xref: /linux/drivers/ata/libata-core.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		/* Check whether the converted CHS can fit.
768 		   Cylinder: 0-65535
769 		   Head: 0-15
770 		   Sector: 1-255*/
771 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
772 			return -ERANGE;
773 
774 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
775 		tf->lbal = sect;
776 		tf->lbam = cyl;
777 		tf->lbah = cyl >> 8;
778 		tf->device |= head;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
786  *	@pio_mask: pio_mask
787  *	@mwdma_mask: mwdma_mask
788  *	@udma_mask: udma_mask
789  *
790  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
791  *	unsigned int xfer_mask.
792  *
793  *	LOCKING:
794  *	None.
795  *
796  *	RETURNS:
797  *	Packed xfer_mask.
798  */
799 unsigned long ata_pack_xfermask(unsigned long pio_mask,
800 				unsigned long mwdma_mask,
801 				unsigned long udma_mask)
802 {
803 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
804 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
805 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
806 }
807 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
808 
809 /**
810  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
811  *	@xfer_mask: xfer_mask to unpack
812  *	@pio_mask: resulting pio_mask
813  *	@mwdma_mask: resulting mwdma_mask
814  *	@udma_mask: resulting udma_mask
815  *
816  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
817  *	Any NULL destination masks will be ignored.
818  */
819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
820 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
821 {
822 	if (pio_mask)
823 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
824 	if (mwdma_mask)
825 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
826 	if (udma_mask)
827 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
828 }
829 
830 static const struct ata_xfer_ent {
831 	int shift, bits;
832 	u8 base;
833 } ata_xfer_tbl[] = {
834 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
835 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
836 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
837 	{ -1, },
838 };
839 
840 /**
841  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
842  *	@xfer_mask: xfer_mask of interest
843  *
844  *	Return matching XFER_* value for @xfer_mask.  Only the highest
845  *	bit of @xfer_mask is considered.
846  *
847  *	LOCKING:
848  *	None.
849  *
850  *	RETURNS:
851  *	Matching XFER_* value, 0xff if no match found.
852  */
853 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
854 {
855 	int highbit = fls(xfer_mask) - 1;
856 	const struct ata_xfer_ent *ent;
857 
858 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
859 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
860 			return ent->base + highbit - ent->shift;
861 	return 0xff;
862 }
863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
864 
865 /**
866  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
867  *	@xfer_mode: XFER_* of interest
868  *
869  *	Return matching xfer_mask for @xfer_mode.
870  *
871  *	LOCKING:
872  *	None.
873  *
874  *	RETURNS:
875  *	Matching xfer_mask, 0 if no match found.
876  */
877 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
878 {
879 	const struct ata_xfer_ent *ent;
880 
881 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
882 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
883 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
884 				& ~((1 << ent->shift) - 1);
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
888 
889 /**
890  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
891  *	@xfer_mode: XFER_* of interest
892  *
893  *	Return matching xfer_shift for @xfer_mode.
894  *
895  *	LOCKING:
896  *	None.
897  *
898  *	RETURNS:
899  *	Matching xfer_shift, -1 if no match found.
900  */
901 int ata_xfer_mode2shift(unsigned long xfer_mode)
902 {
903 	const struct ata_xfer_ent *ent;
904 
905 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
906 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
907 			return ent->shift;
908 	return -1;
909 }
910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
911 
912 /**
913  *	ata_mode_string - convert xfer_mask to string
914  *	@xfer_mask: mask of bits supported; only highest bit counts.
915  *
916  *	Determine string which represents the highest speed
917  *	(highest bit in @modemask).
918  *
919  *	LOCKING:
920  *	None.
921  *
922  *	RETURNS:
923  *	Constant C string representing highest speed listed in
924  *	@mode_mask, or the constant C string "<n/a>".
925  */
926 const char *ata_mode_string(unsigned long xfer_mask)
927 {
928 	static const char * const xfer_mode_str[] = {
929 		"PIO0",
930 		"PIO1",
931 		"PIO2",
932 		"PIO3",
933 		"PIO4",
934 		"PIO5",
935 		"PIO6",
936 		"MWDMA0",
937 		"MWDMA1",
938 		"MWDMA2",
939 		"MWDMA3",
940 		"MWDMA4",
941 		"UDMA/16",
942 		"UDMA/25",
943 		"UDMA/33",
944 		"UDMA/44",
945 		"UDMA/66",
946 		"UDMA/100",
947 		"UDMA/133",
948 		"UDMA7",
949 	};
950 	int highbit;
951 
952 	highbit = fls(xfer_mask) - 1;
953 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
954 		return xfer_mode_str[highbit];
955 	return "<n/a>";
956 }
957 EXPORT_SYMBOL_GPL(ata_mode_string);
958 
959 const char *sata_spd_string(unsigned int spd)
960 {
961 	static const char * const spd_str[] = {
962 		"1.5 Gbps",
963 		"3.0 Gbps",
964 		"6.0 Gbps",
965 	};
966 
967 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
968 		return "<unknown>";
969 	return spd_str[spd - 1];
970 }
971 
972 /**
973  *	ata_dev_classify - determine device type based on ATA-spec signature
974  *	@tf: ATA taskfile register set for device to be identified
975  *
976  *	Determine from taskfile register contents whether a device is
977  *	ATA or ATAPI, as per "Signature and persistence" section
978  *	of ATA/PI spec (volume 1, sect 5.14).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
985  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
986  */
987 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
988 {
989 	/* Apple's open source Darwin code hints that some devices only
990 	 * put a proper signature into the LBA mid/high registers,
991 	 * So, we only check those.  It's sufficient for uniqueness.
992 	 *
993 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
994 	 * signatures for ATA and ATAPI devices attached on SerialATA,
995 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
996 	 * spec has never mentioned about using different signatures
997 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
998 	 * Multiplier specification began to use 0x69/0x96 to identify
999 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1000 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1001 	 * 0x69/0x96 shortly and described them as reserved for
1002 	 * SerialATA.
1003 	 *
1004 	 * We follow the current spec and consider that 0x69/0x96
1005 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1006 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1007 	 * SEMB signature.  This is worked around in
1008 	 * ata_dev_read_id().
1009 	 */
1010 	if (tf->lbam == 0 && tf->lbah == 0)
1011 		return ATA_DEV_ATA;
1012 
1013 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1014 		return ATA_DEV_ATAPI;
1015 
1016 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1017 		return ATA_DEV_PMP;
1018 
1019 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1020 		return ATA_DEV_SEMB;
1021 
1022 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1023 		return ATA_DEV_ZAC;
1024 
1025 	return ATA_DEV_UNKNOWN;
1026 }
1027 EXPORT_SYMBOL_GPL(ata_dev_classify);
1028 
1029 /**
1030  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1031  *	@id: IDENTIFY DEVICE results we will examine
1032  *	@s: string into which data is output
1033  *	@ofs: offset into identify device page
1034  *	@len: length of string to return. must be an even number.
1035  *
1036  *	The strings in the IDENTIFY DEVICE page are broken up into
1037  *	16-bit chunks.  Run through the string, and output each
1038  *	8-bit chunk linearly, regardless of platform.
1039  *
1040  *	LOCKING:
1041  *	caller.
1042  */
1043 
1044 void ata_id_string(const u16 *id, unsigned char *s,
1045 		   unsigned int ofs, unsigned int len)
1046 {
1047 	unsigned int c;
1048 
1049 	BUG_ON(len & 1);
1050 
1051 	while (len > 0) {
1052 		c = id[ofs] >> 8;
1053 		*s = c;
1054 		s++;
1055 
1056 		c = id[ofs] & 0xff;
1057 		*s = c;
1058 		s++;
1059 
1060 		ofs++;
1061 		len -= 2;
1062 	}
1063 }
1064 EXPORT_SYMBOL_GPL(ata_id_string);
1065 
1066 /**
1067  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1068  *	@id: IDENTIFY DEVICE results we will examine
1069  *	@s: string into which data is output
1070  *	@ofs: offset into identify device page
1071  *	@len: length of string to return. must be an odd number.
1072  *
1073  *	This function is identical to ata_id_string except that it
1074  *	trims trailing spaces and terminates the resulting string with
1075  *	null.  @len must be actual maximum length (even number) + 1.
1076  *
1077  *	LOCKING:
1078  *	caller.
1079  */
1080 void ata_id_c_string(const u16 *id, unsigned char *s,
1081 		     unsigned int ofs, unsigned int len)
1082 {
1083 	unsigned char *p;
1084 
1085 	ata_id_string(id, s, ofs, len - 1);
1086 
1087 	p = s + strnlen(s, len - 1);
1088 	while (p > s && p[-1] == ' ')
1089 		p--;
1090 	*p = '\0';
1091 }
1092 EXPORT_SYMBOL_GPL(ata_id_c_string);
1093 
1094 static u64 ata_id_n_sectors(const u16 *id)
1095 {
1096 	if (ata_id_has_lba(id)) {
1097 		if (ata_id_has_lba48(id))
1098 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1099 		else
1100 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1101 	} else {
1102 		if (ata_id_current_chs_valid(id))
1103 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1104 			       id[ATA_ID_CUR_SECTORS];
1105 		else
1106 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1107 			       id[ATA_ID_SECTORS];
1108 	}
1109 }
1110 
1111 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1112 {
1113 	u64 sectors = 0;
1114 
1115 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1116 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1117 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1118 	sectors |= (tf->lbah & 0xff) << 16;
1119 	sectors |= (tf->lbam & 0xff) << 8;
1120 	sectors |= (tf->lbal & 0xff);
1121 
1122 	return sectors;
1123 }
1124 
1125 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= (tf->device & 0x0f) << 24;
1130 	sectors |= (tf->lbah & 0xff) << 16;
1131 	sectors |= (tf->lbam & 0xff) << 8;
1132 	sectors |= (tf->lbal & 0xff);
1133 
1134 	return sectors;
1135 }
1136 
1137 /**
1138  *	ata_read_native_max_address - Read native max address
1139  *	@dev: target device
1140  *	@max_sectors: out parameter for the result native max address
1141  *
1142  *	Perform an LBA48 or LBA28 native size query upon the device in
1143  *	question.
1144  *
1145  *	RETURNS:
1146  *	0 on success, -EACCES if command is aborted by the drive.
1147  *	-EIO on other errors.
1148  */
1149 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1150 {
1151 	unsigned int err_mask;
1152 	struct ata_taskfile tf;
1153 	int lba48 = ata_id_has_lba48(dev->id);
1154 
1155 	ata_tf_init(dev, &tf);
1156 
1157 	/* always clear all address registers */
1158 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1159 
1160 	if (lba48) {
1161 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1162 		tf.flags |= ATA_TFLAG_LBA48;
1163 	} else
1164 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1165 
1166 	tf.protocol = ATA_PROT_NODATA;
1167 	tf.device |= ATA_LBA;
1168 
1169 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1170 	if (err_mask) {
1171 		ata_dev_warn(dev,
1172 			     "failed to read native max address (err_mask=0x%x)\n",
1173 			     err_mask);
1174 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1175 			return -EACCES;
1176 		return -EIO;
1177 	}
1178 
1179 	if (lba48)
1180 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1181 	else
1182 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1183 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1184 		(*max_sectors)--;
1185 	return 0;
1186 }
1187 
1188 /**
1189  *	ata_set_max_sectors - Set max sectors
1190  *	@dev: target device
1191  *	@new_sectors: new max sectors value to set for the device
1192  *
1193  *	Set max sectors of @dev to @new_sectors.
1194  *
1195  *	RETURNS:
1196  *	0 on success, -EACCES if command is aborted or denied (due to
1197  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1198  *	errors.
1199  */
1200 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1201 {
1202 	unsigned int err_mask;
1203 	struct ata_taskfile tf;
1204 	int lba48 = ata_id_has_lba48(dev->id);
1205 
1206 	new_sectors--;
1207 
1208 	ata_tf_init(dev, &tf);
1209 
1210 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1211 
1212 	if (lba48) {
1213 		tf.command = ATA_CMD_SET_MAX_EXT;
1214 		tf.flags |= ATA_TFLAG_LBA48;
1215 
1216 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1217 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1218 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1219 	} else {
1220 		tf.command = ATA_CMD_SET_MAX;
1221 
1222 		tf.device |= (new_sectors >> 24) & 0xf;
1223 	}
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	tf.lbal = (new_sectors >> 0) & 0xff;
1229 	tf.lbam = (new_sectors >> 8) & 0xff;
1230 	tf.lbah = (new_sectors >> 16) & 0xff;
1231 
1232 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 	if (err_mask) {
1234 		ata_dev_warn(dev,
1235 			     "failed to set max address (err_mask=0x%x)\n",
1236 			     err_mask);
1237 		if (err_mask == AC_ERR_DEV &&
1238 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  *	ata_hpa_resize		-	Resize a device with an HPA set
1248  *	@dev: Device to resize
1249  *
1250  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1251  *	it if required to the full size of the media. The caller must check
1252  *	the drive has the HPA feature set enabled.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -errno on failure.
1256  */
1257 static int ata_hpa_resize(struct ata_device *dev)
1258 {
1259 	bool print_info = ata_dev_print_info(dev);
1260 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1261 	u64 sectors = ata_id_n_sectors(dev->id);
1262 	u64 native_sectors;
1263 	int rc;
1264 
1265 	/* do we need to do it? */
1266 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1267 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1268 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1269 		return 0;
1270 
1271 	/* read native max address */
1272 	rc = ata_read_native_max_address(dev, &native_sectors);
1273 	if (rc) {
1274 		/* If device aborted the command or HPA isn't going to
1275 		 * be unlocked, skip HPA resizing.
1276 		 */
1277 		if (rc == -EACCES || !unlock_hpa) {
1278 			ata_dev_warn(dev,
1279 				     "HPA support seems broken, skipping HPA handling\n");
1280 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1281 
1282 			/* we can continue if device aborted the command */
1283 			if (rc == -EACCES)
1284 				rc = 0;
1285 		}
1286 
1287 		return rc;
1288 	}
1289 	dev->n_native_sectors = native_sectors;
1290 
1291 	/* nothing to do? */
1292 	if (native_sectors <= sectors || !unlock_hpa) {
1293 		if (!print_info || native_sectors == sectors)
1294 			return 0;
1295 
1296 		if (native_sectors > sectors)
1297 			ata_dev_info(dev,
1298 				"HPA detected: current %llu, native %llu\n",
1299 				(unsigned long long)sectors,
1300 				(unsigned long long)native_sectors);
1301 		else if (native_sectors < sectors)
1302 			ata_dev_warn(dev,
1303 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1304 				(unsigned long long)native_sectors,
1305 				(unsigned long long)sectors);
1306 		return 0;
1307 	}
1308 
1309 	/* let's unlock HPA */
1310 	rc = ata_set_max_sectors(dev, native_sectors);
1311 	if (rc == -EACCES) {
1312 		/* if device aborted the command, skip HPA resizing */
1313 		ata_dev_warn(dev,
1314 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1315 			     (unsigned long long)sectors,
1316 			     (unsigned long long)native_sectors);
1317 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1318 		return 0;
1319 	} else if (rc)
1320 		return rc;
1321 
1322 	/* re-read IDENTIFY data */
1323 	rc = ata_dev_reread_id(dev, 0);
1324 	if (rc) {
1325 		ata_dev_err(dev,
1326 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1327 		return rc;
1328 	}
1329 
1330 	if (print_info) {
1331 		u64 new_sectors = ata_id_n_sectors(dev->id);
1332 		ata_dev_info(dev,
1333 			"HPA unlocked: %llu -> %llu, native %llu\n",
1334 			(unsigned long long)sectors,
1335 			(unsigned long long)new_sectors,
1336 			(unsigned long long)native_sectors);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1344  *	@dev: device from which the information is fetched
1345  *	@id: IDENTIFY DEVICE page to dump
1346  *
1347  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1348  *	page.
1349  *
1350  *	LOCKING:
1351  *	caller.
1352  */
1353 
1354 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1355 {
1356 	ata_dev_dbg(dev,
1357 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1358 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1359 		"88==0x%04x  93==0x%04x\n",
1360 		id[49], id[53], id[63], id[64], id[75], id[80],
1361 		id[81], id[82], id[83], id[84], id[88], id[93]);
1362 }
1363 
1364 /**
1365  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1366  *	@id: IDENTIFY data to compute xfer mask from
1367  *
1368  *	Compute the xfermask for this device. This is not as trivial
1369  *	as it seems if we must consider early devices correctly.
1370  *
1371  *	FIXME: pre IDE drive timing (do we care ?).
1372  *
1373  *	LOCKING:
1374  *	None.
1375  *
1376  *	RETURNS:
1377  *	Computed xfermask
1378  */
1379 unsigned long ata_id_xfermask(const u16 *id)
1380 {
1381 	unsigned long pio_mask, mwdma_mask, udma_mask;
1382 
1383 	/* Usual case. Word 53 indicates word 64 is valid */
1384 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1385 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1386 		pio_mask <<= 3;
1387 		pio_mask |= 0x7;
1388 	} else {
1389 		/* If word 64 isn't valid then Word 51 high byte holds
1390 		 * the PIO timing number for the maximum. Turn it into
1391 		 * a mask.
1392 		 */
1393 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1394 		if (mode < 5)	/* Valid PIO range */
1395 			pio_mask = (2 << mode) - 1;
1396 		else
1397 			pio_mask = 1;
1398 
1399 		/* But wait.. there's more. Design your standards by
1400 		 * committee and you too can get a free iordy field to
1401 		 * process. However its the speeds not the modes that
1402 		 * are supported... Note drivers using the timing API
1403 		 * will get this right anyway
1404 		 */
1405 	}
1406 
1407 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1408 
1409 	if (ata_id_is_cfa(id)) {
1410 		/*
1411 		 *	Process compact flash extended modes
1412 		 */
1413 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1414 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1415 
1416 		if (pio)
1417 			pio_mask |= (1 << 5);
1418 		if (pio > 1)
1419 			pio_mask |= (1 << 6);
1420 		if (dma)
1421 			mwdma_mask |= (1 << 3);
1422 		if (dma > 1)
1423 			mwdma_mask |= (1 << 4);
1424 	}
1425 
1426 	udma_mask = 0;
1427 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1428 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1429 
1430 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1431 }
1432 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1433 
1434 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1435 {
1436 	struct completion *waiting = qc->private_data;
1437 
1438 	complete(waiting);
1439 }
1440 
1441 /**
1442  *	ata_exec_internal_sg - execute libata internal command
1443  *	@dev: Device to which the command is sent
1444  *	@tf: Taskfile registers for the command and the result
1445  *	@cdb: CDB for packet command
1446  *	@dma_dir: Data transfer direction of the command
1447  *	@sgl: sg list for the data buffer of the command
1448  *	@n_elem: Number of sg entries
1449  *	@timeout: Timeout in msecs (0 for default)
1450  *
1451  *	Executes libata internal command with timeout.  @tf contains
1452  *	command on entry and result on return.  Timeout and error
1453  *	conditions are reported via return value.  No recovery action
1454  *	is taken after a command times out.  It's caller's duty to
1455  *	clean up after timeout.
1456  *
1457  *	LOCKING:
1458  *	None.  Should be called with kernel context, might sleep.
1459  *
1460  *	RETURNS:
1461  *	Zero on success, AC_ERR_* mask on failure
1462  */
1463 unsigned ata_exec_internal_sg(struct ata_device *dev,
1464 			      struct ata_taskfile *tf, const u8 *cdb,
1465 			      int dma_dir, struct scatterlist *sgl,
1466 			      unsigned int n_elem, unsigned long timeout)
1467 {
1468 	struct ata_link *link = dev->link;
1469 	struct ata_port *ap = link->ap;
1470 	u8 command = tf->command;
1471 	int auto_timeout = 0;
1472 	struct ata_queued_cmd *qc;
1473 	unsigned int preempted_tag;
1474 	u32 preempted_sactive;
1475 	u64 preempted_qc_active;
1476 	int preempted_nr_active_links;
1477 	DECLARE_COMPLETION_ONSTACK(wait);
1478 	unsigned long flags;
1479 	unsigned int err_mask;
1480 	int rc;
1481 
1482 	spin_lock_irqsave(ap->lock, flags);
1483 
1484 	/* no internal command while frozen */
1485 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1486 		spin_unlock_irqrestore(ap->lock, flags);
1487 		return AC_ERR_SYSTEM;
1488 	}
1489 
1490 	/* initialize internal qc */
1491 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1492 
1493 	qc->tag = ATA_TAG_INTERNAL;
1494 	qc->hw_tag = 0;
1495 	qc->scsicmd = NULL;
1496 	qc->ap = ap;
1497 	qc->dev = dev;
1498 	ata_qc_reinit(qc);
1499 
1500 	preempted_tag = link->active_tag;
1501 	preempted_sactive = link->sactive;
1502 	preempted_qc_active = ap->qc_active;
1503 	preempted_nr_active_links = ap->nr_active_links;
1504 	link->active_tag = ATA_TAG_POISON;
1505 	link->sactive = 0;
1506 	ap->qc_active = 0;
1507 	ap->nr_active_links = 0;
1508 
1509 	/* prepare & issue qc */
1510 	qc->tf = *tf;
1511 	if (cdb)
1512 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1513 
1514 	/* some SATA bridges need us to indicate data xfer direction */
1515 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1516 	    dma_dir == DMA_FROM_DEVICE)
1517 		qc->tf.feature |= ATAPI_DMADIR;
1518 
1519 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1520 	qc->dma_dir = dma_dir;
1521 	if (dma_dir != DMA_NONE) {
1522 		unsigned int i, buflen = 0;
1523 		struct scatterlist *sg;
1524 
1525 		for_each_sg(sgl, sg, n_elem, i)
1526 			buflen += sg->length;
1527 
1528 		ata_sg_init(qc, sgl, n_elem);
1529 		qc->nbytes = buflen;
1530 	}
1531 
1532 	qc->private_data = &wait;
1533 	qc->complete_fn = ata_qc_complete_internal;
1534 
1535 	ata_qc_issue(qc);
1536 
1537 	spin_unlock_irqrestore(ap->lock, flags);
1538 
1539 	if (!timeout) {
1540 		if (ata_probe_timeout)
1541 			timeout = ata_probe_timeout * 1000;
1542 		else {
1543 			timeout = ata_internal_cmd_timeout(dev, command);
1544 			auto_timeout = 1;
1545 		}
1546 	}
1547 
1548 	if (ap->ops->error_handler)
1549 		ata_eh_release(ap);
1550 
1551 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1552 
1553 	if (ap->ops->error_handler)
1554 		ata_eh_acquire(ap);
1555 
1556 	ata_sff_flush_pio_task(ap);
1557 
1558 	if (!rc) {
1559 		spin_lock_irqsave(ap->lock, flags);
1560 
1561 		/* We're racing with irq here.  If we lose, the
1562 		 * following test prevents us from completing the qc
1563 		 * twice.  If we win, the port is frozen and will be
1564 		 * cleaned up by ->post_internal_cmd().
