1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 70 #include "libata.h" 71 #include "libata-transport.h" 72 73 /* debounce timing parameters in msecs { interval, duration, timeout } */ 74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 77 78 const struct ata_port_operations ata_base_port_ops = { 79 .prereset = ata_std_prereset, 80 .postreset = ata_std_postreset, 81 .error_handler = ata_std_error_handler, 82 }; 83 84 const struct ata_port_operations sata_port_ops = { 85 .inherits = &ata_base_port_ops, 86 87 .qc_defer = ata_std_qc_defer, 88 .hardreset = sata_std_hardreset, 89 }; 90 91 static unsigned int ata_dev_init_params(struct ata_device *dev, 92 u16 heads, u16 sectors); 93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 99 struct ata_force_param { 100 const char *name; 101 unsigned int cbl; 102 int spd_limit; 103 unsigned long xfer_mask; 104 unsigned int horkage_on; 105 unsigned int horkage_off; 106 unsigned int lflags; 107 }; 108 109 struct ata_force_ent { 110 int port; 111 int device; 112 struct ata_force_param param; 113 }; 114 115 static struct ata_force_ent *ata_force_tbl; 116 static int ata_force_tbl_size; 117 118 static char ata_force_param_buf[PAGE_SIZE] __initdata; 119 /* param_buf is thrown away after initialization, disallow read */ 120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 122 123 static int atapi_enabled = 1; 124 module_param(atapi_enabled, int, 0444); 125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 126 127 static int atapi_dmadir = 0; 128 module_param(atapi_dmadir, int, 0444); 129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 130 131 int atapi_passthru16 = 1; 132 module_param(atapi_passthru16, int, 0444); 133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 134 135 int libata_fua = 0; 136 module_param_named(fua, libata_fua, int, 0444); 137 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 138 139 static int ata_ignore_hpa; 140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 142 143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 144 module_param_named(dma, libata_dma_mask, int, 0444); 145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 146 147 static int ata_probe_timeout; 148 module_param(ata_probe_timeout, int, 0444); 149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 150 151 int libata_noacpi = 0; 152 module_param_named(noacpi, libata_noacpi, int, 0444); 153 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 154 155 int libata_allow_tpm = 0; 156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 158 159 static int atapi_an; 160 module_param(atapi_an, int, 0444); 161 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 162 163 MODULE_AUTHOR("Jeff Garzik"); 164 MODULE_DESCRIPTION("Library module for ATA devices"); 165 MODULE_LICENSE("GPL"); 166 MODULE_VERSION(DRV_VERSION); 167 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 /* fall through */ 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 /* fall through */ 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 233 /** 234 * ata_dev_next - device iteration helper 235 * @dev: the previous device, NULL to start 236 * @link: ATA link containing devices to iterate 237 * @mode: iteration mode, one of ATA_DITER_* 238 * 239 * LOCKING: 240 * Host lock or EH context. 241 * 242 * RETURNS: 243 * Pointer to the next device. 244 */ 245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 246 enum ata_dev_iter_mode mode) 247 { 248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 250 251 /* NULL dev indicates start of iteration */ 252 if (!dev) 253 switch (mode) { 254 case ATA_DITER_ENABLED: 255 case ATA_DITER_ALL: 256 dev = link->device; 257 goto check; 258 case ATA_DITER_ENABLED_REVERSE: 259 case ATA_DITER_ALL_REVERSE: 260 dev = link->device + ata_link_max_devices(link) - 1; 261 goto check; 262 } 263 264 next: 265 /* move to the next one */ 266 switch (mode) { 267 case ATA_DITER_ENABLED: 268 case ATA_DITER_ALL: 269 if (++dev < link->device + ata_link_max_devices(link)) 270 goto check; 271 return NULL; 272 case ATA_DITER_ENABLED_REVERSE: 273 case ATA_DITER_ALL_REVERSE: 274 if (--dev >= link->device) 275 goto check; 276 return NULL; 277 } 278 279 check: 280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 281 !ata_dev_enabled(dev)) 282 goto next; 283 return dev; 284 } 285 286 /** 287 * ata_dev_phys_link - find physical link for a device 288 * @dev: ATA device to look up physical link for 289 * 290 * Look up physical link which @dev is attached to. Note that 291 * this is different from @dev->link only when @dev is on slave 292 * link. For all other cases, it's the same as @dev->link. 293 * 294 * LOCKING: 295 * Don't care. 296 * 297 * RETURNS: 298 * Pointer to the found physical link. 299 */ 300 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 301 { 302 struct ata_port *ap = dev->link->ap; 303 304 if (!ap->slave_link) 305 return dev->link; 306 if (!dev->devno) 307 return &ap->link; 308 return ap->slave_link; 309 } 310 311 /** 312 * ata_force_cbl - force cable type according to libata.force 313 * @ap: ATA port of interest 314 * 315 * Force cable type according to libata.force and whine about it. 316 * The last entry which has matching port number is used, so it 317 * can be specified as part of device force parameters. For 318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 319 * same effect. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 void ata_force_cbl(struct ata_port *ap) 325 { 326 int i; 327 328 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 329 const struct ata_force_ent *fe = &ata_force_tbl[i]; 330 331 if (fe->port != -1 && fe->port != ap->print_id) 332 continue; 333 334 if (fe->param.cbl == ATA_CBL_NONE) 335 continue; 336 337 ap->cbl = fe->param.cbl; 338 ata_port_printk(ap, KERN_NOTICE, 339 "FORCE: cable set to %s\n", fe->param.name); 340 return; 341 } 342 } 343 344 /** 345 * ata_force_link_limits - force link limits according to libata.force 346 * @link: ATA link of interest 347 * 348 * Force link flags and SATA spd limit according to libata.force 349 * and whine about it. When only the port part is specified 350 * (e.g. 1:), the limit applies to all links connected to both 351 * the host link and all fan-out ports connected via PMP. If the 352 * device part is specified as 0 (e.g. 1.00:), it specifies the 353 * first fan-out link not the host link. Device number 15 always 354 * points to the host link whether PMP is attached or not. If the 355 * controller has slave link, device number 16 points to it. 356 * 357 * LOCKING: 358 * EH context. 359 */ 360 static void ata_force_link_limits(struct ata_link *link) 361 { 362 bool did_spd = false; 363 int linkno = link->pmp; 364 int i; 365 366 if (ata_is_host_link(link)) 367 linkno += 15; 368 369 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 370 const struct ata_force_ent *fe = &ata_force_tbl[i]; 371 372 if (fe->port != -1 && fe->port != link->ap->print_id) 373 continue; 374 375 if (fe->device != -1 && fe->device != linkno) 376 continue; 377 378 /* only honor the first spd limit */ 379 if (!did_spd && fe->param.spd_limit) { 380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 381 ata_link_printk(link, KERN_NOTICE, 382 "FORCE: PHY spd limit set to %s\n", 383 fe->param.name); 384 did_spd = true; 385 } 386 387 /* let lflags stack */ 388 if (fe->param.lflags) { 389 link->flags |= fe->param.lflags; 390 ata_link_printk(link, KERN_NOTICE, 391 "FORCE: link flag 0x%x forced -> 0x%x\n", 392 fe->param.lflags, link->flags); 393 } 394 } 395 } 396 397 /** 398 * ata_force_xfermask - force xfermask according to libata.force 399 * @dev: ATA device of interest 400 * 401 * Force xfer_mask according to libata.force and whine about it. 402 * For consistency with link selection, device number 15 selects 403 * the first device connected to the host link. 404 * 405 * LOCKING: 406 * EH context. 