */
4926 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4927 			fill_result_tf(qc);
4928 
4929 		trace_ata_qc_complete_done(qc);
4930 
4931 		/*
4932 		 * For CDL commands that completed without an error, check if
4933 		 * we have sense data (ATA_SENSE is set). If we do, then the
4934 		 * command may have been aborted by the device due to a limit
4935 		 * timeout using the policy 0xD. For these commands, invoke EH
4936 		 * to get the command sense data.
4937 		 */
4938 		if (qc->result_tf.status & ATA_SENSE &&
4939 		    ((ata_is_ncq(qc->tf.protocol) &&
4940 		      dev->flags & ATA_DFLAG_CDL_ENABLED) ||
4941 		     (!(ata_is_ncq(qc->tf.protocol) &&
4942 			ata_id_sense_reporting_enabled(dev->id))))) {
4943 			/*
4944 			 * Tell SCSI EH to not overwrite scmd->result even if
4945 			 * this command is finished with result SAM_STAT_GOOD.
4946 			 */
4947 			qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4948 			qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4949 			ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4950 
4951 			/*
4952 			 * set pending so that ata_qc_schedule_eh() does not
4953 			 * trigger fast drain, and freeze the port.
4954 			 */
4955 			ap->pflags |= ATA_PFLAG_EH_PENDING;
4956 			ata_qc_schedule_eh(qc);
4957 			return;
4958 		}
4959 
4960 		/* Some commands need post-processing after successful
4961 		 * completion.
4962 		 */
4963 		switch (qc->tf.command) {
4964 		case ATA_CMD_SET_FEATURES:
4965 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4966 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4967 			    qc->tf.feature != SETFEATURES_RA_ON &&
4968 			    qc->tf.feature != SETFEATURES_RA_OFF)
4969 				break;
4970 			fallthrough;
4971 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4972 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4973 			/* revalidate device */
4974 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4975 			ata_port_schedule_eh(ap);
4976 			break;
4977 
4978 		case ATA_CMD_SLEEP:
4979 			dev->flags |= ATA_DFLAG_SLEEPING;
4980 			break;
4981 		}
4982 
4983 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4984 			ata_verify_xfer(qc);
4985 
4986 		__ata_qc_complete(qc);
4987 	} else {
4988 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4989 			return;
4990 
4991 		/* read result TF if failed or requested */
4992 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4993 			fill_result_tf(qc);
4994 
4995 		__ata_qc_complete(qc);
4996 	}
4997 }
4998 EXPORT_SYMBOL_GPL(ata_qc_complete);
4999 
5000 /**
5001  *	ata_qc_get_active - get bitmask of active qcs
5002  *	@ap: port in question
5003  *
5004  *	LOCKING:
5005  *	spin_lock_irqsave(host lock)
5006  *
5007  *	RETURNS:
5008  *	Bitmask of active qcs
5009  */
5010 u64 ata_qc_get_active(struct ata_port *ap)
5011 {
5012 	u64 qc_active = ap->qc_active;
5013 
5014 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5015 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5016 		qc_active |= (1 << 0);
5017 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5018 	}
5019 
5020 	return qc_active;
5021 }
5022 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5023 
5024 /**
5025  *	ata_qc_issue - issue taskfile to device
5026  *	@qc: command to issue to device
5027  *
5028  *	Prepare an ATA command to submission to device.
5029  *	This includes mapping the data into a DMA-able
5030  *	area, filling in the S/G table, and finally
5031  *	writing the taskfile to hardware, starting the command.
5032  *
5033  *	LOCKING:
5034  *	spin_lock_irqsave(host lock)
5035  */
5036 void ata_qc_issue(struct ata_queued_cmd *qc)
5037 {
5038 	struct ata_port *ap = qc->ap;
5039 	struct ata_link *link = qc->dev->link;
5040 	u8 prot = qc->tf.protocol;
5041 
5042 	/* Make sure only one non-NCQ command is outstanding.  The
5043 	 * check is skipped for old EH because it reuses active qc to
5044 	 * request ATAPI sense.
5045 	 */
5046 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5047 
5048 	if (ata_is_ncq(prot)) {
5049 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5050 
5051 		if (!link->sactive)
5052 			ap->nr_active_links++;
5053 		link->sactive |= 1 << qc->hw_tag;
5054 	} else {
5055 		WARN_ON_ONCE(link->sactive);
5056 
5057 		ap->nr_active_links++;
5058 		link->active_tag = qc->tag;
5059 	}
5060 
5061 	qc->flags |= ATA_QCFLAG_ACTIVE;
5062 	ap->qc_active |= 1ULL << qc->tag;
5063 
5064 	/*
5065 	 * We guarantee to LLDs that they will have at least one
5066 	 * non-zero sg if the command is a data command.
5067 	 */
5068 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5069 		goto sys_err;
5070 
5071 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5072 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5073 		if (ata_sg_setup(qc))
5074 			goto sys_err;
5075 
5076 	/* if device is sleeping, schedule reset and abort the link */
5077 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5078 		link->eh_info.action |= ATA_EH_RESET;
5079 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5080 		ata_link_abort(link);
5081 		return;
5082 	}
5083 
5084 	trace_ata_qc_prep(qc);
5085 	qc->err_mask |= ap->ops->qc_prep(qc);
5086 	if (unlikely(qc->err_mask))
5087 		goto err;
5088 	trace_ata_qc_issue(qc);
5089 	qc->err_mask |= ap->ops->qc_issue(qc);
5090 	if (unlikely(qc->err_mask))
5091 		goto err;
5092 	return;
5093 
5094 sys_err:
5095 	qc->err_mask |= AC_ERR_SYSTEM;
5096 err:
5097 	ata_qc_complete(qc);
5098 }
5099 
5100 /**
5101  *	ata_phys_link_online - test whether the given link is online
5102  *	@link: ATA link to test
5103  *
5104  *	Test whether @link is online.  Note that this function returns
5105  *	0 if online status of @link cannot be obtained, so
5106  *	ata_link_online(link) != !ata_link_offline(link).
5107  *
5108  *	LOCKING:
5109  *	None.
5110  *
5111  *	RETURNS:
5112  *	True if the port online status is available and online.
5113  */
5114 bool ata_phys_link_online(struct ata_link *link)
5115 {
5116 	u32 sstatus;
5117 
5118 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5119 	    ata_sstatus_online(sstatus))
5120 		return true;
5121 	return false;
5122 }
5123 
5124 /**
5125  *	ata_phys_link_offline - test whether the given link is offline
5126  *	@link: ATA link to test
5127  *
5128  *	Test whether @link is offline.  Note that this function
5129  *	returns 0 if offline status of @link cannot be obtained, so
5130  *	ata_link_online(link) != !ata_link_offline(link).
5131  *
5132  *	LOCKING:
5133  *	None.
5134  *
5135  *	RETURNS:
5136  *	True if the port offline status is available and offline.
