xref: /linux/drivers/ata/libata-core.c (revision 6a0e321ea735691e726d84ee29a1a3fd3fc3541a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 
163 static bool ata_sstatus_online(u32 sstatus)
164 {
165 	return (sstatus & 0xf) == 0x3;
166 }
167 
168 /**
169  *	ata_link_next - link iteration helper
170  *	@link: the previous link, NULL to start
171  *	@ap: ATA port containing links to iterate
172  *	@mode: iteration mode, one of ATA_LITER_*
173  *
174  *	LOCKING:
175  *	Host lock or EH context.
176  *
177  *	RETURNS:
178  *	Pointer to the next link.
179  */
180 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
181 			       enum ata_link_iter_mode mode)
182 {
183 	BUG_ON(mode != ATA_LITER_EDGE &&
184 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185 
186 	/* NULL link indicates start of iteration */
187 	if (!link)
188 		switch (mode) {
189 		case ATA_LITER_EDGE:
190 		case ATA_LITER_PMP_FIRST:
191 			if (sata_pmp_attached(ap))
192 				return ap->pmp_link;
193 			/* fall through */
194 		case ATA_LITER_HOST_FIRST:
195 			return &ap->link;
196 		}
197 
198 	/* we just iterated over the host link, what's next? */
199 	if (link == &ap->link)
200 		switch (mode) {
201 		case ATA_LITER_HOST_FIRST:
202 			if (sata_pmp_attached(ap))
203 				return ap->pmp_link;
204 			/* fall through */
205 		case ATA_LITER_PMP_FIRST:
206 			if (unlikely(ap->slave_link))
207 				return ap->slave_link;
208 			/* fall through */
209 		case ATA_LITER_EDGE:
210 			return NULL;
211 		}
212 
213 	/* slave_link excludes PMP */
214 	if (unlikely(link == ap->slave_link))
215 		return NULL;
216 
217 	/* we were over a PMP link */
218 	if (++link < ap->pmp_link + ap->nr_pmp_links)
219 		return link;
220 
221 	if (mode == ATA_LITER_PMP_FIRST)
222 		return &ap->link;
223 
224 	return NULL;
225 }
226 EXPORT_SYMBOL_GPL(ata_link_next);
227 
228 /**
229  *	ata_dev_next - device iteration helper
230  *	@dev: the previous device, NULL to start
231  *	@link: ATA link containing devices to iterate
232  *	@mode: iteration mode, one of ATA_DITER_*
233  *
234  *	LOCKING:
235  *	Host lock or EH context.
236  *
237  *	RETURNS:
238  *	Pointer to the next device.
239  */
240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 				enum ata_dev_iter_mode mode)
242 {
243 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245 
246 	/* NULL dev indicates start of iteration */
247 	if (!dev)
248 		switch (mode) {
249 		case ATA_DITER_ENABLED:
250 		case ATA_DITER_ALL:
251 			dev = link->device;
252 			goto check;
253 		case ATA_DITER_ENABLED_REVERSE:
254 		case ATA_DITER_ALL_REVERSE:
255 			dev = link->device + ata_link_max_devices(link) - 1;
256 			goto check;
257 		}
258 
259  next:
260 	/* move to the next one */
261 	switch (mode) {
262 	case ATA_DITER_ENABLED:
263 	case ATA_DITER_ALL:
264 		if (++dev < link->device + ata_link_max_devices(link))
265 			goto check;
266 		return NULL;
267 	case ATA_DITER_ENABLED_REVERSE:
268 	case ATA_DITER_ALL_REVERSE:
269 		if (--dev >= link->device)
270 			goto check;
271 		return NULL;
272 	}
273 
274  check:
275 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 	    !ata_dev_enabled(dev))
277 		goto next;
278 	return dev;
279 }
280 EXPORT_SYMBOL_GPL(ata_dev_next);
281 
282 /**
283  *	ata_dev_phys_link - find physical link for a device
284  *	@dev: ATA device to look up physical link for
285  *
286  *	Look up physical link which @dev is attached to.  Note that
287  *	this is different from @dev->link only when @dev is on slave
288  *	link.  For all other cases, it's the same as @dev->link.
289  *
290  *	LOCKING:
291  *	Don't care.
292  *
293  *	RETURNS:
294  *	Pointer to the found physical link.
295  */
296 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
297 {
298 	struct ata_port *ap = dev->link->ap;
299 
300 	if (!ap->slave_link)
301 		return dev->link;
302 	if (!dev->devno)
303 		return &ap->link;
304 	return ap->slave_link;
305 }
306 
307 #ifdef CONFIG_ATA_FORCE
308 /**
309  *	ata_force_cbl - force cable type according to libata.force
310  *	@ap: ATA port of interest
311  *
312  *	Force cable type according to libata.force and whine about it.
313  *	The last entry which has matching port number is used, so it
314  *	can be specified as part of device force parameters.  For
315  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
316  *	same effect.
317  *
318  *	LOCKING:
319  *	EH context.
320  */
321 void ata_force_cbl(struct ata_port *ap)
322 {
323 	int i;
324 
325 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
326 		const struct ata_force_ent *fe = &ata_force_tbl[i];
327 
328 		if (fe->port != -1 && fe->port != ap->print_id)
329 			continue;
330 
331 		if (fe->param.cbl == ATA_CBL_NONE)
332 			continue;
333 
334 		ap->cbl = fe->param.cbl;
335 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
336 		return;
337 	}
338 }
339 
340 /**
341  *	ata_force_link_limits - force link limits according to libata.force
342  *	@link: ATA link of interest
343  *
344  *	Force link flags and SATA spd limit according to libata.force
345  *	and whine about it.  When only the port part is specified
346  *	(e.g. 1:), the limit applies to all links connected to both
347  *	the host link and all fan-out ports connected via PMP.  If the
348  *	device part is specified as 0 (e.g. 1.00:), it specifies the
349  *	first fan-out link not the host link.  Device number 15 always
350  *	points to the host link whether PMP is attached or not.  If the
351  *	controller has slave link, device number 16 points to it.
352  *
353  *	LOCKING:
354  *	EH context.
355  */
356 static void ata_force_link_limits(struct ata_link *link)
357 {
358 	bool did_spd = false;
359 	int linkno = link->pmp;
360 	int i;
361 
362 	if (ata_is_host_link(link))
363 		linkno += 15;
364 
365 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
366 		const struct ata_force_ent *fe = &ata_force_tbl[i];
367 
368 		if (fe->port != -1 && fe->port != link->ap->print_id)
369 			continue;
370 
371 		if (fe->device != -1 && fe->device != linkno)
372 			continue;
373 
374 		/* only honor the first spd limit */
375 		if (!did_spd && fe->param.spd_limit) {
376 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
377 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
378 					fe->param.name);
379 			did_spd = true;
380 		}
381 
382 		/* let lflags stack */
383 		if (fe->param.lflags) {
384 			link->flags |= fe->param.lflags;
385 			ata_link_notice(link,
386 					"FORCE: link flag 0x%x forced -> 0x%x\n",
387 					fe->param.lflags, link->flags);
388 		}
389 	}
390 }
391 
392 /**
393  *	ata_force_xfermask - force xfermask according to libata.force
394  *	@dev: ATA device of interest
395  *
396  *	Force xfer_mask according to libata.force and whine about it.
397  *	For consistency with link selection, device number 15 selects
398  *	the first device connected to the host link.
399  *
400  *	LOCKING:
401  *	EH context.
402  */
403 static void ata_force_xfermask(struct ata_device *dev)
404 {
405 	int devno = dev->link->pmp + dev->devno;
406 	int alt_devno = devno;
407 	int i;
408 
409 	/* allow n.15/16 for devices attached to host port */
410 	if (ata_is_host_link(dev->link))
411 		alt_devno += 15;
412 
413 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 		const struct ata_force_ent *fe = &ata_force_tbl[i];
415 		unsigned long pio_mask, mwdma_mask, udma_mask;
416 
417 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 			continue;
419 
420 		if (fe->device != -1 && fe->device != devno &&
421 		    fe->device != alt_devno)
422 			continue;
423 
424 		if (!fe->param.xfer_mask)
425 			continue;
426 
427 		ata_unpack_xfermask(fe->param.xfer_mask,
428 				    &pio_mask, &mwdma_mask, &udma_mask);
429 		if (udma_mask)
430 			dev->udma_mask = udma_mask;
431 		else if (mwdma_mask) {
432 			dev->udma_mask = 0;
433 			dev->mwdma_mask = mwdma_mask;
434 		} else {
435 			dev->udma_mask = 0;
436 			dev->mwdma_mask = 0;
437 			dev->pio_mask = pio_mask;
438 		}
439 
440 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 			       fe->param.name);
442 		return;
443 	}
444 }
445 
446 /**
447  *	ata_force_horkage - force horkage according to libata.force
448  *	@dev: ATA device of interest
449  *
450  *	Force horkage according to libata.force and whine about it.
451  *	For consistency with link selection, device number 15 selects
452  *	the first device connected to the host link.
453  *
454  *	LOCKING:
455  *	EH context.
456  */
457 static void ata_force_horkage(struct ata_device *dev)
458 {
459 	int devno = dev->link->pmp + dev->devno;
460 	int alt_devno = devno;
461 	int i;
462 
463 	/* allow n.15/16 for devices attached to host port */
464 	if (ata_is_host_link(dev->link))
465 		alt_devno += 15;
466 
467 	for (i = 0; i < ata_force_tbl_size; i++) {
468 		const struct ata_force_ent *fe = &ata_force_tbl[i];
469 
470 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 			continue;
472 
473 		if (fe->device != -1 && fe->device != devno &&
474 		    fe->device != alt_devno)
475 			continue;
476 
477 		if (!(~dev->horkage & fe->param.horkage_on) &&
478 		    !(dev->horkage & fe->param.horkage_off))
479 			continue;
480 
481 		dev->horkage |= fe->param.horkage_on;
482 		dev->horkage &= ~fe->param.horkage_off;
483 
484 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
485 			       fe->param.name);
486 	}
487 }
488 #else
489 static inline void ata_force_link_limits(struct ata_link *link) { }
490 static inline void ata_force_xfermask(struct ata_device *dev) { }
491 static inline void ata_force_horkage(struct ata_device *dev) { }
492 #endif
493 
494 /**
495  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496  *	@opcode: SCSI opcode
497  *
498  *	Determine ATAPI command type from @opcode.
499  *
500  *	LOCKING:
501  *	None.
502  *
503  *	RETURNS:
504  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505  */
506 int atapi_cmd_type(u8 opcode)
507 {
508 	switch (opcode) {
509 	case GPCMD_READ_10:
510 	case GPCMD_READ_12:
511 		return ATAPI_READ;
512 
513 	case GPCMD_WRITE_10:
514 	case GPCMD_WRITE_12:
515 	case GPCMD_WRITE_AND_VERIFY_10:
516 		return ATAPI_WRITE;
517 
518 	case GPCMD_READ_CD:
519 	case GPCMD_READ_CD_MSF:
520 		return ATAPI_READ_CD;
521 
522 	case ATA_16:
523 	case ATA_12:
524 		if (atapi_passthru16)
525 			return ATAPI_PASS_THRU;
526 		/* fall thru */
527 	default:
528 		return ATAPI_MISC;
529 	}
530 }
531 EXPORT_SYMBOL_GPL(atapi_cmd_type);
532 
533 static const u8 ata_rw_cmds[] = {
534 	/* pio multi */
535 	ATA_CMD_READ_MULTI,
536 	ATA_CMD_WRITE_MULTI,
537 	ATA_CMD_READ_MULTI_EXT,
538 	ATA_CMD_WRITE_MULTI_EXT,
539 	0,
540 	0,
541 	0,
542 	ATA_CMD_WRITE_MULTI_FUA_EXT,
543 	/* pio */
544 	ATA_CMD_PIO_READ,
545 	ATA_CMD_PIO_WRITE,
546 	ATA_CMD_PIO_READ_EXT,
547 	ATA_CMD_PIO_WRITE_EXT,
548 	0,
549 	0,
550 	0,
551 	0,
552 	/* dma */
553 	ATA_CMD_READ,
554 	ATA_CMD_WRITE,
555 	ATA_CMD_READ_EXT,
556 	ATA_CMD_WRITE_EXT,
557 	0,
558 	0,
559 	0,
560 	ATA_CMD_WRITE_FUA_EXT
561 };
562 
563 /**
564  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
565  *	@tf: command to examine and configure
566  *	@dev: device tf belongs to
567  *
568  *	Examine the device configuration and tf->flags to calculate
569  *	the proper read/write commands and protocol to use.
570  *
571  *	LOCKING:
572  *	caller.
573  */
574 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
575 {
576 	u8 cmd;
577 
578 	int index, fua, lba48, write;
579 
580 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
581 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
582 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
583 
584 	if (dev->flags & ATA_DFLAG_PIO) {
585 		tf->protocol = ATA_PROT_PIO;
586 		index = dev->multi_count ? 0 : 8;
587 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
588 		/* Unable to use DMA due to host limitation */
589 		tf->protocol = ATA_PROT_PIO;
590 		index = dev->multi_count ? 0 : 8;
591 	} else {
592 		tf->protocol = ATA_PROT_DMA;
593 		index = 16;
594 	}
595 
596 	cmd = ata_rw_cmds[index + fua + lba48 + write];
597 	if (cmd) {
598 		tf->command = cmd;
599 		return 0;
600 	}
601 	return -1;
602 }
603 
604 /**
605  *	ata_tf_read_block - Read block address from ATA taskfile
606  *	@tf: ATA taskfile of interest
607  *	@dev: ATA device @tf belongs to
608  *
609  *	LOCKING:
610  *	None.
611  *
612  *	Read block address from @tf.  This function can handle all
613  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
614  *	flags select the address format to use.
615  *
616  *	RETURNS:
617  *	Block address read from @tf.
618  */
619 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
620 {
621 	u64 block = 0;
622 
623 	if (tf->flags & ATA_TFLAG_LBA) {
624 		if (tf->flags & ATA_TFLAG_LBA48) {
625 			block |= (u64)tf->hob_lbah << 40;
626 			block |= (u64)tf->hob_lbam << 32;
627 			block |= (u64)tf->hob_lbal << 24;
628 		} else
629 			block |= (tf->device & 0xf) << 24;
630 
631 		block |= tf->lbah << 16;
632 		block |= tf->lbam << 8;
633 		block |= tf->lbal;
634 	} else {
635 		u32 cyl, head, sect;
636 
637 		cyl = tf->lbam | (tf->lbah << 8);
638 		head = tf->device & 0xf;
639 		sect = tf->lbal;
640 
641 		if (!sect) {
642 			ata_dev_warn(dev,
643 				     "device reported invalid CHS sector 0\n");
644 			return U64_MAX;
645 		}
646 
647 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
648 	}
649 
650 	return block;
651 }
652 
653 /**
654  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
655  *	@tf: Target ATA taskfile
656  *	@dev: ATA device @tf belongs to
657  *	@block: Block address
658  *	@n_block: Number of blocks
659  *	@tf_flags: RW/FUA etc...
660  *	@tag: tag
661  *	@class: IO priority class
662  *
663  *	LOCKING:
664  *	None.
665  *
666  *	Build ATA taskfile @tf for read/write request described by
667  *	@block, @n_block, @tf_flags and @tag on @dev.
668  *
669  *	RETURNS:
670  *
671  *	0 on success, -ERANGE if the request is too large for @dev,
672  *	-EINVAL if the request is invalid.
673  */
674 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
675 		    u64 block, u32 n_block, unsigned int tf_flags,
676 		    unsigned int tag, int class)
677 {
678 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
679 	tf->flags |= tf_flags;
680 
681 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
682 		/* yay, NCQ */
683 		if (!lba_48_ok(block, n_block))
684 			return -ERANGE;
685 
686 		tf->protocol = ATA_PROT_NCQ;
687 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
688 
689 		if (tf->flags & ATA_TFLAG_WRITE)
690 			tf->command = ATA_CMD_FPDMA_WRITE;
691 		else
692 			tf->command = ATA_CMD_FPDMA_READ;
693 
694 		tf->nsect = tag << 3;
695 		tf->hob_feature = (n_block >> 8) & 0xff;
696 		tf->feature = n_block & 0xff;
697 
698 		tf->hob_lbah = (block >> 40) & 0xff;
699 		tf->hob_lbam = (block >> 32) & 0xff;
700 		tf->hob_lbal = (block >> 24) & 0xff;
701 		tf->lbah = (block >> 16) & 0xff;
702 		tf->lbam = (block >> 8) & 0xff;
703 		tf->lbal = block & 0xff;
704 
705 		tf->device = ATA_LBA;
706 		if (tf->flags & ATA_TFLAG_FUA)
707 			tf->device |= 1 << 7;
708 
709 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
710 			if (class == IOPRIO_CLASS_RT)
711 				tf->hob_nsect |= ATA_PRIO_HIGH <<
712 						 ATA_SHIFT_PRIO;
713 		}
714 	} else if (dev->flags & ATA_DFLAG_LBA) {
715 		tf->flags |= ATA_TFLAG_LBA;
716 
717 		if (lba_28_ok(block, n_block)) {
718 			/* use LBA28 */
719 			tf->device |= (block >> 24) & 0xf;
720 		} else if (lba_48_ok(block, n_block)) {
721 			if (!(dev->flags & ATA_DFLAG_LBA48))
722 				return -ERANGE;
723 
724 			/* use LBA48 */
725 			tf->flags |= ATA_TFLAG_LBA48;
726 
727 			tf->hob_nsect = (n_block >> 8) & 0xff;
728 
729 			tf->hob_lbah = (block >> 40) & 0xff;
730 			tf->hob_lbam = (block >> 32) & 0xff;
731 			tf->hob_lbal = (block >> 24) & 0xff;
732 		} else
733 			/* request too large even for LBA48 */
734 			return -ERANGE;
735 
736 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
737 			return -EINVAL;
738 
739 		tf->nsect = n_block & 0xff;
740 
741 		tf->lbah = (block >> 16) & 0xff;
742 		tf->lbam = (block >> 8) & 0xff;
743 		tf->lbal = block & 0xff;
744 
745 		tf->device |= ATA_LBA;
746 	} else {
747 		/* CHS */
748 		u32 sect, head, cyl, track;
749 
750 		/* The request -may- be too large for CHS addressing. */
751 		if (!lba_28_ok(block, n_block))
752 			return -ERANGE;
753 
754 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
755 			return -EINVAL;
756 
757 		/* Convert LBA to CHS */
758 		track = (u32)block / dev->sectors;
759 		cyl   = track / dev->heads;
760 		head  = track % dev->heads;
761 		sect  = (u32)block % dev->sectors + 1;
762 
763 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
764 			(u32)block, track, cyl, head, sect);
765 
766 		/* Check whether the converted CHS can fit.
767 		   Cylinder: 0-65535
768 		   Head: 0-15
769 		   Sector: 1-255*/
770 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
771 			return -ERANGE;
772 
773 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
774 		tf->lbal = sect;
775 		tf->lbam = cyl;
776 		tf->lbah = cyl >> 8;
777 		tf->device |= head;
778 	}
779 
780 	return 0;
781 }
782 
783 /**
784  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
785  *	@pio_mask: pio_mask
786  *	@mwdma_mask: mwdma_mask
787  *	@udma_mask: udma_mask
788  *
789  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
790  *	unsigned int xfer_mask.
791  *
792  *	LOCKING:
793  *	None.
794  *
795  *	RETURNS:
796  *	Packed xfer_mask.
797  */
798 unsigned long ata_pack_xfermask(unsigned long pio_mask,
799 				unsigned long mwdma_mask,
800 				unsigned long udma_mask)
801 {
802 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
803 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
804 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
805 }
806 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
807 
808 /**
809  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
810  *	@xfer_mask: xfer_mask to unpack
811  *	@pio_mask: resulting pio_mask
812  *	@mwdma_mask: resulting mwdma_mask
813  *	@udma_mask: resulting udma_mask
814  *
815  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
816  *	Any NULL destination masks will be ignored.
817  */
818 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
819 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
820 {
821 	if (pio_mask)
822 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
823 	if (mwdma_mask)
824 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
825 	if (udma_mask)
826 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
827 }
828 
829 static const struct ata_xfer_ent {
830 	int shift, bits;
831 	u8 base;
832 } ata_xfer_tbl[] = {
833 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
834 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
835 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
836 	{ -1, },
837 };
838 
839 /**
840  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
841  *	@xfer_mask: xfer_mask of interest
842  *
843  *	Return matching XFER_* value for @xfer_mask.  Only the highest
844  *	bit of @xfer_mask is considered.
845  *
846  *	LOCKING:
847  *	None.
848  *
849  *	RETURNS:
850  *	Matching XFER_* value, 0xff if no match found.
851  */
852 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
853 {
854 	int highbit = fls(xfer_mask) - 1;
855 	const struct ata_xfer_ent *ent;
856 
857 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
858 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
859 			return ent->base + highbit - ent->shift;
860 	return 0xff;
861 }
862 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
863 
864 /**
865  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
866  *	@xfer_mode: XFER_* of interest
867  *
868  *	Return matching xfer_mask for @xfer_mode.
869  *
870  *	LOCKING:
871  *	None.
872  *
873  *	RETURNS:
874  *	Matching xfer_mask, 0 if no match found.
875  */
876 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
877 {
878 	const struct ata_xfer_ent *ent;
879 
880 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
881 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
882 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
883 				& ~((1 << ent->shift) - 1);
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
887 
888 /**
889  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
890  *	@xfer_mode: XFER_* of interest
891  *
892  *	Return matching xfer_shift for @xfer_mode.
893  *
894  *	LOCKING:
895  *	None.
896  *
897  *	RETURNS:
898  *	Matching xfer_shift, -1 if no match found.
899  */
900 int ata_xfer_mode2shift(unsigned long xfer_mode)
901 {
902 	const struct ata_xfer_ent *ent;
903 
904 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
905 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
906 			return ent->shift;
907 	return -1;
908 }
909 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
910 
911 /**
912  *	ata_mode_string - convert xfer_mask to string
913  *	@xfer_mask: mask of bits supported; only highest bit counts.
914  *
915  *	Determine string which represents the highest speed
916  *	(highest bit in @modemask).
917  *
918  *	LOCKING:
919  *	None.
920  *
921  *	RETURNS:
922  *	Constant C string representing highest speed listed in
923  *	@mode_mask, or the constant C string "<n/a>".
924  */
925 const char *ata_mode_string(unsigned long xfer_mask)
926 {
927 	static const char * const xfer_mode_str[] = {
928 		"PIO0",
929 		"PIO1",
930 		"PIO2",
931 		"PIO3",
932 		"PIO4",
933 		"PIO5",
934 		"PIO6",
935 		"MWDMA0",
936 		"MWDMA1",
937 		"MWDMA2",
938 		"MWDMA3",
939 		"MWDMA4",
940 		"UDMA/16",
941 		"UDMA/25",
942 		"UDMA/33",
943 		"UDMA/44",
944 		"UDMA/66",
945 		"UDMA/100",
946 		"UDMA/133",
947 		"UDMA7",
948 	};
949 	int highbit;
950 
951 	highbit = fls(xfer_mask) - 1;
952 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
953 		return xfer_mode_str[highbit];
954 	return "<n/a>";
955 }
956 EXPORT_SYMBOL_GPL(ata_mode_string);
957 
958 const char *sata_spd_string(unsigned int spd)
959 {
960 	static const char * const spd_str[] = {
961 		"1.5 Gbps",
962 		"3.0 Gbps",
963 		"6.0 Gbps",
964 	};
965 
966 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
967 		return "<unknown>";
968 	return spd_str[spd - 1];
969 }
970 
971 /**
972  *	ata_dev_classify - determine device type based on ATA-spec signature
973  *	@tf: ATA taskfile register set for device to be identified
974  *
975  *	Determine from taskfile register contents whether a device is
976  *	ATA or ATAPI, as per "Signature and persistence" section
977  *	of ATA/PI spec (volume 1, sect 5.14).