407 */ 408 static void ata_force_xfermask(struct ata_device *dev) 409 { 410 int devno = dev->link->pmp + dev->devno; 411 int alt_devno = devno; 412 int i; 413 414 /* allow n.15/16 for devices attached to host port */ 415 if (ata_is_host_link(dev->link)) 416 alt_devno += 15; 417 418 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 419 const struct ata_force_ent *fe = &ata_force_tbl[i]; 420 unsigned long pio_mask, mwdma_mask, udma_mask; 421 422 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 423 continue; 424 425 if (fe->device != -1 && fe->device != devno && 426 fe->device != alt_devno) 427 continue; 428 429 if (!fe->param.xfer_mask) 430 continue; 431 432 ata_unpack_xfermask(fe->param.xfer_mask, 433 &pio_mask, &mwdma_mask, &udma_mask); 434 if (udma_mask) 435 dev->udma_mask = udma_mask; 436 else if (mwdma_mask) { 437 dev->udma_mask = 0; 438 dev->mwdma_mask = mwdma_mask; 439 } else { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = 0; 442 dev->pio_mask = pio_mask; 443 } 444 445 ata_dev_printk(dev, KERN_NOTICE, 446 "FORCE: xfer_mask set to %s\n", fe->param.name); 447 return; 448 } 449 } 450 451 /** 452 * ata_force_horkage - force horkage according to libata.force 453 * @dev: ATA device of interest 454 * 455 * Force horkage according to libata.force and whine about it. 456 * For consistency with link selection, device number 15 selects 457 * the first device connected to the host link. 458 * 459 * LOCKING: 460 * EH context. 461 */ 462 static void ata_force_horkage(struct ata_device *dev) 463 { 464 int devno = dev->link->pmp + dev->devno; 465 int alt_devno = devno; 466 int i; 467 468 /* allow n.15/16 for devices attached to host port */ 469 if (ata_is_host_link(dev->link)) 470 alt_devno += 15; 471 472 for (i = 0; i < ata_force_tbl_size; i++) { 473 const struct ata_force_ent *fe = &ata_force_tbl[i]; 474 475 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 476 continue; 477 478 if (fe->device != -1 && fe->device != devno && 479 fe->device != alt_devno) 480 continue; 481 482 if (!(~dev->horkage & fe->param.horkage_on) && 483 !(dev->horkage & fe->param.horkage_off)) 484 continue; 485 486 dev->horkage |= fe->param.horkage_on; 487 dev->horkage &= ~fe->param.horkage_off; 488 489 ata_dev_printk(dev, KERN_NOTICE, 490 "FORCE: horkage modified (%s)\n", fe->param.name); 491 } 492 } 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 /* fall thru */ 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 532 /** 533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 534 * @tf: Taskfile to convert 535 * @pmp: Port multiplier port 536 * @is_cmd: This FIS is for command 537 * @fis: Buffer into which data will output 538 * 539 * Converts a standard ATA taskfile to a Serial ATA 540 * FIS structure (Register - Host to Device). 541 * 542 * LOCKING: 543 * Inherited from caller. 544 */ 545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 546 { 547 fis[0] = 0x27; /* Register - Host to Device FIS */ 548 fis[1] = pmp & 0xf; /* Port multiplier number*/ 549 if (is_cmd) 550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 551 552 fis[2] = tf->command; 553 fis[3] = tf->feature; 554 555 fis[4] = tf->lbal; 556 fis[5] = tf->lbam; 557 fis[6] = tf->lbah; 558 fis[7] = tf->device; 559 560 fis[8] = tf->hob_lbal; 561 fis[9] = tf->hob_lbam; 562 fis[10] = tf->hob_lbah; 563 fis[11] = tf->hob_feature; 564 565 fis[12] = tf->nsect; 566 fis[13] = tf->hob_nsect; 567 fis[14] = 0; 568 fis[15] = tf->ctl; 569 570 fis[16] = 0; 571 fis[17] = 0; 572 fis[18] = 0; 573 fis[19] = 0; 574 } 575 576 /** 577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 578 * @fis: Buffer from which data will be input 579 * @tf: Taskfile to output 580 * 581 * Converts a serial ATA FIS structure to a standard ATA taskfile. 582 * 583 * LOCKING: 584 * Inherited from caller. 585 */ 586 587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 588 { 589 tf->command = fis[2]; /* status */ 590 tf->feature = fis[3]; /* error */ 591 592 tf->lbal = fis[4]; 593 tf->lbam = fis[5]; 594 tf->lbah = fis[6]; 595 tf->device = fis[7]; 596 597 tf->hob_lbal = fis[8]; 598 tf->hob_lbam = fis[9]; 599 tf->hob_lbah = fis[10]; 600 601 tf->nsect = fis[12]; 602 tf->hob_nsect = fis[13]; 603 } 604 605 static const u8 ata_rw_cmds[] = { 606 /* pio multi */ 607 ATA_CMD_READ_MULTI, 608 ATA_CMD_WRITE_MULTI, 609 ATA_CMD_READ_MULTI_EXT, 610 ATA_CMD_WRITE_MULTI_EXT, 611 0, 612 0, 613 0, 614 ATA_CMD_WRITE_MULTI_FUA_EXT, 615 /* pio */ 616 ATA_CMD_PIO_READ, 617 ATA_CMD_PIO_WRITE, 618 ATA_CMD_PIO_READ_EXT, 619 ATA_CMD_PIO_WRITE_EXT, 620 0, 621 0, 622 0, 623 0, 624 /* dma */ 625 ATA_CMD_READ, 626 ATA_CMD_WRITE, 627 ATA_CMD_READ_EXT, 628 ATA_CMD_WRITE_EXT, 629 0, 630 0, 631 0, 632 ATA_CMD_WRITE_FUA_EXT 633 }; 634 635 /** 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 637 * @tf: command to examine and configure 638 * @dev: device tf belongs to 639 * 640 * Examine the device configuration and tf->flags to calculate 641 * the proper read/write commands and protocol to use. 642 * 643 * LOCKING: 644 * caller. 645 */ 646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 647 { 648 u8 cmd; 649 650 int index, fua, lba48, write; 651 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 655 656 if (dev->flags & ATA_DFLAG_PIO) { 657 tf->protocol = ATA_PROT_PIO; 658 index = dev->multi_count ? 0 : 8; 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 660 /* Unable to use DMA due to host limitation */ 661 tf->protocol = ATA_PROT_PIO; 662 index = dev->multi_count ? 0 : 8; 663 } else { 664 tf->protocol = ATA_PROT_DMA; 665 index = 16; 666 } 667 668 cmd = ata_rw_cmds[index + fua + lba48 + write]; 669 if (cmd) { 670 tf->command = cmd; 671 return 0; 672 } 673 return -1; 674 } 675 676 /** 677 * ata_tf_read_block - Read block address from ATA taskfile 678 * @tf: ATA taskfile of interest 679 * @dev: ATA device @tf belongs to 680 * 681 * LOCKING: 682 * None. 683 * 684 * Read block address from @tf. This function can handle all 685 * three address formats - LBA, LBA48 and CHS. tf->protocol and 686 * flags select the address format to use. 687 * 688 * RETURNS: 689 * Block address read from @tf. 690 */ 691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 692 { 693 u64 block = 0; 694 695 if (tf->flags & ATA_TFLAG_LBA) { 696 if (tf->flags & ATA_TFLAG_LBA48) { 697 block |= (u64)tf->hob_lbah << 40; 698 block |= (u64)tf->hob_lbam << 32; 699 block |= (u64)tf->hob_lbal << 24; 700 } else 701 block |= (tf->device & 0xf) << 24; 702 703 block |= tf->lbah << 16; 704 block |= tf->lbam << 8; 705 block |= tf->lbal; 706 } else { 707 u32 cyl, head, sect; 708 709 cyl = tf->lbam | (tf->lbah << 8); 710 head = tf->device & 0xf; 711 sect = tf->lbal; 712 713 if (!sect) { 714 ata_dev_printk(dev, KERN_WARNING, "device reported " 715 "invalid CHS sector 0\n"); 716 sect = 1; /* oh well */ 717 } 718 719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 720 } 721 722 return block; 723 } 724 725 /** 726 * ata_build_rw_tf - Build ATA taskfile for given read/write request 727 * @tf: Target ATA taskfile 728 * @dev: ATA device @tf belongs to 729 * @block: Block address 730 * @n_block: Number of blocks 731 * @tf_flags: RW/FUA etc... 732 * @tag: tag 733 * 734 * LOCKING: 735 * None. 736 * 737 * Build ATA taskfile @tf for read/write request described by 738 * @block, @n_block, @tf_flags and @tag on @dev. 739 * 740 * RETURNS: 741 * 742 * 0 on success, -ERANGE if the request is too large for @dev, 743 * -EINVAL if the request is invalid. 