5137  */
5138 bool ata_phys_link_offline(struct ata_link *link)
5139 {
5140 	u32 sstatus;
5141 
5142 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5143 	    !ata_sstatus_online(sstatus))
5144 		return true;
5145 	return false;
5146 }
5147 
5148 /**
5149  *	ata_link_online - test whether the given link is online
5150  *	@link: ATA link to test
5151  *
5152  *	Test whether @link is online.  This is identical to
5153  *	ata_phys_link_online() when there's no slave link.  When
5154  *	there's a slave link, this function should only be called on
5155  *	the master link and will return true if any of M/S links is
5156  *	online.
5157  *
5158  *	LOCKING:
5159  *	None.
5160  *
5161  *	RETURNS:
5162  *	True if the port online status is available and online.
5163  */
5164 bool ata_link_online(struct ata_link *link)
5165 {
5166 	struct ata_link *slave = link->ap->slave_link;
5167 
5168 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5169 
5170 	return ata_phys_link_online(link) ||
5171 		(slave && ata_phys_link_online(slave));
5172 }
5173 EXPORT_SYMBOL_GPL(ata_link_online);
5174 
5175 /**
5176  *	ata_link_offline - test whether the given link is offline
5177  *	@link: ATA link to test
5178  *
5179  *	Test whether @link is offline.  This is identical to
5180  *	ata_phys_link_offline() when there's no slave link.  When
5181  *	there's a slave link, this function should only be called on
5182  *	the master link and will return true if both M/S links are
5183  *	offline.
5184  *
5185  *	LOCKING:
5186  *	None.
5187  *
5188  *	RETURNS:
5189  *	True if the port offline status is available and offline.
5190  */
5191 bool ata_link_offline(struct ata_link *link)
5192 {
5193 	struct ata_link *slave = link->ap->slave_link;
5194 
5195 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5196 
5197 	return ata_phys_link_offline(link) &&
5198 		(!slave || ata_phys_link_offline(slave));
5199 }
5200 EXPORT_SYMBOL_GPL(ata_link_offline);
5201 
5202 #ifdef CONFIG_PM
5203 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5204 				unsigned int action, unsigned int ehi_flags,
5205 				bool async)
5206 {
5207 	struct ata_link *link;
5208 	unsigned long flags;
5209 
5210 	/* Previous resume operation might still be in
5211 	 * progress.  Wait for PM_PENDING to clear.
5212 	 */
5213 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5214 		ata_port_wait_eh(ap);
5215 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5216 	}
5217 
5218 	/* request PM ops to EH */
5219 	spin_lock_irqsave(ap->lock, flags);
5220 
5221 	ap->pm_mesg = mesg;
5222 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5223 	ata_for_each_link(link, ap, HOST_FIRST) {
5224 		link->eh_info.action |= action;
5225 		link->eh_info.flags |= ehi_flags;
5226 	}
5227 
5228 	ata_port_schedule_eh(ap);
5229 
5230 	spin_unlock_irqrestore(ap->lock, flags);
5231 
5232 	if (!async) {
5233 		ata_port_wait_eh(ap);
5234 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5235 	}
5236 }
5237 
5238 /*
5239  * On some hardware, device fails to respond after spun down for suspend.  As
5240  * the device won't be used before being resumed, we don't need to touch the
5241  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5242  *
5243  * http://thread.gmane.org/gmane.linux.ide/46764
5244  */
5245 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5246 						 | ATA_EHI_NO_AUTOPSY
5247 						 | ATA_EHI_NO_RECOVERY;
5248 
5249 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5250 {
5251 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5252 }
5253 
5254 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5255 {
5256 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5257 }
5258 
5259 static int ata_port_pm_suspend(struct device *dev)
5260 {
5261 	struct ata_port *ap = to_ata_port(dev);
5262 
5263 	if (pm_runtime_suspended(dev))
5264 		return 0;
5265 
5266 	ata_port_suspend(ap, PMSG_SUSPEND);
5267 	return 0;
5268 }
5269 
5270 static int ata_port_pm_freeze(struct device *dev)
5271 {
5272 	struct ata_port *ap = to_ata_port(dev);
5273 
5274 	if (pm_runtime_suspended(dev))
5275 		return 0;
5276 
5277 	ata_port_suspend(ap, PMSG_FREEZE);
5278 	return 0;
5279 }
5280 
5281 static int ata_port_pm_poweroff(struct device *dev)
5282 {
5283 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5284 	return 0;
5285 }
5286 
5287 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5288 						| ATA_EHI_QUIET;
5289 
5290 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5291 {
5292 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5293 }
5294 
5295 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5296 {
5297 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5298 }
5299 
5300 static int ata_port_pm_resume(struct device *dev)
5301 {
5302 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5303 	pm_runtime_disable(dev);
5304 	pm_runtime_set_active(dev);
5305 	pm_runtime_enable(dev);
5306 	return 0;
5307 }
5308 
5309 /*
5310  * For ODDs, the upper layer will poll for media change every few seconds,
5311  * which will make it enter and leave suspend state every few seconds. And
5312  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5313  * is very little and the ODD may malfunction after constantly being reset.
5314  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5315  * ODD is attached to the port.
5316  */
5317 static int ata_port_runtime_idle(struct device *dev)
5318 {
5319 	struct ata_port *ap = to_ata_port(dev);
5320 	struct ata_link *link;
5321 	struct ata_device *adev;
5322 
5323 	ata_for_each_link(link, ap, HOST_FIRST) {
5324 		ata_for_each_dev(adev, link, ENABLED)
5325 			if (adev->class == ATA_DEV_ATAPI &&
5326 			    !zpodd_dev_enabled(adev))
5327 				return -EBUSY;
5328 	}
5329 
5330 	return 0;
5331 }
5332 
5333 static int ata_port_runtime_suspend(struct device *dev)
5334 {
5335 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5336 	return 0;
5337 }
5338 
5339 static int ata_port_runtime_resume(struct device *dev)
5340 {
5341 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5342 	return 0;
5343 }
5344 
5345 static const struct dev_pm_ops ata_port_pm_ops = {
5346 	.suspend = ata_port_pm_suspend,
5347 	.resume = ata_port_pm_resume,
5348 	.freeze = ata_port_pm_freeze,
5349 	.thaw = ata_port_pm_resume,
5350 	.poweroff = ata_port_pm_poweroff,
5351 	.restore = ata_port_pm_resume,
5352 
5353 	.runtime_suspend = ata_port_runtime_suspend,
5354 	.runtime_resume = ata_port_runtime_resume,
5355 	.runtime_idle = ata_port_runtime_idle,
5356 };
5357 
5358 /* sas ports don't participate in pm runtime management of ata_ports,
5359  * and need to resume ata devices at the domain level, not the per-port
5360  * level. sas suspend/resume is async to allow parallel port recovery
5361  * since sas has multiple ata_port instances per Scsi_Host.
5362  */
5363 void ata_sas_port_suspend(struct ata_port *ap)
5364 {
5365 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5366 }
5367 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5368 
5369 void ata_sas_port_resume(struct ata_port *ap)
5370 {
5371 	ata_port_resume_async(ap, PMSG_RESUME);
5372 }
5373 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5374 
5375 /**
5376  *	ata_host_suspend - suspend host
5377  *	@host: host to suspend
5378  *	@mesg: PM message
5379  *
5380  *	Suspend @host.  Actual operation is performed by port suspend.