978  *
979  *	LOCKING:
980  *	None.
981  *
982  *	RETURNS:
983  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
984  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
985  */
986 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
987 {
988 	/* Apple's open source Darwin code hints that some devices only
989 	 * put a proper signature into the LBA mid/high registers,
990 	 * So, we only check those.  It's sufficient for uniqueness.
991 	 *
992 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
993 	 * signatures for ATA and ATAPI devices attached on SerialATA,
994 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
995 	 * spec has never mentioned about using different signatures
996 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
997 	 * Multiplier specification began to use 0x69/0x96 to identify
998 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
999 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000 	 * 0x69/0x96 shortly and described them as reserved for
1001 	 * SerialATA.
1002 	 *
1003 	 * We follow the current spec and consider that 0x69/0x96
1004 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006 	 * SEMB signature.  This is worked around in
1007 	 * ata_dev_read_id().
1008 	 */
1009 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010 		DPRINTK("found ATA device by sig\n");
1011 		return ATA_DEV_ATA;
1012 	}
1013 
1014 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015 		DPRINTK("found ATAPI device by sig\n");
1016 		return ATA_DEV_ATAPI;
1017 	}
1018 
1019 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020 		DPRINTK("found PMP device by sig\n");
1021 		return ATA_DEV_PMP;
1022 	}
1023 
1024 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026 		return ATA_DEV_SEMB;
1027 	}
1028 
1029 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030 		DPRINTK("found ZAC device by sig\n");
1031 		return ATA_DEV_ZAC;
1032 	}
1033 
1034 	DPRINTK("unknown device\n");
1035 	return ATA_DEV_UNKNOWN;
1036 }
1037 EXPORT_SYMBOL_GPL(ata_dev_classify);
1038 
1039 /**
1040  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1041  *	@id: IDENTIFY DEVICE results we will examine
1042  *	@s: string into which data is output
1043  *	@ofs: offset into identify device page
1044  *	@len: length of string to return. must be an even number.
1045  *
1046  *	The strings in the IDENTIFY DEVICE page are broken up into
1047  *	16-bit chunks.  Run through the string, and output each
1048  *	8-bit chunk linearly, regardless of platform.
1049  *
1050  *	LOCKING:
1051  *	caller.
1052  */
1053 
1054 void ata_id_string(const u16 *id, unsigned char *s,
1055 		   unsigned int ofs, unsigned int len)
1056 {
1057 	unsigned int c;
1058 
1059 	BUG_ON(len & 1);
1060 
1061 	while (len > 0) {
1062 		c = id[ofs] >> 8;
1063 		*s = c;
1064 		s++;
1065 
1066 		c = id[ofs] & 0xff;
1067 		*s = c;
1068 		s++;
1069 
1070 		ofs++;
1071 		len -= 2;
1072 	}
1073 }
1074 EXPORT_SYMBOL_GPL(ata_id_string);
1075 
1076 /**
1077  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078  *	@id: IDENTIFY DEVICE results we will examine
1079  *	@s: string into which data is output
1080  *	@ofs: offset into identify device page
1081  *	@len: length of string to return. must be an odd number.
1082  *
1083  *	This function is identical to ata_id_string except that it
1084  *	trims trailing spaces and terminates the resulting string with
1085  *	null.  @len must be actual maximum length (even number) + 1.
1086  *
1087  *	LOCKING:
1088  *	caller.
1089  */
1090 void ata_id_c_string(const u16 *id, unsigned char *s,
1091 		     unsigned int ofs, unsigned int len)
1092 {
1093 	unsigned char *p;
1094 
1095 	ata_id_string(id, s, ofs, len - 1);
1096 
1097 	p = s + strnlen(s, len - 1);
1098 	while (p > s && p[-1] == ' ')
1099 		p--;
1100 	*p = '\0';
1101 }
1102 EXPORT_SYMBOL_GPL(ata_id_c_string);
1103 
1104 static u64 ata_id_n_sectors(const u16 *id)
1105 {
1106 	if (ata_id_has_lba(id)) {
1107 		if (ata_id_has_lba48(id))
1108 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109 		else
1110 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111 	} else {
1112 		if (ata_id_current_chs_valid(id))
1113 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114 			       id[ATA_ID_CUR_SECTORS];
1115 		else
1116 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117 			       id[ATA_ID_SECTORS];
1118 	}
1119 }
1120 
1121 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122 {
1123 	u64 sectors = 0;
1124 
1125 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128 	sectors |= (tf->lbah & 0xff) << 16;
1129 	sectors |= (tf->lbam & 0xff) << 8;
1130 	sectors |= (tf->lbal & 0xff);
1131 
1132 	return sectors;
1133 }
1134 
1135 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136 {
1137 	u64 sectors = 0;
1138 
1139 	sectors |= (tf->device & 0x0f) << 24;
1140 	sectors |= (tf->lbah & 0xff) << 16;
1141 	sectors |= (tf->lbam & 0xff) << 8;
1142 	sectors |= (tf->lbal & 0xff);
1143 
1144 	return sectors;
1145 }
1146 
1147 /**
1148  *	ata_read_native_max_address - Read native max address
1149  *	@dev: target device
1150  *	@max_sectors: out parameter for the result native max address
1151  *
1152  *	Perform an LBA48 or LBA28 native size query upon the device in
1153  *	question.
1154  *
1155  *	RETURNS:
1156  *	0 on success, -EACCES if command is aborted by the drive.
1157  *	-EIO on other errors.
1158  */
1159 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160 {
1161 	unsigned int err_mask;
1162 	struct ata_taskfile tf;
1163 	int lba48 = ata_id_has_lba48(dev->id);
1164 
1165 	ata_tf_init(dev, &tf);
1166 
1167 	/* always clear all address registers */
1168 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169 
1170 	if (lba48) {
1171 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172 		tf.flags |= ATA_TFLAG_LBA48;
1173 	} else
1174 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1175 
1176 	tf.protocol = ATA_PROT_NODATA;
1177 	tf.device |= ATA_LBA;
1178 
1179 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180 	if (err_mask) {
1181 		ata_dev_warn(dev,
1182 			     "failed to read native max address (err_mask=0x%x)\n",
1183 			     err_mask);
1184 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185 			return -EACCES;
1186 		return -EIO;
1187 	}
1188 
1189 	if (lba48)
1190 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1191 	else
1192 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1193 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194 		(*max_sectors)--;
1195 	return 0;
1196 }
1197 
1198 /**
1199  *	ata_set_max_sectors - Set max sectors
1200  *	@dev: target device
1201  *	@new_sectors: new max sectors value to set for the device
1202  *
1203  *	Set max sectors of @dev to @new_sectors.
1204  *
1205  *	RETURNS:
1206  *	0 on success, -EACCES if command is aborted or denied (due to
1207  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1208  *	errors.
1209  */
1210 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211 {
1212 	unsigned int err_mask;
1213 	struct ata_taskfile tf;
1214 	int lba48 = ata_id_has_lba48(dev->id);
1215 
1216 	new_sectors--;
1217 
1218 	ata_tf_init(dev, &tf);
1219 
1220 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221 
1222 	if (lba48) {
1223 		tf.command = ATA_CMD_SET_MAX_EXT;
1224 		tf.flags |= ATA_TFLAG_LBA48;
1225 
1226 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229 	} else {
1230 		tf.command = ATA_CMD_SET_MAX;
1231 
1232 		tf.device |= (new_sectors >> 24) & 0xf;
1233 	}
1234 
1235 	tf.protocol = ATA_PROT_NODATA;
1236 	tf.device |= ATA_LBA;
1237 
1238 	tf.lbal = (new_sectors >> 0) & 0xff;
1239 	tf.lbam = (new_sectors >> 8) & 0xff;
1240 	tf.lbah = (new_sectors >> 16) & 0xff;
1241 
1242 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 	if (err_mask) {
1244 		ata_dev_warn(dev,
1245 			     "failed to set max address (err_mask=0x%x)\n",
1246 			     err_mask);
1247 		if (err_mask == AC_ERR_DEV &&
1248 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249 			return -EACCES;
1250 		return -EIO;
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 /**
1257  *	ata_hpa_resize		-	Resize a device with an HPA set
1258  *	@dev: Device to resize
1259  *
1260  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261  *	it if required to the full size of the media. The caller must check
1262  *	the drive has the HPA feature set enabled.
1263  *
1264  *	RETURNS:
1265  *	0 on success, -errno on failure.
1266  */
1267 static int ata_hpa_resize(struct ata_device *dev)
1268 {
1269 	struct ata_eh_context *ehc = &dev->link->eh_context;
1270 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 	u64 sectors = ata_id_n_sectors(dev->id);
1273 	u64 native_sectors;
1274 	int rc;
1275 
1276 	/* do we need to do it? */
1277 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 		return 0;
1281 
1282 	/* read native max address */
1283 	rc = ata_read_native_max_address(dev, &native_sectors);
1284 	if (rc) {
1285 		/* If device aborted the command or HPA isn't going to
1286 		 * be unlocked, skip HPA resizing.
1287 		 */
1288 		if (rc == -EACCES || !unlock_hpa) {
1289 			ata_dev_warn(dev,
1290 				     "HPA support seems broken, skipping HPA handling\n");
1291 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292 
1293 			/* we can continue if device aborted the command */
1294 			if (rc == -EACCES)
1295 				rc = 0;
1296 		}
1297 
1298 		return rc;
1299 	}
1300 	dev->n_native_sectors = native_sectors;
1301 
1302 	/* nothing to do? */
1303 	if (native_sectors <= sectors || !unlock_hpa) {
1304 		if (!print_info || native_sectors == sectors)
1305 			return 0;
1306 
1307 		if (native_sectors > sectors)
1308 			ata_dev_info(dev,
1309 				"HPA detected: current %llu, native %llu\n",
1310 				(unsigned long long)sectors,
1311 				(unsigned long long)native_sectors);
1312 		else if (native_sectors < sectors)
1313 			ata_dev_warn(dev,
1314 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1315 				(unsigned long long)native_sectors,
1316 				(unsigned long long)sectors);
1317 		return 0;
1318 	}
1319 
1320 	/* let's unlock HPA */
1321 	rc = ata_set_max_sectors(dev, native_sectors);
1322 	if (rc == -EACCES) {
1323 		/* if device aborted the command, skip HPA resizing */
1324 		ata_dev_warn(dev,
1325 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 			     (unsigned long long)sectors,
1327 			     (unsigned long long)native_sectors);
1328 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 		return 0;
1330 	} else if (rc)
1331 		return rc;
1332 
1333 	/* re-read IDENTIFY data */
1334 	rc = ata_dev_reread_id(dev, 0);
1335 	if (rc) {
1336 		ata_dev_err(dev,
1337 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1338 		return rc;
1339 	}
1340 
1341 	if (print_info) {
1342 		u64 new_sectors = ata_id_n_sectors(dev->id);
1343 		ata_dev_info(dev,
1344 			"HPA unlocked: %llu -> %llu, native %llu\n",
1345 			(unsigned long long)sectors,
1346 			(unsigned long long)new_sectors,
1347 			(unsigned long long)native_sectors);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1355  *	@id: IDENTIFY DEVICE page to dump
1356  *
1357  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1358  *	page.
1359  *
1360  *	LOCKING:
1361  *	caller.
1362  */
1363 
1364 static inline void ata_dump_id(const u16 *id)
1365 {
1366 	DPRINTK("49==0x%04x  "
1367 		"53==0x%04x  "
1368 		"63==0x%04x  "
1369 		"64==0x%04x  "
1370 		"75==0x%04x  \n",
1371 		id[49],
1372 		id[53],
1373 		id[63],
1374 		id[64],
1375 		id[75]);
1376 	DPRINTK("80==0x%04x  "
1377 		"81==0x%04x  "
1378 		"82==0x%04x  "
1379 		"83==0x%04x  "
1380 		"84==0x%04x  \n",
1381 		id[80],
1382 		id[81],
1383 		id[82],
1384 		id[83],
1385 		id[84]);
1386 	DPRINTK("88==0x%04x  "
1387 		"93==0x%04x\n",
1388 		id[88],
1389 		id[93]);
1390 }
1391 
1392 /**
1393  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394  *	@id: IDENTIFY data to compute xfer mask from
1395  *
1396  *	Compute the xfermask for this device. This is not as trivial
1397  *	as it seems if we must consider early devices correctly.
1398  *
1399  *	FIXME: pre IDE drive timing (do we care ?).
1400  *
1401  *	LOCKING:
1402  *	None.
1403  *
1404  *	RETURNS:
1405  *	Computed xfermask
1406  */
1407 unsigned long ata_id_xfermask(const u16 *id)
1408 {
1409 	unsigned long pio_mask, mwdma_mask, udma_mask;
1410 
1411 	/* Usual case. Word 53 indicates word 64 is valid */
1412 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 		pio_mask <<= 3;
1415 		pio_mask |= 0x7;
1416 	} else {
1417 		/* If word 64 isn't valid then Word 51 high byte holds
1418 		 * the PIO timing number for the maximum. Turn it into
1419 		 * a mask.
1420 		 */
1421 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 		if (mode < 5)	/* Valid PIO range */
1423 			pio_mask = (2 << mode) - 1;
1424 		else
1425 			pio_mask = 1;
1426 
1427 		/* But wait.. there's more. Design your standards by
1428 		 * committee and you too can get a free iordy field to
1429 		 * process. However its the speeds not the modes that
1430 		 * are supported... Note drivers using the timing API
1431 		 * will get this right anyway
1432 		 */
1433 	}
1434 
1435 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436 
1437 	if (ata_id_is_cfa(id)) {
1438 		/*
1439 		 *	Process compact flash extended modes
1440 		 */
1441 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443 
1444 		if (pio)
1445 			pio_mask |= (1 << 5);
1446 		if (pio > 1)
1447 			pio_mask |= (1 << 6);
1448 		if (dma)
1449 			mwdma_mask |= (1 << 3);
1450 		if (dma > 1)
1451 			mwdma_mask |= (1 << 4);
1452 	}
1453 
1454 	udma_mask = 0;
1455 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457 
1458 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459 }
1460 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461 
1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463 {
1464 	struct completion *waiting = qc->private_data;
1465 
1466 	complete(waiting);
1467 }
1468 
1469 /**
1470  *	ata_exec_internal_sg - execute libata internal command
1471  *	@dev: Device to which the command is sent
1472  *	@tf: Taskfile registers for the command and the result
1473  *	@cdb: CDB for packet command
1474  *	@dma_dir: Data transfer direction of the command
1475  *	@sgl: sg list for the data buffer of the command
1476  *	@n_elem: Number of sg entries
1477  *	@timeout: Timeout in msecs (0 for default)
1478  *
1479  *	Executes libata internal command with timeout.  @tf contains
1480  *	command on entry and result on return.  Timeout and error
1481  *	conditions are reported via return value.  No recovery action
1482  *	is taken after a command times out.  It's caller's duty to
1483  *	clean up after timeout.
1484  *
1485  *	LOCKING:
1486  *	None.  Should be called with kernel context, might sleep.
1487  *
1488  *	RETURNS:
1489  *	Zero on success, AC_ERR_* mask on failure
1490  */
1491 unsigned ata_exec_internal_sg(struct ata_device *dev,
1492 			      struct ata_taskfile *tf, const u8 *cdb,
1493 			      int dma_dir, struct scatterlist *sgl,
1494 			      unsigned int n_elem, unsigned long timeout)
1495 {
1496 	struct ata_link *link = dev->link;
1497 	struct ata_port *ap = link->ap;
1498 	u8 command = tf->command;
1499 	int auto_timeout = 0;
1500 	struct ata_queued_cmd *qc;
1501 	unsigned int preempted_tag;
1502 	u32 preempted_sactive;
1503 	u64 preempted_qc_active;
1504 	int preempted_nr_active_links;
1505 	DECLARE_COMPLETION_ONSTACK(wait);
1506 	unsigned long flags;
1507 	unsigned int err_mask;
1508 	int rc;
1509 
1510 	spin_lock_irqsave(ap->lock, flags);
1511 
1512 	/* no internal command while frozen */
1513 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1514 		spin_unlock_irqrestore(ap->lock, flags);
1515 		return AC_ERR_SYSTEM;
1516 	}
1517 
1518 	/* initialize internal qc */
1519 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520 
1521 	qc->tag = ATA_TAG_INTERNAL;
1522 	qc->hw_tag = 0;
1523 	qc->scsicmd = NULL;
1524 	qc->ap = ap;
1525 	qc->dev = dev;
1526 	ata_qc_reinit(qc);
1527 
1528 	preempted_tag = link->active_tag;
1529 	preempted_sactive = link->sactive;
1530 	preempted_qc_active = ap->qc_active;
1531 	preempted_nr_active_links = ap->nr_active_links;
1532 	link->active_tag = ATA_TAG_POISON;
1533 	link->sactive = 0;
1534 	ap->qc_active = 0;
1535 	ap->nr_active_links = 0;
1536 
1537 	/* prepare & issue qc */
1538 	qc->tf = *tf;
1539 	if (cdb)
1540 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541 
1542 	/* some SATA bridges need us to indicate data xfer direction */
1543 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544 	    dma_dir == DMA_FROM_DEVICE)
1545 		qc->tf.feature |= ATAPI_DMADIR;
1546 
1547 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1548 	qc->dma_dir = dma_dir;
1549 	if (dma_dir != DMA_NONE) {
1550 		unsigned int i, buflen = 0;
1551 		struct scatterlist *sg;
1552 
1553 		for_each_sg(sgl, sg, n_elem, i)
1554 			buflen += sg->length;
1555 
1556 		ata_sg_init(qc, sgl, n_elem);
1557 		qc->nbytes = buflen;
1558 	}
1559 
1560 	qc->private_data = &wait;
1561 	qc->complete_fn = ata_qc_complete_internal;
1562 
1563 	ata_qc_issue(qc);
1564 
1565 	spin_unlock_irqrestore(ap->lock, flags);
1566 
1567 	if (!timeout) {
1568 		if (ata_probe_timeout)
1569 			timeout = ata_probe_timeout * 1000;
1570 		else {
1571 			timeout = ata_internal_cmd_timeout(dev, command);
1572 			auto_timeout = 1;
1573 		}
1574 	}
1575 
1576 	if (ap->ops->error_handler)
1577 		ata_eh_release(ap);
1578 
1579 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580 
1581 	if (ap->ops->error_handler)
1582 		ata_eh_acquire(ap);
1583 
1584 	ata_sff_flush_pio_task(ap);
1585 
1586 	if (!rc) {
1587 		spin_lock_irqsave(ap->lock, flags);
1588 
1589 		/* We're racing with irq here.  If we lose, the
1590 		 * following test prevents us from completing the qc
1591 		 * twice.  If we win, the port is frozen and will be
1592 		 * cleaned up by ->post_internal_cmd().
1593 		 */
1594 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595 			qc->err_mask |= AC_ERR_TIMEOUT;
1596 
1597 			if (ap->ops->error_handler)
1598 				ata_port_freeze(ap);
1599 			else
1600 				ata_qc_complete(qc);
1601 
1602 			if (ata_msg_warn(ap))
1603 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604 					     command);
1605 		}
1606 
1607 		spin_unlock_irqrestore(ap->lock, flags);
1608 	}
1609 
1610 	/* do post_internal_cmd */
1611 	if (ap->ops->post_internal_cmd)
1612 		ap->ops->post_internal_cmd(qc);
1613 
1614 	/* perform minimal error analysis */
1615 	if (qc->flags & ATA_QCFLAG_FAILED) {
1616 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617 			qc->err_mask |= AC_ERR_DEV;
1618 
1619 		if (!qc->err_mask)
1620 			qc->err_mask |= AC_ERR_OTHER;
1621 
1622 		if (qc->err_mask & ~AC_ERR_OTHER)
1623 			qc->err_mask &= ~AC_ERR_OTHER;
1624 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625 		qc->result_tf.command |= ATA_SENSE;
1626 	}
1627 
1628 	/* finish up */
1629 	spin_lock_irqsave(ap->lock, flags);
1630 
1631 	*tf = qc->result_tf;
1632 	err_mask = qc->err_mask;
1633 
1634 	ata_qc_free(qc);
1635 	link->active_tag = preempted_tag;
1636 	link->sactive = preempted_sactive;
1637 	ap->qc_active = preempted_qc_active;
1638 	ap->nr_active_links = preempted_nr_active_links;
1639 
1640 	spin_unlock_irqrestore(ap->lock, flags);
1641 
1642 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643 		ata_internal_cmd_timed_out(dev, command);
1644 
1645 	return err_mask;
1646 }
1647 
1648 /**
1649  *	ata_exec_internal - execute libata internal command
1650  *	@dev: Device to which the command is sent
1651  *	@tf: Taskfile registers for the command and the result
1652  *	@cdb: CDB for packet command
1653  *	@dma_dir: Data transfer direction of the command
1654  *	@buf: Data buffer of the command
1655  *	@buflen: Length of data buffer
1656  *	@timeout: Timeout in msecs (0 for default)
1657  *
1658  *	Wrapper around ata_exec_internal_sg() which takes simple
1659  *	buffer instead of sg list.
1660  *
1661  *	LOCKING:
1662  *	None.  Should be called with kernel context, might sleep.
1663  *
1664  *	RETURNS:
1665  *	Zero on success, AC_ERR_* mask on failure
1666  */
1667 unsigned ata_exec_internal(struct ata_device *dev,
1668 			   struct ata_taskfile *tf, const u8 *cdb,
1669 			   int dma_dir, void *buf, unsigned int buflen,
1670 			   unsigned long timeout)
1671 {
1672 	struct scatterlist *psg = NULL, sg;
1673 	unsigned int n_elem = 0;
1674 
1675 	if (dma_dir != DMA_NONE) {
1676 		WARN_ON(!buf);
1677 		sg_init_one(&sg, buf, buflen);
1678 		psg = &sg;
1679 		n_elem++;
1680 	}
1681 
1682 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683 				    timeout);
1684 }
1685 
1686 /**
1687  *	ata_pio_need_iordy	-	check if iordy needed
1688  *	@adev: ATA device
1689  *
1690  *	Check if the current speed of the device requires IORDY. Used
1691  *	by various controllers for chip configuration.
1692  */
1693 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694 {
1695 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1696 	 * lead to controller lock up on certain controllers if the
1697 	 * port is not occupied.  See bko#11703 for details.
1698 	 */
1699 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700 		return 0;
1701 	/* Controller doesn't support IORDY.  Probably a pointless
1702 	 * check as the caller should know this.
1703 	 */
1704 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705 		return 0;
1706 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1707 	if (ata_id_is_cfa(adev->id)
1708 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709 		return 0;
1710 	/* PIO3 and higher it is mandatory */
1711 	if (adev->pio_mode > XFER_PIO_2)
1712 		return 1;
1713 	/* We turn it on when possible */
1714 	if (ata_id_has_iordy(adev->id))
1715 		return 1;
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719 
1720 /**
1721  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1722  *	@adev: ATA device
1723  *
1724  *	Compute the highest mode possible if we are not using iordy. Return
1725  *	-1 if no iordy mode is available.
