xref: /linux/drivers/ata/libata-core.c (revision 4be5e8648b0c287aefc6ac3f3a0b12c696054f43)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/async.h>
46 #include <linux/log2.h>
47 #include <linux/slab.h>
48 #include <linux/glob.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_cmnd.h>
51 #include <scsi/scsi_host.h>
52 #include <linux/libata.h>
53 #include <asm/byteorder.h>
54 #include <asm/unaligned.h>
55 #include <linux/cdrom.h>
56 #include <linux/ratelimit.h>
57 #include <linux/leds.h>
58 #include <linux/pm_runtime.h>
59 #include <linux/platform_device.h>
60 #include <asm/setup.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/libata.h>
64 
65 #include "libata.h"
66 #include "libata-transport.h"
67 
68 const struct ata_port_operations ata_base_port_ops = {
69 	.prereset		= ata_std_prereset,
70 	.postreset		= ata_std_postreset,
71 	.error_handler		= ata_std_error_handler,
72 	.sched_eh		= ata_std_sched_eh,
73 	.end_eh			= ata_std_end_eh,
74 };
75 
76 const struct ata_port_operations sata_port_ops = {
77 	.inherits		= &ata_base_port_ops,
78 
79 	.qc_defer		= ata_std_qc_defer,
80 	.hardreset		= sata_std_hardreset,
81 };
82 EXPORT_SYMBOL_GPL(sata_port_ops);
83 
84 static unsigned int ata_dev_init_params(struct ata_device *dev,
85 					u16 heads, u16 sectors);
86 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
87 static void ata_dev_xfermask(struct ata_device *dev);
88 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
89 
90 atomic_t ata_print_id = ATOMIC_INIT(0);
91 
92 #ifdef CONFIG_ATA_FORCE
93 struct ata_force_param {
94 	const char	*name;
95 	u8		cbl;
96 	u8		spd_limit;
97 	unsigned long	xfer_mask;
98 	unsigned int	horkage_on;
99 	unsigned int	horkage_off;
100 	u16		lflags;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 
164 static bool ata_sstatus_online(u32 sstatus)
165 {
166 	return (sstatus & 0xf) == 0x3;
167 }
168 
169 /**
170  *	ata_link_next - link iteration helper
171  *	@link: the previous link, NULL to start
172  *	@ap: ATA port containing links to iterate
173  *	@mode: iteration mode, one of ATA_LITER_*
174  *
175  *	LOCKING:
176  *	Host lock or EH context.
177  *
178  *	RETURNS:
179  *	Pointer to the next link.
180  */
181 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
182 			       enum ata_link_iter_mode mode)
183 {
184 	BUG_ON(mode != ATA_LITER_EDGE &&
185 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
186 
187 	/* NULL link indicates start of iteration */
188 	if (!link)
189 		switch (mode) {
190 		case ATA_LITER_EDGE:
191 		case ATA_LITER_PMP_FIRST:
192 			if (sata_pmp_attached(ap))
193 				return ap->pmp_link;
194 			/* fall through */
195 		case ATA_LITER_HOST_FIRST:
196 			return &ap->link;
197 		}
198 
199 	/* we just iterated over the host link, what's next? */
200 	if (link == &ap->link)
201 		switch (mode) {
202 		case ATA_LITER_HOST_FIRST:
203 			if (sata_pmp_attached(ap))
204 				return ap->pmp_link;
205 			/* fall through */
206 		case ATA_LITER_PMP_FIRST:
207 			if (unlikely(ap->slave_link))
208 				return ap->slave_link;
209 			/* fall through */
210 		case ATA_LITER_EDGE:
211 			return NULL;
212 		}
213 
214 	/* slave_link excludes PMP */
215 	if (unlikely(link == ap->slave_link))
216 		return NULL;
217 
218 	/* we were over a PMP link */
219 	if (++link < ap->pmp_link + ap->nr_pmp_links)
220 		return link;
221 
222 	if (mode == ATA_LITER_PMP_FIRST)
223 		return &ap->link;
224 
225 	return NULL;
226 }
227 EXPORT_SYMBOL_GPL(ata_link_next);
228 
229 /**
230  *	ata_dev_next - device iteration helper
231  *	@dev: the previous device, NULL to start
232  *	@link: ATA link containing devices to iterate
233  *	@mode: iteration mode, one of ATA_DITER_*
234  *
235  *	LOCKING:
236  *	Host lock or EH context.
237  *
238  *	RETURNS:
239  *	Pointer to the next device.
240  */
241 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
242 				enum ata_dev_iter_mode mode)
243 {
244 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
245 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
246 
247 	/* NULL dev indicates start of iteration */
248 	if (!dev)
249 		switch (mode) {
250 		case ATA_DITER_ENABLED:
251 		case ATA_DITER_ALL:
252 			dev = link->device;
253 			goto check;
254 		case ATA_DITER_ENABLED_REVERSE:
255 		case ATA_DITER_ALL_REVERSE:
256 			dev = link->device + ata_link_max_devices(link) - 1;
257 			goto check;
258 		}
259 
260  next:
261 	/* move to the next one */
262 	switch (mode) {
263 	case ATA_DITER_ENABLED:
264 	case ATA_DITER_ALL:
265 		if (++dev < link->device + ata_link_max_devices(link))
266 			goto check;
267 		return NULL;
268 	case ATA_DITER_ENABLED_REVERSE:
269 	case ATA_DITER_ALL_REVERSE:
270 		if (--dev >= link->device)
271 			goto check;
272 		return NULL;
273 	}
274 
275  check:
276 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
277 	    !ata_dev_enabled(dev))
278 		goto next;
279 	return dev;
280 }
281 EXPORT_SYMBOL_GPL(ata_dev_next);
282 
283 /**
284  *	ata_dev_phys_link - find physical link for a device
285  *	@dev: ATA device to look up physical link for
286  *
287  *	Look up physical link which @dev is attached to.  Note that
288  *	this is different from @dev->link only when @dev is on slave
289  *	link.  For all other cases, it's the same as @dev->link.
290  *
291  *	LOCKING:
292  *	Don't care.
293  *
294  *	RETURNS:
295  *	Pointer to the found physical link.
296  */
297 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
298 {
299 	struct ata_port *ap = dev->link->ap;
300 
301 	if (!ap->slave_link)
302 		return dev->link;
303 	if (!dev->devno)
304 		return &ap->link;
305 	return ap->slave_link;
306 }
307 
308 #ifdef CONFIG_ATA_FORCE
309 /**
310  *	ata_force_cbl - force cable type according to libata.force
311  *	@ap: ATA port of interest
312  *
313  *	Force cable type according to libata.force and whine about it.
314  *	The last entry which has matching port number is used, so it
315  *	can be specified as part of device force parameters.  For
316  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317  *	same effect.
318  *
319  *	LOCKING:
320  *	EH context.
321  */
322 void ata_force_cbl(struct ata_port *ap)
323 {
324 	int i;
325 
326 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 		const struct ata_force_ent *fe = &ata_force_tbl[i];
328 
329 		if (fe->port != -1 && fe->port != ap->print_id)
330 			continue;
331 
332 		if (fe->param.cbl == ATA_CBL_NONE)
333 			continue;
334 
335 		ap->cbl = fe->param.cbl;
336 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
337 		return;
338 	}
339 }
340 
341 /**
342  *	ata_force_link_limits - force link limits according to libata.force
343  *	@link: ATA link of interest
344  *
345  *	Force link flags and SATA spd limit according to libata.force
346  *	and whine about it.  When only the port part is specified
347  *	(e.g. 1:), the limit applies to all links connected to both
348  *	the host link and all fan-out ports connected via PMP.  If the
349  *	device part is specified as 0 (e.g. 1.00:), it specifies the
350  *	first fan-out link not the host link.  Device number 15 always
351  *	points to the host link whether PMP is attached or not.  If the
352  *	controller has slave link, device number 16 points to it.
353  *
354  *	LOCKING:
355  *	EH context.
356  */
357 static void ata_force_link_limits(struct ata_link *link)
358 {
359 	bool did_spd = false;
360 	int linkno = link->pmp;
361 	int i;
362 
363 	if (ata_is_host_link(link))
364 		linkno += 15;
365 
366 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
367 		const struct ata_force_ent *fe = &ata_force_tbl[i];
368 
369 		if (fe->port != -1 && fe->port != link->ap->print_id)
370 			continue;
371 
372 		if (fe->device != -1 && fe->device != linkno)
373 			continue;
374 
375 		/* only honor the first spd limit */
376 		if (!did_spd && fe->param.spd_limit) {
377 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
378 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
379 					fe->param.name);
380 			did_spd = true;
381 		}
382 
383 		/* let lflags stack */
384 		if (fe->param.lflags) {
385 			link->flags |= fe->param.lflags;
386 			ata_link_notice(link,
387 					"FORCE: link flag 0x%x forced -> 0x%x\n",
388 					fe->param.lflags, link->flags);
389 		}
390 	}
391 }
392 
393 /**
394  *	ata_force_xfermask - force xfermask according to libata.force
395  *	@dev: ATA device of interest
396  *
397  *	Force xfer_mask according to libata.force and whine about it.
398  *	For consistency with link selection, device number 15 selects
399  *	the first device connected to the host link.
400  *
401  *	LOCKING:
402  *	EH context.
403  */
404 static void ata_force_xfermask(struct ata_device *dev)
405 {
406 	int devno = dev->link->pmp + dev->devno;
407 	int alt_devno = devno;
408 	int i;
409 
410 	/* allow n.15/16 for devices attached to host port */
411 	if (ata_is_host_link(dev->link))
412 		alt_devno += 15;
413 
414 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
415 		const struct ata_force_ent *fe = &ata_force_tbl[i];
416 		unsigned long pio_mask, mwdma_mask, udma_mask;
417 
418 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
419 			continue;
420 
421 		if (fe->device != -1 && fe->device != devno &&
422 		    fe->device != alt_devno)
423 			continue;
424 
425 		if (!fe->param.xfer_mask)
426 			continue;
427 
428 		ata_unpack_xfermask(fe->param.xfer_mask,
429 				    &pio_mask, &mwdma_mask, &udma_mask);
430 		if (udma_mask)
431 			dev->udma_mask = udma_mask;
432 		else if (mwdma_mask) {
433 			dev->udma_mask = 0;
434 			dev->mwdma_mask = mwdma_mask;
435 		} else {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = 0;
438 			dev->pio_mask = pio_mask;
439 		}
440 
441 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
442 			       fe->param.name);
443 		return;
444 	}
445 }
446 
447 /**
448  *	ata_force_horkage - force horkage according to libata.force
449  *	@dev: ATA device of interest
450  *
451  *	Force horkage according to libata.force and whine about it.
452  *	For consistency with link selection, device number 15 selects
453  *	the first device connected to the host link.
454  *
455  *	LOCKING:
456  *	EH context.
457  */
458 static void ata_force_horkage(struct ata_device *dev)
459 {
460 	int devno = dev->link->pmp + dev->devno;
461 	int alt_devno = devno;
462 	int i;
463 
464 	/* allow n.15/16 for devices attached to host port */
465 	if (ata_is_host_link(dev->link))
466 		alt_devno += 15;
467 
468 	for (i = 0; i < ata_force_tbl_size; i++) {
469 		const struct ata_force_ent *fe = &ata_force_tbl[i];
470 
471 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
472 			continue;
473 
474 		if (fe->device != -1 && fe->device != devno &&
475 		    fe->device != alt_devno)
476 			continue;
477 
478 		if (!(~dev->horkage & fe->param.horkage_on) &&
479 		    !(dev->horkage & fe->param.horkage_off))
480 			continue;
481 
482 		dev->horkage |= fe->param.horkage_on;
483 		dev->horkage &= ~fe->param.horkage_off;
484 
485 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
486 			       fe->param.name);
487 	}
488 }
489 #else
490 static inline void ata_force_link_limits(struct ata_link *link) { }
491 static inline void ata_force_xfermask(struct ata_device *dev) { }
492 static inline void ata_force_horkage(struct ata_device *dev) { }
493 #endif
494 
495 /**
496  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497  *	@opcode: SCSI opcode
498  *
499  *	Determine ATAPI command type from @opcode.
500  *
501  *	LOCKING:
502  *	None.
503  *
504  *	RETURNS:
505  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506  */
507 int atapi_cmd_type(u8 opcode)
508 {
509 	switch (opcode) {
510 	case GPCMD_READ_10:
511 	case GPCMD_READ_12:
512 		return ATAPI_READ;
513 
514 	case GPCMD_WRITE_10:
515 	case GPCMD_WRITE_12:
516 	case GPCMD_WRITE_AND_VERIFY_10:
517 		return ATAPI_WRITE;
518 
519 	case GPCMD_READ_CD:
520 	case GPCMD_READ_CD_MSF:
521 		return ATAPI_READ_CD;
522 
523 	case ATA_16:
524 	case ATA_12:
525 		if (atapi_passthru16)
526 			return ATAPI_PASS_THRU;
527 		/* fall thru */
528 	default:
529 		return ATAPI_MISC;
530 	}
531 }
532 EXPORT_SYMBOL_GPL(atapi_cmd_type);
533 
534 static const u8 ata_rw_cmds[] = {
535 	/* pio multi */
536 	ATA_CMD_READ_MULTI,
537 	ATA_CMD_WRITE_MULTI,
538 	ATA_CMD_READ_MULTI_EXT,
539 	ATA_CMD_WRITE_MULTI_EXT,
540 	0,
541 	0,
542 	0,
543 	ATA_CMD_WRITE_MULTI_FUA_EXT,
544 	/* pio */
545 	ATA_CMD_PIO_READ,
546 	ATA_CMD_PIO_WRITE,
547 	ATA_CMD_PIO_READ_EXT,
548 	ATA_CMD_PIO_WRITE_EXT,
549 	0,
550 	0,
551 	0,
552 	0,
553 	/* dma */
554 	ATA_CMD_READ,
555 	ATA_CMD_WRITE,
556 	ATA_CMD_READ_EXT,
557 	ATA_CMD_WRITE_EXT,
558 	0,
559 	0,
560 	0,
561 	ATA_CMD_WRITE_FUA_EXT
562 };
563 
564 /**
565  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
566  *	@tf: command to examine and configure
567  *	@dev: device tf belongs to
568  *
569  *	Examine the device configuration and tf->flags to calculate
570  *	the proper read/write commands and protocol to use.
571  *
572  *	LOCKING:
573  *	caller.
574  */
575 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
576 {
577 	u8 cmd;
578 
579 	int index, fua, lba48, write;
580 
581 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
582 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
583 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
584 
585 	if (dev->flags & ATA_DFLAG_PIO) {
586 		tf->protocol = ATA_PROT_PIO;
587 		index = dev->multi_count ? 0 : 8;
588 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
589 		/* Unable to use DMA due to host limitation */
590 		tf->protocol = ATA_PROT_PIO;
591 		index = dev->multi_count ? 0 : 8;
592 	} else {
593 		tf->protocol = ATA_PROT_DMA;
594 		index = 16;
595 	}
596 
597 	cmd = ata_rw_cmds[index + fua + lba48 + write];
598 	if (cmd) {
599 		tf->command = cmd;
600 		return 0;
601 	}
602 	return -1;
603 }
604 
605 /**
606  *	ata_tf_read_block - Read block address from ATA taskfile
607  *	@tf: ATA taskfile of interest
608  *	@dev: ATA device @tf belongs to
609  *
610  *	LOCKING:
611  *	None.
612  *
613  *	Read block address from @tf.  This function can handle all
614  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
615  *	flags select the address format to use.
616  *
617  *	RETURNS:
618  *	Block address read from @tf.
619  */
620 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
621 {
622 	u64 block = 0;
623 
624 	if (tf->flags & ATA_TFLAG_LBA) {
625 		if (tf->flags & ATA_TFLAG_LBA48) {
626 			block |= (u64)tf->hob_lbah << 40;
627 			block |= (u64)tf->hob_lbam << 32;
628 			block |= (u64)tf->hob_lbal << 24;
629 		} else
630 			block |= (tf->device & 0xf) << 24;
631 
632 		block |= tf->lbah << 16;
633 		block |= tf->lbam << 8;
634 		block |= tf->lbal;
635 	} else {
636 		u32 cyl, head, sect;
637 
638 		cyl = tf->lbam | (tf->lbah << 8);
639 		head = tf->device & 0xf;
640 		sect = tf->lbal;
641 
642 		if (!sect) {
643 			ata_dev_warn(dev,
644 				     "device reported invalid CHS sector 0\n");
645 			return U64_MAX;
646 		}
647 
648 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
649 	}
650 
651 	return block;
652 }
653 
654 /**
655  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
656  *	@tf: Target ATA taskfile
657  *	@dev: ATA device @tf belongs to
658  *	@block: Block address
659  *	@n_block: Number of blocks
660  *	@tf_flags: RW/FUA etc...
661  *	@tag: tag
662  *	@class: IO priority class
663  *
664  *	LOCKING:
665  *	None.
666  *
667  *	Build ATA taskfile @tf for read/write request described by
668  *	@block, @n_block, @tf_flags and @tag on @dev.
669  *
670  *	RETURNS:
671  *
672  *	0 on success, -ERANGE if the request is too large for @dev,
673  *	-EINVAL if the request is invalid.
674  */
675 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
676 		    u64 block, u32 n_block, unsigned int tf_flags,
677 		    unsigned int tag, int class)
678 {
679 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
680 	tf->flags |= tf_flags;
681 
682 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
683 		/* yay, NCQ */
684 		if (!lba_48_ok(block, n_block))
685 			return -ERANGE;
686 
687 		tf->protocol = ATA_PROT_NCQ;
688 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
689 
690 		if (tf->flags & ATA_TFLAG_WRITE)
691 			tf->command = ATA_CMD_FPDMA_WRITE;
692 		else
693 			tf->command = ATA_CMD_FPDMA_READ;
694 
695 		tf->nsect = tag << 3;
696 		tf->hob_feature = (n_block >> 8) & 0xff;
697 		tf->feature = n_block & 0xff;
698 
699 		tf->hob_lbah = (block >> 40) & 0xff;
700 		tf->hob_lbam = (block >> 32) & 0xff;
701 		tf->hob_lbal = (block >> 24) & 0xff;
702 		tf->lbah = (block >> 16) & 0xff;
703 		tf->lbam = (block >> 8) & 0xff;
704 		tf->lbal = block & 0xff;
705 
706 		tf->device = ATA_LBA;
707 		if (tf->flags & ATA_TFLAG_FUA)
708 			tf->device |= 1 << 7;
709 
710 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
711 			if (class == IOPRIO_CLASS_RT)
712 				tf->hob_nsect |= ATA_PRIO_HIGH <<
713 						 ATA_SHIFT_PRIO;
714 		}
715 	} else if (dev->flags & ATA_DFLAG_LBA) {
716 		tf->flags |= ATA_TFLAG_LBA;
717 
718 		if (lba_28_ok(block, n_block)) {
719 			/* use LBA28 */
720 			tf->device |= (block >> 24) & 0xf;
721 		} else if (lba_48_ok(block, n_block)) {
722 			if (!(dev->flags & ATA_DFLAG_LBA48))
723 				return -ERANGE;
724 
725 			/* use LBA48 */
726 			tf->flags |= ATA_TFLAG_LBA48;
727 
728 			tf->hob_nsect = (n_block >> 8) & 0xff;
729 
730 			tf->hob_lbah = (block >> 40) & 0xff;
731 			tf->hob_lbam = (block >> 32) & 0xff;
732 			tf->hob_lbal = (block >> 24) & 0xff;
733 		} else
734 			/* request too large even for LBA48 */
735 			return -ERANGE;
736 
737 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
738 			return -EINVAL;
739 
740 		tf->nsect = n_block & 0xff;
741 
742 		tf->lbah = (block >> 16) & 0xff;
743 		tf->lbam = (block >> 8) & 0xff;
744 		tf->lbal = block & 0xff;
745 
746 		tf->device |= ATA_LBA;
747 	} else {
748 		/* CHS */
749 		u32 sect, head, cyl, track;
750 
751 		/* The request -may- be too large for CHS addressing. */
752 		if (!lba_28_ok(block, n_block))
753 			return -ERANGE;
754 
755 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
756 			return -EINVAL;
757 
758 		/* Convert LBA to CHS */
759 		track = (u32)block / dev->sectors;
760 		cyl   = track / dev->heads;
761 		head  = track % dev->heads;
762 		sect  = (u32)block % dev->sectors + 1;
763 
764 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
765 			(u32)block, track, cyl, head, sect);
766 
767 		/* Check whether the converted CHS can fit.
768 		   Cylinder: 0-65535
769 		   Head: 0-15
770 		   Sector: 1-255*/
771 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
772 			return -ERANGE;
773 
774 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
775 		tf->lbal = sect;
776 		tf->lbam = cyl;
777 		tf->lbah = cyl >> 8;
778 		tf->device |= head;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
786  *	@pio_mask: pio_mask
787  *	@mwdma_mask: mwdma_mask
788  *	@udma_mask: udma_mask
789  *
790  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
791  *	unsigned int xfer_mask.
792  *
793  *	LOCKING:
794  *	None.
795  *
796  *	RETURNS:
797  *	Packed xfer_mask.
798  */
799 unsigned long ata_pack_xfermask(unsigned long pio_mask,
800 				unsigned long mwdma_mask,
801 				unsigned long udma_mask)
802 {
803 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
804 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
805 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
806 }
807 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
808 
809 /**
810  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
811  *	@xfer_mask: xfer_mask to unpack
812  *	@pio_mask: resulting pio_mask
813  *	@mwdma_mask: resulting mwdma_mask
814  *	@udma_mask: resulting udma_mask
815  *
816  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
817  *	Any NULL destination masks will be ignored.
818  */
819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
820 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
821 {
822 	if (pio_mask)
823 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
824 	if (mwdma_mask)
825 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
826 	if (udma_mask)
827 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
828 }
829 
830 static const struct ata_xfer_ent {
831 	int shift, bits;
832 	u8 base;
833 } ata_xfer_tbl[] = {
834 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
835 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
836 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
837 	{ -1, },
838 };
839 
840 /**
841  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
842  *	@xfer_mask: xfer_mask of interest
843  *
844  *	Return matching XFER_* value for @xfer_mask.  Only the highest
845  *	bit of @xfer_mask is considered.
846  *
847  *	LOCKING:
848  *	None.
849  *
850  *	RETURNS:
851  *	Matching XFER_* value, 0xff if no match found.
852  */
853 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
854 {
855 	int highbit = fls(xfer_mask) - 1;
856 	const struct ata_xfer_ent *ent;
857 
858 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
859 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
860 			return ent->base + highbit - ent->shift;
861 	return 0xff;
862 }
863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
864 
865 /**
866  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
867  *	@xfer_mode: XFER_* of interest
868  *
869  *	Return matching xfer_mask for @xfer_mode.
870  *
871  *	LOCKING:
872  *	None.
873  *
874  *	RETURNS:
875  *	Matching xfer_mask, 0 if no match found.
876  */
877 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
878 {
879 	const struct ata_xfer_ent *ent;
880 
881 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
882 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
883 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
884 				& ~((1 << ent->shift) - 1);
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
888 
889 /**
890  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
891  *	@xfer_mode: XFER_* of interest
892  *
893  *	Return matching xfer_shift for @xfer_mode.
894  *
895  *	LOCKING:
896  *	None.
897  *
898  *	RETURNS:
899  *	Matching xfer_shift, -1 if no match found.
900  */
901 int ata_xfer_mode2shift(unsigned long xfer_mode)
902 {
903 	const struct ata_xfer_ent *ent;
904 
905 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
906 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
907 			return ent->shift;
908 	return -1;
909 }
910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
911 
912 /**
913  *	ata_mode_string - convert xfer_mask to string
914  *	@xfer_mask: mask of bits supported; only highest bit counts.
915  *
916  *	Determine string which represents the highest speed
917  *	(highest bit in @modemask).
918  *
919  *	LOCKING:
920  *	None.