5381  */
5382 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5383 {
5384 	host->dev->power.power_state = mesg;
5385 }
5386 EXPORT_SYMBOL_GPL(ata_host_suspend);
5387 
5388 /**
5389  *	ata_host_resume - resume host
5390  *	@host: host to resume
5391  *
5392  *	Resume @host.  Actual operation is performed by port resume.
5393  */
5394 void ata_host_resume(struct ata_host *host)
5395 {
5396 	host->dev->power.power_state = PMSG_ON;
5397 }
5398 EXPORT_SYMBOL_GPL(ata_host_resume);
5399 #endif
5400 
5401 const struct device_type ata_port_type = {
5402 	.name = "ata_port",
5403 #ifdef CONFIG_PM
5404 	.pm = &ata_port_pm_ops,
5405 #endif
5406 };
5407 
5408 /**
5409  *	ata_dev_init - Initialize an ata_device structure
5410  *	@dev: Device structure to initialize
5411  *
5412  *	Initialize @dev in preparation for probing.
5413  *
5414  *	LOCKING:
5415  *	Inherited from caller.
5416  */
5417 void ata_dev_init(struct ata_device *dev)
5418 {
5419 	struct ata_link *link = ata_dev_phys_link(dev);
5420 	struct ata_port *ap = link->ap;
5421 	unsigned long flags;
5422 
5423 	/* SATA spd limit is bound to the attached device, reset together */
5424 	link->sata_spd_limit = link->hw_sata_spd_limit;
5425 	link->sata_spd = 0;
5426 
5427 	/* High bits of dev->flags are used to record warm plug
5428 	 * requests which occur asynchronously.  Synchronize using
5429 	 * host lock.
5430 	 */
5431 	spin_lock_irqsave(ap->lock, flags);
5432 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5433 	dev->horkage = 0;
5434 	spin_unlock_irqrestore(ap->lock, flags);
5435 
5436 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5437 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5438 	dev->pio_mask = UINT_MAX;
5439 	dev->mwdma_mask = UINT_MAX;
5440 	dev->udma_mask = UINT_MAX;
5441 }
5442 
5443 /**
5444  *	ata_link_init - Initialize an ata_link structure
5445  *	@ap: ATA port link is attached to
5446  *	@link: Link structure to initialize
5447  *	@pmp: Port multiplier port number
5448  *
5449  *	Initialize @link.
5450  *
5451  *	LOCKING:
5452  *	Kernel thread context (may sleep)
5453  */
5454 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5455 {
5456 	int i;
5457 
5458 	/* clear everything except for devices */
5459 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5460 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5461 
5462 	link->ap = ap;
5463 	link->pmp = pmp;
5464 	link->active_tag = ATA_TAG_POISON;
5465 	link->hw_sata_spd_limit = UINT_MAX;
5466 
5467 	/* can't use iterator, ap isn't initialized yet */
5468 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5469 		struct ata_device *dev = &link->device[i];
5470 
5471 		dev->link = link;
5472 		dev->devno = dev - link->device;
5473 #ifdef CONFIG_ATA_ACPI
5474 		dev->gtf_filter = ata_acpi_gtf_filter;
5475 #endif
5476 		ata_dev_init(dev);
5477 	}
5478 }
5479 
5480 /**
5481  *	sata_link_init_spd - Initialize link->sata_spd_limit
5482  *	@link: Link to configure sata_spd_limit for
5483  *
5484  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5485  *	configured value.
5486  *
5487  *	LOCKING:
5488  *	Kernel thread context (may sleep).
5489  *
5490  *	RETURNS:
5491  *	0 on success, -errno on failure.
5492  */
5493 int sata_link_init_spd(struct ata_link *link)
5494 {
5495 	u8 spd;
5496 	int rc;
5497 
5498 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5499 	if (rc)
5500 		return rc;
5501 
5502 	spd = (link->saved_scontrol >> 4) & 0xf;
5503 	if (spd)
5504 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5505 
5506 	ata_force_link_limits(link);
5507 
5508 	link->sata_spd_limit = link->hw_sata_spd_limit;
5509 
5510 	return 0;
5511 }
5512 
5513 /**
5514  *	ata_port_alloc - allocate and initialize basic ATA port resources
5515  *	@host: ATA host this allocated port belongs to
5516  *
5517  *	Allocate and initialize basic ATA port resources.
5518  *
5519  *	RETURNS:
5520  *	Allocate ATA port on success, NULL on failure.
5521  *
5522  *	LOCKING:
5523  *	Inherited from calling layer (may sleep).
5524  */
5525 struct ata_port *ata_port_alloc(struct ata_host *host)
5526 {
5527 	struct ata_port *ap;
5528 
5529 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5530 	if (!ap)
5531 		return NULL;
5532 
5533 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5534 	ap->lock = &host->lock;
5535 	ap->print_id = -1;
5536 	ap->local_port_no = -1;
5537 	ap->host = host;
5538 	ap->dev = host->dev;
5539 
5540 	mutex_init(&ap->scsi_scan_mutex);
5541 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5542 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5543 	INIT_LIST_HEAD(&ap->eh_done_q);
5544 	init_waitqueue_head(&ap->eh_wait_q);
5545 	init_completion(&ap->park_req_pending);
5546 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5547 		    TIMER_DEFERRABLE);
5548 
5549 	ap->cbl = ATA_CBL_NONE;
5550 
5551 	ata_link_init(ap, &ap->link, 0);
5552 
5553 #ifdef ATA_IRQ_TRAP
5554 	ap->stats.unhandled_irq = 1;
5555 	ap->stats.idle_irq = 1;
5556 #endif
5557 	ata_sff_port_init(ap);
5558 
5559 	return ap;
5560 }
5561 
5562 static void ata_devres_release(struct device *gendev, void *res)
5563 {
5564 	struct ata_host *host = dev_get_drvdata(gendev);
5565 	int i;
5566 
5567 	for (i = 0; i < host->n_ports; i++) {
5568 		struct ata_port *ap = host->ports[i];
5569 
5570 		if (!ap)
5571 			continue;
5572 
5573 		if (ap->scsi_host)
5574 			scsi_host_put(ap->scsi_host);
5575 
5576 	}
5577 
5578 	dev_set_drvdata(gendev, NULL);
5579 	ata_host_put(host);
5580 }
5581 
5582 static void ata_host_release(struct kref *kref)
5583 {
5584 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5585 	int i;
5586 
5587 	for (i = 0; i < host->n_ports; i++) {
5588 		struct ata_port *ap = host->ports[i];
5589 
5590 		kfree(ap->pmp_link);
5591 		kfree(ap->slave_link);
5592 		kfree(ap->ncq_sense_buf);
5593 		kfree(ap);
5594 		host->ports[i] = NULL;
5595 	}
5596 	kfree(host);
5597 }
5598 
5599 void ata_host_get(struct ata_host *host)
5600 {
5601 	kref_get(&host->kref);
5602 }
5603 
5604 void ata_host_put(struct ata_host *host)
5605 {
5606 	kref_put(&host->kref, ata_host_release);
5607 }
5608 EXPORT_SYMBOL_GPL(ata_host_put);
5609 
5610 /**
5611  *	ata_host_alloc - allocate and init basic ATA host resources
5612  *	@dev: generic device this host is associated with
5613  *	@max_ports: maximum number of ATA ports associated with this host
5614  *
5615  *	Allocate and initialize basic ATA host resources.  LLD calls
5616  *	this function to allocate a host, initializes it fully and
5617  *	attaches it using ata_host_register().
