1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 }; 108 109 struct ata_force_ent { 110 int port; 111 int device; 112 struct ata_force_param param; 113 }; 114 115 static struct ata_force_ent *ata_force_tbl; 116 static int ata_force_tbl_size; 117 118 static char ata_force_param_buf[PAGE_SIZE] __initdata; 119 /* param_buf is thrown away after initialization, disallow read */ 120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 122 123 static int atapi_enabled = 1; 124 module_param(atapi_enabled, int, 0444); 125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 126 127 static int atapi_dmadir = 0; 128 module_param(atapi_dmadir, int, 0444); 129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 130 131 int atapi_passthru16 = 1; 132 module_param(atapi_passthru16, int, 0444); 133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 134 135 int libata_fua = 0; 136 module_param_named(fua, libata_fua, int, 0444); 137 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 138 139 static int ata_ignore_hpa; 140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 142 143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 144 module_param_named(dma, libata_dma_mask, int, 0444); 145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 146 147 static int ata_probe_timeout; 148 module_param(ata_probe_timeout, int, 0444); 149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 150 151 int libata_noacpi = 0; 152 module_param_named(noacpi, libata_noacpi, int, 0444); 153 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 154 155 int libata_allow_tpm = 0; 156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 158 159 MODULE_AUTHOR("Jeff Garzik"); 160 MODULE_DESCRIPTION("Library module for ATA devices"); 161 MODULE_LICENSE("GPL"); 162 MODULE_VERSION(DRV_VERSION); 163 164 165 /** 166 * ata_force_cbl - force cable type according to libata.force 167 * @ap: ATA port of interest 168 * 169 * Force cable type according to libata.force and whine about it. 170 * The last entry which has matching port number is used, so it 171 * can be specified as part of device force parameters. For 172 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 173 * same effect. 174 * 175 * LOCKING: 176 * EH context. 177 */ 178 void ata_force_cbl(struct ata_port *ap) 179 { 180 int i; 181 182 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 183 const struct ata_force_ent *fe = &ata_force_tbl[i]; 184 185 if (fe->port != -1 && fe->port != ap->print_id) 186 continue; 187 188 if (fe->param.cbl == ATA_CBL_NONE) 189 continue; 190 191 ap->cbl = fe->param.cbl; 192 ata_port_printk(ap, KERN_NOTICE, 193 "FORCE: cable set to %s\n", fe->param.name); 194 return; 195 } 196 } 197 198 /** 199 * ata_force_spd_limit - force SATA spd limit according to libata.force 200 * @link: ATA link of interest 201 * 202 * Force SATA spd limit according to libata.force and whine about 203 * it. When only the port part is specified (e.g. 1:), the limit 204 * applies to all links connected to both the host link and all 205 * fan-out ports connected via PMP. If the device part is 206 * specified as 0 (e.g. 1.00:), it specifies the first fan-out 207 * link not the host link. Device number 15 always points to the 208 * host link whether PMP is attached or not. 209 * 210 * LOCKING: 211 * EH context. 212 */ 213 static void ata_force_spd_limit(struct ata_link *link) 214 { 215 int linkno, i; 216 217 if (ata_is_host_link(link)) 218 linkno = 15; 219 else 220 linkno = link->pmp; 221 222 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 223 const struct ata_force_ent *fe = &ata_force_tbl[i]; 224 225 if (fe->port != -1 && fe->port != link->ap->print_id) 226 continue; 227 228 if (fe->device != -1 && fe->device != linkno) 229 continue; 230 231 if (!fe->param.spd_limit) 232 continue; 233 234 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 235 ata_link_printk(link, KERN_NOTICE, 236 "FORCE: PHY spd limit set to %s\n", fe->param.name); 237 return; 238 } 239 } 240 241 /** 242 * ata_force_xfermask - force xfermask according to libata.force 243 * @dev: ATA device of interest 244 * 245 * Force xfer_mask according to libata.force and whine about it. 246 * For consistency with link selection, device number 15 selects 247 * the first device connected to the host link. 248 * 249 * LOCKING: 250 * EH context. 251 */ 252 static void ata_force_xfermask(struct ata_device *dev) 253 { 254 int devno = dev->link->pmp + dev->devno; 255 int alt_devno = devno; 256 int i; 257 258 /* allow n.15 for the first device attached to host port */ 259 if (ata_is_host_link(dev->link) && devno == 0) 260 alt_devno = 15; 261 262 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 263 const struct ata_force_ent *fe = &ata_force_tbl[i]; 264 unsigned long pio_mask, mwdma_mask, udma_mask; 265 266 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 267 continue; 268 269 if (fe->device != -1 && fe->device != devno && 270 fe->device != alt_devno) 271 continue; 272 273 if (!fe->param.xfer_mask) 274 continue; 275 276 ata_unpack_xfermask(fe->param.xfer_mask, 277 &pio_mask, &mwdma_mask, &udma_mask); 278 if (udma_mask) 279 dev->udma_mask = udma_mask; 280 else if (mwdma_mask) { 281 dev->udma_mask = 0; 282 dev->mwdma_mask = mwdma_mask; 283 } else { 284 dev->udma_mask = 0; 285 dev->mwdma_mask = 0; 286 dev->pio_mask = pio_mask; 287 } 288 289 ata_dev_printk(dev, KERN_NOTICE, 290 "FORCE: xfer_mask set to %s\n", fe->param.name); 291 return; 292 } 293 } 294 295 /** 296 * ata_force_horkage - force horkage according to libata.force 297 * @dev: ATA device of interest 298 * 299 * Force horkage according to libata.force and whine about it. 300 * For consistency with link selection, device number 15 selects 301 * the first device connected to the host link. 302 * 303 * LOCKING: 304 * EH context. 305 */ 306 static void ata_force_horkage(struct ata_device *dev) 307 { 308 int devno = dev->link->pmp + dev->devno; 309 int alt_devno = devno; 310 int i; 311 312 /* allow n.15 for the first device attached to host port */ 313 if (ata_is_host_link(dev->link) && devno == 0) 314 alt_devno = 15; 315 316 for (i = 0; i < ata_force_tbl_size; i++) { 317 const struct ata_force_ent *fe = &ata_force_tbl[i]; 318 319 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 320 continue; 321 322 if (fe->device != -1 && fe->device != devno && 323 fe->device != alt_devno) 324 continue; 325 326 if (!(~dev->horkage & fe->param.horkage_on) && 327 !(dev->horkage & fe->param.horkage_off)) 328 continue; 329 330 dev->horkage |= fe->param.horkage_on; 331 dev->horkage &= ~fe->param.horkage_off; 332 333 ata_dev_printk(dev, KERN_NOTICE, 334 "FORCE: horkage modified (%s)\n", fe->param.name); 335 } 336 } 337 338 /** 339 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 340 * @opcode: SCSI opcode 341 * 342 * Determine ATAPI command type from @opcode. 343 * 344 * LOCKING: 345 * None. 346 * 347 * RETURNS: 348 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 349 */ 350 int atapi_cmd_type(u8 opcode) 351 { 352 switch (opcode) { 353 case GPCMD_READ_10: 354 case GPCMD_READ_12: 355 return ATAPI_READ; 356 357 case GPCMD_WRITE_10: 358 case GPCMD_WRITE_12: 359 case GPCMD_WRITE_AND_VERIFY_10: 360 return ATAPI_WRITE; 361 362 case GPCMD_READ_CD: 363 case GPCMD_READ_CD_MSF: 364 return ATAPI_READ_CD; 365 366 case ATA_16: 367 case ATA_12: 368 if (atapi_passthru16) 369 return ATAPI_PASS_THRU; 370 /* fall thru */ 371 default: 372 return ATAPI_MISC; 373 } 374 } 375 376 /** 377 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 378 * @tf: Taskfile to convert 379 * @pmp: Port multiplier port 380 * @is_cmd: This FIS is for command 381 * @fis: Buffer into which data will output 382 * 383 * Converts a standard ATA taskfile to a Serial ATA 384 * FIS structure (Register - Host to Device). 385 * 386 * LOCKING: 387 * Inherited from caller. 388 */ 389 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 390 { 391 fis[0] = 0x27; /* Register - Host to Device FIS */ 392 fis[1] = pmp & 0xf; /* Port multiplier number*/ 393 if (is_cmd) 394 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 395 396 fis[2] = tf->command; 397 fis[3] = tf->feature; 398 399 fis[4] = tf->lbal; 400 fis[5] = tf->lbam; 401 fis[6] = tf->lbah; 402 fis[7] = tf->device; 403 404 fis[8] = tf->hob_lbal; 405 fis[9] = tf->hob_lbam; 406 fis[10] = tf->hob_lbah; 407 fis[11] = tf->hob_feature; 408 409 fis[12] = tf->nsect; 410 fis[13] = tf->hob_nsect; 411 fis[14] = 0; 412 fis[15] = tf->ctl; 413 414 fis[16] = 0; 415 fis[17] = 0; 416 fis[18] = 0; 417 fis[19] = 0; 418 } 419 420 /** 421 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 422 * @fis: Buffer from which data will be input 423 * @tf: Taskfile to output 424 * 425 * Converts a serial ATA FIS structure to a standard ATA taskfile. 426 * 427 * LOCKING: 428 * Inherited from caller. 429 */ 430 431 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 432 { 433 tf->command = fis[2]; /* status */ 434 tf->feature = fis[3]; /* error */ 435 436 tf->lbal = fis[4]; 437 tf->lbam = fis[5]; 438 tf->lbah = fis[6]; 439 tf->device = fis[7]; 440 441 tf->hob_lbal = fis[8]; 442 tf->hob_lbam = fis[9]; 443 tf->hob_lbah = fis[10]; 444 445 tf->nsect = fis[12]; 446 tf->hob_nsect = fis[13]; 447 } 448 449 static const u8 ata_rw_cmds[] = { 450 /* pio multi */ 451 ATA_CMD_READ_MULTI, 452 ATA_CMD_WRITE_MULTI, 453 ATA_CMD_READ_MULTI_EXT, 454 ATA_CMD_WRITE_MULTI_EXT, 455 0, 456 0, 457 0, 458 ATA_CMD_WRITE_MULTI_FUA_EXT, 459 /* pio */ 460 ATA_CMD_PIO_READ, 461 ATA_CMD_PIO_WRITE, 462 ATA_CMD_PIO_READ_EXT, 463 ATA_CMD_PIO_WRITE_EXT, 464 0, 465 0, 466 0, 467 0, 468 /* dma */ 469 ATA_CMD_READ, 470 ATA_CMD_WRITE, 471 ATA_CMD_READ_EXT, 472 ATA_CMD_WRITE_EXT, 473 0, 474 0, 475 0, 476 ATA_CMD_WRITE_FUA_EXT 477 }; 478 479 /** 480 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 481 * @tf: command to examine and configure 482 * @dev: device tf belongs to 483 * 484 * Examine the device configuration and tf->flags to calculate 485 * the proper read/write commands and protocol to use. 486 * 487 * LOCKING: 488 * caller. 489 */ 490 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 491 { 492 u8 cmd; 493 494 int index, fua, lba48, write; 495 496 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 497 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 498 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 499 500 if (dev->flags & ATA_DFLAG_PIO) { 501 tf->protocol = ATA_PROT_PIO; 502 index = dev->multi_count ? 0 : 8; 503 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 504 /* Unable to use DMA due to host limitation */ 505 tf->protocol = ATA_PROT_PIO; 506 index = dev->multi_count ? 0 : 8; 507 } else { 508 tf->protocol = ATA_PROT_DMA; 509 index = 16; 510 } 511 512 cmd = ata_rw_cmds[index + fua + lba48 + write]; 513 if (cmd) { 514 tf->command = cmd; 515 return 0; 516 } 517 return -1; 518 } 519 520 /** 521 * ata_tf_read_block - Read block address from ATA taskfile 522 * @tf: ATA taskfile of interest 523 * @dev: ATA device @tf belongs to 524 * 525 * LOCKING: 526 * None. 527 * 528 * Read block address from @tf. This function can handle all 529 * three address formats - LBA, LBA48 and CHS. tf->protocol and 530 * flags select the address format to use. 531 * 532 * RETURNS: 533 * Block address read from @tf. 534 */ 535 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 536 { 537 u64 block = 0; 538 539 if (tf->flags & ATA_TFLAG_LBA) { 540 if (tf->flags & ATA_TFLAG_LBA48) { 541 block |= (u64)tf->hob_lbah << 40; 542 block |= (u64)tf->hob_lbam << 32; 543 block |= tf->hob_lbal << 24; 544 } else 545 block |= (tf->device & 0xf) << 24; 546 547 block |= tf->lbah << 16; 548 block |= tf->lbam << 8; 549 block |= tf->lbal; 550 } else { 551 u32 cyl, head, sect; 552 553 cyl = tf->lbam | (tf->lbah << 8); 554 head = tf->device & 0xf; 555 sect = tf->lbal; 556 557 block = (cyl * dev->heads + head) * dev->sectors + sect; 558 } 559 560 return block; 561 } 562 563 /** 564 * ata_build_rw_tf - Build ATA taskfile for given read/write request 565 * @tf: Target ATA taskfile 566 * @dev: ATA device @tf belongs to 567 * @block: Block address 568 * @n_block: Number of blocks 569 * @tf_flags: RW/FUA etc... 570 * @tag: tag 571 * 572 * LOCKING: 573 * None. 574 * 575 * Build ATA taskfile @tf for read/write request described by 576 * @block, @n_block, @tf_flags and @tag on @dev. 577 * 578 * RETURNS: 579 * 580 * 0 on success, -ERANGE if the request is too large for @dev, 581 * -EINVAL if the request is invalid. 582 */ 583 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 584 u64 block, u32 n_block, unsigned int tf_flags, 585 unsigned int tag) 586 { 587 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 588 tf->flags |= tf_flags; 589 590 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 591 /* yay, NCQ */ 592 if (!lba_48_ok(block, n_block)) 593 return -ERANGE; 594 595 tf->protocol = ATA_PROT_NCQ; 596 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 597 598 if (tf->flags & ATA_TFLAG_WRITE) 599 tf->command = ATA_CMD_FPDMA_WRITE; 600 else 601 tf->command = ATA_CMD_FPDMA_READ; 602 603 tf->nsect = tag << 3; 604 tf->hob_feature = (n_block >> 8) & 0xff; 605 tf->feature = n_block & 0xff; 606 607 tf->hob_lbah = (block >> 40) & 0xff; 608 tf->hob_lbam = (block >> 32) & 0xff; 609 tf->hob_lbal = (block >> 24) & 0xff; 610 tf->lbah = (block >> 16) & 0xff; 611 tf->lbam = (block >> 8) & 0xff; 612 tf->lbal = block & 0xff; 613 614 tf->device = 1 << 6; 615 if (tf->flags & ATA_TFLAG_FUA) 616 tf->device |= 1 << 7; 617 } else if (dev->flags & ATA_DFLAG_LBA) { 618 tf->flags |= ATA_TFLAG_LBA; 619 620 if (lba_28_ok(block, n_block)) { 621 /* use LBA28 */ 622 tf->device |= (block >> 24) & 0xf; 623 } else if (lba_48_ok(block, n_block)) { 624 if (!(dev->flags & ATA_DFLAG_LBA48)) 625 return -ERANGE; 626 627 /* use LBA48 */ 628 tf->flags |= ATA_TFLAG_LBA48; 629 630 tf->hob_nsect = (n_block >> 8) & 0xff; 631 632 tf->hob_lbah = (block >> 40) & 0xff; 633 tf->hob_lbam = (block >> 32) & 0xff; 634 tf->hob_lbal = (block >> 24) & 0xff; 635 } else 636 /* request too large even for LBA48 */ 637 return -ERANGE; 638 639 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 640 return -EINVAL; 641 642 tf->nsect = n_block & 0xff; 643 644 tf->lbah = (block >> 16) & 0xff; 645 tf->lbam = (block >> 8) & 0xff; 646 tf->lbal = block & 0xff; 647 648 tf->device |= ATA_LBA; 649 } else { 650 /* CHS */ 651 u32 sect, head, cyl, track; 652 653 /* The request -may- be too large for CHS addressing. */ 654 if (!lba_28_ok(block, n_block)) 655 return -ERANGE; 656 657 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 658 return -EINVAL; 659 660 /* Convert LBA to CHS */ 661 track = (u32)block / dev->sectors; 662 cyl = track / dev->heads; 663 head = track % dev->heads; 664 sect = (u32)block % dev->sectors + 1; 665 666 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 667 (u32)block, track, cyl, head, sect); 668 669 /* Check whether the converted CHS can fit. 670 Cylinder: 0-65535 671 Head: 0-15 672 Sector: 1-255*/ 673 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 674 return -ERANGE; 675 676 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 677 tf->lbal = sect; 678 tf->lbam = cyl; 679 tf->lbah = cyl >> 8; 680 tf->device |= head; 681 } 682 683 return 0; 684 } 685 686 /** 687 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 688 * @pio_mask: pio_mask 689 * @mwdma_mask: mwdma_mask 690 * @udma_mask: udma_mask 691 * 692 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 693 * unsigned int xfer_mask. 694 * 695 * LOCKING: 696 * None. 697 * 698 * RETURNS: 699 * Packed xfer_mask. 700 */ 701 unsigned long ata_pack_xfermask(unsigned long pio_mask, 702 unsigned long mwdma_mask, 703 unsigned long udma_mask) 704 { 705 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 706 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 707 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 708 } 709 710 /** 711 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 712 * @xfer_mask: xfer_mask to unpack 713 * @pio_mask: resulting pio_mask 714 * @mwdma_mask: resulting mwdma_mask 715 * @udma_mask: resulting udma_mask 716 * 717 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 718 * Any NULL distination masks will be ignored. 719 */ 720 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 721 unsigned long *mwdma_mask, unsigned long *udma_mask) 722 { 723 if (pio_mask) 724 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 725 if (mwdma_mask) 726 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 727 if (udma_mask) 728 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 729 } 730 731 static const struct ata_xfer_ent { 732 int shift, bits; 733 u8 base; 734 } ata_xfer_tbl[] = { 735 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 736 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 737 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 738 { -1, }, 739 }; 740 741 /** 742 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 743 * @xfer_mask: xfer_mask of interest 744 * 745 * Return matching XFER_* value for @xfer_mask. Only the highest 746 * bit of @xfer_mask is considered. 747 * 748 * LOCKING: 749 * None. 750 * 751 * RETURNS: 752 * Matching XFER_* value, 0xff if no match found. 753 */ 754 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 755 { 756 int highbit = fls(xfer_mask) - 1; 757 const struct ata_xfer_ent *ent; 758 759 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 760 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 761 return ent->base + highbit - ent->shift; 762 return 0xff; 763 } 764 765 /** 766 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 767 * @xfer_mode: XFER_* of interest 768 * 769 * Return matching xfer_mask for @xfer_mode. 770 * 771 * LOCKING: 772 * None. 773 * 774 * RETURNS: 775 * Matching xfer_mask, 0 if no match found. 776 */ 777 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 778 { 779 const struct ata_xfer_ent *ent; 780 781 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 782 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 783 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 784 & ~((1 << ent->shift) - 1); 785 return 0; 786 } 787 788 /** 789 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 790 * @xfer_mode: XFER_* of interest 791 * 792 * Return matching xfer_shift for @xfer_mode. 793 * 794 * LOCKING: 795 * None. 796 * 797 * RETURNS: 798 * Matching xfer_shift, -1 if no match found. 799 */ 800 int ata_xfer_mode2shift(unsigned long xfer_mode) 801 { 802 const struct ata_xfer_ent *ent; 803 804 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 805 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 806 return ent->shift; 807 return -1; 808 } 809 810 /** 811 * ata_mode_string - convert xfer_mask to string 812 * @xfer_mask: mask of bits supported; only highest bit counts. 813 * 814 * Determine string which represents the highest speed 815 * (highest bit in @modemask). 816 * 817 * LOCKING: 818 * None. 819 * 820 * RETURNS: 821 * Constant C string representing highest speed listed in 822 * @mode_mask, or the constant C string "<n/a>". 823 */ 824 const char *ata_mode_string(unsigned long xfer_mask) 825 { 826 static const char * const xfer_mode_str[] = { 827 "PIO0", 828 "PIO1", 829 "PIO2", 830 "PIO3", 831 "PIO4", 832 "PIO5", 833 "PIO6", 834 "MWDMA0", 835 "MWDMA1", 836 "MWDMA2", 837 "MWDMA3", 838 "MWDMA4", 839 "UDMA/16", 840 "UDMA/25", 841 "UDMA/33", 842 "UDMA/44", 843 "UDMA/66", 844 "UDMA/100", 845 "UDMA/133", 846 "UDMA7", 847 }; 848 int highbit; 849 850 highbit = fls(xfer_mask) - 1; 851 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 852 return xfer_mode_str[highbit]; 853 return "<n/a>"; 854 } 855 856 static const char *sata_spd_string(unsigned int spd) 857 { 858 static const char * const spd_str[] = { 859 "1.5 Gbps", 860 "3.0 Gbps", 861 }; 862 863 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 864 return "<unknown>"; 865 return spd_str[spd - 1]; 866 } 867 868 void ata_dev_disable(struct ata_device *dev) 869 { 870 if (ata_dev_enabled(dev)) { 871 if (ata_msg_drv(dev->link->ap)) 872 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 873 ata_acpi_on_disable(dev); 874 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 875 ATA_DNXFER_QUIET); 876 dev->class++; 877 } 878 } 879 880 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 881 { 882 struct ata_link *link = dev->link; 883 struct ata_port *ap = link->ap; 884 u32 scontrol; 885 unsigned int err_mask; 886 int rc; 887 888 /* 889 * disallow DIPM for drivers which haven't set 890 * ATA_FLAG_IPM. This is because when DIPM is enabled, 891 * phy ready will be set in the interrupt status on 892 * state changes, which will cause some drivers to 893 * think there are errors - additionally drivers will 894 * need to disable hot plug. 895 */ 896 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 897 ap->pm_policy = NOT_AVAILABLE; 898 return -EINVAL; 899 } 900 901 /* 902 * For DIPM, we will only enable it for the 903 * min_power setting. 904 * 905 * Why? Because Disks are too stupid to know that 906 * If the host rejects a request to go to SLUMBER 907 * they should retry at PARTIAL, and instead it 908 * just would give up. So, for medium_power to 909 * work at all, we need to only allow HIPM. 910 */ 911 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 912 if (rc) 913 return rc; 914 915 switch (policy) { 916 case MIN_POWER: 917 /* no restrictions on IPM transitions */ 918 scontrol &= ~(0x3 << 8); 919 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 920 if (rc) 921 return rc; 922 923 /* enable DIPM */ 924 if (dev->flags & ATA_DFLAG_DIPM) 925 err_mask = ata_dev_set_feature(dev, 926 SETFEATURES_SATA_ENABLE, SATA_DIPM); 927 break; 928 case MEDIUM_POWER: 929 /* allow IPM to PARTIAL */ 930 scontrol &= ~(0x1 << 8); 931 scontrol |= (0x2 << 8); 932 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 933 if (rc) 934 return rc; 935 936 /* 937 * we don't have to disable DIPM since IPM flags 938 * disallow transitions to SLUMBER, which effectively 939 * disable DIPM if it does not support PARTIAL 940 */ 941 break; 942 case NOT_AVAILABLE: 943 case MAX_PERFORMANCE: 944 /* disable all IPM transitions */ 945 scontrol |= (0x3 << 8); 946 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 947 if (rc) 948 return rc; 949 950 /* 951 * we don't have to disable DIPM since IPM flags 952 * disallow all transitions which effectively 953 * disable DIPM anyway. 