921  *
922  *	RETURNS:
923  *	Constant C string representing highest speed listed in
924  *	@mode_mask, or the constant C string "<n/a>".
925  */
926 const char *ata_mode_string(unsigned long xfer_mask)
927 {
928 	static const char * const xfer_mode_str[] = {
929 		"PIO0",
930 		"PIO1",
931 		"PIO2",
932 		"PIO3",
933 		"PIO4",
934 		"PIO5",
935 		"PIO6",
936 		"MWDMA0",
937 		"MWDMA1",
938 		"MWDMA2",
939 		"MWDMA3",
940 		"MWDMA4",
941 		"UDMA/16",
942 		"UDMA/25",
943 		"UDMA/33",
944 		"UDMA/44",
945 		"UDMA/66",
946 		"UDMA/100",
947 		"UDMA/133",
948 		"UDMA7",
949 	};
950 	int highbit;
951 
952 	highbit = fls(xfer_mask) - 1;
953 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
954 		return xfer_mode_str[highbit];
955 	return "<n/a>";
956 }
957 EXPORT_SYMBOL_GPL(ata_mode_string);
958 
959 const char *sata_spd_string(unsigned int spd)
960 {
961 	static const char * const spd_str[] = {
962 		"1.5 Gbps",
963 		"3.0 Gbps",
964 		"6.0 Gbps",
965 	};
966 
967 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
968 		return "<unknown>";
969 	return spd_str[spd - 1];
970 }
971 
972 /**
973  *	ata_dev_classify - determine device type based on ATA-spec signature
974  *	@tf: ATA taskfile register set for device to be identified
975  *
976  *	Determine from taskfile register contents whether a device is
977  *	ATA or ATAPI, as per "Signature and persistence" section
978  *	of ATA/PI spec (volume 1, sect 5.14).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
985  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
986  */
987 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
988 {
989 	/* Apple's open source Darwin code hints that some devices only
990 	 * put a proper signature into the LBA mid/high registers,
991 	 * So, we only check those.  It's sufficient for uniqueness.
992 	 *
993 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
994 	 * signatures for ATA and ATAPI devices attached on SerialATA,
995 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
996 	 * spec has never mentioned about using different signatures
997 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
998 	 * Multiplier specification began to use 0x69/0x96 to identify
999 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1000 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1001 	 * 0x69/0x96 shortly and described them as reserved for
1002 	 * SerialATA.
1003 	 *
1004 	 * We follow the current spec and consider that 0x69/0x96
1005 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1006 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1007 	 * SEMB signature.  This is worked around in
1008 	 * ata_dev_read_id().
1009 	 */
1010 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1011 		DPRINTK("found ATA device by sig\n");
1012 		return ATA_DEV_ATA;
1013 	}
1014 
1015 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1016 		DPRINTK("found ATAPI device by sig\n");
1017 		return ATA_DEV_ATAPI;
1018 	}
1019 
1020 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1021 		DPRINTK("found PMP device by sig\n");
1022 		return ATA_DEV_PMP;
1023 	}
1024 
1025 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1026 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1027 		return ATA_DEV_SEMB;
1028 	}
1029 
1030 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1031 		DPRINTK("found ZAC device by sig\n");
1032 		return ATA_DEV_ZAC;
1033 	}
1034 
1035 	DPRINTK("unknown device\n");
1036 	return ATA_DEV_UNKNOWN;
1037 }
1038 EXPORT_SYMBOL_GPL(ata_dev_classify);
1039 
1040 /**
1041  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1042  *	@id: IDENTIFY DEVICE results we will examine
1043  *	@s: string into which data is output
1044  *	@ofs: offset into identify device page
1045  *	@len: length of string to return. must be an even number.
1046  *
1047  *	The strings in the IDENTIFY DEVICE page are broken up into
1048  *	16-bit chunks.  Run through the string, and output each
1049  *	8-bit chunk linearly, regardless of platform.
1050  *
1051  *	LOCKING:
1052  *	caller.
1053  */
1054 
1055 void ata_id_string(const u16 *id, unsigned char *s,
1056 		   unsigned int ofs, unsigned int len)
1057 {
1058 	unsigned int c;
1059 
1060 	BUG_ON(len & 1);
1061 
1062 	while (len > 0) {
1063 		c = id[ofs] >> 8;
1064 		*s = c;
1065 		s++;
1066 
1067 		c = id[ofs] & 0xff;
1068 		*s = c;
1069 		s++;
1070 
1071 		ofs++;
1072 		len -= 2;
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(ata_id_string);
1076 
1077 /**
1078  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1079  *	@id: IDENTIFY DEVICE results we will examine
1080  *	@s: string into which data is output
1081  *	@ofs: offset into identify device page
1082  *	@len: length of string to return. must be an odd number.
1083  *
1084  *	This function is identical to ata_id_string except that it
1085  *	trims trailing spaces and terminates the resulting string with
1086  *	null.  @len must be actual maximum length (even number) + 1.
1087  *
1088  *	LOCKING:
1089  *	caller.
1090  */
1091 void ata_id_c_string(const u16 *id, unsigned char *s,
1092 		     unsigned int ofs, unsigned int len)
1093 {
1094 	unsigned char *p;
1095 
1096 	ata_id_string(id, s, ofs, len - 1);
1097 
1098 	p = s + strnlen(s, len - 1);
1099 	while (p > s && p[-1] == ' ')
1100 		p--;
1101 	*p = '\0';
1102 }
1103 EXPORT_SYMBOL_GPL(ata_id_c_string);
1104 
1105 static u64 ata_id_n_sectors(const u16 *id)
1106 {
1107 	if (ata_id_has_lba(id)) {
1108 		if (ata_id_has_lba48(id))
1109 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1110 		else
1111 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1112 	} else {
1113 		if (ata_id_current_chs_valid(id))
1114 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1115 			       id[ATA_ID_CUR_SECTORS];
1116 		else
1117 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1118 			       id[ATA_ID_SECTORS];
1119 	}
1120 }
1121 
1122 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1123 {
1124 	u64 sectors = 0;
1125 
1126 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1127 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1128 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1129 	sectors |= (tf->lbah & 0xff) << 16;
1130 	sectors |= (tf->lbam & 0xff) << 8;
1131 	sectors |= (tf->lbal & 0xff);
1132 
1133 	return sectors;
1134 }
1135 
1136 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1137 {
1138 	u64 sectors = 0;
1139 
1140 	sectors |= (tf->device & 0x0f) << 24;
1141 	sectors |= (tf->lbah & 0xff) << 16;
1142 	sectors |= (tf->lbam & 0xff) << 8;
1143 	sectors |= (tf->lbal & 0xff);
1144 
1145 	return sectors;
1146 }
1147 
1148 /**
1149  *	ata_read_native_max_address - Read native max address
1150  *	@dev: target device
1151  *	@max_sectors: out parameter for the result native max address
1152  *
1153  *	Perform an LBA48 or LBA28 native size query upon the device in
1154  *	question.
1155  *
1156  *	RETURNS:
1157  *	0 on success, -EACCES if command is aborted by the drive.
1158  *	-EIO on other errors.
1159  */
1160 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1161 {
1162 	unsigned int err_mask;
1163 	struct ata_taskfile tf;
1164 	int lba48 = ata_id_has_lba48(dev->id);
1165 
1166 	ata_tf_init(dev, &tf);
1167 
1168 	/* always clear all address registers */
1169 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1170 
1171 	if (lba48) {
1172 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1173 		tf.flags |= ATA_TFLAG_LBA48;
1174 	} else
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1176 
1177 	tf.protocol = ATA_PROT_NODATA;
1178 	tf.device |= ATA_LBA;
1179 
1180 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1181 	if (err_mask) {
1182 		ata_dev_warn(dev,
1183 			     "failed to read native max address (err_mask=0x%x)\n",
1184 			     err_mask);
1185 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1186 			return -EACCES;
1187 		return -EIO;
1188 	}
1189 
1190 	if (lba48)
1191 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1192 	else
1193 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1194 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1195 		(*max_sectors)--;
1196 	return 0;
1197 }
1198 
1199 /**
1200  *	ata_set_max_sectors - Set max sectors
1201  *	@dev: target device
1202  *	@new_sectors: new max sectors value to set for the device
1203  *
1204  *	Set max sectors of @dev to @new_sectors.
1205  *
1206  *	RETURNS:
1207  *	0 on success, -EACCES if command is aborted or denied (due to
1208  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1209  *	errors.
1210  */
1211 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1212 {
1213 	unsigned int err_mask;
1214 	struct ata_taskfile tf;
1215 	int lba48 = ata_id_has_lba48(dev->id);
1216 
1217 	new_sectors--;
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222 
1223 	if (lba48) {
1224 		tf.command = ATA_CMD_SET_MAX_EXT;
1225 		tf.flags |= ATA_TFLAG_LBA48;
1226 
1227 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1228 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1229 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1230 	} else {
1231 		tf.command = ATA_CMD_SET_MAX;
1232 
1233 		tf.device |= (new_sectors >> 24) & 0xf;
1234 	}
1235 
1236 	tf.protocol = ATA_PROT_NODATA;
1237 	tf.device |= ATA_LBA;
1238 
1239 	tf.lbal = (new_sectors >> 0) & 0xff;
1240 	tf.lbam = (new_sectors >> 8) & 0xff;
1241 	tf.lbah = (new_sectors >> 16) & 0xff;
1242 
1243 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244 	if (err_mask) {
1245 		ata_dev_warn(dev,
1246 			     "failed to set max address (err_mask=0x%x)\n",
1247 			     err_mask);
1248 		if (err_mask == AC_ERR_DEV &&
1249 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1250 			return -EACCES;
1251 		return -EIO;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  *	ata_hpa_resize		-	Resize a device with an HPA set
1259  *	@dev: Device to resize
1260  *
1261  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1262  *	it if required to the full size of the media. The caller must check
1263  *	the drive has the HPA feature set enabled.
1264  *
1265  *	RETURNS:
1266  *	0 on success, -errno on failure.
1267  */
1268 static int ata_hpa_resize(struct ata_device *dev)
1269 {
1270 	struct ata_eh_context *ehc = &dev->link->eh_context;
1271 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1272 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1273 	u64 sectors = ata_id_n_sectors(dev->id);
1274 	u64 native_sectors;
1275 	int rc;
1276 
1277 	/* do we need to do it? */
1278 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1279 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1280 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1281 		return 0;
1282 
1283 	/* read native max address */
1284 	rc = ata_read_native_max_address(dev, &native_sectors);
1285 	if (rc) {
1286 		/* If device aborted the command or HPA isn't going to
1287 		 * be unlocked, skip HPA resizing.
1288 		 */
1289 		if (rc == -EACCES || !unlock_hpa) {
1290 			ata_dev_warn(dev,
1291 				     "HPA support seems broken, skipping HPA handling\n");
1292 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1293 
1294 			/* we can continue if device aborted the command */
1295 			if (rc == -EACCES)
1296 				rc = 0;
1297 		}
1298 
1299 		return rc;
1300 	}
1301 	dev->n_native_sectors = native_sectors;
1302 
1303 	/* nothing to do? */
1304 	if (native_sectors <= sectors || !unlock_hpa) {
1305 		if (!print_info || native_sectors == sectors)
1306 			return 0;
1307 
1308 		if (native_sectors > sectors)
1309 			ata_dev_info(dev,
1310 				"HPA detected: current %llu, native %llu\n",
1311 				(unsigned long long)sectors,
1312 				(unsigned long long)native_sectors);
1313 		else if (native_sectors < sectors)
1314 			ata_dev_warn(dev,
1315 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1316 				(unsigned long long)native_sectors,
1317 				(unsigned long long)sectors);
1318 		return 0;
1319 	}
1320 
1321 	/* let's unlock HPA */
1322 	rc = ata_set_max_sectors(dev, native_sectors);
1323 	if (rc == -EACCES) {
1324 		/* if device aborted the command, skip HPA resizing */
1325 		ata_dev_warn(dev,
1326 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1327 			     (unsigned long long)sectors,
1328 			     (unsigned long long)native_sectors);
1329 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1330 		return 0;
1331 	} else if (rc)
1332 		return rc;
1333 
1334 	/* re-read IDENTIFY data */
1335 	rc = ata_dev_reread_id(dev, 0);
1336 	if (rc) {
1337 		ata_dev_err(dev,
1338 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1339 		return rc;
1340 	}
1341 
1342 	if (print_info) {
1343 		u64 new_sectors = ata_id_n_sectors(dev->id);
1344 		ata_dev_info(dev,
1345 			"HPA unlocked: %llu -> %llu, native %llu\n",
1346 			(unsigned long long)sectors,
1347 			(unsigned long long)new_sectors,
1348 			(unsigned long long)native_sectors);
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1356  *	@id: IDENTIFY DEVICE page to dump
1357  *
1358  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1359  *	page.
1360  *
1361  *	LOCKING:
1362  *	caller.
1363  */
1364 
1365 static inline void ata_dump_id(const u16 *id)
1366 {
1367 	DPRINTK("49==0x%04x  "
1368 		"53==0x%04x  "
1369 		"63==0x%04x  "
1370 		"64==0x%04x  "
1371 		"75==0x%04x  \n",
1372 		id[49],
1373 		id[53],
1374 		id[63],
1375 		id[64],
1376 		id[75]);
1377 	DPRINTK("80==0x%04x  "
1378 		"81==0x%04x  "
1379 		"82==0x%04x  "
1380 		"83==0x%04x  "
1381 		"84==0x%04x  \n",
1382 		id[80],
1383 		id[81],
1384 		id[82],
1385 		id[83],
1386 		id[84]);
1387 	DPRINTK("88==0x%04x  "
1388 		"93==0x%04x\n",
1389 		id[88],
1390 		id[93]);
1391 }
1392 
1393 /**
1394  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1395  *	@id: IDENTIFY data to compute xfer mask from
1396  *
1397  *	Compute the xfermask for this device. This is not as trivial
1398  *	as it seems if we must consider early devices correctly.
1399  *
1400  *	FIXME: pre IDE drive timing (do we care ?).
1401  *
1402  *	LOCKING:
1403  *	None.
1404  *
1405  *	RETURNS:
1406  *	Computed xfermask
1407  */
1408 unsigned long ata_id_xfermask(const u16 *id)
1409 {
1410 	unsigned long pio_mask, mwdma_mask, udma_mask;
1411 
1412 	/* Usual case. Word 53 indicates word 64 is valid */
1413 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1414 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1415 		pio_mask <<= 3;
1416 		pio_mask |= 0x7;
1417 	} else {
1418 		/* If word 64 isn't valid then Word 51 high byte holds
1419 		 * the PIO timing number for the maximum. Turn it into
1420 		 * a mask.
1421 		 */
1422 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1423 		if (mode < 5)	/* Valid PIO range */
1424 			pio_mask = (2 << mode) - 1;
1425 		else
1426 			pio_mask = 1;
1427 
1428 		/* But wait.. there's more. Design your standards by
1429 		 * committee and you too can get a free iordy field to
1430 		 * process. However its the speeds not the modes that
1431 		 * are supported... Note drivers using the timing API
1432 		 * will get this right anyway
1433 		 */
1434 	}
1435 
1436 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1437 
1438 	if (ata_id_is_cfa(id)) {
1439 		/*
1440 		 *	Process compact flash extended modes
1441 		 */
1442 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1443 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1444 
1445 		if (pio)
1446 			pio_mask |= (1 << 5);
1447 		if (pio > 1)
1448 			pio_mask |= (1 << 6);
1449 		if (dma)
1450 			mwdma_mask |= (1 << 3);
1451 		if (dma > 1)
1452 			mwdma_mask |= (1 << 4);
1453 	}
1454 
1455 	udma_mask = 0;
1456 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1457 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1458 
1459 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1460 }
1461 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1462 
1463 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1464 {
1465 	struct completion *waiting = qc->private_data;
1466 
1467 	complete(waiting);
1468 }
1469 
1470 /**
1471  *	ata_exec_internal_sg - execute libata internal command
1472  *	@dev: Device to which the command is sent
1473  *	@tf: Taskfile registers for the command and the result
1474  *	@cdb: CDB for packet command
1475  *	@dma_dir: Data transfer direction of the command
1476  *	@sgl: sg list for the data buffer of the command
1477  *	@n_elem: Number of sg entries
1478  *	@timeout: Timeout in msecs (0 for default)
1479  *
1480  *	Executes libata internal command with timeout.  @tf contains
1481  *	command on entry and result on return.  Timeout and error
1482  *	conditions are reported via return value.  No recovery action
1483  *	is taken after a command times out.  It's caller's duty to
1484  *	clean up after timeout.
1485  *
1486  *	LOCKING:
1487  *	None.  Should be called with kernel context, might sleep.
1488  *
1489  *	RETURNS:
1490  *	Zero on success, AC_ERR_* mask on failure
1491  */
1492 unsigned ata_exec_internal_sg(struct ata_device *dev,
1493 			      struct ata_taskfile *tf, const u8 *cdb,
1494 			      int dma_dir, struct scatterlist *sgl,
1495 			      unsigned int n_elem, unsigned long timeout)
1496 {
1497 	struct ata_link *link = dev->link;
1498 	struct ata_port *ap = link->ap;
1499 	u8 command = tf->command;
1500 	int auto_timeout = 0;
1501 	struct ata_queued_cmd *qc;
1502 	unsigned int preempted_tag;
1503 	u32 preempted_sactive;
1504 	u64 preempted_qc_active;
1505 	int preempted_nr_active_links;
1506 	DECLARE_COMPLETION_ONSTACK(wait);
1507 	unsigned long flags;
1508 	unsigned int err_mask;
1509 	int rc;
1510 
1511 	spin_lock_irqsave(ap->lock, flags);
1512 
1513 	/* no internal command while frozen */
1514 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1515 		spin_unlock_irqrestore(ap->lock, flags);
1516 		return AC_ERR_SYSTEM;
1517 	}
1518 
1519 	/* initialize internal qc */
1520 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1521 
1522 	qc->tag = ATA_TAG_INTERNAL;
1523 	qc->hw_tag = 0;
1524 	qc->scsicmd = NULL;
1525 	qc->ap = ap;
1526 	qc->dev = dev;
1527 	ata_qc_reinit(qc);
1528 
1529 	preempted_tag = link->active_tag;
1530 	preempted_sactive = link->sactive;
1531 	preempted_qc_active = ap->qc_active;
1532 	preempted_nr_active_links = ap->nr_active_links;
1533 	link->active_tag = ATA_TAG_POISON;
1534 	link->sactive = 0;
1535 	ap->qc_active = 0;
1536 	ap->nr_active_links = 0;
1537 
1538 	/* prepare & issue qc */
1539 	qc->tf = *tf;
1540 	if (cdb)
1541 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1542 
1543 	/* some SATA bridges need us to indicate data xfer direction */
1544 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1545 	    dma_dir == DMA_FROM_DEVICE)
1546 		qc->tf.feature |= ATAPI_DMADIR;
1547 
1548 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1549 	qc->dma_dir = dma_dir;
1550 	if (dma_dir != DMA_NONE) {
1551 		unsigned int i, buflen = 0;
1552 		struct scatterlist *sg;
1553 
1554 		for_each_sg(sgl, sg, n_elem, i)
1555 			buflen += sg->length;
1556 
1557 		ata_sg_init(qc, sgl, n_elem);
1558 		qc->nbytes = buflen;
1559 	}
1560 
1561 	qc->private_data = &wait;
1562 	qc->complete_fn = ata_qc_complete_internal;
1563 
1564 	ata_qc_issue(qc);
1565 
1566 	spin_unlock_irqrestore(ap->lock, flags);
1567 
1568 	if (!timeout) {
1569 		if (ata_probe_timeout)
1570 			timeout = ata_probe_timeout * 1000;
1571 		else {
1572 			timeout = ata_internal_cmd_timeout(dev, command);
1573 			auto_timeout = 1;
1574 		}
1575 	}
1576 
1577 	if (ap->ops->error_handler)
1578 		ata_eh_release(ap);
1579 
1580 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1581 
1582 	if (ap->ops->error_handler)
1583 		ata_eh_acquire(ap);
1584 
1585 	ata_sff_flush_pio_task(ap);
1586 
1587 	if (!rc) {
1588 		spin_lock_irqsave(ap->lock, flags);
1589 
1590 		/* We're racing with irq here.  If we lose, the
1591 		 * following test prevents us from completing the qc
1592 		 * twice.  If we win, the port is frozen and will be
1593 		 * cleaned up by ->post_internal_cmd().
1594 		 */
1595 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1596 			qc->err_mask |= AC_ERR_TIMEOUT;
1597 
1598 			if (ap->ops->error_handler)
1599 				ata_port_freeze(ap);
1600 			else
1601 				ata_qc_complete(qc);
1602 
1603 			if (ata_msg_warn(ap))
1604 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1605 					     command);
1606 		}
1607 
1608 		spin_unlock_irqrestore(ap->lock, flags);
1609 	}
1610 
1611 	/* do post_internal_cmd */
1612 	if (ap->ops->post_internal_cmd)
1613 		ap->ops->post_internal_cmd(qc);
1614 
1615 	/* perform minimal error analysis */
1616 	if (qc->flags & ATA_QCFLAG_FAILED) {
1617 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1618 			qc->err_mask |= AC_ERR_DEV;
1619 
1620 		if (!qc->err_mask)
1621 			qc->err_mask |= AC_ERR_OTHER;
1622 
1623 		if (qc->err_mask & ~AC_ERR_OTHER)
1624 			qc->err_mask &= ~AC_ERR_OTHER;
1625 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1626 		qc->result_tf.command |= ATA_SENSE;
1627 	}
1628 
1629 	/* finish up */
1630 	spin_lock_irqsave(ap->lock, flags);
1631 
1632 	*tf = qc->result_tf;
1633 	err_mask = qc->err_mask;
1634 
1635 	ata_qc_free(qc);
1636 	link->active_tag = preempted_tag;
1637 	link->sactive = preempted_sactive;
1638 	ap->qc_active = preempted_qc_active;
1639 	ap->nr_active_links = preempted_nr_active_links;
1640 
1641 	spin_unlock_irqrestore(ap->lock, flags);
1642 
1643 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1644 		ata_internal_cmd_timed_out(dev, command);
1645 
1646 	return err_mask;
1647 }
1648 
1649 /**
1650  *	ata_exec_internal - execute libata internal command
1651  *	@dev: Device to which the command is sent
1652  *	@tf: Taskfile registers for the command and the result
1653  *	@cdb: CDB for packet command
1654  *	@dma_dir: Data transfer direction of the command
1655  *	@buf: Data buffer of the command
1656  *	@buflen: Length of data buffer
1657  *	@timeout: Timeout in msecs (0 for default)
1658  *
1659  *	Wrapper around ata_exec_internal_sg() which takes simple
1660  *	buffer instead of sg list.
1661  *
1662  *	LOCKING:
1663  *	None.  Should be called with kernel context, might sleep.
1664  *
1665  *	RETURNS:
1666  *	Zero on success, AC_ERR_* mask on failure
1667  */
1668 unsigned ata_exec_internal(struct ata_device *dev,
1669 			   struct ata_taskfile *tf, const u8 *cdb,
1670 			   int dma_dir, void *buf, unsigned int buflen,
1671 			   unsigned long timeout)
1672 {
1673 	struct scatterlist *psg = NULL, sg;
1674 	unsigned int n_elem = 0;
1675 
1676 	if (dma_dir != DMA_NONE) {
1677 		WARN_ON(!buf);
1678 		sg_init_one(&sg, buf, buflen);
1679 		psg = &sg;
1680 		n_elem++;
1681 	}
1682 
1683 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1684 				    timeout);
1685 }
1686 
1687 /**
1688  *	ata_pio_need_iordy	-	check if iordy needed
1689  *	@adev: ATA device
1690  *
1691  *	Check if the current speed of the device requires IORDY. Used
1692  *	by various controllers for chip configuration.
1693  */
1694 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1695 {
1696 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1697 	 * lead to controller lock up on certain controllers if the
1698 	 * port is not occupied.  See bko#11703 for details.