5618  *
5619  *	@max_ports ports are allocated and host->n_ports is
5620  *	initialized to @max_ports.  The caller is allowed to decrease
5621  *	host->n_ports before calling ata_host_register().  The unused
5622  *	ports will be automatically freed on registration.
5623  *
5624  *	RETURNS:
5625  *	Allocate ATA host on success, NULL on failure.
5626  *
5627  *	LOCKING:
5628  *	Inherited from calling layer (may sleep).
5629  */
5630 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5631 {
5632 	struct ata_host *host;
5633 	size_t sz;
5634 	int i;
5635 	void *dr;
5636 
5637 	/* alloc a container for our list of ATA ports (buses) */
5638 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5639 	host = kzalloc(sz, GFP_KERNEL);
5640 	if (!host)
5641 		return NULL;
5642 
5643 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5644 		goto err_free;
5645 
5646 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5647 	if (!dr)
5648 		goto err_out;
5649 
5650 	devres_add(dev, dr);
5651 	dev_set_drvdata(dev, host);
5652 
5653 	spin_lock_init(&host->lock);
5654 	mutex_init(&host->eh_mutex);
5655 	host->dev = dev;
5656 	host->n_ports = max_ports;
5657 	kref_init(&host->kref);
5658 
5659 	/* allocate ports bound to this host */
5660 	for (i = 0; i < max_ports; i++) {
5661 		struct ata_port *ap;
5662 
5663 		ap = ata_port_alloc(host);
5664 		if (!ap)
5665 			goto err_out;
5666 
5667 		ap->port_no = i;
5668 		host->ports[i] = ap;
5669 	}
5670 
5671 	devres_remove_group(dev, NULL);
5672 	return host;
5673 
5674  err_out:
5675 	devres_release_group(dev, NULL);
5676  err_free:
5677 	kfree(host);
5678 	return NULL;
5679 }
5680 EXPORT_SYMBOL_GPL(ata_host_alloc);
5681 
5682 /**
5683  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5684  *	@dev: generic device this host is associated with
5685  *	@ppi: array of ATA port_info to initialize host with
5686  *	@n_ports: number of ATA ports attached to this host
5687  *
5688  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5689  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5690  *	last entry will be used for the remaining ports.
5691  *
5692  *	RETURNS:
5693  *	Allocate ATA host on success, NULL on failure.
5694  *
5695  *	LOCKING:
5696  *	Inherited from calling layer (may sleep).
5697  */
5698 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5699 				      const struct ata_port_info * const * ppi,
5700 				      int n_ports)
5701 {
5702 	const struct ata_port_info *pi = &ata_dummy_port_info;
5703 	struct ata_host *host;
5704 	int i, j;
5705 
5706 	host = ata_host_alloc(dev, n_ports);
5707 	if (!host)
5708 		return NULL;
5709 
5710 	for (i = 0, j = 0; i < host->n_ports; i++) {
5711 		struct ata_port *ap = host->ports[i];
5712 
5713 		if (ppi[j])
5714 			pi = ppi[j++];
5715 
5716 		ap->pio_mask = pi->pio_mask;
5717 		ap->mwdma_mask = pi->mwdma_mask;
5718 		ap->udma_mask = pi->udma_mask;
5719 		ap->flags |= pi->flags;
5720 		ap->link.flags |= pi->link_flags;
5721 		ap->ops = pi->port_ops;
5722 
5723 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5724 			host->ops = pi->port_ops;
5725 	}
5726 
5727 	return host;
5728 }
5729 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5730 
5731 static void ata_host_stop(struct device *gendev, void *res)
5732 {
5733 	struct ata_host *host = dev_get_drvdata(gendev);
5734 	int i;
5735 
5736 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5737 
5738 	for (i = 0; i < host->n_ports; i++) {
5739 		struct ata_port *ap = host->ports[i];
5740 
5741 		if (ap->ops->port_stop)
5742 			ap->ops->port_stop(ap);
5743 	}
5744 
5745 	if (host->ops->host_stop)
5746 		host->ops->host_stop(host);
5747 }
5748 
5749 /**
5750  *	ata_finalize_port_ops - finalize ata_port_operations
5751  *	@ops: ata_port_operations to finalize
5752  *
5753  *	An ata_port_operations can inherit from another ops and that
5754  *	ops can again inherit from another.  This can go on as many
5755  *	times as necessary as long as there is no loop in the
5756  *	inheritance chain.
5757  *
5758  *	Ops tables are finalized when the host is started.  NULL or
5759  *	unspecified entries are inherited from the closet ancestor
5760  *	which has the method and the entry is populated with it.
5761  *	After finalization, the ops table directly points to all the
5762  *	methods and ->inherits is no longer necessary and cleared.
5763  *
5764  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5765  *
5766  *	LOCKING:
5767  *	None.
5768  */
5769 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5770 {
5771 	static DEFINE_SPINLOCK(lock);
5772 	const struct ata_port_operations *cur;
5773 	void **begin = (void **)ops;
5774 	void **end = (void **)&ops->inherits;
5775 	void **pp;
5776 
5777 	if (!ops || !ops->inherits)
5778 		return;
5779 
5780 	spin_lock(&lock);
5781 
5782 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5783 		void **inherit = (void **)cur;
5784 
5785 		for (pp = begin; pp < end; pp++, inherit++)
5786 			if (!*pp)
5787 				*pp = *inherit;
5788 	}
5789 
5790 	for (pp = begin; pp < end; pp++)
5791 		if (IS_ERR(*pp))
5792 			*pp = NULL;
5793 
5794 	ops->inherits = NULL;
5795 
5796 	spin_unlock(&lock);
5797 }
5798 
5799 /**
5800  *	ata_host_start - start and freeze ports of an ATA host
5801  *	@host: ATA host to start ports for
5802  *
5803  *	Start and then freeze ports of @host.  Started status is
5804  *	recorded in host->flags, so this function can be called
5805  *	multiple times.  Ports are guaranteed to get started only
5806  *	once.  If host->ops is not initialized yet, it is set to the
5807  *	first non-dummy port ops.
5808  *
5809  *	LOCKING:
5810  *	Inherited from calling layer (may sleep).
5811  *
5812  *	RETURNS:
5813  *	0 if all ports are started successfully, -errno otherwise.