1565 		 */
1566 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1567 			qc->err_mask |= AC_ERR_TIMEOUT;
1568 
1569 			if (ap->ops->error_handler)
1570 				ata_port_freeze(ap);
1571 			else
1572 				ata_qc_complete(qc);
1573 
1574 			ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1575 				     command);
1576 		}
1577 
1578 		spin_unlock_irqrestore(ap->lock, flags);
1579 	}
1580 
1581 	/* do post_internal_cmd */
1582 	if (ap->ops->post_internal_cmd)
1583 		ap->ops->post_internal_cmd(qc);
1584 
1585 	/* perform minimal error analysis */
1586 	if (qc->flags & ATA_QCFLAG_FAILED) {
1587 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1588 			qc->err_mask |= AC_ERR_DEV;
1589 
1590 		if (!qc->err_mask)
1591 			qc->err_mask |= AC_ERR_OTHER;
1592 
1593 		if (qc->err_mask & ~AC_ERR_OTHER)
1594 			qc->err_mask &= ~AC_ERR_OTHER;
1595 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1596 		qc->result_tf.command |= ATA_SENSE;
1597 	}
1598 
1599 	/* finish up */
1600 	spin_lock_irqsave(ap->lock, flags);
1601 
1602 	*tf = qc->result_tf;
1603 	err_mask = qc->err_mask;
1604 
1605 	ata_qc_free(qc);
1606 	link->active_tag = preempted_tag;
1607 	link->sactive = preempted_sactive;
1608 	ap->qc_active = preempted_qc_active;
1609 	ap->nr_active_links = preempted_nr_active_links;
1610 
1611 	spin_unlock_irqrestore(ap->lock, flags);
1612 
1613 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1614 		ata_internal_cmd_timed_out(dev, command);
1615 
1616 	return err_mask;
1617 }
1618 
1619 /**
1620  *	ata_exec_internal - execute libata internal command
1621  *	@dev: Device to which the command is sent
1622  *	@tf: Taskfile registers for the command and the result
1623  *	@cdb: CDB for packet command
1624  *	@dma_dir: Data transfer direction of the command
1625  *	@buf: Data buffer of the command
1626  *	@buflen: Length of data buffer
1627  *	@timeout: Timeout in msecs (0 for default)
1628  *
1629  *	Wrapper around ata_exec_internal_sg() which takes simple
1630  *	buffer instead of sg list.
1631  *
1632  *	LOCKING:
1633  *	None.  Should be called with kernel context, might sleep.
1634  *
1635  *	RETURNS:
1636  *	Zero on success, AC_ERR_* mask on failure
1637  */
1638 unsigned ata_exec_internal(struct ata_device *dev,
1639 			   struct ata_taskfile *tf, const u8 *cdb,
1640 			   int dma_dir, void *buf, unsigned int buflen,
1641 			   unsigned long timeout)
1642 {
1643 	struct scatterlist *psg = NULL, sg;
1644 	unsigned int n_elem = 0;
1645 
1646 	if (dma_dir != DMA_NONE) {
1647 		WARN_ON(!buf);
1648 		sg_init_one(&sg, buf, buflen);
1649 		psg = &sg;
1650 		n_elem++;
1651 	}
1652 
1653 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1654 				    timeout);
1655 }
1656 
1657 /**
1658  *	ata_pio_need_iordy	-	check if iordy needed
1659  *	@adev: ATA device
1660  *
1661  *	Check if the current speed of the device requires IORDY. Used
1662  *	by various controllers for chip configuration.
1663  */
1664 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1665 {
1666 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1667 	 * lead to controller lock up on certain controllers if the
1668 	 * port is not occupied.  See bko#11703 for details.
1669 	 */
1670 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1671 		return 0;
1672 	/* Controller doesn't support IORDY.  Probably a pointless
1673 	 * check as the caller should know this.
1674 	 */
1675 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1676 		return 0;
1677 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1678 	if (ata_id_is_cfa(adev->id)
1679 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1680 		return 0;
1681 	/* PIO3 and higher it is mandatory */
1682 	if (adev->pio_mode > XFER_PIO_2)
1683 		return 1;
1684 	/* We turn it on when possible */
1685 	if (ata_id_has_iordy(adev->id))
1686 		return 1;
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1690 
1691 /**
1692  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1693  *	@adev: ATA device
1694  *
1695  *	Compute the highest mode possible if we are not using iordy. Return
1696  *	-1 if no iordy mode is available.
1697  */
1698 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1699 {
1700 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1701 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1702 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1703 		/* Is the speed faster than the drive allows non IORDY ? */
1704 		if (pio) {
1705 			/* This is cycle times not frequency - watch the logic! */
1706 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1707 				return 3 << ATA_SHIFT_PIO;
1708 			return 7 << ATA_SHIFT_PIO;
1709 		}
1710 	}
1711 	return 3 << ATA_SHIFT_PIO;
1712 }
1713 
1714 /**
1715  *	ata_do_dev_read_id		-	default ID read method
1716  *	@dev: device
1717  *	@tf: proposed taskfile
1718  *	@id: data buffer
1719  *
1720  *	Issue the identify taskfile and hand back the buffer containing
1721  *	identify data. For some RAID controllers and for pre ATA devices
1722  *	this function is wrapped or replaced by the driver
1723  */
1724 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1725 				struct ata_taskfile *tf, __le16 *id)
1726 {
1727 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1728 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1729 }
1730 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1731 
1732 /**
1733  *	ata_dev_read_id - Read ID data from the specified device
1734  *	@dev: target device
1735  *	@p_class: pointer to class of the target device (may be changed)
1736  *	@flags: ATA_READID_* flags
1737  *	@id: buffer to read IDENTIFY data into
1738  *
1739  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1740  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1741  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1742  *	for pre-ATA4 drives.
1743  *
1744  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1745  *	now we abort if we hit that case.
1746  *
1747  *	LOCKING:
1748  *	Kernel thread context (may sleep)
1749  *
1750  *	RETURNS:
1751  *	0 on success, -errno otherwise.
1752  */
1753 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1754 		    unsigned int flags, u16 *id)
1755 {
1756 	struct ata_port *ap = dev->link->ap;
1757 	unsigned int class = *p_class;
1758 	struct ata_taskfile tf;
1759 	unsigned int err_mask = 0;
1760 	const char *reason;
1761 	bool is_semb = class == ATA_DEV_SEMB;
1762 	int may_fallback = 1, tried_spinup = 0;
1763 	int rc;
1764 
1765 retry:
1766 	ata_tf_init(dev, &tf);
1767 
1768 	switch (class) {
1769 	case ATA_DEV_SEMB:
1770 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1771 		fallthrough;
1772 	case ATA_DEV_ATA:
1773 	case ATA_DEV_ZAC:
1774 		tf.command = ATA_CMD_ID_ATA;
1775 		break;
1776 	case ATA_DEV_ATAPI:
1777 		tf.command = ATA_CMD_ID_ATAPI;
1778 		break;
1779 	default:
1780 		rc = -ENODEV;
1781 		reason = "unsupported class";
1782 		goto err_out;
1783 	}
1784 
1785 	tf.protocol = ATA_PROT_PIO;
1786 
1787 	/* Some devices choke if TF registers contain garbage.  Make
1788 	 * sure those are properly initialized.
1789 	 */
1790 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1791 
1792 	/* Device presence detection is unreliable on some
1793 	 * controllers.  Always poll IDENTIFY if available.
1794 	 */
1795 	tf.flags |= ATA_TFLAG_POLLING;
1796 
1797 	if (ap->ops->read_id)
1798 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1799 	else
1800 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1801 
1802 	if (err_mask) {
1803 		if (err_mask & AC_ERR_NODEV_HINT) {
1804 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1805 			return -ENOENT;
1806 		}
1807 
1808 		if (is_semb) {
1809 			ata_dev_info(dev,
1810 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1811 			/* SEMB is not supported yet */
1812 			*p_class = ATA_DEV_SEMB_UNSUP;
1813 			return 0;
1814 		}
1815 
1816 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1817 			/* Device or controller might have reported
1818 			 * the wrong device class.  Give a shot at the
1819 			 * other IDENTIFY if the current one is
1820 			 * aborted by the device.
1821 			 */
1822 			if (may_fallback) {
1823 				may_fallback = 0;
1824 
1825 				if (class == ATA_DEV_ATA)
1826 					class = ATA_DEV_ATAPI;
1827 				else
1828 					class = ATA_DEV_ATA;
1829 				goto retry;
1830 			}
1831 
1832 			/* Control reaches here iff the device aborted
1833 			 * both flavors of IDENTIFYs which happens
1834 			 * sometimes with phantom devices.
1835 			 */
1836 			ata_dev_dbg(dev,
1837 				    "both IDENTIFYs aborted, assuming NODEV\n");
1838 			return -ENOENT;
1839 		}
1840 
1841 		rc = -EIO;
1842 		reason = "I/O error";
1843 		goto err_out;
1844 	}
1845 
1846 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1847 		ata_dev_info(dev, "dumping IDENTIFY data, "
1848 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1849 			    class, may_fallback, tried_spinup);
1850 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1851 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1852 	}
1853 
1854 	/* Falling back doesn't make sense if ID data was read
1855 	 * successfully at least once.
1856 	 */
1857 	may_fallback = 0;
1858 
1859 	swap_buf_le16(id, ATA_ID_WORDS);
1860 
1861 	/* sanity check */
1862 	rc = -EINVAL;
1863 	reason = "device reports invalid type";
1864 
1865 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1866 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1867 			goto err_out;
1868 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1869 							ata_id_is_ata(id)) {
1870 			ata_dev_dbg(dev,
1871 				"host indicates ignore ATA devices, ignored\n");
1872 			return -ENOENT;
1873 		}
1874 	} else {
1875 		if (ata_id_is_ata(id))
1876 			goto err_out;
1877 	}
1878 
1879 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1880 		tried_spinup = 1;
1881 		/*
1882 		 * Drive powered-up in standby mode, and requires a specific
1883 		 * SET_FEATURES spin-up subcommand before it will accept
1884 		 * anything other than the original IDENTIFY command.
1885 		 */
1886 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1887 		if (err_mask && id[2] != 0x738c) {
1888 			rc = -EIO;
1889 			reason = "SPINUP failed";
1890 			goto err_out;
1891 		}
1892 		/*
1893 		 * If the drive initially returned incomplete IDENTIFY info,
1894 		 * we now must reissue the IDENTIFY command.
1895 		 */
1896 		if (id[2] == 0x37c8)
1897 			goto retry;
1898 	}
1899 
1900 	if ((flags & ATA_READID_POSTRESET) &&
1901 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1902 		/*
1903 		 * The exact sequence expected by certain pre-ATA4 drives is:
1904 		 * SRST RESET
1905 		 * IDENTIFY (optional in early ATA)
1906 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1907 		 * anything else..
1908 		 * Some drives were very specific about that exact sequence.
1909 		 *
1910 		 * Note that ATA4 says lba is mandatory so the second check
1911 		 * should never trigger.
1912 		 */
1913 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1914 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1915 			if (err_mask) {
1916 				rc = -EIO;
1917 				reason = "INIT_DEV_PARAMS failed";
1918 				goto err_out;
1919 			}
1920 
1921 			/* current CHS translation info (id[53-58]) might be
1922 			 * changed. reread the identify device info.
1923 			 */
1924 			flags &= ~ATA_READID_POSTRESET;
1925 			goto retry;
1926 		}
1927 	}
1928 
1929 	*p_class = class;
1930 
1931 	return 0;
1932 
1933  err_out:
1934 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1935 		     reason, err_mask);
1936 	return rc;
1937 }
1938 
1939 /**
1940  *	ata_read_log_page - read a specific log page
1941  *	@dev: target device
1942  *	@log: log to read
1943  *	@page: page to read
1944  *	@buf: buffer to store read page
1945  *	@sectors: number of sectors to read
1946  *
1947  *	Read log page using READ_LOG_EXT command.
1948  *
1949  *	LOCKING:
1950  *	Kernel thread context (may sleep).
1951  *
1952  *	RETURNS:
1953  *	0 on success, AC_ERR_* mask otherwise.
1954  */
1955 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1956 			       u8 page, void *buf, unsigned int sectors)
1957 {
1958 	unsigned long ap_flags = dev->link->ap->flags;
1959 	struct ata_taskfile tf;
1960 	unsigned int err_mask;
1961 	bool dma = false;
1962 
1963 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1964 
1965 	/*
1966 	 * Return error without actually issuing the command on controllers
1967 	 * which e.g. lockup on a read log page.
1968 	 */
1969 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1970 		return AC_ERR_DEV;
1971 
1972 retry:
1973 	ata_tf_init(dev, &tf);
1974 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1975 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1976 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1977 		tf.protocol = ATA_PROT_DMA;
1978 		dma = true;
1979 	} else {
1980 		tf.command = ATA_CMD_READ_LOG_EXT;
1981 		tf.protocol = ATA_PROT_PIO;
1982 		dma = false;
1983 	}
1984 	tf.lbal = log;
1985 	tf.lbam = page;
1986 	tf.nsect = sectors;
1987 	tf.hob_nsect = sectors >> 8;
1988 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1989 
1990 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1991 				     buf, sectors * ATA_SECT_SIZE, 0);
1992 
1993 	if (err_mask) {
1994 		if (dma) {
1995 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
1996 			goto retry;
1997 		}
1998 		ata_dev_err(dev,
1999 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2000 			    (unsigned int)log, (unsigned int)page, err_mask);
2001 	}
2002 
2003 	return err_mask;
2004 }
2005 
2006 static bool ata_log_supported(struct ata_device *dev, u8 log)
2007 {
2008 	struct ata_port *ap = dev->link->ap;
2009 
2010 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2011 		return false;
2012 
2013 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2014 		return false;
2015 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2016 }
2017 
2018 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2019 {
2020 	struct ata_port *ap = dev->link->ap;
2021 	unsigned int err, i;
2022 
2023 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2024 		return false;
2025 
2026 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2027 		/*
2028 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2029 		 * with ACS-3 (ATA version 10). Warn about the missing log
2030 		 * for drives which implement this ATA level or above.
2031 		 */
2032 		if (ata_id_major_version(dev->id) >= 10)
2033 			ata_dev_warn(dev,
2034 				"ATA Identify Device Log not supported\n");
2035 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2036 		return false;
2037 	}
2038 
2039 	/*
2040 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2041 	 * supported.
2042 	 */
2043 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2044 				1);
2045 	if (err)
2046 		return false;
2047 
2048 	for (i = 0; i < ap->sector_buf[8]; i++) {
2049 		if (ap->sector_buf[9 + i] == page)
2050 			return true;
2051 	}
2052 
2053 	return false;
2054 }
2055 
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 	struct ata_link *plink = ata_dev_phys_link(dev);
2059 	u32 target, target_limit;
2060 
2061 	if (!sata_scr_valid(plink))
2062 		return 0;
2063 
2064 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 		target = 1;
2066 	else
2067 		return 0;
2068 
2069 	target_limit = (1 << target) - 1;
2070 
2071 	/* if already on stricter limit, no need to push further */
2072 	if (plink->sata_spd_limit <= target_limit)
2073 		return 0;
2074 
2075 	plink->sata_spd_limit = target_limit;
2076 
2077 	/* Request another EH round by returning -EAGAIN if link is
2078 	 * going faster than the target speed.  Forward progress is
2079 	 * guaranteed by setting sata_spd_limit to target_limit above.
2080 	 */
2081 	if (plink->sata_spd > target) {
2082 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 			     sata_spd_string(target));
2084 		return -EAGAIN;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 	struct ata_port *ap = dev->link->ap;
2092 
2093 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 		return 0;
2095 
2096 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098 
2099 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2100 {
2101 	struct ata_port *ap = dev->link->ap;
2102 	unsigned int err_mask;
2103 
2104 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2105 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2106 		return;
2107 	}
2108 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2109 				     0, ap->sector_buf, 1);
2110 	if (!err_mask) {
2111 		u8 *cmds = dev->ncq_send_recv_cmds;
2112 
2113 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115 
2116 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 		}
2121 	}
2122 }
2123 
2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err_mask;
2128 
2129 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2130 		ata_dev_warn(dev,
2131 			     "NCQ Send/Recv Log not supported\n");
2132 		return;
2133 	}
2134 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2135 				     0, ap->sector_buf, 1);
2136 	if (!err_mask) {
2137 		u8 *cmds = dev->ncq_non_data_cmds;
2138 
2139 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2140 	}
2141 }
2142 
2143 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2144 {
2145 	struct ata_port *ap = dev->link->ap;
2146 	unsigned int err_mask;
2147 
2148 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2149 		return;
2150 
2151 	err_mask = ata_read_log_page(dev,
2152 				     ATA_LOG_IDENTIFY_DEVICE,
2153 				     ATA_LOG_SATA_SETTINGS,
2154 				     ap->sector_buf,
2155 				     1);
2156 	if (err_mask)
2157 		goto not_supported;
2158 
2159 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2160 		goto not_supported;
2161 
2162 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2163 
2164 	return;
2165 
2166 not_supported:
2167 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2168 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2169 }
2170 
2171 static bool ata_dev_check_adapter(struct ata_device *dev,
2172 				  unsigned short vendor_id)
2173 {
2174 	struct pci_dev *pcidev = NULL;
2175 	struct device *parent_dev = NULL;
2176 
2177 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2178 	     parent_dev = parent_dev->parent) {
2179 		if (dev_is_pci(parent_dev)) {
2180 			pcidev = to_pci_dev(parent_dev);
2181 			if (pcidev->vendor == vendor_id)
2182 				return true;
2183 			break;
2184 		}
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 static int ata_dev_config_ncq(struct ata_device *dev,
2191 			       char *desc, size_t desc_sz)
2192 {
2193 	struct ata_port *ap = dev->link->ap;
2194 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2195 	unsigned int err_mask;
2196 	char *aa_desc = "";
2197 
2198 	if (!ata_id_has_ncq(dev->id)) {
2199 		desc[0] = '\0';
2200 		return 0;
2201 	}
2202 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2203 		return 0;
2204 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2205 		snprintf(desc, desc_sz, "NCQ (not used)");
2206 		return 0;
2207 	}
2208 
2209 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2210 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2211 		snprintf(desc, desc_sz, "NCQ (not used)");
2212 		return 0;
2213 	}
2214 
2215 	if (ap->flags & ATA_FLAG_NCQ) {
2216 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2217 		dev->flags |= ATA_DFLAG_NCQ;
2218 	}
2219 
2220 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2221 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2222 		ata_id_has_fpdma_aa(dev->id)) {
2223 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2224 			SATA_FPDMA_AA);
2225 		if (err_mask) {
2226 			ata_dev_err(dev,
2227 				    "failed to enable AA (error_mask=0x%x)\n",
2228 				    err_mask);
2229 			if (err_mask != AC_ERR_DEV) {
2230 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2231 				return -EIO;
2232 			}
2233 		} else
2234 			aa_desc = ", AA";
2235 	}
2236 
2237 	if (hdepth >= ddepth)
2238 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2239 	else
2240 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2241 			ddepth, aa_desc);
2242 
2243 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2244 		if (ata_id_has_ncq_send_and_recv(dev->id))
2245 			ata_dev_config_ncq_send_recv(dev);
2246 		if (ata_id_has_ncq_non_data(dev->id))
2247 			ata_dev_config_ncq_non_data(dev);
2248 		if (ata_id_has_ncq_prio(dev->id))
2249 			ata_dev_config_ncq_prio(dev);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2256 {
2257 	unsigned int err_mask;
2258 
2259 	if (!ata_id_has_sense_reporting(dev->id))
2260 		return;
2261 
2262 	if (ata_id_sense_reporting_enabled(dev->id))
2263 		return;
2264 
2265 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2266 	if (err_mask) {
2267 		ata_dev_dbg(dev,
2268 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2269 			    err_mask);
2270 	}
2271 }
2272 
2273 static void ata_dev_config_zac(struct ata_device *dev)
2274 {
2275 	struct ata_port *ap = dev->link->ap;
2276 	unsigned int err_mask;
2277 	u8 *identify_buf = ap->sector_buf;
2278 
2279 	dev->zac_zones_optimal_open = U32_MAX;
2280 	dev->zac_zones_optimal_nonseq = U32_MAX;
2281 	dev->zac_zones_max_open = U32_MAX;
2282 
2283 	/*
2284 	 * Always set the 'ZAC' flag for Host-managed devices.