1726  */
1727 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728 {
1729 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1730 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1731 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732 		/* Is the speed faster than the drive allows non IORDY ? */
1733 		if (pio) {
1734 			/* This is cycle times not frequency - watch the logic! */
1735 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1736 				return 3 << ATA_SHIFT_PIO;
1737 			return 7 << ATA_SHIFT_PIO;
1738 		}
1739 	}
1740 	return 3 << ATA_SHIFT_PIO;
1741 }
1742 
1743 /**
1744  *	ata_do_dev_read_id		-	default ID read method
1745  *	@dev: device
1746  *	@tf: proposed taskfile
1747  *	@id: data buffer
1748  *
1749  *	Issue the identify taskfile and hand back the buffer containing
1750  *	identify data. For some RAID controllers and for pre ATA devices
1751  *	this function is wrapped or replaced by the driver
1752  */
1753 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754 					struct ata_taskfile *tf, u16 *id)
1755 {
1756 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758 }
1759 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760 
1761 /**
1762  *	ata_dev_read_id - Read ID data from the specified device
1763  *	@dev: target device
1764  *	@p_class: pointer to class of the target device (may be changed)
1765  *	@flags: ATA_READID_* flags
1766  *	@id: buffer to read IDENTIFY data into
1767  *
1768  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1769  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1771  *	for pre-ATA4 drives.
1772  *
1773  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774  *	now we abort if we hit that case.
1775  *
1776  *	LOCKING:
1777  *	Kernel thread context (may sleep)
1778  *
1779  *	RETURNS:
1780  *	0 on success, -errno otherwise.
1781  */
1782 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783 		    unsigned int flags, u16 *id)
1784 {
1785 	struct ata_port *ap = dev->link->ap;
1786 	unsigned int class = *p_class;
1787 	struct ata_taskfile tf;
1788 	unsigned int err_mask = 0;
1789 	const char *reason;
1790 	bool is_semb = class == ATA_DEV_SEMB;
1791 	int may_fallback = 1, tried_spinup = 0;
1792 	int rc;
1793 
1794 	if (ata_msg_ctl(ap))
1795 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796 
1797 retry:
1798 	ata_tf_init(dev, &tf);
1799 
1800 	switch (class) {
1801 	case ATA_DEV_SEMB:
1802 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1803 		/* fall through */
1804 	case ATA_DEV_ATA:
1805 	case ATA_DEV_ZAC:
1806 		tf.command = ATA_CMD_ID_ATA;
1807 		break;
1808 	case ATA_DEV_ATAPI:
1809 		tf.command = ATA_CMD_ID_ATAPI;
1810 		break;
1811 	default:
1812 		rc = -ENODEV;
1813 		reason = "unsupported class";
1814 		goto err_out;
1815 	}
1816 
1817 	tf.protocol = ATA_PROT_PIO;
1818 
1819 	/* Some devices choke if TF registers contain garbage.  Make
1820 	 * sure those are properly initialized.
1821 	 */
1822 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823 
1824 	/* Device presence detection is unreliable on some
1825 	 * controllers.  Always poll IDENTIFY if available.
1826 	 */
1827 	tf.flags |= ATA_TFLAG_POLLING;
1828 
1829 	if (ap->ops->read_id)
1830 		err_mask = ap->ops->read_id(dev, &tf, id);
1831 	else
1832 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1833 
1834 	if (err_mask) {
1835 		if (err_mask & AC_ERR_NODEV_HINT) {
1836 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1837 			return -ENOENT;
1838 		}
1839 
1840 		if (is_semb) {
1841 			ata_dev_info(dev,
1842 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843 			/* SEMB is not supported yet */
1844 			*p_class = ATA_DEV_SEMB_UNSUP;
1845 			return 0;
1846 		}
1847 
1848 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849 			/* Device or controller might have reported
1850 			 * the wrong device class.  Give a shot at the
1851 			 * other IDENTIFY if the current one is
1852 			 * aborted by the device.
1853 			 */
1854 			if (may_fallback) {
1855 				may_fallback = 0;
1856 
1857 				if (class == ATA_DEV_ATA)
1858 					class = ATA_DEV_ATAPI;
1859 				else
1860 					class = ATA_DEV_ATA;
1861 				goto retry;
1862 			}
1863 
1864 			/* Control reaches here iff the device aborted
1865 			 * both flavors of IDENTIFYs which happens
1866 			 * sometimes with phantom devices.
1867 			 */
1868 			ata_dev_dbg(dev,
1869 				    "both IDENTIFYs aborted, assuming NODEV\n");
1870 			return -ENOENT;
1871 		}
1872 
1873 		rc = -EIO;
1874 		reason = "I/O error";
1875 		goto err_out;
1876 	}
1877 
1878 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1881 			    class, may_fallback, tried_spinup);
1882 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884 	}
1885 
1886 	/* Falling back doesn't make sense if ID data was read
1887 	 * successfully at least once.
1888 	 */
1889 	may_fallback = 0;
1890 
1891 	swap_buf_le16(id, ATA_ID_WORDS);
1892 
1893 	/* sanity check */
1894 	rc = -EINVAL;
1895 	reason = "device reports invalid type";
1896 
1897 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899 			goto err_out;
1900 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901 							ata_id_is_ata(id)) {
1902 			ata_dev_dbg(dev,
1903 				"host indicates ignore ATA devices, ignored\n");
1904 			return -ENOENT;
1905 		}
1906 	} else {
1907 		if (ata_id_is_ata(id))
1908 			goto err_out;
1909 	}
1910 
1911 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912 		tried_spinup = 1;
1913 		/*
1914 		 * Drive powered-up in standby mode, and requires a specific
1915 		 * SET_FEATURES spin-up subcommand before it will accept
1916 		 * anything other than the original IDENTIFY command.
1917 		 */
1918 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919 		if (err_mask && id[2] != 0x738c) {
1920 			rc = -EIO;
1921 			reason = "SPINUP failed";
1922 			goto err_out;
1923 		}
1924 		/*
1925 		 * If the drive initially returned incomplete IDENTIFY info,
1926 		 * we now must reissue the IDENTIFY command.
1927 		 */
1928 		if (id[2] == 0x37c8)
1929 			goto retry;
1930 	}
1931 
1932 	if ((flags & ATA_READID_POSTRESET) &&
1933 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934 		/*
1935 		 * The exact sequence expected by certain pre-ATA4 drives is:
1936 		 * SRST RESET
1937 		 * IDENTIFY (optional in early ATA)
1938 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939 		 * anything else..
1940 		 * Some drives were very specific about that exact sequence.
1941 		 *
1942 		 * Note that ATA4 says lba is mandatory so the second check
1943 		 * should never trigger.
1944 		 */
1945 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947 			if (err_mask) {
1948 				rc = -EIO;
1949 				reason = "INIT_DEV_PARAMS failed";
1950 				goto err_out;
1951 			}
1952 
1953 			/* current CHS translation info (id[53-58]) might be
1954 			 * changed. reread the identify device info.
1955 			 */
1956 			flags &= ~ATA_READID_POSTRESET;
1957 			goto retry;
1958 		}
1959 	}
1960 
1961 	*p_class = class;
1962 
1963 	return 0;
1964 
1965  err_out:
1966 	if (ata_msg_warn(ap))
1967 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968 			     reason, err_mask);
1969 	return rc;
1970 }
1971 
1972 /**
1973  *	ata_read_log_page - read a specific log page
1974  *	@dev: target device
1975  *	@log: log to read
1976  *	@page: page to read
1977  *	@buf: buffer to store read page
1978  *	@sectors: number of sectors to read
1979  *
1980  *	Read log page using READ_LOG_EXT command.
1981  *
1982  *	LOCKING:
1983  *	Kernel thread context (may sleep).
1984  *
1985  *	RETURNS:
1986  *	0 on success, AC_ERR_* mask otherwise.
1987  */
1988 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989 			       u8 page, void *buf, unsigned int sectors)
1990 {
1991 	unsigned long ap_flags = dev->link->ap->flags;
1992 	struct ata_taskfile tf;
1993 	unsigned int err_mask;
1994 	bool dma = false;
1995 
1996 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997 
1998 	/*
1999 	 * Return error without actually issuing the command on controllers
2000 	 * which e.g. lockup on a read log page.
2001 	 */
2002 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003 		return AC_ERR_DEV;
2004 
2005 retry:
2006 	ata_tf_init(dev, &tf);
2007 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2008 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010 		tf.protocol = ATA_PROT_DMA;
2011 		dma = true;
2012 	} else {
2013 		tf.command = ATA_CMD_READ_LOG_EXT;
2014 		tf.protocol = ATA_PROT_PIO;
2015 		dma = false;
2016 	}
2017 	tf.lbal = log;
2018 	tf.lbam = page;
2019 	tf.nsect = sectors;
2020 	tf.hob_nsect = sectors >> 8;
2021 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022 
2023 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024 				     buf, sectors * ATA_SECT_SIZE, 0);
2025 
2026 	if (err_mask && dma) {
2027 		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029 		goto retry;
2030 	}
2031 
2032 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033 	return err_mask;
2034 }
2035 
2036 static bool ata_log_supported(struct ata_device *dev, u8 log)
2037 {
2038 	struct ata_port *ap = dev->link->ap;
2039 
2040 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041 		return false;
2042 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043 }
2044 
2045 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046 {
2047 	struct ata_port *ap = dev->link->ap;
2048 	unsigned int err, i;
2049 
2050 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052 		return false;
2053 	}
2054 
2055 	/*
2056 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057 	 * supported.
2058 	 */
2059 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060 				1);
2061 	if (err) {
2062 		ata_dev_info(dev,
2063 			     "failed to get Device Identify Log Emask 0x%x\n",
2064 			     err);
2065 		return false;
2066 	}
2067 
2068 	for (i = 0; i < ap->sector_buf[8]; i++) {
2069 		if (ap->sector_buf[9 + i] == page)
2070 			return true;
2071 	}
2072 
2073 	return false;
2074 }
2075 
2076 static int ata_do_link_spd_horkage(struct ata_device *dev)
2077 {
2078 	struct ata_link *plink = ata_dev_phys_link(dev);
2079 	u32 target, target_limit;
2080 
2081 	if (!sata_scr_valid(plink))
2082 		return 0;
2083 
2084 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085 		target = 1;
2086 	else
2087 		return 0;
2088 
2089 	target_limit = (1 << target) - 1;
2090 
2091 	/* if already on stricter limit, no need to push further */
2092 	if (plink->sata_spd_limit <= target_limit)
2093 		return 0;
2094 
2095 	plink->sata_spd_limit = target_limit;
2096 
2097 	/* Request another EH round by returning -EAGAIN if link is
2098 	 * going faster than the target speed.  Forward progress is
2099 	 * guaranteed by setting sata_spd_limit to target_limit above.
2100 	 */
2101 	if (plink->sata_spd > target) {
2102 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103 			     sata_spd_string(target));
2104 		return -EAGAIN;
2105 	}
2106 	return 0;
2107 }
2108 
2109 static inline u8 ata_dev_knobble(struct ata_device *dev)
2110 {
2111 	struct ata_port *ap = dev->link->ap;
2112 
2113 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114 		return 0;
2115 
2116 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117 }
2118 
2119 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120 {
2121 	struct ata_port *ap = dev->link->ap;
2122 	unsigned int err_mask;
2123 
2124 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126 		return;
2127 	}
2128 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 				     0, ap->sector_buf, 1);
2130 	if (err_mask) {
2131 		ata_dev_dbg(dev,
2132 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 			    err_mask);
2134 	} else {
2135 		u8 *cmds = dev->ncq_send_recv_cmds;
2136 
2137 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139 
2140 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 		}
2145 	}
2146 }
2147 
2148 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149 {
2150 	struct ata_port *ap = dev->link->ap;
2151 	unsigned int err_mask;
2152 
2153 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154 		ata_dev_warn(dev,
2155 			     "NCQ Send/Recv Log not supported\n");
2156 		return;
2157 	}
2158 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159 				     0, ap->sector_buf, 1);
2160 	if (err_mask) {
2161 		ata_dev_dbg(dev,
2162 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163 			    err_mask);
2164 	} else {
2165 		u8 *cmds = dev->ncq_non_data_cmds;
2166 
2167 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168 	}
2169 }
2170 
2171 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172 {
2173 	struct ata_port *ap = dev->link->ap;
2174 	unsigned int err_mask;
2175 
2176 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178 		return;
2179 	}
2180 
2181 	err_mask = ata_read_log_page(dev,
2182 				     ATA_LOG_IDENTIFY_DEVICE,
2183 				     ATA_LOG_SATA_SETTINGS,
2184 				     ap->sector_buf,
2185 				     1);
2186 	if (err_mask) {
2187 		ata_dev_dbg(dev,
2188 			    "failed to get Identify Device data, Emask 0x%x\n",
2189 			    err_mask);
2190 		return;
2191 	}
2192 
2193 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195 	} else {
2196 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2198 	}
2199 
2200 }
2201 
2202 static int ata_dev_config_ncq(struct ata_device *dev,
2203 			       char *desc, size_t desc_sz)
2204 {
2205 	struct ata_port *ap = dev->link->ap;
2206 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2207 	unsigned int err_mask;
2208 	char *aa_desc = "";
2209 
2210 	if (!ata_id_has_ncq(dev->id)) {
2211 		desc[0] = '\0';
2212 		return 0;
2213 	}
2214 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2215 		return 0;
2216 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2217 		snprintf(desc, desc_sz, "NCQ (not used)");
2218 		return 0;
2219 	}
2220 	if (ap->flags & ATA_FLAG_NCQ) {
2221 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2222 		dev->flags |= ATA_DFLAG_NCQ;
2223 	}
2224 
2225 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2226 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2227 		ata_id_has_fpdma_aa(dev->id)) {
2228 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2229 			SATA_FPDMA_AA);
2230 		if (err_mask) {
2231 			ata_dev_err(dev,
2232 				    "failed to enable AA (error_mask=0x%x)\n",
2233 				    err_mask);
2234 			if (err_mask != AC_ERR_DEV) {
2235 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2236 				return -EIO;
2237 			}
2238 		} else
2239 			aa_desc = ", AA";
2240 	}
2241 
2242 	if (hdepth >= ddepth)
2243 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2244 	else
2245 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2246 			ddepth, aa_desc);
2247 
2248 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2249 		if (ata_id_has_ncq_send_and_recv(dev->id))
2250 			ata_dev_config_ncq_send_recv(dev);
2251 		if (ata_id_has_ncq_non_data(dev->id))
2252 			ata_dev_config_ncq_non_data(dev);
2253 		if (ata_id_has_ncq_prio(dev->id))
2254 			ata_dev_config_ncq_prio(dev);
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2261 {
2262 	unsigned int err_mask;
2263 
2264 	if (!ata_id_has_sense_reporting(dev->id))
2265 		return;
2266 
2267 	if (ata_id_sense_reporting_enabled(dev->id))
2268 		return;
2269 
2270 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2271 	if (err_mask) {
2272 		ata_dev_dbg(dev,
2273 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2274 			    err_mask);
2275 	}
2276 }
2277 
2278 static void ata_dev_config_zac(struct ata_device *dev)
2279 {
2280 	struct ata_port *ap = dev->link->ap;
2281 	unsigned int err_mask;
2282 	u8 *identify_buf = ap->sector_buf;
2283 
2284 	dev->zac_zones_optimal_open = U32_MAX;
2285 	dev->zac_zones_optimal_nonseq = U32_MAX;
2286 	dev->zac_zones_max_open = U32_MAX;
2287 
2288 	/*
2289 	 * Always set the 'ZAC' flag for Host-managed devices.
2290 	 */
2291 	if (dev->class == ATA_DEV_ZAC)
2292 		dev->flags |= ATA_DFLAG_ZAC;
2293 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2294 		/*
2295 		 * Check for host-aware devices.
2296 		 */
2297 		dev->flags |= ATA_DFLAG_ZAC;
2298 
2299 	if (!(dev->flags & ATA_DFLAG_ZAC))
2300 		return;
2301 
2302 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2303 		ata_dev_warn(dev,
2304 			     "ATA Zoned Information Log not supported\n");
2305 		return;
2306 	}
2307 
2308 	/*
2309 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2310 	 */
2311 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2312 				     ATA_LOG_ZONED_INFORMATION,
2313 				     identify_buf, 1);
2314 	if (!err_mask) {
2315 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2316 
2317 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2318 		if ((zoned_cap >> 63))
2319 			dev->zac_zoned_cap = (zoned_cap & 1);
2320 		opt_open = get_unaligned_le64(&identify_buf[24]);
2321 		if ((opt_open >> 63))
2322 			dev->zac_zones_optimal_open = (u32)opt_open;
2323 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2324 		if ((opt_nonseq >> 63))
2325 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2326 		max_open = get_unaligned_le64(&identify_buf[40]);
2327 		if ((max_open >> 63))
2328 			dev->zac_zones_max_open = (u32)max_open;
2329 	}
2330 }
2331 
2332 static void ata_dev_config_trusted(struct ata_device *dev)
2333 {
2334 	struct ata_port *ap = dev->link->ap;
2335 	u64 trusted_cap;
2336 	unsigned int err;
2337 
2338 	if (!ata_id_has_trusted(dev->id))
2339 		return;
2340 
2341 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2342 		ata_dev_warn(dev,
2343 			     "Security Log not supported\n");
2344 		return;
2345 	}
2346 
2347 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2348 			ap->sector_buf, 1);
2349 	if (err) {
2350 		ata_dev_dbg(dev,
2351 			    "failed to read Security Log, Emask 0x%x\n", err);
2352 		return;
2353 	}
2354 
2355 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2356 	if (!(trusted_cap & (1ULL << 63))) {
2357 		ata_dev_dbg(dev,
2358 			    "Trusted Computing capability qword not valid!\n");
2359 		return;
2360 	}
2361 
2362 	if (trusted_cap & (1 << 0))
2363 		dev->flags |= ATA_DFLAG_TRUSTED;
2364 }
2365 
2366 /**
2367  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2368  *	@dev: Target device to configure
2369  *
2370  *	Configure @dev according to @dev->id.  Generic and low-level
2371  *	driver specific fixups are also applied.
2372  *
2373  *	LOCKING:
2374  *	Kernel thread context (may sleep)
2375  *
2376  *	RETURNS:
2377  *	0 on success, -errno otherwise
2378  */
2379 int ata_dev_configure(struct ata_device *dev)
2380 {
2381 	struct ata_port *ap = dev->link->ap;
2382 	struct ata_eh_context *ehc = &dev->link->eh_context;
2383 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2384 	const u16 *id = dev->id;
2385 	unsigned long xfer_mask;
2386 	unsigned int err_mask;
2387 	char revbuf[7];		/* XYZ-99\0 */
2388 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2389 	char modelbuf[ATA_ID_PROD_LEN+1];
2390 	int rc;
2391 
2392 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2393 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2394 		return 0;
2395 	}
2396 
2397 	if (ata_msg_probe(ap))
2398 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2399 
2400 	/* set horkage */
2401 	dev->horkage |= ata_dev_blacklisted(dev);
2402 	ata_force_horkage(dev);
2403 
2404 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2405 		ata_dev_info(dev, "unsupported device, disabling\n");
2406 		ata_dev_disable(dev);
2407 		return 0;
2408 	}
2409 
2410 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2411 	    dev->class == ATA_DEV_ATAPI) {
2412 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2413 			     atapi_enabled ? "not supported with this driver"
2414 			     : "disabled");
2415 		ata_dev_disable(dev);
2416 		return 0;
2417 	}
2418 
2419 	rc = ata_do_link_spd_horkage(dev);
2420 	if (rc)
2421 		return rc;
2422 
2423 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2424 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2425 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2426 		dev->horkage |= ATA_HORKAGE_NOLPM;
2427 
2428 	if (ap->flags & ATA_FLAG_NO_LPM)
2429 		dev->horkage |= ATA_HORKAGE_NOLPM;
2430 
2431 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2432 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2433 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2434 	}
2435 
2436 	/* let ACPI work its magic */
2437 	rc = ata_acpi_on_devcfg(dev);
2438 	if (rc)
2439 		return rc;
2440 
2441 	/* massage HPA, do it early as it might change IDENTIFY data */
2442 	rc = ata_hpa_resize(dev);
2443 	if (rc)
2444 		return rc;
2445 
2446 	/* print device capabilities */
2447 	if (ata_msg_probe(ap))
2448 		ata_dev_dbg(dev,
2449 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2450 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2451 			    __func__,
2452 			    id[49], id[82], id[83], id[84],
2453 			    id[85], id[86], id[87], id[88]);
2454 
2455 	/* initialize to-be-configured parameters */
2456 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2457 	dev->max_sectors = 0;
2458 	dev->cdb_len = 0;
2459 	dev->n_sectors = 0;
2460 	dev->cylinders = 0;
2461 	dev->heads = 0;
2462 	dev->sectors = 0;
2463 	dev->multi_count = 0;
2464 
2465 	/*
2466 	 * common ATA, ATAPI feature tests
2467 	 */
2468 
2469 	/* find max transfer mode; for printk only */
2470 	xfer_mask = ata_id_xfermask(id);
2471 
2472 	if (ata_msg_probe(ap))
2473 		ata_dump_id(id);
2474 
2475 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2476 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2477 			sizeof(fwrevbuf));
2478 
2479 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2480 			sizeof(modelbuf));
2481 
2482 	/* ATA-specific feature tests */
2483 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2484 		if (ata_id_is_cfa(id)) {
2485 			/* CPRM may make this media unusable */
2486 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2487 				ata_dev_warn(dev,
2488 	"supports DRM functions and may not be fully accessible\n");
2489 			snprintf(revbuf, 7, "CFA");
2490 		} else {
2491 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2492 			/* Warn the user if the device has TPM extensions */
2493 			if (ata_id_has_tpm(id))
2494 				ata_dev_warn(dev,
2495 	"supports DRM functions and may not be fully accessible\n");
2496 		}
2497 
2498 		dev->n_sectors = ata_id_n_sectors(id);
2499 
2500 		/* get current R/W Multiple count setting */
2501 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2502 			unsigned int max = dev->id[47] & 0xff;
2503 			unsigned int cnt = dev->id[59] & 0xff;
2504 			/* only recognize/allow powers of two here */
2505 			if (is_power_of_2(max) && is_power_of_2(cnt))
2506 				if (cnt <= max)
2507 					dev->multi_count = cnt;
2508 		}
2509 
2510 		if (ata_id_has_lba(id)) {
2511 			const char *lba_desc;
2512 			char ncq_desc[24];
2513 
2514 			lba_desc = "LBA";
2515 			dev->flags |= ATA_DFLAG_LBA;
2516 			if (ata_id_has_lba48(id)) {
2517 				dev->flags |= ATA_DFLAG_LBA48;
2518 				lba_desc = "LBA48";
2519 
2520 				if (dev->n_sectors >= (1UL << 28) &&
2521 				    ata_id_has_flush_ext(id))
2522 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2523 			}
2524 
2525 			/* config NCQ */
2526 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2527 			if (rc)
2528 				return rc;
2529 
2530 			/* print device info to dmesg */
2531 			if (ata_msg_drv(ap) && print_info) {
2532 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2533 					     revbuf, modelbuf, fwrevbuf,
2534 					     ata_mode_string(xfer_mask));
2535 				ata_dev_info(dev,
2536 					     "%llu sectors, multi %u: %s %s\n",
2537 					(unsigned long long)dev->n_sectors,
2538 					dev->multi_count, lba_desc, ncq_desc);
2539 			}
2540 		} else {
2541 			/* CHS */
2542 
2543 			/* Default translation */
2544 			dev->cylinders	= id[1];
2545 			dev->heads	= id[3];
2546 			dev->sectors	= id[6];
2547 
2548 			if (ata_id_current_chs_valid(id)) {
2549 				/* Current CHS translation is valid. */
2550 				dev->cylinders = id[54];
2551 				dev->heads     = id[55];
2552 				dev->sectors   = id[56];
2553 			}
2554 
2555 			/* print device info to dmesg */
2556 			if (ata_msg_drv(ap) && print_info) {
2557 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2558 					     revbuf,	modelbuf, fwrevbuf,
2559 					     ata_mode_string(xfer_mask));
2560 				ata_dev_info(dev,
2561 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2562 					     (unsigned long long)dev->n_sectors,
2563 					     dev->multi_count, dev->cylinders,
2564 					     dev->heads, dev->sectors);
2565 			}
2566 		}
2567 
2568 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2569 		 * from SATA Settings page of Identify Device Data Log.