954 */ 955 break; 956 } 957 958 /* FIXME: handle SET FEATURES failure */ 959 (void) err_mask; 960 961 return 0; 962 } 963 964 /** 965 * ata_dev_enable_pm - enable SATA interface power management 966 * @dev: device to enable power management 967 * @policy: the link power management policy 968 * 969 * Enable SATA Interface power management. This will enable 970 * Device Interface Power Management (DIPM) for min_power 971 * policy, and then call driver specific callbacks for 972 * enabling Host Initiated Power management. 973 * 974 * Locking: Caller. 975 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 976 */ 977 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 978 { 979 int rc = 0; 980 struct ata_port *ap = dev->link->ap; 981 982 /* set HIPM first, then DIPM */ 983 if (ap->ops->enable_pm) 984 rc = ap->ops->enable_pm(ap, policy); 985 if (rc) 986 goto enable_pm_out; 987 rc = ata_dev_set_dipm(dev, policy); 988 989 enable_pm_out: 990 if (rc) 991 ap->pm_policy = MAX_PERFORMANCE; 992 else 993 ap->pm_policy = policy; 994 return /* rc */; /* hopefully we can use 'rc' eventually */ 995 } 996 997 #ifdef CONFIG_PM 998 /** 999 * ata_dev_disable_pm - disable SATA interface power management 1000 * @dev: device to disable power management 1001 * 1002 * Disable SATA Interface power management. This will disable 1003 * Device Interface Power Management (DIPM) without changing 1004 * policy, call driver specific callbacks for disabling Host 1005 * Initiated Power management. 1006 * 1007 * Locking: Caller. 1008 * Returns: void 1009 */ 1010 static void ata_dev_disable_pm(struct ata_device *dev) 1011 { 1012 struct ata_port *ap = dev->link->ap; 1013 1014 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1015 if (ap->ops->disable_pm) 1016 ap->ops->disable_pm(ap); 1017 } 1018 #endif /* CONFIG_PM */ 1019 1020 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1021 { 1022 ap->pm_policy = policy; 1023 ap->link.eh_info.action |= ATA_EH_LPM; 1024 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1025 ata_port_schedule_eh(ap); 1026 } 1027 1028 #ifdef CONFIG_PM 1029 static void ata_lpm_enable(struct ata_host *host) 1030 { 1031 struct ata_link *link; 1032 struct ata_port *ap; 1033 struct ata_device *dev; 1034 int i; 1035 1036 for (i = 0; i < host->n_ports; i++) { 1037 ap = host->ports[i]; 1038 ata_port_for_each_link(link, ap) { 1039 ata_link_for_each_dev(dev, link) 1040 ata_dev_disable_pm(dev); 1041 } 1042 } 1043 } 1044 1045 static void ata_lpm_disable(struct ata_host *host) 1046 { 1047 int i; 1048 1049 for (i = 0; i < host->n_ports; i++) { 1050 struct ata_port *ap = host->ports[i]; 1051 ata_lpm_schedule(ap, ap->pm_policy); 1052 } 1053 } 1054 #endif /* CONFIG_PM */ 1055 1056 /** 1057 * ata_dev_classify - determine device type based on ATA-spec signature 1058 * @tf: ATA taskfile register set for device to be identified 1059 * 1060 * Determine from taskfile register contents whether a device is 1061 * ATA or ATAPI, as per "Signature and persistence" section 1062 * of ATA/PI spec (volume 1, sect 5.14). 1063 * 1064 * LOCKING: 1065 * None. 1066 * 1067 * RETURNS: 1068 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1069 * %ATA_DEV_UNKNOWN the event of failure. 1070 */ 1071 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1072 { 1073 /* Apple's open source Darwin code hints that some devices only 1074 * put a proper signature into the LBA mid/high registers, 1075 * So, we only check those. It's sufficient for uniqueness. 1076 * 1077 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1078 * signatures for ATA and ATAPI devices attached on SerialATA, 1079 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1080 * spec has never mentioned about using different signatures 1081 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1082 * Multiplier specification began to use 0x69/0x96 to identify 1083 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1084 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1085 * 0x69/0x96 shortly and described them as reserved for 1086 * SerialATA. 1087 * 1088 * We follow the current spec and consider that 0x69/0x96 1089 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1090 */ 1091 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1092 DPRINTK("found ATA device by sig\n"); 1093 return ATA_DEV_ATA; 1094 } 1095 1096 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1097 DPRINTK("found ATAPI device by sig\n"); 1098 return ATA_DEV_ATAPI; 1099 } 1100 1101 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1102 DPRINTK("found PMP device by sig\n"); 1103 return ATA_DEV_PMP; 1104 } 1105 1106 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1107 printk(KERN_INFO "ata: SEMB device ignored\n"); 1108 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1109 } 1110 1111 DPRINTK("unknown device\n"); 1112 return ATA_DEV_UNKNOWN; 1113 } 1114 1115 /** 1116 * ata_id_string - Convert IDENTIFY DEVICE page into string 1117 * @id: IDENTIFY DEVICE results we will examine 1118 * @s: string into which data is output 1119 * @ofs: offset into identify device page 1120 * @len: length of string to return. must be an even number. 1121 * 1122 * The strings in the IDENTIFY DEVICE page are broken up into 1123 * 16-bit chunks. Run through the string, and output each 1124 * 8-bit chunk linearly, regardless of platform. 1125 * 1126 * LOCKING: 1127 * caller. 1128 */ 1129 1130 void ata_id_string(const u16 *id, unsigned char *s, 1131 unsigned int ofs, unsigned int len) 1132 { 1133 unsigned int c; 1134 1135 BUG_ON(len & 1); 1136 1137 while (len > 0) { 1138 c = id[ofs] >> 8; 1139 *s = c; 1140 s++; 1141 1142 c = id[ofs] & 0xff; 1143 *s = c; 1144 s++; 1145 1146 ofs++; 1147 len -= 2; 1148 } 1149 } 1150 1151 /** 1152 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1153 * @id: IDENTIFY DEVICE results we will examine 1154 * @s: string into which data is output 1155 * @ofs: offset into identify device page 1156 * @len: length of string to return. must be an odd number. 1157 * 1158 * This function is identical to ata_id_string except that it 1159 * trims trailing spaces and terminates the resulting string with 1160 * null. @len must be actual maximum length (even number) + 1. 1161 * 1162 * LOCKING: 1163 * caller. 1164 */ 1165 void ata_id_c_string(const u16 *id, unsigned char *s, 1166 unsigned int ofs, unsigned int len) 1167 { 1168 unsigned char *p; 1169 1170 ata_id_string(id, s, ofs, len - 1); 1171 1172 p = s + strnlen(s, len - 1); 1173 while (p > s && p[-1] == ' ') 1174 p--; 1175 *p = '\0'; 1176 } 1177 1178 static u64 ata_id_n_sectors(const u16 *id) 1179 { 1180 if (ata_id_has_lba(id)) { 1181 if (ata_id_has_lba48(id)) 1182 return ata_id_u64(id, 100); 1183 else 1184 return ata_id_u32(id, 60); 1185 } else { 1186 if (ata_id_current_chs_valid(id)) 1187 return ata_id_u32(id, 57); 1188 else 1189 return id[1] * id[3] * id[6]; 1190 } 1191 } 1192 1193 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1194 { 1195 u64 sectors = 0; 1196 1197 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1198 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1199 sectors |= (tf->hob_lbal & 0xff) << 24; 1200 sectors |= (tf->lbah & 0xff) << 16; 1201 sectors |= (tf->lbam & 0xff) << 8; 1202 sectors |= (tf->lbal & 0xff); 1203 1204 return sectors; 1205 } 1206 1207 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1208 { 1209 u64 sectors = 0; 1210 1211 sectors |= (tf->device & 0x0f) << 24; 1212 sectors |= (tf->lbah & 0xff) << 16; 1213 sectors |= (tf->lbam & 0xff) << 8; 1214 sectors |= (tf->lbal & 0xff); 1215 1216 return sectors; 1217 } 1218 1219 /** 1220 * ata_read_native_max_address - Read native max address 1221 * @dev: target device 1222 * @max_sectors: out parameter for the result native max address 1223 * 1224 * Perform an LBA48 or LBA28 native size query upon the device in 1225 * question. 1226 * 1227 * RETURNS: 1228 * 0 on success, -EACCES if command is aborted by the drive. 1229 * -EIO on other errors. 1230 */ 1231 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1232 { 1233 unsigned int err_mask; 1234 struct ata_taskfile tf; 1235 int lba48 = ata_id_has_lba48(dev->id); 1236 1237 ata_tf_init(dev, &tf); 1238 1239 /* always clear all address registers */ 1240 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1241 1242 if (lba48) { 1243 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1244 tf.flags |= ATA_TFLAG_LBA48; 1245 } else 1246 tf.command = ATA_CMD_READ_NATIVE_MAX; 1247 1248 tf.protocol |= ATA_PROT_NODATA; 1249 tf.device |= ATA_LBA; 1250 1251 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1252 if (err_mask) { 1253 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1254 "max address (err_mask=0x%x)\n", err_mask); 1255 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1256 return -EACCES; 1257 return -EIO; 1258 } 1259 1260 if (lba48) 1261 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1262 else 1263 *max_sectors = ata_tf_to_lba(&tf) + 1; 1264 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1265 (*max_sectors)--; 1266 return 0; 1267 } 1268 1269 /** 1270 * ata_set_max_sectors - Set max sectors 1271 * @dev: target device 1272 * @new_sectors: new max sectors value to set for the device 1273 * 1274 * Set max sectors of @dev to @new_sectors. 1275 * 1276 * RETURNS: 1277 * 0 on success, -EACCES if command is aborted or denied (due to 1278 * previous non-volatile SET_MAX) by the drive. -EIO on other 1279 * errors. 1280 */ 1281 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1282 { 1283 unsigned int err_mask; 1284 struct ata_taskfile tf; 1285 int lba48 = ata_id_has_lba48(dev->id); 1286 1287 new_sectors--; 1288 1289 ata_tf_init(dev, &tf); 1290 1291 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1292 1293 if (lba48) { 1294 tf.command = ATA_CMD_SET_MAX_EXT; 1295 tf.flags |= ATA_TFLAG_LBA48; 1296 1297 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1298 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1299 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1300 } else { 1301 tf.command = ATA_CMD_SET_MAX; 1302 1303 tf.device |= (new_sectors >> 24) & 0xf; 1304 } 1305 1306 tf.protocol |= ATA_PROT_NODATA; 1307 tf.device |= ATA_LBA; 1308 1309 tf.lbal = (new_sectors >> 0) & 0xff; 1310 tf.lbam = (new_sectors >> 8) & 0xff; 1311 tf.lbah = (new_sectors >> 16) & 0xff; 1312 1313 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1314 if (err_mask) { 1315 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1316 "max address (err_mask=0x%x)\n", err_mask); 1317 if (err_mask == AC_ERR_DEV && 1318 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1319 return -EACCES; 1320 return -EIO; 1321 } 1322 1323 return 0; 1324 } 1325 1326 /** 1327 * ata_hpa_resize - Resize a device with an HPA set 1328 * @dev: Device to resize 1329 * 1330 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1331 * it if required to the full size of the media. The caller must check 1332 * the drive has the HPA feature set enabled. 1333 * 1334 * RETURNS: 1335 * 0 on success, -errno on failure. 1336 */ 1337 static int ata_hpa_resize(struct ata_device *dev) 1338 { 1339 struct ata_eh_context *ehc = &dev->link->eh_context; 1340 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1341 u64 sectors = ata_id_n_sectors(dev->id); 1342 u64 native_sectors; 1343 int rc; 1344 1345 /* do we need to do it? */ 1346 if (dev->class != ATA_DEV_ATA || 1347 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1348 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1349 return 0; 1350 1351 /* read native max address */ 1352 rc = ata_read_native_max_address(dev, &native_sectors); 1353 if (rc) { 1354 /* If device aborted the command or HPA isn't going to 1355 * be unlocked, skip HPA resizing. 1356 */ 1357 if (rc == -EACCES || !ata_ignore_hpa) { 1358 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1359 "broken, skipping HPA handling\n"); 1360 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1361 1362 /* we can continue if device aborted the command */ 1363 if (rc == -EACCES) 1364 rc = 0; 1365 } 1366 1367 return rc; 1368 } 1369 1370 /* nothing to do? */ 1371 if (native_sectors <= sectors || !ata_ignore_hpa) { 1372 if (!print_info || native_sectors == sectors) 1373 return 0; 1374 1375 if (native_sectors > sectors) 1376 ata_dev_printk(dev, KERN_INFO, 1377 "HPA detected: current %llu, native %llu\n", 1378 (unsigned long long)sectors, 1379 (unsigned long long)native_sectors); 1380 else if (native_sectors < sectors) 1381 ata_dev_printk(dev, KERN_WARNING, 1382 "native sectors (%llu) is smaller than " 1383 "sectors (%llu)\n", 1384 (unsigned long long)native_sectors, 1385 (unsigned long long)sectors); 1386 return 0; 1387 } 1388 1389 /* let's unlock HPA */ 1390 rc = ata_set_max_sectors(dev, native_sectors); 1391 if (rc == -EACCES) { 1392 /* if device aborted the command, skip HPA resizing */ 1393 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1394 "(%llu -> %llu), skipping HPA handling\n", 1395 (unsigned long long)sectors, 1396 (unsigned long long)native_sectors); 1397 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1398 return 0; 1399 } else if (rc) 1400 return rc; 1401 1402 /* re-read IDENTIFY data */ 1403 rc = ata_dev_reread_id(dev, 0); 1404 if (rc) { 1405 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1406 "data after HPA resizing\n"); 1407 return rc; 1408 } 1409 1410 if (print_info) { 1411 u64 new_sectors = ata_id_n_sectors(dev->id); 1412 ata_dev_printk(dev, KERN_INFO, 1413 "HPA unlocked: %llu -> %llu, native %llu\n", 1414 (unsigned long long)sectors, 1415 (unsigned long long)new_sectors, 1416 (unsigned long long)native_sectors); 1417 } 1418 1419 return 0; 1420 } 1421 1422 /** 1423 * ata_dump_id - IDENTIFY DEVICE info debugging output 1424 * @id: IDENTIFY DEVICE page to dump 1425 * 1426 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1427 * page. 1428 * 1429 * LOCKING: 1430 * caller. 1431 */ 1432 1433 static inline void ata_dump_id(const u16 *id) 1434 { 1435 DPRINTK("49==0x%04x " 1436 "53==0x%04x " 1437 "63==0x%04x " 1438 "64==0x%04x " 1439 "75==0x%04x \n", 1440 id[49], 1441 id[53], 1442 id[63], 1443 id[64], 1444 id[75]); 1445 DPRINTK("80==0x%04x " 1446 "81==0x%04x " 1447 "82==0x%04x " 1448 "83==0x%04x " 1449 "84==0x%04x \n", 1450 id[80], 1451 id[81], 1452 id[82], 1453 id[83], 1454 id[84]); 1455 DPRINTK("88==0x%04x " 1456 "93==0x%04x\n", 1457 id[88], 1458 id[93]); 1459 } 1460 1461 /** 1462 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1463 * @id: IDENTIFY data to compute xfer mask from 1464 * 1465 * Compute the xfermask for this device. This is not as trivial 1466 * as it seems if we must consider early devices correctly. 1467 * 1468 * FIXME: pre IDE drive timing (do we care ?). 1469 * 1470 * LOCKING: 1471 * None. 1472 * 1473 * RETURNS: 1474 * Computed xfermask 1475 */ 1476 unsigned long ata_id_xfermask(const u16 *id) 1477 { 1478 unsigned long pio_mask, mwdma_mask, udma_mask; 1479 1480 /* Usual case. Word 53 indicates word 64 is valid */ 1481 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1482 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1483 pio_mask <<= 3; 1484 pio_mask |= 0x7; 1485 } else { 1486 /* If word 64 isn't valid then Word 51 high byte holds 1487 * the PIO timing number for the maximum. Turn it into 1488 * a mask. 1489 */ 1490 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1491 if (mode < 5) /* Valid PIO range */ 1492 pio_mask = (2 << mode) - 1; 1493 else 1494 pio_mask = 1; 1495 1496 /* But wait.. there's more. Design your standards by 1497 * committee and you too can get a free iordy field to 1498 * process. However its the speeds not the modes that 1499 * are supported... Note drivers using the timing API 1500 * will get this right anyway 1501 */ 1502 } 1503 1504 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1505 1506 if (ata_id_is_cfa(id)) { 1507 /* 1508 * Process compact flash extended modes 1509 */ 1510 int pio = id[163] & 0x7; 1511 int dma = (id[163] >> 3) & 7; 1512 1513 if (pio) 1514 pio_mask |= (1 << 5); 1515 if (pio > 1) 1516 pio_mask |= (1 << 6); 1517 if (dma) 1518 mwdma_mask |= (1 << 3); 1519 if (dma > 1) 1520 mwdma_mask |= (1 << 4); 1521 } 1522 1523 udma_mask = 0; 1524 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1525 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1526 1527 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1528 } 1529 1530 /** 1531 * ata_pio_queue_task - Queue port_task 1532 * @ap: The ata_port to queue port_task for 1533 * @fn: workqueue function to be scheduled 1534 * @data: data for @fn to use 1535 * @delay: delay time in msecs for workqueue function 1536 * 1537 * Schedule @fn(@data) for execution after @delay jiffies using 1538 * port_task. There is one port_task per port and it's the 1539 * user(low level driver)'s responsibility to make sure that only 1540 * one task is active at any given time. 1541 * 1542 * libata core layer takes care of synchronization between 1543 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1544 * synchronization. 1545 * 1546 * LOCKING: 1547 * Inherited from caller. 1548 */ 1549 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1550 { 1551 ap->port_task_data = data; 1552 1553 /* may fail if ata_port_flush_task() in progress */ 1554 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1555 } 1556 1557 /** 1558 * ata_port_flush_task - Flush port_task 1559 * @ap: The ata_port to flush port_task for 1560 * 1561 * After this function completes, port_task is guranteed not to 1562 * be running or scheduled. 1563 * 1564 * LOCKING: 1565 * Kernel thread context (may sleep) 1566 */ 1567 void ata_port_flush_task(struct ata_port *ap) 1568 { 1569 DPRINTK("ENTER\n"); 1570 1571 cancel_rearming_delayed_work(&ap->port_task); 1572 1573 if (ata_msg_ctl(ap)) 1574 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1575 } 1576 1577 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1578 { 1579 struct completion *waiting = qc->private_data; 1580 1581 complete(waiting); 1582 } 1583 1584 /** 1585 * ata_exec_internal_sg - execute libata internal command 1586 * @dev: Device to which the command is sent 1587 * @tf: Taskfile registers for the command and the result 1588 * @cdb: CDB for packet command 1589 * @dma_dir: Data tranfer direction of the command 1590 * @sgl: sg list for the data buffer of the command 1591 * @n_elem: Number of sg entries 1592 * @timeout: Timeout in msecs (0 for default) 1593 * 1594 * Executes libata internal command with timeout. @tf contains 1595 * command on entry and result on return. Timeout and error 1596 * conditions are reported via return value. No recovery action 1597 * is taken after a command times out. It's caller's duty to 1598 * clean up after timeout. 1599 * 1600 * LOCKING: 1601 * None. Should be called with kernel context, might sleep. 1602 * 1603 * RETURNS: 1604 * Zero on success, AC_ERR_* mask on failure 1605 */ 1606 unsigned ata_exec_internal_sg(struct ata_device *dev, 1607 struct ata_taskfile *tf, const u8 *cdb, 1608 int dma_dir, struct scatterlist *sgl, 1609 unsigned int n_elem, unsigned long timeout) 1610 { 1611 struct ata_link *link = dev->link; 1612 struct ata_port *ap = link->ap; 1613 u8 command = tf->command; 1614 int auto_timeout = 0; 1615 struct ata_queued_cmd *qc; 1616 unsigned int tag, preempted_tag; 1617 u32 preempted_sactive, preempted_qc_active; 1618 int preempted_nr_active_links; 1619 DECLARE_COMPLETION_ONSTACK(wait); 1620 unsigned long flags; 1621 unsigned int err_mask; 1622 int rc; 1623 1624 spin_lock_irqsave(ap->lock, flags); 1625 1626 /* no internal command while frozen */ 1627 if (ap->pflags & ATA_PFLAG_FROZEN) { 1628 spin_unlock_irqrestore(ap->lock, flags); 1629 return AC_ERR_SYSTEM; 1630 } 1631 1632 /* initialize internal qc */ 1633 1634 /* XXX: Tag 0 is used for drivers with legacy EH as some 1635 * drivers choke if any other tag is given. This breaks 1636 * ata_tag_internal() test for those drivers. Don't use new 1637 * EH stuff without converting to it. 1638 */ 1639 if (ap->ops->error_handler) 1640 tag = ATA_TAG_INTERNAL; 1641 else 1642 tag = 0; 1643 1644 if (test_and_set_bit(tag, &ap->qc_allocated)) 1645 BUG(); 1646 qc = __ata_qc_from_tag(ap, tag); 1647 1648 qc->tag = tag; 1649 qc->scsicmd = NULL; 1650 qc->ap = ap; 1651 qc->dev = dev; 1652 ata_qc_reinit(qc); 1653 1654 preempted_tag = link->active_tag; 1655 preempted_sactive = link->sactive; 1656 preempted_qc_active = ap->qc_active; 1657 preempted_nr_active_links = ap->nr_active_links; 1658 link->active_tag = ATA_TAG_POISON; 1659 link->sactive = 0; 1660 ap->qc_active = 0; 1661 ap->nr_active_links = 0; 1662 1663 /* prepare & issue qc */ 1664 qc->tf = *tf; 1665 if (cdb) 1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1667 qc->flags |= ATA_QCFLAG_RESULT_TF; 1668 qc->dma_dir = dma_dir; 1669 if (dma_dir != DMA_NONE) { 1670 unsigned int i, buflen = 0; 1671 struct scatterlist *sg; 1672 1673 for_each_sg(sgl, sg, n_elem, i) 1674 buflen += sg->length; 1675 1676 ata_sg_init(qc, sgl, n_elem); 1677 qc->nbytes = buflen; 1678 } 1679 1680 qc->private_data = &wait; 1681 qc->complete_fn = ata_qc_complete_internal; 1682 1683 ata_qc_issue(qc); 1684 1685 spin_unlock_irqrestore(ap->lock, flags); 1686 1687 if (!timeout) { 1688 if (ata_probe_timeout) 1689 timeout = ata_probe_timeout * 1000; 1690 else { 1691 timeout = ata_internal_cmd_timeout(dev, command); 1692 auto_timeout = 1; 1693 } 1694 } 1695 1696 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1697 1698 ata_port_flush_task(ap); 1699 1700 if (!rc) { 1701 spin_lock_irqsave(ap->lock, flags); 1702 1703 /* We're racing with irq here. If we lose, the 1704 * following test prevents us from completing the qc 1705 * twice. If we win, the port is frozen and will be 1706 * cleaned up by ->post_internal_cmd(). 