2285 	 */
2286 	if (dev->class == ATA_DEV_ZAC)
2287 		dev->flags |= ATA_DFLAG_ZAC;
2288 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2289 		/*
2290 		 * Check for host-aware devices.
2291 		 */
2292 		dev->flags |= ATA_DFLAG_ZAC;
2293 
2294 	if (!(dev->flags & ATA_DFLAG_ZAC))
2295 		return;
2296 
2297 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2298 		ata_dev_warn(dev,
2299 			     "ATA Zoned Information Log not supported\n");
2300 		return;
2301 	}
2302 
2303 	/*
2304 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2305 	 */
2306 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2307 				     ATA_LOG_ZONED_INFORMATION,
2308 				     identify_buf, 1);
2309 	if (!err_mask) {
2310 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2311 
2312 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2313 		if ((zoned_cap >> 63))
2314 			dev->zac_zoned_cap = (zoned_cap & 1);
2315 		opt_open = get_unaligned_le64(&identify_buf[24]);
2316 		if ((opt_open >> 63))
2317 			dev->zac_zones_optimal_open = (u32)opt_open;
2318 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2319 		if ((opt_nonseq >> 63))
2320 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2321 		max_open = get_unaligned_le64(&identify_buf[40]);
2322 		if ((max_open >> 63))
2323 			dev->zac_zones_max_open = (u32)max_open;
2324 	}
2325 }
2326 
2327 static void ata_dev_config_trusted(struct ata_device *dev)
2328 {
2329 	struct ata_port *ap = dev->link->ap;
2330 	u64 trusted_cap;
2331 	unsigned int err;
2332 
2333 	if (!ata_id_has_trusted(dev->id))
2334 		return;
2335 
2336 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2337 		ata_dev_warn(dev,
2338 			     "Security Log not supported\n");
2339 		return;
2340 	}
2341 
2342 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2343 			ap->sector_buf, 1);
2344 	if (err)
2345 		return;
2346 
2347 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2348 	if (!(trusted_cap & (1ULL << 63))) {
2349 		ata_dev_dbg(dev,
2350 			    "Trusted Computing capability qword not valid!\n");
2351 		return;
2352 	}
2353 
2354 	if (trusted_cap & (1 << 0))
2355 		dev->flags |= ATA_DFLAG_TRUSTED;
2356 }
2357 
2358 static int ata_dev_config_lba(struct ata_device *dev)
2359 {
2360 	const u16 *id = dev->id;
2361 	const char *lba_desc;
2362 	char ncq_desc[24];
2363 	int ret;
2364 
2365 	dev->flags |= ATA_DFLAG_LBA;
2366 
2367 	if (ata_id_has_lba48(id)) {
2368 		lba_desc = "LBA48";
2369 		dev->flags |= ATA_DFLAG_LBA48;
2370 		if (dev->n_sectors >= (1UL << 28) &&
2371 		    ata_id_has_flush_ext(id))
2372 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2373 	} else {
2374 		lba_desc = "LBA";
2375 	}
2376 
2377 	/* config NCQ */
2378 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2379 
2380 	/* print device info to dmesg */
2381 	if (ata_dev_print_info(dev))
2382 		ata_dev_info(dev,
2383 			     "%llu sectors, multi %u: %s %s\n",
2384 			     (unsigned long long)dev->n_sectors,
2385 			     dev->multi_count, lba_desc, ncq_desc);
2386 
2387 	return ret;
2388 }
2389 
2390 static void ata_dev_config_chs(struct ata_device *dev)
2391 {
2392 	const u16 *id = dev->id;
2393 
2394 	if (ata_id_current_chs_valid(id)) {
2395 		/* Current CHS translation is valid. */
2396 		dev->cylinders = id[54];
2397 		dev->heads     = id[55];
2398 		dev->sectors   = id[56];
2399 	} else {
2400 		/* Default translation */
2401 		dev->cylinders	= id[1];
2402 		dev->heads	= id[3];
2403 		dev->sectors	= id[6];
2404 	}
2405 
2406 	/* print device info to dmesg */
2407 	if (ata_dev_print_info(dev))
2408 		ata_dev_info(dev,
2409 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2410 			     (unsigned long long)dev->n_sectors,
2411 			     dev->multi_count, dev->cylinders,
2412 			     dev->heads, dev->sectors);
2413 }
2414 
2415 static void ata_dev_config_devslp(struct ata_device *dev)
2416 {
2417 	u8 *sata_setting = dev->link->ap->sector_buf;
2418 	unsigned int err_mask;
2419 	int i, j;
2420 
2421 	/*
2422 	 * Check device sleep capability. Get DevSlp timing variables
2423 	 * from SATA Settings page of Identify Device Data Log.
2424 	 */
2425 	if (!ata_id_has_devslp(dev->id) ||
2426 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2427 		return;
2428 
2429 	err_mask = ata_read_log_page(dev,
2430 				     ATA_LOG_IDENTIFY_DEVICE,
2431 				     ATA_LOG_SATA_SETTINGS,
2432 				     sata_setting, 1);
2433 	if (err_mask)
2434 		return;
2435 
2436 	dev->flags |= ATA_DFLAG_DEVSLP;
2437 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2438 		j = ATA_LOG_DEVSLP_OFFSET + i;
2439 		dev->devslp_timing[i] = sata_setting[j];
2440 	}
2441 }
2442 
2443 static void ata_dev_config_cpr(struct ata_device *dev)
2444 {
2445 	unsigned int err_mask;
2446 	size_t buf_len;
2447 	int i, nr_cpr = 0;
2448 	struct ata_cpr_log *cpr_log = NULL;
2449 	u8 *desc, *buf = NULL;
2450 
2451 	if (ata_id_major_version(dev->id) < 11 ||
2452 	    !ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2453 		goto out;
2454 
2455 	/*
2456 	 * Read the concurrent positioning ranges log (0x47). We can have at
2457 	 * most 255 32B range descriptors plus a 64B header.
2458 	 */
2459 	buf_len = (64 + 255 * 32 + 511) & ~511;
2460 	buf = kzalloc(buf_len, GFP_KERNEL);
2461 	if (!buf)
2462 		goto out;
2463 
2464 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2465 				     0, buf, buf_len >> 9);
2466 	if (err_mask)
2467 		goto out;
2468 
2469 	nr_cpr = buf[0];
2470 	if (!nr_cpr)
2471 		goto out;
2472 
2473 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2474 	if (!cpr_log)
2475 		goto out;
2476 
2477 	cpr_log->nr_cpr = nr_cpr;
2478 	desc = &buf[64];
2479 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2480 		cpr_log->cpr[i].num = desc[0];
2481 		cpr_log->cpr[i].num_storage_elements = desc[1];
2482 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2483 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2484 	}
2485 
2486 out:
2487 	swap(dev->cpr_log, cpr_log);
2488 	kfree(cpr_log);
2489 	kfree(buf);
2490 }
2491 
2492 static void ata_dev_print_features(struct ata_device *dev)
2493 {
2494 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2495 		return;
2496 
2497 	ata_dev_info(dev,
2498 		     "Features:%s%s%s%s%s%s\n",
2499 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2500 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2501 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2502 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2503 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2504 		     dev->cpr_log ? " CPR" : "");
2505 }
2506 
2507 /**
2508  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2509  *	@dev: Target device to configure
2510  *
2511  *	Configure @dev according to @dev->id.  Generic and low-level
2512  *	driver specific fixups are also applied.
2513  *
2514  *	LOCKING:
2515  *	Kernel thread context (may sleep)
2516  *
2517  *	RETURNS:
2518  *	0 on success, -errno otherwise
2519  */
2520 int ata_dev_configure(struct ata_device *dev)
2521 {
2522 	struct ata_port *ap = dev->link->ap;
2523 	bool print_info = ata_dev_print_info(dev);
2524 	const u16 *id = dev->id;
2525 	unsigned long xfer_mask;
2526 	unsigned int err_mask;
2527 	char revbuf[7];		/* XYZ-99\0 */
2528 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2529 	char modelbuf[ATA_ID_PROD_LEN+1];
2530 	int rc;
2531 
2532 	if (!ata_dev_enabled(dev)) {
2533 		ata_dev_dbg(dev, "no device\n");
2534 		return 0;
2535 	}
2536 
2537 	/* set horkage */
2538 	dev->horkage |= ata_dev_blacklisted(dev);
2539 	ata_force_horkage(dev);
2540 
2541 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2542 		ata_dev_info(dev, "unsupported device, disabling\n");
2543 		ata_dev_disable(dev);
2544 		return 0;
2545 	}
2546 
2547 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2548 	    dev->class == ATA_DEV_ATAPI) {
2549 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2550 			     atapi_enabled ? "not supported with this driver"
2551 			     : "disabled");
2552 		ata_dev_disable(dev);
2553 		return 0;
2554 	}
2555 
2556 	rc = ata_do_link_spd_horkage(dev);
2557 	if (rc)
2558 		return rc;
2559 
2560 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2561 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2562 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2563 		dev->horkage |= ATA_HORKAGE_NOLPM;
2564 
2565 	if (ap->flags & ATA_FLAG_NO_LPM)
2566 		dev->horkage |= ATA_HORKAGE_NOLPM;
2567 
2568 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2569 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2570 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2571 	}
2572 
2573 	/* let ACPI work its magic */
2574 	rc = ata_acpi_on_devcfg(dev);
2575 	if (rc)
2576 		return rc;
2577 
2578 	/* massage HPA, do it early as it might change IDENTIFY data */
2579 	rc = ata_hpa_resize(dev);
2580 	if (rc)
2581 		return rc;
2582 
2583 	/* print device capabilities */
2584 	ata_dev_dbg(dev,
2585 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2586 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2587 		    __func__,
2588 		    id[49], id[82], id[83], id[84],
2589 		    id[85], id[86], id[87], id[88]);
2590 
2591 	/* initialize to-be-configured parameters */
2592 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2593 	dev->max_sectors = 0;
2594 	dev->cdb_len = 0;
2595 	dev->n_sectors = 0;
2596 	dev->cylinders = 0;
2597 	dev->heads = 0;
2598 	dev->sectors = 0;
2599 	dev->multi_count = 0;
2600 
2601 	/*
2602 	 * common ATA, ATAPI feature tests
2603 	 */
2604 
2605 	/* find max transfer mode; for printk only */
2606 	xfer_mask = ata_id_xfermask(id);
2607 
2608 	ata_dump_id(dev, id);
2609 
2610 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2611 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2612 			sizeof(fwrevbuf));
2613 
2614 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2615 			sizeof(modelbuf));
2616 
2617 	/* ATA-specific feature tests */
2618 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2619 		if (ata_id_is_cfa(id)) {
2620 			/* CPRM may make this media unusable */
2621 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2622 				ata_dev_warn(dev,
2623 	"supports DRM functions and may not be fully accessible\n");
2624 			snprintf(revbuf, 7, "CFA");
2625 		} else {
2626 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2627 			/* Warn the user if the device has TPM extensions */
2628 			if (ata_id_has_tpm(id))
2629 				ata_dev_warn(dev,
2630 	"supports DRM functions and may not be fully accessible\n");
2631 		}
2632 
2633 		dev->n_sectors = ata_id_n_sectors(id);
2634 
2635 		/* get current R/W Multiple count setting */
2636 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2637 			unsigned int max = dev->id[47] & 0xff;
2638 			unsigned int cnt = dev->id[59] & 0xff;
2639 			/* only recognize/allow powers of two here */
2640 			if (is_power_of_2(max) && is_power_of_2(cnt))
2641 				if (cnt <= max)
2642 					dev->multi_count = cnt;
2643 		}
2644 
2645 		/* print device info to dmesg */
2646 		if (print_info)
2647 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2648 				     revbuf, modelbuf, fwrevbuf,
2649 				     ata_mode_string(xfer_mask));
2650 
2651 		if (ata_id_has_lba(id)) {
2652 			rc = ata_dev_config_lba(dev);
2653 			if (rc)
2654 				return rc;
2655 		} else {
2656 			ata_dev_config_chs(dev);
2657 		}
2658 
2659 		ata_dev_config_devslp(dev);
2660 		ata_dev_config_sense_reporting(dev);
2661 		ata_dev_config_zac(dev);
2662 		ata_dev_config_trusted(dev);
2663 		ata_dev_config_cpr(dev);
2664 		dev->cdb_len = 32;
2665 
2666 		if (print_info)
2667 			ata_dev_print_features(dev);
2668 	}
2669 
2670 	/* ATAPI-specific feature tests */
2671 	else if (dev->class == ATA_DEV_ATAPI) {
2672 		const char *cdb_intr_string = "";
2673 		const char *atapi_an_string = "";
2674 		const char *dma_dir_string = "";
2675 		u32 sntf;
2676 
2677 		rc = atapi_cdb_len(id);
2678 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2679 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2680 			rc = -EINVAL;
2681 			goto err_out_nosup;
2682 		}
2683 		dev->cdb_len = (unsigned int) rc;
2684 
2685 		/* Enable ATAPI AN if both the host and device have
2686 		 * the support.  If PMP is attached, SNTF is required
2687 		 * to enable ATAPI AN to discern between PHY status
2688 		 * changed notifications and ATAPI ANs.
2689 		 */
2690 		if (atapi_an &&
2691 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2692 		    (!sata_pmp_attached(ap) ||
2693 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2694 			/* issue SET feature command to turn this on */
2695 			err_mask = ata_dev_set_feature(dev,
2696 					SETFEATURES_SATA_ENABLE, SATA_AN);
2697 			if (err_mask)
2698 				ata_dev_err(dev,
2699 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2700 					    err_mask);
2701 			else {
2702 				dev->flags |= ATA_DFLAG_AN;
2703 				atapi_an_string = ", ATAPI AN";
2704 			}
2705 		}
2706 
2707 		if (ata_id_cdb_intr(dev->id)) {
2708 			dev->flags |= ATA_DFLAG_CDB_INTR;
2709 			cdb_intr_string = ", CDB intr";
2710 		}
2711 
2712 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2713 			dev->flags |= ATA_DFLAG_DMADIR;
2714 			dma_dir_string = ", DMADIR";
2715 		}
2716 
2717 		if (ata_id_has_da(dev->id)) {
2718 			dev->flags |= ATA_DFLAG_DA;
2719 			zpodd_init(dev);
2720 		}
2721 
2722 		/* print device info to dmesg */
2723 		if (print_info)
2724 			ata_dev_info(dev,
2725 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2726 				     modelbuf, fwrevbuf,
2727 				     ata_mode_string(xfer_mask),
2728 				     cdb_intr_string, atapi_an_string,
2729 				     dma_dir_string);
2730 	}
2731 
2732 	/* determine max_sectors */
2733 	dev->max_sectors = ATA_MAX_SECTORS;
2734 	if (dev->flags & ATA_DFLAG_LBA48)
2735 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2736 
2737 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2738 	   200 sectors */
2739 	if (ata_dev_knobble(dev)) {
2740 		if (print_info)
2741 			ata_dev_info(dev, "applying bridge limits\n");
2742 		dev->udma_mask &= ATA_UDMA5;
2743 		dev->max_sectors = ATA_MAX_SECTORS;
2744 	}
2745 
2746 	if ((dev->class == ATA_DEV_ATAPI) &&
2747 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2748 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2749 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2750 	}
2751 
2752 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2753 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2754 					 dev->max_sectors);
2755 
2756 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2757 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2758 					 dev->max_sectors);
2759 
2760 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2761 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2762 
2763 	if (ap->ops->dev_config)
2764 		ap->ops->dev_config(dev);
2765 
2766 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2767 		/* Let the user know. We don't want to disallow opens for
2768 		   rescue purposes, or in case the vendor is just a blithering
2769 		   idiot. Do this after the dev_config call as some controllers
2770 		   with buggy firmware may want to avoid reporting false device
2771 		   bugs */
2772 
2773 		if (print_info) {
2774 			ata_dev_warn(dev,
2775 "Drive reports diagnostics failure. This may indicate a drive\n");
2776 			ata_dev_warn(dev,
2777 "fault or invalid emulation. Contact drive vendor for information.\n");
2778 		}
2779 	}
2780 
2781 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2782 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2783 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2784 	}
2785 
2786 	return 0;
2787 
2788 err_out_nosup:
2789 	return rc;
2790 }
2791 
2792 /**
2793  *	ata_cable_40wire	-	return 40 wire cable type
2794  *	@ap: port
2795  *
2796  *	Helper method for drivers which want to hardwire 40 wire cable
2797  *	detection.
2798  */
2799 
2800 int ata_cable_40wire(struct ata_port *ap)
2801 {
2802 	return ATA_CBL_PATA40;
2803 }
2804 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2805 
2806 /**
2807  *	ata_cable_80wire	-	return 80 wire cable type
2808  *	@ap: port
2809  *
2810  *	Helper method for drivers which want to hardwire 80 wire cable
2811  *	detection.
2812  */
2813 
2814 int ata_cable_80wire(struct ata_port *ap)
2815 {
2816 	return ATA_CBL_PATA80;
2817 }
2818 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2819 
2820 /**
2821  *	ata_cable_unknown	-	return unknown PATA cable.
2822  *	@ap: port
2823  *
2824  *	Helper method for drivers which have no PATA cable detection.
2825  */
2826 
2827 int ata_cable_unknown(struct ata_port *ap)
2828 {
2829 	return ATA_CBL_PATA_UNK;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2832 
2833 /**
2834  *	ata_cable_ignore	-	return ignored PATA cable.
2835  *	@ap: port
2836  *
2837  *	Helper method for drivers which don't use cable type to limit
2838  *	transfer mode.
2839  */
2840 int ata_cable_ignore(struct ata_port *ap)
2841 {
2842 	return ATA_CBL_PATA_IGN;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2845 
2846 /**
2847  *	ata_cable_sata	-	return SATA cable type
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which have SATA cables
2851  */
2852 
2853 int ata_cable_sata(struct ata_port *ap)
2854 {
2855 	return ATA_CBL_SATA;
2856 }
2857 EXPORT_SYMBOL_GPL(ata_cable_sata);
2858 
2859 /**
2860  *	ata_bus_probe - Reset and probe ATA bus
2861  *	@ap: Bus to probe
2862  *
2863  *	Master ATA bus probing function.  Initiates a hardware-dependent
2864  *	bus reset, then attempts to identify any devices found on
2865  *	the bus.
2866  *
2867  *	LOCKING:
2868  *	PCI/etc. bus probe sem.
2869  *
2870  *	RETURNS:
2871  *	Zero on success, negative errno otherwise.
2872  */
2873 
2874 int ata_bus_probe(struct ata_port *ap)
2875 {
2876 	unsigned int classes[ATA_MAX_DEVICES];
2877 	int tries[ATA_MAX_DEVICES];
2878 	int rc;
2879 	struct ata_device *dev;
2880 
2881 	ata_for_each_dev(dev, &ap->link, ALL)
2882 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2883 
2884  retry:
2885 	ata_for_each_dev(dev, &ap->link, ALL) {
2886 		/* If we issue an SRST then an ATA drive (not ATAPI)
2887 		 * may change configuration and be in PIO0 timing. If
2888 		 * we do a hard reset (or are coming from power on)
2889 		 * this is true for ATA or ATAPI. Until we've set a
2890 		 * suitable controller mode we should not touch the
2891 		 * bus as we may be talking too fast.
2892 		 */
2893 		dev->pio_mode = XFER_PIO_0;
2894 		dev->dma_mode = 0xff;
2895 
2896 		/* If the controller has a pio mode setup function
2897 		 * then use it to set the chipset to rights. Don't
2898 		 * touch the DMA setup as that will be dealt with when
2899 		 * configuring devices.
2900 		 */
2901 		if (ap->ops->set_piomode)
2902 			ap->ops->set_piomode(ap, dev);
2903 	}
2904 
2905 	/* reset and determine device classes */
2906 	ap->ops->phy_reset(ap);
2907 
2908 	ata_for_each_dev(dev, &ap->link, ALL) {
2909 		if (dev->class != ATA_DEV_UNKNOWN)
2910 			classes[dev->devno] = dev->class;
2911 		else
2912 			classes[dev->devno] = ATA_DEV_NONE;
2913 
2914 		dev->class = ATA_DEV_UNKNOWN;
2915 	}
2916 
2917 	/* read IDENTIFY page and configure devices. We have to do the identify
2918 	   specific sequence bass-ackwards so that PDIAG- is released by
2919 	   the slave device */
2920 
2921 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2922 		if (tries[dev->devno])
2923 			dev->class = classes[dev->devno];
2924 
2925 		if (!ata_dev_enabled(dev))
2926 			continue;
2927 
2928 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2929 				     dev->id);
2930 		if (rc)
2931 			goto fail;
2932 	}
2933 
2934 	/* Now ask for the cable type as PDIAG- should have been released */
2935 	if (ap->ops->cable_detect)
2936 		ap->cbl = ap->ops->cable_detect(ap);
2937 
2938 	/* We may have SATA bridge glue hiding here irrespective of
2939 	 * the reported cable types and sensed types.  When SATA
2940 	 * drives indicate we have a bridge, we don't know which end
2941 	 * of the link the bridge is which is a problem.