2570 		 */
2571 		if (ata_id_has_devslp(dev->id)) {
2572 			u8 *sata_setting = ap->sector_buf;
2573 			int i, j;
2574 
2575 			dev->flags |= ATA_DFLAG_DEVSLP;
2576 			err_mask = ata_read_log_page(dev,
2577 						     ATA_LOG_IDENTIFY_DEVICE,
2578 						     ATA_LOG_SATA_SETTINGS,
2579 						     sata_setting,
2580 						     1);
2581 			if (err_mask)
2582 				ata_dev_dbg(dev,
2583 					    "failed to get Identify Device Data, Emask 0x%x\n",
2584 					    err_mask);
2585 			else
2586 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2587 					j = ATA_LOG_DEVSLP_OFFSET + i;
2588 					dev->devslp_timing[i] = sata_setting[j];
2589 				}
2590 		}
2591 		ata_dev_config_sense_reporting(dev);
2592 		ata_dev_config_zac(dev);
2593 		ata_dev_config_trusted(dev);
2594 		dev->cdb_len = 32;
2595 	}
2596 
2597 	/* ATAPI-specific feature tests */
2598 	else if (dev->class == ATA_DEV_ATAPI) {
2599 		const char *cdb_intr_string = "";
2600 		const char *atapi_an_string = "";
2601 		const char *dma_dir_string = "";
2602 		u32 sntf;
2603 
2604 		rc = atapi_cdb_len(id);
2605 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2606 			if (ata_msg_warn(ap))
2607 				ata_dev_warn(dev, "unsupported CDB len\n");
2608 			rc = -EINVAL;
2609 			goto err_out_nosup;
2610 		}
2611 		dev->cdb_len = (unsigned int) rc;
2612 
2613 		/* Enable ATAPI AN if both the host and device have
2614 		 * the support.  If PMP is attached, SNTF is required
2615 		 * to enable ATAPI AN to discern between PHY status
2616 		 * changed notifications and ATAPI ANs.
2617 		 */
2618 		if (atapi_an &&
2619 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2620 		    (!sata_pmp_attached(ap) ||
2621 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2622 			/* issue SET feature command to turn this on */
2623 			err_mask = ata_dev_set_feature(dev,
2624 					SETFEATURES_SATA_ENABLE, SATA_AN);
2625 			if (err_mask)
2626 				ata_dev_err(dev,
2627 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2628 					    err_mask);
2629 			else {
2630 				dev->flags |= ATA_DFLAG_AN;
2631 				atapi_an_string = ", ATAPI AN";
2632 			}
2633 		}
2634 
2635 		if (ata_id_cdb_intr(dev->id)) {
2636 			dev->flags |= ATA_DFLAG_CDB_INTR;
2637 			cdb_intr_string = ", CDB intr";
2638 		}
2639 
2640 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2641 			dev->flags |= ATA_DFLAG_DMADIR;
2642 			dma_dir_string = ", DMADIR";
2643 		}
2644 
2645 		if (ata_id_has_da(dev->id)) {
2646 			dev->flags |= ATA_DFLAG_DA;
2647 			zpodd_init(dev);
2648 		}
2649 
2650 		/* print device info to dmesg */
2651 		if (ata_msg_drv(ap) && print_info)
2652 			ata_dev_info(dev,
2653 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2654 				     modelbuf, fwrevbuf,
2655 				     ata_mode_string(xfer_mask),
2656 				     cdb_intr_string, atapi_an_string,
2657 				     dma_dir_string);
2658 	}
2659 
2660 	/* determine max_sectors */
2661 	dev->max_sectors = ATA_MAX_SECTORS;
2662 	if (dev->flags & ATA_DFLAG_LBA48)
2663 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2664 
2665 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2666 	   200 sectors */
2667 	if (ata_dev_knobble(dev)) {
2668 		if (ata_msg_drv(ap) && print_info)
2669 			ata_dev_info(dev, "applying bridge limits\n");
2670 		dev->udma_mask &= ATA_UDMA5;
2671 		dev->max_sectors = ATA_MAX_SECTORS;
2672 	}
2673 
2674 	if ((dev->class == ATA_DEV_ATAPI) &&
2675 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2676 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2677 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2678 	}
2679 
2680 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2681 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2682 					 dev->max_sectors);
2683 
2684 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2685 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2686 					 dev->max_sectors);
2687 
2688 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2689 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690 
2691 	if (ap->ops->dev_config)
2692 		ap->ops->dev_config(dev);
2693 
2694 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2695 		/* Let the user know. We don't want to disallow opens for
2696 		   rescue purposes, or in case the vendor is just a blithering
2697 		   idiot. Do this after the dev_config call as some controllers
2698 		   with buggy firmware may want to avoid reporting false device
2699 		   bugs */
2700 
2701 		if (print_info) {
2702 			ata_dev_warn(dev,
2703 "Drive reports diagnostics failure. This may indicate a drive\n");
2704 			ata_dev_warn(dev,
2705 "fault or invalid emulation. Contact drive vendor for information.\n");
2706 		}
2707 	}
2708 
2709 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2710 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2711 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2712 	}
2713 
2714 	return 0;
2715 
2716 err_out_nosup:
2717 	if (ata_msg_probe(ap))
2718 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2719 	return rc;
2720 }
2721 
2722 /**
2723  *	ata_cable_40wire	-	return 40 wire cable type
2724  *	@ap: port
2725  *
2726  *	Helper method for drivers which want to hardwire 40 wire cable
2727  *	detection.
2728  */
2729 
2730 int ata_cable_40wire(struct ata_port *ap)
2731 {
2732 	return ATA_CBL_PATA40;
2733 }
2734 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2735 
2736 /**
2737  *	ata_cable_80wire	-	return 80 wire cable type
2738  *	@ap: port
2739  *
2740  *	Helper method for drivers which want to hardwire 80 wire cable
2741  *	detection.
2742  */
2743 
2744 int ata_cable_80wire(struct ata_port *ap)
2745 {
2746 	return ATA_CBL_PATA80;
2747 }
2748 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2749 
2750 /**
2751  *	ata_cable_unknown	-	return unknown PATA cable.
2752  *	@ap: port
2753  *
2754  *	Helper method for drivers which have no PATA cable detection.
2755  */
2756 
2757 int ata_cable_unknown(struct ata_port *ap)
2758 {
2759 	return ATA_CBL_PATA_UNK;
2760 }
2761 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2762 
2763 /**
2764  *	ata_cable_ignore	-	return ignored PATA cable.
2765  *	@ap: port
2766  *
2767  *	Helper method for drivers which don't use cable type to limit
2768  *	transfer mode.
2769  */
2770 int ata_cable_ignore(struct ata_port *ap)
2771 {
2772 	return ATA_CBL_PATA_IGN;
2773 }
2774 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2775 
2776 /**
2777  *	ata_cable_sata	-	return SATA cable type
2778  *	@ap: port
2779  *
2780  *	Helper method for drivers which have SATA cables
2781  */
2782 
2783 int ata_cable_sata(struct ata_port *ap)
2784 {
2785 	return ATA_CBL_SATA;
2786 }
2787 EXPORT_SYMBOL_GPL(ata_cable_sata);
2788 
2789 /**
2790  *	ata_bus_probe - Reset and probe ATA bus
2791  *	@ap: Bus to probe
2792  *
2793  *	Master ATA bus probing function.  Initiates a hardware-dependent
2794  *	bus reset, then attempts to identify any devices found on
2795  *	the bus.
2796  *
2797  *	LOCKING:
2798  *	PCI/etc. bus probe sem.
2799  *
2800  *	RETURNS:
2801  *	Zero on success, negative errno otherwise.
2802  */
2803 
2804 int ata_bus_probe(struct ata_port *ap)
2805 {
2806 	unsigned int classes[ATA_MAX_DEVICES];
2807 	int tries[ATA_MAX_DEVICES];
2808 	int rc;
2809 	struct ata_device *dev;
2810 
2811 	ata_for_each_dev(dev, &ap->link, ALL)
2812 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2813 
2814  retry:
2815 	ata_for_each_dev(dev, &ap->link, ALL) {
2816 		/* If we issue an SRST then an ATA drive (not ATAPI)
2817 		 * may change configuration and be in PIO0 timing. If
2818 		 * we do a hard reset (or are coming from power on)
2819 		 * this is true for ATA or ATAPI. Until we've set a
2820 		 * suitable controller mode we should not touch the
2821 		 * bus as we may be talking too fast.
2822 		 */
2823 		dev->pio_mode = XFER_PIO_0;
2824 		dev->dma_mode = 0xff;
2825 
2826 		/* If the controller has a pio mode setup function
2827 		 * then use it to set the chipset to rights. Don't
2828 		 * touch the DMA setup as that will be dealt with when
2829 		 * configuring devices.
2830 		 */
2831 		if (ap->ops->set_piomode)
2832 			ap->ops->set_piomode(ap, dev);
2833 	}
2834 
2835 	/* reset and determine device classes */
2836 	ap->ops->phy_reset(ap);
2837 
2838 	ata_for_each_dev(dev, &ap->link, ALL) {
2839 		if (dev->class != ATA_DEV_UNKNOWN)
2840 			classes[dev->devno] = dev->class;
2841 		else
2842 			classes[dev->devno] = ATA_DEV_NONE;
2843 
2844 		dev->class = ATA_DEV_UNKNOWN;
2845 	}
2846 
2847 	/* read IDENTIFY page and configure devices. We have to do the identify
2848 	   specific sequence bass-ackwards so that PDIAG- is released by
2849 	   the slave device */
2850 
2851 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2852 		if (tries[dev->devno])
2853 			dev->class = classes[dev->devno];
2854 
2855 		if (!ata_dev_enabled(dev))
2856 			continue;
2857 
2858 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2859 				     dev->id);
2860 		if (rc)
2861 			goto fail;
2862 	}
2863 
2864 	/* Now ask for the cable type as PDIAG- should have been released */
2865 	if (ap->ops->cable_detect)
2866 		ap->cbl = ap->ops->cable_detect(ap);
2867 
2868 	/* We may have SATA bridge glue hiding here irrespective of
2869 	 * the reported cable types and sensed types.  When SATA
2870 	 * drives indicate we have a bridge, we don't know which end
2871 	 * of the link the bridge is which is a problem.
2872 	 */
2873 	ata_for_each_dev(dev, &ap->link, ENABLED)
2874 		if (ata_id_is_sata(dev->id))
2875 			ap->cbl = ATA_CBL_SATA;
2876 
2877 	/* After the identify sequence we can now set up the devices. We do
2878 	   this in the normal order so that the user doesn't get confused */
2879 
2880 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2881 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2882 		rc = ata_dev_configure(dev);
2883 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2884 		if (rc)
2885 			goto fail;
2886 	}
2887 
2888 	/* configure transfer mode */
2889 	rc = ata_set_mode(&ap->link, &dev);
2890 	if (rc)
2891 		goto fail;
2892 
2893 	ata_for_each_dev(dev, &ap->link, ENABLED)
2894 		return 0;
2895 
2896 	return -ENODEV;
2897 
2898  fail:
2899 	tries[dev->devno]--;
2900 
2901 	switch (rc) {
2902 	case -EINVAL:
2903 		/* eeek, something went very wrong, give up */
2904 		tries[dev->devno] = 0;
2905 		break;
2906 
2907 	case -ENODEV:
2908 		/* give it just one more chance */
2909 		tries[dev->devno] = min(tries[dev->devno], 1);
2910 		/* fall through */
2911 	case -EIO:
2912 		if (tries[dev->devno] == 1) {
2913 			/* This is the last chance, better to slow
2914 			 * down than lose it.
2915 			 */
2916 			sata_down_spd_limit(&ap->link, 0);
2917 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2918 		}
2919 	}
2920 
2921 	if (!tries[dev->devno])
2922 		ata_dev_disable(dev);
2923 
2924 	goto retry;
2925 }
2926 
2927 /**
2928  *	sata_print_link_status - Print SATA link status
2929  *	@link: SATA link to printk link status about
2930  *
2931  *	This function prints link speed and status of a SATA link.
2932  *
2933  *	LOCKING:
2934  *	None.
2935  */
2936 static void sata_print_link_status(struct ata_link *link)
2937 {
2938 	u32 sstatus, scontrol, tmp;
2939 
2940 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2941 		return;
2942 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2943 
2944 	if (ata_phys_link_online(link)) {
2945 		tmp = (sstatus >> 4) & 0xf;
2946 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2947 			      sata_spd_string(tmp), sstatus, scontrol);
2948 	} else {
2949 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2950 			      sstatus, scontrol);
2951 	}
2952 }
2953 
2954 /**
2955  *	ata_dev_pair		-	return other device on cable
2956  *	@adev: device
2957  *
2958  *	Obtain the other device on the same cable, or if none is
2959  *	present NULL is returned
2960  */
2961 
2962 struct ata_device *ata_dev_pair(struct ata_device *adev)
2963 {
2964 	struct ata_link *link = adev->link;
2965 	struct ata_device *pair = &link->device[1 - adev->devno];
2966 	if (!ata_dev_enabled(pair))
2967 		return NULL;
2968 	return pair;
2969 }
2970 EXPORT_SYMBOL_GPL(ata_dev_pair);
2971 
2972 /**
2973  *	sata_down_spd_limit - adjust SATA spd limit downward
2974  *	@link: Link to adjust SATA spd limit for
2975  *	@spd_limit: Additional limit
2976  *
2977  *	Adjust SATA spd limit of @link downward.  Note that this
2978  *	function only adjusts the limit.  The change must be applied
2979  *	using sata_set_spd().
2980  *
2981  *	If @spd_limit is non-zero, the speed is limited to equal to or
2982  *	lower than @spd_limit if such speed is supported.  If
2983  *	@spd_limit is slower than any supported speed, only the lowest
2984  *	supported speed is allowed.
2985  *
2986  *	LOCKING:
2987  *	Inherited from caller.
2988  *
2989  *	RETURNS:
2990  *	0 on success, negative errno on failure
2991  */
2992 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2993 {
2994 	u32 sstatus, spd, mask;
2995 	int rc, bit;
2996 
2997 	if (!sata_scr_valid(link))
2998 		return -EOPNOTSUPP;
2999 
3000 	/* If SCR can be read, use it to determine the current SPD.
3001 	 * If not, use cached value in link->sata_spd.
3002 	 */
3003 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3004 	if (rc == 0 && ata_sstatus_online(sstatus))
3005 		spd = (sstatus >> 4) & 0xf;
3006 	else
3007 		spd = link->sata_spd;
3008 
3009 	mask = link->sata_spd_limit;
3010 	if (mask <= 1)
3011 		return -EINVAL;
3012 
3013 	/* unconditionally mask off the highest bit */
3014 	bit = fls(mask) - 1;
3015 	mask &= ~(1 << bit);
3016 
3017 	/*
3018 	 * Mask off all speeds higher than or equal to the current one.  At
3019 	 * this point, if current SPD is not available and we previously
3020 	 * recorded the link speed from SStatus, the driver has already
3021 	 * masked off the highest bit so mask should already be 1 or 0.
3022 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3023 	 * not previously recorded speed from SStatus.  Just return in this
3024 	 * case.
3025 	 */
3026 	if (spd > 1)
3027 		mask &= (1 << (spd - 1)) - 1;
3028 	else
3029 		return -EINVAL;
3030 
3031 	/* were we already at the bottom? */
3032 	if (!mask)
3033 		return -EINVAL;
3034 
3035 	if (spd_limit) {
3036 		if (mask & ((1 << spd_limit) - 1))
3037 			mask &= (1 << spd_limit) - 1;
3038 		else {
3039 			bit = ffs(mask) - 1;
3040 			mask = 1 << bit;
3041 		}
3042 	}
3043 
3044 	link->sata_spd_limit = mask;
3045 
3046 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3047 		      sata_spd_string(fls(mask)));
3048 
3049 	return 0;
3050 }
3051 
3052 #ifdef CONFIG_ATA_ACPI
3053 /**
3054  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3055  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3056  *	@cycle: cycle duration in ns
3057  *
3058  *	Return matching xfer mode for @cycle.  The returned mode is of
3059  *	the transfer type specified by @xfer_shift.  If @cycle is too
3060  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3061  *	than the fastest known mode, the fasted mode is returned.
3062  *
3063  *	LOCKING:
3064  *	None.
3065  *
3066  *	RETURNS:
3067  *	Matching xfer_mode, 0xff if no match found.
3068  */
3069 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3070 {
3071 	u8 base_mode = 0xff, last_mode = 0xff;
3072 	const struct ata_xfer_ent *ent;
3073 	const struct ata_timing *t;
3074 
3075 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3076 		if (ent->shift == xfer_shift)
3077 			base_mode = ent->base;
3078 
3079 	for (t = ata_timing_find_mode(base_mode);
3080 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3081 		unsigned short this_cycle;
3082 
3083 		switch (xfer_shift) {
3084 		case ATA_SHIFT_PIO:
3085 		case ATA_SHIFT_MWDMA:
3086 			this_cycle = t->cycle;
3087 			break;
3088 		case ATA_SHIFT_UDMA:
3089 			this_cycle = t->udma;
3090 			break;
3091 		default:
3092 			return 0xff;
3093 		}
3094 
3095 		if (cycle > this_cycle)
3096 			break;
3097 
3098 		last_mode = t->mode;
3099 	}
3100 
3101 	return last_mode;
3102 }
3103 #endif
3104 
3105 /**
3106  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3107  *	@dev: Device to adjust xfer masks
3108  *	@sel: ATA_DNXFER_* selector
3109  *
3110  *	Adjust xfer masks of @dev downward.  Note that this function
3111  *	does not apply the change.  Invoking ata_set_mode() afterwards
3112  *	will apply the limit.
3113  *
3114  *	LOCKING:
3115  *	Inherited from caller.
3116  *
3117  *	RETURNS:
3118  *	0 on success, negative errno on failure
3119  */
3120 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3121 {
3122 	char buf[32];
3123 	unsigned long orig_mask, xfer_mask;
3124 	unsigned long pio_mask, mwdma_mask, udma_mask;
3125 	int quiet, highbit;
3126 
3127 	quiet = !!(sel & ATA_DNXFER_QUIET);
3128 	sel &= ~ATA_DNXFER_QUIET;
3129 
3130 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3131 						  dev->mwdma_mask,
3132 						  dev->udma_mask);
3133 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3134 
3135 	switch (sel) {
3136 	case ATA_DNXFER_PIO:
3137 		highbit = fls(pio_mask) - 1;
3138 		pio_mask &= ~(1 << highbit);
3139 		break;
3140 
3141 	case ATA_DNXFER_DMA:
3142 		if (udma_mask) {
3143 			highbit = fls(udma_mask) - 1;
3144 			udma_mask &= ~(1 << highbit);
3145 			if (!udma_mask)
3146 				return -ENOENT;
3147 		} else if (mwdma_mask) {
3148 			highbit = fls(mwdma_mask) - 1;
3149 			mwdma_mask &= ~(1 << highbit);
3150 			if (!mwdma_mask)
3151 				return -ENOENT;
3152 		}
3153 		break;
3154 
3155 	case ATA_DNXFER_40C:
3156 		udma_mask &= ATA_UDMA_MASK_40C;
3157 		break;
3158 
3159 	case ATA_DNXFER_FORCE_PIO0:
3160 		pio_mask &= 1;
3161 		/* fall through */
3162 	case ATA_DNXFER_FORCE_PIO:
3163 		mwdma_mask = 0;
3164 		udma_mask = 0;
3165 		break;
3166 
3167 	default:
3168 		BUG();
3169 	}
3170 
3171 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3172 
3173 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3174 		return -ENOENT;
3175 
3176 	if (!quiet) {
3177 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3178 			snprintf(buf, sizeof(buf), "%s:%s",
3179 				 ata_mode_string(xfer_mask),
3180 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3181 		else
3182 			snprintf(buf, sizeof(buf), "%s",
3183 				 ata_mode_string(xfer_mask));
3184 
3185 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3186 	}
3187 
3188 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3189 			    &dev->udma_mask);
3190 
3191 	return 0;
3192 }
3193 
3194 static int ata_dev_set_mode(struct ata_device *dev)
3195 {
3196 	struct ata_port *ap = dev->link->ap;
3197 	struct ata_eh_context *ehc = &dev->link->eh_context;
3198 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3199 	const char *dev_err_whine = "";
3200 	int ign_dev_err = 0;
3201 	unsigned int err_mask = 0;
3202 	int rc;
3203 
3204 	dev->flags &= ~ATA_DFLAG_PIO;
3205 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3206 		dev->flags |= ATA_DFLAG_PIO;
3207 
3208 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3209 		dev_err_whine = " (SET_XFERMODE skipped)";
3210 	else {
3211 		if (nosetxfer)
3212 			ata_dev_warn(dev,
3213 				     "NOSETXFER but PATA detected - can't "
3214 				     "skip SETXFER, might malfunction\n");
3215 		err_mask = ata_dev_set_xfermode(dev);
3216 	}
3217 
3218 	if (err_mask & ~AC_ERR_DEV)
3219 		goto fail;
3220 
3221 	/* revalidate */
3222 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3223 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3224 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3225 	if (rc)
3226 		return rc;
3227 
3228 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3229 		/* Old CFA may refuse this command, which is just fine */
3230 		if (ata_id_is_cfa(dev->id))
3231 			ign_dev_err = 1;
3232 		/* Catch several broken garbage emulations plus some pre
3233 		   ATA devices */
3234 		if (ata_id_major_version(dev->id) == 0 &&
3235 					dev->pio_mode <= XFER_PIO_2)
3236 			ign_dev_err = 1;
3237 		/* Some very old devices and some bad newer ones fail
3238 		   any kind of SET_XFERMODE request but support PIO0-2
3239 		   timings and no IORDY */
3240 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3241 			ign_dev_err = 1;
3242 	}
3243 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3244 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3245 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3246 	    dev->dma_mode == XFER_MW_DMA_0 &&
3247 	    (dev->id[63] >> 8) & 1)
3248 		ign_dev_err = 1;
3249 
3250 	/* if the device is actually configured correctly, ignore dev err */
3251 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3252 		ign_dev_err = 1;
3253 
3254 	if (err_mask & AC_ERR_DEV) {
3255 		if (!ign_dev_err)
3256 			goto fail;
3257 		else
3258 			dev_err_whine = " (device error ignored)";
3259 	}
3260 
3261 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3262 		dev->xfer_shift, (int)dev->xfer_mode);
3263 
3264 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3265 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3266 		ata_dev_info(dev, "configured for %s%s\n",
3267 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3268 			     dev_err_whine);
3269 
3270 	return 0;
3271 
3272  fail:
3273 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3274 	return -EIO;
3275 }
3276 
3277 /**
3278  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279  *	@link: link on which timings will be programmed
3280  *	@r_failed_dev: out parameter for failed device
3281  *
3282  *	Standard implementation of the function used to tune and set
3283  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3284  *	ata_dev_set_mode() fails, pointer to the failing device is
3285  *	returned in @r_failed_dev.
3286  *
3287  *	LOCKING:
3288  *	PCI/etc. bus probe sem.