1699 	 */
1700 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1701 		return 0;
1702 	/* Controller doesn't support IORDY.  Probably a pointless
1703 	 * check as the caller should know this.
1704 	 */
1705 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1706 		return 0;
1707 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1708 	if (ata_id_is_cfa(adev->id)
1709 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1710 		return 0;
1711 	/* PIO3 and higher it is mandatory */
1712 	if (adev->pio_mode > XFER_PIO_2)
1713 		return 1;
1714 	/* We turn it on when possible */
1715 	if (ata_id_has_iordy(adev->id))
1716 		return 1;
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1720 
1721 /**
1722  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1723  *	@adev: ATA device
1724  *
1725  *	Compute the highest mode possible if we are not using iordy. Return
1726  *	-1 if no iordy mode is available.
1727  */
1728 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1729 {
1730 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1731 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1732 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1733 		/* Is the speed faster than the drive allows non IORDY ? */
1734 		if (pio) {
1735 			/* This is cycle times not frequency - watch the logic! */
1736 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1737 				return 3 << ATA_SHIFT_PIO;
1738 			return 7 << ATA_SHIFT_PIO;
1739 		}
1740 	}
1741 	return 3 << ATA_SHIFT_PIO;
1742 }
1743 
1744 /**
1745  *	ata_do_dev_read_id		-	default ID read method
1746  *	@dev: device
1747  *	@tf: proposed taskfile
1748  *	@id: data buffer
1749  *
1750  *	Issue the identify taskfile and hand back the buffer containing
1751  *	identify data. For some RAID controllers and for pre ATA devices
1752  *	this function is wrapped or replaced by the driver
1753  */
1754 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1755 					struct ata_taskfile *tf, u16 *id)
1756 {
1757 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1758 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1759 }
1760 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1761 
1762 /**
1763  *	ata_dev_read_id - Read ID data from the specified device
1764  *	@dev: target device
1765  *	@p_class: pointer to class of the target device (may be changed)
1766  *	@flags: ATA_READID_* flags
1767  *	@id: buffer to read IDENTIFY data into
1768  *
1769  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1770  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1771  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1772  *	for pre-ATA4 drives.
1773  *
1774  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1775  *	now we abort if we hit that case.
1776  *
1777  *	LOCKING:
1778  *	Kernel thread context (may sleep)
1779  *
1780  *	RETURNS:
1781  *	0 on success, -errno otherwise.
1782  */
1783 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1784 		    unsigned int flags, u16 *id)
1785 {
1786 	struct ata_port *ap = dev->link->ap;
1787 	unsigned int class = *p_class;
1788 	struct ata_taskfile tf;
1789 	unsigned int err_mask = 0;
1790 	const char *reason;
1791 	bool is_semb = class == ATA_DEV_SEMB;
1792 	int may_fallback = 1, tried_spinup = 0;
1793 	int rc;
1794 
1795 	if (ata_msg_ctl(ap))
1796 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1797 
1798 retry:
1799 	ata_tf_init(dev, &tf);
1800 
1801 	switch (class) {
1802 	case ATA_DEV_SEMB:
1803 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1804 		/* fall through */
1805 	case ATA_DEV_ATA:
1806 	case ATA_DEV_ZAC:
1807 		tf.command = ATA_CMD_ID_ATA;
1808 		break;
1809 	case ATA_DEV_ATAPI:
1810 		tf.command = ATA_CMD_ID_ATAPI;
1811 		break;
1812 	default:
1813 		rc = -ENODEV;
1814 		reason = "unsupported class";
1815 		goto err_out;
1816 	}
1817 
1818 	tf.protocol = ATA_PROT_PIO;
1819 
1820 	/* Some devices choke if TF registers contain garbage.  Make
1821 	 * sure those are properly initialized.
1822 	 */
1823 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1824 
1825 	/* Device presence detection is unreliable on some
1826 	 * controllers.  Always poll IDENTIFY if available.
1827 	 */
1828 	tf.flags |= ATA_TFLAG_POLLING;
1829 
1830 	if (ap->ops->read_id)
1831 		err_mask = ap->ops->read_id(dev, &tf, id);
1832 	else
1833 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1834 
1835 	if (err_mask) {
1836 		if (err_mask & AC_ERR_NODEV_HINT) {
1837 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1838 			return -ENOENT;
1839 		}
1840 
1841 		if (is_semb) {
1842 			ata_dev_info(dev,
1843 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1844 			/* SEMB is not supported yet */
1845 			*p_class = ATA_DEV_SEMB_UNSUP;
1846 			return 0;
1847 		}
1848 
1849 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1850 			/* Device or controller might have reported
1851 			 * the wrong device class.  Give a shot at the
1852 			 * other IDENTIFY if the current one is
1853 			 * aborted by the device.
1854 			 */
1855 			if (may_fallback) {
1856 				may_fallback = 0;
1857 
1858 				if (class == ATA_DEV_ATA)
1859 					class = ATA_DEV_ATAPI;
1860 				else
1861 					class = ATA_DEV_ATA;
1862 				goto retry;
1863 			}
1864 
1865 			/* Control reaches here iff the device aborted
1866 			 * both flavors of IDENTIFYs which happens
1867 			 * sometimes with phantom devices.
1868 			 */
1869 			ata_dev_dbg(dev,
1870 				    "both IDENTIFYs aborted, assuming NODEV\n");
1871 			return -ENOENT;
1872 		}
1873 
1874 		rc = -EIO;
1875 		reason = "I/O error";
1876 		goto err_out;
1877 	}
1878 
1879 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1880 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1881 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1882 			    class, may_fallback, tried_spinup);
1883 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1884 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1885 	}
1886 
1887 	/* Falling back doesn't make sense if ID data was read
1888 	 * successfully at least once.
1889 	 */
1890 	may_fallback = 0;
1891 
1892 	swap_buf_le16(id, ATA_ID_WORDS);
1893 
1894 	/* sanity check */
1895 	rc = -EINVAL;
1896 	reason = "device reports invalid type";
1897 
1898 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1899 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1900 			goto err_out;
1901 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1902 							ata_id_is_ata(id)) {
1903 			ata_dev_dbg(dev,
1904 				"host indicates ignore ATA devices, ignored\n");
1905 			return -ENOENT;
1906 		}
1907 	} else {
1908 		if (ata_id_is_ata(id))
1909 			goto err_out;
1910 	}
1911 
1912 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1913 		tried_spinup = 1;
1914 		/*
1915 		 * Drive powered-up in standby mode, and requires a specific
1916 		 * SET_FEATURES spin-up subcommand before it will accept
1917 		 * anything other than the original IDENTIFY command.
1918 		 */
1919 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1920 		if (err_mask && id[2] != 0x738c) {
1921 			rc = -EIO;
1922 			reason = "SPINUP failed";
1923 			goto err_out;
1924 		}
1925 		/*
1926 		 * If the drive initially returned incomplete IDENTIFY info,
1927 		 * we now must reissue the IDENTIFY command.
1928 		 */
1929 		if (id[2] == 0x37c8)
1930 			goto retry;
1931 	}
1932 
1933 	if ((flags & ATA_READID_POSTRESET) &&
1934 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1935 		/*
1936 		 * The exact sequence expected by certain pre-ATA4 drives is:
1937 		 * SRST RESET
1938 		 * IDENTIFY (optional in early ATA)
1939 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1940 		 * anything else..
1941 		 * Some drives were very specific about that exact sequence.
1942 		 *
1943 		 * Note that ATA4 says lba is mandatory so the second check
1944 		 * should never trigger.
1945 		 */
1946 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1947 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1948 			if (err_mask) {
1949 				rc = -EIO;
1950 				reason = "INIT_DEV_PARAMS failed";
1951 				goto err_out;
1952 			}
1953 
1954 			/* current CHS translation info (id[53-58]) might be
1955 			 * changed. reread the identify device info.
1956 			 */
1957 			flags &= ~ATA_READID_POSTRESET;
1958 			goto retry;
1959 		}
1960 	}
1961 
1962 	*p_class = class;
1963 
1964 	return 0;
1965 
1966  err_out:
1967 	if (ata_msg_warn(ap))
1968 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1969 			     reason, err_mask);
1970 	return rc;
1971 }
1972 
1973 /**
1974  *	ata_read_log_page - read a specific log page
1975  *	@dev: target device
1976  *	@log: log to read
1977  *	@page: page to read
1978  *	@buf: buffer to store read page
1979  *	@sectors: number of sectors to read
1980  *
1981  *	Read log page using READ_LOG_EXT command.
1982  *
1983  *	LOCKING:
1984  *	Kernel thread context (may sleep).
1985  *
1986  *	RETURNS:
1987  *	0 on success, AC_ERR_* mask otherwise.
1988  */
1989 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1990 			       u8 page, void *buf, unsigned int sectors)
1991 {
1992 	unsigned long ap_flags = dev->link->ap->flags;
1993 	struct ata_taskfile tf;
1994 	unsigned int err_mask;
1995 	bool dma = false;
1996 
1997 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1998 
1999 	/*
2000 	 * Return error without actually issuing the command on controllers
2001 	 * which e.g. lockup on a read log page.
2002 	 */
2003 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2004 		return AC_ERR_DEV;
2005 
2006 retry:
2007 	ata_tf_init(dev, &tf);
2008 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2009 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2010 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2011 		tf.protocol = ATA_PROT_DMA;
2012 		dma = true;
2013 	} else {
2014 		tf.command = ATA_CMD_READ_LOG_EXT;
2015 		tf.protocol = ATA_PROT_PIO;
2016 		dma = false;
2017 	}
2018 	tf.lbal = log;
2019 	tf.lbam = page;
2020 	tf.nsect = sectors;
2021 	tf.hob_nsect = sectors >> 8;
2022 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2023 
2024 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2025 				     buf, sectors * ATA_SECT_SIZE, 0);
2026 
2027 	if (err_mask && dma) {
2028 		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2029 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2030 		goto retry;
2031 	}
2032 
2033 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2034 	return err_mask;
2035 }
2036 
2037 static bool ata_log_supported(struct ata_device *dev, u8 log)
2038 {
2039 	struct ata_port *ap = dev->link->ap;
2040 
2041 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2042 		return false;
2043 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2044 }
2045 
2046 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2047 {
2048 	struct ata_port *ap = dev->link->ap;
2049 	unsigned int err, i;
2050 
2051 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2052 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2053 		return false;
2054 	}
2055 
2056 	/*
2057 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2058 	 * supported.
2059 	 */
2060 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2061 				1);
2062 	if (err) {
2063 		ata_dev_info(dev,
2064 			     "failed to get Device Identify Log Emask 0x%x\n",
2065 			     err);
2066 		return false;
2067 	}
2068 
2069 	for (i = 0; i < ap->sector_buf[8]; i++) {
2070 		if (ap->sector_buf[9 + i] == page)
2071 			return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static int ata_do_link_spd_horkage(struct ata_device *dev)
2078 {
2079 	struct ata_link *plink = ata_dev_phys_link(dev);
2080 	u32 target, target_limit;
2081 
2082 	if (!sata_scr_valid(plink))
2083 		return 0;
2084 
2085 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086 		target = 1;
2087 	else
2088 		return 0;
2089 
2090 	target_limit = (1 << target) - 1;
2091 
2092 	/* if already on stricter limit, no need to push further */
2093 	if (plink->sata_spd_limit <= target_limit)
2094 		return 0;
2095 
2096 	plink->sata_spd_limit = target_limit;
2097 
2098 	/* Request another EH round by returning -EAGAIN if link is
2099 	 * going faster than the target speed.  Forward progress is
2100 	 * guaranteed by setting sata_spd_limit to target_limit above.
2101 	 */
2102 	if (plink->sata_spd > target) {
2103 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104 			     sata_spd_string(target));
2105 		return -EAGAIN;
2106 	}
2107 	return 0;
2108 }
2109 
2110 static inline u8 ata_dev_knobble(struct ata_device *dev)
2111 {
2112 	struct ata_port *ap = dev->link->ap;
2113 
2114 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115 		return 0;
2116 
2117 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 }
2119 
2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121 {
2122 	struct ata_port *ap = dev->link->ap;
2123 	unsigned int err_mask;
2124 
2125 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127 		return;
2128 	}
2129 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130 				     0, ap->sector_buf, 1);
2131 	if (err_mask) {
2132 		ata_dev_dbg(dev,
2133 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2134 			    err_mask);
2135 	} else {
2136 		u8 *cmds = dev->ncq_send_recv_cmds;
2137 
2138 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2139 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2140 
2141 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2142 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2143 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2144 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2145 		}
2146 	}
2147 }
2148 
2149 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2150 {
2151 	struct ata_port *ap = dev->link->ap;
2152 	unsigned int err_mask;
2153 
2154 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2155 		ata_dev_warn(dev,
2156 			     "NCQ Send/Recv Log not supported\n");
2157 		return;
2158 	}
2159 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2160 				     0, ap->sector_buf, 1);
2161 	if (err_mask) {
2162 		ata_dev_dbg(dev,
2163 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2164 			    err_mask);
2165 	} else {
2166 		u8 *cmds = dev->ncq_non_data_cmds;
2167 
2168 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2169 	}
2170 }
2171 
2172 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2173 {
2174 	struct ata_port *ap = dev->link->ap;
2175 	unsigned int err_mask;
2176 
2177 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2178 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2179 		return;
2180 	}
2181 
2182 	err_mask = ata_read_log_page(dev,
2183 				     ATA_LOG_IDENTIFY_DEVICE,
2184 				     ATA_LOG_SATA_SETTINGS,
2185 				     ap->sector_buf,
2186 				     1);
2187 	if (err_mask) {
2188 		ata_dev_dbg(dev,
2189 			    "failed to get Identify Device data, Emask 0x%x\n",
2190 			    err_mask);
2191 		return;
2192 	}
2193 
2194 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2195 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2196 	} else {
2197 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2198 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2199 	}
2200 
2201 }
2202 
2203 static int ata_dev_config_ncq(struct ata_device *dev,
2204 			       char *desc, size_t desc_sz)
2205 {
2206 	struct ata_port *ap = dev->link->ap;
2207 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2208 	unsigned int err_mask;
2209 	char *aa_desc = "";
2210 
2211 	if (!ata_id_has_ncq(dev->id)) {
2212 		desc[0] = '\0';
2213 		return 0;
2214 	}
2215 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2216 		return 0;
2217 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2218 		snprintf(desc, desc_sz, "NCQ (not used)");
2219 		return 0;
2220 	}
2221 	if (ap->flags & ATA_FLAG_NCQ) {
2222 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2223 		dev->flags |= ATA_DFLAG_NCQ;
2224 	}
2225 
2226 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2227 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2228 		ata_id_has_fpdma_aa(dev->id)) {
2229 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2230 			SATA_FPDMA_AA);
2231 		if (err_mask) {
2232 			ata_dev_err(dev,
2233 				    "failed to enable AA (error_mask=0x%x)\n",
2234 				    err_mask);
2235 			if (err_mask != AC_ERR_DEV) {
2236 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2237 				return -EIO;
2238 			}
2239 		} else
2240 			aa_desc = ", AA";
2241 	}
2242 
2243 	if (hdepth >= ddepth)
2244 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2245 	else
2246 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2247 			ddepth, aa_desc);
2248 
2249 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2250 		if (ata_id_has_ncq_send_and_recv(dev->id))
2251 			ata_dev_config_ncq_send_recv(dev);
2252 		if (ata_id_has_ncq_non_data(dev->id))
2253 			ata_dev_config_ncq_non_data(dev);
2254 		if (ata_id_has_ncq_prio(dev->id))
2255 			ata_dev_config_ncq_prio(dev);
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2262 {
2263 	unsigned int err_mask;
2264 
2265 	if (!ata_id_has_sense_reporting(dev->id))
2266 		return;
2267 
2268 	if (ata_id_sense_reporting_enabled(dev->id))
2269 		return;
2270 
2271 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2272 	if (err_mask) {
2273 		ata_dev_dbg(dev,
2274 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2275 			    err_mask);
2276 	}
2277 }
2278 
2279 static void ata_dev_config_zac(struct ata_device *dev)
2280 {
2281 	struct ata_port *ap = dev->link->ap;
2282 	unsigned int err_mask;
2283 	u8 *identify_buf = ap->sector_buf;
2284 
2285 	dev->zac_zones_optimal_open = U32_MAX;
2286 	dev->zac_zones_optimal_nonseq = U32_MAX;
2287 	dev->zac_zones_max_open = U32_MAX;
2288 
2289 	/*
2290 	 * Always set the 'ZAC' flag for Host-managed devices.
2291 	 */
2292 	if (dev->class == ATA_DEV_ZAC)
2293 		dev->flags |= ATA_DFLAG_ZAC;
2294 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2295 		/*
2296 		 * Check for host-aware devices.
2297 		 */
2298 		dev->flags |= ATA_DFLAG_ZAC;
2299 
2300 	if (!(dev->flags & ATA_DFLAG_ZAC))
2301 		return;
2302 
2303 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2304 		ata_dev_warn(dev,
2305 			     "ATA Zoned Information Log not supported\n");
2306 		return;
2307 	}
2308 
2309 	/*
2310 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2311 	 */
2312 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2313 				     ATA_LOG_ZONED_INFORMATION,
2314 				     identify_buf, 1);
2315 	if (!err_mask) {
2316 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2317 
2318 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2319 		if ((zoned_cap >> 63))
2320 			dev->zac_zoned_cap = (zoned_cap & 1);
2321 		opt_open = get_unaligned_le64(&identify_buf[24]);
2322 		if ((opt_open >> 63))
2323 			dev->zac_zones_optimal_open = (u32)opt_open;
2324 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2325 		if ((opt_nonseq >> 63))
2326 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2327 		max_open = get_unaligned_le64(&identify_buf[40]);
2328 		if ((max_open >> 63))
2329 			dev->zac_zones_max_open = (u32)max_open;
2330 	}
2331 }
2332 
2333 static void ata_dev_config_trusted(struct ata_device *dev)
2334 {
2335 	struct ata_port *ap = dev->link->ap;
2336 	u64 trusted_cap;
2337 	unsigned int err;
2338 
2339 	if (!ata_id_has_trusted(dev->id))
2340 		return;
2341 
2342 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2343 		ata_dev_warn(dev,
2344 			     "Security Log not supported\n");
2345 		return;
2346 	}
2347 
2348 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2349 			ap->sector_buf, 1);
2350 	if (err) {
2351 		ata_dev_dbg(dev,
2352 			    "failed to read Security Log, Emask 0x%x\n", err);
2353 		return;
2354 	}
2355 
2356 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2357 	if (!(trusted_cap & (1ULL << 63))) {
2358 		ata_dev_dbg(dev,
2359 			    "Trusted Computing capability qword not valid!\n");
2360 		return;
2361 	}
2362 
2363 	if (trusted_cap & (1 << 0))
2364 		dev->flags |= ATA_DFLAG_TRUSTED;
2365 }
2366 
2367 /**
2368  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2369  *	@dev: Target device to configure
2370  *
2371  *	Configure @dev according to @dev->id.  Generic and low-level
2372  *	driver specific fixups are also applied.
2373  *
2374  *	LOCKING:
2375  *	Kernel thread context (may sleep)
2376  *
2377  *	RETURNS:
2378  *	0 on success, -errno otherwise
2379  */
2380 int ata_dev_configure(struct ata_device *dev)
2381 {
2382 	struct ata_port *ap = dev->link->ap;
2383 	struct ata_eh_context *ehc = &dev->link->eh_context;
2384 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2385 	const u16 *id = dev->id;
2386 	unsigned long xfer_mask;
2387 	unsigned int err_mask;
2388 	char revbuf[7];		/* XYZ-99\0 */
2389 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2390 	char modelbuf[ATA_ID_PROD_LEN+1];
2391 	int rc;
2392 
2393 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2394 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2395 		return 0;
2396 	}
2397 
2398 	if (ata_msg_probe(ap))
2399 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2400 
2401 	/* set horkage */
2402 	dev->horkage |= ata_dev_blacklisted(dev);
2403 	ata_force_horkage(dev);
2404 
2405 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2406 		ata_dev_info(dev, "unsupported device, disabling\n");
2407 		ata_dev_disable(dev);
2408 		return 0;
2409 	}
2410 
2411 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2412 	    dev->class == ATA_DEV_ATAPI) {
2413 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2414 			     atapi_enabled ? "not supported with this driver"
2415 			     : "disabled");
2416 		ata_dev_disable(dev);
2417 		return 0;
2418 	}
2419 
2420 	rc = ata_do_link_spd_horkage(dev);
2421 	if (rc)
2422 		return rc;
2423 
2424 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2425 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2426 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2427 		dev->horkage |= ATA_HORKAGE_NOLPM;
2428 
2429 	if (ap->flags & ATA_FLAG_NO_LPM)
2430 		dev->horkage |= ATA_HORKAGE_NOLPM;
2431 
2432 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2433 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2434 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2435 	}
2436 
2437 	/* let ACPI work its magic */
2438 	rc = ata_acpi_on_devcfg(dev);
2439 	if (rc)
2440 		return rc;
2441 
2442 	/* massage HPA, do it early as it might change IDENTIFY data */
2443 	rc = ata_hpa_resize(dev);
2444 	if (rc)
2445 		return rc;
2446 
2447 	/* print device capabilities */
2448 	if (ata_msg_probe(ap))
2449 		ata_dev_dbg(dev,
2450 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2451 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2452 			    __func__,
2453 			    id[49], id[82], id[83], id[84],
2454 			    id[85], id[86], id[87], id[88]);
2455 
2456 	/* initialize to-be-configured parameters */
2457 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2458 	dev->max_sectors = 0;
2459 	dev->cdb_len = 0;
2460 	dev->n_sectors = 0;
2461 	dev->cylinders = 0;
2462 	dev->heads = 0;
2463 	dev->sectors = 0;
2464 	dev->multi_count = 0;
2465 
2466 	/*
2467 	 * common ATA, ATAPI feature tests
2468 	 */
2469 
2470 	/* find max transfer mode; for printk only */
2471 	xfer_mask = ata_id_xfermask(id);
2472 
2473 	if (ata_msg_probe(ap))
2474 		ata_dump_id(id);
2475 
2476 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2477 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2478 			sizeof(fwrevbuf));
2479 
2480 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2481 			sizeof(modelbuf));
2482 
2483 	/* ATA-specific feature tests */
2484 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2485 		if (ata_id_is_cfa(id)) {
2486 			/* CPRM may make this media unusable */
2487 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2488 				ata_dev_warn(dev,
2489 	"supports DRM functions and may not be fully accessible\n");
2490 			snprintf(revbuf, 7, "CFA");
2491 		} else {
2492 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2493 			/* Warn the user if the device has TPM extensions */
2494 			if (ata_id_has_tpm(id))
2495 				ata_dev_warn(dev,
2496 	"supports DRM functions and may not be fully accessible\n");
2497 		}
2498 
2499 		dev->n_sectors = ata_id_n_sectors(id);
2500 
2501 		/* get current R/W Multiple count setting */
2502 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2503 			unsigned int max = dev->id[47] & 0xff;
2504 			unsigned int cnt = dev->id[59] & 0xff;
2505 			/* only recognize/allow powers of two here */
2506 			if (is_power_of_2(max) && is_power_of_2(cnt))
2507 				if (cnt <= max)
2508 					dev->multi_count = cnt;
2509 		}
2510 
2511 		if (ata_id_has_lba(id)) {
2512 			const char *lba_desc;
2513 			char ncq_desc[24];
2514 
2515 			lba_desc = "LBA";
2516 			dev->flags |= ATA_DFLAG_LBA;
2517 			if (ata_id_has_lba48(id)) {
2518 				dev->flags |= ATA_DFLAG_LBA48;
2519 				lba_desc = "LBA48";
2520 
2521 				if (dev->n_sectors >= (1UL << 28) &&
2522 				    ata_id_has_flush_ext(id))
2523 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2524 			}
2525 
2526 			/* config NCQ */
2527 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2528 			if (rc)
2529 				return rc;
2530 
2531 			/* print device info to dmesg */
2532 			if (ata_msg_drv(ap) && print_info) {
2533 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2534 					     revbuf, modelbuf, fwrevbuf,
2535 					     ata_mode_string(xfer_mask));
2536 				ata_dev_info(dev,
2537 					     "%llu sectors, multi %u: %s %s\n",
2538 					(unsigned long long)dev->n_sectors,
2539 					dev->multi_count, lba_desc, ncq_desc);
2540 			}
2541 		} else {
2542 			/* CHS */
2543 
2544 			/* Default translation */
2545 			dev->cylinders	= id[1];
2546 			dev->heads	= id[3];
2547 			dev->sectors	= id[6];
2548 
2549 			if (ata_id_current_chs_valid(id)) {
2550 				/* Current CHS translation is valid. */
2551 				dev->cylinders = id[54];
2552 				dev->heads     = id[55];
2553 				dev->sectors   = id[56];
2554 			}
2555 
2556 			/* print device info to dmesg */
2557 			if (ata_msg_drv(ap) && print_info) {
2558 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2559 					     revbuf,	modelbuf, fwrevbuf,
2560 					     ata_mode_string(xfer_mask));
2561 				ata_dev_info(dev,
2562 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2563 					     (unsigned long long)dev->n_sectors,
2564 					     dev->multi_count, dev->cylinders,
2565 					     dev->heads, dev->sectors);
2566 			}
2567 		}
2568 
2569 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2570 		 * from SATA Settings page of Identify Device Data Log.