744 */ 745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 746 u64 block, u32 n_block, unsigned int tf_flags, 747 unsigned int tag) 748 { 749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 750 tf->flags |= tf_flags; 751 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 753 /* yay, NCQ */ 754 if (!lba_48_ok(block, n_block)) 755 return -ERANGE; 756 757 tf->protocol = ATA_PROT_NCQ; 758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 759 760 if (tf->flags & ATA_TFLAG_WRITE) 761 tf->command = ATA_CMD_FPDMA_WRITE; 762 else 763 tf->command = ATA_CMD_FPDMA_READ; 764 765 tf->nsect = tag << 3; 766 tf->hob_feature = (n_block >> 8) & 0xff; 767 tf->feature = n_block & 0xff; 768 769 tf->hob_lbah = (block >> 40) & 0xff; 770 tf->hob_lbam = (block >> 32) & 0xff; 771 tf->hob_lbal = (block >> 24) & 0xff; 772 tf->lbah = (block >> 16) & 0xff; 773 tf->lbam = (block >> 8) & 0xff; 774 tf->lbal = block & 0xff; 775 776 tf->device = 1 << 6; 777 if (tf->flags & ATA_TFLAG_FUA) 778 tf->device |= 1 << 7; 779 } else if (dev->flags & ATA_DFLAG_LBA) { 780 tf->flags |= ATA_TFLAG_LBA; 781 782 if (lba_28_ok(block, n_block)) { 783 /* use LBA28 */ 784 tf->device |= (block >> 24) & 0xf; 785 } else if (lba_48_ok(block, n_block)) { 786 if (!(dev->flags & ATA_DFLAG_LBA48)) 787 return -ERANGE; 788 789 /* use LBA48 */ 790 tf->flags |= ATA_TFLAG_LBA48; 791 792 tf->hob_nsect = (n_block >> 8) & 0xff; 793 794 tf->hob_lbah = (block >> 40) & 0xff; 795 tf->hob_lbam = (block >> 32) & 0xff; 796 tf->hob_lbal = (block >> 24) & 0xff; 797 } else 798 /* request too large even for LBA48 */ 799 return -ERANGE; 800 801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 802 return -EINVAL; 803 804 tf->nsect = n_block & 0xff; 805 806 tf->lbah = (block >> 16) & 0xff; 807 tf->lbam = (block >> 8) & 0xff; 808 tf->lbal = block & 0xff; 809 810 tf->device |= ATA_LBA; 811 } else { 812 /* CHS */ 813 u32 sect, head, cyl, track; 814 815 /* The request -may- be too large for CHS addressing. */ 816 if (!lba_28_ok(block, n_block)) 817 return -ERANGE; 818 819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 820 return -EINVAL; 821 822 /* Convert LBA to CHS */ 823 track = (u32)block / dev->sectors; 824 cyl = track / dev->heads; 825 head = track % dev->heads; 826 sect = (u32)block % dev->sectors + 1; 827 828 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 829 (u32)block, track, cyl, head, sect); 830 831 /* Check whether the converted CHS can fit. 832 Cylinder: 0-65535 833 Head: 0-15 834 Sector: 1-255*/ 835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 836 return -ERANGE; 837 838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 839 tf->lbal = sect; 840 tf->lbam = cyl; 841 tf->lbah = cyl >> 8; 842 tf->device |= head; 843 } 844 845 return 0; 846 } 847 848 /** 849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 850 * @pio_mask: pio_mask 851 * @mwdma_mask: mwdma_mask 852 * @udma_mask: udma_mask 853 * 854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 855 * unsigned int xfer_mask. 856 * 857 * LOCKING: 858 * None. 859 * 860 * RETURNS: 861 * Packed xfer_mask. 862 */ 863 unsigned long ata_pack_xfermask(unsigned long pio_mask, 864 unsigned long mwdma_mask, 865 unsigned long udma_mask) 866 { 867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 870 } 871 872 /** 873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 874 * @xfer_mask: xfer_mask to unpack 875 * @pio_mask: resulting pio_mask 876 * @mwdma_mask: resulting mwdma_mask 877 * @udma_mask: resulting udma_mask 878 * 879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 880 * Any NULL distination masks will be ignored. 881 */ 882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 883 unsigned long *mwdma_mask, unsigned long *udma_mask) 884 { 885 if (pio_mask) 886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 887 if (mwdma_mask) 888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 889 if (udma_mask) 890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 891 } 892 893 static const struct ata_xfer_ent { 894 int shift, bits; 895 u8 base; 896 } ata_xfer_tbl[] = { 897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 900 { -1, }, 901 }; 902 903 /** 904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 905 * @xfer_mask: xfer_mask of interest 906 * 907 * Return matching XFER_* value for @xfer_mask. Only the highest 908 * bit of @xfer_mask is considered. 909 * 910 * LOCKING: 911 * None. 912 * 913 * RETURNS: 914 * Matching XFER_* value, 0xff if no match found. 915 */ 916 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 917 { 918 int highbit = fls(xfer_mask) - 1; 919 const struct ata_xfer_ent *ent; 920 921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 923 return ent->base + highbit - ent->shift; 924 return 0xff; 925 } 926 927 /** 928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 929 * @xfer_mode: XFER_* of interest 930 * 931 * Return matching xfer_mask for @xfer_mode. 932 * 933 * LOCKING: 934 * None. 935 * 936 * RETURNS: 937 * Matching xfer_mask, 0 if no match found. 938 */ 939 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 940 { 941 const struct ata_xfer_ent *ent; 942 943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 946 & ~((1 << ent->shift) - 1); 947 return 0; 948 } 949 950 /** 951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 952 * @xfer_mode: XFER_* of interest 953 * 954 * Return matching xfer_shift for @xfer_mode. 955 * 956 * LOCKING: 957 * None. 958 * 959 * RETURNS: 960 * Matching xfer_shift, -1 if no match found. 961 */ 962 int ata_xfer_mode2shift(unsigned long xfer_mode) 963 { 964 const struct ata_xfer_ent *ent; 965 966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 968 return ent->shift; 969 return -1; 970 } 971 972 /** 973 * ata_mode_string - convert xfer_mask to string 974 * @xfer_mask: mask of bits supported; only highest bit counts. 975 * 976 * Determine string which represents the highest speed 977 * (highest bit in @modemask). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Constant C string representing highest speed listed in 984 * @mode_mask, or the constant C string "<n/a>". 985 */ 986 const char *ata_mode_string(unsigned long xfer_mask) 987 { 988 static const char * const xfer_mode_str[] = { 989 "PIO0", 990 "PIO1", 991 "PIO2", 992 "PIO3", 993 "PIO4", 994 "PIO5", 995 "PIO6", 996 "MWDMA0", 997 "MWDMA1", 998 "MWDMA2", 999 "MWDMA3", 1000 "MWDMA4", 1001 "UDMA/16", 1002 "UDMA/25", 1003 "UDMA/33", 1004 "UDMA/44", 1005 "UDMA/66", 1006 "UDMA/100", 1007 "UDMA/133", 1008 "UDMA7", 1009 }; 1010 int highbit; 1011 1012 highbit = fls(xfer_mask) - 1; 1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1014 return xfer_mode_str[highbit]; 1015 return "<n/a>"; 1016 } 1017 1018 const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 /** 1032 * ata_dev_classify - determine device type based on ATA-spec signature 1033 * @tf: ATA taskfile register set for device to be identified 1034 * 1035 * Determine from taskfile register contents whether a device is 1036 * ATA or ATAPI, as per "Signature and persistence" section 1037 * of ATA/PI spec (volume 1, sect 5.14). 1038 * 1039 * LOCKING: 1040 * None. 1041 * 1042 * RETURNS: 1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1044 * %ATA_DEV_UNKNOWN the event of failure. 1045 */ 1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1047 { 1048 /* Apple's open source Darwin code hints that some devices only 1049 * put a proper signature into the LBA mid/high registers, 1050 * So, we only check those. It's sufficient for uniqueness. 1051 * 1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1053 * signatures for ATA and ATAPI devices attached on SerialATA, 1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1055 * spec has never mentioned about using different signatures 1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1057 * Multiplier specification began to use 0x69/0x96 to identify 1058 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1060 * 0x69/0x96 shortly and described them as reserved for 1061 * SerialATA. 1062 * 1063 * We follow the current spec and consider that 0x69/0x96 1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1066 * SEMB signature. This is worked around in 1067 * ata_dev_read_id(). 