1707 */ 1708 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1709 qc->err_mask |= AC_ERR_TIMEOUT; 1710 1711 if (ap->ops->error_handler) 1712 ata_port_freeze(ap); 1713 else 1714 ata_qc_complete(qc); 1715 1716 if (ata_msg_warn(ap)) 1717 ata_dev_printk(dev, KERN_WARNING, 1718 "qc timeout (cmd 0x%x)\n", command); 1719 } 1720 1721 spin_unlock_irqrestore(ap->lock, flags); 1722 } 1723 1724 /* do post_internal_cmd */ 1725 if (ap->ops->post_internal_cmd) 1726 ap->ops->post_internal_cmd(qc); 1727 1728 /* perform minimal error analysis */ 1729 if (qc->flags & ATA_QCFLAG_FAILED) { 1730 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1731 qc->err_mask |= AC_ERR_DEV; 1732 1733 if (!qc->err_mask) 1734 qc->err_mask |= AC_ERR_OTHER; 1735 1736 if (qc->err_mask & ~AC_ERR_OTHER) 1737 qc->err_mask &= ~AC_ERR_OTHER; 1738 } 1739 1740 /* finish up */ 1741 spin_lock_irqsave(ap->lock, flags); 1742 1743 *tf = qc->result_tf; 1744 err_mask = qc->err_mask; 1745 1746 ata_qc_free(qc); 1747 link->active_tag = preempted_tag; 1748 link->sactive = preempted_sactive; 1749 ap->qc_active = preempted_qc_active; 1750 ap->nr_active_links = preempted_nr_active_links; 1751 1752 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1753 * Until those drivers are fixed, we detect the condition 1754 * here, fail the command with AC_ERR_SYSTEM and reenable the 1755 * port. 1756 * 1757 * Note that this doesn't change any behavior as internal 1758 * command failure results in disabling the device in the 1759 * higher layer for LLDDs without new reset/EH callbacks. 1760 * 1761 * Kill the following code as soon as those drivers are fixed. 1762 */ 1763 if (ap->flags & ATA_FLAG_DISABLED) { 1764 err_mask |= AC_ERR_SYSTEM; 1765 ata_port_probe(ap); 1766 } 1767 1768 spin_unlock_irqrestore(ap->lock, flags); 1769 1770 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1771 ata_internal_cmd_timed_out(dev, command); 1772 1773 return err_mask; 1774 } 1775 1776 /** 1777 * ata_exec_internal - execute libata internal command 1778 * @dev: Device to which the command is sent 1779 * @tf: Taskfile registers for the command and the result 1780 * @cdb: CDB for packet command 1781 * @dma_dir: Data tranfer direction of the command 1782 * @buf: Data buffer of the command 1783 * @buflen: Length of data buffer 1784 * @timeout: Timeout in msecs (0 for default) 1785 * 1786 * Wrapper around ata_exec_internal_sg() which takes simple 1787 * buffer instead of sg list. 1788 * 1789 * LOCKING: 1790 * None. Should be called with kernel context, might sleep. 1791 * 1792 * RETURNS: 1793 * Zero on success, AC_ERR_* mask on failure 1794 */ 1795 unsigned ata_exec_internal(struct ata_device *dev, 1796 struct ata_taskfile *tf, const u8 *cdb, 1797 int dma_dir, void *buf, unsigned int buflen, 1798 unsigned long timeout) 1799 { 1800 struct scatterlist *psg = NULL, sg; 1801 unsigned int n_elem = 0; 1802 1803 if (dma_dir != DMA_NONE) { 1804 WARN_ON(!buf); 1805 sg_init_one(&sg, buf, buflen); 1806 psg = &sg; 1807 n_elem++; 1808 } 1809 1810 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1811 timeout); 1812 } 1813 1814 /** 1815 * ata_do_simple_cmd - execute simple internal command 1816 * @dev: Device to which the command is sent 1817 * @cmd: Opcode to execute 1818 * 1819 * Execute a 'simple' command, that only consists of the opcode 1820 * 'cmd' itself, without filling any other registers 1821 * 1822 * LOCKING: 1823 * Kernel thread context (may sleep). 1824 * 1825 * RETURNS: 1826 * Zero on success, AC_ERR_* mask on failure 1827 */ 1828 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1829 { 1830 struct ata_taskfile tf; 1831 1832 ata_tf_init(dev, &tf); 1833 1834 tf.command = cmd; 1835 tf.flags |= ATA_TFLAG_DEVICE; 1836 tf.protocol = ATA_PROT_NODATA; 1837 1838 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1839 } 1840 1841 /** 1842 * ata_pio_need_iordy - check if iordy needed 1843 * @adev: ATA device 1844 * 1845 * Check if the current speed of the device requires IORDY. Used 1846 * by various controllers for chip configuration. 1847 */ 1848 1849 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1850 { 1851 /* Controller doesn't support IORDY. Probably a pointless check 1852 as the caller should know this */ 1853 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1854 return 0; 1855 /* PIO3 and higher it is mandatory */ 1856 if (adev->pio_mode > XFER_PIO_2) 1857 return 1; 1858 /* We turn it on when possible */ 1859 if (ata_id_has_iordy(adev->id)) 1860 return 1; 1861 return 0; 1862 } 1863 1864 /** 1865 * ata_pio_mask_no_iordy - Return the non IORDY mask 1866 * @adev: ATA device 1867 * 1868 * Compute the highest mode possible if we are not using iordy. Return 1869 * -1 if no iordy mode is available. 1870 */ 1871 1872 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1873 { 1874 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1875 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1876 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1877 /* Is the speed faster than the drive allows non IORDY ? */ 1878 if (pio) { 1879 /* This is cycle times not frequency - watch the logic! */ 1880 if (pio > 240) /* PIO2 is 240nS per cycle */ 1881 return 3 << ATA_SHIFT_PIO; 1882 return 7 << ATA_SHIFT_PIO; 1883 } 1884 } 1885 return 3 << ATA_SHIFT_PIO; 1886 } 1887 1888 /** 1889 * ata_do_dev_read_id - default ID read method 1890 * @dev: device 1891 * @tf: proposed taskfile 1892 * @id: data buffer 1893 * 1894 * Issue the identify taskfile and hand back the buffer containing 1895 * identify data. For some RAID controllers and for pre ATA devices 1896 * this function is wrapped or replaced by the driver 1897 */ 1898 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1899 struct ata_taskfile *tf, u16 *id) 1900 { 1901 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1902 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1903 } 1904 1905 /** 1906 * ata_dev_read_id - Read ID data from the specified device 1907 * @dev: target device 1908 * @p_class: pointer to class of the target device (may be changed) 1909 * @flags: ATA_READID_* flags 1910 * @id: buffer to read IDENTIFY data into 1911 * 1912 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1913 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1914 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1915 * for pre-ATA4 drives. 1916 * 1917 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1918 * now we abort if we hit that case. 1919 * 1920 * LOCKING: 1921 * Kernel thread context (may sleep) 1922 * 1923 * RETURNS: 1924 * 0 on success, -errno otherwise. 1925 */ 1926 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1927 unsigned int flags, u16 *id) 1928 { 1929 struct ata_port *ap = dev->link->ap; 1930 unsigned int class = *p_class; 1931 struct ata_taskfile tf; 1932 unsigned int err_mask = 0; 1933 const char *reason; 1934 int may_fallback = 1, tried_spinup = 0; 1935 int rc; 1936 1937 if (ata_msg_ctl(ap)) 1938 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1939 1940 retry: 1941 ata_tf_init(dev, &tf); 1942 1943 switch (class) { 1944 case ATA_DEV_ATA: 1945 tf.command = ATA_CMD_ID_ATA; 1946 break; 1947 case ATA_DEV_ATAPI: 1948 tf.command = ATA_CMD_ID_ATAPI; 1949 break; 1950 default: 1951 rc = -ENODEV; 1952 reason = "unsupported class"; 1953 goto err_out; 1954 } 1955 1956 tf.protocol = ATA_PROT_PIO; 1957 1958 /* Some devices choke if TF registers contain garbage. Make 1959 * sure those are properly initialized. 1960 */ 1961 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1962 1963 /* Device presence detection is unreliable on some 1964 * controllers. Always poll IDENTIFY if available. 1965 */ 1966 tf.flags |= ATA_TFLAG_POLLING; 1967 1968 if (ap->ops->read_id) 1969 err_mask = ap->ops->read_id(dev, &tf, id); 1970 else 1971 err_mask = ata_do_dev_read_id(dev, &tf, id); 1972 1973 if (err_mask) { 1974 if (err_mask & AC_ERR_NODEV_HINT) { 1975 ata_dev_printk(dev, KERN_DEBUG, 1976 "NODEV after polling detection\n"); 1977 return -ENOENT; 1978 } 1979 1980 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1981 /* Device or controller might have reported 1982 * the wrong device class. Give a shot at the 1983 * other IDENTIFY if the current one is 1984 * aborted by the device. 1985 */ 1986 if (may_fallback) { 1987 may_fallback = 0; 1988 1989 if (class == ATA_DEV_ATA) 1990 class = ATA_DEV_ATAPI; 1991 else 1992 class = ATA_DEV_ATA; 1993 goto retry; 1994 } 1995 1996 /* Control reaches here iff the device aborted 1997 * both flavors of IDENTIFYs which happens 1998 * sometimes with phantom devices. 1999 */ 2000 ata_dev_printk(dev, KERN_DEBUG, 2001 "both IDENTIFYs aborted, assuming NODEV\n"); 2002 return -ENOENT; 2003 } 2004 2005 rc = -EIO; 2006 reason = "I/O error"; 2007 goto err_out; 2008 } 2009 2010 /* Falling back doesn't make sense if ID data was read 2011 * successfully at least once. 2012 */ 2013 may_fallback = 0; 2014 2015 swap_buf_le16(id, ATA_ID_WORDS); 2016 2017 /* sanity check */ 2018 rc = -EINVAL; 2019 reason = "device reports invalid type"; 2020 2021 if (class == ATA_DEV_ATA) { 2022 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2023 goto err_out; 2024 } else { 2025 if (ata_id_is_ata(id)) 2026 goto err_out; 2027 } 2028 2029 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2030 tried_spinup = 1; 2031 /* 2032 * Drive powered-up in standby mode, and requires a specific 2033 * SET_FEATURES spin-up subcommand before it will accept 2034 * anything other than the original IDENTIFY command. 2035 */ 2036 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2037 if (err_mask && id[2] != 0x738c) { 2038 rc = -EIO; 2039 reason = "SPINUP failed"; 2040 goto err_out; 2041 } 2042 /* 2043 * If the drive initially returned incomplete IDENTIFY info, 2044 * we now must reissue the IDENTIFY command. 2045 */ 2046 if (id[2] == 0x37c8) 2047 goto retry; 2048 } 2049 2050 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2051 /* 2052 * The exact sequence expected by certain pre-ATA4 drives is: 2053 * SRST RESET 2054 * IDENTIFY (optional in early ATA) 2055 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2056 * anything else.. 2057 * Some drives were very specific about that exact sequence. 2058 * 2059 * Note that ATA4 says lba is mandatory so the second check 2060 * shoud never trigger. 2061 */ 2062 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2063 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2064 if (err_mask) { 2065 rc = -EIO; 2066 reason = "INIT_DEV_PARAMS failed"; 2067 goto err_out; 2068 } 2069 2070 /* current CHS translation info (id[53-58]) might be 2071 * changed. reread the identify device info. 2072 */ 2073 flags &= ~ATA_READID_POSTRESET; 2074 goto retry; 2075 } 2076 } 2077 2078 *p_class = class; 2079 2080 return 0; 2081 2082 err_out: 2083 if (ata_msg_warn(ap)) 2084 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2085 "(%s, err_mask=0x%x)\n", reason, err_mask); 2086 return rc; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2093 } 2094 2095 static void ata_dev_config_ncq(struct ata_device *dev, 2096 char *desc, size_t desc_sz) 2097 { 2098 struct ata_port *ap = dev->link->ap; 2099 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2100 2101 if (!ata_id_has_ncq(dev->id)) { 2102 desc[0] = '\0'; 2103 return; 2104 } 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2106 snprintf(desc, desc_sz, "NCQ (not used)"); 2107 return; 2108 } 2109 if (ap->flags & ATA_FLAG_NCQ) { 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2111 dev->flags |= ATA_DFLAG_NCQ; 2112 } 2113 2114 if (hdepth >= ddepth) 2115 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2116 else 2117 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2118 } 2119 2120 /** 2121 * ata_dev_configure - Configure the specified ATA/ATAPI device 2122 * @dev: Target device to configure 2123 * 2124 * Configure @dev according to @dev->id. Generic and low-level 2125 * driver specific fixups are also applied. 2126 * 2127 * LOCKING: 2128 * Kernel thread context (may sleep) 2129 * 2130 * RETURNS: 2131 * 0 on success, -errno otherwise 2132 */ 2133 int ata_dev_configure(struct ata_device *dev) 2134 { 2135 struct ata_port *ap = dev->link->ap; 2136 struct ata_eh_context *ehc = &dev->link->eh_context; 2137 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2138 const u16 *id = dev->id; 2139 unsigned long xfer_mask; 2140 char revbuf[7]; /* XYZ-99\0 */ 2141 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2142 char modelbuf[ATA_ID_PROD_LEN+1]; 2143 int rc; 2144 2145 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2146 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2147 __func__); 2148 return 0; 2149 } 2150 2151 if (ata_msg_probe(ap)) 2152 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2153 2154 /* set horkage */ 2155 dev->horkage |= ata_dev_blacklisted(dev); 2156 ata_force_horkage(dev); 2157 2158 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2159 ata_dev_printk(dev, KERN_INFO, 2160 "unsupported device, disabling\n"); 2161 ata_dev_disable(dev); 2162 return 0; 2163 } 2164 2165 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2166 dev->class == ATA_DEV_ATAPI) { 2167 ata_dev_printk(dev, KERN_WARNING, 2168 "WARNING: ATAPI is %s, device ignored.\n", 2169 atapi_enabled ? "not supported with this driver" 2170 : "disabled"); 2171 ata_dev_disable(dev); 2172 return 0; 2173 } 2174 2175 /* let ACPI work its magic */ 2176 rc = ata_acpi_on_devcfg(dev); 2177 if (rc) 2178 return rc; 2179 2180 /* massage HPA, do it early as it might change IDENTIFY data */ 2181 rc = ata_hpa_resize(dev); 2182 if (rc) 2183 return rc; 2184 2185 /* print device capabilities */ 2186 if (ata_msg_probe(ap)) 2187 ata_dev_printk(dev, KERN_DEBUG, 2188 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2189 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2190 __func__, 2191 id[49], id[82], id[83], id[84], 2192 id[85], id[86], id[87], id[88]); 2193 2194 /* initialize to-be-configured parameters */ 2195 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2196 dev->max_sectors = 0; 2197 dev->cdb_len = 0; 2198 dev->n_sectors = 0; 2199 dev->cylinders = 0; 2200 dev->heads = 0; 2201 dev->sectors = 0; 2202 2203 /* 2204 * common ATA, ATAPI feature tests 2205 */ 2206 2207 /* find max transfer mode; for printk only */ 2208 xfer_mask = ata_id_xfermask(id); 2209 2210 if (ata_msg_probe(ap)) 2211 ata_dump_id(id); 2212 2213 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2214 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2215 sizeof(fwrevbuf)); 2216 2217 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2218 sizeof(modelbuf)); 2219 2220 /* ATA-specific feature tests */ 2221 if (dev->class == ATA_DEV_ATA) { 2222 if (ata_id_is_cfa(id)) { 2223 if (id[162] & 1) /* CPRM may make this media unusable */ 2224 ata_dev_printk(dev, KERN_WARNING, 2225 "supports DRM functions and may " 2226 "not be fully accessable.\n"); 2227 snprintf(revbuf, 7, "CFA"); 2228 } else { 2229 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2230 /* Warn the user if the device has TPM extensions */ 2231 if (ata_id_has_tpm(id)) 2232 ata_dev_printk(dev, KERN_WARNING, 2233 "supports DRM functions and may " 2234 "not be fully accessable.\n"); 2235 } 2236 2237 dev->n_sectors = ata_id_n_sectors(id); 2238 2239 if (dev->id[59] & 0x100) 2240 dev->multi_count = dev->id[59] & 0xff; 2241 2242 if (ata_id_has_lba(id)) { 2243 const char *lba_desc; 2244 char ncq_desc[20]; 2245 2246 lba_desc = "LBA"; 2247 dev->flags |= ATA_DFLAG_LBA; 2248 if (ata_id_has_lba48(id)) { 2249 dev->flags |= ATA_DFLAG_LBA48; 2250 lba_desc = "LBA48"; 2251 2252 if (dev->n_sectors >= (1UL << 28) && 2253 ata_id_has_flush_ext(id)) 2254 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2255 } 2256 2257 /* config NCQ */ 2258 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2259 2260 /* print device info to dmesg */ 2261 if (ata_msg_drv(ap) && print_info) { 2262 ata_dev_printk(dev, KERN_INFO, 2263 "%s: %s, %s, max %s\n", 2264 revbuf, modelbuf, fwrevbuf, 2265 ata_mode_string(xfer_mask)); 2266 ata_dev_printk(dev, KERN_INFO, 2267 "%Lu sectors, multi %u: %s %s\n", 2268 (unsigned long long)dev->n_sectors, 2269 dev->multi_count, lba_desc, ncq_desc); 2270 } 2271 } else { 2272 /* CHS */ 2273 2274 /* Default translation */ 2275 dev->cylinders = id[1]; 2276 dev->heads = id[3]; 2277 dev->sectors = id[6]; 2278 2279 if (ata_id_current_chs_valid(id)) { 2280 /* Current CHS translation is valid. */ 2281 dev->cylinders = id[54]; 2282 dev->heads = id[55]; 2283 dev->sectors = id[56]; 2284 } 2285 2286 /* print device info to dmesg */ 2287 if (ata_msg_drv(ap) && print_info) { 2288 ata_dev_printk(dev, KERN_INFO, 2289 "%s: %s, %s, max %s\n", 2290 revbuf, modelbuf, fwrevbuf, 2291 ata_mode_string(xfer_mask)); 2292 ata_dev_printk(dev, KERN_INFO, 2293 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2294 (unsigned long long)dev->n_sectors, 2295 dev->multi_count, dev->cylinders, 2296 dev->heads, dev->sectors); 2297 } 2298 } 2299 2300 dev->cdb_len = 16; 2301 } 2302 2303 /* ATAPI-specific feature tests */ 2304 else if (dev->class == ATA_DEV_ATAPI) { 2305 const char *cdb_intr_string = ""; 2306 const char *atapi_an_string = ""; 2307 const char *dma_dir_string = ""; 2308 u32 sntf; 2309 2310 rc = atapi_cdb_len(id); 2311 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2312 if (ata_msg_warn(ap)) 2313 ata_dev_printk(dev, KERN_WARNING, 2314 "unsupported CDB len\n"); 2315 rc = -EINVAL; 2316 goto err_out_nosup; 2317 } 2318 dev->cdb_len = (unsigned int) rc; 2319 2320 /* Enable ATAPI AN if both the host and device have 2321 * the support. If PMP is attached, SNTF is required 2322 * to enable ATAPI AN to discern between PHY status 2323 * changed notifications and ATAPI ANs. 2324 */ 2325 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2326 (!sata_pmp_attached(ap) || 2327 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2328 unsigned int err_mask; 2329 2330 /* issue SET feature command to turn this on */ 2331 err_mask = ata_dev_set_feature(dev, 2332 SETFEATURES_SATA_ENABLE, SATA_AN); 2333 if (err_mask) 2334 ata_dev_printk(dev, KERN_ERR, 2335 "failed to enable ATAPI AN " 2336 "(err_mask=0x%x)\n", err_mask); 2337 else { 2338 dev->flags |= ATA_DFLAG_AN; 2339 atapi_an_string = ", ATAPI AN"; 2340 } 2341 } 2342 2343 if (ata_id_cdb_intr(dev->id)) { 2344 dev->flags |= ATA_DFLAG_CDB_INTR; 2345 cdb_intr_string = ", CDB intr"; 2346 } 2347 2348 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2349 dev->flags |= ATA_DFLAG_DMADIR; 2350 dma_dir_string = ", DMADIR"; 2351 } 2352 2353 /* print device info to dmesg */ 2354 if (ata_msg_drv(ap) && print_info) 2355 ata_dev_printk(dev, KERN_INFO, 2356 "ATAPI: %s, %s, max %s%s%s%s\n", 2357 modelbuf, fwrevbuf, 2358 ata_mode_string(xfer_mask), 2359 cdb_intr_string, atapi_an_string, 2360 dma_dir_string); 2361 } 2362 2363 /* determine max_sectors */ 2364 dev->max_sectors = ATA_MAX_SECTORS; 2365 if (dev->flags & ATA_DFLAG_LBA48) 2366 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2367 2368 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2369 if (ata_id_has_hipm(dev->id)) 2370 dev->flags |= ATA_DFLAG_HIPM; 2371 if (ata_id_has_dipm(dev->id)) 2372 dev->flags |= ATA_DFLAG_DIPM; 2373 } 2374 2375 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2376 200 sectors */ 2377 if (ata_dev_knobble(dev)) { 2378 if (ata_msg_drv(ap) && print_info) 2379 ata_dev_printk(dev, KERN_INFO, 2380 "applying bridge limits\n"); 2381 dev->udma_mask &= ATA_UDMA5; 2382 dev->max_sectors = ATA_MAX_SECTORS; 2383 } 2384 2385 if ((dev->class == ATA_DEV_ATAPI) && 2386 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2387 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2388 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2389 } 2390 2391 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2392 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2393 dev->max_sectors); 2394 2395 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2396 dev->horkage |= ATA_HORKAGE_IPM; 2397 2398 /* reset link pm_policy for this port to no pm */ 2399 ap->pm_policy = MAX_PERFORMANCE; 2400 } 2401 2402 if (ap->ops->dev_config) 2403 ap->ops->dev_config(dev); 2404 2405 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2406 /* Let the user know. We don't want to disallow opens for 2407 rescue purposes, or in case the vendor is just a blithering 2408 idiot. Do this after the dev_config call as some controllers 2409 with buggy firmware may want to avoid reporting false device 2410 bugs */ 2411 2412 if (print_info) { 2413 ata_dev_printk(dev, KERN_WARNING, 2414 "Drive reports diagnostics failure. This may indicate a drive\n"); 2415 ata_dev_printk(dev, KERN_WARNING, 2416 "fault or invalid emulation. Contact drive vendor for information.\n"); 2417 } 2418 } 2419 2420 return 0; 2421 2422 err_out_nosup: 2423 if (ata_msg_probe(ap)) 2424 ata_dev_printk(dev, KERN_DEBUG, 2425 "%s: EXIT, err\n", __func__); 2426 return rc; 2427 } 2428 2429 /** 2430 * ata_cable_40wire - return 40 wire cable type 2431 * @ap: port 2432 * 2433 * Helper method for drivers which want to hardwire 40 wire cable 2434 * detection. 2435 */ 2436 2437 int ata_cable_40wire(struct ata_port *ap) 2438 { 2439 return ATA_CBL_PATA40; 2440 } 2441 2442 /** 2443 * ata_cable_80wire - return 80 wire cable type 2444 * @ap: port 2445 * 2446 * Helper method for drivers which want to hardwire 80 wire cable 2447 * detection. 2448 */ 2449 2450 int ata_cable_80wire(struct ata_port *ap) 2451 { 2452 return ATA_CBL_PATA80; 2453 } 2454 2455 /** 2456 * ata_cable_unknown - return unknown PATA cable. 2457 * @ap: port 2458 * 2459 * Helper method for drivers which have no PATA cable detection. 2460 */ 2461 2462 int ata_cable_unknown(struct ata_port *ap) 2463 { 2464 return ATA_CBL_PATA_UNK; 2465 } 2466 2467 /** 2468 * ata_cable_ignore - return ignored PATA cable. 2469 * @ap: port 2470 * 2471 * Helper method for drivers which don't use cable type to limit 2472 * transfer mode. 2473 */ 2474 int ata_cable_ignore(struct ata_port *ap) 2475 { 2476 return ATA_CBL_PATA_IGN; 2477 } 2478 2479 /** 2480 * ata_cable_sata - return SATA cable type 2481 * @ap: port 2482 * 2483 * Helper method for drivers which have SATA cables 2484 */ 2485 2486 int ata_cable_sata(struct ata_port *ap) 2487 { 2488 return ATA_CBL_SATA; 2489 } 2490 2491 /** 2492 * ata_bus_probe - Reset and probe ATA bus 2493 * @ap: Bus to probe 2494 * 2495 * Master ATA bus probing function. Initiates a hardware-dependent 2496 * bus reset, then attempts to identify any devices found on 2497 * the bus. 2498 * 2499 * LOCKING: 2500 * PCI/etc. bus probe sem. 2501 * 2502 * RETURNS: 2503 * Zero on success, negative errno otherwise. 2504 */ 2505 2506 int ata_bus_probe(struct ata_port *ap) 2507 { 2508 unsigned int classes[ATA_MAX_DEVICES]; 2509 int tries[ATA_MAX_DEVICES]; 2510 int rc; 2511 struct ata_device *dev; 2512 2513 ata_port_probe(ap); 2514 2515 ata_link_for_each_dev(dev, &ap->link) 2516 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2517 2518 retry: 2519 ata_link_for_each_dev(dev, &ap->link) { 2520 /* If we issue an SRST then an ATA drive (not ATAPI) 2521 * may change configuration and be in PIO0 timing. If 2522 * we do a hard reset (or are coming from power on) 2523 * this is true for ATA or ATAPI. Until we've set a 2524 * suitable controller mode we should not touch the 2525 * bus as we may be talking too fast. 2526 */ 2527 dev->pio_mode = XFER_PIO_0; 2528 2529 /* If the controller has a pio mode setup function 2530 * then use it to set the chipset to rights. Don't 2531 * touch the DMA setup as that will be dealt with when 2532 * configuring devices. 