3289  *
3290  *	RETURNS:
3291  *	0 on success, negative errno otherwise
3292  */
3293 
3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3295 {
3296 	struct ata_port *ap = link->ap;
3297 	struct ata_device *dev;
3298 	int rc = 0, used_dma = 0, found = 0;
3299 
3300 	/* step 1: calculate xfer_mask */
3301 	ata_for_each_dev(dev, link, ENABLED) {
3302 		unsigned long pio_mask, dma_mask;
3303 		unsigned int mode_mask;
3304 
3305 		mode_mask = ATA_DMA_MASK_ATA;
3306 		if (dev->class == ATA_DEV_ATAPI)
3307 			mode_mask = ATA_DMA_MASK_ATAPI;
3308 		else if (ata_id_is_cfa(dev->id))
3309 			mode_mask = ATA_DMA_MASK_CFA;
3310 
3311 		ata_dev_xfermask(dev);
3312 		ata_force_xfermask(dev);
3313 
3314 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3315 
3316 		if (libata_dma_mask & mode_mask)
3317 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3318 						     dev->udma_mask);
3319 		else
3320 			dma_mask = 0;
3321 
3322 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3323 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3324 
3325 		found = 1;
3326 		if (ata_dma_enabled(dev))
3327 			used_dma = 1;
3328 	}
3329 	if (!found)
3330 		goto out;
3331 
3332 	/* step 2: always set host PIO timings */
3333 	ata_for_each_dev(dev, link, ENABLED) {
3334 		if (dev->pio_mode == 0xff) {
3335 			ata_dev_warn(dev, "no PIO support\n");
3336 			rc = -EINVAL;
3337 			goto out;
3338 		}
3339 
3340 		dev->xfer_mode = dev->pio_mode;
3341 		dev->xfer_shift = ATA_SHIFT_PIO;
3342 		if (ap->ops->set_piomode)
3343 			ap->ops->set_piomode(ap, dev);
3344 	}
3345 
3346 	/* step 3: set host DMA timings */
3347 	ata_for_each_dev(dev, link, ENABLED) {
3348 		if (!ata_dma_enabled(dev))
3349 			continue;
3350 
3351 		dev->xfer_mode = dev->dma_mode;
3352 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3353 		if (ap->ops->set_dmamode)
3354 			ap->ops->set_dmamode(ap, dev);
3355 	}
3356 
3357 	/* step 4: update devices' xfer mode */
3358 	ata_for_each_dev(dev, link, ENABLED) {
3359 		rc = ata_dev_set_mode(dev);
3360 		if (rc)
3361 			goto out;
3362 	}
3363 
3364 	/* Record simplex status. If we selected DMA then the other
3365 	 * host channels are not permitted to do so.
3366 	 */
3367 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3368 		ap->host->simplex_claimed = ap;
3369 
3370  out:
3371 	if (rc)
3372 		*r_failed_dev = dev;
3373 	return rc;
3374 }
3375 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3376 
3377 /**
3378  *	ata_wait_ready - wait for link to become ready
3379  *	@link: link to be waited on
3380  *	@deadline: deadline jiffies for the operation
3381  *	@check_ready: callback to check link readiness
3382  *
3383  *	Wait for @link to become ready.  @check_ready should return
3384  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3385  *	link doesn't seem to be occupied, other errno for other error
3386  *	conditions.
3387  *
3388  *	Transient -ENODEV conditions are allowed for
3389  *	ATA_TMOUT_FF_WAIT.
3390  *
3391  *	LOCKING:
3392  *	EH context.
3393  *
3394  *	RETURNS:
3395  *	0 if @link is ready before @deadline; otherwise, -errno.
3396  */
3397 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3398 		   int (*check_ready)(struct ata_link *link))
3399 {
3400 	unsigned long start = jiffies;
3401 	unsigned long nodev_deadline;
3402 	int warned = 0;
3403 
3404 	/* choose which 0xff timeout to use, read comment in libata.h */
3405 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3406 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3407 	else
3408 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3409 
3410 	/* Slave readiness can't be tested separately from master.  On
3411 	 * M/S emulation configuration, this function should be called
3412 	 * only on the master and it will handle both master and slave.
3413 	 */
3414 	WARN_ON(link == link->ap->slave_link);
3415 
3416 	if (time_after(nodev_deadline, deadline))
3417 		nodev_deadline = deadline;
3418 
3419 	while (1) {
3420 		unsigned long now = jiffies;
3421 		int ready, tmp;
3422 
3423 		ready = tmp = check_ready(link);
3424 		if (ready > 0)
3425 			return 0;
3426 
3427 		/*
3428 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3429 		 * is online.  Also, some SATA devices take a long
3430 		 * time to clear 0xff after reset.  Wait for
3431 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3432 		 * offline.
3433 		 *
3434 		 * Note that some PATA controllers (pata_ali) explode
3435 		 * if status register is read more than once when
3436 		 * there's no device attached.
3437 		 */
3438 		if (ready == -ENODEV) {
3439 			if (ata_link_online(link))
3440 				ready = 0;
3441 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3442 				 !ata_link_offline(link) &&
3443 				 time_before(now, nodev_deadline))
3444 				ready = 0;
3445 		}
3446 
3447 		if (ready)
3448 			return ready;
3449 		if (time_after(now, deadline))
3450 			return -EBUSY;
3451 
3452 		if (!warned && time_after(now, start + 5 * HZ) &&
3453 		    (deadline - now > 3 * HZ)) {
3454 			ata_link_warn(link,
3455 				"link is slow to respond, please be patient "
3456 				"(ready=%d)\n", tmp);
3457 			warned = 1;
3458 		}
3459 
3460 		ata_msleep(link->ap, 50);
3461 	}
3462 }
3463 
3464 /**
3465  *	ata_wait_after_reset - wait for link to become ready after reset
3466  *	@link: link to be waited on
3467  *	@deadline: deadline jiffies for the operation
3468  *	@check_ready: callback to check link readiness
3469  *
3470  *	Wait for @link to become ready after reset.
3471  *
3472  *	LOCKING:
3473  *	EH context.
3474  *
3475  *	RETURNS:
3476  *	0 if @link is ready before @deadline; otherwise, -errno.
3477  */
3478 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3479 				int (*check_ready)(struct ata_link *link))
3480 {
3481 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3482 
3483 	return ata_wait_ready(link, deadline, check_ready);
3484 }
3485 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3486 
3487 /**
3488  *	ata_std_prereset - prepare for reset
3489  *	@link: ATA link to be reset
3490  *	@deadline: deadline jiffies for the operation
3491  *
3492  *	@link is about to be reset.  Initialize it.  Failure from
3493  *	prereset makes libata abort whole reset sequence and give up
3494  *	that port, so prereset should be best-effort.  It does its
3495  *	best to prepare for reset sequence but if things go wrong, it
3496  *	should just whine, not fail.
3497  *
3498  *	LOCKING:
3499  *	Kernel thread context (may sleep)
3500  *
3501  *	RETURNS:
3502  *	0 on success, -errno otherwise.
3503  */
3504 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3505 {
3506 	struct ata_port *ap = link->ap;
3507 	struct ata_eh_context *ehc = &link->eh_context;
3508 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3509 	int rc;
3510 
3511 	/* if we're about to do hardreset, nothing more to do */
3512 	if (ehc->i.action & ATA_EH_HARDRESET)
3513 		return 0;
3514 
3515 	/* if SATA, resume link */
3516 	if (ap->flags & ATA_FLAG_SATA) {
3517 		rc = sata_link_resume(link, timing, deadline);
3518 		/* whine about phy resume failure but proceed */
3519 		if (rc && rc != -EOPNOTSUPP)
3520 			ata_link_warn(link,
3521 				      "failed to resume link for reset (errno=%d)\n",
3522 				      rc);
3523 	}
3524 
3525 	/* no point in trying softreset on offline link */
3526 	if (ata_phys_link_offline(link))
3527 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3528 
3529 	return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(ata_std_prereset);
3532 
3533 /**
3534  *	sata_std_hardreset - COMRESET w/o waiting or classification
3535  *	@link: link to reset
3536  *	@class: resulting class of attached device
3537  *	@deadline: deadline jiffies for the operation
3538  *
3539  *	Standard SATA COMRESET w/o waiting or classification.
3540  *
3541  *	LOCKING:
3542  *	Kernel thread context (may sleep)
3543  *
3544  *	RETURNS:
3545  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3546  */
3547 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3548 		       unsigned long deadline)
3549 {
3550 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3551 	bool online;
3552 	int rc;
3553 
3554 	/* do hardreset */
3555 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3556 	return online ? -EAGAIN : rc;
3557 }
3558 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3559 
3560 /**
3561  *	ata_std_postreset - standard postreset callback
3562  *	@link: the target ata_link
3563  *	@classes: classes of attached devices
3564  *
3565  *	This function is invoked after a successful reset.  Note that
3566  *	the device might have been reset more than once using
3567  *	different reset methods before postreset is invoked.
3568  *
3569  *	LOCKING:
3570  *	Kernel thread context (may sleep)
3571  */
3572 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3573 {
3574 	u32 serror;
3575 
3576 	DPRINTK("ENTER\n");
3577 
3578 	/* reset complete, clear SError */
3579 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3580 		sata_scr_write(link, SCR_ERROR, serror);
3581 
3582 	/* print link status */
3583 	sata_print_link_status(link);
3584 
3585 	DPRINTK("EXIT\n");
3586 }
3587 EXPORT_SYMBOL_GPL(ata_std_postreset);
3588 
3589 /**
3590  *	ata_dev_same_device - Determine whether new ID matches configured device
3591  *	@dev: device to compare against
3592  *	@new_class: class of the new device
3593  *	@new_id: IDENTIFY page of the new device
3594  *
3595  *	Compare @new_class and @new_id against @dev and determine
3596  *	whether @dev is the device indicated by @new_class and
3597  *	@new_id.
3598  *
3599  *	LOCKING:
3600  *	None.
3601  *
3602  *	RETURNS:
3603  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3604  */
3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 			       const u16 *new_id)
3607 {
3608 	const u16 *old_id = dev->id;
3609 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3611 
3612 	if (dev->class != new_class) {
3613 		ata_dev_info(dev, "class mismatch %d != %d\n",
3614 			     dev->class, new_class);
3615 		return 0;
3616 	}
3617 
3618 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3622 
3623 	if (strcmp(model[0], model[1])) {
3624 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3625 			     model[0], model[1]);
3626 		return 0;
3627 	}
3628 
3629 	if (strcmp(serial[0], serial[1])) {
3630 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3631 			     serial[0], serial[1]);
3632 		return 0;
3633 	}
3634 
3635 	return 1;
3636 }
3637 
3638 /**
3639  *	ata_dev_reread_id - Re-read IDENTIFY data
3640  *	@dev: target ATA device
3641  *	@readid_flags: read ID flags
3642  *
3643  *	Re-read IDENTIFY page and make sure @dev is still attached to
3644  *	the port.
3645  *
3646  *	LOCKING:
3647  *	Kernel thread context (may sleep)
3648  *
3649  *	RETURNS:
3650  *	0 on success, negative errno otherwise
3651  */
3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3653 {
3654 	unsigned int class = dev->class;
3655 	u16 *id = (void *)dev->link->ap->sector_buf;
3656 	int rc;
3657 
3658 	/* read ID data */
3659 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660 	if (rc)
3661 		return rc;
3662 
3663 	/* is the device still there? */
3664 	if (!ata_dev_same_device(dev, class, id))
3665 		return -ENODEV;
3666 
3667 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668 	return 0;
3669 }
3670 
3671 /**
3672  *	ata_dev_revalidate - Revalidate ATA device
3673  *	@dev: device to revalidate
3674  *	@new_class: new class code
3675  *	@readid_flags: read ID flags
3676  *
3677  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3678  *	port and reconfigure it according to the new IDENTIFY page.
3679  *
3680  *	LOCKING:
3681  *	Kernel thread context (may sleep)
3682  *
3683  *	RETURNS:
3684  *	0 on success, negative errno otherwise
3685  */
3686 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3687 		       unsigned int readid_flags)
3688 {
3689 	u64 n_sectors = dev->n_sectors;
3690 	u64 n_native_sectors = dev->n_native_sectors;
3691 	int rc;
3692 
3693 	if (!ata_dev_enabled(dev))
3694 		return -ENODEV;
3695 
3696 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3697 	if (ata_class_enabled(new_class) &&
3698 	    new_class != ATA_DEV_ATA &&
3699 	    new_class != ATA_DEV_ATAPI &&
3700 	    new_class != ATA_DEV_ZAC &&
3701 	    new_class != ATA_DEV_SEMB) {
3702 		ata_dev_info(dev, "class mismatch %u != %u\n",
3703 			     dev->class, new_class);
3704 		rc = -ENODEV;
3705 		goto fail;
3706 	}
3707 
3708 	/* re-read ID */
3709 	rc = ata_dev_reread_id(dev, readid_flags);
3710 	if (rc)
3711 		goto fail;
3712 
3713 	/* configure device according to the new ID */
3714 	rc = ata_dev_configure(dev);
3715 	if (rc)
3716 		goto fail;
3717 
3718 	/* verify n_sectors hasn't changed */
3719 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3720 	    dev->n_sectors == n_sectors)
3721 		return 0;
3722 
3723 	/* n_sectors has changed */
3724 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3725 		     (unsigned long long)n_sectors,
3726 		     (unsigned long long)dev->n_sectors);
3727 
3728 	/*
3729 	 * Something could have caused HPA to be unlocked
3730 	 * involuntarily.  If n_native_sectors hasn't changed and the
3731 	 * new size matches it, keep the device.
3732 	 */
3733 	if (dev->n_native_sectors == n_native_sectors &&
3734 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3735 		ata_dev_warn(dev,
3736 			     "new n_sectors matches native, probably "
3737 			     "late HPA unlock, n_sectors updated\n");
3738 		/* use the larger n_sectors */
3739 		return 0;
3740 	}
3741 
3742 	/*
3743 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3744 	 * unlocking HPA in those cases.
3745 	 *
3746 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3747 	 */
3748 	if (dev->n_native_sectors == n_native_sectors &&
3749 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3750 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3751 		ata_dev_warn(dev,
3752 			     "old n_sectors matches native, probably "
3753 			     "late HPA lock, will try to unlock HPA\n");
3754 		/* try unlocking HPA */
3755 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3756 		rc = -EIO;
3757 	} else
3758 		rc = -ENODEV;
3759 
3760 	/* restore original n_[native_]sectors and fail */
3761 	dev->n_native_sectors = n_native_sectors;
3762 	dev->n_sectors = n_sectors;
3763  fail:
3764 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3765 	return rc;
3766 }
3767 
3768 struct ata_blacklist_entry {
3769 	const char *model_num;
3770 	const char *model_rev;
3771 	unsigned long horkage;
3772 };
3773 
3774 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3775 	/* Devices with DMA related problems under Linux */
3776 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3777 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3778 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3779 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3780 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3781 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3782 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3783 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3784 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3785 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3786 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3787 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3788 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3789 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3790 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3791 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3792 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3793 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3794 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3795 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3796 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3797 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3798 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3799 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3800 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3801 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3802 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3803 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3804 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3805 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3806 	/* Odd clown on sil3726/4726 PMPs */
3807 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3808 
3809 	/* Weird ATAPI devices */
3810 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3811 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3812 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3813 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3814 
3815 	/*
3816 	 * Causes silent data corruption with higher max sects.
3817 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3818 	 */
3819 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3820 
3821 	/*
3822 	 * These devices time out with higher max sects.
3823 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3824 	 */
3825 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3826 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3827 
3828 	/* Devices we expect to fail diagnostics */
3829 
3830 	/* Devices where NCQ should be avoided */
3831 	/* NCQ is slow */
3832 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3833 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3834 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3835 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3836 	/* NCQ is broken */
3837 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3838 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3839 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3840 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3841 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3842 
3843 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3844 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3845 						ATA_HORKAGE_FIRMWARE_WARN },
3846 
3847 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3848 						ATA_HORKAGE_FIRMWARE_WARN },
3849 
3850 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3851 						ATA_HORKAGE_FIRMWARE_WARN },
3852 
3853 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3854 						ATA_HORKAGE_FIRMWARE_WARN },
3855 
3856 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3857 	   the ST disks also have LPM issues */
3858 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3859 						ATA_HORKAGE_NOLPM, },
3860 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3861 
3862 	/* Blacklist entries taken from Silicon Image 3124/3132
3863 	   Windows driver .inf file - also several Linux problem reports */
3864 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3865 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3866 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3867 
3868 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3869 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3870 
3871 	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
3872 	   SD7SN6S256G and SD8SN8U256G */
3873 	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, },
3874 
3875 	/* devices which puke on READ_NATIVE_MAX */
3876 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3877 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3878 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3879 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3880 
3881 	/* this one allows HPA unlocking but fails IOs on the area */
3882 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3883 
3884 	/* Devices which report 1 sector over size HPA */
3885 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3886 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3887 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3888 
3889 	/* Devices which get the IVB wrong */
3890 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3891 	/* Maybe we should just blacklist TSSTcorp... */
3892 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3893 
3894 	/* Devices that do not need bridging limits applied */
3895 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3896 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3897 
3898 	/* Devices which aren't very happy with higher link speeds */
3899 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3900 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3901 
3902 	/*
3903 	 * Devices which choke on SETXFER.  Applies only if both the
3904 	 * device and controller are SATA.
3905 	 */
3906 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3907 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3908 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3909 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3910 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3911 
3912 	/* Crucial BX100 SSD 500GB has broken LPM support */
3913 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3914 
3915 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3916 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3917 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3918 						ATA_HORKAGE_NOLPM, },
3919 	/* 512GB MX100 with newer firmware has only LPM issues */
3920 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3921 						ATA_HORKAGE_NOLPM, },
3922 
3923 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3924 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3925 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3926 						ATA_HORKAGE_NOLPM, },
3927 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3928 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3929 						ATA_HORKAGE_NOLPM, },
3930 
3931 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3932 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3933 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3934 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3935 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3936 
3937 	/* devices that don't properly handle queued TRIM commands */
3938 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3939 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3940 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3941 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3942 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3943 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3944 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3945 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3946 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3947 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3948 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3949 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3950 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3951 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3952 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3953 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3954 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3955 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3956 
3957 	/* devices that don't properly handle TRIM commands */
3958 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
3959 
3960 	/*
3961 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3962 	 * (Return Zero After Trim) flags in the ATA Command Set are
3963 	 * unreliable in the sense that they only define what happens if
3964 	 * the device successfully executed the DSM TRIM command. TRIM
3965 	 * is only advisory, however, and the device is free to silently
3966 	 * ignore all or parts of the request.
3967 	 *
3968 	 * Whitelist drives that are known to reliably return zeroes
3969 	 * after TRIM.
3970 	 */
3971 
3972 	/*
3973 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
3974 	 * that model before whitelisting all other intel SSDs.
3975 	 */
3976 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
3977 
3978 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3980 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3982 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3983 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3984 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3986 
3987 	/*
3988 	 * Some WD SATA-I drives spin up and down erratically when the link
3989 	 * is put into the slumber mode.  We don't have full list of the
3990 	 * affected devices.  Disable LPM if the device matches one of the
3991 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
3992 	 * lost too.
3993 	 *
3994 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
3995 	 */
3996 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3997 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3998 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3999 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4000 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4001 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4002 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4003 
4004 	/* End Marker */
4005 	{ }
4006 };
4007 
4008 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4009 {
4010 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4011 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4012 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4013 
4014 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4015 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4016 
4017 	while (ad->model_num) {
4018 		if (glob_match(ad->model_num, model_num)) {
4019 			if (ad->model_rev == NULL)
4020 				return ad->horkage;
4021 			if (glob_match(ad->model_rev, model_rev))
4022 				return ad->horkage;
4023 		}
4024 		ad++;
4025 	}
4026 	return 0;
4027 }
4028 
4029 static int ata_dma_blacklisted(const struct ata_device *dev)
4030 {
4031 	/* We don't support polling DMA.
4032 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4033 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4034 	 */
4035 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4036 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4037 		return 1;
4038 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4039 }
4040 
4041 /**
4042  *	ata_is_40wire		-	check drive side detection
4043  *	@dev: device
4044  *
4045  *	Perform drive side detection decoding, allowing for device vendors
4046  *	who can't follow the documentation.
4047  */
4048 
4049 static int ata_is_40wire(struct ata_device *dev)
4050 {
4051 	if (dev->horkage & ATA_HORKAGE_IVB)
4052 		return ata_drive_40wire_relaxed(dev->id);
4053 	return ata_drive_40wire(dev->id);
4054 }
4055 
4056 /**
4057  *	cable_is_40wire		-	40/80/SATA decider
4058  *	@ap: port to consider
4059  *
4060  *	This function encapsulates the policy for speed management
4061  *	in one place. At the moment we don't cache the result but
4062  *	there is a good case for setting ap->cbl to the result when
4063  *	we are called with unknown cables (and figuring out if it
4064  *	impacts hotplug at all).
4065  *
4066  *	Return 1 if the cable appears to be 40 wire.
4067  */
4068 
4069 static int cable_is_40wire(struct ata_port *ap)
4070 {
4071 	struct ata_link *link;
4072 	struct ata_device *dev;
4073 
4074 	/* If the controller thinks we are 40 wire, we are. */
4075 	if (ap->cbl == ATA_CBL_PATA40)
4076 		return 1;
4077 
4078 	/* If the controller thinks we are 80 wire, we are. */
4079 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4080 		return 0;
4081 
4082 	/* If the system is known to be 40 wire short cable (eg
4083 	 * laptop), then we allow 80 wire modes even if the drive
4084 	 * isn't sure.
4085 	 */
4086 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4087 		return 0;
4088 
4089 	/* If the controller doesn't know, we scan.
4090 	 *
4091 	 * Note: We look for all 40 wire detects at this point.  Any
4092 	 *       80 wire detect is taken to be 80 wire cable because
4093 	 * - in many setups only the one drive (slave if present) will
4094 	 *   give a valid detect
4095 	 * - if you have a non detect capable drive you don't want it
4096 	 *   to colour the choice
4097 	 */
4098 	ata_for_each_link(link, ap, EDGE) {
4099 		ata_for_each_dev(dev, link, ENABLED) {
4100 			if (!ata_is_40wire(dev))
4101 				return 0;
4102 		}
4103 	}
4104 	return 1;
4105 }
4106 
4107 /**
4108  *	ata_dev_xfermask - Compute supported xfermask of the given device
4109  *	@dev: Device to compute xfermask for
4110  *
4111  *	Compute supported xfermask of @dev and store it in
4112  *	dev->*_mask.  This function is responsible for applying all
4113  *	known limits including host controller limits, device
4114  *	blacklist, etc...
4115  *
4116  *	LOCKING:
4117  *	None.
4118  */
4119 static void ata_dev_xfermask(struct ata_device *dev)
4120 {
4121 	struct ata_link *link = dev->link;
4122 	struct ata_port *ap = link->ap;
4123 	struct ata_host *host = ap->host;
4124 	unsigned long xfer_mask;
4125 
4126 	/* controller modes available */
4127 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4128 				      ap->mwdma_mask, ap->udma_mask);
4129 
4130 	/* drive modes available */
4131 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4132 				       dev->mwdma_mask, dev->udma_mask);
4133 	xfer_mask &= ata_id_xfermask(dev->id);
4134 
4135 	/*
4136 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4137 	 *	cable
4138 	 */
4139 	if (ata_dev_pair(dev)) {
4140 		/* No PIO5 or PIO6 */
4141 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4142 		/* No MWDMA3 or MWDMA 4 */
4143 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4144 	}
4145 
4146 	if (ata_dma_blacklisted(dev)) {
4147 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4148 		ata_dev_warn(dev,
4149 			     "device is on DMA blacklist, disabling DMA\n");
4150 	}
4151 
4152 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4153 	    host->simplex_claimed && host->simplex_claimed != ap) {
4154 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4155 		ata_dev_warn(dev,
4156 			     "simplex DMA is claimed by other device, disabling DMA\n");
4157 	}
4158 
4159 	if (ap->flags & ATA_FLAG_NO_IORDY)
4160 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4161 
4162 	if (ap->ops->mode_filter)
4163 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4164 
4165 	/* Apply cable rule here.  Don't apply it early because when
4166 	 * we handle hot plug the cable type can itself change.