1068 */ 1069 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1070 DPRINTK("found ATA device by sig\n"); 1071 return ATA_DEV_ATA; 1072 } 1073 1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1075 DPRINTK("found ATAPI device by sig\n"); 1076 return ATA_DEV_ATAPI; 1077 } 1078 1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1080 DPRINTK("found PMP device by sig\n"); 1081 return ATA_DEV_PMP; 1082 } 1083 1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1085 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1086 return ATA_DEV_SEMB; 1087 } 1088 1089 DPRINTK("unknown device\n"); 1090 return ATA_DEV_UNKNOWN; 1091 } 1092 1093 /** 1094 * ata_id_string - Convert IDENTIFY DEVICE page into string 1095 * @id: IDENTIFY DEVICE results we will examine 1096 * @s: string into which data is output 1097 * @ofs: offset into identify device page 1098 * @len: length of string to return. must be an even number. 1099 * 1100 * The strings in the IDENTIFY DEVICE page are broken up into 1101 * 16-bit chunks. Run through the string, and output each 1102 * 8-bit chunk linearly, regardless of platform. 1103 * 1104 * LOCKING: 1105 * caller. 1106 */ 1107 1108 void ata_id_string(const u16 *id, unsigned char *s, 1109 unsigned int ofs, unsigned int len) 1110 { 1111 unsigned int c; 1112 1113 BUG_ON(len & 1); 1114 1115 while (len > 0) { 1116 c = id[ofs] >> 8; 1117 *s = c; 1118 s++; 1119 1120 c = id[ofs] & 0xff; 1121 *s = c; 1122 s++; 1123 1124 ofs++; 1125 len -= 2; 1126 } 1127 } 1128 1129 /** 1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1131 * @id: IDENTIFY DEVICE results we will examine 1132 * @s: string into which data is output 1133 * @ofs: offset into identify device page 1134 * @len: length of string to return. must be an odd number. 1135 * 1136 * This function is identical to ata_id_string except that it 1137 * trims trailing spaces and terminates the resulting string with 1138 * null. @len must be actual maximum length (even number) + 1. 1139 * 1140 * LOCKING: 1141 * caller. 1142 */ 1143 void ata_id_c_string(const u16 *id, unsigned char *s, 1144 unsigned int ofs, unsigned int len) 1145 { 1146 unsigned char *p; 1147 1148 ata_id_string(id, s, ofs, len - 1); 1149 1150 p = s + strnlen(s, len - 1); 1151 while (p > s && p[-1] == ' ') 1152 p--; 1153 *p = '\0'; 1154 } 1155 1156 static u64 ata_id_n_sectors(const u16 *id) 1157 { 1158 if (ata_id_has_lba(id)) { 1159 if (ata_id_has_lba48(id)) 1160 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1161 else 1162 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1163 } else { 1164 if (ata_id_current_chs_valid(id)) 1165 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1166 id[ATA_ID_CUR_SECTORS]; 1167 else 1168 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1169 id[ATA_ID_SECTORS]; 1170 } 1171 } 1172 1173 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1174 { 1175 u64 sectors = 0; 1176 1177 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1178 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1179 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1180 sectors |= (tf->lbah & 0xff) << 16; 1181 sectors |= (tf->lbam & 0xff) << 8; 1182 sectors |= (tf->lbal & 0xff); 1183 1184 return sectors; 1185 } 1186 1187 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1188 { 1189 u64 sectors = 0; 1190 1191 sectors |= (tf->device & 0x0f) << 24; 1192 sectors |= (tf->lbah & 0xff) << 16; 1193 sectors |= (tf->lbam & 0xff) << 8; 1194 sectors |= (tf->lbal & 0xff); 1195 1196 return sectors; 1197 } 1198 1199 /** 1200 * ata_read_native_max_address - Read native max address 1201 * @dev: target device 1202 * @max_sectors: out parameter for the result native max address 1203 * 1204 * Perform an LBA48 or LBA28 native size query upon the device in 1205 * question. 1206 * 1207 * RETURNS: 1208 * 0 on success, -EACCES if command is aborted by the drive. 1209 * -EIO on other errors. 1210 */ 1211 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1212 { 1213 unsigned int err_mask; 1214 struct ata_taskfile tf; 1215 int lba48 = ata_id_has_lba48(dev->id); 1216 1217 ata_tf_init(dev, &tf); 1218 1219 /* always clear all address registers */ 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1221 1222 if (lba48) { 1223 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1224 tf.flags |= ATA_TFLAG_LBA48; 1225 } else 1226 tf.command = ATA_CMD_READ_NATIVE_MAX; 1227 1228 tf.protocol |= ATA_PROT_NODATA; 1229 tf.device |= ATA_LBA; 1230 1231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1232 if (err_mask) { 1233 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1234 "max address (err_mask=0x%x)\n", err_mask); 1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1236 return -EACCES; 1237 return -EIO; 1238 } 1239 1240 if (lba48) 1241 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1242 else 1243 *max_sectors = ata_tf_to_lba(&tf) + 1; 1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1245 (*max_sectors)--; 1246 return 0; 1247 } 1248 1249 /** 1250 * ata_set_max_sectors - Set max sectors 1251 * @dev: target device 1252 * @new_sectors: new max sectors value to set for the device 1253 * 1254 * Set max sectors of @dev to @new_sectors. 1255 * 1256 * RETURNS: 1257 * 0 on success, -EACCES if command is aborted or denied (due to 1258 * previous non-volatile SET_MAX) by the drive. -EIO on other 1259 * errors. 1260 */ 1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1262 { 1263 unsigned int err_mask; 1264 struct ata_taskfile tf; 1265 int lba48 = ata_id_has_lba48(dev->id); 1266 1267 new_sectors--; 1268 1269 ata_tf_init(dev, &tf); 1270 1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1272 1273 if (lba48) { 1274 tf.command = ATA_CMD_SET_MAX_EXT; 1275 tf.flags |= ATA_TFLAG_LBA48; 1276 1277 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1278 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1279 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1280 } else { 1281 tf.command = ATA_CMD_SET_MAX; 1282 1283 tf.device |= (new_sectors >> 24) & 0xf; 1284 } 1285 1286 tf.protocol |= ATA_PROT_NODATA; 1287 tf.device |= ATA_LBA; 1288 1289 tf.lbal = (new_sectors >> 0) & 0xff; 1290 tf.lbam = (new_sectors >> 8) & 0xff; 1291 tf.lbah = (new_sectors >> 16) & 0xff; 1292 1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1294 if (err_mask) { 1295 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1296 "max address (err_mask=0x%x)\n", err_mask); 1297 if (err_mask == AC_ERR_DEV && 1298 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1299 return -EACCES; 1300 return -EIO; 1301 } 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * ata_hpa_resize - Resize a device with an HPA set 1308 * @dev: Device to resize 1309 * 1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1311 * it if required to the full size of the media. The caller must check 1312 * the drive has the HPA feature set enabled. 1313 * 1314 * RETURNS: 1315 * 0 on success, -errno on failure. 1316 */ 1317 static int ata_hpa_resize(struct ata_device *dev) 1318 { 1319 struct ata_eh_context *ehc = &dev->link->eh_context; 1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1322 u64 sectors = ata_id_n_sectors(dev->id); 1323 u64 native_sectors; 1324 int rc; 1325 1326 /* do we need to do it? */ 1327 if (dev->class != ATA_DEV_ATA || 1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1330 return 0; 1331 1332 /* read native max address */ 1333 rc = ata_read_native_max_address(dev, &native_sectors); 1334 if (rc) { 1335 /* If device aborted the command or HPA isn't going to 1336 * be unlocked, skip HPA resizing. 