2533 */ 2534 if (ap->ops->set_piomode) 2535 ap->ops->set_piomode(ap, dev); 2536 } 2537 2538 /* reset and determine device classes */ 2539 ap->ops->phy_reset(ap); 2540 2541 ata_link_for_each_dev(dev, &ap->link) { 2542 if (!(ap->flags & ATA_FLAG_DISABLED) && 2543 dev->class != ATA_DEV_UNKNOWN) 2544 classes[dev->devno] = dev->class; 2545 else 2546 classes[dev->devno] = ATA_DEV_NONE; 2547 2548 dev->class = ATA_DEV_UNKNOWN; 2549 } 2550 2551 ata_port_probe(ap); 2552 2553 /* read IDENTIFY page and configure devices. We have to do the identify 2554 specific sequence bass-ackwards so that PDIAG- is released by 2555 the slave device */ 2556 2557 ata_link_for_each_dev_reverse(dev, &ap->link) { 2558 if (tries[dev->devno]) 2559 dev->class = classes[dev->devno]; 2560 2561 if (!ata_dev_enabled(dev)) 2562 continue; 2563 2564 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2565 dev->id); 2566 if (rc) 2567 goto fail; 2568 } 2569 2570 /* Now ask for the cable type as PDIAG- should have been released */ 2571 if (ap->ops->cable_detect) 2572 ap->cbl = ap->ops->cable_detect(ap); 2573 2574 /* We may have SATA bridge glue hiding here irrespective of the 2575 reported cable types and sensed types */ 2576 ata_link_for_each_dev(dev, &ap->link) { 2577 if (!ata_dev_enabled(dev)) 2578 continue; 2579 /* SATA drives indicate we have a bridge. We don't know which 2580 end of the link the bridge is which is a problem */ 2581 if (ata_id_is_sata(dev->id)) 2582 ap->cbl = ATA_CBL_SATA; 2583 } 2584 2585 /* After the identify sequence we can now set up the devices. We do 2586 this in the normal order so that the user doesn't get confused */ 2587 2588 ata_link_for_each_dev(dev, &ap->link) { 2589 if (!ata_dev_enabled(dev)) 2590 continue; 2591 2592 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2593 rc = ata_dev_configure(dev); 2594 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2595 if (rc) 2596 goto fail; 2597 } 2598 2599 /* configure transfer mode */ 2600 rc = ata_set_mode(&ap->link, &dev); 2601 if (rc) 2602 goto fail; 2603 2604 ata_link_for_each_dev(dev, &ap->link) 2605 if (ata_dev_enabled(dev)) 2606 return 0; 2607 2608 /* no device present, disable port */ 2609 ata_port_disable(ap); 2610 return -ENODEV; 2611 2612 fail: 2613 tries[dev->devno]--; 2614 2615 switch (rc) { 2616 case -EINVAL: 2617 /* eeek, something went very wrong, give up */ 2618 tries[dev->devno] = 0; 2619 break; 2620 2621 case -ENODEV: 2622 /* give it just one more chance */ 2623 tries[dev->devno] = min(tries[dev->devno], 1); 2624 case -EIO: 2625 if (tries[dev->devno] == 1) { 2626 /* This is the last chance, better to slow 2627 * down than lose it. 2628 */ 2629 sata_down_spd_limit(&ap->link); 2630 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2631 } 2632 } 2633 2634 if (!tries[dev->devno]) 2635 ata_dev_disable(dev); 2636 2637 goto retry; 2638 } 2639 2640 /** 2641 * ata_port_probe - Mark port as enabled 2642 * @ap: Port for which we indicate enablement 2643 * 2644 * Modify @ap data structure such that the system 2645 * thinks that the entire port is enabled. 2646 * 2647 * LOCKING: host lock, or some other form of 2648 * serialization. 2649 */ 2650 2651 void ata_port_probe(struct ata_port *ap) 2652 { 2653 ap->flags &= ~ATA_FLAG_DISABLED; 2654 } 2655 2656 /** 2657 * sata_print_link_status - Print SATA link status 2658 * @link: SATA link to printk link status about 2659 * 2660 * This function prints link speed and status of a SATA link. 2661 * 2662 * LOCKING: 2663 * None. 2664 */ 2665 static void sata_print_link_status(struct ata_link *link) 2666 { 2667 u32 sstatus, scontrol, tmp; 2668 2669 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2670 return; 2671 sata_scr_read(link, SCR_CONTROL, &scontrol); 2672 2673 if (ata_link_online(link)) { 2674 tmp = (sstatus >> 4) & 0xf; 2675 ata_link_printk(link, KERN_INFO, 2676 "SATA link up %s (SStatus %X SControl %X)\n", 2677 sata_spd_string(tmp), sstatus, scontrol); 2678 } else { 2679 ata_link_printk(link, KERN_INFO, 2680 "SATA link down (SStatus %X SControl %X)\n", 2681 sstatus, scontrol); 2682 } 2683 } 2684 2685 /** 2686 * ata_dev_pair - return other device on cable 2687 * @adev: device 2688 * 2689 * Obtain the other device on the same cable, or if none is 2690 * present NULL is returned 2691 */ 2692 2693 struct ata_device *ata_dev_pair(struct ata_device *adev) 2694 { 2695 struct ata_link *link = adev->link; 2696 struct ata_device *pair = &link->device[1 - adev->devno]; 2697 if (!ata_dev_enabled(pair)) 2698 return NULL; 2699 return pair; 2700 } 2701 2702 /** 2703 * ata_port_disable - Disable port. 2704 * @ap: Port to be disabled. 2705 * 2706 * Modify @ap data structure such that the system 2707 * thinks that the entire port is disabled, and should 2708 * never attempt to probe or communicate with devices 2709 * on this port. 2710 * 2711 * LOCKING: host lock, or some other form of 2712 * serialization. 2713 */ 2714 2715 void ata_port_disable(struct ata_port *ap) 2716 { 2717 ap->link.device[0].class = ATA_DEV_NONE; 2718 ap->link.device[1].class = ATA_DEV_NONE; 2719 ap->flags |= ATA_FLAG_DISABLED; 2720 } 2721 2722 /** 2723 * sata_down_spd_limit - adjust SATA spd limit downward 2724 * @link: Link to adjust SATA spd limit for 2725 * 2726 * Adjust SATA spd limit of @link downward. Note that this 2727 * function only adjusts the limit. The change must be applied 2728 * using sata_set_spd(). 2729 * 2730 * LOCKING: 2731 * Inherited from caller. 2732 * 2733 * RETURNS: 2734 * 0 on success, negative errno on failure 2735 */ 2736 int sata_down_spd_limit(struct ata_link *link) 2737 { 2738 u32 sstatus, spd, mask; 2739 int rc, highbit; 2740 2741 if (!sata_scr_valid(link)) 2742 return -EOPNOTSUPP; 2743 2744 /* If SCR can be read, use it to determine the current SPD. 2745 * If not, use cached value in link->sata_spd. 2746 */ 2747 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2748 if (rc == 0) 2749 spd = (sstatus >> 4) & 0xf; 2750 else 2751 spd = link->sata_spd; 2752 2753 mask = link->sata_spd_limit; 2754 if (mask <= 1) 2755 return -EINVAL; 2756 2757 /* unconditionally mask off the highest bit */ 2758 highbit = fls(mask) - 1; 2759 mask &= ~(1 << highbit); 2760 2761 /* Mask off all speeds higher than or equal to the current 2762 * one. Force 1.5Gbps if current SPD is not available. 2763 */ 2764 if (spd > 1) 2765 mask &= (1 << (spd - 1)) - 1; 2766 else 2767 mask &= 1; 2768 2769 /* were we already at the bottom? */ 2770 if (!mask) 2771 return -EINVAL; 2772 2773 link->sata_spd_limit = mask; 2774 2775 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2776 sata_spd_string(fls(mask))); 2777 2778 return 0; 2779 } 2780 2781 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2782 { 2783 struct ata_link *host_link = &link->ap->link; 2784 u32 limit, target, spd; 2785 2786 limit = link->sata_spd_limit; 2787 2788 /* Don't configure downstream link faster than upstream link. 2789 * It doesn't speed up anything and some PMPs choke on such 2790 * configuration. 2791 */ 2792 if (!ata_is_host_link(link) && host_link->sata_spd) 2793 limit &= (1 << host_link->sata_spd) - 1; 2794 2795 if (limit == UINT_MAX) 2796 target = 0; 2797 else 2798 target = fls(limit); 2799 2800 spd = (*scontrol >> 4) & 0xf; 2801 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2802 2803 return spd != target; 2804 } 2805 2806 /** 2807 * sata_set_spd_needed - is SATA spd configuration needed 2808 * @link: Link in question 2809 * 2810 * Test whether the spd limit in SControl matches 2811 * @link->sata_spd_limit. This function is used to determine 2812 * whether hardreset is necessary to apply SATA spd 2813 * configuration. 2814 * 2815 * LOCKING: 2816 * Inherited from caller. 2817 * 2818 * RETURNS: 2819 * 1 if SATA spd configuration is needed, 0 otherwise. 2820 */ 2821 static int sata_set_spd_needed(struct ata_link *link) 2822 { 2823 u32 scontrol; 2824 2825 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2826 return 1; 2827 2828 return __sata_set_spd_needed(link, &scontrol); 2829 } 2830 2831 /** 2832 * sata_set_spd - set SATA spd according to spd limit 2833 * @link: Link to set SATA spd for 2834 * 2835 * Set SATA spd of @link according to sata_spd_limit. 2836 * 2837 * LOCKING: 2838 * Inherited from caller. 2839 * 2840 * RETURNS: 2841 * 0 if spd doesn't need to be changed, 1 if spd has been 2842 * changed. Negative errno if SCR registers are inaccessible. 2843 */ 2844 int sata_set_spd(struct ata_link *link) 2845 { 2846 u32 scontrol; 2847 int rc; 2848 2849 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2850 return rc; 2851 2852 if (!__sata_set_spd_needed(link, &scontrol)) 2853 return 0; 2854 2855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2856 return rc; 2857 2858 return 1; 2859 } 2860 2861 /* 2862 * This mode timing computation functionality is ported over from 2863 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2864 */ 2865 /* 2866 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2867 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2868 * for UDMA6, which is currently supported only by Maxtor drives. 2869 * 2870 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2871 */ 2872 2873 static const struct ata_timing ata_timing[] = { 2874 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2875 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2876 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2877 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2878 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2879 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2880 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2881 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2882 2883 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2884 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2885 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2886 2887 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2888 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2889 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2890 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2891 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2892 2893 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2894 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2895 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2896 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2897 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2898 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2899 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2900 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2901 2902 { 0xFF } 2903 }; 2904 2905 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2906 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2907 2908 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2909 { 2910 q->setup = EZ(t->setup * 1000, T); 2911 q->act8b = EZ(t->act8b * 1000, T); 2912 q->rec8b = EZ(t->rec8b * 1000, T); 2913 q->cyc8b = EZ(t->cyc8b * 1000, T); 2914 q->active = EZ(t->active * 1000, T); 2915 q->recover = EZ(t->recover * 1000, T); 2916 q->cycle = EZ(t->cycle * 1000, T); 2917 q->udma = EZ(t->udma * 1000, UT); 2918 } 2919 2920 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2921 struct ata_timing *m, unsigned int what) 2922 { 2923 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2924 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2925 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2926 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2927 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2928 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2929 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2930 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2931 } 2932 2933 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2934 { 2935 const struct ata_timing *t = ata_timing; 2936 2937 while (xfer_mode > t->mode) 2938 t++; 2939 2940 if (xfer_mode == t->mode) 2941 return t; 2942 return NULL; 2943 } 2944 2945 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2946 struct ata_timing *t, int T, int UT) 2947 { 2948 const struct ata_timing *s; 2949 struct ata_timing p; 2950 2951 /* 2952 * Find the mode. 2953 */ 2954 2955 if (!(s = ata_timing_find_mode(speed))) 2956 return -EINVAL; 2957 2958 memcpy(t, s, sizeof(*s)); 2959 2960 /* 2961 * If the drive is an EIDE drive, it can tell us it needs extended 2962 * PIO/MW_DMA cycle timing. 2963 */ 2964 2965 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2966 memset(&p, 0, sizeof(p)); 2967 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2968 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2969 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2970 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2971 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2972 } 2973 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2974 } 2975 2976 /* 2977 * Convert the timing to bus clock counts. 2978 */ 2979 2980 ata_timing_quantize(t, t, T, UT); 2981 2982 /* 2983 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2984 * S.M.A.R.T * and some other commands. We have to ensure that the 2985 * DMA cycle timing is slower/equal than the fastest PIO timing. 2986 */ 2987 2988 if (speed > XFER_PIO_6) { 2989 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2990 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2991 } 2992 2993 /* 2994 * Lengthen active & recovery time so that cycle time is correct. 2995 */ 2996 2997 if (t->act8b + t->rec8b < t->cyc8b) { 2998 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2999 t->rec8b = t->cyc8b - t->act8b; 3000 } 3001 3002 if (t->active + t->recover < t->cycle) { 3003 t->active += (t->cycle - (t->active + t->recover)) / 2; 3004 t->recover = t->cycle - t->active; 3005 } 3006 3007 /* In a few cases quantisation may produce enough errors to 3008 leave t->cycle too low for the sum of active and recovery 3009 if so we must correct this */ 3010 if (t->active + t->recover > t->cycle) 3011 t->cycle = t->active + t->recover; 3012 3013 return 0; 3014 } 3015 3016 /** 3017 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3018 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3019 * @cycle: cycle duration in ns 3020 * 3021 * Return matching xfer mode for @cycle. The returned mode is of 3022 * the transfer type specified by @xfer_shift. If @cycle is too 3023 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3024 * than the fastest known mode, the fasted mode is returned. 3025 * 3026 * LOCKING: 3027 * None. 3028 * 3029 * RETURNS: 3030 * Matching xfer_mode, 0xff if no match found. 3031 */ 3032 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3033 { 3034 u8 base_mode = 0xff, last_mode = 0xff; 3035 const struct ata_xfer_ent *ent; 3036 const struct ata_timing *t; 3037 3038 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3039 if (ent->shift == xfer_shift) 3040 base_mode = ent->base; 3041 3042 for (t = ata_timing_find_mode(base_mode); 3043 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3044 unsigned short this_cycle; 3045 3046 switch (xfer_shift) { 3047 case ATA_SHIFT_PIO: 3048 case ATA_SHIFT_MWDMA: 3049 this_cycle = t->cycle; 3050 break; 3051 case ATA_SHIFT_UDMA: 3052 this_cycle = t->udma; 3053 break; 3054 default: 3055 return 0xff; 3056 } 3057 3058 if (cycle > this_cycle) 3059 break; 3060 3061 last_mode = t->mode; 3062 } 3063 3064 return last_mode; 3065 } 3066 3067 /** 3068 * ata_down_xfermask_limit - adjust dev xfer masks downward 3069 * @dev: Device to adjust xfer masks 3070 * @sel: ATA_DNXFER_* selector 3071 * 3072 * Adjust xfer masks of @dev downward. Note that this function 3073 * does not apply the change. Invoking ata_set_mode() afterwards 3074 * will apply the limit. 3075 * 3076 * LOCKING: 3077 * Inherited from caller. 3078 * 3079 * RETURNS: 3080 * 0 on success, negative errno on failure 3081 */ 3082 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3083 { 3084 char buf[32]; 3085 unsigned long orig_mask, xfer_mask; 3086 unsigned long pio_mask, mwdma_mask, udma_mask; 3087 int quiet, highbit; 3088 3089 quiet = !!(sel & ATA_DNXFER_QUIET); 3090 sel &= ~ATA_DNXFER_QUIET; 3091 3092 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3093 dev->mwdma_mask, 3094 dev->udma_mask); 3095 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3096 3097 switch (sel) { 3098 case ATA_DNXFER_PIO: 3099 highbit = fls(pio_mask) - 1; 3100 pio_mask &= ~(1 << highbit); 3101 break; 3102 3103 case ATA_DNXFER_DMA: 3104 if (udma_mask) { 3105 highbit = fls(udma_mask) - 1; 3106 udma_mask &= ~(1 << highbit); 3107 if (!udma_mask) 3108 return -ENOENT; 3109 } else if (mwdma_mask) { 3110 highbit = fls(mwdma_mask) - 1; 3111 mwdma_mask &= ~(1 << highbit); 3112 if (!mwdma_mask) 3113 return -ENOENT; 3114 } 3115 break; 3116 3117 case ATA_DNXFER_40C: 3118 udma_mask &= ATA_UDMA_MASK_40C; 3119 break; 3120 3121 case ATA_DNXFER_FORCE_PIO0: 3122 pio_mask &= 1; 3123 case ATA_DNXFER_FORCE_PIO: 3124 mwdma_mask = 0; 3125 udma_mask = 0; 3126 break; 3127 3128 default: 3129 BUG(); 3130 } 3131 3132 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3133 3134 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3135 return -ENOENT; 3136 3137 if (!quiet) { 3138 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3139 snprintf(buf, sizeof(buf), "%s:%s", 3140 ata_mode_string(xfer_mask), 3141 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3142 else 3143 snprintf(buf, sizeof(buf), "%s", 3144 ata_mode_string(xfer_mask)); 3145 3146 ata_dev_printk(dev, KERN_WARNING, 3147 "limiting speed to %s\n", buf); 3148 } 3149 3150 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3151 &dev->udma_mask); 3152 3153 return 0; 3154 } 3155 3156 static int ata_dev_set_mode(struct ata_device *dev) 3157 { 3158 struct ata_eh_context *ehc = &dev->link->eh_context; 3159 const char *dev_err_whine = ""; 3160 int ign_dev_err = 0; 3161 unsigned int err_mask; 3162 int rc; 3163 3164 dev->flags &= ~ATA_DFLAG_PIO; 3165 if (dev->xfer_shift == ATA_SHIFT_PIO) 3166 dev->flags |= ATA_DFLAG_PIO; 3167 3168 err_mask = ata_dev_set_xfermode(dev); 3169 3170 if (err_mask & ~AC_ERR_DEV) 3171 goto fail; 3172 3173 /* revalidate */ 3174 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3175 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3176 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3177 if (rc) 3178 return rc; 3179 3180 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3181 /* Old CFA may refuse this command, which is just fine */ 3182 if (ata_id_is_cfa(dev->id)) 3183 ign_dev_err = 1; 3184 /* Catch several broken garbage emulations plus some pre 3185 ATA devices */ 3186 if (ata_id_major_version(dev->id) == 0 && 3187 dev->pio_mode <= XFER_PIO_2) 3188 ign_dev_err = 1; 3189 /* Some very old devices and some bad newer ones fail 3190 any kind of SET_XFERMODE request but support PIO0-2 3191 timings and no IORDY */ 3192 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3193 ign_dev_err = 1; 3194 } 3195 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3196 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3197 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3198 dev->dma_mode == XFER_MW_DMA_0 && 3199 (dev->id[63] >> 8) & 1) 3200 ign_dev_err = 1; 3201 3202 /* if the device is actually configured correctly, ignore dev err */ 3203 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3204 ign_dev_err = 1; 3205 3206 if (err_mask & AC_ERR_DEV) { 3207 if (!ign_dev_err) 3208 goto fail; 3209 else 3210 dev_err_whine = " (device error ignored)"; 3211 } 3212 3213 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3214 dev->xfer_shift, (int)dev->xfer_mode); 3215 3216 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3217 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3218 dev_err_whine); 3219 3220 return 0; 3221 3222 fail: 3223 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3224 "(err_mask=0x%x)\n", err_mask); 3225 return -EIO; 3226 } 3227 3228 /** 3229 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3230 * @link: link on which timings will be programmed 3231 * @r_failed_dev: out parameter for failed device 3232 * 3233 * Standard implementation of the function used to tune and set 3234 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3235 * ata_dev_set_mode() fails, pointer to the failing device is 3236 * returned in @r_failed_dev. 3237 * 3238 * LOCKING: 3239 * PCI/etc. bus probe sem. 3240 * 3241 * RETURNS: 3242 * 0 on success, negative errno otherwise 3243 */ 3244 3245 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3246 { 3247 struct ata_port *ap = link->ap; 3248 struct ata_device *dev; 3249 int rc = 0, used_dma = 0, found = 0; 3250 3251 /* step 1: calculate xfer_mask */ 3252 ata_link_for_each_dev(dev, link) { 3253 unsigned long pio_mask, dma_mask; 3254 unsigned int mode_mask; 3255 3256 if (!ata_dev_enabled(dev)) 3257 continue; 3258 3259 mode_mask = ATA_DMA_MASK_ATA; 3260 if (dev->class == ATA_DEV_ATAPI) 3261 mode_mask = ATA_DMA_MASK_ATAPI; 3262 else if (ata_id_is_cfa(dev->id)) 3263 mode_mask = ATA_DMA_MASK_CFA; 3264 3265 ata_dev_xfermask(dev); 3266 ata_force_xfermask(dev); 3267 3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3270 3271 if (libata_dma_mask & mode_mask) 3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3273 else 3274 dma_mask = 0; 3275 3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3278 3279 found = 1; 3280 if (dev->dma_mode != 0xff) 3281 used_dma = 1; 3282 } 3283 if (!found) 3284 goto out; 3285 3286 /* step 2: always set host PIO timings */ 3287 ata_link_for_each_dev(dev, link) { 3288 if (!ata_dev_enabled(dev)) 3289 continue; 3290 3291 if (dev->pio_mode == 0xff) { 3292 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3293 rc = -EINVAL; 3294 goto out; 3295 } 3296 3297 dev->xfer_mode = dev->pio_mode; 3298 dev->xfer_shift = ATA_SHIFT_PIO; 3299 if (ap->ops->set_piomode) 3300 ap->ops->set_piomode(ap, dev); 3301 } 3302 3303 /* step 3: set host DMA timings */ 3304 ata_link_for_each_dev(dev, link) { 3305 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff) 3306 continue; 3307 3308 dev->xfer_mode = dev->dma_mode; 3309 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3310 if (ap->ops->set_dmamode) 3311 ap->ops->set_dmamode(ap, dev); 3312 } 3313 3314 /* step 4: update devices' xfer mode */ 3315 ata_link_for_each_dev(dev, link) { 3316 /* don't update suspended devices' xfer mode */ 3317 if (!ata_dev_enabled(dev)) 3318 continue; 3319 3320 rc = ata_dev_set_mode(dev); 3321 if (rc) 3322 goto out; 3323 } 3324 3325 /* Record simplex status. If we selected DMA then the other 3326 * host channels are not permitted to do so. 3327 */ 3328 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3329 ap->host->simplex_claimed = ap; 3330 3331 out: 3332 if (rc) 3333 *r_failed_dev = dev; 3334 return rc; 3335 } 3336 3337 /** 3338 * ata_wait_ready - wait for link to become ready 3339 * @link: link to be waited on 3340 * @deadline: deadline jiffies for the operation 3341 * @check_ready: callback to check link readiness 3342 * 3343 * Wait for @link to become ready. @check_ready should return 3344 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3345 * link doesn't seem to be occupied, other errno for other error 3346 * conditions. 