2942 	 */
2943 	ata_for_each_dev(dev, &ap->link, ENABLED)
2944 		if (ata_id_is_sata(dev->id))
2945 			ap->cbl = ATA_CBL_SATA;
2946 
2947 	/* After the identify sequence we can now set up the devices. We do
2948 	   this in the normal order so that the user doesn't get confused */
2949 
2950 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2951 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2952 		rc = ata_dev_configure(dev);
2953 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2954 		if (rc)
2955 			goto fail;
2956 	}
2957 
2958 	/* configure transfer mode */
2959 	rc = ata_set_mode(&ap->link, &dev);
2960 	if (rc)
2961 		goto fail;
2962 
2963 	ata_for_each_dev(dev, &ap->link, ENABLED)
2964 		return 0;
2965 
2966 	return -ENODEV;
2967 
2968  fail:
2969 	tries[dev->devno]--;
2970 
2971 	switch (rc) {
2972 	case -EINVAL:
2973 		/* eeek, something went very wrong, give up */
2974 		tries[dev->devno] = 0;
2975 		break;
2976 
2977 	case -ENODEV:
2978 		/* give it just one more chance */
2979 		tries[dev->devno] = min(tries[dev->devno], 1);
2980 		fallthrough;
2981 	case -EIO:
2982 		if (tries[dev->devno] == 1) {
2983 			/* This is the last chance, better to slow
2984 			 * down than lose it.
2985 			 */
2986 			sata_down_spd_limit(&ap->link, 0);
2987 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2988 		}
2989 	}
2990 
2991 	if (!tries[dev->devno])
2992 		ata_dev_disable(dev);
2993 
2994 	goto retry;
2995 }
2996 
2997 /**
2998  *	sata_print_link_status - Print SATA link status
2999  *	@link: SATA link to printk link status about
3000  *
3001  *	This function prints link speed and status of a SATA link.
3002  *
3003  *	LOCKING:
3004  *	None.
3005  */
3006 static void sata_print_link_status(struct ata_link *link)
3007 {
3008 	u32 sstatus, scontrol, tmp;
3009 
3010 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3011 		return;
3012 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3013 
3014 	if (ata_phys_link_online(link)) {
3015 		tmp = (sstatus >> 4) & 0xf;
3016 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3017 			      sata_spd_string(tmp), sstatus, scontrol);
3018 	} else {
3019 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3020 			      sstatus, scontrol);
3021 	}
3022 }
3023 
3024 /**
3025  *	ata_dev_pair		-	return other device on cable
3026  *	@adev: device
3027  *
3028  *	Obtain the other device on the same cable, or if none is
3029  *	present NULL is returned
3030  */
3031 
3032 struct ata_device *ata_dev_pair(struct ata_device *adev)
3033 {
3034 	struct ata_link *link = adev->link;
3035 	struct ata_device *pair = &link->device[1 - adev->devno];
3036 	if (!ata_dev_enabled(pair))
3037 		return NULL;
3038 	return pair;
3039 }
3040 EXPORT_SYMBOL_GPL(ata_dev_pair);
3041 
3042 /**
3043  *	sata_down_spd_limit - adjust SATA spd limit downward
3044  *	@link: Link to adjust SATA spd limit for
3045  *	@spd_limit: Additional limit
3046  *
3047  *	Adjust SATA spd limit of @link downward.  Note that this
3048  *	function only adjusts the limit.  The change must be applied
3049  *	using sata_set_spd().
3050  *
3051  *	If @spd_limit is non-zero, the speed is limited to equal to or
3052  *	lower than @spd_limit if such speed is supported.  If
3053  *	@spd_limit is slower than any supported speed, only the lowest
3054  *	supported speed is allowed.
3055  *
3056  *	LOCKING:
3057  *	Inherited from caller.
3058  *
3059  *	RETURNS:
3060  *	0 on success, negative errno on failure
3061  */
3062 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3063 {
3064 	u32 sstatus, spd, mask;
3065 	int rc, bit;
3066 
3067 	if (!sata_scr_valid(link))
3068 		return -EOPNOTSUPP;
3069 
3070 	/* If SCR can be read, use it to determine the current SPD.
3071 	 * If not, use cached value in link->sata_spd.
3072 	 */
3073 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3074 	if (rc == 0 && ata_sstatus_online(sstatus))
3075 		spd = (sstatus >> 4) & 0xf;
3076 	else
3077 		spd = link->sata_spd;
3078 
3079 	mask = link->sata_spd_limit;
3080 	if (mask <= 1)
3081 		return -EINVAL;
3082 
3083 	/* unconditionally mask off the highest bit */
3084 	bit = fls(mask) - 1;
3085 	mask &= ~(1 << bit);
3086 
3087 	/*
3088 	 * Mask off all speeds higher than or equal to the current one.  At
3089 	 * this point, if current SPD is not available and we previously
3090 	 * recorded the link speed from SStatus, the driver has already
3091 	 * masked off the highest bit so mask should already be 1 or 0.
3092 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3093 	 * not previously recorded speed from SStatus.  Just return in this
3094 	 * case.
3095 	 */
3096 	if (spd > 1)
3097 		mask &= (1 << (spd - 1)) - 1;
3098 	else
3099 		return -EINVAL;
3100 
3101 	/* were we already at the bottom? */
3102 	if (!mask)
3103 		return -EINVAL;
3104 
3105 	if (spd_limit) {
3106 		if (mask & ((1 << spd_limit) - 1))
3107 			mask &= (1 << spd_limit) - 1;
3108 		else {
3109 			bit = ffs(mask) - 1;
3110 			mask = 1 << bit;
3111 		}
3112 	}
3113 
3114 	link->sata_spd_limit = mask;
3115 
3116 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3117 		      sata_spd_string(fls(mask)));
3118 
3119 	return 0;
3120 }
3121 
3122 #ifdef CONFIG_ATA_ACPI
3123 /**
3124  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3125  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3126  *	@cycle: cycle duration in ns
3127  *
3128  *	Return matching xfer mode for @cycle.  The returned mode is of
3129  *	the transfer type specified by @xfer_shift.  If @cycle is too
3130  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3131  *	than the fastest known mode, the fasted mode is returned.
3132  *
3133  *	LOCKING:
3134  *	None.
3135  *
3136  *	RETURNS:
3137  *	Matching xfer_mode, 0xff if no match found.
3138  */
3139 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3140 {
3141 	u8 base_mode = 0xff, last_mode = 0xff;
3142 	const struct ata_xfer_ent *ent;
3143 	const struct ata_timing *t;
3144 
3145 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3146 		if (ent->shift == xfer_shift)
3147 			base_mode = ent->base;
3148 
3149 	for (t = ata_timing_find_mode(base_mode);
3150 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3151 		unsigned short this_cycle;
3152 
3153 		switch (xfer_shift) {
3154 		case ATA_SHIFT_PIO:
3155 		case ATA_SHIFT_MWDMA:
3156 			this_cycle = t->cycle;
3157 			break;
3158 		case ATA_SHIFT_UDMA:
3159 			this_cycle = t->udma;
3160 			break;
3161 		default:
3162 			return 0xff;
3163 		}
3164 
3165 		if (cycle > this_cycle)
3166 			break;
3167 
3168 		last_mode = t->mode;
3169 	}
3170 
3171 	return last_mode;
3172 }
3173 #endif
3174 
3175 /**
3176  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3177  *	@dev: Device to adjust xfer masks
3178  *	@sel: ATA_DNXFER_* selector
3179  *
3180  *	Adjust xfer masks of @dev downward.  Note that this function
3181  *	does not apply the change.  Invoking ata_set_mode() afterwards
3182  *	will apply the limit.
3183  *
3184  *	LOCKING:
3185  *	Inherited from caller.
3186  *
3187  *	RETURNS:
3188  *	0 on success, negative errno on failure
3189  */
3190 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3191 {
3192 	char buf[32];
3193 	unsigned long orig_mask, xfer_mask;
3194 	unsigned long pio_mask, mwdma_mask, udma_mask;
3195 	int quiet, highbit;
3196 
3197 	quiet = !!(sel & ATA_DNXFER_QUIET);
3198 	sel &= ~ATA_DNXFER_QUIET;
3199 
3200 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3201 						  dev->mwdma_mask,
3202 						  dev->udma_mask);
3203 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3204 
3205 	switch (sel) {
3206 	case ATA_DNXFER_PIO:
3207 		highbit = fls(pio_mask) - 1;
3208 		pio_mask &= ~(1 << highbit);
3209 		break;
3210 
3211 	case ATA_DNXFER_DMA:
3212 		if (udma_mask) {
3213 			highbit = fls(udma_mask) - 1;
3214 			udma_mask &= ~(1 << highbit);
3215 			if (!udma_mask)
3216 				return -ENOENT;
3217 		} else if (mwdma_mask) {
3218 			highbit = fls(mwdma_mask) - 1;
3219 			mwdma_mask &= ~(1 << highbit);
3220 			if (!mwdma_mask)
3221 				return -ENOENT;
3222 		}
3223 		break;
3224 
3225 	case ATA_DNXFER_40C:
3226 		udma_mask &= ATA_UDMA_MASK_40C;
3227 		break;
3228 
3229 	case ATA_DNXFER_FORCE_PIO0:
3230 		pio_mask &= 1;
3231 		fallthrough;
3232 	case ATA_DNXFER_FORCE_PIO:
3233 		mwdma_mask = 0;
3234 		udma_mask = 0;
3235 		break;
3236 
3237 	default:
3238 		BUG();
3239 	}
3240 
3241 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3242 
3243 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3244 		return -ENOENT;
3245 
3246 	if (!quiet) {
3247 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3248 			snprintf(buf, sizeof(buf), "%s:%s",
3249 				 ata_mode_string(xfer_mask),
3250 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3251 		else
3252 			snprintf(buf, sizeof(buf), "%s",
3253 				 ata_mode_string(xfer_mask));
3254 
3255 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3256 	}
3257 
3258 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3259 			    &dev->udma_mask);
3260 
3261 	return 0;
3262 }
3263 
3264 static int ata_dev_set_mode(struct ata_device *dev)
3265 {
3266 	struct ata_port *ap = dev->link->ap;
3267 	struct ata_eh_context *ehc = &dev->link->eh_context;
3268 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3269 	const char *dev_err_whine = "";
3270 	int ign_dev_err = 0;
3271 	unsigned int err_mask = 0;
3272 	int rc;
3273 
3274 	dev->flags &= ~ATA_DFLAG_PIO;
3275 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3276 		dev->flags |= ATA_DFLAG_PIO;
3277 
3278 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3279 		dev_err_whine = " (SET_XFERMODE skipped)";
3280 	else {
3281 		if (nosetxfer)
3282 			ata_dev_warn(dev,
3283 				     "NOSETXFER but PATA detected - can't "
3284 				     "skip SETXFER, might malfunction\n");
3285 		err_mask = ata_dev_set_xfermode(dev);
3286 	}
3287 
3288 	if (err_mask & ~AC_ERR_DEV)
3289 		goto fail;
3290 
3291 	/* revalidate */
3292 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3293 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3294 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3295 	if (rc)
3296 		return rc;
3297 
3298 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3299 		/* Old CFA may refuse this command, which is just fine */
3300 		if (ata_id_is_cfa(dev->id))
3301 			ign_dev_err = 1;
3302 		/* Catch several broken garbage emulations plus some pre
3303 		   ATA devices */
3304 		if (ata_id_major_version(dev->id) == 0 &&
3305 					dev->pio_mode <= XFER_PIO_2)
3306 			ign_dev_err = 1;
3307 		/* Some very old devices and some bad newer ones fail
3308 		   any kind of SET_XFERMODE request but support PIO0-2
3309 		   timings and no IORDY */
3310 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3311 			ign_dev_err = 1;
3312 	}
3313 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3314 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3315 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3316 	    dev->dma_mode == XFER_MW_DMA_0 &&
3317 	    (dev->id[63] >> 8) & 1)
3318 		ign_dev_err = 1;
3319 
3320 	/* if the device is actually configured correctly, ignore dev err */
3321 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3322 		ign_dev_err = 1;
3323 
3324 	if (err_mask & AC_ERR_DEV) {
3325 		if (!ign_dev_err)
3326 			goto fail;
3327 		else
3328 			dev_err_whine = " (device error ignored)";
3329 	}
3330 
3331 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3332 		    dev->xfer_shift, (int)dev->xfer_mode);
3333 
3334 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3335 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3336 		ata_dev_info(dev, "configured for %s%s\n",
3337 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3338 			     dev_err_whine);
3339 
3340 	return 0;
3341 
3342  fail:
3343 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3344 	return -EIO;
3345 }
3346 
3347 /**
3348  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3349  *	@link: link on which timings will be programmed
3350  *	@r_failed_dev: out parameter for failed device
3351  *
3352  *	Standard implementation of the function used to tune and set
3353  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3354  *	ata_dev_set_mode() fails, pointer to the failing device is
3355  *	returned in @r_failed_dev.
3356  *
3357  *	LOCKING:
3358  *	PCI/etc. bus probe sem.
3359  *
3360  *	RETURNS:
3361  *	0 on success, negative errno otherwise
3362  */
3363 
3364 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3365 {
3366 	struct ata_port *ap = link->ap;
3367 	struct ata_device *dev;
3368 	int rc = 0, used_dma = 0, found = 0;
3369 
3370 	/* step 1: calculate xfer_mask */
3371 	ata_for_each_dev(dev, link, ENABLED) {
3372 		unsigned long pio_mask, dma_mask;
3373 		unsigned int mode_mask;
3374 
3375 		mode_mask = ATA_DMA_MASK_ATA;
3376 		if (dev->class == ATA_DEV_ATAPI)
3377 			mode_mask = ATA_DMA_MASK_ATAPI;
3378 		else if (ata_id_is_cfa(dev->id))
3379 			mode_mask = ATA_DMA_MASK_CFA;
3380 
3381 		ata_dev_xfermask(dev);
3382 		ata_force_xfermask(dev);
3383 
3384 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3385 
3386 		if (libata_dma_mask & mode_mask)
3387 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3388 						     dev->udma_mask);
3389 		else
3390 			dma_mask = 0;
3391 
3392 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3393 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3394 
3395 		found = 1;
3396 		if (ata_dma_enabled(dev))
3397 			used_dma = 1;
3398 	}
3399 	if (!found)
3400 		goto out;
3401 
3402 	/* step 2: always set host PIO timings */
3403 	ata_for_each_dev(dev, link, ENABLED) {
3404 		if (dev->pio_mode == 0xff) {
3405 			ata_dev_warn(dev, "no PIO support\n");
3406 			rc = -EINVAL;
3407 			goto out;
3408 		}
3409 
3410 		dev->xfer_mode = dev->pio_mode;
3411 		dev->xfer_shift = ATA_SHIFT_PIO;
3412 		if (ap->ops->set_piomode)
3413 			ap->ops->set_piomode(ap, dev);
3414 	}
3415 
3416 	/* step 3: set host DMA timings */
3417 	ata_for_each_dev(dev, link, ENABLED) {
3418 		if (!ata_dma_enabled(dev))
3419 			continue;
3420 
3421 		dev->xfer_mode = dev->dma_mode;
3422 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3423 		if (ap->ops->set_dmamode)
3424 			ap->ops->set_dmamode(ap, dev);
3425 	}
3426 
3427 	/* step 4: update devices' xfer mode */
3428 	ata_for_each_dev(dev, link, ENABLED) {
3429 		rc = ata_dev_set_mode(dev);
3430 		if (rc)
3431 			goto out;
3432 	}
3433 
3434 	/* Record simplex status. If we selected DMA then the other
3435 	 * host channels are not permitted to do so.
3436 	 */
3437 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3438 		ap->host->simplex_claimed = ap;
3439 
3440  out:
3441 	if (rc)
3442 		*r_failed_dev = dev;
3443 	return rc;
3444 }
3445 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3446 
3447 /**
3448  *	ata_wait_ready - wait for link to become ready
3449  *	@link: link to be waited on
3450  *	@deadline: deadline jiffies for the operation
3451  *	@check_ready: callback to check link readiness
3452  *
3453  *	Wait for @link to become ready.  @check_ready should return
3454  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3455  *	link doesn't seem to be occupied, other errno for other error
3456  *	conditions.
3457  *
3458  *	Transient -ENODEV conditions are allowed for
3459  *	ATA_TMOUT_FF_WAIT.
3460  *
3461  *	LOCKING:
3462  *	EH context.
3463  *
3464  *	RETURNS:
3465  *	0 if @link is ready before @deadline; otherwise, -errno.
3466  */
3467 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3468 		   int (*check_ready)(struct ata_link *link))
3469 {
3470 	unsigned long start = jiffies;
3471 	unsigned long nodev_deadline;
3472 	int warned = 0;
3473 
3474 	/* choose which 0xff timeout to use, read comment in libata.h */
3475 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3476 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3477 	else
3478 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3479 
3480 	/* Slave readiness can't be tested separately from master.  On
3481 	 * M/S emulation configuration, this function should be called
3482 	 * only on the master and it will handle both master and slave.
3483 	 */
3484 	WARN_ON(link == link->ap->slave_link);
3485 
3486 	if (time_after(nodev_deadline, deadline))
3487 		nodev_deadline = deadline;
3488 
3489 	while (1) {
3490 		unsigned long now = jiffies;
3491 		int ready, tmp;
3492 
3493 		ready = tmp = check_ready(link);
3494 		if (ready > 0)
3495 			return 0;
3496 
3497 		/*
3498 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3499 		 * is online.  Also, some SATA devices take a long
3500 		 * time to clear 0xff after reset.  Wait for
3501 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3502 		 * offline.
3503 		 *
3504 		 * Note that some PATA controllers (pata_ali) explode
3505 		 * if status register is read more than once when
3506 		 * there's no device attached.
3507 		 */
3508 		if (ready == -ENODEV) {
3509 			if (ata_link_online(link))
3510 				ready = 0;
3511 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3512 				 !ata_link_offline(link) &&
3513 				 time_before(now, nodev_deadline))
3514 				ready = 0;
3515 		}
3516 
3517 		if (ready)
3518 			return ready;
3519 		if (time_after(now, deadline))
3520 			return -EBUSY;
3521 
3522 		if (!warned && time_after(now, start + 5 * HZ) &&
3523 		    (deadline - now > 3 * HZ)) {
3524 			ata_link_warn(link,
3525 				"link is slow to respond, please be patient "
3526 				"(ready=%d)\n", tmp);
3527 			warned = 1;
3528 		}
3529 
3530 		ata_msleep(link->ap, 50);
3531 	}
3532 }
3533 
3534 /**
3535  *	ata_wait_after_reset - wait for link to become ready after reset
3536  *	@link: link to be waited on
3537  *	@deadline: deadline jiffies for the operation
3538  *	@check_ready: callback to check link readiness
3539  *
3540  *	Wait for @link to become ready after reset.
3541  *
3542  *	LOCKING:
3543  *	EH context.
3544  *
3545  *	RETURNS:
3546  *	0 if @link is ready before @deadline; otherwise, -errno.
3547  */
3548 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3549 				int (*check_ready)(struct ata_link *link))
3550 {
3551 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3552 
3553 	return ata_wait_ready(link, deadline, check_ready);
3554 }
3555 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3556 
3557 /**
3558  *	ata_std_prereset - prepare for reset
3559  *	@link: ATA link to be reset
3560  *	@deadline: deadline jiffies for the operation
3561  *
3562  *	@link is about to be reset.  Initialize it.  Failure from
3563  *	prereset makes libata abort whole reset sequence and give up
3564  *	that port, so prereset should be best-effort.  It does its
3565  *	best to prepare for reset sequence but if things go wrong, it
3566  *	should just whine, not fail.
3567  *
3568  *	LOCKING:
3569  *	Kernel thread context (may sleep)
3570  *
3571  *	RETURNS:
3572  *	0 on success, -errno otherwise.
3573  */
3574 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3575 {
3576 	struct ata_port *ap = link->ap;
3577 	struct ata_eh_context *ehc = &link->eh_context;
3578 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3579 	int rc;
3580 
3581 	/* if we're about to do hardreset, nothing more to do */
3582 	if (ehc->i.action & ATA_EH_HARDRESET)
3583 		return 0;
3584 
3585 	/* if SATA, resume link */
3586 	if (ap->flags & ATA_FLAG_SATA) {
3587 		rc = sata_link_resume(link, timing, deadline);
3588 		/* whine about phy resume failure but proceed */
3589 		if (rc && rc != -EOPNOTSUPP)
3590 			ata_link_warn(link,
3591 				      "failed to resume link for reset (errno=%d)\n",
3592 				      rc);
3593 	}
3594 
3595 	/* no point in trying softreset on offline link */
3596 	if (ata_phys_link_offline(link))
3597 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3598 
3599 	return 0;
3600 }
3601 EXPORT_SYMBOL_GPL(ata_std_prereset);
3602 
3603 /**
3604  *	sata_std_hardreset - COMRESET w/o waiting or classification
3605  *	@link: link to reset
3606  *	@class: resulting class of attached device
3607  *	@deadline: deadline jiffies for the operation
3608  *
3609  *	Standard SATA COMRESET w/o waiting or classification.