5814  */
5815 int ata_host_start(struct ata_host *host)
5816 {
5817 	int have_stop = 0;
5818 	void *start_dr = NULL;
5819 	int i, rc;
5820 
5821 	if (host->flags & ATA_HOST_STARTED)
5822 		return 0;
5823 
5824 	ata_finalize_port_ops(host->ops);
5825 
5826 	for (i = 0; i < host->n_ports; i++) {
5827 		struct ata_port *ap = host->ports[i];
5828 
5829 		ata_finalize_port_ops(ap->ops);
5830 
5831 		if (!host->ops && !ata_port_is_dummy(ap))
5832 			host->ops = ap->ops;
5833 
5834 		if (ap->ops->port_stop)
5835 			have_stop = 1;
5836 	}
5837 
5838 	if (host->ops && host->ops->host_stop)
5839 		have_stop = 1;
5840 
5841 	if (have_stop) {
5842 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5843 		if (!start_dr)
5844 			return -ENOMEM;
5845 	}
5846 
5847 	for (i = 0; i < host->n_ports; i++) {
5848 		struct ata_port *ap = host->ports[i];
5849 
5850 		if (ap->ops->port_start) {
5851 			rc = ap->ops->port_start(ap);
5852 			if (rc) {
5853 				if (rc != -ENODEV)
5854 					dev_err(host->dev,
5855 						"failed to start port %d (errno=%d)\n",
5856 						i, rc);
5857 				goto err_out;
5858 			}
5859 		}
5860 		ata_eh_freeze_port(ap);
5861 	}
5862 
5863 	if (start_dr)
5864 		devres_add(host->dev, start_dr);
5865 	host->flags |= ATA_HOST_STARTED;
5866 	return 0;
5867 
5868  err_out:
5869 	while (--i >= 0) {
5870 		struct ata_port *ap = host->ports[i];
5871 
5872 		if (ap->ops->port_stop)
5873 			ap->ops->port_stop(ap);
5874 	}
5875 	devres_free(start_dr);
5876 	return rc;
5877 }
5878 EXPORT_SYMBOL_GPL(ata_host_start);
5879 
5880 /**
5881  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5882  *	@host:	host to initialize
5883  *	@dev:	device host is attached to
5884  *	@ops:	port_ops
5885  *
5886  */
5887 void ata_host_init(struct ata_host *host, struct device *dev,
5888 		   struct ata_port_operations *ops)
5889 {
5890 	spin_lock_init(&host->lock);
5891 	mutex_init(&host->eh_mutex);
5892 	host->n_tags = ATA_MAX_QUEUE;
5893 	host->dev = dev;
5894 	host->ops = ops;
5895 	kref_init(&host->kref);
5896 }
5897 EXPORT_SYMBOL_GPL(ata_host_init);
5898 
5899 void __ata_port_probe(struct ata_port *ap)
5900 {
5901 	struct ata_eh_info *ehi = &ap->link.eh_info;
5902 	unsigned long flags;
5903 
5904 	/* kick EH for boot probing */
5905 	spin_lock_irqsave(ap->lock, flags);
5906 
5907 	ehi->probe_mask |= ATA_ALL_DEVICES;
5908 	ehi->action |= ATA_EH_RESET;
5909 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5910 
5911 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5912 	ap->pflags |= ATA_PFLAG_LOADING;
5913 	ata_port_schedule_eh(ap);
5914 
5915 	spin_unlock_irqrestore(ap->lock, flags);
5916 }
5917 
5918 int ata_port_probe(struct ata_port *ap)
5919 {
5920 	int rc = 0;
5921 
5922 	if (ap->ops->error_handler) {
5923 		__ata_port_probe(ap);
5924 		ata_port_wait_eh(ap);
5925 	} else {
5926 		rc = ata_bus_probe(ap);
5927 	}
5928 	return rc;
5929 }
5930 
5931 
5932 static void async_port_probe(void *data, async_cookie_t cookie)
5933 {
5934 	struct ata_port *ap = data;
5935 
5936 	/*
5937 	 * If we're not allowed to scan this host in parallel,
5938 	 * we need to wait until all previous scans have completed
5939 	 * before going further.
5940 	 * Jeff Garzik says this is only within a controller, so we
5941 	 * don't need to wait for port 0, only for later ports.
5942 	 */
5943 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5944 		async_synchronize_cookie(cookie);
5945 
5946 	(void)ata_port_probe(ap);
5947 
5948 	/* in order to keep device order, we need to synchronize at this point */
5949 	async_synchronize_cookie(cookie);
5950 
5951 	ata_scsi_scan_host(ap, 1);
5952 }
5953 
5954 /**
5955  *	ata_host_register - register initialized ATA host
5956  *	@host: ATA host to register
5957  *	@sht: template for SCSI host
5958  *
5959  *	Register initialized ATA host.  @host is allocated using
5960  *	ata_host_alloc() and fully initialized by LLD.  This function
5961  *	starts ports, registers @host with ATA and SCSI layers and
5962  *	probe registered devices.
5963  *
5964  *	LOCKING:
5965  *	Inherited from calling layer (may sleep).
5966  *
5967  *	RETURNS:
5968  *	0 on success, -errno otherwise.
5969  */
5970 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5971 {
5972 	int i, rc;
5973 
5974 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5975 
5976 	/* host must have been started */
5977 	if (!(host->flags & ATA_HOST_STARTED)) {
5978 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5979 		WARN_ON(1);
5980 		return -EINVAL;
5981 	}
5982 
5983 	/* Blow away unused ports.  This happens when LLD can't
5984 	 * determine the exact number of ports to allocate at
5985 	 * allocation time.
5986 	 */
5987 	for (i = host->n_ports; host->ports[i]; i++)
5988 		kfree(host->ports[i]);
5989 
5990 	/* give ports names and add SCSI hosts */
5991 	for (i = 0; i < host->n_ports; i++) {
5992 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5993 		host->ports[i]->local_port_no = i + 1;
5994 	}
5995 
5996 	/* Create associated sysfs transport objects  */
5997 	for (i = 0; i < host->n_ports; i++) {
5998 		rc = ata_tport_add(host->dev,host->ports[i]);
5999 		if (rc) {
6000 			goto err_tadd;
6001 		}
6002 	}
6003 
6004 	rc = ata_scsi_add_hosts(host, sht);
6005 	if (rc)
6006 		goto err_tadd;
6007 
6008 	/* set cable, sata_spd_limit and report */
6009 	for (i = 0; i < host->n_ports; i++) {
6010 		struct ata_port *ap = host->ports[i];
6011 		unsigned int xfer_mask;
6012 
6013 		/* set SATA cable type if still unset */
6014 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6015 			ap->cbl = ATA_CBL_SATA;
6016 
6017 		/* init sata_spd_limit to the current value */
6018 		sata_link_init_spd(&ap->link);
6019 		if (ap->slave_link)
6020 			sata_link_init_spd(ap->slave_link);
6021 
6022 		/* print per-port info to dmesg */
6023 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6024 					      ap->udma_mask);
6025 
6026 		if (!ata_port_is_dummy(ap)) {
6027 			ata_port_info(ap, "%cATA max %s %s\n",
6028 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6029 				      ata_mode_string(xfer_mask),
6030 				      ap->link.eh_info.desc);
6031 			ata_ehi_clear_desc(&ap->link.eh_info);
6032 		} else
6033 			ata_port_info(ap, "DUMMY\n");
6034 	}
6035 
6036 	/* perform each probe asynchronously */
6037 	for (i = 0; i < host->n_ports; i++) {
6038 		struct ata_port *ap = host->ports[i];
6039 		ap->cookie = async_schedule(async_port_probe, ap);
6040 	}
6041 
6042 	return 0;
6043 
6044  err_tadd:
6045 	while (--i >= 0) {
6046 		ata_tport_delete(host->ports[i]);
6047 	}
6048 	return rc;
6049 
6050 }
6051 EXPORT_SYMBOL_GPL(ata_host_register);
6052 
6053 /**
6054  *	ata_host_activate - start host, request IRQ and register it
6055  *	@host: target ATA host
6056  *	@irq: IRQ to request
6057  *	@irq_handler: irq_handler used when requesting IRQ
6058  *	@irq_flags: irq_flags used when requesting IRQ
6059  *	@sht: scsi_host_template to use when registering the host
6060  *
6061  *	After allocating an ATA host and initializing it, most libata
6062  *	LLDs perform three steps to activate the host - start host,
6063  *	request IRQ and register it.  This helper takes necessary
6064  *	arguments and performs the three steps in one go.