3347 * 3348 * Transient -ENODEV conditions are allowed for 3349 * ATA_TMOUT_FF_WAIT. 3350 * 3351 * LOCKING: 3352 * EH context. 3353 * 3354 * RETURNS: 3355 * 0 if @linke is ready before @deadline; otherwise, -errno. 3356 */ 3357 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3358 int (*check_ready)(struct ata_link *link)) 3359 { 3360 unsigned long start = jiffies; 3361 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3362 int warned = 0; 3363 3364 if (time_after(nodev_deadline, deadline)) 3365 nodev_deadline = deadline; 3366 3367 while (1) { 3368 unsigned long now = jiffies; 3369 int ready, tmp; 3370 3371 ready = tmp = check_ready(link); 3372 if (ready > 0) 3373 return 0; 3374 3375 /* -ENODEV could be transient. Ignore -ENODEV if link 3376 * is online. Also, some SATA devices take a long 3377 * time to clear 0xff after reset. For example, 3378 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3379 * GoVault needs even more than that. Wait for 3380 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3381 * 3382 * Note that some PATA controllers (pata_ali) explode 3383 * if status register is read more than once when 3384 * there's no device attached. 3385 */ 3386 if (ready == -ENODEV) { 3387 if (ata_link_online(link)) 3388 ready = 0; 3389 else if ((link->ap->flags & ATA_FLAG_SATA) && 3390 !ata_link_offline(link) && 3391 time_before(now, nodev_deadline)) 3392 ready = 0; 3393 } 3394 3395 if (ready) 3396 return ready; 3397 if (time_after(now, deadline)) 3398 return -EBUSY; 3399 3400 if (!warned && time_after(now, start + 5 * HZ) && 3401 (deadline - now > 3 * HZ)) { 3402 ata_link_printk(link, KERN_WARNING, 3403 "link is slow to respond, please be patient " 3404 "(ready=%d)\n", tmp); 3405 warned = 1; 3406 } 3407 3408 msleep(50); 3409 } 3410 } 3411 3412 /** 3413 * ata_wait_after_reset - wait for link to become ready after reset 3414 * @link: link to be waited on 3415 * @deadline: deadline jiffies for the operation 3416 * @check_ready: callback to check link readiness 3417 * 3418 * Wait for @link to become ready after reset. 3419 * 3420 * LOCKING: 3421 * EH context. 3422 * 3423 * RETURNS: 3424 * 0 if @linke is ready before @deadline; otherwise, -errno. 3425 */ 3426 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3427 int (*check_ready)(struct ata_link *link)) 3428 { 3429 msleep(ATA_WAIT_AFTER_RESET); 3430 3431 return ata_wait_ready(link, deadline, check_ready); 3432 } 3433 3434 /** 3435 * sata_link_debounce - debounce SATA phy status 3436 * @link: ATA link to debounce SATA phy status for 3437 * @params: timing parameters { interval, duratinon, timeout } in msec 3438 * @deadline: deadline jiffies for the operation 3439 * 3440 * Make sure SStatus of @link reaches stable state, determined by 3441 * holding the same value where DET is not 1 for @duration polled 3442 * every @interval, before @timeout. Timeout constraints the 3443 * beginning of the stable state. Because DET gets stuck at 1 on 3444 * some controllers after hot unplugging, this functions waits 3445 * until timeout then returns 0 if DET is stable at 1. 3446 * 3447 * @timeout is further limited by @deadline. The sooner of the 3448 * two is used. 3449 * 3450 * LOCKING: 3451 * Kernel thread context (may sleep) 3452 * 3453 * RETURNS: 3454 * 0 on success, -errno on failure. 3455 */ 3456 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3457 unsigned long deadline) 3458 { 3459 unsigned long interval = params[0]; 3460 unsigned long duration = params[1]; 3461 unsigned long last_jiffies, t; 3462 u32 last, cur; 3463 int rc; 3464 3465 t = ata_deadline(jiffies, params[2]); 3466 if (time_before(t, deadline)) 3467 deadline = t; 3468 3469 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3470 return rc; 3471 cur &= 0xf; 3472 3473 last = cur; 3474 last_jiffies = jiffies; 3475 3476 while (1) { 3477 msleep(interval); 3478 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3479 return rc; 3480 cur &= 0xf; 3481 3482 /* DET stable? */ 3483 if (cur == last) { 3484 if (cur == 1 && time_before(jiffies, deadline)) 3485 continue; 3486 if (time_after(jiffies, 3487 ata_deadline(last_jiffies, duration))) 3488 return 0; 3489 continue; 3490 } 3491 3492 /* unstable, start over */ 3493 last = cur; 3494 last_jiffies = jiffies; 3495 3496 /* Check deadline. If debouncing failed, return 3497 * -EPIPE to tell upper layer to lower link speed. 3498 */ 3499 if (time_after(jiffies, deadline)) 3500 return -EPIPE; 3501 } 3502 } 3503 3504 /** 3505 * sata_link_resume - resume SATA link 3506 * @link: ATA link to resume SATA 3507 * @params: timing parameters { interval, duratinon, timeout } in msec 3508 * @deadline: deadline jiffies for the operation 3509 * 3510 * Resume SATA phy @link and debounce it. 3511 * 3512 * LOCKING: 3513 * Kernel thread context (may sleep) 3514 * 3515 * RETURNS: 3516 * 0 on success, -errno on failure. 3517 */ 3518 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3519 unsigned long deadline) 3520 { 3521 u32 scontrol, serror; 3522 int rc; 3523 3524 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3525 return rc; 3526 3527 scontrol = (scontrol & 0x0f0) | 0x300; 3528 3529 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3530 return rc; 3531 3532 /* Some PHYs react badly if SStatus is pounded immediately 3533 * after resuming. Delay 200ms before debouncing. 3534 */ 3535 msleep(200); 3536 3537 if ((rc = sata_link_debounce(link, params, deadline))) 3538 return rc; 3539 3540 /* clear SError, some PHYs require this even for SRST to work */ 3541 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3542 rc = sata_scr_write(link, SCR_ERROR, serror); 3543 3544 return rc != -EINVAL ? rc : 0; 3545 } 3546 3547 /** 3548 * ata_std_prereset - prepare for reset 3549 * @link: ATA link to be reset 3550 * @deadline: deadline jiffies for the operation 3551 * 3552 * @link is about to be reset. Initialize it. Failure from 3553 * prereset makes libata abort whole reset sequence and give up 3554 * that port, so prereset should be best-effort. It does its 3555 * best to prepare for reset sequence but if things go wrong, it 3556 * should just whine, not fail. 3557 * 3558 * LOCKING: 3559 * Kernel thread context (may sleep) 3560 * 3561 * RETURNS: 3562 * 0 on success, -errno otherwise. 3563 */ 3564 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3565 { 3566 struct ata_port *ap = link->ap; 3567 struct ata_eh_context *ehc = &link->eh_context; 3568 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3569 int rc; 3570 3571 /* if we're about to do hardreset, nothing more to do */ 3572 if (ehc->i.action & ATA_EH_HARDRESET) 3573 return 0; 3574 3575 /* if SATA, resume link */ 3576 if (ap->flags & ATA_FLAG_SATA) { 3577 rc = sata_link_resume(link, timing, deadline); 3578 /* whine about phy resume failure but proceed */ 3579 if (rc && rc != -EOPNOTSUPP) 3580 ata_link_printk(link, KERN_WARNING, "failed to resume " 3581 "link for reset (errno=%d)\n", rc); 3582 } 3583 3584 /* no point in trying softreset on offline link */ 3585 if (ata_link_offline(link)) 3586 ehc->i.action &= ~ATA_EH_SOFTRESET; 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * sata_link_hardreset - reset link via SATA phy reset 3593 * @link: link to reset 3594 * @timing: timing parameters { interval, duratinon, timeout } in msec 3595 * @deadline: deadline jiffies for the operation 3596 * @online: optional out parameter indicating link onlineness 3597 * @check_ready: optional callback to check link readiness 3598 * 3599 * SATA phy-reset @link using DET bits of SControl register. 3600 * After hardreset, link readiness is waited upon using 3601 * ata_wait_ready() if @check_ready is specified. LLDs are 3602 * allowed to not specify @check_ready and wait itself after this 3603 * function returns. Device classification is LLD's 3604 * responsibility. 3605 * 3606 * *@online is set to one iff reset succeeded and @link is online 3607 * after reset. 3608 * 3609 * LOCKING: 3610 * Kernel thread context (may sleep) 3611 * 3612 * RETURNS: 3613 * 0 on success, -errno otherwise. 3614 */ 3615 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3616 unsigned long deadline, 3617 bool *online, int (*check_ready)(struct ata_link *)) 3618 { 3619 u32 scontrol; 3620 int rc; 3621 3622 DPRINTK("ENTER\n"); 3623 3624 if (online) 3625 *online = false; 3626 3627 if (sata_set_spd_needed(link)) { 3628 /* SATA spec says nothing about how to reconfigure 3629 * spd. To be on the safe side, turn off phy during 3630 * reconfiguration. This works for at least ICH7 AHCI 3631 * and Sil3124. 3632 */ 3633 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3634 goto out; 3635 3636 scontrol = (scontrol & 0x0f0) | 0x304; 3637 3638 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3639 goto out; 3640 3641 sata_set_spd(link); 3642 } 3643 3644 /* issue phy wake/reset */ 3645 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3646 goto out; 3647 3648 scontrol = (scontrol & 0x0f0) | 0x301; 3649 3650 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3651 goto out; 3652 3653 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3654 * 10.4.2 says at least 1 ms. 3655 */ 3656 msleep(1); 3657 3658 /* bring link back */ 3659 rc = sata_link_resume(link, timing, deadline); 3660 if (rc) 3661 goto out; 3662 /* if link is offline nothing more to do */ 3663 if (ata_link_offline(link)) 3664 goto out; 3665 3666 /* Link is online. From this point, -ENODEV too is an error. */ 3667 if (online) 3668 *online = true; 3669 3670 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3671 /* If PMP is supported, we have to do follow-up SRST. 3672 * Some PMPs don't send D2H Reg FIS after hardreset if 3673 * the first port is empty. Wait only for 3674 * ATA_TMOUT_PMP_SRST_WAIT. 3675 */ 3676 if (check_ready) { 3677 unsigned long pmp_deadline; 3678 3679 pmp_deadline = ata_deadline(jiffies, 3680 ATA_TMOUT_PMP_SRST_WAIT); 3681 if (time_after(pmp_deadline, deadline)) 3682 pmp_deadline = deadline; 3683 ata_wait_ready(link, pmp_deadline, check_ready); 3684 } 3685 rc = -EAGAIN; 3686 goto out; 3687 } 3688 3689 rc = 0; 3690 if (check_ready) 3691 rc = ata_wait_ready(link, deadline, check_ready); 3692 out: 3693 if (rc && rc != -EAGAIN) { 3694 /* online is set iff link is online && reset succeeded */ 3695 if (online) 3696 *online = false; 3697 ata_link_printk(link, KERN_ERR, 3698 "COMRESET failed (errno=%d)\n", rc); 3699 } 3700 DPRINTK("EXIT, rc=%d\n", rc); 3701 return rc; 3702 } 3703 3704 /** 3705 * sata_std_hardreset - COMRESET w/o waiting or classification 3706 * @link: link to reset 3707 * @class: resulting class of attached device 3708 * @deadline: deadline jiffies for the operation 3709 * 3710 * Standard SATA COMRESET w/o waiting or classification. 3711 * 3712 * LOCKING: 3713 * Kernel thread context (may sleep) 3714 * 3715 * RETURNS: 3716 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3717 */ 3718 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3719 unsigned long deadline) 3720 { 3721 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3722 bool online; 3723 int rc; 3724 3725 /* do hardreset */ 3726 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3727 return online ? -EAGAIN : rc; 3728 } 3729 3730 /** 3731 * ata_std_postreset - standard postreset callback 3732 * @link: the target ata_link 3733 * @classes: classes of attached devices 3734 * 3735 * This function is invoked after a successful reset. Note that 3736 * the device might have been reset more than once using 3737 * different reset methods before postreset is invoked. 3738 * 3739 * LOCKING: 3740 * Kernel thread context (may sleep) 3741 */ 3742 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3743 { 3744 u32 serror; 3745 3746 DPRINTK("ENTER\n"); 3747 3748 /* reset complete, clear SError */ 3749 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3750 sata_scr_write(link, SCR_ERROR, serror); 3751 3752 /* print link status */ 3753 sata_print_link_status(link); 3754 3755 DPRINTK("EXIT\n"); 3756 } 3757 3758 /** 3759 * ata_dev_same_device - Determine whether new ID matches configured device 3760 * @dev: device to compare against 3761 * @new_class: class of the new device 3762 * @new_id: IDENTIFY page of the new device 3763 * 3764 * Compare @new_class and @new_id against @dev and determine 3765 * whether @dev is the device indicated by @new_class and 3766 * @new_id. 3767 * 3768 * LOCKING: 3769 * None. 3770 * 3771 * RETURNS: 3772 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3773 */ 3774 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3775 const u16 *new_id) 3776 { 3777 const u16 *old_id = dev->id; 3778 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3779 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3780 3781 if (dev->class != new_class) { 3782 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3783 dev->class, new_class); 3784 return 0; 3785 } 3786 3787 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3788 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3789 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3790 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3791 3792 if (strcmp(model[0], model[1])) { 3793 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3794 "'%s' != '%s'\n", model[0], model[1]); 3795 return 0; 3796 } 3797 3798 if (strcmp(serial[0], serial[1])) { 3799 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3800 "'%s' != '%s'\n", serial[0], serial[1]); 3801 return 0; 3802 } 3803 3804 return 1; 3805 } 3806 3807 /** 3808 * ata_dev_reread_id - Re-read IDENTIFY data 3809 * @dev: target ATA device 3810 * @readid_flags: read ID flags 3811 * 3812 * Re-read IDENTIFY page and make sure @dev is still attached to 3813 * the port. 3814 * 3815 * LOCKING: 3816 * Kernel thread context (may sleep) 3817 * 3818 * RETURNS: 3819 * 0 on success, negative errno otherwise 3820 */ 3821 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3822 { 3823 unsigned int class = dev->class; 3824 u16 *id = (void *)dev->link->ap->sector_buf; 3825 int rc; 3826 3827 /* read ID data */ 3828 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3829 if (rc) 3830 return rc; 3831 3832 /* is the device still there? */ 3833 if (!ata_dev_same_device(dev, class, id)) 3834 return -ENODEV; 3835 3836 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3837 return 0; 3838 } 3839 3840 /** 3841 * ata_dev_revalidate - Revalidate ATA device 3842 * @dev: device to revalidate 3843 * @new_class: new class code 3844 * @readid_flags: read ID flags 3845 * 3846 * Re-read IDENTIFY page, make sure @dev is still attached to the 3847 * port and reconfigure it according to the new IDENTIFY page. 3848 * 3849 * LOCKING: 3850 * Kernel thread context (may sleep) 3851 * 3852 * RETURNS: 3853 * 0 on success, negative errno otherwise 3854 */ 3855 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3856 unsigned int readid_flags) 3857 { 3858 u64 n_sectors = dev->n_sectors; 3859 int rc; 3860 3861 if (!ata_dev_enabled(dev)) 3862 return -ENODEV; 3863 3864 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3865 if (ata_class_enabled(new_class) && 3866 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3867 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3868 dev->class, new_class); 3869 rc = -ENODEV; 3870 goto fail; 3871 } 3872 3873 /* re-read ID */ 3874 rc = ata_dev_reread_id(dev, readid_flags); 3875 if (rc) 3876 goto fail; 3877 3878 /* configure device according to the new ID */ 3879 rc = ata_dev_configure(dev); 3880 if (rc) 3881 goto fail; 3882 3883 /* verify n_sectors hasn't changed */ 3884 if (dev->class == ATA_DEV_ATA && n_sectors && 3885 dev->n_sectors != n_sectors) { 3886 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3887 "%llu != %llu\n", 3888 (unsigned long long)n_sectors, 3889 (unsigned long long)dev->n_sectors); 3890 3891 /* restore original n_sectors */ 3892 dev->n_sectors = n_sectors; 3893 3894 rc = -ENODEV; 3895 goto fail; 3896 } 3897 3898 return 0; 3899 3900 fail: 3901 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3902 return rc; 3903 } 3904 3905 struct ata_blacklist_entry { 3906 const char *model_num; 3907 const char *model_rev; 3908 unsigned long horkage; 3909 }; 3910 3911 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3912 /* Devices with DMA related problems under Linux */ 3913 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3914 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3915 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3916 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3917 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3918 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3919 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3920 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3921 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3922 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3923 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3924 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3925 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3926 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3927 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3928 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3929 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3930 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3931 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3932 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3933 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3934 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3935 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3936 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3937 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3938 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3939 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3940 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3941 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3942 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3943 /* Odd clown on sil3726/4726 PMPs */ 3944 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3945 3946 /* Weird ATAPI devices */ 3947 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3948 3949 /* Devices we expect to fail diagnostics */ 3950 3951 /* Devices where NCQ should be avoided */ 3952 /* NCQ is slow */ 3953 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3954 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3955 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3956 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3957 /* NCQ is broken */ 3958 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3959 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3960 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3961 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3962 3963 /* Blacklist entries taken from Silicon Image 3124/3132 3964 Windows driver .inf file - also several Linux problem reports */ 3965 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3966 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3967 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3968 3969 /* devices which puke on READ_NATIVE_MAX */ 3970 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3971 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3972 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3973 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3974 3975 /* Devices which report 1 sector over size HPA */ 3976 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3977 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3978 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3979 3980 /* Devices which get the IVB wrong */ 3981 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3982 /* Maybe we should just blacklist TSSTcorp... */ 3983 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 3984 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 3985 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 3986 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 3987 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 3988 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 3989 3990 /* End Marker */ 3991 { } 3992 }; 3993 3994 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 3995 { 3996 const char *p; 3997 int len; 3998 3999 /* 4000 * check for trailing wildcard: *\0 4001 */ 4002 p = strchr(patt, wildchar); 4003 if (p && ((*(p + 1)) == 0)) 4004 len = p - patt; 4005 else { 4006 len = strlen(name); 4007 if (!len) { 4008 if (!*patt) 4009 return 0; 4010 return -1; 4011 } 4012 } 4013 4014 return strncmp(patt, name, len); 4015 } 4016 4017 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4018 { 4019 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4020 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4021 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4022 4023 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4024 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4025 4026 while (ad->model_num) { 4027 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4028 if (ad->model_rev == NULL) 4029 return ad->horkage; 4030 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4031 return ad->horkage; 4032 } 4033 ad++; 4034 } 4035 return 0; 4036 } 4037 4038 static int ata_dma_blacklisted(const struct ata_device *dev) 4039 { 4040 /* We don't support polling DMA. 4041 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4042 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4043 */ 4044 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4045 (dev->flags & ATA_DFLAG_CDB_INTR)) 4046 return 1; 4047 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4048 } 4049 4050 /** 4051 * ata_is_40wire - check drive side detection 4052 * @dev: device 4053 * 4054 * Perform drive side detection decoding, allowing for device vendors 4055 * who can't follow the documentation. 