3610  *
3611  *	LOCKING:
3612  *	Kernel thread context (may sleep)
3613  *
3614  *	RETURNS:
3615  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3616  */
3617 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3618 		       unsigned long deadline)
3619 {
3620 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3621 	bool online;
3622 	int rc;
3623 
3624 	/* do hardreset */
3625 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3626 	return online ? -EAGAIN : rc;
3627 }
3628 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3629 
3630 /**
3631  *	ata_std_postreset - standard postreset callback
3632  *	@link: the target ata_link
3633  *	@classes: classes of attached devices
3634  *
3635  *	This function is invoked after a successful reset.  Note that
3636  *	the device might have been reset more than once using
3637  *	different reset methods before postreset is invoked.
3638  *
3639  *	LOCKING:
3640  *	Kernel thread context (may sleep)
3641  */
3642 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3643 {
3644 	u32 serror;
3645 
3646 	/* reset complete, clear SError */
3647 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3648 		sata_scr_write(link, SCR_ERROR, serror);
3649 
3650 	/* print link status */
3651 	sata_print_link_status(link);
3652 }
3653 EXPORT_SYMBOL_GPL(ata_std_postreset);
3654 
3655 /**
3656  *	ata_dev_same_device - Determine whether new ID matches configured device
3657  *	@dev: device to compare against
3658  *	@new_class: class of the new device
3659  *	@new_id: IDENTIFY page of the new device
3660  *
3661  *	Compare @new_class and @new_id against @dev and determine
3662  *	whether @dev is the device indicated by @new_class and
3663  *	@new_id.
3664  *
3665  *	LOCKING:
3666  *	None.
3667  *
3668  *	RETURNS:
3669  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3670  */
3671 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3672 			       const u16 *new_id)
3673 {
3674 	const u16 *old_id = dev->id;
3675 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3676 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3677 
3678 	if (dev->class != new_class) {
3679 		ata_dev_info(dev, "class mismatch %d != %d\n",
3680 			     dev->class, new_class);
3681 		return 0;
3682 	}
3683 
3684 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3685 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3686 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3687 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3688 
3689 	if (strcmp(model[0], model[1])) {
3690 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3691 			     model[0], model[1]);
3692 		return 0;
3693 	}
3694 
3695 	if (strcmp(serial[0], serial[1])) {
3696 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3697 			     serial[0], serial[1]);
3698 		return 0;
3699 	}
3700 
3701 	return 1;
3702 }
3703 
3704 /**
3705  *	ata_dev_reread_id - Re-read IDENTIFY data
3706  *	@dev: target ATA device
3707  *	@readid_flags: read ID flags
3708  *
3709  *	Re-read IDENTIFY page and make sure @dev is still attached to
3710  *	the port.
3711  *
3712  *	LOCKING:
3713  *	Kernel thread context (may sleep)
3714  *
3715  *	RETURNS:
3716  *	0 on success, negative errno otherwise
3717  */
3718 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3719 {
3720 	unsigned int class = dev->class;
3721 	u16 *id = (void *)dev->link->ap->sector_buf;
3722 	int rc;
3723 
3724 	/* read ID data */
3725 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3726 	if (rc)
3727 		return rc;
3728 
3729 	/* is the device still there? */
3730 	if (!ata_dev_same_device(dev, class, id))
3731 		return -ENODEV;
3732 
3733 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3734 	return 0;
3735 }
3736 
3737 /**
3738  *	ata_dev_revalidate - Revalidate ATA device
3739  *	@dev: device to revalidate
3740  *	@new_class: new class code
3741  *	@readid_flags: read ID flags
3742  *
3743  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3744  *	port and reconfigure it according to the new IDENTIFY page.
3745  *
3746  *	LOCKING:
3747  *	Kernel thread context (may sleep)
3748  *
3749  *	RETURNS:
3750  *	0 on success, negative errno otherwise
3751  */
3752 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3753 		       unsigned int readid_flags)
3754 {
3755 	u64 n_sectors = dev->n_sectors;
3756 	u64 n_native_sectors = dev->n_native_sectors;
3757 	int rc;
3758 
3759 	if (!ata_dev_enabled(dev))
3760 		return -ENODEV;
3761 
3762 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3763 	if (ata_class_enabled(new_class) &&
3764 	    new_class != ATA_DEV_ATA &&
3765 	    new_class != ATA_DEV_ATAPI &&
3766 	    new_class != ATA_DEV_ZAC &&
3767 	    new_class != ATA_DEV_SEMB) {
3768 		ata_dev_info(dev, "class mismatch %u != %u\n",
3769 			     dev->class, new_class);
3770 		rc = -ENODEV;
3771 		goto fail;
3772 	}
3773 
3774 	/* re-read ID */
3775 	rc = ata_dev_reread_id(dev, readid_flags);
3776 	if (rc)
3777 		goto fail;
3778 
3779 	/* configure device according to the new ID */
3780 	rc = ata_dev_configure(dev);
3781 	if (rc)
3782 		goto fail;
3783 
3784 	/* verify n_sectors hasn't changed */
3785 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3786 	    dev->n_sectors == n_sectors)
3787 		return 0;
3788 
3789 	/* n_sectors has changed */
3790 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3791 		     (unsigned long long)n_sectors,
3792 		     (unsigned long long)dev->n_sectors);
3793 
3794 	/*
3795 	 * Something could have caused HPA to be unlocked
3796 	 * involuntarily.  If n_native_sectors hasn't changed and the
3797 	 * new size matches it, keep the device.
3798 	 */
3799 	if (dev->n_native_sectors == n_native_sectors &&
3800 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3801 		ata_dev_warn(dev,
3802 			     "new n_sectors matches native, probably "
3803 			     "late HPA unlock, n_sectors updated\n");
3804 		/* use the larger n_sectors */
3805 		return 0;
3806 	}
3807 
3808 	/*
3809 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3810 	 * unlocking HPA in those cases.
3811 	 *
3812 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3813 	 */
3814 	if (dev->n_native_sectors == n_native_sectors &&
3815 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3816 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3817 		ata_dev_warn(dev,
3818 			     "old n_sectors matches native, probably "
3819 			     "late HPA lock, will try to unlock HPA\n");
3820 		/* try unlocking HPA */
3821 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3822 		rc = -EIO;
3823 	} else
3824 		rc = -ENODEV;
3825 
3826 	/* restore original n_[native_]sectors and fail */
3827 	dev->n_native_sectors = n_native_sectors;
3828 	dev->n_sectors = n_sectors;
3829  fail:
3830 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3831 	return rc;
3832 }
3833 
3834 struct ata_blacklist_entry {
3835 	const char *model_num;
3836 	const char *model_rev;
3837 	unsigned long horkage;
3838 };
3839 
3840 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3841 	/* Devices with DMA related problems under Linux */
3842 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3843 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3844 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3845 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3846 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3847 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3848 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3849 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3850 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3851 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3852 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3853 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3854 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3855 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3856 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3857 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3858 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3859 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3860 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3861 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3862 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3863 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3864 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3865 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3866 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3867 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3868 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3869 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3870 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3871 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3872 	/* Odd clown on sil3726/4726 PMPs */
3873 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3874 	/* Similar story with ASMedia 1092 */
3875 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3876 
3877 	/* Weird ATAPI devices */
3878 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3879 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3880 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3881 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3882 
3883 	/*
3884 	 * Causes silent data corruption with higher max sects.
3885 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3886 	 */
3887 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3888 
3889 	/*
3890 	 * These devices time out with higher max sects.
3891 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3892 	 */
3893 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3894 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3895 
3896 	/* Devices we expect to fail diagnostics */
3897 
3898 	/* Devices where NCQ should be avoided */
3899 	/* NCQ is slow */
3900 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3901 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3902 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3903 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3904 	/* NCQ is broken */
3905 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3906 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3907 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3908 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3909 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3910 
3911 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3912 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3913 						ATA_HORKAGE_FIRMWARE_WARN },
3914 
3915 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3916 						ATA_HORKAGE_FIRMWARE_WARN },
3917 
3918 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3919 						ATA_HORKAGE_FIRMWARE_WARN },
3920 
3921 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3922 						ATA_HORKAGE_FIRMWARE_WARN },
3923 
3924 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3925 	   the ST disks also have LPM issues */
3926 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3927 						ATA_HORKAGE_NOLPM, },
3928 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3929 
3930 	/* Blacklist entries taken from Silicon Image 3124/3132
3931 	   Windows driver .inf file - also several Linux problem reports */
3932 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3933 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3934 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3935 
3936 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3937 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3938 
3939 	/* Sandisk SD7/8/9s lock up hard on large trims */
3940 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3941 
3942 	/* devices which puke on READ_NATIVE_MAX */
3943 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3944 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3945 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3946 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3947 
3948 	/* this one allows HPA unlocking but fails IOs on the area */
3949 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3950 
3951 	/* Devices which report 1 sector over size HPA */
3952 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3953 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3954 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3955 
3956 	/* Devices which get the IVB wrong */
3957 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3958 	/* Maybe we should just blacklist TSSTcorp... */
3959 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3960 
3961 	/* Devices that do not need bridging limits applied */
3962 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3963 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3964 
3965 	/* Devices which aren't very happy with higher link speeds */
3966 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3967 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3968 
3969 	/*
3970 	 * Devices which choke on SETXFER.  Applies only if both the
3971 	 * device and controller are SATA.
3972 	 */
3973 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3974 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3975 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3976 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3977 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3978 
3979 	/* Crucial BX100 SSD 500GB has broken LPM support */
3980 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3981 
3982 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3983 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3984 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3985 						ATA_HORKAGE_NOLPM, },
3986 	/* 512GB MX100 with newer firmware has only LPM issues */
3987 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3988 						ATA_HORKAGE_NOLPM, },
3989 
3990 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3991 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3992 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3993 						ATA_HORKAGE_NOLPM, },
3994 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3995 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3996 						ATA_HORKAGE_NOLPM, },
3997 
3998 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3999 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4000 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4001 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4002 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4003 
4004 	/* devices that don't properly handle queued TRIM commands */
4005 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4006 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4007 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4008 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4009 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4010 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4011 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4012 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4014 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4015 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4016 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4017 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4018 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4019 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4020 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4021 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4022 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4023 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4024 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4025 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4026 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4027 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4028 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4029 
4030 	/* devices that don't properly handle TRIM commands */
4031 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4032 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM, },
4033 
4034 	/*
4035 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4036 	 * (Return Zero After Trim) flags in the ATA Command Set are
4037 	 * unreliable in the sense that they only define what happens if
4038 	 * the device successfully executed the DSM TRIM command. TRIM
4039 	 * is only advisory, however, and the device is free to silently
4040 	 * ignore all or parts of the request.
4041 	 *
4042 	 * Whitelist drives that are known to reliably return zeroes
4043 	 * after TRIM.
4044 	 */
4045 
4046 	/*
4047 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4048 	 * that model before whitelisting all other intel SSDs.
4049 	 */
4050 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4051 
4052 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4053 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4054 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4055 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4056 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4057 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4058 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4059 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4060 
4061 	/*
4062 	 * Some WD SATA-I drives spin up and down erratically when the link
4063 	 * is put into the slumber mode.  We don't have full list of the
4064 	 * affected devices.  Disable LPM if the device matches one of the
4065 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4066 	 * lost too.
4067 	 *
4068 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4069 	 */
4070 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4071 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4072 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4073 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4074 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4075 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4076 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4077 
4078 	/*
4079 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4080 	 * log page is accessed. Ensure we never ask for this log page with
4081 	 * these devices.
4082 	 */
4083 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4084 
4085 	/* End Marker */
4086 	{ }
4087 };
4088 
4089 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4090 {
4091 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4092 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4093 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4094 
4095 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4096 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4097 
4098 	while (ad->model_num) {
4099 		if (glob_match(ad->model_num, model_num)) {
4100 			if (ad->model_rev == NULL)
4101 				return ad->horkage;
4102 			if (glob_match(ad->model_rev, model_rev))
4103 				return ad->horkage;
4104 		}
4105 		ad++;
4106 	}
4107 	return 0;
4108 }
4109 
4110 static int ata_dma_blacklisted(const struct ata_device *dev)
4111 {
4112 	/* We don't support polling DMA.
4113 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4114 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4115 	 */
4116 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4117 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4118 		return 1;
4119 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4120 }
4121 
4122 /**
4123  *	ata_is_40wire		-	check drive side detection
4124  *	@dev: device
4125  *
4126  *	Perform drive side detection decoding, allowing for device vendors
4127  *	who can't follow the documentation.
4128  */
4129 
4130 static int ata_is_40wire(struct ata_device *dev)
4131 {
4132 	if (dev->horkage & ATA_HORKAGE_IVB)
4133 		return ata_drive_40wire_relaxed(dev->id);
4134 	return ata_drive_40wire(dev->id);
4135 }
4136 
4137 /**
4138  *	cable_is_40wire		-	40/80/SATA decider
4139  *	@ap: port to consider
4140  *
4141  *	This function encapsulates the policy for speed management
4142  *	in one place. At the moment we don't cache the result but
4143  *	there is a good case for setting ap->cbl to the result when
4144  *	we are called with unknown cables (and figuring out if it
4145  *	impacts hotplug at all).
4146  *
4147  *	Return 1 if the cable appears to be 40 wire.
4148  */
4149 
4150 static int cable_is_40wire(struct ata_port *ap)
4151 {
4152 	struct ata_link *link;
4153 	struct ata_device *dev;
4154 
4155 	/* If the controller thinks we are 40 wire, we are. */
4156 	if (ap->cbl == ATA_CBL_PATA40)
4157 		return 1;
4158 
4159 	/* If the controller thinks we are 80 wire, we are. */
4160 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4161 		return 0;
4162 
4163 	/* If the system is known to be 40 wire short cable (eg
4164 	 * laptop), then we allow 80 wire modes even if the drive
4165 	 * isn't sure.
4166 	 */
4167 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4168 		return 0;
4169 
4170 	/* If the controller doesn't know, we scan.
4171 	 *
4172 	 * Note: We look for all 40 wire detects at this point.  Any
4173 	 *       80 wire detect is taken to be 80 wire cable because
4174 	 * - in many setups only the one drive (slave if present) will
4175 	 *   give a valid detect
4176 	 * - if you have a non detect capable drive you don't want it
4177 	 *   to colour the choice
4178 	 */
4179 	ata_for_each_link(link, ap, EDGE) {
4180 		ata_for_each_dev(dev, link, ENABLED) {
4181 			if (!ata_is_40wire(dev))
4182 				return 0;
4183 		}
4184 	}
4185 	return 1;
4186 }
4187 
4188 /**
4189  *	ata_dev_xfermask - Compute supported xfermask of the given device
4190  *	@dev: Device to compute xfermask for
4191  *
4192  *	Compute supported xfermask of @dev and store it in
4193  *	dev->*_mask.  This function is responsible for applying all
4194  *	known limits including host controller limits, device
4195  *	blacklist, etc...
4196  *
4197  *	LOCKING:
4198  *	None.
4199  */
4200 static void ata_dev_xfermask(struct ata_device *dev)
4201 {
4202 	struct ata_link *link = dev->link;
4203 	struct ata_port *ap = link->ap;
4204 	struct ata_host *host = ap->host;
4205 	unsigned long xfer_mask;
4206 
4207 	/* controller modes available */
4208 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4209 				      ap->mwdma_mask, ap->udma_mask);
4210 
4211 	/* drive modes available */
4212 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4213 				       dev->mwdma_mask, dev->udma_mask);
4214 	xfer_mask &= ata_id_xfermask(dev->id);
4215 
4216 	/*
4217 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4218 	 *	cable
4219 	 */
4220 	if (ata_dev_pair(dev)) {
4221 		/* No PIO5 or PIO6 */
4222 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4223 		/* No MWDMA3 or MWDMA 4 */
4224 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4225 	}
4226 
4227 	if (ata_dma_blacklisted(dev)) {
4228 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4229 		ata_dev_warn(dev,
4230 			     "device is on DMA blacklist, disabling DMA\n");
4231 	}
4232 
4233 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4234 	    host->simplex_claimed && host->simplex_claimed != ap) {
4235 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4236 		ata_dev_warn(dev,
4237 			     "simplex DMA is claimed by other device, disabling DMA\n");
4238 	}
4239 
4240 	if (ap->flags & ATA_FLAG_NO_IORDY)
4241 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4242 
4243 	if (ap->ops->mode_filter)
4244 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4245 
4246 	/* Apply cable rule here.  Don't apply it early because when
4247 	 * we handle hot plug the cable type can itself change.
4248 	 * Check this last so that we know if the transfer rate was
4249 	 * solely limited by the cable.
4250 	 * Unknown or 80 wire cables reported host side are checked
4251 	 * drive side as well. Cases where we know a 40wire cable
4252 	 * is used safely for 80 are not checked here.
4253 	 */
4254 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4255 		/* UDMA/44 or higher would be available */
4256 		if (cable_is_40wire(ap)) {
4257 			ata_dev_warn(dev,
4258 				     "limited to UDMA/33 due to 40-wire cable\n");
4259 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4260 		}
4261 
4262 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4263 			    &dev->mwdma_mask, &dev->udma_mask);
4264 }
4265 
4266 /**
4267  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4268  *	@dev: Device to which command will be sent
4269  *
4270  *	Issue SET FEATURES - XFER MODE command to device @dev
4271  *	on port @ap.
4272  *
4273  *	LOCKING:
4274  *	PCI/etc. bus probe sem.
4275  *
4276  *	RETURNS:
4277  *	0 on success, AC_ERR_* mask otherwise.
4278  */
4279 
4280 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4281 {
4282 	struct ata_taskfile tf;
4283 	unsigned int err_mask;
4284 
4285 	/* set up set-features taskfile */
4286 	ata_dev_dbg(dev, "set features - xfer mode\n");
4287 
4288 	/* Some controllers and ATAPI devices show flaky interrupt
4289 	 * behavior after setting xfer mode.  Use polling instead.
4290 	 */
4291 	ata_tf_init(dev, &tf);
4292 	tf.command = ATA_CMD_SET_FEATURES;
4293 	tf.feature = SETFEATURES_XFER;
4294 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4295 	tf.protocol = ATA_PROT_NODATA;
4296 	/* If we are using IORDY we must send the mode setting command */
4297 	if (ata_pio_need_iordy(dev))
4298 		tf.nsect = dev->xfer_mode;
4299 	/* If the device has IORDY and the controller does not - turn it off */
4300  	else if (ata_id_has_iordy(dev->id))
4301 		tf.nsect = 0x01;
4302 	else /* In the ancient relic department - skip all of this */
4303 		return 0;
4304 
4305 	/* On some disks, this command causes spin-up, so we need longer timeout */
4306 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4307 
4308 	return err_mask;
4309 }
4310 
4311 /**
4312  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4313  *	@dev: Device to which command will be sent
4314  *	@enable: Whether to enable or disable the feature
4315  *	@feature: The sector count represents the feature to set
4316  *
4317  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4318  *	on port @ap with sector count
4319  *
4320  *	LOCKING:
4321  *	PCI/etc. bus probe sem.
4322  *
4323  *	RETURNS:
4324  *	0 on success, AC_ERR_* mask otherwise.
4325  */
4326 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4327 {
4328 	struct ata_taskfile tf;
4329 	unsigned int err_mask;
4330 	unsigned long timeout = 0;
4331 
4332 	/* set up set-features taskfile */
4333 	ata_dev_dbg(dev, "set features - SATA features\n");
4334 
4335 	ata_tf_init(dev, &tf);
4336 	tf.command = ATA_CMD_SET_FEATURES;
4337 	tf.feature = enable;
4338 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4339 	tf.protocol = ATA_PROT_NODATA;
4340 	tf.nsect = feature;
4341 
4342 	if (enable == SETFEATURES_SPINUP)
4343 		timeout = ata_probe_timeout ?
4344 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4345 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4346 
4347 	return err_mask;
4348 }
4349 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4350 
4351 /**
4352  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4353  *	@dev: Device to which command will be sent
4354  *	@heads: Number of heads (taskfile parameter)
4355  *	@sectors: Number of sectors (taskfile parameter)
4356  *
4357  *	LOCKING:
4358  *	Kernel thread context (may sleep)
4359  *
4360  *	RETURNS:
4361  *	0 on success, AC_ERR_* mask otherwise.
4362  */
4363 static unsigned int ata_dev_init_params(struct ata_device *dev,
4364 					u16 heads, u16 sectors)
4365 {
4366 	struct ata_taskfile tf;
4367 	unsigned int err_mask;
4368 
4369 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4370 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4371 		return AC_ERR_INVALID;
4372 
4373 	/* set up init dev params taskfile */
4374 	ata_dev_dbg(dev, "init dev params \n");
4375 
4376 	ata_tf_init(dev, &tf);
4377 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4378 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4379 	tf.protocol = ATA_PROT_NODATA;
4380 	tf.nsect = sectors;
4381 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4382 
4383 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4384 	/* A clean abort indicates an original or just out of spec drive
4385 	   and we should continue as we issue the setup based on the
4386 	   drive reported working geometry */
4387 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4388 		err_mask = 0;
4389 
4390 	return err_mask;
4391 }
4392 
4393 /**
4394  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4395  *	@qc: Metadata associated with taskfile to check
4396  *
4397  *	Allow low-level driver to filter ATA PACKET commands, returning
4398  *	a status indicating whether or not it is OK to use DMA for the
4399  *	supplied PACKET command.