1337 */ 1338 if (rc == -EACCES || !unlock_hpa) { 1339 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1340 "broken, skipping HPA handling\n"); 1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1342 1343 /* we can continue if device aborted the command */ 1344 if (rc == -EACCES) 1345 rc = 0; 1346 } 1347 1348 return rc; 1349 } 1350 dev->n_native_sectors = native_sectors; 1351 1352 /* nothing to do? */ 1353 if (native_sectors <= sectors || !unlock_hpa) { 1354 if (!print_info || native_sectors == sectors) 1355 return 0; 1356 1357 if (native_sectors > sectors) 1358 ata_dev_printk(dev, KERN_INFO, 1359 "HPA detected: current %llu, native %llu\n", 1360 (unsigned long long)sectors, 1361 (unsigned long long)native_sectors); 1362 else if (native_sectors < sectors) 1363 ata_dev_printk(dev, KERN_WARNING, 1364 "native sectors (%llu) is smaller than " 1365 "sectors (%llu)\n", 1366 (unsigned long long)native_sectors, 1367 (unsigned long long)sectors); 1368 return 0; 1369 } 1370 1371 /* let's unlock HPA */ 1372 rc = ata_set_max_sectors(dev, native_sectors); 1373 if (rc == -EACCES) { 1374 /* if device aborted the command, skip HPA resizing */ 1375 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1376 "(%llu -> %llu), skipping HPA handling\n", 1377 (unsigned long long)sectors, 1378 (unsigned long long)native_sectors); 1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1380 return 0; 1381 } else if (rc) 1382 return rc; 1383 1384 /* re-read IDENTIFY data */ 1385 rc = ata_dev_reread_id(dev, 0); 1386 if (rc) { 1387 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1388 "data after HPA resizing\n"); 1389 return rc; 1390 } 1391 1392 if (print_info) { 1393 u64 new_sectors = ata_id_n_sectors(dev->id); 1394 ata_dev_printk(dev, KERN_INFO, 1395 "HPA unlocked: %llu -> %llu, native %llu\n", 1396 (unsigned long long)sectors, 1397 (unsigned long long)new_sectors, 1398 (unsigned long long)native_sectors); 1399 } 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * ata_dump_id - IDENTIFY DEVICE info debugging output 1406 * @id: IDENTIFY DEVICE page to dump 1407 * 1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1409 * page. 1410 * 1411 * LOCKING: 1412 * caller. 1413 */ 1414 1415 static inline void ata_dump_id(const u16 *id) 1416 { 1417 DPRINTK("49==0x%04x " 1418 "53==0x%04x " 1419 "63==0x%04x " 1420 "64==0x%04x " 1421 "75==0x%04x \n", 1422 id[49], 1423 id[53], 1424 id[63], 1425 id[64], 1426 id[75]); 1427 DPRINTK("80==0x%04x " 1428 "81==0x%04x " 1429 "82==0x%04x " 1430 "83==0x%04x " 1431 "84==0x%04x \n", 1432 id[80], 1433 id[81], 1434 id[82], 1435 id[83], 1436 id[84]); 1437 DPRINTK("88==0x%04x " 1438 "93==0x%04x\n", 1439 id[88], 1440 id[93]); 1441 } 1442 1443 /** 1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1445 * @id: IDENTIFY data to compute xfer mask from 1446 * 1447 * Compute the xfermask for this device. This is not as trivial 1448 * as it seems if we must consider early devices correctly. 1449 * 1450 * FIXME: pre IDE drive timing (do we care ?). 1451 * 1452 * LOCKING: 1453 * None. 1454 * 1455 * RETURNS: 1456 * Computed xfermask 1457 */ 1458 unsigned long ata_id_xfermask(const u16 *id) 1459 { 1460 unsigned long pio_mask, mwdma_mask, udma_mask; 1461 1462 /* Usual case. Word 53 indicates word 64 is valid */ 1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1465 pio_mask <<= 3; 1466 pio_mask |= 0x7; 1467 } else { 1468 /* If word 64 isn't valid then Word 51 high byte holds 1469 * the PIO timing number for the maximum. Turn it into 1470 * a mask. 1471 */ 1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1473 if (mode < 5) /* Valid PIO range */ 1474 pio_mask = (2 << mode) - 1; 1475 else 1476 pio_mask = 1; 1477 1478 /* But wait.. there's more. Design your standards by 1479 * committee and you too can get a free iordy field to 1480 * process. However its the speeds not the modes that 1481 * are supported... Note drivers using the timing API 1482 * will get this right anyway 1483 */ 1484 } 1485 1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1487 1488 if (ata_id_is_cfa(id)) { 1489 /* 1490 * Process compact flash extended modes 1491 */ 1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1494 1495 if (pio) 1496 pio_mask |= (1 << 5); 1497 if (pio > 1) 1498 pio_mask |= (1 << 6); 1499 if (dma) 1500 mwdma_mask |= (1 << 3); 1501 if (dma > 1) 1502 mwdma_mask |= (1 << 4); 1503 } 1504 1505 udma_mask = 0; 1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1508 1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1510 } 1511 1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1513 { 1514 struct completion *waiting = qc->private_data; 1515 1516 complete(waiting); 1517 } 1518 1519 /** 1520 * ata_exec_internal_sg - execute libata internal command 1521 * @dev: Device to which the command is sent 1522 * @tf: Taskfile registers for the command and the result 1523 * @cdb: CDB for packet command 1524 * @dma_dir: Data tranfer direction of the command 1525 * @sgl: sg list for the data buffer of the command 1526 * @n_elem: Number of sg entries 1527 * @timeout: Timeout in msecs (0 for default) 1528 * 1529 * Executes libata internal command with timeout. @tf contains 1530 * command on entry and result on return. Timeout and error 1531 * conditions are reported via return value. No recovery action 1532 * is taken after a command times out. It's caller's duty to 1533 * clean up after timeout. 1534 * 1535 * LOCKING: 1536 * None. Should be called with kernel context, might sleep. 1537 * 1538 * RETURNS: 1539 * Zero on success, AC_ERR_* mask on failure 1540 */ 1541 unsigned ata_exec_internal_sg(struct ata_device *dev, 1542 struct ata_taskfile *tf, const u8 *cdb, 1543 int dma_dir, struct scatterlist *sgl, 1544 unsigned int n_elem, unsigned long timeout) 1545 { 1546 struct ata_link *link = dev->link; 1547 struct ata_port *ap = link->ap; 1548 u8 command = tf->command; 1549 int auto_timeout = 0; 1550 struct ata_queued_cmd *qc; 1551 unsigned int tag, preempted_tag; 1552 u32 preempted_sactive, preempted_qc_active; 1553 int preempted_nr_active_links; 1554 DECLARE_COMPLETION_ONSTACK(wait); 1555 unsigned long flags; 1556 unsigned int err_mask; 1557 int rc; 1558 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* no internal command while frozen */ 1562 if (ap->pflags & ATA_PFLAG_FROZEN) { 1563 spin_unlock_irqrestore(ap->lock, flags); 1564 return AC_ERR_SYSTEM; 1565 } 1566 1567 /* initialize internal qc */ 1568 1569 /* XXX: Tag 0 is used for drivers with legacy EH as some 1570 * drivers choke if any other tag is given. This breaks 1571 * ata_tag_internal() test for those drivers. Don't use new 1572 * EH stuff without converting to it. 1573 */ 1574 if (ap->ops->error_handler) 1575 tag = ATA_TAG_INTERNAL; 1576 else 1577 tag = 0; 1578 1579 if (test_and_set_bit(tag, &ap->qc_allocated)) 1580 BUG(); 1581 qc = __ata_qc_from_tag(ap, tag); 1582 1583 qc->tag = tag; 1584 qc->scsicmd = NULL; 1585 qc->ap = ap; 1586 qc->dev = dev; 1587 ata_qc_reinit(qc); 1588 1589 preempted_tag = link->active_tag; 1590 preempted_sactive = link->sactive; 1591 preempted_qc_active = ap->qc_active; 1592 preempted_nr_active_links = ap->nr_active_links; 1593 link->active_tag = ATA_TAG_POISON; 1594 link->sactive = 0; 1595 ap->qc_active = 0; 1596 ap->nr_active_links = 0; 1597 1598 /* prepare & issue qc */ 1599 qc->tf = *tf; 1600 if (cdb) 1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1602 qc->flags |= ATA_QCFLAG_RESULT_TF; 1603 qc->dma_dir = dma_dir; 1604 if (dma_dir != DMA_NONE) { 1605 unsigned int i, buflen = 0; 1606 struct scatterlist *sg; 1607 1608 for_each_sg(sgl, sg, n_elem, i) 1609 buflen += sg->length; 1610 1611 ata_sg_init(qc, sgl, n_elem); 1612 qc->nbytes = buflen; 1613 } 1614 1615 qc->private_data = &wait; 1616 qc->complete_fn = ata_qc_complete_internal; 1617 1618 ata_qc_issue(qc); 1619 1620 spin_unlock_irqrestore(ap->lock, flags); 1621 1622 if (!timeout) { 1623 if (ata_probe_timeout) 1624 timeout = ata_probe_timeout * 1000; 1625 else { 1626 timeout = ata_internal_cmd_timeout(dev, command); 1627 auto_timeout = 1; 1628 } 1629 } 1630 1631 if (ap->ops->error_handler) 1632 ata_eh_release(ap); 1633 1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1635 1636 if (ap->ops->error_handler) 1637 ata_eh_acquire(ap); 1638 1639 ata_sff_flush_pio_task(ap); 1640 1641 if (!rc) { 1642 spin_lock_irqsave(ap->lock, flags); 1643 1644 /* We're racing with irq here. If we lose, the 1645 * following test prevents us from completing the qc 1646 * twice. If we win, the port is frozen and will be 1647 * cleaned up by ->post_internal_cmd(). 