4167 	 * Check this last so that we know if the transfer rate was
4168 	 * solely limited by the cable.
4169 	 * Unknown or 80 wire cables reported host side are checked
4170 	 * drive side as well. Cases where we know a 40wire cable
4171 	 * is used safely for 80 are not checked here.
4172 	 */
4173 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4174 		/* UDMA/44 or higher would be available */
4175 		if (cable_is_40wire(ap)) {
4176 			ata_dev_warn(dev,
4177 				     "limited to UDMA/33 due to 40-wire cable\n");
4178 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4179 		}
4180 
4181 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4182 			    &dev->mwdma_mask, &dev->udma_mask);
4183 }
4184 
4185 /**
4186  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4187  *	@dev: Device to which command will be sent
4188  *
4189  *	Issue SET FEATURES - XFER MODE command to device @dev
4190  *	on port @ap.
4191  *
4192  *	LOCKING:
4193  *	PCI/etc. bus probe sem.
4194  *
4195  *	RETURNS:
4196  *	0 on success, AC_ERR_* mask otherwise.
4197  */
4198 
4199 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4200 {
4201 	struct ata_taskfile tf;
4202 	unsigned int err_mask;
4203 
4204 	/* set up set-features taskfile */
4205 	DPRINTK("set features - xfer mode\n");
4206 
4207 	/* Some controllers and ATAPI devices show flaky interrupt
4208 	 * behavior after setting xfer mode.  Use polling instead.
4209 	 */
4210 	ata_tf_init(dev, &tf);
4211 	tf.command = ATA_CMD_SET_FEATURES;
4212 	tf.feature = SETFEATURES_XFER;
4213 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4214 	tf.protocol = ATA_PROT_NODATA;
4215 	/* If we are using IORDY we must send the mode setting command */
4216 	if (ata_pio_need_iordy(dev))
4217 		tf.nsect = dev->xfer_mode;
4218 	/* If the device has IORDY and the controller does not - turn it off */
4219  	else if (ata_id_has_iordy(dev->id))
4220 		tf.nsect = 0x01;
4221 	else /* In the ancient relic department - skip all of this */
4222 		return 0;
4223 
4224 	/* On some disks, this command causes spin-up, so we need longer timeout */
4225 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4226 
4227 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4228 	return err_mask;
4229 }
4230 
4231 /**
4232  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4233  *	@dev: Device to which command will be sent
4234  *	@enable: Whether to enable or disable the feature
4235  *	@feature: The sector count represents the feature to set
4236  *
4237  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4238  *	on port @ap with sector count
4239  *
4240  *	LOCKING:
4241  *	PCI/etc. bus probe sem.
4242  *
4243  *	RETURNS:
4244  *	0 on success, AC_ERR_* mask otherwise.
4245  */
4246 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4247 {
4248 	struct ata_taskfile tf;
4249 	unsigned int err_mask;
4250 	unsigned long timeout = 0;
4251 
4252 	/* set up set-features taskfile */
4253 	DPRINTK("set features - SATA features\n");
4254 
4255 	ata_tf_init(dev, &tf);
4256 	tf.command = ATA_CMD_SET_FEATURES;
4257 	tf.feature = enable;
4258 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4259 	tf.protocol = ATA_PROT_NODATA;
4260 	tf.nsect = feature;
4261 
4262 	if (enable == SETFEATURES_SPINUP)
4263 		timeout = ata_probe_timeout ?
4264 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4265 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4266 
4267 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4268 	return err_mask;
4269 }
4270 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4271 
4272 /**
4273  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4274  *	@dev: Device to which command will be sent
4275  *	@heads: Number of heads (taskfile parameter)
4276  *	@sectors: Number of sectors (taskfile parameter)
4277  *
4278  *	LOCKING:
4279  *	Kernel thread context (may sleep)
4280  *
4281  *	RETURNS:
4282  *	0 on success, AC_ERR_* mask otherwise.
4283  */
4284 static unsigned int ata_dev_init_params(struct ata_device *dev,
4285 					u16 heads, u16 sectors)
4286 {
4287 	struct ata_taskfile tf;
4288 	unsigned int err_mask;
4289 
4290 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4291 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4292 		return AC_ERR_INVALID;
4293 
4294 	/* set up init dev params taskfile */
4295 	DPRINTK("init dev params \n");
4296 
4297 	ata_tf_init(dev, &tf);
4298 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4299 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4300 	tf.protocol = ATA_PROT_NODATA;
4301 	tf.nsect = sectors;
4302 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4303 
4304 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4305 	/* A clean abort indicates an original or just out of spec drive
4306 	   and we should continue as we issue the setup based on the
4307 	   drive reported working geometry */
4308 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4309 		err_mask = 0;
4310 
4311 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4312 	return err_mask;
4313 }
4314 
4315 /**
4316  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4317  *	@qc: Metadata associated with taskfile to check
4318  *
4319  *	Allow low-level driver to filter ATA PACKET commands, returning
4320  *	a status indicating whether or not it is OK to use DMA for the
4321  *	supplied PACKET command.
4322  *
4323  *	LOCKING:
4324  *	spin_lock_irqsave(host lock)
4325  *
4326  *	RETURNS: 0 when ATAPI DMA can be used
4327  *               nonzero otherwise
4328  */
4329 int atapi_check_dma(struct ata_queued_cmd *qc)
4330 {
4331 	struct ata_port *ap = qc->ap;
4332 
4333 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4334 	 * few ATAPI devices choke on such DMA requests.
4335 	 */
4336 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4337 	    unlikely(qc->nbytes & 15))
4338 		return 1;
4339 
4340 	if (ap->ops->check_atapi_dma)
4341 		return ap->ops->check_atapi_dma(qc);
4342 
4343 	return 0;
4344 }
4345 
4346 /**
4347  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4348  *	@qc: ATA command in question
4349  *
4350  *	Non-NCQ commands cannot run with any other command, NCQ or
4351  *	not.  As upper layer only knows the queue depth, we are
4352  *	responsible for maintaining exclusion.  This function checks
4353  *	whether a new command @qc can be issued.
4354  *
4355  *	LOCKING:
4356  *	spin_lock_irqsave(host lock)
4357  *
4358  *	RETURNS:
4359  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4360  */
4361 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4362 {
4363 	struct ata_link *link = qc->dev->link;
4364 
4365 	if (ata_is_ncq(qc->tf.protocol)) {
4366 		if (!ata_tag_valid(link->active_tag))
4367 			return 0;
4368 	} else {
4369 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4370 			return 0;
4371 	}
4372 
4373 	return ATA_DEFER_LINK;
4374 }
4375 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4376 
4377 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4378 {
4379 	return AC_ERR_OK;
4380 }
4381 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4382 
4383 /**
4384  *	ata_sg_init - Associate command with scatter-gather table.
4385  *	@qc: Command to be associated
4386  *	@sg: Scatter-gather table.
4387  *	@n_elem: Number of elements in s/g table.
4388  *
4389  *	Initialize the data-related elements of queued_cmd @qc
4390  *	to point to a scatter-gather table @sg, containing @n_elem
4391  *	elements.
4392  *
4393  *	LOCKING:
4394  *	spin_lock_irqsave(host lock)
4395  */
4396 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4397 		 unsigned int n_elem)
4398 {
4399 	qc->sg = sg;
4400 	qc->n_elem = n_elem;
4401 	qc->cursg = qc->sg;
4402 }
4403 
4404 #ifdef CONFIG_HAS_DMA
4405 
4406 /**
4407  *	ata_sg_clean - Unmap DMA memory associated with command
4408  *	@qc: Command containing DMA memory to be released
4409  *
4410  *	Unmap all mapped DMA memory associated with this command.
4411  *
4412  *	LOCKING:
4413  *	spin_lock_irqsave(host lock)
4414  */
4415 static void ata_sg_clean(struct ata_queued_cmd *qc)
4416 {
4417 	struct ata_port *ap = qc->ap;
4418 	struct scatterlist *sg = qc->sg;
4419 	int dir = qc->dma_dir;
4420 
4421 	WARN_ON_ONCE(sg == NULL);
4422 
4423 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4424 
4425 	if (qc->n_elem)
4426 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4427 
4428 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4429 	qc->sg = NULL;
4430 }
4431 
4432 /**
4433  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4434  *	@qc: Command with scatter-gather table to be mapped.
4435  *
4436  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4437  *
4438  *	LOCKING:
4439  *	spin_lock_irqsave(host lock)
4440  *
4441  *	RETURNS:
4442  *	Zero on success, negative on error.
4443  *
4444  */
4445 static int ata_sg_setup(struct ata_queued_cmd *qc)
4446 {
4447 	struct ata_port *ap = qc->ap;
4448 	unsigned int n_elem;
4449 
4450 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4451 
4452 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4453 	if (n_elem < 1)
4454 		return -1;
4455 
4456 	VPRINTK("%d sg elements mapped\n", n_elem);
4457 	qc->orig_n_elem = qc->n_elem;
4458 	qc->n_elem = n_elem;
4459 	qc->flags |= ATA_QCFLAG_DMAMAP;
4460 
4461 	return 0;
4462 }
4463 
4464 #else /* !CONFIG_HAS_DMA */
4465 
4466 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4467 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4468 
4469 #endif /* !CONFIG_HAS_DMA */
4470 
4471 /**
4472  *	swap_buf_le16 - swap halves of 16-bit words in place
4473  *	@buf:  Buffer to swap
4474  *	@buf_words:  Number of 16-bit words in buffer.
4475  *
4476  *	Swap halves of 16-bit words if needed to convert from
4477  *	little-endian byte order to native cpu byte order, or
4478  *	vice-versa.
4479  *
4480  *	LOCKING:
4481  *	Inherited from caller.
4482  */
4483 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4484 {
4485 #ifdef __BIG_ENDIAN
4486 	unsigned int i;
4487 
4488 	for (i = 0; i < buf_words; i++)
4489 		buf[i] = le16_to_cpu(buf[i]);
4490 #endif /* __BIG_ENDIAN */
4491 }
4492 
4493 /**
4494  *	ata_qc_new_init - Request an available ATA command, and initialize it
4495  *	@dev: Device from whom we request an available command structure
4496  *	@tag: tag
4497  *
4498  *	LOCKING:
4499  *	None.
4500  */
4501 
4502 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4503 {
4504 	struct ata_port *ap = dev->link->ap;
4505 	struct ata_queued_cmd *qc;
4506 
4507 	/* no command while frozen */
4508 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4509 		return NULL;
4510 
4511 	/* libsas case */
4512 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4513 		tag = ata_sas_allocate_tag(ap);
4514 		if (tag < 0)
4515 			return NULL;
4516 	}
4517 
4518 	qc = __ata_qc_from_tag(ap, tag);
4519 	qc->tag = qc->hw_tag = tag;
4520 	qc->scsicmd = NULL;
4521 	qc->ap = ap;
4522 	qc->dev = dev;
4523 
4524 	ata_qc_reinit(qc);
4525 
4526 	return qc;
4527 }
4528 
4529 /**
4530  *	ata_qc_free - free unused ata_queued_cmd
4531  *	@qc: Command to complete
4532  *
4533  *	Designed to free unused ata_queued_cmd object
4534  *	in case something prevents using it.
4535  *
4536  *	LOCKING:
4537  *	spin_lock_irqsave(host lock)
4538  */
4539 void ata_qc_free(struct ata_queued_cmd *qc)
4540 {
4541 	struct ata_port *ap;
4542 	unsigned int tag;
4543 
4544 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4545 	ap = qc->ap;
4546 
4547 	qc->flags = 0;
4548 	tag = qc->tag;
4549 	if (ata_tag_valid(tag)) {
4550 		qc->tag = ATA_TAG_POISON;
4551 		if (ap->flags & ATA_FLAG_SAS_HOST)
4552 			ata_sas_free_tag(tag, ap);
4553 	}
4554 }
4555 
4556 void __ata_qc_complete(struct ata_queued_cmd *qc)
4557 {
4558 	struct ata_port *ap;
4559 	struct ata_link *link;
4560 
4561 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4562 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4563 	ap = qc->ap;
4564 	link = qc->dev->link;
4565 
4566 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4567 		ata_sg_clean(qc);
4568 
4569 	/* command should be marked inactive atomically with qc completion */
4570 	if (ata_is_ncq(qc->tf.protocol)) {
4571 		link->sactive &= ~(1 << qc->hw_tag);
4572 		if (!link->sactive)
4573 			ap->nr_active_links--;
4574 	} else {
4575 		link->active_tag = ATA_TAG_POISON;
4576 		ap->nr_active_links--;
4577 	}
4578 
4579 	/* clear exclusive status */
4580 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4581 		     ap->excl_link == link))
4582 		ap->excl_link = NULL;
4583 
4584 	/* atapi: mark qc as inactive to prevent the interrupt handler
4585 	 * from completing the command twice later, before the error handler
4586 	 * is called. (when rc != 0 and atapi request sense is needed)
4587 	 */
4588 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4589 	ap->qc_active &= ~(1ULL << qc->tag);
4590 
4591 	/* call completion callback */
4592 	qc->complete_fn(qc);
4593 }
4594 
4595 static void fill_result_tf(struct ata_queued_cmd *qc)
4596 {
4597 	struct ata_port *ap = qc->ap;
4598 
4599 	qc->result_tf.flags = qc->tf.flags;
4600 	ap->ops->qc_fill_rtf(qc);
4601 }
4602 
4603 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4604 {
4605 	struct ata_device *dev = qc->dev;
4606 
4607 	if (!ata_is_data(qc->tf.protocol))
4608 		return;
4609 
4610 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4611 		return;
4612 
4613 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4614 }
4615 
4616 /**
4617  *	ata_qc_complete - Complete an active ATA command
4618  *	@qc: Command to complete
4619  *
4620  *	Indicate to the mid and upper layers that an ATA command has
4621  *	completed, with either an ok or not-ok status.
4622  *
4623  *	Refrain from calling this function multiple times when
4624  *	successfully completing multiple NCQ commands.
4625  *	ata_qc_complete_multiple() should be used instead, which will
4626  *	properly update IRQ expect state.
4627  *
4628  *	LOCKING:
4629  *	spin_lock_irqsave(host lock)
4630  */
4631 void ata_qc_complete(struct ata_queued_cmd *qc)
4632 {
4633 	struct ata_port *ap = qc->ap;
4634 
4635 	/* Trigger the LED (if available) */
4636 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4637 
4638 	/* XXX: New EH and old EH use different mechanisms to
4639 	 * synchronize EH with regular execution path.
4640 	 *
4641 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4642 	 * Normal execution path is responsible for not accessing a
4643 	 * failed qc.  libata core enforces the rule by returning NULL
4644 	 * from ata_qc_from_tag() for failed qcs.
4645 	 *
4646 	 * Old EH depends on ata_qc_complete() nullifying completion
4647 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4648 	 * not synchronize with interrupt handler.  Only PIO task is
4649 	 * taken care of.
4650 	 */
4651 	if (ap->ops->error_handler) {
4652 		struct ata_device *dev = qc->dev;
4653 		struct ata_eh_info *ehi = &dev->link->eh_info;
4654 
4655 		if (unlikely(qc->err_mask))
4656 			qc->flags |= ATA_QCFLAG_FAILED;
4657 
4658 		/*
4659 		 * Finish internal commands without any further processing
4660 		 * and always with the result TF filled.
4661 		 */
4662 		if (unlikely(ata_tag_internal(qc->tag))) {
4663 			fill_result_tf(qc);
4664 			trace_ata_qc_complete_internal(qc);
4665 			__ata_qc_complete(qc);
4666 			return;
4667 		}
4668 
4669 		/*
4670 		 * Non-internal qc has failed.  Fill the result TF and
4671 		 * summon EH.
4672 		 */
4673 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4674 			fill_result_tf(qc);
4675 			trace_ata_qc_complete_failed(qc);
4676 			ata_qc_schedule_eh(qc);
4677 			return;
4678 		}
4679 
4680 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4681 
4682 		/* read result TF if requested */
4683 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4684 			fill_result_tf(qc);
4685 
4686 		trace_ata_qc_complete_done(qc);
4687 		/* Some commands need post-processing after successful
4688 		 * completion.
4689 		 */
4690 		switch (qc->tf.command) {
4691 		case ATA_CMD_SET_FEATURES:
4692 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4693 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4694 			    qc->tf.feature != SETFEATURES_RA_ON &&
4695 			    qc->tf.feature != SETFEATURES_RA_OFF)
4696 				break;
4697 			/* fall through */
4698 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4699 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4700 			/* revalidate device */
4701 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4702 			ata_port_schedule_eh(ap);
4703 			break;
4704 
4705 		case ATA_CMD_SLEEP:
4706 			dev->flags |= ATA_DFLAG_SLEEPING;
4707 			break;
4708 		}
4709 
4710 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4711 			ata_verify_xfer(qc);
4712 
4713 		__ata_qc_complete(qc);
4714 	} else {
4715 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4716 			return;
4717 
4718 		/* read result TF if failed or requested */
4719 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4720 			fill_result_tf(qc);
4721 
4722 		__ata_qc_complete(qc);
4723 	}
4724 }
4725 EXPORT_SYMBOL_GPL(ata_qc_complete);
4726 
4727 /**
4728  *	ata_qc_get_active - get bitmask of active qcs
4729  *	@ap: port in question
4730  *
4731  *	LOCKING:
4732  *	spin_lock_irqsave(host lock)
4733  *
4734  *	RETURNS:
4735  *	Bitmask of active qcs
4736  */
4737 u64 ata_qc_get_active(struct ata_port *ap)
4738 {
4739 	u64 qc_active = ap->qc_active;
4740 
4741 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4742 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4743 		qc_active |= (1 << 0);
4744 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4745 	}
4746 
4747 	return qc_active;
4748 }
4749 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4750 
4751 /**
4752  *	ata_qc_issue - issue taskfile to device
4753  *	@qc: command to issue to device
4754  *
4755  *	Prepare an ATA command to submission to device.
4756  *	This includes mapping the data into a DMA-able
4757  *	area, filling in the S/G table, and finally
4758  *	writing the taskfile to hardware, starting the command.
4759  *
4760  *	LOCKING:
4761  *	spin_lock_irqsave(host lock)
4762  */
4763 void ata_qc_issue(struct ata_queued_cmd *qc)
4764 {
4765 	struct ata_port *ap = qc->ap;
4766 	struct ata_link *link = qc->dev->link;
4767 	u8 prot = qc->tf.protocol;
4768 
4769 	/* Make sure only one non-NCQ command is outstanding.  The
4770 	 * check is skipped for old EH because it reuses active qc to
4771 	 * request ATAPI sense.
4772 	 */
4773 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4774 
4775 	if (ata_is_ncq(prot)) {
4776 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4777 
4778 		if (!link->sactive)
4779 			ap->nr_active_links++;
4780 		link->sactive |= 1 << qc->hw_tag;
4781 	} else {
4782 		WARN_ON_ONCE(link->sactive);
4783 
4784 		ap->nr_active_links++;
4785 		link->active_tag = qc->tag;
4786 	}
4787 
4788 	qc->flags |= ATA_QCFLAG_ACTIVE;
4789 	ap->qc_active |= 1ULL << qc->tag;
4790 
4791 	/*
4792 	 * We guarantee to LLDs that they will have at least one
4793 	 * non-zero sg if the command is a data command.
4794 	 */
4795 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4796 		goto sys_err;
4797 
4798 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4799 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4800 		if (ata_sg_setup(qc))
4801 			goto sys_err;
4802 
4803 	/* if device is sleeping, schedule reset and abort the link */
4804 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4805 		link->eh_info.action |= ATA_EH_RESET;
4806 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4807 		ata_link_abort(link);
4808 		return;
4809 	}
4810 
4811 	qc->err_mask |= ap->ops->qc_prep(qc);
4812 	if (unlikely(qc->err_mask))
4813 		goto err;
4814 	trace_ata_qc_issue(qc);
4815 	qc->err_mask |= ap->ops->qc_issue(qc);
4816 	if (unlikely(qc->err_mask))
4817 		goto err;
4818 	return;
4819 
4820 sys_err:
4821 	qc->err_mask |= AC_ERR_SYSTEM;
4822 err:
4823 	ata_qc_complete(qc);
4824 }
4825 
4826 /**
4827  *	ata_phys_link_online - test whether the given link is online
4828  *	@link: ATA link to test
4829  *
4830  *	Test whether @link is online.  Note that this function returns
4831  *	0 if online status of @link cannot be obtained, so
4832  *	ata_link_online(link) != !ata_link_offline(link).
4833  *
4834  *	LOCKING:
4835  *	None.
4836  *
4837  *	RETURNS:
4838  *	True if the port online status is available and online.
4839  */
4840 bool ata_phys_link_online(struct ata_link *link)
4841 {
4842 	u32 sstatus;
4843 
4844 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4845 	    ata_sstatus_online(sstatus))
4846 		return true;
4847 	return false;
4848 }
4849 
4850 /**
4851  *	ata_phys_link_offline - test whether the given link is offline
4852  *	@link: ATA link to test
4853  *
4854  *	Test whether @link is offline.  Note that this function
4855  *	returns 0 if offline status of @link cannot be obtained, so
4856  *	ata_link_online(link) != !ata_link_offline(link).
4857  *
4858  *	LOCKING:
4859  *	None.
4860  *
4861  *	RETURNS:
4862  *	True if the port offline status is available and offline.
4863  */
4864 bool ata_phys_link_offline(struct ata_link *link)
4865 {
4866 	u32 sstatus;
4867 
4868 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4869 	    !ata_sstatus_online(sstatus))
4870 		return true;
4871 	return false;
4872 }
4873 
4874 /**
4875  *	ata_link_online - test whether the given link is online
4876  *	@link: ATA link to test
4877  *
4878  *	Test whether @link is online.  This is identical to
4879  *	ata_phys_link_online() when there's no slave link.  When
4880  *	there's a slave link, this function should only be called on
4881  *	the master link and will return true if any of M/S links is
4882  *	online.
4883  *
4884  *	LOCKING:
4885  *	None.
4886  *
4887  *	RETURNS:
4888  *	True if the port online status is available and online.
4889  */
4890 bool ata_link_online(struct ata_link *link)
4891 {
4892 	struct ata_link *slave = link->ap->slave_link;
4893 
4894 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4895 
4896 	return ata_phys_link_online(link) ||
4897 		(slave && ata_phys_link_online(slave));
4898 }
4899 EXPORT_SYMBOL_GPL(ata_link_online);
4900 
4901 /**
4902  *	ata_link_offline - test whether the given link is offline
4903  *	@link: ATA link to test
4904  *
4905  *	Test whether @link is offline.  This is identical to
4906  *	ata_phys_link_offline() when there's no slave link.  When
4907  *	there's a slave link, this function should only be called on
4908  *	the master link and will return true if both M/S links are
4909  *	offline.
4910  *
4911  *	LOCKING:
4912  *	None.
4913  *
4914  *	RETURNS:
4915  *	True if the port offline status is available and offline.
4916  */
4917 bool ata_link_offline(struct ata_link *link)
4918 {
4919 	struct ata_link *slave = link->ap->slave_link;
4920 
4921 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4922 
4923 	return ata_phys_link_offline(link) &&
4924 		(!slave || ata_phys_link_offline(slave));
4925 }
4926 EXPORT_SYMBOL_GPL(ata_link_offline);
4927 
4928 #ifdef CONFIG_PM
4929 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4930 				unsigned int action, unsigned int ehi_flags,
4931 				bool async)
4932 {
4933 	struct ata_link *link;
4934 	unsigned long flags;
4935 
4936 	/* Previous resume operation might still be in
4937 	 * progress.  Wait for PM_PENDING to clear.