4400  *
4401  *	LOCKING:
4402  *	spin_lock_irqsave(host lock)
4403  *
4404  *	RETURNS: 0 when ATAPI DMA can be used
4405  *               nonzero otherwise
4406  */
4407 int atapi_check_dma(struct ata_queued_cmd *qc)
4408 {
4409 	struct ata_port *ap = qc->ap;
4410 
4411 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4412 	 * few ATAPI devices choke on such DMA requests.
4413 	 */
4414 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4415 	    unlikely(qc->nbytes & 15))
4416 		return 1;
4417 
4418 	if (ap->ops->check_atapi_dma)
4419 		return ap->ops->check_atapi_dma(qc);
4420 
4421 	return 0;
4422 }
4423 
4424 /**
4425  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4426  *	@qc: ATA command in question
4427  *
4428  *	Non-NCQ commands cannot run with any other command, NCQ or
4429  *	not.  As upper layer only knows the queue depth, we are
4430  *	responsible for maintaining exclusion.  This function checks
4431  *	whether a new command @qc can be issued.
4432  *
4433  *	LOCKING:
4434  *	spin_lock_irqsave(host lock)
4435  *
4436  *	RETURNS:
4437  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4438  */
4439 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4440 {
4441 	struct ata_link *link = qc->dev->link;
4442 
4443 	if (ata_is_ncq(qc->tf.protocol)) {
4444 		if (!ata_tag_valid(link->active_tag))
4445 			return 0;
4446 	} else {
4447 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4448 			return 0;
4449 	}
4450 
4451 	return ATA_DEFER_LINK;
4452 }
4453 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4454 
4455 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4456 {
4457 	return AC_ERR_OK;
4458 }
4459 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4460 
4461 /**
4462  *	ata_sg_init - Associate command with scatter-gather table.
4463  *	@qc: Command to be associated
4464  *	@sg: Scatter-gather table.
4465  *	@n_elem: Number of elements in s/g table.
4466  *
4467  *	Initialize the data-related elements of queued_cmd @qc
4468  *	to point to a scatter-gather table @sg, containing @n_elem
4469  *	elements.
4470  *
4471  *	LOCKING:
4472  *	spin_lock_irqsave(host lock)
4473  */
4474 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4475 		 unsigned int n_elem)
4476 {
4477 	qc->sg = sg;
4478 	qc->n_elem = n_elem;
4479 	qc->cursg = qc->sg;
4480 }
4481 
4482 #ifdef CONFIG_HAS_DMA
4483 
4484 /**
4485  *	ata_sg_clean - Unmap DMA memory associated with command
4486  *	@qc: Command containing DMA memory to be released
4487  *
4488  *	Unmap all mapped DMA memory associated with this command.
4489  *
4490  *	LOCKING:
4491  *	spin_lock_irqsave(host lock)
4492  */
4493 static void ata_sg_clean(struct ata_queued_cmd *qc)
4494 {
4495 	struct ata_port *ap = qc->ap;
4496 	struct scatterlist *sg = qc->sg;
4497 	int dir = qc->dma_dir;
4498 
4499 	WARN_ON_ONCE(sg == NULL);
4500 
4501 	if (qc->n_elem)
4502 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4503 
4504 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4505 	qc->sg = NULL;
4506 }
4507 
4508 /**
4509  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4510  *	@qc: Command with scatter-gather table to be mapped.
4511  *
4512  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4513  *
4514  *	LOCKING:
4515  *	spin_lock_irqsave(host lock)
4516  *
4517  *	RETURNS:
4518  *	Zero on success, negative on error.
4519  *
4520  */
4521 static int ata_sg_setup(struct ata_queued_cmd *qc)
4522 {
4523 	struct ata_port *ap = qc->ap;
4524 	unsigned int n_elem;
4525 
4526 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4527 	if (n_elem < 1)
4528 		return -1;
4529 
4530 	qc->orig_n_elem = qc->n_elem;
4531 	qc->n_elem = n_elem;
4532 	qc->flags |= ATA_QCFLAG_DMAMAP;
4533 
4534 	return 0;
4535 }
4536 
4537 #else /* !CONFIG_HAS_DMA */
4538 
4539 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4540 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4541 
4542 #endif /* !CONFIG_HAS_DMA */
4543 
4544 /**
4545  *	swap_buf_le16 - swap halves of 16-bit words in place
4546  *	@buf:  Buffer to swap
4547  *	@buf_words:  Number of 16-bit words in buffer.
4548  *
4549  *	Swap halves of 16-bit words if needed to convert from
4550  *	little-endian byte order to native cpu byte order, or
4551  *	vice-versa.
4552  *
4553  *	LOCKING:
4554  *	Inherited from caller.
4555  */
4556 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4557 {
4558 #ifdef __BIG_ENDIAN
4559 	unsigned int i;
4560 
4561 	for (i = 0; i < buf_words; i++)
4562 		buf[i] = le16_to_cpu(buf[i]);
4563 #endif /* __BIG_ENDIAN */
4564 }
4565 
4566 /**
4567  *	ata_qc_new_init - Request an available ATA command, and initialize it
4568  *	@dev: Device from whom we request an available command structure
4569  *	@tag: tag
4570  *
4571  *	LOCKING:
4572  *	None.
4573  */
4574 
4575 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4576 {
4577 	struct ata_port *ap = dev->link->ap;
4578 	struct ata_queued_cmd *qc;
4579 
4580 	/* no command while frozen */
4581 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4582 		return NULL;
4583 
4584 	/* libsas case */
4585 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4586 		tag = ata_sas_allocate_tag(ap);
4587 		if (tag < 0)
4588 			return NULL;
4589 	}
4590 
4591 	qc = __ata_qc_from_tag(ap, tag);
4592 	qc->tag = qc->hw_tag = tag;
4593 	qc->scsicmd = NULL;
4594 	qc->ap = ap;
4595 	qc->dev = dev;
4596 
4597 	ata_qc_reinit(qc);
4598 
4599 	return qc;
4600 }
4601 
4602 /**
4603  *	ata_qc_free - free unused ata_queued_cmd
4604  *	@qc: Command to complete
4605  *
4606  *	Designed to free unused ata_queued_cmd object
4607  *	in case something prevents using it.
4608  *
4609  *	LOCKING:
4610  *	spin_lock_irqsave(host lock)
4611  */
4612 void ata_qc_free(struct ata_queued_cmd *qc)
4613 {
4614 	struct ata_port *ap;
4615 	unsigned int tag;
4616 
4617 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4618 	ap = qc->ap;
4619 
4620 	qc->flags = 0;
4621 	tag = qc->tag;
4622 	if (ata_tag_valid(tag)) {
4623 		qc->tag = ATA_TAG_POISON;
4624 		if (ap->flags & ATA_FLAG_SAS_HOST)
4625 			ata_sas_free_tag(tag, ap);
4626 	}
4627 }
4628 
4629 void __ata_qc_complete(struct ata_queued_cmd *qc)
4630 {
4631 	struct ata_port *ap;
4632 	struct ata_link *link;
4633 
4634 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4635 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4636 	ap = qc->ap;
4637 	link = qc->dev->link;
4638 
4639 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4640 		ata_sg_clean(qc);
4641 
4642 	/* command should be marked inactive atomically with qc completion */
4643 	if (ata_is_ncq(qc->tf.protocol)) {
4644 		link->sactive &= ~(1 << qc->hw_tag);
4645 		if (!link->sactive)
4646 			ap->nr_active_links--;
4647 	} else {
4648 		link->active_tag = ATA_TAG_POISON;
4649 		ap->nr_active_links--;
4650 	}
4651 
4652 	/* clear exclusive status */
4653 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4654 		     ap->excl_link == link))
4655 		ap->excl_link = NULL;
4656 
4657 	/* atapi: mark qc as inactive to prevent the interrupt handler
4658 	 * from completing the command twice later, before the error handler
4659 	 * is called. (when rc != 0 and atapi request sense is needed)
4660 	 */
4661 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4662 	ap->qc_active &= ~(1ULL << qc->tag);
4663 
4664 	/* call completion callback */
4665 	qc->complete_fn(qc);
4666 }
4667 
4668 static void fill_result_tf(struct ata_queued_cmd *qc)
4669 {
4670 	struct ata_port *ap = qc->ap;
4671 
4672 	qc->result_tf.flags = qc->tf.flags;
4673 	ap->ops->qc_fill_rtf(qc);
4674 }
4675 
4676 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4677 {
4678 	struct ata_device *dev = qc->dev;
4679 
4680 	if (!ata_is_data(qc->tf.protocol))
4681 		return;
4682 
4683 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4684 		return;
4685 
4686 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4687 }
4688 
4689 /**
4690  *	ata_qc_complete - Complete an active ATA command
4691  *	@qc: Command to complete
4692  *
4693  *	Indicate to the mid and upper layers that an ATA command has
4694  *	completed, with either an ok or not-ok status.
4695  *
4696  *	Refrain from calling this function multiple times when
4697  *	successfully completing multiple NCQ commands.
4698  *	ata_qc_complete_multiple() should be used instead, which will
4699  *	properly update IRQ expect state.
4700  *
4701  *	LOCKING:
4702  *	spin_lock_irqsave(host lock)
4703  */
4704 void ata_qc_complete(struct ata_queued_cmd *qc)
4705 {
4706 	struct ata_port *ap = qc->ap;
4707 
4708 	/* Trigger the LED (if available) */
4709 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4710 
4711 	/* XXX: New EH and old EH use different mechanisms to
4712 	 * synchronize EH with regular execution path.
4713 	 *
4714 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4715 	 * Normal execution path is responsible for not accessing a
4716 	 * failed qc.  libata core enforces the rule by returning NULL
4717 	 * from ata_qc_from_tag() for failed qcs.
4718 	 *
4719 	 * Old EH depends on ata_qc_complete() nullifying completion
4720 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4721 	 * not synchronize with interrupt handler.  Only PIO task is
4722 	 * taken care of.
4723 	 */
4724 	if (ap->ops->error_handler) {
4725 		struct ata_device *dev = qc->dev;
4726 		struct ata_eh_info *ehi = &dev->link->eh_info;
4727 
4728 		if (unlikely(qc->err_mask))
4729 			qc->flags |= ATA_QCFLAG_FAILED;
4730 
4731 		/*
4732 		 * Finish internal commands without any further processing
4733 		 * and always with the result TF filled.
4734 		 */
4735 		if (unlikely(ata_tag_internal(qc->tag))) {
4736 			fill_result_tf(qc);
4737 			trace_ata_qc_complete_internal(qc);
4738 			__ata_qc_complete(qc);
4739 			return;
4740 		}
4741 
4742 		/*
4743 		 * Non-internal qc has failed.  Fill the result TF and
4744 		 * summon EH.
4745 		 */
4746 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4747 			fill_result_tf(qc);
4748 			trace_ata_qc_complete_failed(qc);
4749 			ata_qc_schedule_eh(qc);
4750 			return;
4751 		}
4752 
4753 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4754 
4755 		/* read result TF if requested */
4756 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4757 			fill_result_tf(qc);
4758 
4759 		trace_ata_qc_complete_done(qc);
4760 		/* Some commands need post-processing after successful
4761 		 * completion.
4762 		 */
4763 		switch (qc->tf.command) {
4764 		case ATA_CMD_SET_FEATURES:
4765 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4766 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4767 			    qc->tf.feature != SETFEATURES_RA_ON &&
4768 			    qc->tf.feature != SETFEATURES_RA_OFF)
4769 				break;
4770 			fallthrough;
4771 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4772 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4773 			/* revalidate device */
4774 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4775 			ata_port_schedule_eh(ap);
4776 			break;
4777 
4778 		case ATA_CMD_SLEEP:
4779 			dev->flags |= ATA_DFLAG_SLEEPING;
4780 			break;
4781 		}
4782 
4783 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4784 			ata_verify_xfer(qc);
4785 
4786 		__ata_qc_complete(qc);
4787 	} else {
4788 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4789 			return;
4790 
4791 		/* read result TF if failed or requested */
4792 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4793 			fill_result_tf(qc);
4794 
4795 		__ata_qc_complete(qc);
4796 	}
4797 }
4798 EXPORT_SYMBOL_GPL(ata_qc_complete);
4799 
4800 /**
4801  *	ata_qc_get_active - get bitmask of active qcs
4802  *	@ap: port in question
4803  *
4804  *	LOCKING:
4805  *	spin_lock_irqsave(host lock)
4806  *
4807  *	RETURNS:
4808  *	Bitmask of active qcs
4809  */
4810 u64 ata_qc_get_active(struct ata_port *ap)
4811 {
4812 	u64 qc_active = ap->qc_active;
4813 
4814 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4815 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4816 		qc_active |= (1 << 0);
4817 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4818 	}
4819 
4820 	return qc_active;
4821 }
4822 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4823 
4824 /**
4825  *	ata_qc_issue - issue taskfile to device
4826  *	@qc: command to issue to device
4827  *
4828  *	Prepare an ATA command to submission to device.
4829  *	This includes mapping the data into a DMA-able
4830  *	area, filling in the S/G table, and finally
4831  *	writing the taskfile to hardware, starting the command.
4832  *
4833  *	LOCKING:
4834  *	spin_lock_irqsave(host lock)
4835  */
4836 void ata_qc_issue(struct ata_queued_cmd *qc)
4837 {
4838 	struct ata_port *ap = qc->ap;
4839 	struct ata_link *link = qc->dev->link;
4840 	u8 prot = qc->tf.protocol;
4841 
4842 	/* Make sure only one non-NCQ command is outstanding.  The
4843 	 * check is skipped for old EH because it reuses active qc to
4844 	 * request ATAPI sense.
4845 	 */
4846 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4847 
4848 	if (ata_is_ncq(prot)) {
4849 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4850 
4851 		if (!link->sactive)
4852 			ap->nr_active_links++;
4853 		link->sactive |= 1 << qc->hw_tag;
4854 	} else {
4855 		WARN_ON_ONCE(link->sactive);
4856 
4857 		ap->nr_active_links++;
4858 		link->active_tag = qc->tag;
4859 	}
4860 
4861 	qc->flags |= ATA_QCFLAG_ACTIVE;
4862 	ap->qc_active |= 1ULL << qc->tag;
4863 
4864 	/*
4865 	 * We guarantee to LLDs that they will have at least one
4866 	 * non-zero sg if the command is a data command.
4867 	 */
4868 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4869 		goto sys_err;
4870 
4871 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4872 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4873 		if (ata_sg_setup(qc))
4874 			goto sys_err;
4875 
4876 	/* if device is sleeping, schedule reset and abort the link */
4877 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4878 		link->eh_info.action |= ATA_EH_RESET;
4879 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4880 		ata_link_abort(link);
4881 		return;
4882 	}
4883 
4884 	trace_ata_qc_prep(qc);
4885 	qc->err_mask |= ap->ops->qc_prep(qc);
4886 	if (unlikely(qc->err_mask))
4887 		goto err;
4888 	trace_ata_qc_issue(qc);
4889 	qc->err_mask |= ap->ops->qc_issue(qc);
4890 	if (unlikely(qc->err_mask))
4891 		goto err;
4892 	return;
4893 
4894 sys_err:
4895 	qc->err_mask |= AC_ERR_SYSTEM;
4896 err:
4897 	ata_qc_complete(qc);
4898 }
4899 
4900 /**
4901  *	ata_phys_link_online - test whether the given link is online
4902  *	@link: ATA link to test
4903  *
4904  *	Test whether @link is online.  Note that this function returns
4905  *	0 if online status of @link cannot be obtained, so
4906  *	ata_link_online(link) != !ata_link_offline(link).
4907  *
4908  *	LOCKING:
4909  *	None.
4910  *
4911  *	RETURNS:
4912  *	True if the port online status is available and online.
4913  */
4914 bool ata_phys_link_online(struct ata_link *link)
4915 {
4916 	u32 sstatus;
4917 
4918 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4919 	    ata_sstatus_online(sstatus))
4920 		return true;
4921 	return false;
4922 }
4923 
4924 /**
4925  *	ata_phys_link_offline - test whether the given link is offline
4926  *	@link: ATA link to test
4927  *
4928  *	Test whether @link is offline.  Note that this function
4929  *	returns 0 if offline status of @link cannot be obtained, so
4930  *	ata_link_online(link) != !ata_link_offline(link).
4931  *
4932  *	LOCKING:
4933  *	None.
4934  *
4935  *	RETURNS:
4936  *	True if the port offline status is available and offline.
4937  */
4938 bool ata_phys_link_offline(struct ata_link *link)
4939 {
4940 	u32 sstatus;
4941 
4942 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4943 	    !ata_sstatus_online(sstatus))
4944 		return true;
4945 	return false;
4946 }
4947 
4948 /**
4949  *	ata_link_online - test whether the given link is online
4950  *	@link: ATA link to test
4951  *
4952  *	Test whether @link is online.  This is identical to
4953  *	ata_phys_link_online() when there's no slave link.  When
4954  *	there's a slave link, this function should only be called on
4955  *	the master link and will return true if any of M/S links is
4956  *	online.
4957  *
4958  *	LOCKING:
4959  *	None.
4960  *
4961  *	RETURNS:
4962  *	True if the port online status is available and online.
4963  */
4964 bool ata_link_online(struct ata_link *link)
4965 {
4966 	struct ata_link *slave = link->ap->slave_link;
4967 
4968 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4969 
4970 	return ata_phys_link_online(link) ||
4971 		(slave && ata_phys_link_online(slave));
4972 }
4973 EXPORT_SYMBOL_GPL(ata_link_online);
4974 
4975 /**
4976  *	ata_link_offline - test whether the given link is offline
4977  *	@link: ATA link to test
4978  *
4979  *	Test whether @link is offline.  This is identical to
4980  *	ata_phys_link_offline() when there's no slave link.  When
4981  *	there's a slave link, this function should only be called on
4982  *	the master link and will return true if both M/S links are
4983  *	offline.
4984  *
4985  *	LOCKING:
4986  *	None.
4987  *
4988  *	RETURNS:
4989  *	True if the port offline status is available and offline.
4990  */
4991 bool ata_link_offline(struct ata_link *link)
4992 {
4993 	struct ata_link *slave = link->ap->slave_link;
4994 
4995 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4996 
4997 	return ata_phys_link_offline(link) &&
4998 		(!slave || ata_phys_link_offline(slave));
4999 }
5000 EXPORT_SYMBOL_GPL(ata_link_offline);
5001 
5002 #ifdef CONFIG_PM
5003 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5004 				unsigned int action, unsigned int ehi_flags,
5005 				bool async)
5006 {
5007 	struct ata_link *link;
5008 	unsigned long flags;
5009 
5010 	/* Previous resume operation might still be in
5011 	 * progress.  Wait for PM_PENDING to clear.
5012 	 */
5013 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5014 		ata_port_wait_eh(ap);
5015 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5016 	}
5017 
5018 	/* request PM ops to EH */
5019 	spin_lock_irqsave(ap->lock, flags);
5020 
5021 	ap->pm_mesg = mesg;
5022 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5023 	ata_for_each_link(link, ap, HOST_FIRST) {
5024 		link->eh_info.action |= action;
5025 		link->eh_info.flags |= ehi_flags;
5026 	}
5027 
5028 	ata_port_schedule_eh(ap);
5029 
5030 	spin_unlock_irqrestore(ap->lock, flags);
5031 
5032 	if (!async) {
5033 		ata_port_wait_eh(ap);
5034 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5035 	}
5036 }
5037 
5038 /*
5039  * On some hardware, device fails to respond after spun down for suspend.  As
5040  * the device won't be used before being resumed, we don't need to touch the
5041  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5042  *
5043  * http://thread.gmane.org/gmane.linux.ide/46764
5044  */
5045 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5046 						 | ATA_EHI_NO_AUTOPSY
5047 						 | ATA_EHI_NO_RECOVERY;
5048 
5049 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5050 {
5051 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5052 }
5053 
5054 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5055 {
5056 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5057 }
5058 
5059 static int ata_port_pm_suspend(struct device *dev)
5060 {
5061 	struct ata_port *ap = to_ata_port(dev);
5062 
5063 	if (pm_runtime_suspended(dev))
5064 		return 0;
5065 
5066 	ata_port_suspend(ap, PMSG_SUSPEND);
5067 	return 0;
5068 }
5069 
5070 static int ata_port_pm_freeze(struct device *dev)
5071 {
5072 	struct ata_port *ap = to_ata_port(dev);
5073 
5074 	if (pm_runtime_suspended(dev))
5075 		return 0;
5076 
5077 	ata_port_suspend(ap, PMSG_FREEZE);
5078 	return 0;
5079 }
5080 
5081 static int ata_port_pm_poweroff(struct device *dev)
5082 {
5083 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5084 	return 0;
5085 }
5086 
5087 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5088 						| ATA_EHI_QUIET;
5089 
5090 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5091 {
5092 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5093 }
5094 
5095 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5096 {
5097 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5098 }
5099 
5100 static int ata_port_pm_resume(struct device *dev)
5101 {
5102 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5103 	pm_runtime_disable(dev);
5104 	pm_runtime_set_active(dev);
5105 	pm_runtime_enable(dev);
5106 	return 0;
5107 }
5108 
5109 /*
5110  * For ODDs, the upper layer will poll for media change every few seconds,
5111  * which will make it enter and leave suspend state every few seconds. And
5112  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5113  * is very little and the ODD may malfunction after constantly being reset.