1648 */ 1649 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1650 qc->err_mask |= AC_ERR_TIMEOUT; 1651 1652 if (ap->ops->error_handler) 1653 ata_port_freeze(ap); 1654 else 1655 ata_qc_complete(qc); 1656 1657 if (ata_msg_warn(ap)) 1658 ata_dev_printk(dev, KERN_WARNING, 1659 "qc timeout (cmd 0x%x)\n", command); 1660 } 1661 1662 spin_unlock_irqrestore(ap->lock, flags); 1663 } 1664 1665 /* do post_internal_cmd */ 1666 if (ap->ops->post_internal_cmd) 1667 ap->ops->post_internal_cmd(qc); 1668 1669 /* perform minimal error analysis */ 1670 if (qc->flags & ATA_QCFLAG_FAILED) { 1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1672 qc->err_mask |= AC_ERR_DEV; 1673 1674 if (!qc->err_mask) 1675 qc->err_mask |= AC_ERR_OTHER; 1676 1677 if (qc->err_mask & ~AC_ERR_OTHER) 1678 qc->err_mask &= ~AC_ERR_OTHER; 1679 } 1680 1681 /* finish up */ 1682 spin_lock_irqsave(ap->lock, flags); 1683 1684 *tf = qc->result_tf; 1685 err_mask = qc->err_mask; 1686 1687 ata_qc_free(qc); 1688 link->active_tag = preempted_tag; 1689 link->sactive = preempted_sactive; 1690 ap->qc_active = preempted_qc_active; 1691 ap->nr_active_links = preempted_nr_active_links; 1692 1693 spin_unlock_irqrestore(ap->lock, flags); 1694 1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1696 ata_internal_cmd_timed_out(dev, command); 1697 1698 return err_mask; 1699 } 1700 1701 /** 1702 * ata_exec_internal - execute libata internal command 1703 * @dev: Device to which the command is sent 1704 * @tf: Taskfile registers for the command and the result 1705 * @cdb: CDB for packet command 1706 * @dma_dir: Data tranfer direction of the command 1707 * @buf: Data buffer of the command 1708 * @buflen: Length of data buffer 1709 * @timeout: Timeout in msecs (0 for default) 1710 * 1711 * Wrapper around ata_exec_internal_sg() which takes simple 1712 * buffer instead of sg list. 1713 * 1714 * LOCKING: 1715 * None. Should be called with kernel context, might sleep. 1716 * 1717 * RETURNS: 1718 * Zero on success, AC_ERR_* mask on failure 1719 */ 1720 unsigned ata_exec_internal(struct ata_device *dev, 1721 struct ata_taskfile *tf, const u8 *cdb, 1722 int dma_dir, void *buf, unsigned int buflen, 1723 unsigned long timeout) 1724 { 1725 struct scatterlist *psg = NULL, sg; 1726 unsigned int n_elem = 0; 1727 1728 if (dma_dir != DMA_NONE) { 1729 WARN_ON(!buf); 1730 sg_init_one(&sg, buf, buflen); 1731 psg = &sg; 1732 n_elem++; 1733 } 1734 1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1736 timeout); 1737 } 1738 1739 /** 1740 * ata_do_simple_cmd - execute simple internal command 1741 * @dev: Device to which the command is sent 1742 * @cmd: Opcode to execute 1743 * 1744 * Execute a 'simple' command, that only consists of the opcode 1745 * 'cmd' itself, without filling any other registers 1746 * 1747 * LOCKING: 1748 * Kernel thread context (may sleep). 1749 * 1750 * RETURNS: 1751 * Zero on success, AC_ERR_* mask on failure 1752 */ 1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1754 { 1755 struct ata_taskfile tf; 1756 1757 ata_tf_init(dev, &tf); 1758 1759 tf.command = cmd; 1760 tf.flags |= ATA_TFLAG_DEVICE; 1761 tf.protocol = ATA_PROT_NODATA; 1762 1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1764 } 1765 1766 /** 1767 * ata_pio_need_iordy - check if iordy needed 1768 * @adev: ATA device 1769 * 1770 * Check if the current speed of the device requires IORDY. Used 1771 * by various controllers for chip configuration. 1772 */ 1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1774 { 1775 /* Don't set IORDY if we're preparing for reset. IORDY may 1776 * lead to controller lock up on certain controllers if the 1777 * port is not occupied. See bko#11703 for details. 1778 */ 1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1780 return 0; 1781 /* Controller doesn't support IORDY. Probably a pointless 1782 * check as the caller should know this. 1783 */ 1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1785 return 0; 1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1787 if (ata_id_is_cfa(adev->id) 1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1789 return 0; 1790 /* PIO3 and higher it is mandatory */ 1791 if (adev->pio_mode > XFER_PIO_2) 1792 return 1; 1793 /* We turn it on when possible */ 1794 if (ata_id_has_iordy(adev->id)) 1795 return 1; 1796 return 0; 1797 } 1798 1799 /** 1800 * ata_pio_mask_no_iordy - Return the non IORDY mask 1801 * @adev: ATA device 1802 * 1803 * Compute the highest mode possible if we are not using iordy. Return 1804 * -1 if no iordy mode is available. 1805 */ 1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1807 { 1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1810 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1811 /* Is the speed faster than the drive allows non IORDY ? */ 1812 if (pio) { 1813 /* This is cycle times not frequency - watch the logic! */ 1814 if (pio > 240) /* PIO2 is 240nS per cycle */ 1815 return 3 << ATA_SHIFT_PIO; 1816 return 7 << ATA_SHIFT_PIO; 1817 } 1818 } 1819 return 3 << ATA_SHIFT_PIO; 1820 } 1821 1822 /** 1823 * ata_do_dev_read_id - default ID read method 1824 * @dev: device 1825 * @tf: proposed taskfile 1826 * @id: data buffer 1827 * 1828 * Issue the identify taskfile and hand back the buffer containing 1829 * identify data. For some RAID controllers and for pre ATA devices 1830 * this function is wrapped or replaced by the driver 1831 */ 1832 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1833 struct ata_taskfile *tf, u16 *id) 1834 { 1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1837 } 1838 1839 /** 1840 * ata_dev_read_id - Read ID data from the specified device 1841 * @dev: target device 1842 * @p_class: pointer to class of the target device (may be changed) 1843 * @flags: ATA_READID_* flags 1844 * @id: buffer to read IDENTIFY data into 1845 * 1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1849 * for pre-ATA4 drives. 1850 * 1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1852 * now we abort if we hit that case. 1853 * 1854 * LOCKING: 1855 * Kernel thread context (may sleep) 1856 * 1857 * RETURNS: 1858 * 0 on success, -errno otherwise. 1859 */ 1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1861 unsigned int flags, u16 *id) 1862 { 1863 struct ata_port *ap = dev->link->ap; 1864 unsigned int class = *p_class; 1865 struct ata_taskfile tf; 1866 unsigned int err_mask = 0; 1867 const char *reason; 1868 bool is_semb = class == ATA_DEV_SEMB; 1869 int may_fallback = 1, tried_spinup = 0; 1870 int rc; 1871 1872 if (ata_msg_ctl(ap)) 1873 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1874 1875 retry: 1876 ata_tf_init(dev, &tf); 1877 1878 switch (class) { 1879 case ATA_DEV_SEMB: 1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1881 case ATA_DEV_ATA: 1882 tf.command = ATA_CMD_ID_ATA; 1883 break; 1884 case ATA_DEV_ATAPI: 1885 tf.command = ATA_CMD_ID_ATAPI; 1886 break; 1887 default: 1888 rc = -ENODEV; 1889 reason = "unsupported class"; 1890 goto err_out; 1891 } 1892 1893 tf.protocol = ATA_PROT_PIO; 1894 1895 /* Some devices choke if TF registers contain garbage. Make 1896 * sure those are properly initialized. 1897 */ 1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1899 1900 /* Device presence detection is unreliable on some 1901 * controllers. Always poll IDENTIFY if available. 1902 */ 1903 tf.flags |= ATA_TFLAG_POLLING; 1904 1905 if (ap->ops->read_id) 1906 err_mask = ap->ops->read_id(dev, &tf, id); 1907 else 1908 err_mask = ata_do_dev_read_id(dev, &tf, id); 1909 1910 if (err_mask) { 1911 if (err_mask & AC_ERR_NODEV_HINT) { 1912 ata_dev_printk(dev, KERN_DEBUG, 1913 "NODEV after polling detection\n"); 1914 return -ENOENT; 1915 } 1916 1917 if (is_semb) { 1918 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 1919 "device w/ SEMB sig, disabled\n"); 1920 /* SEMB is not supported yet */ 1921 *p_class = ATA_DEV_SEMB_UNSUP; 1922 return 0; 1923 } 1924 1925 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1926 /* Device or controller might have reported 1927 * the wrong device class. Give a shot at the 1928 * other IDENTIFY if the current one is 1929 * aborted by the device. 