2571 		 */
2572 		if (ata_id_has_devslp(dev->id)) {
2573 			u8 *sata_setting = ap->sector_buf;
2574 			int i, j;
2575 
2576 			dev->flags |= ATA_DFLAG_DEVSLP;
2577 			err_mask = ata_read_log_page(dev,
2578 						     ATA_LOG_IDENTIFY_DEVICE,
2579 						     ATA_LOG_SATA_SETTINGS,
2580 						     sata_setting,
2581 						     1);
2582 			if (err_mask)
2583 				ata_dev_dbg(dev,
2584 					    "failed to get Identify Device Data, Emask 0x%x\n",
2585 					    err_mask);
2586 			else
2587 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2588 					j = ATA_LOG_DEVSLP_OFFSET + i;
2589 					dev->devslp_timing[i] = sata_setting[j];
2590 				}
2591 		}
2592 		ata_dev_config_sense_reporting(dev);
2593 		ata_dev_config_zac(dev);
2594 		ata_dev_config_trusted(dev);
2595 		dev->cdb_len = 32;
2596 	}
2597 
2598 	/* ATAPI-specific feature tests */
2599 	else if (dev->class == ATA_DEV_ATAPI) {
2600 		const char *cdb_intr_string = "";
2601 		const char *atapi_an_string = "";
2602 		const char *dma_dir_string = "";
2603 		u32 sntf;
2604 
2605 		rc = atapi_cdb_len(id);
2606 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2607 			if (ata_msg_warn(ap))
2608 				ata_dev_warn(dev, "unsupported CDB len\n");
2609 			rc = -EINVAL;
2610 			goto err_out_nosup;
2611 		}
2612 		dev->cdb_len = (unsigned int) rc;
2613 
2614 		/* Enable ATAPI AN if both the host and device have
2615 		 * the support.  If PMP is attached, SNTF is required
2616 		 * to enable ATAPI AN to discern between PHY status
2617 		 * changed notifications and ATAPI ANs.
2618 		 */
2619 		if (atapi_an &&
2620 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2621 		    (!sata_pmp_attached(ap) ||
2622 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2623 			/* issue SET feature command to turn this on */
2624 			err_mask = ata_dev_set_feature(dev,
2625 					SETFEATURES_SATA_ENABLE, SATA_AN);
2626 			if (err_mask)
2627 				ata_dev_err(dev,
2628 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2629 					    err_mask);
2630 			else {
2631 				dev->flags |= ATA_DFLAG_AN;
2632 				atapi_an_string = ", ATAPI AN";
2633 			}
2634 		}
2635 
2636 		if (ata_id_cdb_intr(dev->id)) {
2637 			dev->flags |= ATA_DFLAG_CDB_INTR;
2638 			cdb_intr_string = ", CDB intr";
2639 		}
2640 
2641 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2642 			dev->flags |= ATA_DFLAG_DMADIR;
2643 			dma_dir_string = ", DMADIR";
2644 		}
2645 
2646 		if (ata_id_has_da(dev->id)) {
2647 			dev->flags |= ATA_DFLAG_DA;
2648 			zpodd_init(dev);
2649 		}
2650 
2651 		/* print device info to dmesg */
2652 		if (ata_msg_drv(ap) && print_info)
2653 			ata_dev_info(dev,
2654 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2655 				     modelbuf, fwrevbuf,
2656 				     ata_mode_string(xfer_mask),
2657 				     cdb_intr_string, atapi_an_string,
2658 				     dma_dir_string);
2659 	}
2660 
2661 	/* determine max_sectors */
2662 	dev->max_sectors = ATA_MAX_SECTORS;
2663 	if (dev->flags & ATA_DFLAG_LBA48)
2664 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2665 
2666 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2667 	   200 sectors */
2668 	if (ata_dev_knobble(dev)) {
2669 		if (ata_msg_drv(ap) && print_info)
2670 			ata_dev_info(dev, "applying bridge limits\n");
2671 		dev->udma_mask &= ATA_UDMA5;
2672 		dev->max_sectors = ATA_MAX_SECTORS;
2673 	}
2674 
2675 	if ((dev->class == ATA_DEV_ATAPI) &&
2676 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2677 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2678 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2679 	}
2680 
2681 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2682 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2683 					 dev->max_sectors);
2684 
2685 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2686 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2687 					 dev->max_sectors);
2688 
2689 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2690 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2691 
2692 	if (ap->ops->dev_config)
2693 		ap->ops->dev_config(dev);
2694 
2695 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2696 		/* Let the user know. We don't want to disallow opens for
2697 		   rescue purposes, or in case the vendor is just a blithering
2698 		   idiot. Do this after the dev_config call as some controllers
2699 		   with buggy firmware may want to avoid reporting false device
2700 		   bugs */
2701 
2702 		if (print_info) {
2703 			ata_dev_warn(dev,
2704 "Drive reports diagnostics failure. This may indicate a drive\n");
2705 			ata_dev_warn(dev,
2706 "fault or invalid emulation. Contact drive vendor for information.\n");
2707 		}
2708 	}
2709 
2710 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2711 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2712 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2713 	}
2714 
2715 	return 0;
2716 
2717 err_out_nosup:
2718 	if (ata_msg_probe(ap))
2719 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2720 	return rc;
2721 }
2722 
2723 /**
2724  *	ata_cable_40wire	-	return 40 wire cable type
2725  *	@ap: port
2726  *
2727  *	Helper method for drivers which want to hardwire 40 wire cable
2728  *	detection.
2729  */
2730 
2731 int ata_cable_40wire(struct ata_port *ap)
2732 {
2733 	return ATA_CBL_PATA40;
2734 }
2735 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2736 
2737 /**
2738  *	ata_cable_80wire	-	return 80 wire cable type
2739  *	@ap: port
2740  *
2741  *	Helper method for drivers which want to hardwire 80 wire cable
2742  *	detection.
2743  */
2744 
2745 int ata_cable_80wire(struct ata_port *ap)
2746 {
2747 	return ATA_CBL_PATA80;
2748 }
2749 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2750 
2751 /**
2752  *	ata_cable_unknown	-	return unknown PATA cable.
2753  *	@ap: port
2754  *
2755  *	Helper method for drivers which have no PATA cable detection.
2756  */
2757 
2758 int ata_cable_unknown(struct ata_port *ap)
2759 {
2760 	return ATA_CBL_PATA_UNK;
2761 }
2762 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2763 
2764 /**
2765  *	ata_cable_ignore	-	return ignored PATA cable.
2766  *	@ap: port
2767  *
2768  *	Helper method for drivers which don't use cable type to limit
2769  *	transfer mode.
2770  */
2771 int ata_cable_ignore(struct ata_port *ap)
2772 {
2773 	return ATA_CBL_PATA_IGN;
2774 }
2775 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2776 
2777 /**
2778  *	ata_cable_sata	-	return SATA cable type
2779  *	@ap: port
2780  *
2781  *	Helper method for drivers which have SATA cables
2782  */
2783 
2784 int ata_cable_sata(struct ata_port *ap)
2785 {
2786 	return ATA_CBL_SATA;
2787 }
2788 EXPORT_SYMBOL_GPL(ata_cable_sata);
2789 
2790 /**
2791  *	ata_bus_probe - Reset and probe ATA bus
2792  *	@ap: Bus to probe
2793  *
2794  *	Master ATA bus probing function.  Initiates a hardware-dependent
2795  *	bus reset, then attempts to identify any devices found on
2796  *	the bus.
2797  *
2798  *	LOCKING:
2799  *	PCI/etc. bus probe sem.
2800  *
2801  *	RETURNS:
2802  *	Zero on success, negative errno otherwise.
2803  */
2804 
2805 int ata_bus_probe(struct ata_port *ap)
2806 {
2807 	unsigned int classes[ATA_MAX_DEVICES];
2808 	int tries[ATA_MAX_DEVICES];
2809 	int rc;
2810 	struct ata_device *dev;
2811 
2812 	ata_for_each_dev(dev, &ap->link, ALL)
2813 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2814 
2815  retry:
2816 	ata_for_each_dev(dev, &ap->link, ALL) {
2817 		/* If we issue an SRST then an ATA drive (not ATAPI)
2818 		 * may change configuration and be in PIO0 timing. If
2819 		 * we do a hard reset (or are coming from power on)
2820 		 * this is true for ATA or ATAPI. Until we've set a
2821 		 * suitable controller mode we should not touch the
2822 		 * bus as we may be talking too fast.
2823 		 */
2824 		dev->pio_mode = XFER_PIO_0;
2825 		dev->dma_mode = 0xff;
2826 
2827 		/* If the controller has a pio mode setup function
2828 		 * then use it to set the chipset to rights. Don't
2829 		 * touch the DMA setup as that will be dealt with when
2830 		 * configuring devices.
2831 		 */
2832 		if (ap->ops->set_piomode)
2833 			ap->ops->set_piomode(ap, dev);
2834 	}
2835 
2836 	/* reset and determine device classes */
2837 	ap->ops->phy_reset(ap);
2838 
2839 	ata_for_each_dev(dev, &ap->link, ALL) {
2840 		if (dev->class != ATA_DEV_UNKNOWN)
2841 			classes[dev->devno] = dev->class;
2842 		else
2843 			classes[dev->devno] = ATA_DEV_NONE;
2844 
2845 		dev->class = ATA_DEV_UNKNOWN;
2846 	}
2847 
2848 	/* read IDENTIFY page and configure devices. We have to do the identify
2849 	   specific sequence bass-ackwards so that PDIAG- is released by
2850 	   the slave device */
2851 
2852 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2853 		if (tries[dev->devno])
2854 			dev->class = classes[dev->devno];
2855 
2856 		if (!ata_dev_enabled(dev))
2857 			continue;
2858 
2859 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2860 				     dev->id);
2861 		if (rc)
2862 			goto fail;
2863 	}
2864 
2865 	/* Now ask for the cable type as PDIAG- should have been released */
2866 	if (ap->ops->cable_detect)
2867 		ap->cbl = ap->ops->cable_detect(ap);
2868 
2869 	/* We may have SATA bridge glue hiding here irrespective of
2870 	 * the reported cable types and sensed types.  When SATA
2871 	 * drives indicate we have a bridge, we don't know which end
2872 	 * of the link the bridge is which is a problem.
2873 	 */
2874 	ata_for_each_dev(dev, &ap->link, ENABLED)
2875 		if (ata_id_is_sata(dev->id))
2876 			ap->cbl = ATA_CBL_SATA;
2877 
2878 	/* After the identify sequence we can now set up the devices. We do
2879 	   this in the normal order so that the user doesn't get confused */
2880 
2881 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2882 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2883 		rc = ata_dev_configure(dev);
2884 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2885 		if (rc)
2886 			goto fail;
2887 	}
2888 
2889 	/* configure transfer mode */
2890 	rc = ata_set_mode(&ap->link, &dev);
2891 	if (rc)
2892 		goto fail;
2893 
2894 	ata_for_each_dev(dev, &ap->link, ENABLED)
2895 		return 0;
2896 
2897 	return -ENODEV;
2898 
2899  fail:
2900 	tries[dev->devno]--;
2901 
2902 	switch (rc) {
2903 	case -EINVAL:
2904 		/* eeek, something went very wrong, give up */
2905 		tries[dev->devno] = 0;
2906 		break;
2907 
2908 	case -ENODEV:
2909 		/* give it just one more chance */
2910 		tries[dev->devno] = min(tries[dev->devno], 1);
2911 		/* fall through */
2912 	case -EIO:
2913 		if (tries[dev->devno] == 1) {
2914 			/* This is the last chance, better to slow
2915 			 * down than lose it.
2916 			 */
2917 			sata_down_spd_limit(&ap->link, 0);
2918 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2919 		}
2920 	}
2921 
2922 	if (!tries[dev->devno])
2923 		ata_dev_disable(dev);
2924 
2925 	goto retry;
2926 }
2927 
2928 /**
2929  *	sata_print_link_status - Print SATA link status
2930  *	@link: SATA link to printk link status about
2931  *
2932  *	This function prints link speed and status of a SATA link.
2933  *
2934  *	LOCKING:
2935  *	None.
2936  */
2937 static void sata_print_link_status(struct ata_link *link)
2938 {
2939 	u32 sstatus, scontrol, tmp;
2940 
2941 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2942 		return;
2943 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2944 
2945 	if (ata_phys_link_online(link)) {
2946 		tmp = (sstatus >> 4) & 0xf;
2947 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2948 			      sata_spd_string(tmp), sstatus, scontrol);
2949 	} else {
2950 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2951 			      sstatus, scontrol);
2952 	}
2953 }
2954 
2955 /**
2956  *	ata_dev_pair		-	return other device on cable
2957  *	@adev: device
2958  *
2959  *	Obtain the other device on the same cable, or if none is
2960  *	present NULL is returned
2961  */
2962 
2963 struct ata_device *ata_dev_pair(struct ata_device *adev)
2964 {
2965 	struct ata_link *link = adev->link;
2966 	struct ata_device *pair = &link->device[1 - adev->devno];
2967 	if (!ata_dev_enabled(pair))
2968 		return NULL;
2969 	return pair;
2970 }
2971 EXPORT_SYMBOL_GPL(ata_dev_pair);
2972 
2973 /**
2974  *	sata_down_spd_limit - adjust SATA spd limit downward
2975  *	@link: Link to adjust SATA spd limit for
2976  *	@spd_limit: Additional limit
2977  *
2978  *	Adjust SATA spd limit of @link downward.  Note that this
2979  *	function only adjusts the limit.  The change must be applied
2980  *	using sata_set_spd().
2981  *
2982  *	If @spd_limit is non-zero, the speed is limited to equal to or
2983  *	lower than @spd_limit if such speed is supported.  If
2984  *	@spd_limit is slower than any supported speed, only the lowest
2985  *	supported speed is allowed.
2986  *
2987  *	LOCKING:
2988  *	Inherited from caller.
2989  *
2990  *	RETURNS:
2991  *	0 on success, negative errno on failure
2992  */
2993 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2994 {
2995 	u32 sstatus, spd, mask;
2996 	int rc, bit;
2997 
2998 	if (!sata_scr_valid(link))
2999 		return -EOPNOTSUPP;
3000 
3001 	/* If SCR can be read, use it to determine the current SPD.
3002 	 * If not, use cached value in link->sata_spd.
3003 	 */
3004 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3005 	if (rc == 0 && ata_sstatus_online(sstatus))
3006 		spd = (sstatus >> 4) & 0xf;
3007 	else
3008 		spd = link->sata_spd;
3009 
3010 	mask = link->sata_spd_limit;
3011 	if (mask <= 1)
3012 		return -EINVAL;
3013 
3014 	/* unconditionally mask off the highest bit */
3015 	bit = fls(mask) - 1;
3016 	mask &= ~(1 << bit);
3017 
3018 	/*
3019 	 * Mask off all speeds higher than or equal to the current one.  At
3020 	 * this point, if current SPD is not available and we previously
3021 	 * recorded the link speed from SStatus, the driver has already
3022 	 * masked off the highest bit so mask should already be 1 or 0.
3023 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3024 	 * not previously recorded speed from SStatus.  Just return in this
3025 	 * case.
3026 	 */
3027 	if (spd > 1)
3028 		mask &= (1 << (spd - 1)) - 1;
3029 	else
3030 		return -EINVAL;
3031 
3032 	/* were we already at the bottom? */
3033 	if (!mask)
3034 		return -EINVAL;
3035 
3036 	if (spd_limit) {
3037 		if (mask & ((1 << spd_limit) - 1))
3038 			mask &= (1 << spd_limit) - 1;
3039 		else {
3040 			bit = ffs(mask) - 1;
3041 			mask = 1 << bit;
3042 		}
3043 	}
3044 
3045 	link->sata_spd_limit = mask;
3046 
3047 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3048 		      sata_spd_string(fls(mask)));
3049 
3050 	return 0;
3051 }
3052 
3053 #ifdef CONFIG_ATA_ACPI
3054 /**
3055  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3056  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3057  *	@cycle: cycle duration in ns
3058  *
3059  *	Return matching xfer mode for @cycle.  The returned mode is of
3060  *	the transfer type specified by @xfer_shift.  If @cycle is too
3061  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3062  *	than the fastest known mode, the fasted mode is returned.
3063  *
3064  *	LOCKING:
3065  *	None.
3066  *
3067  *	RETURNS:
3068  *	Matching xfer_mode, 0xff if no match found.
3069  */
3070 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3071 {
3072 	u8 base_mode = 0xff, last_mode = 0xff;
3073 	const struct ata_xfer_ent *ent;
3074 	const struct ata_timing *t;
3075 
3076 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3077 		if (ent->shift == xfer_shift)
3078 			base_mode = ent->base;
3079 
3080 	for (t = ata_timing_find_mode(base_mode);
3081 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3082 		unsigned short this_cycle;
3083 
3084 		switch (xfer_shift) {
3085 		case ATA_SHIFT_PIO:
3086 		case ATA_SHIFT_MWDMA:
3087 			this_cycle = t->cycle;
3088 			break;
3089 		case ATA_SHIFT_UDMA:
3090 			this_cycle = t->udma;
3091 			break;
3092 		default:
3093 			return 0xff;
3094 		}
3095 
3096 		if (cycle > this_cycle)
3097 			break;
3098 
3099 		last_mode = t->mode;
3100 	}
3101 
3102 	return last_mode;
3103 }
3104 #endif
3105 
3106 /**
3107  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3108  *	@dev: Device to adjust xfer masks
3109  *	@sel: ATA_DNXFER_* selector
3110  *
3111  *	Adjust xfer masks of @dev downward.  Note that this function
3112  *	does not apply the change.  Invoking ata_set_mode() afterwards
3113  *	will apply the limit.
3114  *
3115  *	LOCKING:
3116  *	Inherited from caller.
3117  *
3118  *	RETURNS:
3119  *	0 on success, negative errno on failure
3120  */
3121 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3122 {
3123 	char buf[32];
3124 	unsigned long orig_mask, xfer_mask;
3125 	unsigned long pio_mask, mwdma_mask, udma_mask;
3126 	int quiet, highbit;
3127 
3128 	quiet = !!(sel & ATA_DNXFER_QUIET);
3129 	sel &= ~ATA_DNXFER_QUIET;
3130 
3131 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3132 						  dev->mwdma_mask,
3133 						  dev->udma_mask);
3134 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3135 
3136 	switch (sel) {
3137 	case ATA_DNXFER_PIO:
3138 		highbit = fls(pio_mask) - 1;
3139 		pio_mask &= ~(1 << highbit);
3140 		break;
3141 
3142 	case ATA_DNXFER_DMA:
3143 		if (udma_mask) {
3144 			highbit = fls(udma_mask) - 1;
3145 			udma_mask &= ~(1 << highbit);
3146 			if (!udma_mask)
3147 				return -ENOENT;
3148 		} else if (mwdma_mask) {
3149 			highbit = fls(mwdma_mask) - 1;
3150 			mwdma_mask &= ~(1 << highbit);
3151 			if (!mwdma_mask)
3152 				return -ENOENT;
3153 		}
3154 		break;
3155 
3156 	case ATA_DNXFER_40C:
3157 		udma_mask &= ATA_UDMA_MASK_40C;
3158 		break;
3159 
3160 	case ATA_DNXFER_FORCE_PIO0:
3161 		pio_mask &= 1;
3162 		/* fall through */
3163 	case ATA_DNXFER_FORCE_PIO:
3164 		mwdma_mask = 0;
3165 		udma_mask = 0;
3166 		break;
3167 
3168 	default:
3169 		BUG();
3170 	}
3171 
3172 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3173 
3174 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3175 		return -ENOENT;
3176 
3177 	if (!quiet) {
3178 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3179 			snprintf(buf, sizeof(buf), "%s:%s",
3180 				 ata_mode_string(xfer_mask),
3181 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3182 		else
3183 			snprintf(buf, sizeof(buf), "%s",
3184 				 ata_mode_string(xfer_mask));
3185 
3186 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3187 	}
3188 
3189 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3190 			    &dev->udma_mask);
3191 
3192 	return 0;
3193 }
3194 
3195 static int ata_dev_set_mode(struct ata_device *dev)
3196 {
3197 	struct ata_port *ap = dev->link->ap;
3198 	struct ata_eh_context *ehc = &dev->link->eh_context;
3199 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3200 	const char *dev_err_whine = "";
3201 	int ign_dev_err = 0;
3202 	unsigned int err_mask = 0;
3203 	int rc;
3204 
3205 	dev->flags &= ~ATA_DFLAG_PIO;
3206 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3207 		dev->flags |= ATA_DFLAG_PIO;
3208 
3209 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3210 		dev_err_whine = " (SET_XFERMODE skipped)";
3211 	else {
3212 		if (nosetxfer)
3213 			ata_dev_warn(dev,
3214 				     "NOSETXFER but PATA detected - can't "
3215 				     "skip SETXFER, might malfunction\n");
3216 		err_mask = ata_dev_set_xfermode(dev);
3217 	}
3218 
3219 	if (err_mask & ~AC_ERR_DEV)
3220 		goto fail;
3221 
3222 	/* revalidate */
3223 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3224 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3225 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3226 	if (rc)
3227 		return rc;
3228 
3229 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3230 		/* Old CFA may refuse this command, which is just fine */
3231 		if (ata_id_is_cfa(dev->id))
3232 			ign_dev_err = 1;
3233 		/* Catch several broken garbage emulations plus some pre
3234 		   ATA devices */
3235 		if (ata_id_major_version(dev->id) == 0 &&
3236 					dev->pio_mode <= XFER_PIO_2)
3237 			ign_dev_err = 1;
3238 		/* Some very old devices and some bad newer ones fail
3239 		   any kind of SET_XFERMODE request but support PIO0-2
3240 		   timings and no IORDY */
3241 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3242 			ign_dev_err = 1;
3243 	}
3244 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3245 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3246 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3247 	    dev->dma_mode == XFER_MW_DMA_0 &&
3248 	    (dev->id[63] >> 8) & 1)
3249 		ign_dev_err = 1;
3250 
3251 	/* if the device is actually configured correctly, ignore dev err */
3252 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3253 		ign_dev_err = 1;
3254 
3255 	if (err_mask & AC_ERR_DEV) {
3256 		if (!ign_dev_err)
3257 			goto fail;
3258 		else
3259 			dev_err_whine = " (device error ignored)";
3260 	}
3261 
3262 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3263 		dev->xfer_shift, (int)dev->xfer_mode);
3264 
3265 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3266 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3267 		ata_dev_info(dev, "configured for %s%s\n",
3268 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3269 			     dev_err_whine);
3270 
3271 	return 0;
3272 
3273  fail:
3274 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3275 	return -EIO;
3276 }
3277 
3278 /**
3279  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3280  *	@link: link on which timings will be programmed
3281  *	@r_failed_dev: out parameter for failed device
3282  *
3283  *	Standard implementation of the function used to tune and set
3284  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3285  *	ata_dev_set_mode() fails, pointer to the failing device is
3286  *	returned in @r_failed_dev.