4056 */ 4057 4058 static int ata_is_40wire(struct ata_device *dev) 4059 { 4060 if (dev->horkage & ATA_HORKAGE_IVB) 4061 return ata_drive_40wire_relaxed(dev->id); 4062 return ata_drive_40wire(dev->id); 4063 } 4064 4065 /** 4066 * cable_is_40wire - 40/80/SATA decider 4067 * @ap: port to consider 4068 * 4069 * This function encapsulates the policy for speed management 4070 * in one place. At the moment we don't cache the result but 4071 * there is a good case for setting ap->cbl to the result when 4072 * we are called with unknown cables (and figuring out if it 4073 * impacts hotplug at all). 4074 * 4075 * Return 1 if the cable appears to be 40 wire. 4076 */ 4077 4078 static int cable_is_40wire(struct ata_port *ap) 4079 { 4080 struct ata_link *link; 4081 struct ata_device *dev; 4082 4083 /* If the controller thinks we are 40 wire, we are */ 4084 if (ap->cbl == ATA_CBL_PATA40) 4085 return 1; 4086 /* If the controller thinks we are 80 wire, we are */ 4087 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4088 return 0; 4089 /* If the system is known to be 40 wire short cable (eg laptop), 4090 then we allow 80 wire modes even if the drive isn't sure */ 4091 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4092 return 0; 4093 /* If the controller doesn't know we scan 4094 4095 - Note: We look for all 40 wire detects at this point. 4096 Any 80 wire detect is taken to be 80 wire cable 4097 because 4098 - In many setups only the one drive (slave if present) 4099 will give a valid detect 4100 - If you have a non detect capable drive you don't 4101 want it to colour the choice 4102 */ 4103 ata_port_for_each_link(link, ap) { 4104 ata_link_for_each_dev(dev, link) { 4105 if (!ata_is_40wire(dev)) 4106 return 0; 4107 } 4108 } 4109 return 1; 4110 } 4111 4112 /** 4113 * ata_dev_xfermask - Compute supported xfermask of the given device 4114 * @dev: Device to compute xfermask for 4115 * 4116 * Compute supported xfermask of @dev and store it in 4117 * dev->*_mask. This function is responsible for applying all 4118 * known limits including host controller limits, device 4119 * blacklist, etc... 4120 * 4121 * LOCKING: 4122 * None. 4123 */ 4124 static void ata_dev_xfermask(struct ata_device *dev) 4125 { 4126 struct ata_link *link = dev->link; 4127 struct ata_port *ap = link->ap; 4128 struct ata_host *host = ap->host; 4129 unsigned long xfer_mask; 4130 4131 /* controller modes available */ 4132 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4133 ap->mwdma_mask, ap->udma_mask); 4134 4135 /* drive modes available */ 4136 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4137 dev->mwdma_mask, dev->udma_mask); 4138 xfer_mask &= ata_id_xfermask(dev->id); 4139 4140 /* 4141 * CFA Advanced TrueIDE timings are not allowed on a shared 4142 * cable 4143 */ 4144 if (ata_dev_pair(dev)) { 4145 /* No PIO5 or PIO6 */ 4146 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4147 /* No MWDMA3 or MWDMA 4 */ 4148 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4149 } 4150 4151 if (ata_dma_blacklisted(dev)) { 4152 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4153 ata_dev_printk(dev, KERN_WARNING, 4154 "device is on DMA blacklist, disabling DMA\n"); 4155 } 4156 4157 if ((host->flags & ATA_HOST_SIMPLEX) && 4158 host->simplex_claimed && host->simplex_claimed != ap) { 4159 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4160 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4161 "other device, disabling DMA\n"); 4162 } 4163 4164 if (ap->flags & ATA_FLAG_NO_IORDY) 4165 xfer_mask &= ata_pio_mask_no_iordy(dev); 4166 4167 if (ap->ops->mode_filter) 4168 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4169 4170 /* Apply cable rule here. Don't apply it early because when 4171 * we handle hot plug the cable type can itself change. 4172 * Check this last so that we know if the transfer rate was 4173 * solely limited by the cable. 4174 * Unknown or 80 wire cables reported host side are checked 4175 * drive side as well. Cases where we know a 40wire cable 4176 * is used safely for 80 are not checked here. 4177 */ 4178 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4179 /* UDMA/44 or higher would be available */ 4180 if (cable_is_40wire(ap)) { 4181 ata_dev_printk(dev, KERN_WARNING, 4182 "limited to UDMA/33 due to 40-wire cable\n"); 4183 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4184 } 4185 4186 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4187 &dev->mwdma_mask, &dev->udma_mask); 4188 } 4189 4190 /** 4191 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4192 * @dev: Device to which command will be sent 4193 * 4194 * Issue SET FEATURES - XFER MODE command to device @dev 4195 * on port @ap. 4196 * 4197 * LOCKING: 4198 * PCI/etc. bus probe sem. 4199 * 4200 * RETURNS: 4201 * 0 on success, AC_ERR_* mask otherwise. 4202 */ 4203 4204 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4205 { 4206 struct ata_taskfile tf; 4207 unsigned int err_mask; 4208 4209 /* set up set-features taskfile */ 4210 DPRINTK("set features - xfer mode\n"); 4211 4212 /* Some controllers and ATAPI devices show flaky interrupt 4213 * behavior after setting xfer mode. Use polling instead. 4214 */ 4215 ata_tf_init(dev, &tf); 4216 tf.command = ATA_CMD_SET_FEATURES; 4217 tf.feature = SETFEATURES_XFER; 4218 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4219 tf.protocol = ATA_PROT_NODATA; 4220 /* If we are using IORDY we must send the mode setting command */ 4221 if (ata_pio_need_iordy(dev)) 4222 tf.nsect = dev->xfer_mode; 4223 /* If the device has IORDY and the controller does not - turn it off */ 4224 else if (ata_id_has_iordy(dev->id)) 4225 tf.nsect = 0x01; 4226 else /* In the ancient relic department - skip all of this */ 4227 return 0; 4228 4229 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4230 4231 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4232 return err_mask; 4233 } 4234 /** 4235 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4236 * @dev: Device to which command will be sent 4237 * @enable: Whether to enable or disable the feature 4238 * @feature: The sector count represents the feature to set 4239 * 4240 * Issue SET FEATURES - SATA FEATURES command to device @dev 4241 * on port @ap with sector count 4242 * 4243 * LOCKING: 4244 * PCI/etc. bus probe sem. 4245 * 4246 * RETURNS: 4247 * 0 on success, AC_ERR_* mask otherwise. 4248 */ 4249 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4250 u8 feature) 4251 { 4252 struct ata_taskfile tf; 4253 unsigned int err_mask; 4254 4255 /* set up set-features taskfile */ 4256 DPRINTK("set features - SATA features\n"); 4257 4258 ata_tf_init(dev, &tf); 4259 tf.command = ATA_CMD_SET_FEATURES; 4260 tf.feature = enable; 4261 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4262 tf.protocol = ATA_PROT_NODATA; 4263 tf.nsect = feature; 4264 4265 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4266 4267 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4268 return err_mask; 4269 } 4270 4271 /** 4272 * ata_dev_init_params - Issue INIT DEV PARAMS command 4273 * @dev: Device to which command will be sent 4274 * @heads: Number of heads (taskfile parameter) 4275 * @sectors: Number of sectors (taskfile parameter) 4276 * 4277 * LOCKING: 4278 * Kernel thread context (may sleep) 4279 * 4280 * RETURNS: 4281 * 0 on success, AC_ERR_* mask otherwise. 4282 */ 4283 static unsigned int ata_dev_init_params(struct ata_device *dev, 4284 u16 heads, u16 sectors) 4285 { 4286 struct ata_taskfile tf; 4287 unsigned int err_mask; 4288 4289 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4290 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4291 return AC_ERR_INVALID; 4292 4293 /* set up init dev params taskfile */ 4294 DPRINTK("init dev params \n"); 4295 4296 ata_tf_init(dev, &tf); 4297 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4298 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4299 tf.protocol = ATA_PROT_NODATA; 4300 tf.nsect = sectors; 4301 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4302 4303 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4304 /* A clean abort indicates an original or just out of spec drive 4305 and we should continue as we issue the setup based on the 4306 drive reported working geometry */ 4307 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4308 err_mask = 0; 4309 4310 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4311 return err_mask; 4312 } 4313 4314 /** 4315 * ata_sg_clean - Unmap DMA memory associated with command 4316 * @qc: Command containing DMA memory to be released 4317 * 4318 * Unmap all mapped DMA memory associated with this command. 4319 * 4320 * LOCKING: 4321 * spin_lock_irqsave(host lock) 4322 */ 4323 void ata_sg_clean(struct ata_queued_cmd *qc) 4324 { 4325 struct ata_port *ap = qc->ap; 4326 struct scatterlist *sg = qc->sg; 4327 int dir = qc->dma_dir; 4328 4329 WARN_ON(sg == NULL); 4330 4331 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4332 4333 if (qc->n_elem) 4334 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4335 4336 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4337 qc->sg = NULL; 4338 } 4339 4340 /** 4341 * atapi_check_dma - Check whether ATAPI DMA can be supported 4342 * @qc: Metadata associated with taskfile to check 4343 * 4344 * Allow low-level driver to filter ATA PACKET commands, returning 4345 * a status indicating whether or not it is OK to use DMA for the 4346 * supplied PACKET command. 4347 * 4348 * LOCKING: 4349 * spin_lock_irqsave(host lock) 4350 * 4351 * RETURNS: 0 when ATAPI DMA can be used 4352 * nonzero otherwise 4353 */ 4354 int atapi_check_dma(struct ata_queued_cmd *qc) 4355 { 4356 struct ata_port *ap = qc->ap; 4357 4358 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4359 * few ATAPI devices choke on such DMA requests. 4360 */ 4361 if (unlikely(qc->nbytes & 15)) 4362 return 1; 4363 4364 if (ap->ops->check_atapi_dma) 4365 return ap->ops->check_atapi_dma(qc); 4366 4367 return 0; 4368 } 4369 4370 /** 4371 * ata_std_qc_defer - Check whether a qc needs to be deferred 4372 * @qc: ATA command in question 4373 * 4374 * Non-NCQ commands cannot run with any other command, NCQ or 4375 * not. As upper layer only knows the queue depth, we are 4376 * responsible for maintaining exclusion. This function checks 4377 * whether a new command @qc can be issued. 4378 * 4379 * LOCKING: 4380 * spin_lock_irqsave(host lock) 4381 * 4382 * RETURNS: 4383 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4384 */ 4385 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4386 { 4387 struct ata_link *link = qc->dev->link; 4388 4389 if (qc->tf.protocol == ATA_PROT_NCQ) { 4390 if (!ata_tag_valid(link->active_tag)) 4391 return 0; 4392 } else { 4393 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4394 return 0; 4395 } 4396 4397 return ATA_DEFER_LINK; 4398 } 4399 4400 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4401 4402 /** 4403 * ata_sg_init - Associate command with scatter-gather table. 4404 * @qc: Command to be associated 4405 * @sg: Scatter-gather table. 4406 * @n_elem: Number of elements in s/g table. 4407 * 4408 * Initialize the data-related elements of queued_cmd @qc 4409 * to point to a scatter-gather table @sg, containing @n_elem 4410 * elements. 4411 * 4412 * LOCKING: 4413 * spin_lock_irqsave(host lock) 4414 */ 4415 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4416 unsigned int n_elem) 4417 { 4418 qc->sg = sg; 4419 qc->n_elem = n_elem; 4420 qc->cursg = qc->sg; 4421 } 4422 4423 /** 4424 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4425 * @qc: Command with scatter-gather table to be mapped. 4426 * 4427 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4428 * 4429 * LOCKING: 4430 * spin_lock_irqsave(host lock) 4431 * 4432 * RETURNS: 4433 * Zero on success, negative on error. 4434 * 4435 */ 4436 static int ata_sg_setup(struct ata_queued_cmd *qc) 4437 { 4438 struct ata_port *ap = qc->ap; 4439 unsigned int n_elem; 4440 4441 VPRINTK("ENTER, ata%u\n", ap->print_id); 4442 4443 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4444 if (n_elem < 1) 4445 return -1; 4446 4447 DPRINTK("%d sg elements mapped\n", n_elem); 4448 4449 qc->n_elem = n_elem; 4450 qc->flags |= ATA_QCFLAG_DMAMAP; 4451 4452 return 0; 4453 } 4454 4455 /** 4456 * swap_buf_le16 - swap halves of 16-bit words in place 4457 * @buf: Buffer to swap 4458 * @buf_words: Number of 16-bit words in buffer. 4459 * 4460 * Swap halves of 16-bit words if needed to convert from 4461 * little-endian byte order to native cpu byte order, or 4462 * vice-versa. 4463 * 4464 * LOCKING: 4465 * Inherited from caller. 4466 */ 4467 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4468 { 4469 #ifdef __BIG_ENDIAN 4470 unsigned int i; 4471 4472 for (i = 0; i < buf_words; i++) 4473 buf[i] = le16_to_cpu(buf[i]); 4474 #endif /* __BIG_ENDIAN */ 4475 } 4476 4477 /** 4478 * ata_qc_new - Request an available ATA command, for queueing 4479 * @ap: Port associated with device @dev 4480 * @dev: Device from whom we request an available command structure 4481 * 4482 * LOCKING: 4483 * None. 4484 */ 4485 4486 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4487 { 4488 struct ata_queued_cmd *qc = NULL; 4489 unsigned int i; 4490 4491 /* no command while frozen */ 4492 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4493 return NULL; 4494 4495 /* the last tag is reserved for internal command. */ 4496 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4497 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4498 qc = __ata_qc_from_tag(ap, i); 4499 break; 4500 } 4501 4502 if (qc) 4503 qc->tag = i; 4504 4505 return qc; 4506 } 4507 4508 /** 4509 * ata_qc_new_init - Request an available ATA command, and initialize it 4510 * @dev: Device from whom we request an available command structure 4511 * 4512 * LOCKING: 4513 * None. 4514 */ 4515 4516 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4517 { 4518 struct ata_port *ap = dev->link->ap; 4519 struct ata_queued_cmd *qc; 4520 4521 qc = ata_qc_new(ap); 4522 if (qc) { 4523 qc->scsicmd = NULL; 4524 qc->ap = ap; 4525 qc->dev = dev; 4526 4527 ata_qc_reinit(qc); 4528 } 4529 4530 return qc; 4531 } 4532 4533 /** 4534 * ata_qc_free - free unused ata_queued_cmd 4535 * @qc: Command to complete 4536 * 4537 * Designed to free unused ata_queued_cmd object 4538 * in case something prevents using it. 4539 * 4540 * LOCKING: 4541 * spin_lock_irqsave(host lock) 4542 */ 4543 void ata_qc_free(struct ata_queued_cmd *qc) 4544 { 4545 struct ata_port *ap = qc->ap; 4546 unsigned int tag; 4547 4548 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4549 4550 qc->flags = 0; 4551 tag = qc->tag; 4552 if (likely(ata_tag_valid(tag))) { 4553 qc->tag = ATA_TAG_POISON; 4554 clear_bit(tag, &ap->qc_allocated); 4555 } 4556 } 4557 4558 void __ata_qc_complete(struct ata_queued_cmd *qc) 4559 { 4560 struct ata_port *ap = qc->ap; 4561 struct ata_link *link = qc->dev->link; 4562 4563 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4564 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4565 4566 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4567 ata_sg_clean(qc); 4568 4569 /* command should be marked inactive atomically with qc completion */ 4570 if (qc->tf.protocol == ATA_PROT_NCQ) { 4571 link->sactive &= ~(1 << qc->tag); 4572 if (!link->sactive) 4573 ap->nr_active_links--; 4574 } else { 4575 link->active_tag = ATA_TAG_POISON; 4576 ap->nr_active_links--; 4577 } 4578 4579 /* clear exclusive status */ 4580 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4581 ap->excl_link == link)) 4582 ap->excl_link = NULL; 4583 4584 /* atapi: mark qc as inactive to prevent the interrupt handler 4585 * from completing the command twice later, before the error handler 4586 * is called. (when rc != 0 and atapi request sense is needed) 4587 */ 4588 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4589 ap->qc_active &= ~(1 << qc->tag); 4590 4591 /* call completion callback */ 4592 qc->complete_fn(qc); 4593 } 4594 4595 static void fill_result_tf(struct ata_queued_cmd *qc) 4596 { 4597 struct ata_port *ap = qc->ap; 4598 4599 qc->result_tf.flags = qc->tf.flags; 4600 ap->ops->qc_fill_rtf(qc); 4601 } 4602 4603 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4604 { 4605 struct ata_device *dev = qc->dev; 4606 4607 if (ata_tag_internal(qc->tag)) 4608 return; 4609 4610 if (ata_is_nodata(qc->tf.protocol)) 4611 return; 4612 4613 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4614 return; 4615 4616 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4617 } 4618 4619 /** 4620 * ata_qc_complete - Complete an active ATA command 4621 * @qc: Command to complete 4622 * @err_mask: ATA Status register contents 4623 * 4624 * Indicate to the mid and upper layers that an ATA 4625 * command has completed, with either an ok or not-ok status. 4626 * 4627 * LOCKING: 4628 * spin_lock_irqsave(host lock) 4629 */ 4630 void ata_qc_complete(struct ata_queued_cmd *qc) 4631 { 4632 struct ata_port *ap = qc->ap; 4633 4634 /* XXX: New EH and old EH use different mechanisms to 4635 * synchronize EH with regular execution path. 4636 * 4637 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4638 * Normal execution path is responsible for not accessing a 4639 * failed qc. libata core enforces the rule by returning NULL 4640 * from ata_qc_from_tag() for failed qcs. 4641 * 4642 * Old EH depends on ata_qc_complete() nullifying completion 4643 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4644 * not synchronize with interrupt handler. Only PIO task is 4645 * taken care of. 4646 */ 4647 if (ap->ops->error_handler) { 4648 struct ata_device *dev = qc->dev; 4649 struct ata_eh_info *ehi = &dev->link->eh_info; 4650 4651 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4652 4653 if (unlikely(qc->err_mask)) 4654 qc->flags |= ATA_QCFLAG_FAILED; 4655 4656 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4657 if (!ata_tag_internal(qc->tag)) { 4658 /* always fill result TF for failed qc */ 4659 fill_result_tf(qc); 4660 ata_qc_schedule_eh(qc); 4661 return; 4662 } 4663 } 4664 4665 /* read result TF if requested */ 4666 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4667 fill_result_tf(qc); 4668 4669 /* Some commands need post-processing after successful 4670 * completion. 4671 */ 4672 switch (qc->tf.command) { 4673 case ATA_CMD_SET_FEATURES: 4674 if (qc->tf.feature != SETFEATURES_WC_ON && 4675 qc->tf.feature != SETFEATURES_WC_OFF) 4676 break; 4677 /* fall through */ 4678 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4679 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4680 /* revalidate device */ 4681 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4682 ata_port_schedule_eh(ap); 4683 break; 4684 4685 case ATA_CMD_SLEEP: 4686 dev->flags |= ATA_DFLAG_SLEEPING; 4687 break; 4688 } 4689 4690 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4691 ata_verify_xfer(qc); 4692 4693 __ata_qc_complete(qc); 4694 } else { 4695 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4696 return; 4697 4698 /* read result TF if failed or requested */ 4699 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4700 fill_result_tf(qc); 4701 4702 __ata_qc_complete(qc); 4703 } 4704 } 4705 4706 /** 4707 * ata_qc_complete_multiple - Complete multiple qcs successfully 4708 * @ap: port in question 4709 * @qc_active: new qc_active mask 4710 * 4711 * Complete in-flight commands. This functions is meant to be 4712 * called from low-level driver's interrupt routine to complete 4713 * requests normally. ap->qc_active and @qc_active is compared 4714 * and commands are completed accordingly. 4715 * 4716 * LOCKING: 4717 * spin_lock_irqsave(host lock) 4718 * 4719 * RETURNS: 4720 * Number of completed commands on success, -errno otherwise. 4721 */ 4722 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4723 { 4724 int nr_done = 0; 4725 u32 done_mask; 4726 int i; 4727 4728 done_mask = ap->qc_active ^ qc_active; 4729 4730 if (unlikely(done_mask & qc_active)) { 4731 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4732 "(%08x->%08x)\n", ap->qc_active, qc_active); 4733 return -EINVAL; 4734 } 4735 4736 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4737 struct ata_queued_cmd *qc; 4738 4739 if (!(done_mask & (1 << i))) 4740 continue; 4741 4742 if ((qc = ata_qc_from_tag(ap, i))) { 4743 ata_qc_complete(qc); 4744 nr_done++; 4745 } 4746 } 4747 4748 return nr_done; 4749 } 4750 4751 /** 4752 * ata_qc_issue - issue taskfile to device 4753 * @qc: command to issue to device 4754 * 4755 * Prepare an ATA command to submission to device. 4756 * This includes mapping the data into a DMA-able 4757 * area, filling in the S/G table, and finally 4758 * writing the taskfile to hardware, starting the command. 4759 * 4760 * LOCKING: 4761 * spin_lock_irqsave(host lock) 4762 */ 4763 void ata_qc_issue(struct ata_queued_cmd *qc) 4764 { 4765 struct ata_port *ap = qc->ap; 4766 struct ata_link *link = qc->dev->link; 4767 u8 prot = qc->tf.protocol; 4768 4769 /* Make sure only one non-NCQ command is outstanding. The 4770 * check is skipped for old EH because it reuses active qc to 4771 * request ATAPI sense. 4772 */ 4773 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4774 4775 if (ata_is_ncq(prot)) { 4776 WARN_ON(link->sactive & (1 << qc->tag)); 4777 4778 if (!link->sactive) 4779 ap->nr_active_links++; 4780 link->sactive |= 1 << qc->tag; 4781 } else { 4782 WARN_ON(link->sactive); 4783 4784 ap->nr_active_links++; 4785 link->active_tag = qc->tag; 4786 } 4787 4788 qc->flags |= ATA_QCFLAG_ACTIVE; 4789 ap->qc_active |= 1 << qc->tag; 4790 4791 /* We guarantee to LLDs that they will have at least one 4792 * non-zero sg if the command is a data command. 