6065  *
6066  *	An invalid IRQ skips the IRQ registration and expects the host to
6067  *	have set polling mode on the port. In this case, @irq_handler
6068  *	should be NULL.
6069  *
6070  *	LOCKING:
6071  *	Inherited from calling layer (may sleep).
6072  *
6073  *	RETURNS:
6074  *	0 on success, -errno otherwise.
6075  */
6076 int ata_host_activate(struct ata_host *host, int irq,
6077 		      irq_handler_t irq_handler, unsigned long irq_flags,
6078 		      const struct scsi_host_template *sht)
6079 {
6080 	int i, rc;
6081 	char *irq_desc;
6082 
6083 	rc = ata_host_start(host);
6084 	if (rc)
6085 		return rc;
6086 
6087 	/* Special case for polling mode */
6088 	if (!irq) {
6089 		WARN_ON(irq_handler);
6090 		return ata_host_register(host, sht);
6091 	}
6092 
6093 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6094 				  dev_driver_string(host->dev),
6095 				  dev_name(host->dev));
6096 	if (!irq_desc)
6097 		return -ENOMEM;
6098 
6099 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6100 			      irq_desc, host);
6101 	if (rc)
6102 		return rc;
6103 
6104 	for (i = 0; i < host->n_ports; i++)
6105 		ata_port_desc(host->ports[i], "irq %d", irq);
6106 
6107 	rc = ata_host_register(host, sht);
6108 	/* if failed, just free the IRQ and leave ports alone */
6109 	if (rc)
6110 		devm_free_irq(host->dev, irq, host);
6111 
6112 	return rc;
6113 }
6114 EXPORT_SYMBOL_GPL(ata_host_activate);
6115 
6116 /**
6117  *	ata_port_detach - Detach ATA port in preparation of device removal
6118  *	@ap: ATA port to be detached
6119  *
6120  *	Detach all ATA devices and the associated SCSI devices of @ap;
6121  *	then, remove the associated SCSI host.  @ap is guaranteed to
6122  *	be quiescent on return from this function.
6123  *
6124  *	LOCKING:
6125  *	Kernel thread context (may sleep).
6126  */
6127 static void ata_port_detach(struct ata_port *ap)
6128 {
6129 	unsigned long flags;
6130 	struct ata_link *link;
6131 	struct ata_device *dev;
6132 
6133 	if (!ap->ops->error_handler)
6134 		goto skip_eh;
6135 
6136 	/* tell EH we're leaving & flush EH */
6137 	spin_lock_irqsave(ap->lock, flags);
6138 	ap->pflags |= ATA_PFLAG_UNLOADING;
6139 	ata_port_schedule_eh(ap);
6140 	spin_unlock_irqrestore(ap->lock, flags);
6141 
6142 	/* wait till EH commits suicide */
6143 	ata_port_wait_eh(ap);
6144 
6145 	/* it better be dead now */
6146 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6147 
6148 	cancel_delayed_work_sync(&ap->hotplug_task);
6149 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6150 
6151  skip_eh:
6152 	/* clean up zpodd on port removal */
6153 	ata_for_each_link(link, ap, HOST_FIRST) {
6154 		ata_for_each_dev(dev, link, ALL) {
6155 			if (zpodd_dev_enabled(dev))
6156 				zpodd_exit(dev);
6157 		}
6158 	}
6159 	if (ap->pmp_link) {
6160 		int i;
6161 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6162 			ata_tlink_delete(&ap->pmp_link[i]);
6163 	}
6164 	/* remove the associated SCSI host */
6165 	scsi_remove_host(ap->scsi_host);
6166 	ata_tport_delete(ap);
6167 }
6168 
6169 /**
6170  *	ata_host_detach - Detach all ports of an ATA host
6171  *	@host: Host to detach
6172  *
6173  *	Detach all ports of @host.
6174  *
6175  *	LOCKING:
6176  *	Kernel thread context (may sleep).
6177  */
6178 void ata_host_detach(struct ata_host *host)
6179 {
6180 	int i;
6181 
6182 	for (i = 0; i < host->n_ports; i++) {
6183 		/* Ensure ata_port probe has completed */
6184 		async_synchronize_cookie(host->ports[i]->cookie + 1);
6185 		ata_port_detach(host->ports[i]);
6186 	}
6187 
6188 	/* the host is dead now, dissociate ACPI */
6189 	ata_acpi_dissociate(host);
6190 }
6191 EXPORT_SYMBOL_GPL(ata_host_detach);
6192 
6193 #ifdef CONFIG_PCI
6194 
6195 /**
6196  *	ata_pci_remove_one - PCI layer callback for device removal
6197  *	@pdev: PCI device that was removed
6198  *
6199  *	PCI layer indicates to libata via this hook that hot-unplug or
6200  *	module unload event has occurred.  Detach all ports.  Resource
6201  *	release is handled via devres.
6202  *
6203  *	LOCKING:
6204  *	Inherited from PCI layer (may sleep).