1930 */ 1931 if (may_fallback) { 1932 may_fallback = 0; 1933 1934 if (class == ATA_DEV_ATA) 1935 class = ATA_DEV_ATAPI; 1936 else 1937 class = ATA_DEV_ATA; 1938 goto retry; 1939 } 1940 1941 /* Control reaches here iff the device aborted 1942 * both flavors of IDENTIFYs which happens 1943 * sometimes with phantom devices. 1944 */ 1945 ata_dev_printk(dev, KERN_DEBUG, 1946 "both IDENTIFYs aborted, assuming NODEV\n"); 1947 return -ENOENT; 1948 } 1949 1950 rc = -EIO; 1951 reason = "I/O error"; 1952 goto err_out; 1953 } 1954 1955 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1956 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, " 1957 "class=%d may_fallback=%d tried_spinup=%d\n", 1958 class, may_fallback, tried_spinup); 1959 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1960 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1961 } 1962 1963 /* Falling back doesn't make sense if ID data was read 1964 * successfully at least once. 1965 */ 1966 may_fallback = 0; 1967 1968 swap_buf_le16(id, ATA_ID_WORDS); 1969 1970 /* sanity check */ 1971 rc = -EINVAL; 1972 reason = "device reports invalid type"; 1973 1974 if (class == ATA_DEV_ATA) { 1975 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1976 goto err_out; 1977 } else { 1978 if (ata_id_is_ata(id)) 1979 goto err_out; 1980 } 1981 1982 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1983 tried_spinup = 1; 1984 /* 1985 * Drive powered-up in standby mode, and requires a specific 1986 * SET_FEATURES spin-up subcommand before it will accept 1987 * anything other than the original IDENTIFY command. 1988 */ 1989 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1990 if (err_mask && id[2] != 0x738c) { 1991 rc = -EIO; 1992 reason = "SPINUP failed"; 1993 goto err_out; 1994 } 1995 /* 1996 * If the drive initially returned incomplete IDENTIFY info, 1997 * we now must reissue the IDENTIFY command. 1998 */ 1999 if (id[2] == 0x37c8) 2000 goto retry; 2001 } 2002 2003 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2004 /* 2005 * The exact sequence expected by certain pre-ATA4 drives is: 2006 * SRST RESET 2007 * IDENTIFY (optional in early ATA) 2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2009 * anything else.. 2010 * Some drives were very specific about that exact sequence. 2011 * 2012 * Note that ATA4 says lba is mandatory so the second check 2013 * should never trigger. 2014 */ 2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2017 if (err_mask) { 2018 rc = -EIO; 2019 reason = "INIT_DEV_PARAMS failed"; 2020 goto err_out; 2021 } 2022 2023 /* current CHS translation info (id[53-58]) might be 2024 * changed. reread the identify device info. 2025 */ 2026 flags &= ~ATA_READID_POSTRESET; 2027 goto retry; 2028 } 2029 } 2030 2031 *p_class = class; 2032 2033 return 0; 2034 2035 err_out: 2036 if (ata_msg_warn(ap)) 2037 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2038 "(%s, err_mask=0x%x)\n", reason, err_mask); 2039 return rc; 2040 } 2041 2042 static int ata_do_link_spd_horkage(struct ata_device *dev) 2043 { 2044 struct ata_link *plink = ata_dev_phys_link(dev); 2045 u32 target, target_limit; 2046 2047 if (!sata_scr_valid(plink)) 2048 return 0; 2049 2050 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2051 target = 1; 2052 else 2053 return 0; 2054 2055 target_limit = (1 << target) - 1; 2056 2057 /* if already on stricter limit, no need to push further */ 2058 if (plink->sata_spd_limit <= target_limit) 2059 return 0; 2060 2061 plink->sata_spd_limit = target_limit; 2062 2063 /* Request another EH round by returning -EAGAIN if link is 2064 * going faster than the target speed. Forward progress is 2065 * guaranteed by setting sata_spd_limit to target_limit above. 2066 */ 2067 if (plink->sata_spd > target) { 2068 ata_dev_printk(dev, KERN_INFO, 2069 "applying link speed limit horkage to %s\n", 2070 sata_spd_string(target)); 2071 return -EAGAIN; 2072 } 2073 return 0; 2074 } 2075 2076 static inline u8 ata_dev_knobble(struct ata_device *dev) 2077 { 2078 struct ata_port *ap = dev->link->ap; 2079 2080 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2081 return 0; 2082 2083 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2084 } 2085 2086 static int ata_dev_config_ncq(struct ata_device *dev, 2087 char *desc, size_t desc_sz) 2088 { 2089 struct ata_port *ap = dev->link->ap; 2090 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2091 unsigned int err_mask; 2092 char *aa_desc = ""; 2093 2094 if (!ata_id_has_ncq(dev->id)) { 2095 desc[0] = '\0'; 2096 return 0; 2097 } 2098 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2099 snprintf(desc, desc_sz, "NCQ (not used)"); 2100 return 0; 2101 } 2102 if (ap->flags & ATA_FLAG_NCQ) { 2103 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2104 dev->flags |= ATA_DFLAG_NCQ; 2105 } 2106 2107 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2108 (ap->flags & ATA_FLAG_FPDMA_AA) && 2109 ata_id_has_fpdma_aa(dev->id)) { 2110 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2111 SATA_FPDMA_AA); 2112 if (err_mask) { 2113 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2114 "(error_mask=0x%x)\n", err_mask); 2115 if (err_mask != AC_ERR_DEV) { 2116 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2117 return -EIO; 2118 } 2119 } else 2120 aa_desc = ", AA"; 2121 } 2122 2123 if (hdepth >= ddepth) 2124 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2125 else 2126 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2127 ddepth, aa_desc); 2128 return 0; 2129 } 2130 2131 /** 2132 * ata_dev_configure - Configure the specified ATA/ATAPI device 2133 * @dev: Target device to configure 2134 * 2135 * Configure @dev according to @dev->id. Generic and low-level 2136 * driver specific fixups are also applied. 2137 * 2138 * LOCKING: 2139 * Kernel thread context (may sleep) 2140 * 2141 * RETURNS: 2142 * 0 on success, -errno otherwise 2143 */ 2144 int ata_dev_configure(struct ata_device *dev) 2145 { 2146 struct ata_port *ap = dev->link->ap; 2147 struct ata_eh_context *ehc = &dev->link->eh_context; 2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2149 const u16 *id = dev->id; 2150 unsigned long xfer_mask; 2151 char revbuf[7]; /* XYZ-99\0 */ 2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2153 char modelbuf[ATA_ID_PROD_LEN+1]; 2154 int rc; 2155 2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2158 __func__); 2159 return 0; 2160 } 2161 2162 if (ata_msg_probe(ap)) 2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2164 2165 /* set horkage */ 2166 dev->horkage |= ata_dev_blacklisted(dev); 2167 ata_force_horkage(dev); 2168 2169 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2170 ata_dev_printk(dev, KERN_INFO, 2171 "unsupported device, disabling\n"); 2172 ata_dev_disable(dev); 2173 return 0; 2174 } 2175 2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2177 dev->class == ATA_DEV_ATAPI) { 2178 ata_dev_printk(dev, KERN_WARNING, 2179 "WARNING: ATAPI is %s, device ignored.\n", 2180 atapi_enabled ? "not supported with this driver" 2181 : "disabled"); 2182 ata_dev_disable(dev); 2183 return 0; 2184 } 2185 2186 rc = ata_do_link_spd_horkage(dev); 2187 if (rc) 2188 return rc; 2189 2190 /* let ACPI work its magic */ 2191 rc = ata_acpi_on_devcfg(dev); 2192 if (rc) 2193 return rc; 2194 2195 /* massage HPA, do it early as it might change IDENTIFY data */ 2196 rc = ata_hpa_resize(dev); 2197 if (rc) 2198 return rc; 2199 2200 /* print device capabilities */ 2201 if (ata_msg_probe(ap)) 2202 ata_dev_printk(dev, KERN_DEBUG, 2203 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2204 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2205 __func__, 2206 id[49], id[82], id[83], id[84], 2207 id[85], id[86], id[87], id[88]); 2208 2209 /* initialize to-be-configured parameters */ 2210 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2211 dev->max_sectors = 0; 2212 dev->cdb_len = 0; 2213 dev->n_sectors = 0; 2214 dev->cylinders = 0; 2215 dev->heads = 0; 2216 dev->sectors = 0; 2217 dev->multi_count = 0; 2218 2219 /* 2220 * common ATA, ATAPI feature tests 2221 */ 2222 2223 /* find max transfer mode; for printk only */ 2224 xfer_mask = ata_id_xfermask(id); 2225 2226 if (ata_msg_probe(ap)) 2227 ata_dump_id(id); 2228 2229 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2230 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2231 sizeof(fwrevbuf)); 2232 2233 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2234 sizeof(modelbuf)); 2235 2236 /* ATA-specific feature tests */ 2237 if (dev->class == ATA_DEV_ATA) { 2238 if (ata_id_is_cfa(id)) { 2239 /* CPRM may make this media unusable */ 2240 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2241 ata_dev_printk(dev, KERN_WARNING, 2242 "supports DRM functions and may " 2243 "not be fully accessible.