3287  *
3288  *	LOCKING:
3289  *	PCI/etc. bus probe sem.
3290  *
3291  *	RETURNS:
3292  *	0 on success, negative errno otherwise
3293  */
3294 
3295 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3296 {
3297 	struct ata_port *ap = link->ap;
3298 	struct ata_device *dev;
3299 	int rc = 0, used_dma = 0, found = 0;
3300 
3301 	/* step 1: calculate xfer_mask */
3302 	ata_for_each_dev(dev, link, ENABLED) {
3303 		unsigned long pio_mask, dma_mask;
3304 		unsigned int mode_mask;
3305 
3306 		mode_mask = ATA_DMA_MASK_ATA;
3307 		if (dev->class == ATA_DEV_ATAPI)
3308 			mode_mask = ATA_DMA_MASK_ATAPI;
3309 		else if (ata_id_is_cfa(dev->id))
3310 			mode_mask = ATA_DMA_MASK_CFA;
3311 
3312 		ata_dev_xfermask(dev);
3313 		ata_force_xfermask(dev);
3314 
3315 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3316 
3317 		if (libata_dma_mask & mode_mask)
3318 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3319 						     dev->udma_mask);
3320 		else
3321 			dma_mask = 0;
3322 
3323 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3324 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3325 
3326 		found = 1;
3327 		if (ata_dma_enabled(dev))
3328 			used_dma = 1;
3329 	}
3330 	if (!found)
3331 		goto out;
3332 
3333 	/* step 2: always set host PIO timings */
3334 	ata_for_each_dev(dev, link, ENABLED) {
3335 		if (dev->pio_mode == 0xff) {
3336 			ata_dev_warn(dev, "no PIO support\n");
3337 			rc = -EINVAL;
3338 			goto out;
3339 		}
3340 
3341 		dev->xfer_mode = dev->pio_mode;
3342 		dev->xfer_shift = ATA_SHIFT_PIO;
3343 		if (ap->ops->set_piomode)
3344 			ap->ops->set_piomode(ap, dev);
3345 	}
3346 
3347 	/* step 3: set host DMA timings */
3348 	ata_for_each_dev(dev, link, ENABLED) {
3349 		if (!ata_dma_enabled(dev))
3350 			continue;
3351 
3352 		dev->xfer_mode = dev->dma_mode;
3353 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3354 		if (ap->ops->set_dmamode)
3355 			ap->ops->set_dmamode(ap, dev);
3356 	}
3357 
3358 	/* step 4: update devices' xfer mode */
3359 	ata_for_each_dev(dev, link, ENABLED) {
3360 		rc = ata_dev_set_mode(dev);
3361 		if (rc)
3362 			goto out;
3363 	}
3364 
3365 	/* Record simplex status. If we selected DMA then the other
3366 	 * host channels are not permitted to do so.
3367 	 */
3368 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3369 		ap->host->simplex_claimed = ap;
3370 
3371  out:
3372 	if (rc)
3373 		*r_failed_dev = dev;
3374 	return rc;
3375 }
3376 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3377 
3378 /**
3379  *	ata_wait_ready - wait for link to become ready
3380  *	@link: link to be waited on
3381  *	@deadline: deadline jiffies for the operation
3382  *	@check_ready: callback to check link readiness
3383  *
3384  *	Wait for @link to become ready.  @check_ready should return
3385  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3386  *	link doesn't seem to be occupied, other errno for other error
3387  *	conditions.
3388  *
3389  *	Transient -ENODEV conditions are allowed for
3390  *	ATA_TMOUT_FF_WAIT.
3391  *
3392  *	LOCKING:
3393  *	EH context.
3394  *
3395  *	RETURNS:
3396  *	0 if @link is ready before @deadline; otherwise, -errno.
3397  */
3398 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3399 		   int (*check_ready)(struct ata_link *link))
3400 {
3401 	unsigned long start = jiffies;
3402 	unsigned long nodev_deadline;
3403 	int warned = 0;
3404 
3405 	/* choose which 0xff timeout to use, read comment in libata.h */
3406 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3407 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3408 	else
3409 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3410 
3411 	/* Slave readiness can't be tested separately from master.  On
3412 	 * M/S emulation configuration, this function should be called
3413 	 * only on the master and it will handle both master and slave.
3414 	 */
3415 	WARN_ON(link == link->ap->slave_link);
3416 
3417 	if (time_after(nodev_deadline, deadline))
3418 		nodev_deadline = deadline;
3419 
3420 	while (1) {
3421 		unsigned long now = jiffies;
3422 		int ready, tmp;
3423 
3424 		ready = tmp = check_ready(link);
3425 		if (ready > 0)
3426 			return 0;
3427 
3428 		/*
3429 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3430 		 * is online.  Also, some SATA devices take a long
3431 		 * time to clear 0xff after reset.  Wait for
3432 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3433 		 * offline.
3434 		 *
3435 		 * Note that some PATA controllers (pata_ali) explode
3436 		 * if status register is read more than once when
3437 		 * there's no device attached.
3438 		 */
3439 		if (ready == -ENODEV) {
3440 			if (ata_link_online(link))
3441 				ready = 0;
3442 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3443 				 !ata_link_offline(link) &&
3444 				 time_before(now, nodev_deadline))
3445 				ready = 0;
3446 		}
3447 
3448 		if (ready)
3449 			return ready;
3450 		if (time_after(now, deadline))
3451 			return -EBUSY;
3452 
3453 		if (!warned && time_after(now, start + 5 * HZ) &&
3454 		    (deadline - now > 3 * HZ)) {
3455 			ata_link_warn(link,
3456 				"link is slow to respond, please be patient "
3457 				"(ready=%d)\n", tmp);
3458 			warned = 1;
3459 		}
3460 
3461 		ata_msleep(link->ap, 50);
3462 	}
3463 }
3464 
3465 /**
3466  *	ata_wait_after_reset - wait for link to become ready after reset
3467  *	@link: link to be waited on
3468  *	@deadline: deadline jiffies for the operation
3469  *	@check_ready: callback to check link readiness
3470  *
3471  *	Wait for @link to become ready after reset.
3472  *
3473  *	LOCKING:
3474  *	EH context.
3475  *
3476  *	RETURNS:
3477  *	0 if @link is ready before @deadline; otherwise, -errno.
3478  */
3479 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3480 				int (*check_ready)(struct ata_link *link))
3481 {
3482 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3483 
3484 	return ata_wait_ready(link, deadline, check_ready);
3485 }
3486 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3487 
3488 /**
3489  *	ata_std_prereset - prepare for reset
3490  *	@link: ATA link to be reset
3491  *	@deadline: deadline jiffies for the operation
3492  *
3493  *	@link is about to be reset.  Initialize it.  Failure from
3494  *	prereset makes libata abort whole reset sequence and give up
3495  *	that port, so prereset should be best-effort.  It does its
3496  *	best to prepare for reset sequence but if things go wrong, it
3497  *	should just whine, not fail.
3498  *
3499  *	LOCKING:
3500  *	Kernel thread context (may sleep)
3501  *
3502  *	RETURNS:
3503  *	0 on success, -errno otherwise.
3504  */
3505 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3506 {
3507 	struct ata_port *ap = link->ap;
3508 	struct ata_eh_context *ehc = &link->eh_context;
3509 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3510 	int rc;
3511 
3512 	/* if we're about to do hardreset, nothing more to do */
3513 	if (ehc->i.action & ATA_EH_HARDRESET)
3514 		return 0;
3515 
3516 	/* if SATA, resume link */
3517 	if (ap->flags & ATA_FLAG_SATA) {
3518 		rc = sata_link_resume(link, timing, deadline);
3519 		/* whine about phy resume failure but proceed */
3520 		if (rc && rc != -EOPNOTSUPP)
3521 			ata_link_warn(link,
3522 				      "failed to resume link for reset (errno=%d)\n",
3523 				      rc);
3524 	}
3525 
3526 	/* no point in trying softreset on offline link */
3527 	if (ata_phys_link_offline(link))
3528 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3529 
3530 	return 0;
3531 }
3532 EXPORT_SYMBOL_GPL(ata_std_prereset);
3533 
3534 /**
3535  *	sata_std_hardreset - COMRESET w/o waiting or classification
3536  *	@link: link to reset
3537  *	@class: resulting class of attached device
3538  *	@deadline: deadline jiffies for the operation
3539  *
3540  *	Standard SATA COMRESET w/o waiting or classification.
3541  *
3542  *	LOCKING:
3543  *	Kernel thread context (may sleep)
3544  *
3545  *	RETURNS:
3546  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3547  */
3548 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3549 		       unsigned long deadline)
3550 {
3551 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3552 	bool online;
3553 	int rc;
3554 
3555 	/* do hardreset */
3556 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3557 	return online ? -EAGAIN : rc;
3558 }
3559 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3560 
3561 /**
3562  *	ata_std_postreset - standard postreset callback
3563  *	@link: the target ata_link
3564  *	@classes: classes of attached devices
3565  *
3566  *	This function is invoked after a successful reset.  Note that
3567  *	the device might have been reset more than once using
3568  *	different reset methods before postreset is invoked.
3569  *
3570  *	LOCKING:
3571  *	Kernel thread context (may sleep)
3572  */
3573 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3574 {
3575 	u32 serror;
3576 
3577 	DPRINTK("ENTER\n");
3578 
3579 	/* reset complete, clear SError */
3580 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3581 		sata_scr_write(link, SCR_ERROR, serror);
3582 
3583 	/* print link status */
3584 	sata_print_link_status(link);
3585 
3586 	DPRINTK("EXIT\n");
3587 }
3588 EXPORT_SYMBOL_GPL(ata_std_postreset);
3589 
3590 /**
3591  *	ata_dev_same_device - Determine whether new ID matches configured device
3592  *	@dev: device to compare against
3593  *	@new_class: class of the new device
3594  *	@new_id: IDENTIFY page of the new device
3595  *
3596  *	Compare @new_class and @new_id against @dev and determine
3597  *	whether @dev is the device indicated by @new_class and
3598  *	@new_id.
3599  *
3600  *	LOCKING:
3601  *	None.
3602  *
3603  *	RETURNS:
3604  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3605  */
3606 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3607 			       const u16 *new_id)
3608 {
3609 	const u16 *old_id = dev->id;
3610 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3611 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3612 
3613 	if (dev->class != new_class) {
3614 		ata_dev_info(dev, "class mismatch %d != %d\n",
3615 			     dev->class, new_class);
3616 		return 0;
3617 	}
3618 
3619 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3620 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3621 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3622 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3623 
3624 	if (strcmp(model[0], model[1])) {
3625 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3626 			     model[0], model[1]);
3627 		return 0;
3628 	}
3629 
3630 	if (strcmp(serial[0], serial[1])) {
3631 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3632 			     serial[0], serial[1]);
3633 		return 0;
3634 	}
3635 
3636 	return 1;
3637 }
3638 
3639 /**
3640  *	ata_dev_reread_id - Re-read IDENTIFY data
3641  *	@dev: target ATA device
3642  *	@readid_flags: read ID flags
3643  *
3644  *	Re-read IDENTIFY page and make sure @dev is still attached to
3645  *	the port.
3646  *
3647  *	LOCKING:
3648  *	Kernel thread context (may sleep)
3649  *
3650  *	RETURNS:
3651  *	0 on success, negative errno otherwise
3652  */
3653 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3654 {
3655 	unsigned int class = dev->class;
3656 	u16 *id = (void *)dev->link->ap->sector_buf;
3657 	int rc;
3658 
3659 	/* read ID data */
3660 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3661 	if (rc)
3662 		return rc;
3663 
3664 	/* is the device still there? */
3665 	if (!ata_dev_same_device(dev, class, id))
3666 		return -ENODEV;
3667 
3668 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3669 	return 0;
3670 }
3671 
3672 /**
3673  *	ata_dev_revalidate - Revalidate ATA device
3674  *	@dev: device to revalidate
3675  *	@new_class: new class code
3676  *	@readid_flags: read ID flags
3677  *
3678  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3679  *	port and reconfigure it according to the new IDENTIFY page.
3680  *
3681  *	LOCKING:
3682  *	Kernel thread context (may sleep)
3683  *
3684  *	RETURNS:
3685  *	0 on success, negative errno otherwise
3686  */
3687 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3688 		       unsigned int readid_flags)
3689 {
3690 	u64 n_sectors = dev->n_sectors;
3691 	u64 n_native_sectors = dev->n_native_sectors;
3692 	int rc;
3693 
3694 	if (!ata_dev_enabled(dev))
3695 		return -ENODEV;
3696 
3697 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3698 	if (ata_class_enabled(new_class) &&
3699 	    new_class != ATA_DEV_ATA &&
3700 	    new_class != ATA_DEV_ATAPI &&
3701 	    new_class != ATA_DEV_ZAC &&
3702 	    new_class != ATA_DEV_SEMB) {
3703 		ata_dev_info(dev, "class mismatch %u != %u\n",
3704 			     dev->class, new_class);
3705 		rc = -ENODEV;
3706 		goto fail;
3707 	}
3708 
3709 	/* re-read ID */
3710 	rc = ata_dev_reread_id(dev, readid_flags);
3711 	if (rc)
3712 		goto fail;
3713 
3714 	/* configure device according to the new ID */
3715 	rc = ata_dev_configure(dev);
3716 	if (rc)
3717 		goto fail;
3718 
3719 	/* verify n_sectors hasn't changed */
3720 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3721 	    dev->n_sectors == n_sectors)
3722 		return 0;
3723 
3724 	/* n_sectors has changed */
3725 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3726 		     (unsigned long long)n_sectors,
3727 		     (unsigned long long)dev->n_sectors);
3728 
3729 	/*
3730 	 * Something could have caused HPA to be unlocked
3731 	 * involuntarily.  If n_native_sectors hasn't changed and the
3732 	 * new size matches it, keep the device.
3733 	 */
3734 	if (dev->n_native_sectors == n_native_sectors &&
3735 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3736 		ata_dev_warn(dev,
3737 			     "new n_sectors matches native, probably "
3738 			     "late HPA unlock, n_sectors updated\n");
3739 		/* use the larger n_sectors */
3740 		return 0;
3741 	}
3742 
3743 	/*
3744 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3745 	 * unlocking HPA in those cases.
3746 	 *
3747 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3748 	 */
3749 	if (dev->n_native_sectors == n_native_sectors &&
3750 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3751 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3752 		ata_dev_warn(dev,
3753 			     "old n_sectors matches native, probably "
3754 			     "late HPA lock, will try to unlock HPA\n");
3755 		/* try unlocking HPA */
3756 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3757 		rc = -EIO;
3758 	} else
3759 		rc = -ENODEV;
3760 
3761 	/* restore original n_[native_]sectors and fail */
3762 	dev->n_native_sectors = n_native_sectors;
3763 	dev->n_sectors = n_sectors;
3764  fail:
3765 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3766 	return rc;
3767 }
3768 
3769 struct ata_blacklist_entry {
3770 	const char *model_num;
3771 	const char *model_rev;
3772 	unsigned long horkage;
3773 };
3774 
3775 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3776 	/* Devices with DMA related problems under Linux */
3777 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3778 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3779 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3780 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3781 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3782 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3783 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3784 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3785 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3786 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3787 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3788 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3789 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3790 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3791 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3792 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3793 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3794 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3795 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3796 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3797 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3798 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3799 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3800 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3801 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3802 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3803 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3804 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3805 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3806 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3807 	/* Odd clown on sil3726/4726 PMPs */
3808 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3809 
3810 	/* Weird ATAPI devices */
3811 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3812 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3813 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3814 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3815 
3816 	/*
3817 	 * Causes silent data corruption with higher max sects.
3818 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3819 	 */
3820 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3821 
3822 	/*
3823 	 * These devices time out with higher max sects.
3824 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3825 	 */
3826 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3827 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3828 
3829 	/* Devices we expect to fail diagnostics */
3830 
3831 	/* Devices where NCQ should be avoided */
3832 	/* NCQ is slow */
3833 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3834 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3835 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3836 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3837 	/* NCQ is broken */
3838 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3839 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3840 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3841 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3842 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3843 
3844 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3845 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3846 						ATA_HORKAGE_FIRMWARE_WARN },
3847 
3848 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3849 						ATA_HORKAGE_FIRMWARE_WARN },
3850 
3851 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3852 						ATA_HORKAGE_FIRMWARE_WARN },
3853 
3854 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3855 						ATA_HORKAGE_FIRMWARE_WARN },
3856 
3857 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3858 	   the ST disks also have LPM issues */
3859 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3860 						ATA_HORKAGE_NOLPM, },
3861 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3862 
3863 	/* Blacklist entries taken from Silicon Image 3124/3132
3864 	   Windows driver .inf file - also several Linux problem reports */
3865 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3866 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3867 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3868 
3869 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3870 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3871 
3872 	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
3873 	   SD7SN6S256G and SD8SN8U256G */
3874 	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, },
3875 
3876 	/* devices which puke on READ_NATIVE_MAX */
3877 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3878 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3879 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3880 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3881 
3882 	/* this one allows HPA unlocking but fails IOs on the area */
3883 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3884 
3885 	/* Devices which report 1 sector over size HPA */
3886 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3887 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3888 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3889 
3890 	/* Devices which get the IVB wrong */
3891 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3892 	/* Maybe we should just blacklist TSSTcorp... */
3893 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3894 
3895 	/* Devices that do not need bridging limits applied */
3896 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3897 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3898 
3899 	/* Devices which aren't very happy with higher link speeds */
3900 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3901 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3902 
3903 	/*
3904 	 * Devices which choke on SETXFER.  Applies only if both the
3905 	 * device and controller are SATA.
3906 	 */
3907 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3908 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3909 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3910 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3911 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3912 
3913 	/* Crucial BX100 SSD 500GB has broken LPM support */
3914 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3915 
3916 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3917 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3918 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3919 						ATA_HORKAGE_NOLPM, },
3920 	/* 512GB MX100 with newer firmware has only LPM issues */
3921 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3922 						ATA_HORKAGE_NOLPM, },
3923 
3924 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3925 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3926 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3927 						ATA_HORKAGE_NOLPM, },
3928 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3929 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3930 						ATA_HORKAGE_NOLPM, },
3931 
3932 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3933 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3934 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3935 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3936 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3937 
3938 	/* devices that don't properly handle queued TRIM commands */
3939 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3940 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3941 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3942 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3943 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3944 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3945 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3946 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3947 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3948 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3949 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3950 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3951 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3952 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3953 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3954 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3955 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3956 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3957 
3958 	/* devices that don't properly handle TRIM commands */
3959 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
3960 
3961 	/*
3962 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3963 	 * (Return Zero After Trim) flags in the ATA Command Set are
3964 	 * unreliable in the sense that they only define what happens if
3965 	 * the device successfully executed the DSM TRIM command. TRIM
3966 	 * is only advisory, however, and the device is free to silently
3967 	 * ignore all or parts of the request.
3968 	 *
3969 	 * Whitelist drives that are known to reliably return zeroes
3970 	 * after TRIM.
3971 	 */
3972 
3973 	/*
3974 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
3975 	 * that model before whitelisting all other intel SSDs.
3976 	 */
3977 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
3978 
3979 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3980 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3982 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3983 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3984 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3986 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3987 
3988 	/*
3989 	 * Some WD SATA-I drives spin up and down erratically when the link
3990 	 * is put into the slumber mode.  We don't have full list of the
3991 	 * affected devices.  Disable LPM if the device matches one of the
3992 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
3993 	 * lost too.
3994 	 *
3995 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
3996 	 */
3997 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3998 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3999 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4000 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4001 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4002 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4003 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4004 
4005 	/* End Marker */
4006 	{ }
4007 };
4008 
4009 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4010 {
4011 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4012 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4013 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4014 
4015 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4016 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4017 
4018 	while (ad->model_num) {
4019 		if (glob_match(ad->model_num, model_num)) {
4020 			if (ad->model_rev == NULL)
4021 				return ad->horkage;
4022 			if (glob_match(ad->model_rev, model_rev))
4023 				return ad->horkage;
4024 		}
4025 		ad++;
4026 	}
4027 	return 0;
4028 }
4029 
4030 static int ata_dma_blacklisted(const struct ata_device *dev)
4031 {
4032 	/* We don't support polling DMA.
4033 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4034 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4035 	 */
4036 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4037 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4038 		return 1;
4039 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4040 }
4041 
4042 /**
4043  *	ata_is_40wire		-	check drive side detection
4044  *	@dev: device
4045  *
4046  *	Perform drive side detection decoding, allowing for device vendors
4047  *	who can't follow the documentation.
4048  */
4049 
4050 static int ata_is_40wire(struct ata_device *dev)
4051 {
4052 	if (dev->horkage & ATA_HORKAGE_IVB)
4053 		return ata_drive_40wire_relaxed(dev->id);
4054 	return ata_drive_40wire(dev->id);
4055 }
4056 
4057 /**
4058  *	cable_is_40wire		-	40/80/SATA decider
4059  *	@ap: port to consider
4060  *
4061  *	This function encapsulates the policy for speed management
4062  *	in one place. At the moment we don't cache the result but
4063  *	there is a good case for setting ap->cbl to the result when
4064  *	we are called with unknown cables (and figuring out if it
4065  *	impacts hotplug at all).
4066  *
4067  *	Return 1 if the cable appears to be 40 wire.
4068  */
4069 
4070 static int cable_is_40wire(struct ata_port *ap)
4071 {
4072 	struct ata_link *link;
4073 	struct ata_device *dev;
4074 
4075 	/* If the controller thinks we are 40 wire, we are. */
4076 	if (ap->cbl == ATA_CBL_PATA40)
4077 		return 1;
4078 
4079 	/* If the controller thinks we are 80 wire, we are. */
4080 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4081 		return 0;
4082 
4083 	/* If the system is known to be 40 wire short cable (eg
4084 	 * laptop), then we allow 80 wire modes even if the drive
4085 	 * isn't sure.
4086 	 */
4087 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4088 		return 0;
4089 
4090 	/* If the controller doesn't know, we scan.
4091 	 *
4092 	 * Note: We look for all 40 wire detects at this point.  Any
4093 	 *       80 wire detect is taken to be 80 wire cable because
4094 	 * - in many setups only the one drive (slave if present) will
4095 	 *   give a valid detect
4096 	 * - if you have a non detect capable drive you don't want it
4097 	 *   to colour the choice
4098 	 */
4099 	ata_for_each_link(link, ap, EDGE) {
4100 		ata_for_each_dev(dev, link, ENABLED) {
4101 			if (!ata_is_40wire(dev))
4102 				return 0;
4103 		}
4104 	}
4105 	return 1;
4106 }
4107 
4108 /**
4109  *	ata_dev_xfermask - Compute supported xfermask of the given device
4110  *	@dev: Device to compute xfermask for
4111  *
4112  *	Compute supported xfermask of @dev and store it in
4113  *	dev->*_mask.  This function is responsible for applying all
4114  *	known limits including host controller limits, device
4115  *	blacklist, etc...
4116  *
4117  *	LOCKING:
4118  *	None.