4938 	 */
4939 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4940 		ata_port_wait_eh(ap);
4941 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4942 	}
4943 
4944 	/* request PM ops to EH */
4945 	spin_lock_irqsave(ap->lock, flags);
4946 
4947 	ap->pm_mesg = mesg;
4948 	ap->pflags |= ATA_PFLAG_PM_PENDING;
4949 	ata_for_each_link(link, ap, HOST_FIRST) {
4950 		link->eh_info.action |= action;
4951 		link->eh_info.flags |= ehi_flags;
4952 	}
4953 
4954 	ata_port_schedule_eh(ap);
4955 
4956 	spin_unlock_irqrestore(ap->lock, flags);
4957 
4958 	if (!async) {
4959 		ata_port_wait_eh(ap);
4960 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4961 	}
4962 }
4963 
4964 /*
4965  * On some hardware, device fails to respond after spun down for suspend.  As
4966  * the device won't be used before being resumed, we don't need to touch the
4967  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
4968  *
4969  * http://thread.gmane.org/gmane.linux.ide/46764
4970  */
4971 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
4972 						 | ATA_EHI_NO_AUTOPSY
4973 						 | ATA_EHI_NO_RECOVERY;
4974 
4975 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
4976 {
4977 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
4978 }
4979 
4980 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
4981 {
4982 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
4983 }
4984 
4985 static int ata_port_pm_suspend(struct device *dev)
4986 {
4987 	struct ata_port *ap = to_ata_port(dev);
4988 
4989 	if (pm_runtime_suspended(dev))
4990 		return 0;
4991 
4992 	ata_port_suspend(ap, PMSG_SUSPEND);
4993 	return 0;
4994 }
4995 
4996 static int ata_port_pm_freeze(struct device *dev)
4997 {
4998 	struct ata_port *ap = to_ata_port(dev);
4999 
5000 	if (pm_runtime_suspended(dev))
5001 		return 0;
5002 
5003 	ata_port_suspend(ap, PMSG_FREEZE);
5004 	return 0;
5005 }
5006 
5007 static int ata_port_pm_poweroff(struct device *dev)
5008 {
5009 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5010 	return 0;
5011 }
5012 
5013 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5014 						| ATA_EHI_QUIET;
5015 
5016 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5017 {
5018 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5019 }
5020 
5021 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5022 {
5023 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5024 }
5025 
5026 static int ata_port_pm_resume(struct device *dev)
5027 {
5028 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5029 	pm_runtime_disable(dev);
5030 	pm_runtime_set_active(dev);
5031 	pm_runtime_enable(dev);
5032 	return 0;
5033 }
5034 
5035 /*
5036  * For ODDs, the upper layer will poll for media change every few seconds,
5037  * which will make it enter and leave suspend state every few seconds. And
5038  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5039  * is very little and the ODD may malfunction after constantly being reset.
5040  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5041  * ODD is attached to the port.
5042  */
5043 static int ata_port_runtime_idle(struct device *dev)
5044 {
5045 	struct ata_port *ap = to_ata_port(dev);
5046 	struct ata_link *link;
5047 	struct ata_device *adev;
5048 
5049 	ata_for_each_link(link, ap, HOST_FIRST) {
5050 		ata_for_each_dev(adev, link, ENABLED)
5051 			if (adev->class == ATA_DEV_ATAPI &&
5052 			    !zpodd_dev_enabled(adev))
5053 				return -EBUSY;
5054 	}
5055 
5056 	return 0;
5057 }
5058 
5059 static int ata_port_runtime_suspend(struct device *dev)
5060 {
5061 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5062 	return 0;
5063 }
5064 
5065 static int ata_port_runtime_resume(struct device *dev)
5066 {
5067 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5068 	return 0;
5069 }
5070 
5071 static const struct dev_pm_ops ata_port_pm_ops = {
5072 	.suspend = ata_port_pm_suspend,
5073 	.resume = ata_port_pm_resume,
5074 	.freeze = ata_port_pm_freeze,
5075 	.thaw = ata_port_pm_resume,
5076 	.poweroff = ata_port_pm_poweroff,
5077 	.restore = ata_port_pm_resume,
5078 
5079 	.runtime_suspend = ata_port_runtime_suspend,
5080 	.runtime_resume = ata_port_runtime_resume,
5081 	.runtime_idle = ata_port_runtime_idle,
5082 };
5083 
5084 /* sas ports don't participate in pm runtime management of ata_ports,
5085  * and need to resume ata devices at the domain level, not the per-port
5086  * level. sas suspend/resume is async to allow parallel port recovery
5087  * since sas has multiple ata_port instances per Scsi_Host.
5088  */
5089 void ata_sas_port_suspend(struct ata_port *ap)
5090 {
5091 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5092 }
5093 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5094 
5095 void ata_sas_port_resume(struct ata_port *ap)
5096 {
5097 	ata_port_resume_async(ap, PMSG_RESUME);
5098 }
5099 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5100 
5101 /**
5102  *	ata_host_suspend - suspend host
5103  *	@host: host to suspend
5104  *	@mesg: PM message
5105  *
5106  *	Suspend @host.  Actual operation is performed by port suspend.
5107  */
5108 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5109 {
5110 	host->dev->power.power_state = mesg;
5111 	return 0;
5112 }
5113 EXPORT_SYMBOL_GPL(ata_host_suspend);
5114 
5115 /**
5116  *	ata_host_resume - resume host
5117  *	@host: host to resume
5118  *
5119  *	Resume @host.  Actual operation is performed by port resume.
5120  */
5121 void ata_host_resume(struct ata_host *host)
5122 {
5123 	host->dev->power.power_state = PMSG_ON;
5124 }
5125 EXPORT_SYMBOL_GPL(ata_host_resume);
5126 #endif
5127 
5128 const struct device_type ata_port_type = {
5129 	.name = "ata_port",
5130 #ifdef CONFIG_PM
5131 	.pm = &ata_port_pm_ops,
5132 #endif
5133 };
5134 
5135 /**
5136  *	ata_dev_init - Initialize an ata_device structure
5137  *	@dev: Device structure to initialize
5138  *
5139  *	Initialize @dev in preparation for probing.
5140  *
5141  *	LOCKING:
5142  *	Inherited from caller.
5143  */
5144 void ata_dev_init(struct ata_device *dev)
5145 {
5146 	struct ata_link *link = ata_dev_phys_link(dev);
5147 	struct ata_port *ap = link->ap;
5148 	unsigned long flags;
5149 
5150 	/* SATA spd limit is bound to the attached device, reset together */
5151 	link->sata_spd_limit = link->hw_sata_spd_limit;
5152 	link->sata_spd = 0;
5153 
5154 	/* High bits of dev->flags are used to record warm plug
5155 	 * requests which occur asynchronously.  Synchronize using
5156 	 * host lock.
5157 	 */
5158 	spin_lock_irqsave(ap->lock, flags);
5159 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5160 	dev->horkage = 0;
5161 	spin_unlock_irqrestore(ap->lock, flags);
5162 
5163 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5164 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5165 	dev->pio_mask = UINT_MAX;
5166 	dev->mwdma_mask = UINT_MAX;
5167 	dev->udma_mask = UINT_MAX;
5168 }
5169 
5170 /**
5171  *	ata_link_init - Initialize an ata_link structure
5172  *	@ap: ATA port link is attached to
5173  *	@link: Link structure to initialize
5174  *	@pmp: Port multiplier port number
5175  *
5176  *	Initialize @link.
5177  *
5178  *	LOCKING:
5179  *	Kernel thread context (may sleep)
5180  */
5181 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5182 {
5183 	int i;
5184 
5185 	/* clear everything except for devices */
5186 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5187 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5188 
5189 	link->ap = ap;
5190 	link->pmp = pmp;
5191 	link->active_tag = ATA_TAG_POISON;
5192 	link->hw_sata_spd_limit = UINT_MAX;
5193 
5194 	/* can't use iterator, ap isn't initialized yet */
5195 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5196 		struct ata_device *dev = &link->device[i];
5197 
5198 		dev->link = link;
5199 		dev->devno = dev - link->device;
5200 #ifdef CONFIG_ATA_ACPI
5201 		dev->gtf_filter = ata_acpi_gtf_filter;
5202 #endif
5203 		ata_dev_init(dev);
5204 	}
5205 }
5206 
5207 /**
5208  *	sata_link_init_spd - Initialize link->sata_spd_limit
5209  *	@link: Link to configure sata_spd_limit for
5210  *
5211  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5212  *	configured value.
5213  *
5214  *	LOCKING:
5215  *	Kernel thread context (may sleep).
5216  *
5217  *	RETURNS:
5218  *	0 on success, -errno on failure.
5219  */
5220 int sata_link_init_spd(struct ata_link *link)
5221 {
5222 	u8 spd;
5223 	int rc;
5224 
5225 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5226 	if (rc)
5227 		return rc;
5228 
5229 	spd = (link->saved_scontrol >> 4) & 0xf;
5230 	if (spd)
5231 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5232 
5233 	ata_force_link_limits(link);
5234 
5235 	link->sata_spd_limit = link->hw_sata_spd_limit;
5236 
5237 	return 0;
5238 }
5239 
5240 /**
5241  *	ata_port_alloc - allocate and initialize basic ATA port resources
5242  *	@host: ATA host this allocated port belongs to
5243  *
5244  *	Allocate and initialize basic ATA port resources.
5245  *
5246  *	RETURNS:
5247  *	Allocate ATA port on success, NULL on failure.
5248  *
5249  *	LOCKING:
5250  *	Inherited from calling layer (may sleep).
5251  */
5252 struct ata_port *ata_port_alloc(struct ata_host *host)
5253 {
5254 	struct ata_port *ap;
5255 
5256 	DPRINTK("ENTER\n");
5257 
5258 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5259 	if (!ap)
5260 		return NULL;
5261 
5262 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5263 	ap->lock = &host->lock;
5264 	ap->print_id = -1;
5265 	ap->local_port_no = -1;
5266 	ap->host = host;
5267 	ap->dev = host->dev;
5268 
5269 #if defined(ATA_VERBOSE_DEBUG)
5270 	/* turn on all debugging levels */
5271 	ap->msg_enable = 0x00FF;
5272 #elif defined(ATA_DEBUG)
5273 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5274 #else
5275 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5276 #endif
5277 
5278 	mutex_init(&ap->scsi_scan_mutex);
5279 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5280 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5281 	INIT_LIST_HEAD(&ap->eh_done_q);
5282 	init_waitqueue_head(&ap->eh_wait_q);
5283 	init_completion(&ap->park_req_pending);
5284 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5285 		    TIMER_DEFERRABLE);
5286 
5287 	ap->cbl = ATA_CBL_NONE;
5288 
5289 	ata_link_init(ap, &ap->link, 0);
5290 
5291 #ifdef ATA_IRQ_TRAP
5292 	ap->stats.unhandled_irq = 1;
5293 	ap->stats.idle_irq = 1;
5294 #endif
5295 	ata_sff_port_init(ap);
5296 
5297 	return ap;
5298 }
5299 
5300 static void ata_devres_release(struct device *gendev, void *res)
5301 {
5302 	struct ata_host *host = dev_get_drvdata(gendev);
5303 	int i;
5304 
5305 	for (i = 0; i < host->n_ports; i++) {
5306 		struct ata_port *ap = host->ports[i];
5307 
5308 		if (!ap)
5309 			continue;
5310 
5311 		if (ap->scsi_host)
5312 			scsi_host_put(ap->scsi_host);
5313 
5314 	}
5315 
5316 	dev_set_drvdata(gendev, NULL);
5317 	ata_host_put(host);
5318 }
5319 
5320 static void ata_host_release(struct kref *kref)
5321 {
5322 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5323 	int i;
5324 
5325 	for (i = 0; i < host->n_ports; i++) {
5326 		struct ata_port *ap = host->ports[i];
5327 
5328 		kfree(ap->pmp_link);
5329 		kfree(ap->slave_link);
5330 		kfree(ap);
5331 		host->ports[i] = NULL;
5332 	}
5333 	kfree(host);
5334 }
5335 
5336 void ata_host_get(struct ata_host *host)
5337 {
5338 	kref_get(&host->kref);
5339 }
5340 
5341 void ata_host_put(struct ata_host *host)
5342 {
5343 	kref_put(&host->kref, ata_host_release);
5344 }
5345 EXPORT_SYMBOL_GPL(ata_host_put);
5346 
5347 /**
5348  *	ata_host_alloc - allocate and init basic ATA host resources
5349  *	@dev: generic device this host is associated with
5350  *	@max_ports: maximum number of ATA ports associated with this host
5351  *
5352  *	Allocate and initialize basic ATA host resources.  LLD calls
5353  *	this function to allocate a host, initializes it fully and
5354  *	attaches it using ata_host_register().
5355  *
5356  *	@max_ports ports are allocated and host->n_ports is
5357  *	initialized to @max_ports.  The caller is allowed to decrease
5358  *	host->n_ports before calling ata_host_register().  The unused
5359  *	ports will be automatically freed on registration.
5360  *
5361  *	RETURNS:
5362  *	Allocate ATA host on success, NULL on failure.
5363  *
5364  *	LOCKING:
5365  *	Inherited from calling layer (may sleep).
5366  */
5367 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5368 {
5369 	struct ata_host *host;
5370 	size_t sz;
5371 	int i;
5372 	void *dr;
5373 
5374 	DPRINTK("ENTER\n");
5375 
5376 	/* alloc a container for our list of ATA ports (buses) */
5377 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5378 	host = kzalloc(sz, GFP_KERNEL);
5379 	if (!host)
5380 		return NULL;
5381 
5382 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5383 		goto err_free;
5384 
5385 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5386 	if (!dr)
5387 		goto err_out;
5388 
5389 	devres_add(dev, dr);
5390 	dev_set_drvdata(dev, host);
5391 
5392 	spin_lock_init(&host->lock);
5393 	mutex_init(&host->eh_mutex);
5394 	host->dev = dev;
5395 	host->n_ports = max_ports;
5396 	kref_init(&host->kref);
5397 
5398 	/* allocate ports bound to this host */
5399 	for (i = 0; i < max_ports; i++) {
5400 		struct ata_port *ap;
5401 
5402 		ap = ata_port_alloc(host);
5403 		if (!ap)
5404 			goto err_out;
5405 
5406 		ap->port_no = i;
5407 		host->ports[i] = ap;
5408 	}
5409 
5410 	devres_remove_group(dev, NULL);
5411 	return host;
5412 
5413  err_out:
5414 	devres_release_group(dev, NULL);
5415  err_free:
5416 	kfree(host);
5417 	return NULL;
5418 }
5419 EXPORT_SYMBOL_GPL(ata_host_alloc);
5420 
5421 /**
5422  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5423  *	@dev: generic device this host is associated with
5424  *	@ppi: array of ATA port_info to initialize host with
5425  *	@n_ports: number of ATA ports attached to this host
5426  *
5427  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5428  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5429  *	last entry will be used for the remaining ports.
5430  *
5431  *	RETURNS:
5432  *	Allocate ATA host on success, NULL on failure.
5433  *
5434  *	LOCKING:
5435  *	Inherited from calling layer (may sleep).
5436  */
5437 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5438 				      const struct ata_port_info * const * ppi,
5439 				      int n_ports)
5440 {
5441 	const struct ata_port_info *pi;
5442 	struct ata_host *host;
5443 	int i, j;
5444 
5445 	host = ata_host_alloc(dev, n_ports);
5446 	if (!host)
5447 		return NULL;
5448 
5449 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5450 		struct ata_port *ap = host->ports[i];
5451 
5452 		if (ppi[j])
5453 			pi = ppi[j++];
5454 
5455 		ap->pio_mask = pi->pio_mask;
5456 		ap->mwdma_mask = pi->mwdma_mask;
5457 		ap->udma_mask = pi->udma_mask;
5458 		ap->flags |= pi->flags;
5459 		ap->link.flags |= pi->link_flags;
5460 		ap->ops = pi->port_ops;
5461 
5462 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5463 			host->ops = pi->port_ops;
5464 	}
5465 
5466 	return host;
5467 }
5468 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5469 
5470 static void ata_host_stop(struct device *gendev, void *res)
5471 {
5472 	struct ata_host *host = dev_get_drvdata(gendev);
5473 	int i;
5474 
5475 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5476 
5477 	for (i = 0; i < host->n_ports; i++) {
5478 		struct ata_port *ap = host->ports[i];
5479 
5480 		if (ap->ops->port_stop)
5481 			ap->ops->port_stop(ap);
5482 	}
5483 
5484 	if (host->ops->host_stop)
5485 		host->ops->host_stop(host);
5486 }
5487 
5488 /**
5489  *	ata_finalize_port_ops - finalize ata_port_operations
5490  *	@ops: ata_port_operations to finalize
5491  *
5492  *	An ata_port_operations can inherit from another ops and that
5493  *	ops can again inherit from another.  This can go on as many
5494  *	times as necessary as long as there is no loop in the
5495  *	inheritance chain.
5496  *
5497  *	Ops tables are finalized when the host is started.  NULL or
5498  *	unspecified entries are inherited from the closet ancestor
5499  *	which has the method and the entry is populated with it.
5500  *	After finalization, the ops table directly points to all the
5501  *	methods and ->inherits is no longer necessary and cleared.
5502  *
5503  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5504  *
5505  *	LOCKING:
5506  *	None.
5507  */
5508 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5509 {
5510 	static DEFINE_SPINLOCK(lock);
5511 	const struct ata_port_operations *cur;
5512 	void **begin = (void **)ops;
5513 	void **end = (void **)&ops->inherits;
5514 	void **pp;
5515 
5516 	if (!ops || !ops->inherits)
5517 		return;
5518 
5519 	spin_lock(&lock);
5520 
5521 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5522 		void **inherit = (void **)cur;
5523 
5524 		for (pp = begin; pp < end; pp++, inherit++)
5525 			if (!*pp)
5526 				*pp = *inherit;
5527 	}
5528 
5529 	for (pp = begin; pp < end; pp++)
5530 		if (IS_ERR(*pp))
5531 			*pp = NULL;
5532 
5533 	ops->inherits = NULL;
5534 
5535 	spin_unlock(&lock);
5536 }
5537 
5538 /**
5539  *	ata_host_start - start and freeze ports of an ATA host
5540  *	@host: ATA host to start ports for
5541  *
5542  *	Start and then freeze ports of @host.  Started status is
5543  *	recorded in host->flags, so this function can be called
5544  *	multiple times.  Ports are guaranteed to get started only
5545  *	once.  If host->ops isn't initialized yet, its set to the
5546  *	first non-dummy port ops.
5547  *
5548  *	LOCKING:
5549  *	Inherited from calling layer (may sleep).
5550  *
5551  *	RETURNS:
5552  *	0 if all ports are started successfully, -errno otherwise.
5553  */
5554 int ata_host_start(struct ata_host *host)
5555 {
5556 	int have_stop = 0;
5557 	void *start_dr = NULL;
5558 	int i, rc;
5559 
5560 	if (host->flags & ATA_HOST_STARTED)
5561 		return 0;
5562 
5563 	ata_finalize_port_ops(host->ops);
5564 
5565 	for (i = 0; i < host->n_ports; i++) {
5566 		struct ata_port *ap = host->ports[i];
5567 
5568 		ata_finalize_port_ops(ap->ops);
5569 
5570 		if (!host->ops && !ata_port_is_dummy(ap))
5571 			host->ops = ap->ops;
5572 
5573 		if (ap->ops->port_stop)
5574 			have_stop = 1;
5575 	}
5576 
5577 	if (host->ops->host_stop)
5578 		have_stop = 1;
5579 
5580 	if (have_stop) {
5581 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5582 		if (!start_dr)
5583 			return -ENOMEM;
5584 	}
5585 
5586 	for (i = 0; i < host->n_ports; i++) {
5587 		struct ata_port *ap = host->ports[i];
5588 
5589 		if (ap->ops->port_start) {
5590 			rc = ap->ops->port_start(ap);
5591 			if (rc) {
5592 				if (rc != -ENODEV)
5593 					dev_err(host->dev,
5594 						"failed to start port %d (errno=%d)\n",
5595 						i, rc);
5596 				goto err_out;
5597 			}
5598 		}
5599 		ata_eh_freeze_port(ap);
5600 	}
5601 
5602 	if (start_dr)
5603 		devres_add(host->dev, start_dr);
5604 	host->flags |= ATA_HOST_STARTED;
5605 	return 0;
5606 
5607  err_out:
5608 	while (--i >= 0) {
5609 		struct ata_port *ap = host->ports[i];
5610 
5611 		if (ap->ops->port_stop)
5612 			ap->ops->port_stop(ap);
5613 	}
5614 	devres_free(start_dr);
5615 	return rc;
5616 }
5617 EXPORT_SYMBOL_GPL(ata_host_start);
5618 
5619 /**
5620  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5621  *	@host:	host to initialize
5622  *	@dev:	device host is attached to
5623  *	@ops:	port_ops
5624  *
5625  */
5626 void ata_host_init(struct ata_host *host, struct device *dev,
5627 		   struct ata_port_operations *ops)
5628 {
5629 	spin_lock_init(&host->lock);
5630 	mutex_init(&host->eh_mutex);
5631 	host->n_tags = ATA_MAX_QUEUE;
5632 	host->dev = dev;
5633 	host->ops = ops;
5634 	kref_init(&host->kref);
5635 }
5636 EXPORT_SYMBOL_GPL(ata_host_init);
5637 
5638 void __ata_port_probe(struct ata_port *ap)
5639 {
5640 	struct ata_eh_info *ehi = &ap->link.eh_info;
5641 	unsigned long flags;
5642 
5643 	/* kick EH for boot probing */
5644 	spin_lock_irqsave(ap->lock, flags);
5645 
5646 	ehi->probe_mask |= ATA_ALL_DEVICES;
5647 	ehi->action |= ATA_EH_RESET;
5648 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5649 
5650 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5651 	ap->pflags |= ATA_PFLAG_LOADING;
5652 	ata_port_schedule_eh(ap);
5653 
5654 	spin_unlock_irqrestore(ap->lock, flags);
5655 }
5656 
5657 int ata_port_probe(struct ata_port *ap)
5658 {
5659 	int rc = 0;
5660 
5661 	if (ap->ops->error_handler) {
5662 		__ata_port_probe(ap);
5663 		ata_port_wait_eh(ap);
5664 	} else {
5665 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5666 		rc = ata_bus_probe(ap);
5667 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5668 	}
5669 	return rc;
5670 }
5671 
5672 
5673 static void async_port_probe(void *data, async_cookie_t cookie)
5674 {
5675 	struct ata_port *ap = data;
5676 
5677 	/*
5678 	 * If we're not allowed to scan this host in parallel,
5679 	 * we need to wait until all previous scans have completed
5680 	 * before going further.
5681 	 * Jeff Garzik says this is only within a controller, so we
5682 	 * don't need to wait for port 0, only for later ports.
5683 	 */
5684 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5685 		async_synchronize_cookie(cookie);
5686 
5687 	(void)ata_port_probe(ap);
5688 
5689 	/* in order to keep device order, we need to synchronize at this point */
5690 	async_synchronize_cookie(cookie);
5691 
5692 	ata_scsi_scan_host(ap, 1);
5693 }
5694 
5695 /**
5696  *	ata_host_register - register initialized ATA host
5697  *	@host: ATA host to register
5698  *	@sht: template for SCSI host
5699  *
5700  *	Register initialized ATA host.  @host is allocated using
5701  *	ata_host_alloc() and fully initialized by LLD.  This function
5702  *	starts ports, registers @host with ATA and SCSI layers and
5703  *	probe registered devices.
5704  *
5705  *	LOCKING:
5706  *	Inherited from calling layer (may sleep).