6205  */
6206 void ata_pci_remove_one(struct pci_dev *pdev)
6207 {
6208 	struct ata_host *host = pci_get_drvdata(pdev);
6209 
6210 	ata_host_detach(host);
6211 }
6212 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6213 
6214 void ata_pci_shutdown_one(struct pci_dev *pdev)
6215 {
6216 	struct ata_host *host = pci_get_drvdata(pdev);
6217 	int i;
6218 
6219 	for (i = 0; i < host->n_ports; i++) {
6220 		struct ata_port *ap = host->ports[i];
6221 
6222 		ap->pflags |= ATA_PFLAG_FROZEN;
6223 
6224 		/* Disable port interrupts */
6225 		if (ap->ops->freeze)
6226 			ap->ops->freeze(ap);
6227 
6228 		/* Stop the port DMA engines */
6229 		if (ap->ops->port_stop)
6230 			ap->ops->port_stop(ap);
6231 	}
6232 }
6233 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6234 
6235 /* move to PCI subsystem */
6236 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6237 {
6238 	unsigned long tmp = 0;
6239 
6240 	switch (bits->width) {
6241 	case 1: {
6242 		u8 tmp8 = 0;
6243 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6244 		tmp = tmp8;
6245 		break;
6246 	}
6247 	case 2: {
6248 		u16 tmp16 = 0;
6249 		pci_read_config_word(pdev, bits->reg, &tmp16);
6250 		tmp = tmp16;
6251 		break;
6252 	}
6253 	case 4: {
6254 		u32 tmp32 = 0;
6255 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6256 		tmp = tmp32;
6257 		break;
6258 	}
6259 
6260 	default:
6261 		return -EINVAL;
6262 	}
6263 
6264 	tmp &= bits->mask;
6265 
6266 	return (tmp == bits->val) ? 1 : 0;
6267 }
6268 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6269 
6270 #ifdef CONFIG_PM
6271 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6272 {
6273 	pci_save_state(pdev);
6274 	pci_disable_device(pdev);
6275 
6276 	if (mesg.event & PM_EVENT_SLEEP)
6277 		pci_set_power_state(pdev, PCI_D3hot);
6278 }
6279 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6280 
6281 int ata_pci_device_do_resume(struct pci_dev *pdev)
6282 {
6283 	int rc;
6284 
6285 	pci_set_power_state(pdev, PCI_D0);
6286 	pci_restore_state(pdev);
6287 
6288 	rc = pcim_enable_device(pdev);
6289 	if (rc) {
6290 		dev_err(&pdev->dev,
6291 			"failed to enable device after resume (%d)\n", rc);
6292 		return rc;
6293 	}
6294 
6295 	pci_set_master(pdev);
6296 	return 0;
6297 }
6298 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6299 
6300 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6301 {
6302 	struct ata_host *host = pci_get_drvdata(pdev);
6303 
6304 	ata_host_suspend(host, mesg);
6305 
6306 	ata_pci_device_do_suspend(pdev, mesg);
6307 
6308 	return 0;
6309 }
6310 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6311 
6312 int ata_pci_device_resume(struct pci_dev *pdev)
6313 {
6314 	struct ata_host *host = pci_get_drvdata(pdev);
6315 	int rc;
6316 
6317 	rc = ata_pci_device_do_resume(pdev);
6318 	if (rc == 0)
6319 		ata_host_resume(host);
6320 	return rc;
6321 }
6322 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6323 #endif /* CONFIG_PM */
6324 #endif /* CONFIG_PCI */
6325 
6326 /**
6327  *	ata_platform_remove_one - Platform layer callback for device removal
6328  *	@pdev: Platform device that was removed
6329  *
6330  *	Platform layer indicates to libata via this hook that hot-unplug or
6331  *	module unload event has occurred.  Detach all ports.  Resource
6332  *	release is handled via devres.
6333  *
6334  *	LOCKING:
6335  *	Inherited from platform layer (may sleep).
6336  */
6337 void ata_platform_remove_one(struct platform_device *pdev)
6338 {
6339 	struct ata_host *host = platform_get_drvdata(pdev);
6340 
6341 	ata_host_detach(host);
6342 }
6343 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6344 
6345 #ifdef CONFIG_ATA_FORCE
6346 
6347 #define force_cbl(name, flag)				\
6348 	{ #name,	.cbl		= (flag) }
6349 
6350 #define force_spd_limit(spd, val)			\
6351 	{ #spd,	.spd_limit		= (val) }
6352 
6353 #define force_xfer(mode, shift)				\
6354 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6355 
6356 #define force_lflag_on(name, flags)			\
6357 	{ #name,	.lflags_on	= (flags) }
6358 
6359 #define force_lflag_onoff(name, flags)			\
6360 	{ "no" #name,	.lflags_on	= (flags) },	\
6361 	{ #name,	.lflags_off	= (flags) }
6362 
6363 #define force_horkage_on(name, flag)			\
6364 	{ #name,	.horkage_on	= (flag) }
6365 
6366 #define force_horkage_onoff(name, flag)			\
6367 	{ "no" #name,	.horkage_on	= (flag) },	\
6368 	{ #name,	.horkage_off	= (flag) }
6369 
6370 static const struct ata_force_param force_tbl[] __initconst = {
6371 	force_cbl(40c,			ATA_CBL_PATA40),
6372 	force_cbl(80c,			ATA_CBL_PATA80),
6373 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6374 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6375 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6376 	force_cbl(sata,			ATA_CBL_SATA),
6377 
6378 	force_spd_limit(1.5Gbps,	1),
6379 	force_spd_limit(3.0Gbps,	2),
6380 
6381 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6382 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6383 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6384 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6385 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6386 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6387 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6388 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6389 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6390 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6391 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6392 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6393 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6394 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6395 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6396 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6397 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6398 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6399 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6400 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6401 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6402 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6403 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6404 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6405 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6406 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6407 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6408 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6409 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6410 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6411 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6412 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6413 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6414 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6415 
6416 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6417 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6418 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6419 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6420 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6421 
6422 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6423 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6424 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6425 
6426 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6427 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6428 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6429 
6430 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6431 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6432 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6433 
6434 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6435 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6436 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6437 
6438 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6439 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6440 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6441 
6442 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6443 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6444 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6445 	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6446 