5114  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5115  * ODD is attached to the port.
5116  */
5117 static int ata_port_runtime_idle(struct device *dev)
5118 {
5119 	struct ata_port *ap = to_ata_port(dev);
5120 	struct ata_link *link;
5121 	struct ata_device *adev;
5122 
5123 	ata_for_each_link(link, ap, HOST_FIRST) {
5124 		ata_for_each_dev(adev, link, ENABLED)
5125 			if (adev->class == ATA_DEV_ATAPI &&
5126 			    !zpodd_dev_enabled(adev))
5127 				return -EBUSY;
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static int ata_port_runtime_suspend(struct device *dev)
5134 {
5135 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5136 	return 0;
5137 }
5138 
5139 static int ata_port_runtime_resume(struct device *dev)
5140 {
5141 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5142 	return 0;
5143 }
5144 
5145 static const struct dev_pm_ops ata_port_pm_ops = {
5146 	.suspend = ata_port_pm_suspend,
5147 	.resume = ata_port_pm_resume,
5148 	.freeze = ata_port_pm_freeze,
5149 	.thaw = ata_port_pm_resume,
5150 	.poweroff = ata_port_pm_poweroff,
5151 	.restore = ata_port_pm_resume,
5152 
5153 	.runtime_suspend = ata_port_runtime_suspend,
5154 	.runtime_resume = ata_port_runtime_resume,
5155 	.runtime_idle = ata_port_runtime_idle,
5156 };
5157 
5158 /* sas ports don't participate in pm runtime management of ata_ports,
5159  * and need to resume ata devices at the domain level, not the per-port
5160  * level. sas suspend/resume is async to allow parallel port recovery
5161  * since sas has multiple ata_port instances per Scsi_Host.
5162  */
5163 void ata_sas_port_suspend(struct ata_port *ap)
5164 {
5165 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5166 }
5167 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5168 
5169 void ata_sas_port_resume(struct ata_port *ap)
5170 {
5171 	ata_port_resume_async(ap, PMSG_RESUME);
5172 }
5173 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5174 
5175 /**
5176  *	ata_host_suspend - suspend host
5177  *	@host: host to suspend
5178  *	@mesg: PM message
5179  *
5180  *	Suspend @host.  Actual operation is performed by port suspend.
5181  */
5182 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5183 {
5184 	host->dev->power.power_state = mesg;
5185 	return 0;
5186 }
5187 EXPORT_SYMBOL_GPL(ata_host_suspend);
5188 
5189 /**
5190  *	ata_host_resume - resume host
5191  *	@host: host to resume
5192  *
5193  *	Resume @host.  Actual operation is performed by port resume.
5194  */
5195 void ata_host_resume(struct ata_host *host)
5196 {
5197 	host->dev->power.power_state = PMSG_ON;
5198 }
5199 EXPORT_SYMBOL_GPL(ata_host_resume);
5200 #endif
5201 
5202 const struct device_type ata_port_type = {
5203 	.name = "ata_port",
5204 #ifdef CONFIG_PM
5205 	.pm = &ata_port_pm_ops,
5206 #endif
5207 };
5208 
5209 /**
5210  *	ata_dev_init - Initialize an ata_device structure
5211  *	@dev: Device structure to initialize
5212  *
5213  *	Initialize @dev in preparation for probing.
5214  *
5215  *	LOCKING:
5216  *	Inherited from caller.
5217  */
5218 void ata_dev_init(struct ata_device *dev)
5219 {
5220 	struct ata_link *link = ata_dev_phys_link(dev);
5221 	struct ata_port *ap = link->ap;
5222 	unsigned long flags;
5223 
5224 	/* SATA spd limit is bound to the attached device, reset together */
5225 	link->sata_spd_limit = link->hw_sata_spd_limit;
5226 	link->sata_spd = 0;
5227 
5228 	/* High bits of dev->flags are used to record warm plug
5229 	 * requests which occur asynchronously.  Synchronize using
5230 	 * host lock.
5231 	 */
5232 	spin_lock_irqsave(ap->lock, flags);
5233 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5234 	dev->horkage = 0;
5235 	spin_unlock_irqrestore(ap->lock, flags);
5236 
5237 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5238 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5239 	dev->pio_mask = UINT_MAX;
5240 	dev->mwdma_mask = UINT_MAX;
5241 	dev->udma_mask = UINT_MAX;
5242 }
5243 
5244 /**
5245  *	ata_link_init - Initialize an ata_link structure
5246  *	@ap: ATA port link is attached to
5247  *	@link: Link structure to initialize
5248  *	@pmp: Port multiplier port number
5249  *
5250  *	Initialize @link.
5251  *
5252  *	LOCKING:
5253  *	Kernel thread context (may sleep)
5254  */
5255 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5256 {
5257 	int i;
5258 
5259 	/* clear everything except for devices */
5260 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5261 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5262 
5263 	link->ap = ap;
5264 	link->pmp = pmp;
5265 	link->active_tag = ATA_TAG_POISON;
5266 	link->hw_sata_spd_limit = UINT_MAX;
5267 
5268 	/* can't use iterator, ap isn't initialized yet */
5269 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5270 		struct ata_device *dev = &link->device[i];
5271 
5272 		dev->link = link;
5273 		dev->devno = dev - link->device;
5274 #ifdef CONFIG_ATA_ACPI
5275 		dev->gtf_filter = ata_acpi_gtf_filter;
5276 #endif
5277 		ata_dev_init(dev);
5278 	}
5279 }
5280 
5281 /**
5282  *	sata_link_init_spd - Initialize link->sata_spd_limit
5283  *	@link: Link to configure sata_spd_limit for
5284  *
5285  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5286  *	configured value.
5287  *
5288  *	LOCKING:
5289  *	Kernel thread context (may sleep).
5290  *
5291  *	RETURNS:
5292  *	0 on success, -errno on failure.
5293  */
5294 int sata_link_init_spd(struct ata_link *link)
5295 {
5296 	u8 spd;
5297 	int rc;
5298 
5299 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5300 	if (rc)
5301 		return rc;
5302 
5303 	spd = (link->saved_scontrol >> 4) & 0xf;
5304 	if (spd)
5305 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5306 
5307 	ata_force_link_limits(link);
5308 
5309 	link->sata_spd_limit = link->hw_sata_spd_limit;
5310 
5311 	return 0;
5312 }
5313 
5314 /**
5315  *	ata_port_alloc - allocate and initialize basic ATA port resources
5316  *	@host: ATA host this allocated port belongs to
5317  *
5318  *	Allocate and initialize basic ATA port resources.
5319  *
5320  *	RETURNS:
5321  *	Allocate ATA port on success, NULL on failure.
5322  *
5323  *	LOCKING:
5324  *	Inherited from calling layer (may sleep).
5325  */
5326 struct ata_port *ata_port_alloc(struct ata_host *host)
5327 {
5328 	struct ata_port *ap;
5329 
5330 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5331 	if (!ap)
5332 		return NULL;
5333 
5334 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5335 	ap->lock = &host->lock;
5336 	ap->print_id = -1;
5337 	ap->local_port_no = -1;
5338 	ap->host = host;
5339 	ap->dev = host->dev;
5340 
5341 	mutex_init(&ap->scsi_scan_mutex);
5342 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5343 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5344 	INIT_LIST_HEAD(&ap->eh_done_q);
5345 	init_waitqueue_head(&ap->eh_wait_q);
5346 	init_completion(&ap->park_req_pending);
5347 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5348 		    TIMER_DEFERRABLE);
5349 
5350 	ap->cbl = ATA_CBL_NONE;
5351 
5352 	ata_link_init(ap, &ap->link, 0);
5353 
5354 #ifdef ATA_IRQ_TRAP
5355 	ap->stats.unhandled_irq = 1;
5356 	ap->stats.idle_irq = 1;
5357 #endif
5358 	ata_sff_port_init(ap);
5359 
5360 	return ap;
5361 }
5362 
5363 static void ata_devres_release(struct device *gendev, void *res)
5364 {
5365 	struct ata_host *host = dev_get_drvdata(gendev);
5366 	int i;
5367 
5368 	for (i = 0; i < host->n_ports; i++) {
5369 		struct ata_port *ap = host->ports[i];
5370 
5371 		if (!ap)
5372 			continue;
5373 
5374 		if (ap->scsi_host)
5375 			scsi_host_put(ap->scsi_host);
5376 
5377 	}
5378 
5379 	dev_set_drvdata(gendev, NULL);
5380 	ata_host_put(host);
5381 }
5382 
5383 static void ata_host_release(struct kref *kref)
5384 {
5385 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5386 	int i;
5387 
5388 	for (i = 0; i < host->n_ports; i++) {
5389 		struct ata_port *ap = host->ports[i];
5390 
5391 		kfree(ap->pmp_link);
5392 		kfree(ap->slave_link);
5393 		kfree(ap);
5394 		host->ports[i] = NULL;
5395 	}
5396 	kfree(host);
5397 }
5398 
5399 void ata_host_get(struct ata_host *host)
5400 {
5401 	kref_get(&host->kref);
5402 }
5403 
5404 void ata_host_put(struct ata_host *host)
5405 {
5406 	kref_put(&host->kref, ata_host_release);
5407 }
5408 EXPORT_SYMBOL_GPL(ata_host_put);
5409 
5410 /**
5411  *	ata_host_alloc - allocate and init basic ATA host resources
5412  *	@dev: generic device this host is associated with
5413  *	@max_ports: maximum number of ATA ports associated with this host
5414  *
5415  *	Allocate and initialize basic ATA host resources.  LLD calls
5416  *	this function to allocate a host, initializes it fully and
5417  *	attaches it using ata_host_register().
5418  *
5419  *	@max_ports ports are allocated and host->n_ports is
5420  *	initialized to @max_ports.  The caller is allowed to decrease
5421  *	host->n_ports before calling ata_host_register().  The unused
5422  *	ports will be automatically freed on registration.
5423  *
5424  *	RETURNS:
5425  *	Allocate ATA host on success, NULL on failure.
5426  *
5427  *	LOCKING:
5428  *	Inherited from calling layer (may sleep).
5429  */
5430 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5431 {
5432 	struct ata_host *host;
5433 	size_t sz;
5434 	int i;
5435 	void *dr;
5436 
5437 	/* alloc a container for our list of ATA ports (buses) */
5438 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5439 	host = kzalloc(sz, GFP_KERNEL);
5440 	if (!host)
5441 		return NULL;
5442 
5443 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5444 		goto err_free;
5445 
5446 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5447 	if (!dr)
5448 		goto err_out;
5449 
5450 	devres_add(dev, dr);
5451 	dev_set_drvdata(dev, host);
5452 
5453 	spin_lock_init(&host->lock);
5454 	mutex_init(&host->eh_mutex);
5455 	host->dev = dev;
5456 	host->n_ports = max_ports;
5457 	kref_init(&host->kref);
5458 
5459 	/* allocate ports bound to this host */
5460 	for (i = 0; i < max_ports; i++) {
5461 		struct ata_port *ap;
5462 
5463 		ap = ata_port_alloc(host);
5464 		if (!ap)
5465 			goto err_out;
5466 
5467 		ap->port_no = i;
5468 		host->ports[i] = ap;
5469 	}
5470 
5471 	devres_remove_group(dev, NULL);
5472 	return host;
5473 
5474  err_out:
5475 	devres_release_group(dev, NULL);
5476  err_free:
5477 	kfree(host);
5478 	return NULL;
5479 }
5480 EXPORT_SYMBOL_GPL(ata_host_alloc);
5481 
5482 /**
5483  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5484  *	@dev: generic device this host is associated with
5485  *	@ppi: array of ATA port_info to initialize host with
5486  *	@n_ports: number of ATA ports attached to this host
5487  *
5488  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5489  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5490  *	last entry will be used for the remaining ports.
5491  *
5492  *	RETURNS:
5493  *	Allocate ATA host on success, NULL on failure.
5494  *
5495  *	LOCKING:
5496  *	Inherited from calling layer (may sleep).
5497  */
5498 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5499 				      const struct ata_port_info * const * ppi,
5500 				      int n_ports)
5501 {
5502 	const struct ata_port_info *pi;
5503 	struct ata_host *host;
5504 	int i, j;
5505 
5506 	host = ata_host_alloc(dev, n_ports);
5507 	if (!host)
5508 		return NULL;
5509 
5510 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5511 		struct ata_port *ap = host->ports[i];
5512 
5513 		if (ppi[j])
5514 			pi = ppi[j++];
5515 
5516 		ap->pio_mask = pi->pio_mask;
5517 		ap->mwdma_mask = pi->mwdma_mask;
5518 		ap->udma_mask = pi->udma_mask;
5519 		ap->flags |= pi->flags;
5520 		ap->link.flags |= pi->link_flags;
5521 		ap->ops = pi->port_ops;
5522 
5523 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5524 			host->ops = pi->port_ops;
5525 	}
5526 
5527 	return host;
5528 }
5529 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5530 
5531 static void ata_host_stop(struct device *gendev, void *res)
5532 {
5533 	struct ata_host *host = dev_get_drvdata(gendev);
5534 	int i;
5535 
5536 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5537 
5538 	for (i = 0; i < host->n_ports; i++) {
5539 		struct ata_port *ap = host->ports[i];
5540 
5541 		if (ap->ops->port_stop)
5542 			ap->ops->port_stop(ap);
5543 	}
5544 
5545 	if (host->ops->host_stop)
5546 		host->ops->host_stop(host);
5547 }
5548 
5549 /**
5550  *	ata_finalize_port_ops - finalize ata_port_operations
5551  *	@ops: ata_port_operations to finalize
5552  *
5553  *	An ata_port_operations can inherit from another ops and that
5554  *	ops can again inherit from another.  This can go on as many
5555  *	times as necessary as long as there is no loop in the
5556  *	inheritance chain.
5557  *
5558  *	Ops tables are finalized when the host is started.  NULL or
5559  *	unspecified entries are inherited from the closet ancestor
5560  *	which has the method and the entry is populated with it.
5561  *	After finalization, the ops table directly points to all the
5562  *	methods and ->inherits is no longer necessary and cleared.
5563  *
5564  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5565  *
5566  *	LOCKING:
5567  *	None.
5568  */
5569 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5570 {
5571 	static DEFINE_SPINLOCK(lock);
5572 	const struct ata_port_operations *cur;
5573 	void **begin = (void **)ops;
5574 	void **end = (void **)&ops->inherits;
5575 	void **pp;
5576 
5577 	if (!ops || !ops->inherits)
5578 		return;
5579 
5580 	spin_lock(&lock);
5581 
5582 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5583 		void **inherit = (void **)cur;
5584 
5585 		for (pp = begin; pp < end; pp++, inherit++)
5586 			if (!*pp)
5587 				*pp = *inherit;
5588 	}
5589 
5590 	for (pp = begin; pp < end; pp++)
5591 		if (IS_ERR(*pp))
5592 			*pp = NULL;
5593 
5594 	ops->inherits = NULL;
5595 
5596 	spin_unlock(&lock);
5597 }
5598 
5599 /**
5600  *	ata_host_start - start and freeze ports of an ATA host
5601  *	@host: ATA host to start ports for
5602  *
5603  *	Start and then freeze ports of @host.  Started status is
5604  *	recorded in host->flags, so this function can be called
5605  *	multiple times.  Ports are guaranteed to get started only
5606  *	once.  If host->ops isn't initialized yet, its set to the
5607  *	first non-dummy port ops.
5608  *
5609  *	LOCKING:
5610  *	Inherited from calling layer (may sleep).
5611  *
5612  *	RETURNS:
5613  *	0 if all ports are started successfully, -errno otherwise.
5614  */
5615 int ata_host_start(struct ata_host *host)
5616 {
5617 	int have_stop = 0;
5618 	void *start_dr = NULL;
5619 	int i, rc;
5620 
5621 	if (host->flags & ATA_HOST_STARTED)
5622 		return 0;
5623 
5624 	ata_finalize_port_ops(host->ops);
5625 
5626 	for (i = 0; i < host->n_ports; i++) {
5627 		struct ata_port *ap = host->ports[i];
5628 
5629 		ata_finalize_port_ops(ap->ops);
5630 
5631 		if (!host->ops && !ata_port_is_dummy(ap))
5632 			host->ops = ap->ops;
5633 
5634 		if (ap->ops->port_stop)
5635 			have_stop = 1;
5636 	}
5637 
5638 	if (host->ops && host->ops->host_stop)
5639 		have_stop = 1;
5640 
5641 	if (have_stop) {
5642 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5643 		if (!start_dr)
5644 			return -ENOMEM;
5645 	}
5646 
5647 	for (i = 0; i < host->n_ports; i++) {
5648 		struct ata_port *ap = host->ports[i];
5649 
5650 		if (ap->ops->port_start) {
5651 			rc = ap->ops->port_start(ap);
5652 			if (rc) {
5653 				if (rc != -ENODEV)
5654 					dev_err(host->dev,
5655 						"failed to start port %d (errno=%d)\n",
5656 						i, rc);
5657 				goto err_out;
5658 			}
5659 		}
5660 		ata_eh_freeze_port(ap);
5661 	}
5662 
5663 	if (start_dr)
5664 		devres_add(host->dev, start_dr);
5665 	host->flags |= ATA_HOST_STARTED;
5666 	return 0;
5667 
5668  err_out:
5669 	while (--i >= 0) {
5670 		struct ata_port *ap = host->ports[i];
5671 
5672 		if (ap->ops->port_stop)
5673 			ap->ops->port_stop(ap);
5674 	}
5675 	devres_free(start_dr);
5676 	return rc;
5677 }
5678 EXPORT_SYMBOL_GPL(ata_host_start);
5679 
5680 /**
5681  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5682  *	@host:	host to initialize
5683  *	@dev:	device host is attached to
5684  *	@ops:	port_ops
5685  *
5686  */
5687 void ata_host_init(struct ata_host *host, struct device *dev,
5688 		   struct ata_port_operations *ops)
5689 {
5690 	spin_lock_init(&host->lock);
5691 	mutex_init(&host->eh_mutex);
5692 	host->n_tags = ATA_MAX_QUEUE;
5693 	host->dev = dev;
5694 	host->ops = ops;
5695 	kref_init(&host->kref);
5696 }
5697 EXPORT_SYMBOL_GPL(ata_host_init);
5698 
5699 void __ata_port_probe(struct ata_port *ap)
5700 {
5701 	struct ata_eh_info *ehi = &ap->link.eh_info;
5702 	unsigned long flags;
5703 
5704 	/* kick EH for boot probing */
5705 	spin_lock_irqsave(ap->lock, flags);
5706 
5707 	ehi->probe_mask |= ATA_ALL_DEVICES;
5708 	ehi->action |= ATA_EH_RESET;
5709 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5710 
5711 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5712 	ap->pflags |= ATA_PFLAG_LOADING;
5713 	ata_port_schedule_eh(ap);
5714 
5715 	spin_unlock_irqrestore(ap->lock, flags);
5716 }
5717 
5718 int ata_port_probe(struct ata_port *ap)
5719 {
5720 	int rc = 0;
5721 
5722 	if (ap->ops->error_handler) {
5723 		__ata_port_probe(ap);
5724 		ata_port_wait_eh(ap);
5725 	} else {
5726 		rc = ata_bus_probe(ap);
5727 	}
5728 	return rc;
5729 }
5730 
5731 
5732 static void async_port_probe(void *data, async_cookie_t cookie)
5733 {
5734 	struct ata_port *ap = data;
5735 
5736 	/*
5737 	 * If we're not allowed to scan this host in parallel,
5738 	 * we need to wait until all previous scans have completed
5739 	 * before going further.
5740 	 * Jeff Garzik says this is only within a controller, so we
5741 	 * don't need to wait for port 0, only for later ports.
5742 	 */
5743 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5744 		async_synchronize_cookie(cookie);
5745 
5746 	(void)ata_port_probe(ap);
5747 
5748 	/* in order to keep device order, we need to synchronize at this point */
5749 	async_synchronize_cookie(cookie);
5750 
5751 	ata_scsi_scan_host(ap, 1);
5752 }
5753 
5754 /**
5755  *	ata_host_register - register initialized ATA host
5756  *	@host: ATA host to register
5757  *	@sht: template for SCSI host
5758  *
5759  *	Register initialized ATA host.  @host is allocated using
5760  *	ata_host_alloc() and fully initialized by LLD.  This function
5761  *	starts ports, registers @host with ATA and SCSI layers and
5762  *	probe registered devices.
5763  *
5764  *	LOCKING:
5765  *	Inherited from calling layer (may sleep).
5766  *
5767  *	RETURNS:
5768  *	0 on success, -errno otherwise.
5769  */
5770 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5771 {
5772 	int i, rc;
5773 
5774 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5775 
5776 	/* host must have been started */
5777 	if (!(host->flags & ATA_HOST_STARTED)) {
5778 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5779 		WARN_ON(1);
5780 		return -EINVAL;
5781 	}
5782 
5783 	/* Blow away unused ports.  This happens when LLD can't
5784 	 * determine the exact number of ports to allocate at
5785 	 * allocation time.