4793 */ 4794 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4795 4796 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4797 (ap->flags & ATA_FLAG_PIO_DMA))) 4798 if (ata_sg_setup(qc)) 4799 goto sg_err; 4800 4801 /* if device is sleeping, schedule reset and abort the link */ 4802 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4803 link->eh_info.action |= ATA_EH_RESET; 4804 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4805 ata_link_abort(link); 4806 return; 4807 } 4808 4809 ap->ops->qc_prep(qc); 4810 4811 qc->err_mask |= ap->ops->qc_issue(qc); 4812 if (unlikely(qc->err_mask)) 4813 goto err; 4814 return; 4815 4816 sg_err: 4817 qc->err_mask |= AC_ERR_SYSTEM; 4818 err: 4819 ata_qc_complete(qc); 4820 } 4821 4822 /** 4823 * sata_scr_valid - test whether SCRs are accessible 4824 * @link: ATA link to test SCR accessibility for 4825 * 4826 * Test whether SCRs are accessible for @link. 4827 * 4828 * LOCKING: 4829 * None. 4830 * 4831 * RETURNS: 4832 * 1 if SCRs are accessible, 0 otherwise. 4833 */ 4834 int sata_scr_valid(struct ata_link *link) 4835 { 4836 struct ata_port *ap = link->ap; 4837 4838 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4839 } 4840 4841 /** 4842 * sata_scr_read - read SCR register of the specified port 4843 * @link: ATA link to read SCR for 4844 * @reg: SCR to read 4845 * @val: Place to store read value 4846 * 4847 * Read SCR register @reg of @link into *@val. This function is 4848 * guaranteed to succeed if @link is ap->link, the cable type of 4849 * the port is SATA and the port implements ->scr_read. 4850 * 4851 * LOCKING: 4852 * None if @link is ap->link. Kernel thread context otherwise. 4853 * 4854 * RETURNS: 4855 * 0 on success, negative errno on failure. 4856 */ 4857 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4858 { 4859 if (ata_is_host_link(link)) { 4860 struct ata_port *ap = link->ap; 4861 4862 if (sata_scr_valid(link)) 4863 return ap->ops->scr_read(ap, reg, val); 4864 return -EOPNOTSUPP; 4865 } 4866 4867 return sata_pmp_scr_read(link, reg, val); 4868 } 4869 4870 /** 4871 * sata_scr_write - write SCR register of the specified port 4872 * @link: ATA link to write SCR for 4873 * @reg: SCR to write 4874 * @val: value to write 4875 * 4876 * Write @val to SCR register @reg of @link. This function is 4877 * guaranteed to succeed if @link is ap->link, the cable type of 4878 * the port is SATA and the port implements ->scr_read. 4879 * 4880 * LOCKING: 4881 * None if @link is ap->link. Kernel thread context otherwise. 4882 * 4883 * RETURNS: 4884 * 0 on success, negative errno on failure. 4885 */ 4886 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4887 { 4888 if (ata_is_host_link(link)) { 4889 struct ata_port *ap = link->ap; 4890 4891 if (sata_scr_valid(link)) 4892 return ap->ops->scr_write(ap, reg, val); 4893 return -EOPNOTSUPP; 4894 } 4895 4896 return sata_pmp_scr_write(link, reg, val); 4897 } 4898 4899 /** 4900 * sata_scr_write_flush - write SCR register of the specified port and flush 4901 * @link: ATA link to write SCR for 4902 * @reg: SCR to write 4903 * @val: value to write 4904 * 4905 * This function is identical to sata_scr_write() except that this 4906 * function performs flush after writing to the register. 4907 * 4908 * LOCKING: 4909 * None if @link is ap->link. Kernel thread context otherwise. 4910 * 4911 * RETURNS: 4912 * 0 on success, negative errno on failure. 4913 */ 4914 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4915 { 4916 if (ata_is_host_link(link)) { 4917 struct ata_port *ap = link->ap; 4918 int rc; 4919 4920 if (sata_scr_valid(link)) { 4921 rc = ap->ops->scr_write(ap, reg, val); 4922 if (rc == 0) 4923 rc = ap->ops->scr_read(ap, reg, &val); 4924 return rc; 4925 } 4926 return -EOPNOTSUPP; 4927 } 4928 4929 return sata_pmp_scr_write(link, reg, val); 4930 } 4931 4932 /** 4933 * ata_link_online - test whether the given link is online 4934 * @link: ATA link to test 4935 * 4936 * Test whether @link is online. Note that this function returns 4937 * 0 if online status of @link cannot be obtained, so 4938 * ata_link_online(link) != !ata_link_offline(link). 4939 * 4940 * LOCKING: 4941 * None. 4942 * 4943 * RETURNS: 4944 * 1 if the port online status is available and online. 4945 */ 4946 int ata_link_online(struct ata_link *link) 4947 { 4948 u32 sstatus; 4949 4950 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4951 (sstatus & 0xf) == 0x3) 4952 return 1; 4953 return 0; 4954 } 4955 4956 /** 4957 * ata_link_offline - test whether the given link is offline 4958 * @link: ATA link to test 4959 * 4960 * Test whether @link is offline. Note that this function 4961 * returns 0 if offline status of @link cannot be obtained, so 4962 * ata_link_online(link) != !ata_link_offline(link). 4963 * 4964 * LOCKING: 4965 * None. 4966 * 4967 * RETURNS: 4968 * 1 if the port offline status is available and offline. 4969 */ 4970 int ata_link_offline(struct ata_link *link) 4971 { 4972 u32 sstatus; 4973 4974 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4975 (sstatus & 0xf) != 0x3) 4976 return 1; 4977 return 0; 4978 } 4979 4980 #ifdef CONFIG_PM 4981 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 4982 unsigned int action, unsigned int ehi_flags, 4983 int wait) 4984 { 4985 unsigned long flags; 4986 int i, rc; 4987 4988 for (i = 0; i < host->n_ports; i++) { 4989 struct ata_port *ap = host->ports[i]; 4990 struct ata_link *link; 4991 4992 /* Previous resume operation might still be in 4993 * progress. Wait for PM_PENDING to clear. 4994 */ 4995 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4996 ata_port_wait_eh(ap); 4997 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4998 } 4999 5000 /* request PM ops to EH */ 5001 spin_lock_irqsave(ap->lock, flags); 5002 5003 ap->pm_mesg = mesg; 5004 if (wait) { 5005 rc = 0; 5006 ap->pm_result = &rc; 5007 } 5008 5009 ap->pflags |= ATA_PFLAG_PM_PENDING; 5010 __ata_port_for_each_link(link, ap) { 5011 link->eh_info.action |= action; 5012 link->eh_info.flags |= ehi_flags; 5013 } 5014 5015 ata_port_schedule_eh(ap); 5016 5017 spin_unlock_irqrestore(ap->lock, flags); 5018 5019 /* wait and check result */ 5020 if (wait) { 5021 ata_port_wait_eh(ap); 5022 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5023 if (rc) 5024 return rc; 5025 } 5026 } 5027 5028 return 0; 5029 } 5030 5031 /** 5032 * ata_host_suspend - suspend host 5033 * @host: host to suspend 5034 * @mesg: PM message 5035 * 5036 * Suspend @host. Actual operation is performed by EH. This 5037 * function requests EH to perform PM operations and waits for EH 5038 * to finish. 5039 * 5040 * LOCKING: 5041 * Kernel thread context (may sleep). 5042 * 5043 * RETURNS: 5044 * 0 on success, -errno on failure. 5045 */ 5046 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5047 { 5048 int rc; 5049 5050 /* 5051 * disable link pm on all ports before requesting 5052 * any pm activity 5053 */ 5054 ata_lpm_enable(host); 5055 5056 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5057 if (rc == 0) 5058 host->dev->power.power_state = mesg; 5059 return rc; 5060 } 5061 5062 /** 5063 * ata_host_resume - resume host 5064 * @host: host to resume 5065 * 5066 * Resume @host. Actual operation is performed by EH. This 5067 * function requests EH to perform PM operations and returns. 5068 * Note that all resume operations are performed parallely. 5069 * 5070 * LOCKING: 5071 * Kernel thread context (may sleep). 5072 */ 5073 void ata_host_resume(struct ata_host *host) 5074 { 5075 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5076 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5077 host->dev->power.power_state = PMSG_ON; 5078 5079 /* reenable link pm */ 5080 ata_lpm_disable(host); 5081 } 5082 #endif 5083 5084 /** 5085 * ata_port_start - Set port up for dma. 5086 * @ap: Port to initialize 5087 * 5088 * Called just after data structures for each port are 5089 * initialized. Allocates space for PRD table. 5090 * 5091 * May be used as the port_start() entry in ata_port_operations. 5092 * 5093 * LOCKING: 5094 * Inherited from caller. 5095 */ 5096 int ata_port_start(struct ata_port *ap) 5097 { 5098 struct device *dev = ap->dev; 5099 5100 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5101 GFP_KERNEL); 5102 if (!ap->prd) 5103 return -ENOMEM; 5104 5105 return 0; 5106 } 5107 5108 /** 5109 * ata_dev_init - Initialize an ata_device structure 5110 * @dev: Device structure to initialize 5111 * 5112 * Initialize @dev in preparation for probing. 5113 * 5114 * LOCKING: 5115 * Inherited from caller. 5116 */ 5117 void ata_dev_init(struct ata_device *dev) 5118 { 5119 struct ata_link *link = dev->link; 5120 struct ata_port *ap = link->ap; 5121 unsigned long flags; 5122 5123 /* SATA spd limit is bound to the first device */ 5124 link->sata_spd_limit = link->hw_sata_spd_limit; 5125 link->sata_spd = 0; 5126 5127 /* High bits of dev->flags are used to record warm plug 5128 * requests which occur asynchronously. Synchronize using 5129 * host lock. 5130 */ 5131 spin_lock_irqsave(ap->lock, flags); 5132 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5133 dev->horkage = 0; 5134 spin_unlock_irqrestore(ap->lock, flags); 5135 5136 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5137 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5138 dev->pio_mask = UINT_MAX; 5139 dev->mwdma_mask = UINT_MAX; 5140 dev->udma_mask = UINT_MAX; 5141 } 5142 5143 /** 5144 * ata_link_init - Initialize an ata_link structure 5145 * @ap: ATA port link is attached to 5146 * @link: Link structure to initialize 5147 * @pmp: Port multiplier port number 5148 * 5149 * Initialize @link. 5150 * 5151 * LOCKING: 5152 * Kernel thread context (may sleep) 5153 */ 5154 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5155 { 5156 int i; 5157 5158 /* clear everything except for devices */ 5159 memset(link, 0, offsetof(struct ata_link, device[0])); 5160 5161 link->ap = ap; 5162 link->pmp = pmp; 5163 link->active_tag = ATA_TAG_POISON; 5164 link->hw_sata_spd_limit = UINT_MAX; 5165 5166 /* can't use iterator, ap isn't initialized yet */ 5167 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5168 struct ata_device *dev = &link->device[i]; 5169 5170 dev->link = link; 5171 dev->devno = dev - link->device; 5172 ata_dev_init(dev); 5173 } 5174 } 5175 5176 /** 5177 * sata_link_init_spd - Initialize link->sata_spd_limit 5178 * @link: Link to configure sata_spd_limit for 5179 * 5180 * Initialize @link->[hw_]sata_spd_limit to the currently 5181 * configured value. 5182 * 5183 * LOCKING: 5184 * Kernel thread context (may sleep). 5185 * 5186 * RETURNS: 5187 * 0 on success, -errno on failure. 5188 */ 5189 int sata_link_init_spd(struct ata_link *link) 5190 { 5191 u32 scontrol; 5192 u8 spd; 5193 int rc; 5194 5195 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 5196 if (rc) 5197 return rc; 5198 5199 spd = (scontrol >> 4) & 0xf; 5200 if (spd) 5201 link->hw_sata_spd_limit &= (1 << spd) - 1; 5202 5203 ata_force_spd_limit(link); 5204 5205 link->sata_spd_limit = link->hw_sata_spd_limit; 5206 5207 return 0; 5208 } 5209 5210 /** 5211 * ata_port_alloc - allocate and initialize basic ATA port resources 5212 * @host: ATA host this allocated port belongs to 5213 * 5214 * Allocate and initialize basic ATA port resources. 5215 * 5216 * RETURNS: 5217 * Allocate ATA port on success, NULL on failure. 5218 * 5219 * LOCKING: 5220 * Inherited from calling layer (may sleep). 5221 */ 5222 struct ata_port *ata_port_alloc(struct ata_host *host) 5223 { 5224 struct ata_port *ap; 5225 5226 DPRINTK("ENTER\n"); 5227 5228 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5229 if (!ap) 5230 return NULL; 5231 5232 ap->pflags |= ATA_PFLAG_INITIALIZING; 5233 ap->lock = &host->lock; 5234 ap->flags = ATA_FLAG_DISABLED; 5235 ap->print_id = -1; 5236 ap->ctl = ATA_DEVCTL_OBS; 5237 ap->host = host; 5238 ap->dev = host->dev; 5239 ap->last_ctl = 0xFF; 5240 5241 #if defined(ATA_VERBOSE_DEBUG) 5242 /* turn on all debugging levels */ 5243 ap->msg_enable = 0x00FF; 5244 #elif defined(ATA_DEBUG) 5245 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5246 #else 5247 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5248 #endif 5249 5250 #ifdef CONFIG_ATA_SFF 5251 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5252 #endif 5253 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5254 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5255 INIT_LIST_HEAD(&ap->eh_done_q); 5256 init_waitqueue_head(&ap->eh_wait_q); 5257 init_timer_deferrable(&ap->fastdrain_timer); 5258 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5259 ap->fastdrain_timer.data = (unsigned long)ap; 5260 5261 ap->cbl = ATA_CBL_NONE; 5262 5263 ata_link_init(ap, &ap->link, 0); 5264 5265 #ifdef ATA_IRQ_TRAP 5266 ap->stats.unhandled_irq = 1; 5267 ap->stats.idle_irq = 1; 5268 #endif 5269 return ap; 5270 } 5271 5272 static void ata_host_release(struct device *gendev, void *res) 5273 { 5274 struct ata_host *host = dev_get_drvdata(gendev); 5275 int i; 5276 5277 for (i = 0; i < host->n_ports; i++) { 5278 struct ata_port *ap = host->ports[i]; 5279 5280 if (!ap) 5281 continue; 5282 5283 if (ap->scsi_host) 5284 scsi_host_put(ap->scsi_host); 5285 5286 kfree(ap->pmp_link); 5287 kfree(ap); 5288 host->ports[i] = NULL; 5289 } 5290 5291 dev_set_drvdata(gendev, NULL); 5292 } 5293 5294 /** 5295 * ata_host_alloc - allocate and init basic ATA host resources 5296 * @dev: generic device this host is associated with 5297 * @max_ports: maximum number of ATA ports associated with this host 5298 * 5299 * Allocate and initialize basic ATA host resources. LLD calls 5300 * this function to allocate a host, initializes it fully and 5301 * attaches it using ata_host_register(). 5302 * 5303 * @max_ports ports are allocated and host->n_ports is 5304 * initialized to @max_ports. The caller is allowed to decrease 5305 * host->n_ports before calling ata_host_register(). The unused 5306 * ports will be automatically freed on registration. 5307 * 5308 * RETURNS: 5309 * Allocate ATA host on success, NULL on failure. 5310 * 5311 * LOCKING: 5312 * Inherited from calling layer (may sleep). 5313 */ 5314 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5315 { 5316 struct ata_host *host; 5317 size_t sz; 5318 int i; 5319 5320 DPRINTK("ENTER\n"); 5321 5322 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5323 return NULL; 5324 5325 /* alloc a container for our list of ATA ports (buses) */ 5326 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5327 /* alloc a container for our list of ATA ports (buses) */ 5328 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5329 if (!host) 5330 goto err_out; 5331 5332 devres_add(dev, host); 5333 dev_set_drvdata(dev, host); 5334 5335 spin_lock_init(&host->lock); 5336 host->dev = dev; 5337 host->n_ports = max_ports; 5338 5339 /* allocate ports bound to this host */ 5340 for (i = 0; i < max_ports; i++) { 5341 struct ata_port *ap; 5342 5343 ap = ata_port_alloc(host); 5344 if (!ap) 5345 goto err_out; 5346 5347 ap->port_no = i; 5348 host->ports[i] = ap; 5349 } 5350 5351 devres_remove_group(dev, NULL); 5352 return host; 5353 5354 err_out: 5355 devres_release_group(dev, NULL); 5356 return NULL; 5357 } 5358 5359 /** 5360 * ata_host_alloc_pinfo - alloc host and init with port_info array 5361 * @dev: generic device this host is associated with 5362 * @ppi: array of ATA port_info to initialize host with 5363 * @n_ports: number of ATA ports attached to this host 5364 * 5365 * Allocate ATA host and initialize with info from @ppi. If NULL 5366 * terminated, @ppi may contain fewer entries than @n_ports. The 5367 * last entry will be used for the remaining ports. 5368 * 5369 * RETURNS: 5370 * Allocate ATA host on success, NULL on failure. 5371 * 5372 * LOCKING: 5373 * Inherited from calling layer (may sleep). 5374 */ 5375 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5376 const struct ata_port_info * const * ppi, 5377 int n_ports) 5378 { 5379 const struct ata_port_info *pi; 5380 struct ata_host *host; 5381 int i, j; 5382 5383 host = ata_host_alloc(dev, n_ports); 5384 if (!host) 5385 return NULL; 5386 5387 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5388 struct ata_port *ap = host->ports[i]; 5389 5390 if (ppi[j]) 5391 pi = ppi[j++]; 5392 5393 ap->pio_mask = pi->pio_mask; 5394 ap->mwdma_mask = pi->mwdma_mask; 5395 ap->udma_mask = pi->udma_mask; 5396 ap->flags |= pi->flags; 5397 ap->link.flags |= pi->link_flags; 5398 ap->ops = pi->port_ops; 5399 5400 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5401 host->ops = pi->port_ops; 5402 } 5403 5404 return host; 5405 } 5406 5407 static void ata_host_stop(struct device *gendev, void *res) 5408 { 5409 struct ata_host *host = dev_get_drvdata(gendev); 5410 int i; 5411 5412 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5413 5414 for (i = 0; i < host->n_ports; i++) { 5415 struct ata_port *ap = host->ports[i]; 5416 5417 if (ap->ops->port_stop) 5418 ap->ops->port_stop(ap); 5419 } 5420 5421 if (host->ops->host_stop) 5422 host->ops->host_stop(host); 5423 } 5424 5425 /** 5426 * ata_finalize_port_ops - finalize ata_port_operations 5427 * @ops: ata_port_operations to finalize 5428 * 5429 * An ata_port_operations can inherit from another ops and that 5430 * ops can again inherit from another. This can go on as many 5431 * times as necessary as long as there is no loop in the 5432 * inheritance chain. 5433 * 5434 * Ops tables are finalized when the host is started. NULL or 5435 * unspecified entries are inherited from the closet ancestor 5436 * which has the method and the entry is populated with it. 5437 * After finalization, the ops table directly points to all the 5438 * methods and ->inherits is no longer necessary and cleared. 5439 * 5440 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5441 * 5442 * LOCKING: 5443 * None. 5444 */ 5445 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5446 { 5447 static DEFINE_SPINLOCK(lock); 5448 const struct ata_port_operations *cur; 5449 void **begin = (void **)ops; 5450 void **end = (void **)&ops->inherits; 5451 void **pp; 5452 5453 if (!ops || !ops->inherits) 5454 return; 5455 5456 spin_lock(&lock); 5457 5458 for (cur = ops->inherits; cur; cur = cur->inherits) { 5459 void **inherit = (void **)cur; 5460 5461 for (pp = begin; pp < end; pp++, inherit++) 5462 if (!*pp) 5463 *pp = *inherit; 5464 } 5465 5466 for (pp = begin; pp < end; pp++) 5467 if (IS_ERR(*pp)) 5468 *pp = NULL; 5469 5470 ops->inherits = NULL; 5471 5472 spin_unlock(&lock); 5473 } 5474 5475 /** 5476 * ata_host_start - start and freeze ports of an ATA host 5477 * @host: ATA host to start ports for 5478 * 5479 * Start and then freeze ports of @host. Started status is 5480 * recorded in host->flags, so this function can be called 5481 * multiple times. Ports are guaranteed to get started only 5482 * once. If host->ops isn't initialized yet, its set to the 5483 * first non-dummy port ops. 5484 * 5485 * LOCKING: 5486 * Inherited from calling layer (may sleep). 5487 * 5488 * RETURNS: 5489 * 0 if all ports are started successfully, -errno otherwise. 5490 */ 5491 int ata_host_start(struct ata_host *host) 5492 { 5493 int have_stop = 0; 5494 void *start_dr = NULL; 5495 int i, rc; 5496 5497 if (host->flags & ATA_HOST_STARTED) 5498 return 0; 5499 5500 ata_finalize_port_ops(host->ops); 5501 5502 for (i = 0; i < host->n_ports; i++) { 5503 struct ata_port *ap = host->ports[i]; 5504 5505 ata_finalize_port_ops(ap->ops); 5506 5507 if (!host->ops && !ata_port_is_dummy(ap)) 5508 host->ops = ap->ops; 5509 5510 if (ap->ops->port_stop) 5511 have_stop = 1; 5512 } 5513 5514 if (host->ops->host_stop) 5515 have_stop = 1; 5516 5517 if (have_stop) { 5518 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5519 if (!start_dr) 5520 return -ENOMEM; 5521 } 5522 5523 for (i = 0; i < host->n_ports; i++) { 5524 struct ata_port *ap = host->ports[i]; 5525 5526 if (ap->ops->port_start) { 5527 rc = ap->ops->port_start(ap); 5528 if (rc) { 5529 if (rc != -ENODEV) 5530 dev_printk(KERN_ERR, host->dev, 5531 "failed to start port %d " 5532 "(errno=%d)\n", i, rc); 5533 goto err_out; 5534 } 5535 } 5536 ata_eh_freeze_port(ap); 5537 } 5538 5539 if (start_dr) 5540 devres_add(host->dev, start_dr); 5541 host->flags |= ATA_HOST_STARTED; 5542 return 0; 5543 5544 err_out: 5545 while (--i >= 0) { 5546 struct ata_port *ap = host->ports[i]; 5547 5548 if (ap->ops->port_stop) 5549 ap->ops->port_stop(ap); 5550 } 5551 devres_free(start_dr); 5552 return rc; 5553 } 5554 5555 /** 5556 * ata_sas_host_init - Initialize a host struct 5557 * @host: host to initialize 5558 * @dev: device host is attached to 5559 * @flags: host flags 5560 * @ops: port_ops 5561 * 5562 * LOCKING: 5563 * PCI/etc. bus probe sem. 5564 * 5565 */ 5566 /* KILLME - the only user left is ipr */ 5567 void ata_host_init(struct ata_host *host, struct device *dev, 5568 unsigned long flags, struct ata_port_operations *ops) 5569 { 5570 spin_lock_init(&host->lock); 5571 host->dev = dev; 5572 host->flags = flags; 5573 host->ops = ops; 5574 } 5575 5576 /** 5577 * ata_host_register - register initialized ATA host 5578 * @host: ATA host to register 5579 * @sht: template for SCSI host 5580 * 5581 * Register initialized ATA host. @host is allocated using 5582 * ata_host_alloc() and fully initialized by LLD. This function 5583 * starts ports, registers @host with ATA and SCSI layers and 5584 * probe registered devices. 5585 * 5586 * LOCKING: 5587 * Inherited from calling layer (may sleep). 5588 * 5589 * RETURNS: 5590 * 0 on success, -errno otherwise. 5591 */ 5592 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5593 { 5594 int i, rc; 5595 5596 /* host must have been started */ 5597 if (!