4119  */
4120 static void ata_dev_xfermask(struct ata_device *dev)
4121 {
4122 	struct ata_link *link = dev->link;
4123 	struct ata_port *ap = link->ap;
4124 	struct ata_host *host = ap->host;
4125 	unsigned long xfer_mask;
4126 
4127 	/* controller modes available */
4128 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4129 				      ap->mwdma_mask, ap->udma_mask);
4130 
4131 	/* drive modes available */
4132 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4133 				       dev->mwdma_mask, dev->udma_mask);
4134 	xfer_mask &= ata_id_xfermask(dev->id);
4135 
4136 	/*
4137 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4138 	 *	cable
4139 	 */
4140 	if (ata_dev_pair(dev)) {
4141 		/* No PIO5 or PIO6 */
4142 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4143 		/* No MWDMA3 or MWDMA 4 */
4144 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4145 	}
4146 
4147 	if (ata_dma_blacklisted(dev)) {
4148 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4149 		ata_dev_warn(dev,
4150 			     "device is on DMA blacklist, disabling DMA\n");
4151 	}
4152 
4153 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4154 	    host->simplex_claimed && host->simplex_claimed != ap) {
4155 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4156 		ata_dev_warn(dev,
4157 			     "simplex DMA is claimed by other device, disabling DMA\n");
4158 	}
4159 
4160 	if (ap->flags & ATA_FLAG_NO_IORDY)
4161 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4162 
4163 	if (ap->ops->mode_filter)
4164 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4165 
4166 	/* Apply cable rule here.  Don't apply it early because when
4167 	 * we handle hot plug the cable type can itself change.
4168 	 * Check this last so that we know if the transfer rate was
4169 	 * solely limited by the cable.
4170 	 * Unknown or 80 wire cables reported host side are checked
4171 	 * drive side as well. Cases where we know a 40wire cable
4172 	 * is used safely for 80 are not checked here.
4173 	 */
4174 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4175 		/* UDMA/44 or higher would be available */
4176 		if (cable_is_40wire(ap)) {
4177 			ata_dev_warn(dev,
4178 				     "limited to UDMA/33 due to 40-wire cable\n");
4179 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4180 		}
4181 
4182 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4183 			    &dev->mwdma_mask, &dev->udma_mask);
4184 }
4185 
4186 /**
4187  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4188  *	@dev: Device to which command will be sent
4189  *
4190  *	Issue SET FEATURES - XFER MODE command to device @dev
4191  *	on port @ap.
4192  *
4193  *	LOCKING:
4194  *	PCI/etc. bus probe sem.
4195  *
4196  *	RETURNS:
4197  *	0 on success, AC_ERR_* mask otherwise.
4198  */
4199 
4200 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4201 {
4202 	struct ata_taskfile tf;
4203 	unsigned int err_mask;
4204 
4205 	/* set up set-features taskfile */
4206 	DPRINTK("set features - xfer mode\n");
4207 
4208 	/* Some controllers and ATAPI devices show flaky interrupt
4209 	 * behavior after setting xfer mode.  Use polling instead.
4210 	 */
4211 	ata_tf_init(dev, &tf);
4212 	tf.command = ATA_CMD_SET_FEATURES;
4213 	tf.feature = SETFEATURES_XFER;
4214 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4215 	tf.protocol = ATA_PROT_NODATA;
4216 	/* If we are using IORDY we must send the mode setting command */
4217 	if (ata_pio_need_iordy(dev))
4218 		tf.nsect = dev->xfer_mode;
4219 	/* If the device has IORDY and the controller does not - turn it off */
4220  	else if (ata_id_has_iordy(dev->id))
4221 		tf.nsect = 0x01;
4222 	else /* In the ancient relic department - skip all of this */
4223 		return 0;
4224 
4225 	/* On some disks, this command causes spin-up, so we need longer timeout */
4226 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4227 
4228 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4229 	return err_mask;
4230 }
4231 
4232 /**
4233  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4234  *	@dev: Device to which command will be sent
4235  *	@enable: Whether to enable or disable the feature
4236  *	@feature: The sector count represents the feature to set
4237  *
4238  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4239  *	on port @ap with sector count
4240  *
4241  *	LOCKING:
4242  *	PCI/etc. bus probe sem.
4243  *
4244  *	RETURNS:
4245  *	0 on success, AC_ERR_* mask otherwise.
4246  */
4247 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4248 {
4249 	struct ata_taskfile tf;
4250 	unsigned int err_mask;
4251 	unsigned long timeout = 0;
4252 
4253 	/* set up set-features taskfile */
4254 	DPRINTK("set features - SATA features\n");
4255 
4256 	ata_tf_init(dev, &tf);
4257 	tf.command = ATA_CMD_SET_FEATURES;
4258 	tf.feature = enable;
4259 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4260 	tf.protocol = ATA_PROT_NODATA;
4261 	tf.nsect = feature;
4262 
4263 	if (enable == SETFEATURES_SPINUP)
4264 		timeout = ata_probe_timeout ?
4265 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4266 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4267 
4268 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4269 	return err_mask;
4270 }
4271 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4272 
4273 /**
4274  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4275  *	@dev: Device to which command will be sent
4276  *	@heads: Number of heads (taskfile parameter)
4277  *	@sectors: Number of sectors (taskfile parameter)
4278  *
4279  *	LOCKING:
4280  *	Kernel thread context (may sleep)
4281  *
4282  *	RETURNS:
4283  *	0 on success, AC_ERR_* mask otherwise.
4284  */
4285 static unsigned int ata_dev_init_params(struct ata_device *dev,
4286 					u16 heads, u16 sectors)
4287 {
4288 	struct ata_taskfile tf;
4289 	unsigned int err_mask;
4290 
4291 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4292 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4293 		return AC_ERR_INVALID;
4294 
4295 	/* set up init dev params taskfile */
4296 	DPRINTK("init dev params \n");
4297 
4298 	ata_tf_init(dev, &tf);
4299 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4300 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4301 	tf.protocol = ATA_PROT_NODATA;
4302 	tf.nsect = sectors;
4303 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4304 
4305 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4306 	/* A clean abort indicates an original or just out of spec drive
4307 	   and we should continue as we issue the setup based on the
4308 	   drive reported working geometry */
4309 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4310 		err_mask = 0;
4311 
4312 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4313 	return err_mask;
4314 }
4315 
4316 /**
4317  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4318  *	@qc: Metadata associated with taskfile to check
4319  *
4320  *	Allow low-level driver to filter ATA PACKET commands, returning
4321  *	a status indicating whether or not it is OK to use DMA for the
4322  *	supplied PACKET command.
4323  *
4324  *	LOCKING:
4325  *	spin_lock_irqsave(host lock)
4326  *
4327  *	RETURNS: 0 when ATAPI DMA can be used
4328  *               nonzero otherwise
4329  */
4330 int atapi_check_dma(struct ata_queued_cmd *qc)
4331 {
4332 	struct ata_port *ap = qc->ap;
4333 
4334 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4335 	 * few ATAPI devices choke on such DMA requests.
4336 	 */
4337 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4338 	    unlikely(qc->nbytes & 15))
4339 		return 1;
4340 
4341 	if (ap->ops->check_atapi_dma)
4342 		return ap->ops->check_atapi_dma(qc);
4343 
4344 	return 0;
4345 }
4346 
4347 /**
4348  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4349  *	@qc: ATA command in question
4350  *
4351  *	Non-NCQ commands cannot run with any other command, NCQ or
4352  *	not.  As upper layer only knows the queue depth, we are
4353  *	responsible for maintaining exclusion.  This function checks
4354  *	whether a new command @qc can be issued.
4355  *
4356  *	LOCKING:
4357  *	spin_lock_irqsave(host lock)
4358  *
4359  *	RETURNS:
4360  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4361  */
4362 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4363 {
4364 	struct ata_link *link = qc->dev->link;
4365 
4366 	if (ata_is_ncq(qc->tf.protocol)) {
4367 		if (!ata_tag_valid(link->active_tag))
4368 			return 0;
4369 	} else {
4370 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4371 			return 0;
4372 	}
4373 
4374 	return ATA_DEFER_LINK;
4375 }
4376 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4377 
4378 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4379 {
4380 	return AC_ERR_OK;
4381 }
4382 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4383 
4384 /**
4385  *	ata_sg_init - Associate command with scatter-gather table.
4386  *	@qc: Command to be associated
4387  *	@sg: Scatter-gather table.
4388  *	@n_elem: Number of elements in s/g table.
4389  *
4390  *	Initialize the data-related elements of queued_cmd @qc
4391  *	to point to a scatter-gather table @sg, containing @n_elem
4392  *	elements.
4393  *
4394  *	LOCKING:
4395  *	spin_lock_irqsave(host lock)
4396  */
4397 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4398 		 unsigned int n_elem)
4399 {
4400 	qc->sg = sg;
4401 	qc->n_elem = n_elem;
4402 	qc->cursg = qc->sg;
4403 }
4404 
4405 #ifdef CONFIG_HAS_DMA
4406 
4407 /**
4408  *	ata_sg_clean - Unmap DMA memory associated with command
4409  *	@qc: Command containing DMA memory to be released
4410  *
4411  *	Unmap all mapped DMA memory associated with this command.
4412  *
4413  *	LOCKING:
4414  *	spin_lock_irqsave(host lock)
4415  */
4416 static void ata_sg_clean(struct ata_queued_cmd *qc)
4417 {
4418 	struct ata_port *ap = qc->ap;
4419 	struct scatterlist *sg = qc->sg;
4420 	int dir = qc->dma_dir;
4421 
4422 	WARN_ON_ONCE(sg == NULL);
4423 
4424 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4425 
4426 	if (qc->n_elem)
4427 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4428 
4429 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4430 	qc->sg = NULL;
4431 }
4432 
4433 /**
4434  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4435  *	@qc: Command with scatter-gather table to be mapped.
4436  *
4437  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4438  *
4439  *	LOCKING:
4440  *	spin_lock_irqsave(host lock)
4441  *
4442  *	RETURNS:
4443  *	Zero on success, negative on error.
4444  *
4445  */
4446 static int ata_sg_setup(struct ata_queued_cmd *qc)
4447 {
4448 	struct ata_port *ap = qc->ap;
4449 	unsigned int n_elem;
4450 
4451 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4452 
4453 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4454 	if (n_elem < 1)
4455 		return -1;
4456 
4457 	VPRINTK("%d sg elements mapped\n", n_elem);
4458 	qc->orig_n_elem = qc->n_elem;
4459 	qc->n_elem = n_elem;
4460 	qc->flags |= ATA_QCFLAG_DMAMAP;
4461 
4462 	return 0;
4463 }
4464 
4465 #else /* !CONFIG_HAS_DMA */
4466 
4467 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4468 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4469 
4470 #endif /* !CONFIG_HAS_DMA */
4471 
4472 /**
4473  *	swap_buf_le16 - swap halves of 16-bit words in place
4474  *	@buf:  Buffer to swap
4475  *	@buf_words:  Number of 16-bit words in buffer.
4476  *
4477  *	Swap halves of 16-bit words if needed to convert from
4478  *	little-endian byte order to native cpu byte order, or
4479  *	vice-versa.
4480  *
4481  *	LOCKING:
4482  *	Inherited from caller.
4483  */
4484 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4485 {
4486 #ifdef __BIG_ENDIAN
4487 	unsigned int i;
4488 
4489 	for (i = 0; i < buf_words; i++)
4490 		buf[i] = le16_to_cpu(buf[i]);
4491 #endif /* __BIG_ENDIAN */
4492 }
4493 
4494 /**
4495  *	ata_qc_new_init - Request an available ATA command, and initialize it
4496  *	@dev: Device from whom we request an available command structure
4497  *	@tag: tag
4498  *
4499  *	LOCKING:
4500  *	None.
4501  */
4502 
4503 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4504 {
4505 	struct ata_port *ap = dev->link->ap;
4506 	struct ata_queued_cmd *qc;
4507 
4508 	/* no command while frozen */
4509 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4510 		return NULL;
4511 
4512 	/* libsas case */
4513 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4514 		tag = ata_sas_allocate_tag(ap);
4515 		if (tag < 0)
4516 			return NULL;
4517 	}
4518 
4519 	qc = __ata_qc_from_tag(ap, tag);
4520 	qc->tag = qc->hw_tag = tag;
4521 	qc->scsicmd = NULL;
4522 	qc->ap = ap;
4523 	qc->dev = dev;
4524 
4525 	ata_qc_reinit(qc);
4526 
4527 	return qc;
4528 }
4529 
4530 /**
4531  *	ata_qc_free - free unused ata_queued_cmd
4532  *	@qc: Command to complete
4533  *
4534  *	Designed to free unused ata_queued_cmd object
4535  *	in case something prevents using it.
4536  *
4537  *	LOCKING:
4538  *	spin_lock_irqsave(host lock)
4539  */
4540 void ata_qc_free(struct ata_queued_cmd *qc)
4541 {
4542 	struct ata_port *ap;
4543 	unsigned int tag;
4544 
4545 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4546 	ap = qc->ap;
4547 
4548 	qc->flags = 0;
4549 	tag = qc->tag;
4550 	if (ata_tag_valid(tag)) {
4551 		qc->tag = ATA_TAG_POISON;
4552 		if (ap->flags & ATA_FLAG_SAS_HOST)
4553 			ata_sas_free_tag(tag, ap);
4554 	}
4555 }
4556 
4557 void __ata_qc_complete(struct ata_queued_cmd *qc)
4558 {
4559 	struct ata_port *ap;
4560 	struct ata_link *link;
4561 
4562 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4563 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4564 	ap = qc->ap;
4565 	link = qc->dev->link;
4566 
4567 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4568 		ata_sg_clean(qc);
4569 
4570 	/* command should be marked inactive atomically with qc completion */
4571 	if (ata_is_ncq(qc->tf.protocol)) {
4572 		link->sactive &= ~(1 << qc->hw_tag);
4573 		if (!link->sactive)
4574 			ap->nr_active_links--;
4575 	} else {
4576 		link->active_tag = ATA_TAG_POISON;
4577 		ap->nr_active_links--;
4578 	}
4579 
4580 	/* clear exclusive status */
4581 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4582 		     ap->excl_link == link))
4583 		ap->excl_link = NULL;
4584 
4585 	/* atapi: mark qc as inactive to prevent the interrupt handler
4586 	 * from completing the command twice later, before the error handler
4587 	 * is called. (when rc != 0 and atapi request sense is needed)
4588 	 */
4589 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4590 	ap->qc_active &= ~(1ULL << qc->tag);
4591 
4592 	/* call completion callback */
4593 	qc->complete_fn(qc);
4594 }
4595 
4596 static void fill_result_tf(struct ata_queued_cmd *qc)
4597 {
4598 	struct ata_port *ap = qc->ap;
4599 
4600 	qc->result_tf.flags = qc->tf.flags;
4601 	ap->ops->qc_fill_rtf(qc);
4602 }
4603 
4604 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4605 {
4606 	struct ata_device *dev = qc->dev;
4607 
4608 	if (!ata_is_data(qc->tf.protocol))
4609 		return;
4610 
4611 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4612 		return;
4613 
4614 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4615 }
4616 
4617 /**
4618  *	ata_qc_complete - Complete an active ATA command
4619  *	@qc: Command to complete
4620  *
4621  *	Indicate to the mid and upper layers that an ATA command has
4622  *	completed, with either an ok or not-ok status.
4623  *
4624  *	Refrain from calling this function multiple times when
4625  *	successfully completing multiple NCQ commands.
4626  *	ata_qc_complete_multiple() should be used instead, which will
4627  *	properly update IRQ expect state.
4628  *
4629  *	LOCKING:
4630  *	spin_lock_irqsave(host lock)
4631  */
4632 void ata_qc_complete(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_port *ap = qc->ap;
4635 
4636 	/* Trigger the LED (if available) */
4637 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4638 
4639 	/* XXX: New EH and old EH use different mechanisms to
4640 	 * synchronize EH with regular execution path.
4641 	 *
4642 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4643 	 * Normal execution path is responsible for not accessing a
4644 	 * failed qc.  libata core enforces the rule by returning NULL
4645 	 * from ata_qc_from_tag() for failed qcs.
4646 	 *
4647 	 * Old EH depends on ata_qc_complete() nullifying completion
4648 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4649 	 * not synchronize with interrupt handler.  Only PIO task is
4650 	 * taken care of.
4651 	 */
4652 	if (ap->ops->error_handler) {
4653 		struct ata_device *dev = qc->dev;
4654 		struct ata_eh_info *ehi = &dev->link->eh_info;
4655 
4656 		if (unlikely(qc->err_mask))
4657 			qc->flags |= ATA_QCFLAG_FAILED;
4658 
4659 		/*
4660 		 * Finish internal commands without any further processing
4661 		 * and always with the result TF filled.
4662 		 */
4663 		if (unlikely(ata_tag_internal(qc->tag))) {
4664 			fill_result_tf(qc);
4665 			trace_ata_qc_complete_internal(qc);
4666 			__ata_qc_complete(qc);
4667 			return;
4668 		}
4669 
4670 		/*
4671 		 * Non-internal qc has failed.  Fill the result TF and
4672 		 * summon EH.
4673 		 */
4674 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4675 			fill_result_tf(qc);
4676 			trace_ata_qc_complete_failed(qc);
4677 			ata_qc_schedule_eh(qc);
4678 			return;
4679 		}
4680 
4681 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4682 
4683 		/* read result TF if requested */
4684 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4685 			fill_result_tf(qc);
4686 
4687 		trace_ata_qc_complete_done(qc);
4688 		/* Some commands need post-processing after successful
4689 		 * completion.
4690 		 */
4691 		switch (qc->tf.command) {
4692 		case ATA_CMD_SET_FEATURES:
4693 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4694 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4695 			    qc->tf.feature != SETFEATURES_RA_ON &&
4696 			    qc->tf.feature != SETFEATURES_RA_OFF)
4697 				break;
4698 			/* fall through */
4699 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4700 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4701 			/* revalidate device */
4702 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4703 			ata_port_schedule_eh(ap);
4704 			break;
4705 
4706 		case ATA_CMD_SLEEP:
4707 			dev->flags |= ATA_DFLAG_SLEEPING;
4708 			break;
4709 		}
4710 
4711 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4712 			ata_verify_xfer(qc);
4713 
4714 		__ata_qc_complete(qc);
4715 	} else {
4716 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4717 			return;
4718 
4719 		/* read result TF if failed or requested */
4720 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4721 			fill_result_tf(qc);
4722 
4723 		__ata_qc_complete(qc);
4724 	}
4725 }
4726 EXPORT_SYMBOL_GPL(ata_qc_complete);
4727 
4728 /**
4729  *	ata_qc_get_active - get bitmask of active qcs
4730  *	@ap: port in question
4731  *
4732  *	LOCKING:
4733  *	spin_lock_irqsave(host lock)
4734  *
4735  *	RETURNS:
4736  *	Bitmask of active qcs
4737  */
4738 u64 ata_qc_get_active(struct ata_port *ap)
4739 {
4740 	u64 qc_active = ap->qc_active;
4741 
4742 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4743 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4744 		qc_active |= (1 << 0);
4745 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4746 	}
4747 
4748 	return qc_active;
4749 }
4750 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4751 
4752 /**
4753  *	ata_qc_issue - issue taskfile to device
4754  *	@qc: command to issue to device
4755  *
4756  *	Prepare an ATA command to submission to device.
4757  *	This includes mapping the data into a DMA-able
4758  *	area, filling in the S/G table, and finally
4759  *	writing the taskfile to hardware, starting the command.
4760  *
4761  *	LOCKING:
4762  *	spin_lock_irqsave(host lock)
4763  */
4764 void ata_qc_issue(struct ata_queued_cmd *qc)
4765 {
4766 	struct ata_port *ap = qc->ap;
4767 	struct ata_link *link = qc->dev->link;
4768 	u8 prot = qc->tf.protocol;
4769 
4770 	/* Make sure only one non-NCQ command is outstanding.  The
4771 	 * check is skipped for old EH because it reuses active qc to
4772 	 * request ATAPI sense.
4773 	 */
4774 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4775 
4776 	if (ata_is_ncq(prot)) {
4777 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4778 
4779 		if (!link->sactive)
4780 			ap->nr_active_links++;
4781 		link->sactive |= 1 << qc->hw_tag;
4782 	} else {
4783 		WARN_ON_ONCE(link->sactive);
4784 
4785 		ap->nr_active_links++;
4786 		link->active_tag = qc->tag;
4787 	}
4788 
4789 	qc->flags |= ATA_QCFLAG_ACTIVE;
4790 	ap->qc_active |= 1ULL << qc->tag;
4791 
4792 	/*
4793 	 * We guarantee to LLDs that they will have at least one
4794 	 * non-zero sg if the command is a data command.
4795 	 */
4796 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4797 		goto sys_err;
4798 
4799 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4800 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4801 		if (ata_sg_setup(qc))
4802 			goto sys_err;
4803 
4804 	/* if device is sleeping, schedule reset and abort the link */
4805 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4806 		link->eh_info.action |= ATA_EH_RESET;
4807 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4808 		ata_link_abort(link);
4809 		return;
4810 	}
4811 
4812 	qc->err_mask |= ap->ops->qc_prep(qc);
4813 	if (unlikely(qc->err_mask))
4814 		goto err;
4815 	trace_ata_qc_issue(qc);
4816 	qc->err_mask |= ap->ops->qc_issue(qc);
4817 	if (unlikely(qc->err_mask))
4818 		goto err;
4819 	return;
4820 
4821 sys_err:
4822 	qc->err_mask |= AC_ERR_SYSTEM;
4823 err:
4824 	ata_qc_complete(qc);
4825 }
4826 
4827 /**
4828  *	ata_phys_link_online - test whether the given link is online
4829  *	@link: ATA link to test
4830  *
4831  *	Test whether @link is online.  Note that this function returns
4832  *	0 if online status of @link cannot be obtained, so
4833  *	ata_link_online(link) != !ata_link_offline(link).
4834  *
4835  *	LOCKING:
4836  *	None.
4837  *
4838  *	RETURNS:
4839  *	True if the port online status is available and online.
4840  */
4841 bool ata_phys_link_online(struct ata_link *link)
4842 {
4843 	u32 sstatus;
4844 
4845 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4846 	    ata_sstatus_online(sstatus))
4847 		return true;
4848 	return false;
4849 }
4850 
4851 /**
4852  *	ata_phys_link_offline - test whether the given link is offline
4853  *	@link: ATA link to test
4854  *
4855  *	Test whether @link is offline.  Note that this function
4856  *	returns 0 if offline status of @link cannot be obtained, so
4857  *	ata_link_online(link) != !ata_link_offline(link).
4858  *
4859  *	LOCKING:
4860  *	None.
4861  *
4862  *	RETURNS:
4863  *	True if the port offline status is available and offline.
4864  */
4865 bool ata_phys_link_offline(struct ata_link *link)
4866 {
4867 	u32 sstatus;
4868 
4869 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4870 	    !ata_sstatus_online(sstatus))
4871 		return true;
4872 	return false;
4873 }
4874 
4875 /**
4876  *	ata_link_online - test whether the given link is online
4877  *	@link: ATA link to test
4878  *
4879  *	Test whether @link is online.  This is identical to
4880  *	ata_phys_link_online() when there's no slave link.  When
4881  *	there's a slave link, this function should only be called on
4882  *	the master link and will return true if any of M/S links is
4883  *	online.
4884  *
4885  *	LOCKING:
4886  *	None.
4887  *
4888  *	RETURNS:
4889  *	True if the port online status is available and online.
4890  */
4891 bool ata_link_online(struct ata_link *link)
4892 {
4893 	struct ata_link *slave = link->ap->slave_link;
4894 
4895 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4896 
4897 	return ata_phys_link_online(link) ||
4898 		(slave && ata_phys_link_online(slave));
4899 }
4900 EXPORT_SYMBOL_GPL(ata_link_online);
4901 
4902 /**
4903  *	ata_link_offline - test whether the given link is offline
4904  *	@link: ATA link to test
4905  *
4906  *	Test whether @link is offline.  This is identical to
4907  *	ata_phys_link_offline() when there's no slave link.  When
4908  *	there's a slave link, this function should only be called on
4909  *	the master link and will return true if both M/S links are
4910  *	offline.
4911  *
4912  *	LOCKING:
4913  *	None.
4914  *
4915  *	RETURNS:
4916  *	True if the port offline status is available and offline.