5786 	 */
5787 	for (i = host->n_ports; host->ports[i]; i++)
5788 		kfree(host->ports[i]);
5789 
5790 	/* give ports names and add SCSI hosts */
5791 	for (i = 0; i < host->n_ports; i++) {
5792 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5793 		host->ports[i]->local_port_no = i + 1;
5794 	}
5795 
5796 	/* Create associated sysfs transport objects  */
5797 	for (i = 0; i < host->n_ports; i++) {
5798 		rc = ata_tport_add(host->dev,host->ports[i]);
5799 		if (rc) {
5800 			goto err_tadd;
5801 		}
5802 	}
5803 
5804 	rc = ata_scsi_add_hosts(host, sht);
5805 	if (rc)
5806 		goto err_tadd;
5807 
5808 	/* set cable, sata_spd_limit and report */
5809 	for (i = 0; i < host->n_ports; i++) {
5810 		struct ata_port *ap = host->ports[i];
5811 		unsigned long xfer_mask;
5812 
5813 		/* set SATA cable type if still unset */
5814 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5815 			ap->cbl = ATA_CBL_SATA;
5816 
5817 		/* init sata_spd_limit to the current value */
5818 		sata_link_init_spd(&ap->link);
5819 		if (ap->slave_link)
5820 			sata_link_init_spd(ap->slave_link);
5821 
5822 		/* print per-port info to dmesg */
5823 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5824 					      ap->udma_mask);
5825 
5826 		if (!ata_port_is_dummy(ap)) {
5827 			ata_port_info(ap, "%cATA max %s %s\n",
5828 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5829 				      ata_mode_string(xfer_mask),
5830 				      ap->link.eh_info.desc);
5831 			ata_ehi_clear_desc(&ap->link.eh_info);
5832 		} else
5833 			ata_port_info(ap, "DUMMY\n");
5834 	}
5835 
5836 	/* perform each probe asynchronously */
5837 	for (i = 0; i < host->n_ports; i++) {
5838 		struct ata_port *ap = host->ports[i];
5839 		ap->cookie = async_schedule(async_port_probe, ap);
5840 	}
5841 
5842 	return 0;
5843 
5844  err_tadd:
5845 	while (--i >= 0) {
5846 		ata_tport_delete(host->ports[i]);
5847 	}
5848 	return rc;
5849 
5850 }
5851 EXPORT_SYMBOL_GPL(ata_host_register);
5852 
5853 /**
5854  *	ata_host_activate - start host, request IRQ and register it
5855  *	@host: target ATA host
5856  *	@irq: IRQ to request
5857  *	@irq_handler: irq_handler used when requesting IRQ
5858  *	@irq_flags: irq_flags used when requesting IRQ
5859  *	@sht: scsi_host_template to use when registering the host
5860  *
5861  *	After allocating an ATA host and initializing it, most libata
5862  *	LLDs perform three steps to activate the host - start host,
5863  *	request IRQ and register it.  This helper takes necessary
5864  *	arguments and performs the three steps in one go.
5865  *
5866  *	An invalid IRQ skips the IRQ registration and expects the host to
5867  *	have set polling mode on the port. In this case, @irq_handler
5868  *	should be NULL.
5869  *
5870  *	LOCKING:
5871  *	Inherited from calling layer (may sleep).
5872  *
5873  *	RETURNS:
5874  *	0 on success, -errno otherwise.
5875  */
5876 int ata_host_activate(struct ata_host *host, int irq,
5877 		      irq_handler_t irq_handler, unsigned long irq_flags,
5878 		      struct scsi_host_template *sht)
5879 {
5880 	int i, rc;
5881 	char *irq_desc;
5882 
5883 	rc = ata_host_start(host);
5884 	if (rc)
5885 		return rc;
5886 
5887 	/* Special case for polling mode */
5888 	if (!irq) {
5889 		WARN_ON(irq_handler);
5890 		return ata_host_register(host, sht);
5891 	}
5892 
5893 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5894 				  dev_driver_string(host->dev),
5895 				  dev_name(host->dev));
5896 	if (!irq_desc)
5897 		return -ENOMEM;
5898 
5899 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5900 			      irq_desc, host);
5901 	if (rc)
5902 		return rc;
5903 
5904 	for (i = 0; i < host->n_ports; i++)
5905 		ata_port_desc(host->ports[i], "irq %d", irq);
5906 
5907 	rc = ata_host_register(host, sht);
5908 	/* if failed, just free the IRQ and leave ports alone */
5909 	if (rc)
5910 		devm_free_irq(host->dev, irq, host);
5911 
5912 	return rc;
5913 }
5914 EXPORT_SYMBOL_GPL(ata_host_activate);
5915 
5916 /**
5917  *	ata_port_detach - Detach ATA port in preparation of device removal
5918  *	@ap: ATA port to be detached
5919  *
5920  *	Detach all ATA devices and the associated SCSI devices of @ap;
5921  *	then, remove the associated SCSI host.  @ap is guaranteed to
5922  *	be quiescent on return from this function.
5923  *
5924  *	LOCKING:
5925  *	Kernel thread context (may sleep).
5926  */
5927 static void ata_port_detach(struct ata_port *ap)
5928 {
5929 	unsigned long flags;
5930 	struct ata_link *link;
5931 	struct ata_device *dev;
5932 
5933 	if (!ap->ops->error_handler)
5934 		goto skip_eh;
5935 
5936 	/* tell EH we're leaving & flush EH */
5937 	spin_lock_irqsave(ap->lock, flags);
5938 	ap->pflags |= ATA_PFLAG_UNLOADING;
5939 	ata_port_schedule_eh(ap);
5940 	spin_unlock_irqrestore(ap->lock, flags);
5941 
5942 	/* wait till EH commits suicide */
5943 	ata_port_wait_eh(ap);
5944 
5945 	/* it better be dead now */
5946 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5947 
5948 	cancel_delayed_work_sync(&ap->hotplug_task);
5949 
5950  skip_eh:
5951 	/* clean up zpodd on port removal */
5952 	ata_for_each_link(link, ap, HOST_FIRST) {
5953 		ata_for_each_dev(dev, link, ALL) {
5954 			if (zpodd_dev_enabled(dev))
5955 				zpodd_exit(dev);
5956 		}
5957 	}
5958 	if (ap->pmp_link) {
5959 		int i;
5960 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5961 			ata_tlink_delete(&ap->pmp_link[i]);
5962 	}
5963 	/* remove the associated SCSI host */
5964 	scsi_remove_host(ap->scsi_host);
5965 	ata_tport_delete(ap);
5966 }
5967 
5968 /**
5969  *	ata_host_detach - Detach all ports of an ATA host
5970  *	@host: Host to detach
5971  *
5972  *	Detach all ports of @host.
5973  *
5974  *	LOCKING:
5975  *	Kernel thread context (may sleep).
5976  */
5977 void ata_host_detach(struct ata_host *host)
5978 {
5979 	int i;
5980 
5981 	for (i = 0; i < host->n_ports; i++) {
5982 		/* Ensure ata_port probe has completed */
5983 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5984 		ata_port_detach(host->ports[i]);
5985 	}
5986 
5987 	/* the host is dead now, dissociate ACPI */
5988 	ata_acpi_dissociate(host);
5989 }
5990 EXPORT_SYMBOL_GPL(ata_host_detach);
5991 
5992 #ifdef CONFIG_PCI
5993 
5994 /**
5995  *	ata_pci_remove_one - PCI layer callback for device removal
5996  *	@pdev: PCI device that was removed
5997  *
5998  *	PCI layer indicates to libata via this hook that hot-unplug or
5999  *	module unload event has occurred.  Detach all ports.  Resource
6000  *	release is handled via devres.
6001  *
6002  *	LOCKING:
6003  *	Inherited from PCI layer (may sleep).
6004  */
6005 void ata_pci_remove_one(struct pci_dev *pdev)
6006 {
6007 	struct ata_host *host = pci_get_drvdata(pdev);
6008 
6009 	ata_host_detach(host);
6010 }
6011 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6012 
6013 void ata_pci_shutdown_one(struct pci_dev *pdev)
6014 {
6015 	struct ata_host *host = pci_get_drvdata(pdev);
6016 	int i;
6017 
6018 	for (i = 0; i < host->n_ports; i++) {
6019 		struct ata_port *ap = host->ports[i];
6020 
6021 		ap->pflags |= ATA_PFLAG_FROZEN;
6022 
6023 		/* Disable port interrupts */
6024 		if (ap->ops->freeze)
6025 			ap->ops->freeze(ap);
6026 
6027 		/* Stop the port DMA engines */
6028 		if (ap->ops->port_stop)
6029 			ap->ops->port_stop(ap);
6030 	}
6031 }
6032 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6033 
6034 /* move to PCI subsystem */
6035 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6036 {
6037 	unsigned long tmp = 0;
6038 
6039 	switch (bits->width) {
6040 	case 1: {
6041 		u8 tmp8 = 0;
6042 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6043 		tmp = tmp8;
6044 		break;
6045 	}
6046 	case 2: {
6047 		u16 tmp16 = 0;
6048 		pci_read_config_word(pdev, bits->reg, &tmp16);
6049 		tmp = tmp16;
6050 		break;
6051 	}
6052 	case 4: {
6053 		u32 tmp32 = 0;
6054 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6055 		tmp = tmp32;
6056 		break;
6057 	}
6058 
6059 	default:
6060 		return -EINVAL;
6061 	}
6062 
6063 	tmp &= bits->mask;
6064 
6065 	return (tmp == bits->val) ? 1 : 0;
6066 }
6067 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6068 
6069 #ifdef CONFIG_PM
6070 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6071 {
6072 	pci_save_state(pdev);
6073 	pci_disable_device(pdev);
6074 
6075 	if (mesg.event & PM_EVENT_SLEEP)
6076 		pci_set_power_state(pdev, PCI_D3hot);
6077 }
6078 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6079 
6080 int ata_pci_device_do_resume(struct pci_dev *pdev)
6081 {
6082 	int rc;
6083 
6084 	pci_set_power_state(pdev, PCI_D0);
6085 	pci_restore_state(pdev);
6086 
6087 	rc = pcim_enable_device(pdev);
6088 	if (rc) {
6089 		dev_err(&pdev->dev,
6090 			"failed to enable device after resume (%d)\n", rc);
6091 		return rc;
6092 	}
6093 
6094 	pci_set_master(pdev);
6095 	return 0;
6096 }
6097 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6098 
6099 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6100 {
6101 	struct ata_host *host = pci_get_drvdata(pdev);
6102 	int rc = 0;
6103 
6104 	rc = ata_host_suspend(host, mesg);
6105 	if (rc)
6106 		return rc;
6107 
6108 	ata_pci_device_do_suspend(pdev, mesg);
6109 
6110 	return 0;
6111 }
6112 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6113 
6114 int ata_pci_device_resume(struct pci_dev *pdev)
6115 {
6116 	struct ata_host *host = pci_get_drvdata(pdev);
6117 	int rc;
6118 
6119 	rc = ata_pci_device_do_resume(pdev);
6120 	if (rc == 0)
6121 		ata_host_resume(host);
6122 	return rc;
6123 }
6124 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6125 #endif /* CONFIG_PM */
6126 #endif /* CONFIG_PCI */
6127 
6128 /**
6129  *	ata_platform_remove_one - Platform layer callback for device removal
6130  *	@pdev: Platform device that was removed
6131  *
6132  *	Platform layer indicates to libata via this hook that hot-unplug or
6133  *	module unload event has occurred.  Detach all ports.  Resource
6134  *	release is handled via devres.
6135  *
6136  *	LOCKING:
6137  *	Inherited from platform layer (may sleep).
6138  */
6139 int ata_platform_remove_one(struct platform_device *pdev)
6140 {
6141 	struct ata_host *host = platform_get_drvdata(pdev);
6142 
6143 	ata_host_detach(host);
6144 
6145 	return 0;
6146 }
6147 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6148 
6149 #ifdef CONFIG_ATA_FORCE
6150 static int __init ata_parse_force_one(char **cur,
6151 				      struct ata_force_ent *force_ent,
6152 				      const char **reason)
6153 {
6154 	static const struct ata_force_param force_tbl[] __initconst = {
6155 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6156 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6157 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6158 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6159 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6160 		{ "sata",	.cbl		= ATA_CBL_SATA },
6161 		{ "1.5Gbps",	.spd_limit	= 1 },
6162 		{ "3.0Gbps",	.spd_limit	= 2 },
6163 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6164 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6165 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6166 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6167 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6168 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6169 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6170 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6171 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6172 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6173 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6174 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6175 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6176 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6177 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6178 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6179 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6180 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6181 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6182 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6183 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6184 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6185 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6186 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6187 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6188 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6189 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6190 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6191 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6192 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6193 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6194 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6195 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6196 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6197 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6198 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6199 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6200 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6201 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6202 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6203 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6204 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6205 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6206 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6207 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6208 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6209 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6210 	};
6211 	char *start = *cur, *p = *cur;
6212 	char *id, *val, *endp;
6213 	const struct ata_force_param *match_fp = NULL;
6214 	int nr_matches = 0, i;
6215 
6216 	/* find where this param ends and update *cur */
6217 	while (*p != '\0' && *p != ',')
6218 		p++;
6219 
6220 	if (*p == '\0')
6221 		*cur = p;
6222 	else
6223 		*cur = p + 1;
6224 
6225 	*p = '\0';
6226 
6227 	/* parse */
6228 	p = strchr(start, ':');
6229 	if (!p) {
6230 		val = strstrip(start);
6231 		goto parse_val;
6232 	}
6233 	*p = '\0';
6234 
6235 	id = strstrip(start);
6236 	val = strstrip(p + 1);
6237 
6238 	/* parse id */
6239 	p = strchr(id, '.');
6240 	if (p) {
6241 		*p++ = '\0';
6242 		force_ent->device = simple_strtoul(p, &endp, 10);
6243 		if (p == endp || *endp != '\0') {
6244 			*reason = "invalid device";
6245 			return -EINVAL;
6246 		}
6247 	}
6248 
6249 	force_ent->port = simple_strtoul(id, &endp, 10);
6250 	if (id == endp || *endp != '\0') {
6251 		*reason = "invalid port/link";
6252 		return -EINVAL;
6253 	}
6254 
6255  parse_val:
6256 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6257 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6258 		const struct ata_force_param *fp = &force_tbl[i];
6259 
6260 		if (strncasecmp(val, fp->name, strlen(val)))
6261 			continue;
6262 
6263 		nr_matches++;
6264 		match_fp = fp;
6265 
6266 		if (strcasecmp(val, fp->name) == 0) {
6267 			nr_matches = 1;
6268 			break;
6269 		}
6270 	}
6271 
6272 	if (!nr_matches) {
6273 		*reason = "unknown value";
6274 		return -EINVAL;
6275 	}
6276 	if (nr_matches > 1) {
6277 		*reason = "ambiguous value";
6278 		return -EINVAL;
6279 	}
6280 
6281 	force_ent->param = *match_fp;
6282 
6283 	return 0;
6284 }
6285 
6286 static void __init ata_parse_force_param(void)
6287 {
6288 	int idx = 0, size = 1;
6289 	int last_port = -1, last_device = -1;
6290 	char *p, *cur, *next;
6291 
6292 	/* calculate maximum number of params and allocate force_tbl */
6293 	for (p = ata_force_param_buf; *p; p++)
6294 		if (*p == ',')
6295 			size++;
6296 
6297 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6298 	if (!ata_force_tbl) {
6299 		printk(KERN_WARNING "ata: failed to extend force table, "
6300 		       "libata.force ignored\n");
6301 		return;
6302 	}
6303 
6304 	/* parse and populate the table */
6305 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6306 		const char *reason = "";
6307 		struct ata_force_ent te = { .port = -1, .device = -1 };
6308 
6309 		next = cur;
6310 		if (ata_parse_force_one(&next, &te, &reason)) {
6311 			printk(KERN_WARNING "ata: failed to parse force "
6312 			       "parameter \"%s\" (%s)\n",
6313 			       cur, reason);
6314 			continue;
6315 		}
6316 
6317 		if (te.port == -1) {
6318 			te.port = last_port;
6319 			te.device = last_device;
6320 		}
6321 
6322 		ata_force_tbl[idx++] = te;
6323 
6324 		last_port = te.port;
6325 		last_device = te.device;
6326 	}
6327 
6328 	ata_force_tbl_size = idx;
6329 }
6330 
6331 static void ata_free_force_param(void)
6332 {
6333 	kfree(ata_force_tbl);
6334 }
6335 #else
6336 static inline void ata_parse_force_param(void) { }
6337 static inline void ata_free_force_param(void) { }
6338 #endif
6339 
6340 static int __init ata_init(void)
6341 {
6342 	int rc;
6343 
6344 	ata_parse_force_param();
6345 
6346 	rc = ata_sff_init();
6347 	if (rc) {
6348 		ata_free_force_param();
6349 		return rc;
6350 	}
6351 
6352 	libata_transport_init();
6353 	ata_scsi_transport_template = ata_attach_transport();
6354 	if (!ata_scsi_transport_template) {
6355 		ata_sff_exit();
6356 		rc = -ENOMEM;
6357 		goto err_out;
6358 	}
6359 
6360 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6361 	return 0;
6362 
6363 err_out:
6364 	return rc;
6365 }
6366 
6367 static void __exit ata_exit(void)
6368 {
6369 	ata_release_transport(ata_scsi_transport_template);
6370 	libata_transport_exit();
6371 	ata_sff_exit();
6372 	ata_free_force_param();
6373 }
6374 
6375 subsys_initcall(ata_init);
6376 module_exit(ata_exit);
6377 
6378 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6379 
6380 int ata_ratelimit(void)
6381 {
6382 	return __ratelimit(&ratelimit);
6383 }
6384 EXPORT_SYMBOL_GPL(ata_ratelimit);
6385 
6386 /**
6387  *	ata_msleep - ATA EH owner aware msleep
6388  *	@ap: ATA port to attribute the sleep to
6389  *	@msecs: duration to sleep in milliseconds
6390  *
6391  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6392  *	ownership is released before going to sleep and reacquired
6393  *	after the sleep is complete.  IOW, other ports sharing the
6394  *	@ap->host will be allowed to own the EH while this task is
6395  *	sleeping.
6396  *
6397  *	LOCKING:
6398  *	Might sleep.
6399  */
6400 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6401 {
6402 	bool owns_eh = ap && ap->host->eh_owner == current;
6403 
6404 	if (owns_eh)
6405 		ata_eh_release(ap);
6406 
6407 	if (msecs < 20) {
6408 		unsigned long usecs = msecs * USEC_PER_MSEC;
6409 		usleep_range(usecs, usecs + 50);
6410 	} else {
6411 		msleep(msecs);
6412 	}
6413 
6414 	if (owns_eh)
6415 		ata_eh_acquire(ap);
6416 }
6417 EXPORT_SYMBOL_GPL(ata_msleep);
6418 
6419 /**
6420  *	ata_wait_register - wait until register value changes
6421  *	@ap: ATA port to wait register for, can be NULL
6422  *	@reg: IO-mapped register
6423  *	@mask: Mask to apply to read register value
6424  *	@val: Wait condition
6425  *	@interval: polling interval in milliseconds
6426  *	@timeout: timeout in milliseconds
6427  *
6428  *	Waiting for some bits of register to change is a common
6429  *	operation for ATA controllers.  This function reads 32bit LE
6430  *	IO-mapped register @reg and tests for the following condition.
6431  *
6432  *	(*@reg & mask) != val
6433  *
6434  *	If the condition is met, it returns; otherwise, the process is
6435  *	repeated after @interval_msec until timeout.
6436  *
6437  *	LOCKING:
6438  *	Kernel thread context (may sleep)
6439  *
6440  *	RETURNS:
6441  *	The final register value.
6442  */
6443 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6444 		      unsigned long interval, unsigned long timeout)
6445 {
6446 	unsigned long deadline;
6447 	u32 tmp;
6448 
6449 	tmp = ioread32(reg);
6450 
6451 	/* Calculate timeout _after_ the first read to make sure
6452 	 * preceding writes reach the controller before starting to
6453 	 * eat away the timeout.
6454 	 */
6455 	deadline = ata_deadline(jiffies, timeout);
6456 
6457 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6458 		ata_msleep(ap, interval);
6459 		tmp = ioread32(reg);
6460 	}
6461 
6462 	return tmp;
6463 }
6464 EXPORT_SYMBOL_GPL(ata_wait_register);
6465 
6466 /*
6467  * Dummy port_ops
6468  */
6469 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6470 {
6471 	return AC_ERR_SYSTEM;
6472 }
6473 
6474 static void ata_dummy_error_handler(struct ata_port *ap)
6475 {
6476 	/* truly dummy */
6477 }
6478 
6479 struct ata_port_operations ata_dummy_port_ops = {
6480 	.qc_prep		= ata_noop_qc_prep,
6481 	.qc_issue		= ata_dummy_qc_issue,
6482 	.error_handler		= ata_dummy_error_handler,
6483 	.sched_eh		= ata_std_sched_eh,
6484 	.end_eh			= ata_std_end_eh,
6485 };
6486 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6487 
6488 const struct ata_port_info ata_dummy_port_info = {
6489 	.port_ops		= &ata_dummy_port_ops,
6490 };
6491 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6492 
6493 void ata_print_version(const struct device *dev, const char *version)
6494 {
6495 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6496 }
6497 EXPORT_SYMBOL(ata_print_version);
6498 
6499 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6500 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6501 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6502 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6503 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6504