(host->flags & ATA_HOST_STARTED)) { 5598 dev_printk(KERN_ERR, host->dev, 5599 "BUG: trying to register unstarted host\n"); 5600 WARN_ON(1); 5601 return -EINVAL; 5602 } 5603 5604 /* Blow away unused ports. This happens when LLD can't 5605 * determine the exact number of ports to allocate at 5606 * allocation time. 5607 */ 5608 for (i = host->n_ports; host->ports[i]; i++) 5609 kfree(host->ports[i]); 5610 5611 /* give ports names and add SCSI hosts */ 5612 for (i = 0; i < host->n_ports; i++) 5613 host->ports[i]->print_id = ata_print_id++; 5614 5615 rc = ata_scsi_add_hosts(host, sht); 5616 if (rc) 5617 return rc; 5618 5619 /* associate with ACPI nodes */ 5620 ata_acpi_associate(host); 5621 5622 /* set cable, sata_spd_limit and report */ 5623 for (i = 0; i < host->n_ports; i++) { 5624 struct ata_port *ap = host->ports[i]; 5625 unsigned long xfer_mask; 5626 5627 /* set SATA cable type if still unset */ 5628 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5629 ap->cbl = ATA_CBL_SATA; 5630 5631 /* init sata_spd_limit to the current value */ 5632 sata_link_init_spd(&ap->link); 5633 5634 /* print per-port info to dmesg */ 5635 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5636 ap->udma_mask); 5637 5638 if (!ata_port_is_dummy(ap)) { 5639 ata_port_printk(ap, KERN_INFO, 5640 "%cATA max %s %s\n", 5641 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5642 ata_mode_string(xfer_mask), 5643 ap->link.eh_info.desc); 5644 ata_ehi_clear_desc(&ap->link.eh_info); 5645 } else 5646 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5647 } 5648 5649 /* perform each probe synchronously */ 5650 DPRINTK("probe begin\n"); 5651 for (i = 0; i < host->n_ports; i++) { 5652 struct ata_port *ap = host->ports[i]; 5653 5654 /* probe */ 5655 if (ap->ops->error_handler) { 5656 struct ata_eh_info *ehi = &ap->link.eh_info; 5657 unsigned long flags; 5658 5659 ata_port_probe(ap); 5660 5661 /* kick EH for boot probing */ 5662 spin_lock_irqsave(ap->lock, flags); 5663 5664 ehi->probe_mask |= ATA_ALL_DEVICES; 5665 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5666 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5667 5668 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5669 ap->pflags |= ATA_PFLAG_LOADING; 5670 ata_port_schedule_eh(ap); 5671 5672 spin_unlock_irqrestore(ap->lock, flags); 5673 5674 /* wait for EH to finish */ 5675 ata_port_wait_eh(ap); 5676 } else { 5677 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5678 rc = ata_bus_probe(ap); 5679 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5680 5681 if (rc) { 5682 /* FIXME: do something useful here? 5683 * Current libata behavior will 5684 * tear down everything when 5685 * the module is removed 5686 * or the h/w is unplugged. 5687 */ 5688 } 5689 } 5690 } 5691 5692 /* probes are done, now scan each port's disk(s) */ 5693 DPRINTK("host probe begin\n"); 5694 for (i = 0; i < host->n_ports; i++) { 5695 struct ata_port *ap = host->ports[i]; 5696 5697 ata_scsi_scan_host(ap, 1); 5698 } 5699 5700 return 0; 5701 } 5702 5703 /** 5704 * ata_host_activate - start host, request IRQ and register it 5705 * @host: target ATA host 5706 * @irq: IRQ to request 5707 * @irq_handler: irq_handler used when requesting IRQ 5708 * @irq_flags: irq_flags used when requesting IRQ 5709 * @sht: scsi_host_template to use when registering the host 5710 * 5711 * After allocating an ATA host and initializing it, most libata 5712 * LLDs perform three steps to activate the host - start host, 5713 * request IRQ and register it. This helper takes necessasry 5714 * arguments and performs the three steps in one go. 5715 * 5716 * An invalid IRQ skips the IRQ registration and expects the host to 5717 * have set polling mode on the port. In this case, @irq_handler 5718 * should be NULL. 5719 * 5720 * LOCKING: 5721 * Inherited from calling layer (may sleep). 5722 * 5723 * RETURNS: 5724 * 0 on success, -errno otherwise. 5725 */ 5726 int ata_host_activate(struct ata_host *host, int irq, 5727 irq_handler_t irq_handler, unsigned long irq_flags, 5728 struct scsi_host_template *sht) 5729 { 5730 int i, rc; 5731 5732 rc = ata_host_start(host); 5733 if (rc) 5734 return rc; 5735 5736 /* Special case for polling mode */ 5737 if (!irq) { 5738 WARN_ON(irq_handler); 5739 return ata_host_register(host, sht); 5740 } 5741 5742 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5743 dev_driver_string(host->dev), host); 5744 if (rc) 5745 return rc; 5746 5747 for (i = 0; i < host->n_ports; i++) 5748 ata_port_desc(host->ports[i], "irq %d", irq); 5749 5750 rc = ata_host_register(host, sht); 5751 /* if failed, just free the IRQ and leave ports alone */ 5752 if (rc) 5753 devm_free_irq(host->dev, irq, host); 5754 5755 return rc; 5756 } 5757 5758 /** 5759 * ata_port_detach - Detach ATA port in prepration of device removal 5760 * @ap: ATA port to be detached 5761 * 5762 * Detach all ATA devices and the associated SCSI devices of @ap; 5763 * then, remove the associated SCSI host. @ap is guaranteed to 5764 * be quiescent on return from this function. 5765 * 5766 * LOCKING: 5767 * Kernel thread context (may sleep). 5768 */ 5769 static void ata_port_detach(struct ata_port *ap) 5770 { 5771 unsigned long flags; 5772 struct ata_link *link; 5773 struct ata_device *dev; 5774 5775 if (!ap->ops->error_handler) 5776 goto skip_eh; 5777 5778 /* tell EH we're leaving & flush EH */ 5779 spin_lock_irqsave(ap->lock, flags); 5780 ap->pflags |= ATA_PFLAG_UNLOADING; 5781 spin_unlock_irqrestore(ap->lock, flags); 5782 5783 ata_port_wait_eh(ap); 5784 5785 /* EH is now guaranteed to see UNLOADING - EH context belongs 5786 * to us. Disable all existing devices. 5787 */ 5788 ata_port_for_each_link(link, ap) { 5789 ata_link_for_each_dev(dev, link) 5790 ata_dev_disable(dev); 5791 } 5792 5793 /* Final freeze & EH. All in-flight commands are aborted. EH 5794 * will be skipped and retrials will be terminated with bad 5795 * target. 5796 */ 5797 spin_lock_irqsave(ap->lock, flags); 5798 ata_port_freeze(ap); /* won't be thawed */ 5799 spin_unlock_irqrestore(ap->lock, flags); 5800 5801 ata_port_wait_eh(ap); 5802 cancel_rearming_delayed_work(&ap->hotplug_task); 5803 5804 skip_eh: 5805 /* remove the associated SCSI host */ 5806 scsi_remove_host(ap->scsi_host); 5807 } 5808 5809 /** 5810 * ata_host_detach - Detach all ports of an ATA host 5811 * @host: Host to detach 5812 * 5813 * Detach all ports of @host. 5814 * 5815 * LOCKING: 5816 * Kernel thread context (may sleep). 5817 */ 5818 void ata_host_detach(struct ata_host *host) 5819 { 5820 int i; 5821 5822 for (i = 0; i < host->n_ports; i++) 5823 ata_port_detach(host->ports[i]); 5824 5825 /* the host is dead now, dissociate ACPI */ 5826 ata_acpi_dissociate(host); 5827 } 5828 5829 #ifdef CONFIG_PCI 5830 5831 /** 5832 * ata_pci_remove_one - PCI layer callback for device removal 5833 * @pdev: PCI device that was removed 5834 * 5835 * PCI layer indicates to libata via this hook that hot-unplug or 5836 * module unload event has occurred. Detach all ports. Resource 5837 * release is handled via devres. 5838 * 5839 * LOCKING: 5840 * Inherited from PCI layer (may sleep). 5841 */ 5842 void ata_pci_remove_one(struct pci_dev *pdev) 5843 { 5844 struct device *dev = &pdev->dev; 5845 struct ata_host *host = dev_get_drvdata(dev); 5846 5847 ata_host_detach(host); 5848 } 5849 5850 /* move to PCI subsystem */ 5851 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5852 { 5853 unsigned long tmp = 0; 5854 5855 switch (bits->width) { 5856 case 1: { 5857 u8 tmp8 = 0; 5858 pci_read_config_byte(pdev, bits->reg, &tmp8); 5859 tmp = tmp8; 5860 break; 5861 } 5862 case 2: { 5863 u16 tmp16 = 0; 5864 pci_read_config_word(pdev, bits->reg, &tmp16); 5865 tmp = tmp16; 5866 break; 5867 } 5868 case 4: { 5869 u32 tmp32 = 0; 5870 pci_read_config_dword(pdev, bits->reg, &tmp32); 5871 tmp = tmp32; 5872 break; 5873 } 5874 5875 default: 5876 return -EINVAL; 5877 } 5878 5879 tmp &= bits->mask; 5880 5881 return (tmp == bits->val) ? 1 : 0; 5882 } 5883 5884 #ifdef CONFIG_PM 5885 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 5886 { 5887 pci_save_state(pdev); 5888 pci_disable_device(pdev); 5889 5890 if (mesg.event & PM_EVENT_SLEEP) 5891 pci_set_power_state(pdev, PCI_D3hot); 5892 } 5893 5894 int ata_pci_device_do_resume(struct pci_dev *pdev) 5895 { 5896 int rc; 5897 5898 pci_set_power_state(pdev, PCI_D0); 5899 pci_restore_state(pdev); 5900 5901 rc = pcim_enable_device(pdev); 5902 if (rc) { 5903 dev_printk(KERN_ERR, &pdev->dev, 5904 "failed to enable device after resume (%d)\n", rc); 5905 return rc; 5906 } 5907 5908 pci_set_master(pdev); 5909 return 0; 5910 } 5911 5912 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 5913 { 5914 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5915 int rc = 0; 5916 5917 rc = ata_host_suspend(host, mesg); 5918 if (rc) 5919 return rc; 5920 5921 ata_pci_device_do_suspend(pdev, mesg); 5922 5923 return 0; 5924 } 5925 5926 int ata_pci_device_resume(struct pci_dev *pdev) 5927 { 5928 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5929 int rc; 5930 5931 rc = ata_pci_device_do_resume(pdev); 5932 if (rc == 0) 5933 ata_host_resume(host); 5934 return rc; 5935 } 5936 #endif /* CONFIG_PM */ 5937 5938 #endif /* CONFIG_PCI */ 5939 5940 static int __init ata_parse_force_one(char **cur, 5941 struct ata_force_ent *force_ent, 5942 const char **reason) 5943 { 5944 /* FIXME: Currently, there's no way to tag init const data and 5945 * using __initdata causes build failure on some versions of 5946 * gcc. Once __initdataconst is implemented, add const to the 5947 * following structure. 5948 */ 5949 static struct ata_force_param force_tbl[] __initdata = { 5950 { "40c", .cbl = ATA_CBL_PATA40 }, 5951 { "80c", .cbl = ATA_CBL_PATA80 }, 5952 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 5953 { "unk", .cbl = ATA_CBL_PATA_UNK }, 5954 { "ign", .cbl = ATA_CBL_PATA_IGN }, 5955 { "sata", .cbl = ATA_CBL_SATA }, 5956 { "1.5Gbps", .spd_limit = 1 }, 5957 { "3.0Gbps", .spd_limit = 2 }, 5958 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 5959 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 5960 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 5961 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 5962 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 5963 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 5964 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 5965 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 5966 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 5967 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 5968 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 5969 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 5970 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 5971 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 5972 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5973 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5974 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5975 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5976 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5977 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5978 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5979 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5980 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5981 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5982 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5983 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5984 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5985 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5986 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5987 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5988 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5989 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5990 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5991 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5992 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5993 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 5994 }; 5995 char *start = *cur, *p = *cur; 5996 char *id, *val, *endp; 5997 const struct ata_force_param *match_fp = NULL; 5998 int nr_matches = 0, i; 5999 6000 /* find where this param ends and update *cur */ 6001 while (*p != '\0' && *p != ',') 6002 p++; 6003 6004 if (*p == '\0') 6005 *cur = p; 6006 else 6007 *cur = p + 1; 6008 6009 *p = '\0'; 6010 6011 /* parse */ 6012 p = strchr(start, ':'); 6013 if (!p) { 6014 val = strstrip(start); 6015 goto parse_val; 6016 } 6017 *p = '\0'; 6018 6019 id = strstrip(start); 6020 val = strstrip(p + 1); 6021 6022 /* parse id */ 6023 p = strchr(id, '.'); 6024 if (p) { 6025 *p++ = '\0'; 6026 force_ent->device = simple_strtoul(p, &endp, 10); 6027 if (p == endp || *endp != '\0') { 6028 *reason = "invalid device"; 6029 return -EINVAL; 6030 } 6031 } 6032 6033 force_ent->port = simple_strtoul(id, &endp, 10); 6034 if (p == endp || *endp != '\0') { 6035 *reason = "invalid port/link"; 6036 return -EINVAL; 6037 } 6038 6039 parse_val: 6040 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6041 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6042 const struct ata_force_param *fp = &force_tbl[i]; 6043 6044 if (strncasecmp(val, fp->name, strlen(val))) 6045 continue; 6046 6047 nr_matches++; 6048 match_fp = fp; 6049 6050 if (strcasecmp(val, fp->name) == 0) { 6051 nr_matches = 1; 6052 break; 6053 } 6054 } 6055 6056 if (!nr_matches) { 6057 *reason = "unknown value"; 6058 return -EINVAL; 6059 } 6060 if (nr_matches > 1) { 6061 *reason = "ambigious value"; 6062 return -EINVAL; 6063 } 6064 6065 force_ent->param = *match_fp; 6066 6067 return 0; 6068 } 6069 6070 static void __init ata_parse_force_param(void) 6071 { 6072 int idx = 0, size = 1; 6073 int last_port = -1, last_device = -1; 6074 char *p, *cur, *next; 6075 6076 /* calculate maximum number of params and allocate force_tbl */ 6077 for (p = ata_force_param_buf; *p; p++) 6078 if (*p == ',') 6079 size++; 6080 6081 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6082 if (!ata_force_tbl) { 6083 printk(KERN_WARNING "ata: failed to extend force table, " 6084 "libata.force ignored\n"); 6085 return; 6086 } 6087 6088 /* parse and populate the table */ 6089 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6090 const char *reason = ""; 6091 struct ata_force_ent te = { .port = -1, .device = -1 }; 6092 6093 next = cur; 6094 if (ata_parse_force_one(&next, &te, &reason)) { 6095 printk(KERN_WARNING "ata: failed to parse force " 6096 "parameter \"%s\" (%s)\n", 6097 cur, reason); 6098 continue; 6099 } 6100 6101 if (te.port == -1) { 6102 te.port = last_port; 6103 te.device = last_device; 6104 } 6105 6106 ata_force_tbl[idx++] = te; 6107 6108 last_port = te.port; 6109 last_device = te.device; 6110 } 6111 6112 ata_force_tbl_size = idx; 6113 } 6114 6115 static int __init ata_init(void) 6116 { 6117 ata_parse_force_param(); 6118 6119 ata_wq = create_workqueue("ata"); 6120 if (!ata_wq) 6121 goto free_force_tbl; 6122 6123 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6124 if (!ata_aux_wq) 6125 goto free_wq; 6126 6127 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6128 return 0; 6129 6130 free_wq: 6131 destroy_workqueue(ata_wq); 6132 free_force_tbl: 6133 kfree(ata_force_tbl); 6134 return -ENOMEM; 6135 } 6136 6137 static void __exit ata_exit(void) 6138 { 6139 kfree(ata_force_tbl); 6140 destroy_workqueue(ata_wq); 6141 destroy_workqueue(ata_aux_wq); 6142 } 6143 6144 subsys_initcall(ata_init); 6145 module_exit(ata_exit); 6146 6147 static unsigned long ratelimit_time; 6148 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6149 6150 int ata_ratelimit(void) 6151 { 6152 int rc; 6153 unsigned long flags; 6154 6155 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6156 6157 if (time_after(jiffies, ratelimit_time)) { 6158 rc = 1; 6159 ratelimit_time = jiffies + (HZ/5); 6160 } else 6161 rc = 0; 6162 6163 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6164 6165 return rc; 6166 } 6167 6168 /** 6169 * ata_wait_register - wait until register value changes 6170 * @reg: IO-mapped register 6171 * @mask: Mask to apply to read register value 6172 * @val: Wait condition 6173 * @interval: polling interval in milliseconds 6174 * @timeout: timeout in milliseconds 6175 * 6176 * Waiting for some bits of register to change is a common 6177 * operation for ATA controllers. This function reads 32bit LE 6178 * IO-mapped register @reg and tests for the following condition. 6179 * 6180 * (*@reg & mask) != val 6181 * 6182 * If the condition is met, it returns; otherwise, the process is 6183 * repeated after @interval_msec until timeout. 6184 * 6185 * LOCKING: 6186 * Kernel thread context (may sleep) 6187 * 6188 * RETURNS: 6189 * The final register value. 6190 */ 6191 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6192 unsigned long interval, unsigned long timeout) 6193 { 6194 unsigned long deadline; 6195 u32 tmp; 6196 6197 tmp = ioread32(reg); 6198 6199 /* Calculate timeout _after_ the first read to make sure 6200 * preceding writes reach the controller before starting to 6201 * eat away the timeout. 6202 */ 6203 deadline = ata_deadline(jiffies, timeout); 6204 6205 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6206 msleep(interval); 6207 tmp = ioread32(reg); 6208 } 6209 6210 return tmp; 6211 } 6212 6213 /* 6214 * Dummy port_ops 6215 */ 6216 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6217 { 6218 return AC_ERR_SYSTEM; 6219 } 6220 6221 static void ata_dummy_error_handler(struct ata_port *ap) 6222 { 6223 /* truly dummy */ 6224 } 6225 6226 struct ata_port_operations ata_dummy_port_ops = { 6227 .qc_prep = ata_noop_qc_prep, 6228 .qc_issue = ata_dummy_qc_issue, 6229 .error_handler = ata_dummy_error_handler, 6230 }; 6231 6232 const struct ata_port_info ata_dummy_port_info = { 6233 .port_ops = &ata_dummy_port_ops, 6234 }; 6235 6236 /* 6237 * libata is essentially a library of internal helper functions for 6238 * low-level ATA host controller drivers. As such, the API/ABI is 6239 * likely to change as new drivers are added and updated. 6240 * Do not depend on ABI/API stability. 6241 */ 6242 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6243 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6244 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6245 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6246 EXPORT_SYMBOL_GPL(sata_port_ops); 6247 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6248 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6249 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6250 EXPORT_SYMBOL_GPL(ata_host_init); 6251 EXPORT_SYMBOL_GPL(ata_host_alloc); 6252 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6253 EXPORT_SYMBOL_GPL(ata_host_start); 6254 EXPORT_SYMBOL_GPL(ata_host_register); 6255 EXPORT_SYMBOL_GPL(ata_host_activate); 6256 EXPORT_SYMBOL_GPL(ata_host_detach); 6257 EXPORT_SYMBOL_GPL(ata_sg_init); 6258 EXPORT_SYMBOL_GPL(ata_qc_complete); 6259 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6260 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6261 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6262 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6263 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6264 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6265 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6266 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6267 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6268 EXPORT_SYMBOL_GPL(ata_mode_string); 6269 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6270 EXPORT_SYMBOL_GPL(ata_port_start); 6271 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6272 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6273 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6274 EXPORT_SYMBOL_GPL(ata_port_probe); 6275 EXPORT_SYMBOL_GPL(ata_dev_disable); 6276 EXPORT_SYMBOL_GPL(sata_set_spd); 6277 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6278 EXPORT_SYMBOL_GPL(sata_link_debounce); 6279 EXPORT_SYMBOL_GPL(sata_link_resume); 6280 EXPORT_SYMBOL_GPL(ata_std_prereset); 6281 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6282 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6283 EXPORT_SYMBOL_GPL(ata_std_postreset); 6284 EXPORT_SYMBOL_GPL(ata_dev_classify); 6285 EXPORT_SYMBOL_GPL(ata_dev_pair); 6286 EXPORT_SYMBOL_GPL(ata_port_disable); 6287 EXPORT_SYMBOL_GPL(ata_ratelimit); 6288 EXPORT_SYMBOL_GPL(ata_wait_register); 6289 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6290 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6291 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6292 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6293 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6294 EXPORT_SYMBOL_GPL(sata_scr_valid); 6295 EXPORT_SYMBOL_GPL(sata_scr_read); 6296 EXPORT_SYMBOL_GPL(sata_scr_write); 6297 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6298 EXPORT_SYMBOL_GPL(ata_link_online); 6299 EXPORT_SYMBOL_GPL(ata_link_offline); 6300 #ifdef CONFIG_PM 6301 EXPORT_SYMBOL_GPL(ata_host_suspend); 6302 EXPORT_SYMBOL_GPL(ata_host_resume); 6303 #endif /* CONFIG_PM */ 6304 EXPORT_SYMBOL_GPL(ata_id_string); 6305 EXPORT_SYMBOL_GPL(ata_id_c_string); 6306 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6307 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6308 6309 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6310 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6311 EXPORT_SYMBOL_GPL(ata_timing_compute); 6312 EXPORT_SYMBOL_GPL(ata_timing_merge); 6313 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6314 6315 #ifdef CONFIG_PCI 6316 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6317 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6318 #ifdef CONFIG_PM 6319 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6320 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6321 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6322 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6323 #endif /* CONFIG_PM */ 6324 #endif /* CONFIG_PCI */ 6325 6326 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6327 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6328 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6329 EXPORT_SYMBOL_GPL(ata_port_desc); 6330 #ifdef CONFIG_PCI 6331 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6332 #endif /* CONFIG_PCI */ 6333 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6334 EXPORT_SYMBOL_GPL(ata_link_abort); 6335 EXPORT_SYMBOL_GPL(ata_port_abort); 6336 EXPORT_SYMBOL_GPL(ata_port_freeze); 6337 EXPORT_SYMBOL_GPL(sata_async_notification); 6338 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6339 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6340 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6341 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6342 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6343 EXPORT_SYMBOL_GPL(ata_do_eh); 6344 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6345 6346 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6347 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6348 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6349 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6350 EXPORT_SYMBOL_GPL(ata_cable_sata); 6351