5707  *
5708  *	RETURNS:
5709  *	0 on success, -errno otherwise.
5710  */
5711 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5712 {
5713 	int i, rc;
5714 
5715 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5716 
5717 	/* host must have been started */
5718 	if (!(host->flags & ATA_HOST_STARTED)) {
5719 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5720 		WARN_ON(1);
5721 		return -EINVAL;
5722 	}
5723 
5724 	/* Blow away unused ports.  This happens when LLD can't
5725 	 * determine the exact number of ports to allocate at
5726 	 * allocation time.
5727 	 */
5728 	for (i = host->n_ports; host->ports[i]; i++)
5729 		kfree(host->ports[i]);
5730 
5731 	/* give ports names and add SCSI hosts */
5732 	for (i = 0; i < host->n_ports; i++) {
5733 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5734 		host->ports[i]->local_port_no = i + 1;
5735 	}
5736 
5737 	/* Create associated sysfs transport objects  */
5738 	for (i = 0; i < host->n_ports; i++) {
5739 		rc = ata_tport_add(host->dev,host->ports[i]);
5740 		if (rc) {
5741 			goto err_tadd;
5742 		}
5743 	}
5744 
5745 	rc = ata_scsi_add_hosts(host, sht);
5746 	if (rc)
5747 		goto err_tadd;
5748 
5749 	/* set cable, sata_spd_limit and report */
5750 	for (i = 0; i < host->n_ports; i++) {
5751 		struct ata_port *ap = host->ports[i];
5752 		unsigned long xfer_mask;
5753 
5754 		/* set SATA cable type if still unset */
5755 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5756 			ap->cbl = ATA_CBL_SATA;
5757 
5758 		/* init sata_spd_limit to the current value */
5759 		sata_link_init_spd(&ap->link);
5760 		if (ap->slave_link)
5761 			sata_link_init_spd(ap->slave_link);
5762 
5763 		/* print per-port info to dmesg */
5764 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5765 					      ap->udma_mask);
5766 
5767 		if (!ata_port_is_dummy(ap)) {
5768 			ata_port_info(ap, "%cATA max %s %s\n",
5769 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5770 				      ata_mode_string(xfer_mask),
5771 				      ap->link.eh_info.desc);
5772 			ata_ehi_clear_desc(&ap->link.eh_info);
5773 		} else
5774 			ata_port_info(ap, "DUMMY\n");
5775 	}
5776 
5777 	/* perform each probe asynchronously */
5778 	for (i = 0; i < host->n_ports; i++) {
5779 		struct ata_port *ap = host->ports[i];
5780 		ap->cookie = async_schedule(async_port_probe, ap);
5781 	}
5782 
5783 	return 0;
5784 
5785  err_tadd:
5786 	while (--i >= 0) {
5787 		ata_tport_delete(host->ports[i]);
5788 	}
5789 	return rc;
5790 
5791 }
5792 EXPORT_SYMBOL_GPL(ata_host_register);
5793 
5794 /**
5795  *	ata_host_activate - start host, request IRQ and register it
5796  *	@host: target ATA host
5797  *	@irq: IRQ to request
5798  *	@irq_handler: irq_handler used when requesting IRQ
5799  *	@irq_flags: irq_flags used when requesting IRQ
5800  *	@sht: scsi_host_template to use when registering the host
5801  *
5802  *	After allocating an ATA host and initializing it, most libata
5803  *	LLDs perform three steps to activate the host - start host,
5804  *	request IRQ and register it.  This helper takes necessary
5805  *	arguments and performs the three steps in one go.
5806  *
5807  *	An invalid IRQ skips the IRQ registration and expects the host to
5808  *	have set polling mode on the port. In this case, @irq_handler
5809  *	should be NULL.
5810  *
5811  *	LOCKING:
5812  *	Inherited from calling layer (may sleep).
5813  *
5814  *	RETURNS:
5815  *	0 on success, -errno otherwise.
5816  */
5817 int ata_host_activate(struct ata_host *host, int irq,
5818 		      irq_handler_t irq_handler, unsigned long irq_flags,
5819 		      struct scsi_host_template *sht)
5820 {
5821 	int i, rc;
5822 	char *irq_desc;
5823 
5824 	rc = ata_host_start(host);
5825 	if (rc)
5826 		return rc;
5827 
5828 	/* Special case for polling mode */
5829 	if (!irq) {
5830 		WARN_ON(irq_handler);
5831 		return ata_host_register(host, sht);
5832 	}
5833 
5834 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5835 				  dev_driver_string(host->dev),
5836 				  dev_name(host->dev));
5837 	if (!irq_desc)
5838 		return -ENOMEM;
5839 
5840 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5841 			      irq_desc, host);
5842 	if (rc)
5843 		return rc;
5844 
5845 	for (i = 0; i < host->n_ports; i++)
5846 		ata_port_desc(host->ports[i], "irq %d", irq);
5847 
5848 	rc = ata_host_register(host, sht);
5849 	/* if failed, just free the IRQ and leave ports alone */
5850 	if (rc)
5851 		devm_free_irq(host->dev, irq, host);
5852 
5853 	return rc;
5854 }
5855 EXPORT_SYMBOL_GPL(ata_host_activate);
5856 
5857 /**
5858  *	ata_port_detach - Detach ATA port in preparation of device removal
5859  *	@ap: ATA port to be detached
5860  *
5861  *	Detach all ATA devices and the associated SCSI devices of @ap;
5862  *	then, remove the associated SCSI host.  @ap is guaranteed to
5863  *	be quiescent on return from this function.
5864  *
5865  *	LOCKING:
5866  *	Kernel thread context (may sleep).
5867  */
5868 static void ata_port_detach(struct ata_port *ap)
5869 {
5870 	unsigned long flags;
5871 	struct ata_link *link;
5872 	struct ata_device *dev;
5873 
5874 	if (!ap->ops->error_handler)
5875 		goto skip_eh;
5876 
5877 	/* tell EH we're leaving & flush EH */
5878 	spin_lock_irqsave(ap->lock, flags);
5879 	ap->pflags |= ATA_PFLAG_UNLOADING;
5880 	ata_port_schedule_eh(ap);
5881 	spin_unlock_irqrestore(ap->lock, flags);
5882 
5883 	/* wait till EH commits suicide */
5884 	ata_port_wait_eh(ap);
5885 
5886 	/* it better be dead now */
5887 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5888 
5889 	cancel_delayed_work_sync(&ap->hotplug_task);
5890 
5891  skip_eh:
5892 	/* clean up zpodd on port removal */
5893 	ata_for_each_link(link, ap, HOST_FIRST) {
5894 		ata_for_each_dev(dev, link, ALL) {
5895 			if (zpodd_dev_enabled(dev))
5896 				zpodd_exit(dev);
5897 		}
5898 	}
5899 	if (ap->pmp_link) {
5900 		int i;
5901 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5902 			ata_tlink_delete(&ap->pmp_link[i]);
5903 	}
5904 	/* remove the associated SCSI host */
5905 	scsi_remove_host(ap->scsi_host);
5906 	ata_tport_delete(ap);
5907 }
5908 
5909 /**
5910  *	ata_host_detach - Detach all ports of an ATA host
5911  *	@host: Host to detach
5912  *
5913  *	Detach all ports of @host.
5914  *
5915  *	LOCKING:
5916  *	Kernel thread context (may sleep).
5917  */
5918 void ata_host_detach(struct ata_host *host)
5919 {
5920 	int i;
5921 
5922 	for (i = 0; i < host->n_ports; i++) {
5923 		/* Ensure ata_port probe has completed */
5924 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5925 		ata_port_detach(host->ports[i]);
5926 	}
5927 
5928 	/* the host is dead now, dissociate ACPI */
5929 	ata_acpi_dissociate(host);
5930 }
5931 EXPORT_SYMBOL_GPL(ata_host_detach);
5932 
5933 #ifdef CONFIG_PCI
5934 
5935 /**
5936  *	ata_pci_remove_one - PCI layer callback for device removal
5937  *	@pdev: PCI device that was removed
5938  *
5939  *	PCI layer indicates to libata via this hook that hot-unplug or
5940  *	module unload event has occurred.  Detach all ports.  Resource
5941  *	release is handled via devres.
5942  *
5943  *	LOCKING:
5944  *	Inherited from PCI layer (may sleep).
5945  */
5946 void ata_pci_remove_one(struct pci_dev *pdev)
5947 {
5948 	struct ata_host *host = pci_get_drvdata(pdev);
5949 
5950 	ata_host_detach(host);
5951 }
5952 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5953 
5954 void ata_pci_shutdown_one(struct pci_dev *pdev)
5955 {
5956 	struct ata_host *host = pci_get_drvdata(pdev);
5957 	int i;
5958 
5959 	for (i = 0; i < host->n_ports; i++) {
5960 		struct ata_port *ap = host->ports[i];
5961 
5962 		ap->pflags |= ATA_PFLAG_FROZEN;
5963 
5964 		/* Disable port interrupts */
5965 		if (ap->ops->freeze)
5966 			ap->ops->freeze(ap);
5967 
5968 		/* Stop the port DMA engines */
5969 		if (ap->ops->port_stop)
5970 			ap->ops->port_stop(ap);
5971 	}
5972 }
5973 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5974 
5975 /* move to PCI subsystem */
5976 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5977 {
5978 	unsigned long tmp = 0;
5979 
5980 	switch (bits->width) {
5981 	case 1: {
5982 		u8 tmp8 = 0;
5983 		pci_read_config_byte(pdev, bits->reg, &tmp8);
5984 		tmp = tmp8;
5985 		break;
5986 	}
5987 	case 2: {
5988 		u16 tmp16 = 0;
5989 		pci_read_config_word(pdev, bits->reg, &tmp16);
5990 		tmp = tmp16;
5991 		break;
5992 	}
5993 	case 4: {
5994 		u32 tmp32 = 0;
5995 		pci_read_config_dword(pdev, bits->reg, &tmp32);
5996 		tmp = tmp32;
5997 		break;
5998 	}
5999 
6000 	default:
6001 		return -EINVAL;
6002 	}
6003 
6004 	tmp &= bits->mask;
6005 
6006 	return (tmp == bits->val) ? 1 : 0;
6007 }
6008 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6009 
6010 #ifdef CONFIG_PM
6011 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6012 {
6013 	pci_save_state(pdev);
6014 	pci_disable_device(pdev);
6015 
6016 	if (mesg.event & PM_EVENT_SLEEP)
6017 		pci_set_power_state(pdev, PCI_D3hot);
6018 }
6019 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6020 
6021 int ata_pci_device_do_resume(struct pci_dev *pdev)
6022 {
6023 	int rc;
6024 
6025 	pci_set_power_state(pdev, PCI_D0);
6026 	pci_restore_state(pdev);
6027 
6028 	rc = pcim_enable_device(pdev);
6029 	if (rc) {
6030 		dev_err(&pdev->dev,
6031 			"failed to enable device after resume (%d)\n", rc);
6032 		return rc;
6033 	}
6034 
6035 	pci_set_master(pdev);
6036 	return 0;
6037 }
6038 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6039 
6040 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6041 {
6042 	struct ata_host *host = pci_get_drvdata(pdev);
6043 	int rc = 0;
6044 
6045 	rc = ata_host_suspend(host, mesg);
6046 	if (rc)
6047 		return rc;
6048 
6049 	ata_pci_device_do_suspend(pdev, mesg);
6050 
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6054 
6055 int ata_pci_device_resume(struct pci_dev *pdev)
6056 {
6057 	struct ata_host *host = pci_get_drvdata(pdev);
6058 	int rc;
6059 
6060 	rc = ata_pci_device_do_resume(pdev);
6061 	if (rc == 0)
6062 		ata_host_resume(host);
6063 	return rc;
6064 }
6065 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6066 #endif /* CONFIG_PM */
6067 #endif /* CONFIG_PCI */
6068 
6069 /**
6070  *	ata_platform_remove_one - Platform layer callback for device removal
6071  *	@pdev: Platform device that was removed
6072  *
6073  *	Platform layer indicates to libata via this hook that hot-unplug or
6074  *	module unload event has occurred.  Detach all ports.  Resource
6075  *	release is handled via devres.
6076  *
6077  *	LOCKING:
6078  *	Inherited from platform layer (may sleep).
6079  */
6080 int ata_platform_remove_one(struct platform_device *pdev)
6081 {
6082 	struct ata_host *host = platform_get_drvdata(pdev);
6083 
6084 	ata_host_detach(host);
6085 
6086 	return 0;
6087 }
6088 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6089 
6090 #ifdef CONFIG_ATA_FORCE
6091 static int __init ata_parse_force_one(char **cur,
6092 				      struct ata_force_ent *force_ent,
6093 				      const char **reason)
6094 {
6095 	static const struct ata_force_param force_tbl[] __initconst = {
6096 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6097 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6098 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6099 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6100 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6101 		{ "sata",	.cbl		= ATA_CBL_SATA },
6102 		{ "1.5Gbps",	.spd_limit	= 1 },
6103 		{ "3.0Gbps",	.spd_limit	= 2 },
6104 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6105 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6106 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6107 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6108 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6109 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6110 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6111 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6112 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6113 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6114 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6115 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6116 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6117 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6118 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6119 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6120 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6121 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6122 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6123 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6124 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6125 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6126 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6127 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6128 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6129 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6130 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6131 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6132 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6133 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6134 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6135 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6136 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6137 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6138 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6139 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6140 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6141 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6142 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6143 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6144 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6145 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6146 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6147 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6148 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6149 	};
6150 	char *start = *cur, *p = *cur;
6151 	char *id, *val, *endp;
6152 	const struct ata_force_param *match_fp = NULL;
6153 	int nr_matches = 0, i;
6154 
6155 	/* find where this param ends and update *cur */
6156 	while (*p != '\0' && *p != ',')
6157 		p++;
6158 
6159 	if (*p == '\0')
6160 		*cur = p;
6161 	else
6162 		*cur = p + 1;
6163 
6164 	*p = '\0';
6165 
6166 	/* parse */
6167 	p = strchr(start, ':');
6168 	if (!p) {
6169 		val = strstrip(start);
6170 		goto parse_val;
6171 	}
6172 	*p = '\0';
6173 
6174 	id = strstrip(start);
6175 	val = strstrip(p + 1);
6176 
6177 	/* parse id */
6178 	p = strchr(id, '.');
6179 	if (p) {
6180 		*p++ = '\0';
6181 		force_ent->device = simple_strtoul(p, &endp, 10);
6182 		if (p == endp || *endp != '\0') {
6183 			*reason = "invalid device";
6184 			return -EINVAL;
6185 		}
6186 	}
6187 
6188 	force_ent->port = simple_strtoul(id, &endp, 10);
6189 	if (id == endp || *endp != '\0') {
6190 		*reason = "invalid port/link";
6191 		return -EINVAL;
6192 	}
6193 
6194  parse_val:
6195 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6196 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6197 		const struct ata_force_param *fp = &force_tbl[i];
6198 
6199 		if (strncasecmp(val, fp->name, strlen(val)))
6200 			continue;
6201 
6202 		nr_matches++;
6203 		match_fp = fp;
6204 
6205 		if (strcasecmp(val, fp->name) == 0) {
6206 			nr_matches = 1;
6207 			break;
6208 		}
6209 	}
6210 
6211 	if (!nr_matches) {
6212 		*reason = "unknown value";
6213 		return -EINVAL;
6214 	}
6215 	if (nr_matches > 1) {
6216 		*reason = "ambiguous value";
6217 		return -EINVAL;
6218 	}
6219 
6220 	force_ent->param = *match_fp;
6221 
6222 	return 0;
6223 }
6224 
6225 static void __init ata_parse_force_param(void)
6226 {
6227 	int idx = 0, size = 1;
6228 	int last_port = -1, last_device = -1;
6229 	char *p, *cur, *next;
6230 
6231 	/* calculate maximum number of params and allocate force_tbl */
6232 	for (p = ata_force_param_buf; *p; p++)
6233 		if (*p == ',')
6234 			size++;
6235 
6236 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6237 	if (!ata_force_tbl) {
6238 		printk(KERN_WARNING "ata: failed to extend force table, "
6239 		       "libata.force ignored\n");
6240 		return;
6241 	}
6242 
6243 	/* parse and populate the table */
6244 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6245 		const char *reason = "";
6246 		struct ata_force_ent te = { .port = -1, .device = -1 };
6247 
6248 		next = cur;
6249 		if (ata_parse_force_one(&next, &te, &reason)) {
6250 			printk(KERN_WARNING "ata: failed to parse force "
6251 			       "parameter \"%s\" (%s)\n",
6252 			       cur, reason);
6253 			continue;
6254 		}
6255 
6256 		if (te.port == -1) {
6257 			te.port = last_port;
6258 			te.device = last_device;
6259 		}
6260 
6261 		ata_force_tbl[idx++] = te;
6262 
6263 		last_port = te.port;
6264 		last_device = te.device;
6265 	}
6266 
6267 	ata_force_tbl_size = idx;
6268 }
6269 
6270 static void ata_free_force_param(void)
6271 {
6272 	kfree(ata_force_tbl);
6273 }
6274 #else
6275 static inline void ata_parse_force_param(void) { }
6276 static inline void ata_free_force_param(void) { }
6277 #endif
6278 
6279 static int __init ata_init(void)
6280 {
6281 	int rc;
6282 
6283 	ata_parse_force_param();
6284 
6285 	rc = ata_sff_init();
6286 	if (rc) {
6287 		ata_free_force_param();
6288 		return rc;
6289 	}
6290 
6291 	libata_transport_init();
6292 	ata_scsi_transport_template = ata_attach_transport();
6293 	if (!ata_scsi_transport_template) {
6294 		ata_sff_exit();
6295 		rc = -ENOMEM;
6296 		goto err_out;
6297 	}
6298 
6299 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6300 	return 0;
6301 
6302 err_out:
6303 	return rc;
6304 }
6305 
6306 static void __exit ata_exit(void)
6307 {
6308 	ata_release_transport(ata_scsi_transport_template);
6309 	libata_transport_exit();
6310 	ata_sff_exit();
6311 	ata_free_force_param();
6312 }
6313 
6314 subsys_initcall(ata_init);
6315 module_exit(ata_exit);
6316 
6317 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6318 
6319 int ata_ratelimit(void)
6320 {
6321 	return __ratelimit(&ratelimit);
6322 }
6323 EXPORT_SYMBOL_GPL(ata_ratelimit);
6324 
6325 /**
6326  *	ata_msleep - ATA EH owner aware msleep
6327  *	@ap: ATA port to attribute the sleep to
6328  *	@msecs: duration to sleep in milliseconds
6329  *
6330  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6331  *	ownership is released before going to sleep and reacquired
6332  *	after the sleep is complete.  IOW, other ports sharing the
6333  *	@ap->host will be allowed to own the EH while this task is
6334  *	sleeping.
6335  *
6336  *	LOCKING:
6337  *	Might sleep.
6338  */
6339 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6340 {
6341 	bool owns_eh = ap && ap->host->eh_owner == current;
6342 
6343 	if (owns_eh)
6344 		ata_eh_release(ap);
6345 
6346 	if (msecs < 20) {
6347 		unsigned long usecs = msecs * USEC_PER_MSEC;
6348 		usleep_range(usecs, usecs + 50);
6349 	} else {
6350 		msleep(msecs);
6351 	}
6352 
6353 	if (owns_eh)
6354 		ata_eh_acquire(ap);
6355 }
6356 EXPORT_SYMBOL_GPL(ata_msleep);
6357 
6358 /**
6359  *	ata_wait_register - wait until register value changes
6360  *	@ap: ATA port to wait register for, can be NULL
6361  *	@reg: IO-mapped register
6362  *	@mask: Mask to apply to read register value
6363  *	@val: Wait condition
6364  *	@interval: polling interval in milliseconds
6365  *	@timeout: timeout in milliseconds
6366  *
6367  *	Waiting for some bits of register to change is a common
6368  *	operation for ATA controllers.  This function reads 32bit LE
6369  *	IO-mapped register @reg and tests for the following condition.
6370  *
6371  *	(*@reg & mask) != val
6372  *
6373  *	If the condition is met, it returns; otherwise, the process is
6374  *	repeated after @interval_msec until timeout.
6375  *
6376  *	LOCKING:
6377  *	Kernel thread context (may sleep)
6378  *
6379  *	RETURNS:
6380  *	The final register value.
6381  */
6382 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6383 		      unsigned long interval, unsigned long timeout)
6384 {
6385 	unsigned long deadline;
6386 	u32 tmp;
6387 
6388 	tmp = ioread32(reg);
6389 
6390 	/* Calculate timeout _after_ the first read to make sure
6391 	 * preceding writes reach the controller before starting to
6392 	 * eat away the timeout.
6393 	 */
6394 	deadline = ata_deadline(jiffies, timeout);
6395 
6396 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6397 		ata_msleep(ap, interval);
6398 		tmp = ioread32(reg);
6399 	}
6400 
6401 	return tmp;
6402 }
6403 EXPORT_SYMBOL_GPL(ata_wait_register);
6404 
6405 /*
6406  * Dummy port_ops
6407  */
6408 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6409 {
6410 	return AC_ERR_SYSTEM;
6411 }
6412 
6413 static void ata_dummy_error_handler(struct ata_port *ap)
6414 {
6415 	/* truly dummy */
6416 }
6417 
6418 struct ata_port_operations ata_dummy_port_ops = {
6419 	.qc_prep		= ata_noop_qc_prep,
6420 	.qc_issue		= ata_dummy_qc_issue,
6421 	.error_handler		= ata_dummy_error_handler,
6422 	.sched_eh		= ata_std_sched_eh,
6423 	.end_eh			= ata_std_end_eh,
6424 };
6425 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6426 
6427 const struct ata_port_info ata_dummy_port_info = {
6428 	.port_ops		= &ata_dummy_port_ops,
6429 };
6430 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6431 
6432 /*
6433  * Utility print functions
6434  */
6435 void ata_port_printk(const struct ata_port *ap, const char *level,
6436 		     const char *fmt, ...)
6437 {
6438 	struct va_format vaf;
6439 	va_list args;
6440 
6441 	va_start(args, fmt);
6442 
6443 	vaf.fmt = fmt;
6444 	vaf.va = &args;
6445 
6446 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6447 
6448 	va_end(args);
6449 }
6450 EXPORT_SYMBOL(ata_port_printk);
6451 
6452 void ata_link_printk(const struct ata_link *link, const char *level,
6453 		     const char *fmt, ...)
6454 {
6455 	struct va_format vaf;
6456 	va_list args;
6457 
6458 	va_start(args, fmt);
6459 
6460 	vaf.fmt = fmt;
6461 	vaf.va = &args;
6462 
6463 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6464 		printk("%sata%u.%02u: %pV",
6465 		       level, link->ap->print_id, link->pmp, &vaf);
6466 	else
6467 		printk("%sata%u: %pV",
6468 		       level, link->ap->print_id, &vaf);
6469 
6470 	va_end(args);
6471 }
6472 EXPORT_SYMBOL(ata_link_printk);
6473 
6474 void ata_dev_printk(const struct ata_device *dev, const char *level,
6475 		    const char *fmt, ...)
6476 {
6477 	struct va_format vaf;
6478 	va_list args;
6479 
6480 	va_start(args, fmt);
6481 
6482 	vaf.fmt = fmt;
6483 	vaf.va = &args;
6484 
6485 	printk("%sata%u.%02u: %pV",
6486 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6487 	       &vaf);
6488 
6489 	va_end(args);
6490 }
6491 EXPORT_SYMBOL(ata_dev_printk);
6492 
6493 void ata_print_version(const struct device *dev, const char *version)
6494 {
6495 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6496 }
6497 EXPORT_SYMBOL(ata_print_version);
6498