4917  */
4918 bool ata_link_offline(struct ata_link *link)
4919 {
4920 	struct ata_link *slave = link->ap->slave_link;
4921 
4922 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4923 
4924 	return ata_phys_link_offline(link) &&
4925 		(!slave || ata_phys_link_offline(slave));
4926 }
4927 EXPORT_SYMBOL_GPL(ata_link_offline);
4928 
4929 #ifdef CONFIG_PM
4930 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4931 				unsigned int action, unsigned int ehi_flags,
4932 				bool async)
4933 {
4934 	struct ata_link *link;
4935 	unsigned long flags;
4936 
4937 	/* Previous resume operation might still be in
4938 	 * progress.  Wait for PM_PENDING to clear.
4939 	 */
4940 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4941 		ata_port_wait_eh(ap);
4942 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4943 	}
4944 
4945 	/* request PM ops to EH */
4946 	spin_lock_irqsave(ap->lock, flags);
4947 
4948 	ap->pm_mesg = mesg;
4949 	ap->pflags |= ATA_PFLAG_PM_PENDING;
4950 	ata_for_each_link(link, ap, HOST_FIRST) {
4951 		link->eh_info.action |= action;
4952 		link->eh_info.flags |= ehi_flags;
4953 	}
4954 
4955 	ata_port_schedule_eh(ap);
4956 
4957 	spin_unlock_irqrestore(ap->lock, flags);
4958 
4959 	if (!async) {
4960 		ata_port_wait_eh(ap);
4961 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4962 	}
4963 }
4964 
4965 /*
4966  * On some hardware, device fails to respond after spun down for suspend.  As
4967  * the device won't be used before being resumed, we don't need to touch the
4968  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
4969  *
4970  * http://thread.gmane.org/gmane.linux.ide/46764
4971  */
4972 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
4973 						 | ATA_EHI_NO_AUTOPSY
4974 						 | ATA_EHI_NO_RECOVERY;
4975 
4976 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
4977 {
4978 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
4979 }
4980 
4981 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
4982 {
4983 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
4984 }
4985 
4986 static int ata_port_pm_suspend(struct device *dev)
4987 {
4988 	struct ata_port *ap = to_ata_port(dev);
4989 
4990 	if (pm_runtime_suspended(dev))
4991 		return 0;
4992 
4993 	ata_port_suspend(ap, PMSG_SUSPEND);
4994 	return 0;
4995 }
4996 
4997 static int ata_port_pm_freeze(struct device *dev)
4998 {
4999 	struct ata_port *ap = to_ata_port(dev);
5000 
5001 	if (pm_runtime_suspended(dev))
5002 		return 0;
5003 
5004 	ata_port_suspend(ap, PMSG_FREEZE);
5005 	return 0;
5006 }
5007 
5008 static int ata_port_pm_poweroff(struct device *dev)
5009 {
5010 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5011 	return 0;
5012 }
5013 
5014 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5015 						| ATA_EHI_QUIET;
5016 
5017 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5018 {
5019 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5020 }
5021 
5022 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5023 {
5024 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5025 }
5026 
5027 static int ata_port_pm_resume(struct device *dev)
5028 {
5029 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5030 	pm_runtime_disable(dev);
5031 	pm_runtime_set_active(dev);
5032 	pm_runtime_enable(dev);
5033 	return 0;
5034 }
5035 
5036 /*
5037  * For ODDs, the upper layer will poll for media change every few seconds,
5038  * which will make it enter and leave suspend state every few seconds. And
5039  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5040  * is very little and the ODD may malfunction after constantly being reset.
5041  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5042  * ODD is attached to the port.
5043  */
5044 static int ata_port_runtime_idle(struct device *dev)
5045 {
5046 	struct ata_port *ap = to_ata_port(dev);
5047 	struct ata_link *link;
5048 	struct ata_device *adev;
5049 
5050 	ata_for_each_link(link, ap, HOST_FIRST) {
5051 		ata_for_each_dev(adev, link, ENABLED)
5052 			if (adev->class == ATA_DEV_ATAPI &&
5053 			    !zpodd_dev_enabled(adev))
5054 				return -EBUSY;
5055 	}
5056 
5057 	return 0;
5058 }
5059 
5060 static int ata_port_runtime_suspend(struct device *dev)
5061 {
5062 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5063 	return 0;
5064 }
5065 
5066 static int ata_port_runtime_resume(struct device *dev)
5067 {
5068 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5069 	return 0;
5070 }
5071 
5072 static const struct dev_pm_ops ata_port_pm_ops = {
5073 	.suspend = ata_port_pm_suspend,
5074 	.resume = ata_port_pm_resume,
5075 	.freeze = ata_port_pm_freeze,
5076 	.thaw = ata_port_pm_resume,
5077 	.poweroff = ata_port_pm_poweroff,
5078 	.restore = ata_port_pm_resume,
5079 
5080 	.runtime_suspend = ata_port_runtime_suspend,
5081 	.runtime_resume = ata_port_runtime_resume,
5082 	.runtime_idle = ata_port_runtime_idle,
5083 };
5084 
5085 /* sas ports don't participate in pm runtime management of ata_ports,
5086  * and need to resume ata devices at the domain level, not the per-port
5087  * level. sas suspend/resume is async to allow parallel port recovery
5088  * since sas has multiple ata_port instances per Scsi_Host.
5089  */
5090 void ata_sas_port_suspend(struct ata_port *ap)
5091 {
5092 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5093 }
5094 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5095 
5096 void ata_sas_port_resume(struct ata_port *ap)
5097 {
5098 	ata_port_resume_async(ap, PMSG_RESUME);
5099 }
5100 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5101 
5102 /**
5103  *	ata_host_suspend - suspend host
5104  *	@host: host to suspend
5105  *	@mesg: PM message
5106  *
5107  *	Suspend @host.  Actual operation is performed by port suspend.
5108  */
5109 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5110 {
5111 	host->dev->power.power_state = mesg;
5112 	return 0;
5113 }
5114 EXPORT_SYMBOL_GPL(ata_host_suspend);
5115 
5116 /**
5117  *	ata_host_resume - resume host
5118  *	@host: host to resume
5119  *
5120  *	Resume @host.  Actual operation is performed by port resume.
5121  */
5122 void ata_host_resume(struct ata_host *host)
5123 {
5124 	host->dev->power.power_state = PMSG_ON;
5125 }
5126 EXPORT_SYMBOL_GPL(ata_host_resume);
5127 #endif
5128 
5129 const struct device_type ata_port_type = {
5130 	.name = "ata_port",
5131 #ifdef CONFIG_PM
5132 	.pm = &ata_port_pm_ops,
5133 #endif
5134 };
5135 
5136 /**
5137  *	ata_dev_init - Initialize an ata_device structure
5138  *	@dev: Device structure to initialize
5139  *
5140  *	Initialize @dev in preparation for probing.
5141  *
5142  *	LOCKING:
5143  *	Inherited from caller.
5144  */
5145 void ata_dev_init(struct ata_device *dev)
5146 {
5147 	struct ata_link *link = ata_dev_phys_link(dev);
5148 	struct ata_port *ap = link->ap;
5149 	unsigned long flags;
5150 
5151 	/* SATA spd limit is bound to the attached device, reset together */
5152 	link->sata_spd_limit = link->hw_sata_spd_limit;
5153 	link->sata_spd = 0;
5154 
5155 	/* High bits of dev->flags are used to record warm plug
5156 	 * requests which occur asynchronously.  Synchronize using
5157 	 * host lock.
5158 	 */
5159 	spin_lock_irqsave(ap->lock, flags);
5160 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5161 	dev->horkage = 0;
5162 	spin_unlock_irqrestore(ap->lock, flags);
5163 
5164 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5165 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5166 	dev->pio_mask = UINT_MAX;
5167 	dev->mwdma_mask = UINT_MAX;
5168 	dev->udma_mask = UINT_MAX;
5169 }
5170 
5171 /**
5172  *	ata_link_init - Initialize an ata_link structure
5173  *	@ap: ATA port link is attached to
5174  *	@link: Link structure to initialize
5175  *	@pmp: Port multiplier port number
5176  *
5177  *	Initialize @link.
5178  *
5179  *	LOCKING:
5180  *	Kernel thread context (may sleep)
5181  */
5182 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5183 {
5184 	int i;
5185 
5186 	/* clear everything except for devices */
5187 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5188 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5189 
5190 	link->ap = ap;
5191 	link->pmp = pmp;
5192 	link->active_tag = ATA_TAG_POISON;
5193 	link->hw_sata_spd_limit = UINT_MAX;
5194 
5195 	/* can't use iterator, ap isn't initialized yet */
5196 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5197 		struct ata_device *dev = &link->device[i];
5198 
5199 		dev->link = link;
5200 		dev->devno = dev - link->device;
5201 #ifdef CONFIG_ATA_ACPI
5202 		dev->gtf_filter = ata_acpi_gtf_filter;
5203 #endif
5204 		ata_dev_init(dev);
5205 	}
5206 }
5207 
5208 /**
5209  *	sata_link_init_spd - Initialize link->sata_spd_limit
5210  *	@link: Link to configure sata_spd_limit for
5211  *
5212  *	Initialize @link->[hw_]sata_spd_limit to the currently
5213  *	configured value.
5214  *
5215  *	LOCKING:
5216  *	Kernel thread context (may sleep).
5217  *
5218  *	RETURNS:
5219  *	0 on success, -errno on failure.
5220  */
5221 int sata_link_init_spd(struct ata_link *link)
5222 {
5223 	u8 spd;
5224 	int rc;
5225 
5226 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5227 	if (rc)
5228 		return rc;
5229 
5230 	spd = (link->saved_scontrol >> 4) & 0xf;
5231 	if (spd)
5232 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5233 
5234 	ata_force_link_limits(link);
5235 
5236 	link->sata_spd_limit = link->hw_sata_spd_limit;
5237 
5238 	return 0;
5239 }
5240 
5241 /**
5242  *	ata_port_alloc - allocate and initialize basic ATA port resources
5243  *	@host: ATA host this allocated port belongs to
5244  *
5245  *	Allocate and initialize basic ATA port resources.
5246  *
5247  *	RETURNS:
5248  *	Allocate ATA port on success, NULL on failure.
5249  *
5250  *	LOCKING:
5251  *	Inherited from calling layer (may sleep).
5252  */
5253 struct ata_port *ata_port_alloc(struct ata_host *host)
5254 {
5255 	struct ata_port *ap;
5256 
5257 	DPRINTK("ENTER\n");
5258 
5259 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5260 	if (!ap)
5261 		return NULL;
5262 
5263 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5264 	ap->lock = &host->lock;
5265 	ap->print_id = -1;
5266 	ap->local_port_no = -1;
5267 	ap->host = host;
5268 	ap->dev = host->dev;
5269 
5270 #if defined(ATA_VERBOSE_DEBUG)
5271 	/* turn on all debugging levels */
5272 	ap->msg_enable = 0x00FF;
5273 #elif defined(ATA_DEBUG)
5274 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5275 #else
5276 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5277 #endif
5278 
5279 	mutex_init(&ap->scsi_scan_mutex);
5280 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5281 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5282 	INIT_LIST_HEAD(&ap->eh_done_q);
5283 	init_waitqueue_head(&ap->eh_wait_q);
5284 	init_completion(&ap->park_req_pending);
5285 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5286 		    TIMER_DEFERRABLE);
5287 
5288 	ap->cbl = ATA_CBL_NONE;
5289 
5290 	ata_link_init(ap, &ap->link, 0);
5291 
5292 #ifdef ATA_IRQ_TRAP
5293 	ap->stats.unhandled_irq = 1;
5294 	ap->stats.idle_irq = 1;
5295 #endif
5296 	ata_sff_port_init(ap);
5297 
5298 	return ap;
5299 }
5300 
5301 static void ata_devres_release(struct device *gendev, void *res)
5302 {
5303 	struct ata_host *host = dev_get_drvdata(gendev);
5304 	int i;
5305 
5306 	for (i = 0; i < host->n_ports; i++) {
5307 		struct ata_port *ap = host->ports[i];
5308 
5309 		if (!ap)
5310 			continue;
5311 
5312 		if (ap->scsi_host)
5313 			scsi_host_put(ap->scsi_host);
5314 
5315 	}
5316 
5317 	dev_set_drvdata(gendev, NULL);
5318 	ata_host_put(host);
5319 }
5320 
5321 static void ata_host_release(struct kref *kref)
5322 {
5323 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5324 	int i;
5325 
5326 	for (i = 0; i < host->n_ports; i++) {
5327 		struct ata_port *ap = host->ports[i];
5328 
5329 		kfree(ap->pmp_link);
5330 		kfree(ap->slave_link);
5331 		kfree(ap);
5332 		host->ports[i] = NULL;
5333 	}
5334 	kfree(host);
5335 }
5336 
5337 void ata_host_get(struct ata_host *host)
5338 {
5339 	kref_get(&host->kref);
5340 }
5341 
5342 void ata_host_put(struct ata_host *host)
5343 {
5344 	kref_put(&host->kref, ata_host_release);
5345 }
5346 EXPORT_SYMBOL_GPL(ata_host_put);
5347 
5348 /**
5349  *	ata_host_alloc - allocate and init basic ATA host resources
5350  *	@dev: generic device this host is associated with
5351  *	@max_ports: maximum number of ATA ports associated with this host
5352  *
5353  *	Allocate and initialize basic ATA host resources.  LLD calls
5354  *	this function to allocate a host, initializes it fully and
5355  *	attaches it using ata_host_register().
5356  *
5357  *	@max_ports ports are allocated and host->n_ports is
5358  *	initialized to @max_ports.  The caller is allowed to decrease
5359  *	host->n_ports before calling ata_host_register().  The unused
5360  *	ports will be automatically freed on registration.
5361  *
5362  *	RETURNS:
5363  *	Allocate ATA host on success, NULL on failure.
5364  *
5365  *	LOCKING:
5366  *	Inherited from calling layer (may sleep).
5367  */
5368 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5369 {
5370 	struct ata_host *host;
5371 	size_t sz;
5372 	int i;
5373 	void *dr;
5374 
5375 	DPRINTK("ENTER\n");
5376 
5377 	/* alloc a container for our list of ATA ports (buses) */
5378 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5379 	host = kzalloc(sz, GFP_KERNEL);
5380 	if (!host)
5381 		return NULL;
5382 
5383 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5384 		goto err_free;
5385 
5386 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5387 	if (!dr)
5388 		goto err_out;
5389 
5390 	devres_add(dev, dr);
5391 	dev_set_drvdata(dev, host);
5392 
5393 	spin_lock_init(&host->lock);
5394 	mutex_init(&host->eh_mutex);
5395 	host->dev = dev;
5396 	host->n_ports = max_ports;
5397 	kref_init(&host->kref);
5398 
5399 	/* allocate ports bound to this host */
5400 	for (i = 0; i < max_ports; i++) {
5401 		struct ata_port *ap;
5402 
5403 		ap = ata_port_alloc(host);
5404 		if (!ap)
5405 			goto err_out;
5406 
5407 		ap->port_no = i;
5408 		host->ports[i] = ap;
5409 	}
5410 
5411 	devres_remove_group(dev, NULL);
5412 	return host;
5413 
5414  err_out:
5415 	devres_release_group(dev, NULL);
5416  err_free:
5417 	kfree(host);
5418 	return NULL;
5419 }
5420 EXPORT_SYMBOL_GPL(ata_host_alloc);
5421 
5422 /**
5423  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5424  *	@dev: generic device this host is associated with
5425  *	@ppi: array of ATA port_info to initialize host with
5426  *	@n_ports: number of ATA ports attached to this host
5427  *
5428  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5429  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5430  *	last entry will be used for the remaining ports.
5431  *
5432  *	RETURNS:
5433  *	Allocate ATA host on success, NULL on failure.
5434  *
5435  *	LOCKING:
5436  *	Inherited from calling layer (may sleep).
5437  */
5438 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5439 				      const struct ata_port_info * const * ppi,
5440 				      int n_ports)
5441 {
5442 	const struct ata_port_info *pi;
5443 	struct ata_host *host;
5444 	int i, j;
5445 
5446 	host = ata_host_alloc(dev, n_ports);
5447 	if (!host)
5448 		return NULL;
5449 
5450 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5451 		struct ata_port *ap = host->ports[i];
5452 
5453 		if (ppi[j])
5454 			pi = ppi[j++];
5455 
5456 		ap->pio_mask = pi->pio_mask;
5457 		ap->mwdma_mask = pi->mwdma_mask;
5458 		ap->udma_mask = pi->udma_mask;
5459 		ap->flags |= pi->flags;
5460 		ap->link.flags |= pi->link_flags;
5461 		ap->ops = pi->port_ops;
5462 
5463 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5464 			host->ops = pi->port_ops;
5465 	}
5466 
5467 	return host;
5468 }
5469 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5470 
5471 static void ata_host_stop(struct device *gendev, void *res)
5472 {
5473 	struct ata_host *host = dev_get_drvdata(gendev);
5474 	int i;
5475 
5476 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5477 
5478 	for (i = 0; i < host->n_ports; i++) {
5479 		struct ata_port *ap = host->ports[i];
5480 
5481 		if (ap->ops->port_stop)
5482 			ap->ops->port_stop(ap);
5483 	}
5484 
5485 	if (host->ops->host_stop)
5486 		host->ops->host_stop(host);
5487 }
5488 
5489 /**
5490  *	ata_finalize_port_ops - finalize ata_port_operations
5491  *	@ops: ata_port_operations to finalize
5492  *
5493  *	An ata_port_operations can inherit from another ops and that
5494  *	ops can again inherit from another.  This can go on as many
5495  *	times as necessary as long as there is no loop in the
5496  *	inheritance chain.
5497  *
5498  *	Ops tables are finalized when the host is started.  NULL or
5499  *	unspecified entries are inherited from the closet ancestor
5500  *	which has the method and the entry is populated with it.
5501  *	After finalization, the ops table directly points to all the
5502  *	methods and ->inherits is no longer necessary and cleared.
5503  *
5504  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5505  *
5506  *	LOCKING:
5507  *	None.
5508  */
5509 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5510 {
5511 	static DEFINE_SPINLOCK(lock);
5512 	const struct ata_port_operations *cur;
5513 	void **begin = (void **)ops;
5514 	void **end = (void **)&ops->inherits;
5515 	void **pp;
5516 
5517 	if (!ops || !ops->inherits)
5518 		return;
5519 
5520 	spin_lock(&lock);
5521 
5522 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5523 		void **inherit = (void **)cur;
5524 
5525 		for (pp = begin; pp < end; pp++, inherit++)
5526 			if (!*pp)
5527 				*pp = *inherit;
5528 	}
5529 
5530 	for (pp = begin; pp < end; pp++)
5531 		if (IS_ERR(*pp))
5532 			*pp = NULL;
5533 
5534 	ops->inherits = NULL;
5535 
5536 	spin_unlock(&lock);
5537 }
5538 
5539 /**
5540  *	ata_host_start - start and freeze ports of an ATA host
5541  *	@host: ATA host to start ports for
5542  *
5543  *	Start and then freeze ports of @host.  Started status is
5544  *	recorded in host->flags, so this function can be called
5545  *	multiple times.  Ports are guaranteed to get started only
5546  *	once.  If host->ops isn't initialized yet, its set to the
5547  *	first non-dummy port ops.
5548  *
5549  *	LOCKING:
5550  *	Inherited from calling layer (may sleep).
5551  *
5552  *	RETURNS:
5553  *	0 if all ports are started successfully, -errno otherwise.
5554  */
5555 int ata_host_start(struct ata_host *host)
5556 {
5557 	int have_stop = 0;
5558 	void *start_dr = NULL;
5559 	int i, rc;
5560 
5561 	if (host->flags & ATA_HOST_STARTED)
5562 		return 0;
5563 
5564 	ata_finalize_port_ops(host->ops);
5565 
5566 	for (i = 0; i < host->n_ports; i++) {
5567 		struct ata_port *ap = host->ports[i];
5568 
5569 		ata_finalize_port_ops(ap->ops);
5570 
5571 		if (!host->ops && !ata_port_is_dummy(ap))
5572 			host->ops = ap->ops;
5573 
5574 		if (ap->ops->port_stop)
5575 			have_stop = 1;
5576 	}
5577 
5578 	if (host->ops->host_stop)
5579 		have_stop = 1;
5580 
5581 	if (have_stop) {
5582 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5583 		if (!start_dr)
5584 			return -ENOMEM;
5585 	}
5586 
5587 	for (i = 0; i < host->n_ports; i++) {
5588 		struct ata_port *ap = host->ports[i];
5589 
5590 		if (ap->ops->port_start) {
5591 			rc = ap->ops->port_start(ap);
5592 			if (rc) {
5593 				if (rc != -ENODEV)
5594 					dev_err(host->dev,
5595 						"failed to start port %d (errno=%d)\n",
5596 						i, rc);
5597 				goto err_out;
5598 			}
5599 		}
5600 		ata_eh_freeze_port(ap);
5601 	}
5602 
5603 	if (start_dr)
5604 		devres_add(host->dev, start_dr);
5605 	host->flags |= ATA_HOST_STARTED;
5606 	return 0;
5607 
5608  err_out:
5609 	while (--i >= 0) {
5610 		struct ata_port *ap = host->ports[i];
5611 
5612 		if (ap->ops->port_stop)
5613 			ap->ops->port_stop(ap);
5614 	}
5615 	devres_free(start_dr);
5616 	return rc;
5617 }
5618 EXPORT_SYMBOL_GPL(ata_host_start);
5619 
5620 /**
5621  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5622  *	@host:	host to initialize
5623  *	@dev:	device host is attached to
5624  *	@ops:	port_ops
5625  *
5626  */
5627 void ata_host_init(struct ata_host *host, struct device *dev,
5628 		   struct ata_port_operations *ops)
5629 {
5630 	spin_lock_init(&host->lock);
5631 	mutex_init(&host->eh_mutex);
5632 	host->n_tags = ATA_MAX_QUEUE;
5633 	host->dev = dev;
5634 	host->ops = ops;
5635 	kref_init(&host->kref);
5636 }
5637 EXPORT_SYMBOL_GPL(ata_host_init);
5638 
5639 void __ata_port_probe(struct ata_port *ap)
5640 {
5641 	struct ata_eh_info *ehi = &ap->link.eh_info;
5642 	unsigned long flags;
5643 
5644 	/* kick EH for boot probing */
5645 	spin_lock_irqsave(ap->lock, flags);
5646 
5647 	ehi->probe_mask |= ATA_ALL_DEVICES;
5648 	ehi->action |= ATA_EH_RESET;
5649 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5650 
5651 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5652 	ap->pflags |= ATA_PFLAG_LOADING;
5653 	ata_port_schedule_eh(ap);
5654 
5655 	spin_unlock_irqrestore(ap->lock, flags);
5656 }
5657 
5658 int ata_port_probe(struct ata_port *ap)
5659 {
5660 	int rc = 0;
5661 
5662 	if (ap->ops->error_handler) {
5663 		__ata_port_probe(ap);
5664 		ata_port_wait_eh(ap);
5665 	} else {
5666 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5667 		rc = ata_bus_probe(ap);
5668 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5669 	}
5670 	return rc;
5671 }
5672 
5673 
5674 static void async_port_probe(void *data, async_cookie_t cookie)
5675 {
5676 	struct ata_port *ap = data;
5677 
5678 	/*
5679 	 * If we're not allowed to scan this host in parallel,
5680 	 * we need to wait until all previous scans have completed
5681 	 * before going further.
5682 	 * Jeff Garzik says this is only within a controller, so we
5683 	 * don't need to wait for port 0, only for later ports.
5684 	 */
5685 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5686 		async_synchronize_cookie(cookie);
5687 
5688 	(void)ata_port_probe(ap);
5689 
5690 	/* in order to keep device order, we need to synchronize at this point */
5691 	async_synchronize_cookie(cookie);
5692 
5693 	ata_scsi_scan_host(ap, 1);
5694 }
5695 
5696 /**
5697  *	ata_host_register - register initialized ATA host
5698  *	@host: ATA host to register
5699  *	@sht: template for SCSI host
5700  *
5701  *	Register initialized ATA host.  @host is allocated using
5702  *	ata_host_alloc() and fully initialized by LLD.  This function
5703  *	starts ports, registers @host with ATA and SCSI layers and
5704  *	probe registered devices.