6447 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6448 };
6449 
6450 static int __init ata_parse_force_one(char **cur,
6451 				      struct ata_force_ent *force_ent,
6452 				      const char **reason)
6453 {
6454 	char *start = *cur, *p = *cur;
6455 	char *id, *val, *endp;
6456 	const struct ata_force_param *match_fp = NULL;
6457 	int nr_matches = 0, i;
6458 
6459 	/* find where this param ends and update *cur */
6460 	while (*p != '\0' && *p != ',')
6461 		p++;
6462 
6463 	if (*p == '\0')
6464 		*cur = p;
6465 	else
6466 		*cur = p + 1;
6467 
6468 	*p = '\0';
6469 
6470 	/* parse */
6471 	p = strchr(start, ':');
6472 	if (!p) {
6473 		val = strstrip(start);
6474 		goto parse_val;
6475 	}
6476 	*p = '\0';
6477 
6478 	id = strstrip(start);
6479 	val = strstrip(p + 1);
6480 
6481 	/* parse id */
6482 	p = strchr(id, '.');
6483 	if (p) {
6484 		*p++ = '\0';
6485 		force_ent->device = simple_strtoul(p, &endp, 10);
6486 		if (p == endp || *endp != '\0') {
6487 			*reason = "invalid device";
6488 			return -EINVAL;
6489 		}
6490 	}
6491 
6492 	force_ent->port = simple_strtoul(id, &endp, 10);
6493 	if (id == endp || *endp != '\0') {
6494 		*reason = "invalid port/link";
6495 		return -EINVAL;
6496 	}
6497 
6498  parse_val:
6499 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6500 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6501 		const struct ata_force_param *fp = &force_tbl[i];
6502 
6503 		if (strncasecmp(val, fp->name, strlen(val)))
6504 			continue;
6505 
6506 		nr_matches++;
6507 		match_fp = fp;
6508 
6509 		if (strcasecmp(val, fp->name) == 0) {
6510 			nr_matches = 1;
6511 			break;
6512 		}
6513 	}
6514 
6515 	if (!nr_matches) {
6516 		*reason = "unknown value";
6517 		return -EINVAL;
6518 	}
6519 	if (nr_matches > 1) {
6520 		*reason = "ambiguous value";
6521 		return -EINVAL;
6522 	}
6523 
6524 	force_ent->param = *match_fp;
6525 
6526 	return 0;
6527 }
6528 
6529 static void __init ata_parse_force_param(void)
6530 {
6531 	int idx = 0, size = 1;
6532 	int last_port = -1, last_device = -1;
6533 	char *p, *cur, *next;
6534 
6535 	/* Calculate maximum number of params and allocate ata_force_tbl */
6536 	for (p = ata_force_param_buf; *p; p++)
6537 		if (*p == ',')
6538 			size++;
6539 
6540 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6541 	if (!ata_force_tbl) {
6542 		printk(KERN_WARNING "ata: failed to extend force table, "
6543 		       "libata.force ignored\n");
6544 		return;
6545 	}
6546 
6547 	/* parse and populate the table */
6548 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6549 		const char *reason = "";
6550 		struct ata_force_ent te = { .port = -1, .device = -1 };
6551 
6552 		next = cur;
6553 		if (ata_parse_force_one(&next, &te, &reason)) {
6554 			printk(KERN_WARNING "ata: failed to parse force "
6555 			       "parameter \"%s\" (%s)\n",
6556 			       cur, reason);
6557 			continue;
6558 		}
6559 
6560 		if (te.port == -1) {
6561 			te.port = last_port;
6562 			te.device = last_device;
6563 		}
6564 
6565 		ata_force_tbl[idx++] = te;
6566 
6567 		last_port = te.port;
6568 		last_device = te.device;
6569 	}
6570 
6571 	ata_force_tbl_size = idx;
6572 }
6573 
6574 static void ata_free_force_param(void)
6575 {
6576 	kfree(ata_force_tbl);
6577 }
6578 #else
6579 static inline void ata_parse_force_param(void) { }
6580 static inline void ata_free_force_param(void) { }
6581 #endif
6582 
6583 static int __init ata_init(void)
6584 {
6585 	int rc;
6586 
6587 	ata_parse_force_param();
6588 
6589 	rc = ata_sff_init();
6590 	if (rc) {
6591 		ata_free_force_param();
6592 		return rc;
6593 	}
6594 
6595 	libata_transport_init();
6596 	ata_scsi_transport_template = ata_attach_transport();
6597 	if (!ata_scsi_transport_template) {
6598 		ata_sff_exit();
6599 		rc = -ENOMEM;
6600 		goto err_out;
6601 	}
6602 
6603 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6604 	return 0;
6605 
6606 err_out:
6607 	return rc;
6608 }
6609 
6610 static void __exit ata_exit(void)
6611 {
6612 	ata_release_transport(ata_scsi_transport_template);
6613 	libata_transport_exit();
6614 	ata_sff_exit();
6615 	ata_free_force_param();
6616 }
6617 
6618 subsys_initcall(ata_init);
6619 module_exit(ata_exit);
6620 
6621 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6622 
6623 int ata_ratelimit(void)
6624 {
6625 	return __ratelimit(&ratelimit);
6626 }
6627 EXPORT_SYMBOL_GPL(ata_ratelimit);
6628 
6629 /**
6630  *	ata_msleep - ATA EH owner aware msleep
6631  *	@ap: ATA port to attribute the sleep to
6632  *	@msecs: duration to sleep in milliseconds
6633  *
6634  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6635  *	ownership is released before going to sleep and reacquired
6636  *	after the sleep is complete.  IOW, other ports sharing the
6637  *	@ap->host will be allowed to own the EH while this task is
6638  *	sleeping.
6639  *
6640  *	LOCKING:
6641  *	Might sleep.
6642  */
6643 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6644 {
6645 	bool owns_eh = ap && ap->host->eh_owner == current;
6646 
6647 	if (owns_eh)
6648 		ata_eh_release(ap);
6649 
6650 	if (msecs < 20) {
6651 		unsigned long usecs = msecs * USEC_PER_MSEC;
6652 		usleep_range(usecs, usecs + 50);
6653 	} else {
6654 		msleep(msecs);
6655 	}
6656 
6657 	if (owns_eh)
6658 		ata_eh_acquire(ap);
6659 }
6660 EXPORT_SYMBOL_GPL(ata_msleep);
6661 
6662 /**
6663  *	ata_wait_register - wait until register value changes
6664  *	@ap: ATA port to wait register for, can be NULL
6665  *	@reg: IO-mapped register
6666  *	@mask: Mask to apply to read register value
6667  *	@val: Wait condition
6668  *	@interval: polling interval in milliseconds
6669  *	@timeout: timeout in milliseconds
6670  *
6671  *	Waiting for some bits of register to change is a common
6672  *	operation for ATA controllers.  This function reads 32bit LE
6673  *	IO-mapped register @reg and tests for the following condition.
6674  *
6675  *	(*@reg & mask) != val
6676  *
6677  *	If the condition is met, it returns; otherwise, the process is
6678  *	repeated after @interval_msec until timeout.
6679  *
6680  *	LOCKING:
6681  *	Kernel thread context (may sleep)
6682  *
6683  *	RETURNS:
6684  *	The final register value.
6685  */
6686 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6687 		      unsigned long interval, unsigned long timeout)
6688 {
6689 	unsigned long deadline;
6690 	u32 tmp;
6691 
6692 	tmp = ioread32(reg);
6693 
6694 	/* Calculate timeout _after_ the first read to make sure
6695 	 * preceding writes reach the controller before starting to
6696 	 * eat away the timeout.
6697 	 */
6698 	deadline = ata_deadline(jiffies, timeout);
6699 
6700 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6701 		ata_msleep(ap, interval);
6702 		tmp = ioread32(reg);
6703 	}
6704 
6705 	return tmp;
6706 }
6707 EXPORT_SYMBOL_GPL(ata_wait_register);
6708 
6709 /*
6710  * Dummy port_ops
6711  */
6712 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6713 {
6714 	return AC_ERR_SYSTEM;
6715 }
6716 
6717 static void ata_dummy_error_handler(struct ata_port *ap)
6718 {
6719 	/* truly dummy */
6720 }
6721 
6722 struct ata_port_operations ata_dummy_port_ops = {
6723 	.qc_prep		= ata_noop_qc_prep,
6724 	.qc_issue		= ata_dummy_qc_issue,
6725 	.error_handler		= ata_dummy_error_handler,
6726 	.sched_eh		= ata_std_sched_eh,
6727 	.end_eh			= ata_std_end_eh,
6728 };
6729 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6730 
6731 const struct ata_port_info ata_dummy_port_info = {
6732 	.port_ops		= &ata_dummy_port_ops,
6733 };
6734 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6735 
6736 void ata_print_version(const struct device *dev, const char *version)
6737 {
6738 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6739 }
6740 EXPORT_SYMBOL(ata_print_version);
6741 
6742 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6743 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6744 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6745 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6746 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6747