5705  *
5706  *	LOCKING:
5707  *	Inherited from calling layer (may sleep).
5708  *
5709  *	RETURNS:
5710  *	0 on success, -errno otherwise.
5711  */
5712 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5713 {
5714 	int i, rc;
5715 
5716 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5717 
5718 	/* host must have been started */
5719 	if (!(host->flags & ATA_HOST_STARTED)) {
5720 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5721 		WARN_ON(1);
5722 		return -EINVAL;
5723 	}
5724 
5725 	/* Blow away unused ports.  This happens when LLD can't
5726 	 * determine the exact number of ports to allocate at
5727 	 * allocation time.
5728 	 */
5729 	for (i = host->n_ports; host->ports[i]; i++)
5730 		kfree(host->ports[i]);
5731 
5732 	/* give ports names and add SCSI hosts */
5733 	for (i = 0; i < host->n_ports; i++) {
5734 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5735 		host->ports[i]->local_port_no = i + 1;
5736 	}
5737 
5738 	/* Create associated sysfs transport objects  */
5739 	for (i = 0; i < host->n_ports; i++) {
5740 		rc = ata_tport_add(host->dev,host->ports[i]);
5741 		if (rc) {
5742 			goto err_tadd;
5743 		}
5744 	}
5745 
5746 	rc = ata_scsi_add_hosts(host, sht);
5747 	if (rc)
5748 		goto err_tadd;
5749 
5750 	/* set cable, sata_spd_limit and report */
5751 	for (i = 0; i < host->n_ports; i++) {
5752 		struct ata_port *ap = host->ports[i];
5753 		unsigned long xfer_mask;
5754 
5755 		/* set SATA cable type if still unset */
5756 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5757 			ap->cbl = ATA_CBL_SATA;
5758 
5759 		/* init sata_spd_limit to the current value */
5760 		sata_link_init_spd(&ap->link);
5761 		if (ap->slave_link)
5762 			sata_link_init_spd(ap->slave_link);
5763 
5764 		/* print per-port info to dmesg */
5765 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5766 					      ap->udma_mask);
5767 
5768 		if (!ata_port_is_dummy(ap)) {
5769 			ata_port_info(ap, "%cATA max %s %s\n",
5770 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5771 				      ata_mode_string(xfer_mask),
5772 				      ap->link.eh_info.desc);
5773 			ata_ehi_clear_desc(&ap->link.eh_info);
5774 		} else
5775 			ata_port_info(ap, "DUMMY\n");
5776 	}
5777 
5778 	/* perform each probe asynchronously */
5779 	for (i = 0; i < host->n_ports; i++) {
5780 		struct ata_port *ap = host->ports[i];
5781 		async_schedule(async_port_probe, ap);
5782 	}
5783 
5784 	return 0;
5785 
5786  err_tadd:
5787 	while (--i >= 0) {
5788 		ata_tport_delete(host->ports[i]);
5789 	}
5790 	return rc;
5791 
5792 }
5793 EXPORT_SYMBOL_GPL(ata_host_register);
5794 
5795 /**
5796  *	ata_host_activate - start host, request IRQ and register it
5797  *	@host: target ATA host
5798  *	@irq: IRQ to request
5799  *	@irq_handler: irq_handler used when requesting IRQ
5800  *	@irq_flags: irq_flags used when requesting IRQ
5801  *	@sht: scsi_host_template to use when registering the host
5802  *
5803  *	After allocating an ATA host and initializing it, most libata
5804  *	LLDs perform three steps to activate the host - start host,
5805  *	request IRQ and register it.  This helper takes necessary
5806  *	arguments and performs the three steps in one go.
5807  *
5808  *	An invalid IRQ skips the IRQ registration and expects the host to
5809  *	have set polling mode on the port. In this case, @irq_handler
5810  *	should be NULL.
5811  *
5812  *	LOCKING:
5813  *	Inherited from calling layer (may sleep).
5814  *
5815  *	RETURNS:
5816  *	0 on success, -errno otherwise.
5817  */
5818 int ata_host_activate(struct ata_host *host, int irq,
5819 		      irq_handler_t irq_handler, unsigned long irq_flags,
5820 		      struct scsi_host_template *sht)
5821 {
5822 	int i, rc;
5823 	char *irq_desc;
5824 
5825 	rc = ata_host_start(host);
5826 	if (rc)
5827 		return rc;
5828 
5829 	/* Special case for polling mode */
5830 	if (!irq) {
5831 		WARN_ON(irq_handler);
5832 		return ata_host_register(host, sht);
5833 	}
5834 
5835 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5836 				  dev_driver_string(host->dev),
5837 				  dev_name(host->dev));
5838 	if (!irq_desc)
5839 		return -ENOMEM;
5840 
5841 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5842 			      irq_desc, host);
5843 	if (rc)
5844 		return rc;
5845 
5846 	for (i = 0; i < host->n_ports; i++)
5847 		ata_port_desc(host->ports[i], "irq %d", irq);
5848 
5849 	rc = ata_host_register(host, sht);
5850 	/* if failed, just free the IRQ and leave ports alone */
5851 	if (rc)
5852 		devm_free_irq(host->dev, irq, host);
5853 
5854 	return rc;
5855 }
5856 EXPORT_SYMBOL_GPL(ata_host_activate);
5857 
5858 /**
5859  *	ata_port_detach - Detach ATA port in preparation of device removal
5860  *	@ap: ATA port to be detached
5861  *
5862  *	Detach all ATA devices and the associated SCSI devices of @ap;
5863  *	then, remove the associated SCSI host.  @ap is guaranteed to
5864  *	be quiescent on return from this function.
5865  *
5866  *	LOCKING:
5867  *	Kernel thread context (may sleep).
5868  */
5869 static void ata_port_detach(struct ata_port *ap)
5870 {
5871 	unsigned long flags;
5872 	struct ata_link *link;
5873 	struct ata_device *dev;
5874 
5875 	if (!ap->ops->error_handler)
5876 		goto skip_eh;
5877 
5878 	/* tell EH we're leaving & flush EH */
5879 	spin_lock_irqsave(ap->lock, flags);
5880 	ap->pflags |= ATA_PFLAG_UNLOADING;
5881 	ata_port_schedule_eh(ap);
5882 	spin_unlock_irqrestore(ap->lock, flags);
5883 
5884 	/* wait till EH commits suicide */
5885 	ata_port_wait_eh(ap);
5886 
5887 	/* it better be dead now */
5888 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5889 
5890 	cancel_delayed_work_sync(&ap->hotplug_task);
5891 
5892  skip_eh:
5893 	/* clean up zpodd on port removal */
5894 	ata_for_each_link(link, ap, HOST_FIRST) {
5895 		ata_for_each_dev(dev, link, ALL) {
5896 			if (zpodd_dev_enabled(dev))
5897 				zpodd_exit(dev);
5898 		}
5899 	}
5900 	if (ap->pmp_link) {
5901 		int i;
5902 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5903 			ata_tlink_delete(&ap->pmp_link[i]);
5904 	}
5905 	/* remove the associated SCSI host */
5906 	scsi_remove_host(ap->scsi_host);
5907 	ata_tport_delete(ap);
5908 }
5909 
5910 /**
5911  *	ata_host_detach - Detach all ports of an ATA host
5912  *	@host: Host to detach
5913  *
5914  *	Detach all ports of @host.
5915  *
5916  *	LOCKING:
5917  *	Kernel thread context (may sleep).
5918  */
5919 void ata_host_detach(struct ata_host *host)
5920 {
5921 	int i;
5922 
5923 	/* Ensure ata_port probe has completed */
5924 	async_synchronize_full();
5925 
5926 	for (i = 0; i < host->n_ports; i++)
5927 		ata_port_detach(host->ports[i]);
5928 
5929 	/* the host is dead now, dissociate ACPI */
5930 	ata_acpi_dissociate(host);
5931 }
5932 EXPORT_SYMBOL_GPL(ata_host_detach);
5933 
5934 #ifdef CONFIG_PCI
5935 
5936 /**
5937  *	ata_pci_remove_one - PCI layer callback for device removal
5938  *	@pdev: PCI device that was removed
5939  *
5940  *	PCI layer indicates to libata via this hook that hot-unplug or
5941  *	module unload event has occurred.  Detach all ports.  Resource
5942  *	release is handled via devres.
5943  *
5944  *	LOCKING:
5945  *	Inherited from PCI layer (may sleep).
5946  */
5947 void ata_pci_remove_one(struct pci_dev *pdev)
5948 {
5949 	struct ata_host *host = pci_get_drvdata(pdev);
5950 
5951 	ata_host_detach(host);
5952 }
5953 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5954 
5955 void ata_pci_shutdown_one(struct pci_dev *pdev)
5956 {
5957 	struct ata_host *host = pci_get_drvdata(pdev);
5958 	int i;
5959 
5960 	for (i = 0; i < host->n_ports; i++) {
5961 		struct ata_port *ap = host->ports[i];
5962 
5963 		ap->pflags |= ATA_PFLAG_FROZEN;
5964 
5965 		/* Disable port interrupts */
5966 		if (ap->ops->freeze)
5967 			ap->ops->freeze(ap);
5968 
5969 		/* Stop the port DMA engines */
5970 		if (ap->ops->port_stop)
5971 			ap->ops->port_stop(ap);
5972 	}
5973 }
5974 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5975 
5976 /* move to PCI subsystem */
5977 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5978 {
5979 	unsigned long tmp = 0;
5980 
5981 	switch (bits->width) {
5982 	case 1: {
5983 		u8 tmp8 = 0;
5984 		pci_read_config_byte(pdev, bits->reg, &tmp8);
5985 		tmp = tmp8;
5986 		break;
5987 	}
5988 	case 2: {
5989 		u16 tmp16 = 0;
5990 		pci_read_config_word(pdev, bits->reg, &tmp16);
5991 		tmp = tmp16;
5992 		break;
5993 	}
5994 	case 4: {
5995 		u32 tmp32 = 0;
5996 		pci_read_config_dword(pdev, bits->reg, &tmp32);
5997 		tmp = tmp32;
5998 		break;
5999 	}
6000 
6001 	default:
6002 		return -EINVAL;
6003 	}
6004 
6005 	tmp &= bits->mask;
6006 
6007 	return (tmp == bits->val) ? 1 : 0;
6008 }
6009 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6010 
6011 #ifdef CONFIG_PM
6012 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6013 {
6014 	pci_save_state(pdev);
6015 	pci_disable_device(pdev);
6016 
6017 	if (mesg.event & PM_EVENT_SLEEP)
6018 		pci_set_power_state(pdev, PCI_D3hot);
6019 }
6020 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6021 
6022 int ata_pci_device_do_resume(struct pci_dev *pdev)
6023 {
6024 	int rc;
6025 
6026 	pci_set_power_state(pdev, PCI_D0);
6027 	pci_restore_state(pdev);
6028 
6029 	rc = pcim_enable_device(pdev);
6030 	if (rc) {
6031 		dev_err(&pdev->dev,
6032 			"failed to enable device after resume (%d)\n", rc);
6033 		return rc;
6034 	}
6035 
6036 	pci_set_master(pdev);
6037 	return 0;
6038 }
6039 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6040 
6041 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6042 {
6043 	struct ata_host *host = pci_get_drvdata(pdev);
6044 	int rc = 0;
6045 
6046 	rc = ata_host_suspend(host, mesg);
6047 	if (rc)
6048 		return rc;
6049 
6050 	ata_pci_device_do_suspend(pdev, mesg);
6051 
6052 	return 0;
6053 }
6054 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6055 
6056 int ata_pci_device_resume(struct pci_dev *pdev)
6057 {
6058 	struct ata_host *host = pci_get_drvdata(pdev);
6059 	int rc;
6060 
6061 	rc = ata_pci_device_do_resume(pdev);
6062 	if (rc == 0)
6063 		ata_host_resume(host);
6064 	return rc;
6065 }
6066 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6067 #endif /* CONFIG_PM */
6068 #endif /* CONFIG_PCI */
6069 
6070 /**
6071  *	ata_platform_remove_one - Platform layer callback for device removal
6072  *	@pdev: Platform device that was removed
6073  *
6074  *	Platform layer indicates to libata via this hook that hot-unplug or
6075  *	module unload event has occurred.  Detach all ports.  Resource
6076  *	release is handled via devres.
6077  *
6078  *	LOCKING:
6079  *	Inherited from platform layer (may sleep).
6080  */
6081 int ata_platform_remove_one(struct platform_device *pdev)
6082 {
6083 	struct ata_host *host = platform_get_drvdata(pdev);
6084 
6085 	ata_host_detach(host);
6086 
6087 	return 0;
6088 }
6089 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6090 
6091 #ifdef CONFIG_ATA_FORCE
6092 static int __init ata_parse_force_one(char **cur,
6093 				      struct ata_force_ent *force_ent,
6094 				      const char **reason)
6095 {
6096 	static const struct ata_force_param force_tbl[] __initconst = {
6097 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6098 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6099 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6100 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6101 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6102 		{ "sata",	.cbl		= ATA_CBL_SATA },
6103 		{ "1.5Gbps",	.spd_limit	= 1 },
6104 		{ "3.0Gbps",	.spd_limit	= 2 },
6105 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6106 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6107 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6108 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6109 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6110 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6111 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6112 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6113 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6114 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6115 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6116 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6117 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6118 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6119 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6120 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6121 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6122 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6123 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6124 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6125 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6126 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6127 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6128 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6129 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6130 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6131 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6132 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6133 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6134 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6135 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6136 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6137 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6138 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6139 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6140 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6141 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6142 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6143 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6144 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6145 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6146 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6147 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6148 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6149 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6150 	};
6151 	char *start = *cur, *p = *cur;
6152 	char *id, *val, *endp;
6153 	const struct ata_force_param *match_fp = NULL;
6154 	int nr_matches = 0, i;
6155 
6156 	/* find where this param ends and update *cur */
6157 	while (*p != '\0' && *p != ',')
6158 		p++;
6159 
6160 	if (*p == '\0')
6161 		*cur = p;
6162 	else
6163 		*cur = p + 1;
6164 
6165 	*p = '\0';
6166 
6167 	/* parse */
6168 	p = strchr(start, ':');
6169 	if (!p) {
6170 		val = strstrip(start);
6171 		goto parse_val;
6172 	}
6173 	*p = '\0';
6174 
6175 	id = strstrip(start);
6176 	val = strstrip(p + 1);
6177 
6178 	/* parse id */
6179 	p = strchr(id, '.');
6180 	if (p) {
6181 		*p++ = '\0';
6182 		force_ent->device = simple_strtoul(p, &endp, 10);
6183 		if (p == endp || *endp != '\0') {
6184 			*reason = "invalid device";
6185 			return -EINVAL;
6186 		}
6187 	}
6188 
6189 	force_ent->port = simple_strtoul(id, &endp, 10);
6190 	if (id == endp || *endp != '\0') {
6191 		*reason = "invalid port/link";
6192 		return -EINVAL;
6193 	}
6194 
6195  parse_val:
6196 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6197 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6198 		const struct ata_force_param *fp = &force_tbl[i];
6199 
6200 		if (strncasecmp(val, fp->name, strlen(val)))
6201 			continue;
6202 
6203 		nr_matches++;
6204 		match_fp = fp;
6205 
6206 		if (strcasecmp(val, fp->name) == 0) {
6207 			nr_matches = 1;
6208 			break;
6209 		}
6210 	}
6211 
6212 	if (!nr_matches) {
6213 		*reason = "unknown value";
6214 		return -EINVAL;
6215 	}
6216 	if (nr_matches > 1) {
6217 		*reason = "ambiguous value";
6218 		return -EINVAL;
6219 	}
6220 
6221 	force_ent->param = *match_fp;
6222 
6223 	return 0;
6224 }
6225 
6226 static void __init ata_parse_force_param(void)
6227 {
6228 	int idx = 0, size = 1;
6229 	int last_port = -1, last_device = -1;
6230 	char *p, *cur, *next;
6231 
6232 	/* calculate maximum number of params and allocate force_tbl */
6233 	for (p = ata_force_param_buf; *p; p++)
6234 		if (*p == ',')
6235 			size++;
6236 
6237 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6238 	if (!ata_force_tbl) {
6239 		printk(KERN_WARNING "ata: failed to extend force table, "
6240 		       "libata.force ignored\n");
6241 		return;
6242 	}
6243 
6244 	/* parse and populate the table */
6245 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6246 		const char *reason = "";
6247 		struct ata_force_ent te = { .port = -1, .device = -1 };
6248 
6249 		next = cur;
6250 		if (ata_parse_force_one(&next, &te, &reason)) {
6251 			printk(KERN_WARNING "ata: failed to parse force "
6252 			       "parameter \"%s\" (%s)\n",
6253 			       cur, reason);
6254 			continue;
6255 		}
6256 
6257 		if (te.port == -1) {
6258 			te.port = last_port;
6259 			te.device = last_device;
6260 		}
6261 
6262 		ata_force_tbl[idx++] = te;
6263 
6264 		last_port = te.port;
6265 		last_device = te.device;
6266 	}
6267 
6268 	ata_force_tbl_size = idx;
6269 }
6270 
6271 static void ata_free_force_param(void)
6272 {
6273 	kfree(ata_force_tbl);
6274 }
6275 #else
6276 static inline void ata_parse_force_param(void) { }
6277 static inline void ata_free_force_param(void) { }
6278 #endif
6279 
6280 static int __init ata_init(void)
6281 {
6282 	int rc;
6283 
6284 	ata_parse_force_param();
6285 
6286 	rc = ata_sff_init();
6287 	if (rc) {
6288 		ata_free_force_param();
6289 		return rc;
6290 	}
6291 
6292 	libata_transport_init();
6293 	ata_scsi_transport_template = ata_attach_transport();
6294 	if (!ata_scsi_transport_template) {
6295 		ata_sff_exit();
6296 		rc = -ENOMEM;
6297 		goto err_out;
6298 	}
6299 
6300 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6301 	return 0;
6302 
6303 err_out:
6304 	return rc;
6305 }
6306 
6307 static void __exit ata_exit(void)
6308 {
6309 	ata_release_transport(ata_scsi_transport_template);
6310 	libata_transport_exit();
6311 	ata_sff_exit();
6312 	ata_free_force_param();
6313 }
6314 
6315 subsys_initcall(ata_init);
6316 module_exit(ata_exit);
6317 
6318 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6319 
6320 int ata_ratelimit(void)
6321 {
6322 	return __ratelimit(&ratelimit);
6323 }
6324 EXPORT_SYMBOL_GPL(ata_ratelimit);
6325 
6326 /**
6327  *	ata_msleep - ATA EH owner aware msleep
6328  *	@ap: ATA port to attribute the sleep to
6329  *	@msecs: duration to sleep in milliseconds
6330  *
6331  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6332  *	ownership is released before going to sleep and reacquired
6333  *	after the sleep is complete.  IOW, other ports sharing the
6334  *	@ap->host will be allowed to own the EH while this task is
6335  *	sleeping.
6336  *
6337  *	LOCKING:
6338  *	Might sleep.
6339  */
6340 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6341 {
6342 	bool owns_eh = ap && ap->host->eh_owner == current;
6343 
6344 	if (owns_eh)
6345 		ata_eh_release(ap);
6346 
6347 	if (msecs < 20) {
6348 		unsigned long usecs = msecs * USEC_PER_MSEC;
6349 		usleep_range(usecs, usecs + 50);
6350 	} else {
6351 		msleep(msecs);
6352 	}
6353 
6354 	if (owns_eh)
6355 		ata_eh_acquire(ap);
6356 }
6357 EXPORT_SYMBOL_GPL(ata_msleep);
6358 
6359 /**
6360  *	ata_wait_register - wait until register value changes
6361  *	@ap: ATA port to wait register for, can be NULL
6362  *	@reg: IO-mapped register
6363  *	@mask: Mask to apply to read register value
6364  *	@val: Wait condition
6365  *	@interval: polling interval in milliseconds
6366  *	@timeout: timeout in milliseconds
6367  *
6368  *	Waiting for some bits of register to change is a common
6369  *	operation for ATA controllers.  This function reads 32bit LE
6370  *	IO-mapped register @reg and tests for the following condition.
6371  *
6372  *	(*@reg & mask) != val
6373  *
6374  *	If the condition is met, it returns; otherwise, the process is
6375  *	repeated after @interval_msec until timeout.
6376  *
6377  *	LOCKING:
6378  *	Kernel thread context (may sleep)
6379  *
6380  *	RETURNS:
6381  *	The final register value.
6382  */
6383 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6384 		      unsigned long interval, unsigned long timeout)
6385 {
6386 	unsigned long deadline;
6387 	u32 tmp;
6388 
6389 	tmp = ioread32(reg);
6390 
6391 	/* Calculate timeout _after_ the first read to make sure
6392 	 * preceding writes reach the controller before starting to
6393 	 * eat away the timeout.
6394 	 */
6395 	deadline = ata_deadline(jiffies, timeout);
6396 
6397 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6398 		ata_msleep(ap, interval);
6399 		tmp = ioread32(reg);
6400 	}
6401 
6402 	return tmp;
6403 }
6404 EXPORT_SYMBOL_GPL(ata_wait_register);
6405 
6406 /*
6407  * Dummy port_ops
6408  */
6409 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6410 {
6411 	return AC_ERR_SYSTEM;
6412 }
6413 
6414 static void ata_dummy_error_handler(struct ata_port *ap)
6415 {
6416 	/* truly dummy */
6417 }
6418 
6419 struct ata_port_operations ata_dummy_port_ops = {
6420 	.qc_prep		= ata_noop_qc_prep,
6421 	.qc_issue		= ata_dummy_qc_issue,
6422 	.error_handler		= ata_dummy_error_handler,
6423 	.sched_eh		= ata_std_sched_eh,
6424 	.end_eh			= ata_std_end_eh,
6425 };
6426 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6427 
6428 const struct ata_port_info ata_dummy_port_info = {
6429 	.port_ops		= &ata_dummy_port_ops,
6430 };
6431 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6432 
6433 /*
6434  * Utility print functions
6435  */
6436 void ata_port_printk(const struct ata_port *ap, const char *level,
6437 		     const char *fmt, ...)
6438 {
6439 	struct va_format vaf;
6440 	va_list args;
6441 
6442 	va_start(args, fmt);
6443 
6444 	vaf.fmt = fmt;
6445 	vaf.va = &args;
6446 
6447 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6448 
6449 	va_end(args);
6450 }
6451 EXPORT_SYMBOL(ata_port_printk);
6452 
6453 void ata_link_printk(const struct ata_link *link, const char *level,
6454 		     const char *fmt, ...)
6455 {
6456 	struct va_format vaf;
6457 	va_list args;
6458 
6459 	va_start(args, fmt);
6460 
6461 	vaf.fmt = fmt;
6462 	vaf.va = &args;
6463 
6464 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6465 		printk("%sata%u.%02u: %pV",
6466 		       level, link->ap->print_id, link->pmp, &vaf);
6467 	else
6468 		printk("%sata%u: %pV",
6469 		       level, link->ap->print_id, &vaf);
6470 
6471 	va_end(args);
6472 }
6473 EXPORT_SYMBOL(ata_link_printk);
6474 
6475 void ata_dev_printk(const struct ata_device *dev, const char *level,
6476 		    const char *fmt, ...)
6477 {
6478 	struct va_format vaf;
6479 	va_list args;
6480 
6481 	va_start(args, fmt);
6482 
6483 	vaf.fmt = fmt;
6484 	vaf.va = &args;
6485 
6486 	printk("%sata%u.%02u: %pV",
6487 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6488 	       &vaf);
6489 
6490 	va_end(args);
6491 }
6492 EXPORT_SYMBOL(ata_dev_printk);
6493 
6494 void ata_print_version(const struct device *dev, const char *version)
6495 {
6496 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6497 }
6498 EXPORT_SYMBOL(ata_print_version);
6499