\n"); 2244 snprintf(revbuf, 7, "CFA"); 2245 } else { 2246 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2247 /* Warn the user if the device has TPM extensions */ 2248 if (ata_id_has_tpm(id)) 2249 ata_dev_printk(dev, KERN_WARNING, 2250 "supports DRM functions and may " 2251 "not be fully accessible.\n"); 2252 } 2253 2254 dev->n_sectors = ata_id_n_sectors(id); 2255 2256 /* get current R/W Multiple count setting */ 2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2258 unsigned int max = dev->id[47] & 0xff; 2259 unsigned int cnt = dev->id[59] & 0xff; 2260 /* only recognize/allow powers of two here */ 2261 if (is_power_of_2(max) && is_power_of_2(cnt)) 2262 if (cnt <= max) 2263 dev->multi_count = cnt; 2264 } 2265 2266 if (ata_id_has_lba(id)) { 2267 const char *lba_desc; 2268 char ncq_desc[24]; 2269 2270 lba_desc = "LBA"; 2271 dev->flags |= ATA_DFLAG_LBA; 2272 if (ata_id_has_lba48(id)) { 2273 dev->flags |= ATA_DFLAG_LBA48; 2274 lba_desc = "LBA48"; 2275 2276 if (dev->n_sectors >= (1UL << 28) && 2277 ata_id_has_flush_ext(id)) 2278 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2279 } 2280 2281 /* config NCQ */ 2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2283 if (rc) 2284 return rc; 2285 2286 /* print device info to dmesg */ 2287 if (ata_msg_drv(ap) && print_info) { 2288 ata_dev_printk(dev, KERN_INFO, 2289 "%s: %s, %s, max %s\n", 2290 revbuf, modelbuf, fwrevbuf, 2291 ata_mode_string(xfer_mask)); 2292 ata_dev_printk(dev, KERN_INFO, 2293 "%Lu sectors, multi %u: %s %s\n", 2294 (unsigned long long)dev->n_sectors, 2295 dev->multi_count, lba_desc, ncq_desc); 2296 } 2297 } else { 2298 /* CHS */ 2299 2300 /* Default translation */ 2301 dev->cylinders = id[1]; 2302 dev->heads = id[3]; 2303 dev->sectors = id[6]; 2304 2305 if (ata_id_current_chs_valid(id)) { 2306 /* Current CHS translation is valid. */ 2307 dev->cylinders = id[54]; 2308 dev->heads = id[55]; 2309 dev->sectors = id[56]; 2310 } 2311 2312 /* print device info to dmesg */ 2313 if (ata_msg_drv(ap) && print_info) { 2314 ata_dev_printk(dev, KERN_INFO, 2315 "%s: %s, %s, max %s\n", 2316 revbuf, modelbuf, fwrevbuf, 2317 ata_mode_string(xfer_mask)); 2318 ata_dev_printk(dev, KERN_INFO, 2319 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2320 (unsigned long long)dev->n_sectors, 2321 dev->multi_count, dev->cylinders, 2322 dev->heads, dev->sectors); 2323 } 2324 } 2325 2326 dev->cdb_len = 16; 2327 } 2328 2329 /* ATAPI-specific feature tests */ 2330 else if (dev->class == ATA_DEV_ATAPI) { 2331 const char *cdb_intr_string = ""; 2332 const char *atapi_an_string = ""; 2333 const char *dma_dir_string = ""; 2334 u32 sntf; 2335 2336 rc = atapi_cdb_len(id); 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2338 if (ata_msg_warn(ap)) 2339 ata_dev_printk(dev, KERN_WARNING, 2340 "unsupported CDB len\n"); 2341 rc = -EINVAL; 2342 goto err_out_nosup; 2343 } 2344 dev->cdb_len = (unsigned int) rc; 2345 2346 /* Enable ATAPI AN if both the host and device have 2347 * the support. If PMP is attached, SNTF is required 2348 * to enable ATAPI AN to discern between PHY status 2349 * changed notifications and ATAPI ANs. 2350 */ 2351 if (atapi_an && 2352 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2353 (!sata_pmp_attached(ap) || 2354 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2355 unsigned int err_mask; 2356 2357 /* issue SET feature command to turn this on */ 2358 err_mask = ata_dev_set_feature(dev, 2359 SETFEATURES_SATA_ENABLE, SATA_AN); 2360 if (err_mask) 2361 ata_dev_printk(dev, KERN_ERR, 2362 "failed to enable ATAPI AN " 2363 "(err_mask=0x%x)\n", err_mask); 2364 else { 2365 dev->flags |= ATA_DFLAG_AN; 2366 atapi_an_string = ", ATAPI AN"; 2367 } 2368 } 2369 2370 if (ata_id_cdb_intr(dev->id)) { 2371 dev->flags |= ATA_DFLAG_CDB_INTR; 2372 cdb_intr_string = ", CDB intr"; 2373 } 2374 2375 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2376 dev->flags |= ATA_DFLAG_DMADIR; 2377 dma_dir_string = ", DMADIR"; 2378 } 2379 2380 /* print device info to dmesg */ 2381 if (ata_msg_drv(ap) && print_info) 2382 ata_dev_printk(dev, KERN_INFO, 2383 "ATAPI: %s, %s, max %s%s%s%s\n", 2384 modelbuf, fwrevbuf, 2385 ata_mode_string(xfer_mask), 2386 cdb_intr_string, atapi_an_string, 2387 dma_dir_string); 2388 } 2389 2390 /* determine max_sectors */ 2391 dev->max_sectors = ATA_MAX_SECTORS; 2392 if (dev->flags & ATA_DFLAG_LBA48) 2393 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2394 2395 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2396 200 sectors */ 2397 if (ata_dev_knobble(dev)) { 2398 if (ata_msg_drv(ap) && print_info) 2399 ata_dev_printk(dev, KERN_INFO, 2400 "applying bridge limits\n"); 2401 dev->udma_mask &= ATA_UDMA5; 2402 dev->max_sectors = ATA_MAX_SECTORS; 2403 } 2404 2405 if ((dev->class == ATA_DEV_ATAPI) && 2406 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2407 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2408 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2409 } 2410 2411 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2412 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2413 dev->max_sectors); 2414 2415 if (ap->ops->dev_config) 2416 ap->ops->dev_config(dev); 2417 2418 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2419 /* Let the user know. We don't want to disallow opens for 2420 rescue purposes, or in case the vendor is just a blithering 2421 idiot. Do this after the dev_config call as some controllers 2422 with buggy firmware may want to avoid reporting false device 2423 bugs */ 2424 2425 if (print_info) { 2426 ata_dev_printk(dev, KERN_WARNING, 2427 "Drive reports diagnostics failure. This may indicate a drive\n"); 2428 ata_dev_printk(dev, KERN_WARNING, 2429 "fault or invalid emulation. Contact drive vendor for information.\n"); 2430 } 2431 } 2432 2433 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2434 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2435 "firmware update to be fully functional.\n"); 2436 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2437 "or visit http://ata.wiki.kernel.org.\n"); 2438 } 2439 2440 return 0; 2441 2442 err_out_nosup: 2443 if (ata_msg_probe(ap)) 2444 ata_dev_printk(dev, KERN_DEBUG, 2445 "%s: EXIT, err\n", __func__); 2446 return rc; 2447 } 2448 2449 /** 2450 * ata_cable_40wire - return 40 wire cable type 2451 * @ap: port 2452 * 2453 * Helper method for drivers which want to hardwire 40 wire cable 2454 * detection. 2455 */ 2456 2457 int ata_cable_40wire(struct ata_port *ap) 2458 { 2459 return ATA_CBL_PATA40; 2460 } 2461 2462 /** 2463 * ata_cable_80wire - return 80 wire cable type 2464 * @ap: port 2465 * 2466 * Helper method for drivers which want to hardwire 80 wire cable 2467 * detection. 2468 */ 2469 2470 int ata_cable_80wire(struct ata_port *ap) 2471 { 2472 return ATA_CBL_PATA80; 2473 } 2474 2475 /** 2476 * ata_cable_unknown - return unknown PATA cable. 2477 * @ap: port 2478 * 2479 * Helper method for drivers which have no PATA cable detection. 2480 */ 2481 2482 int ata_cable_unknown(struct ata_port *ap) 2483 { 2484 return ATA_CBL_PATA_UNK; 2485 } 2486 2487 /** 2488 * ata_cable_ignore - return ignored PATA cable. 2489 * @ap: port 2490 * 2491 * Helper method for drivers which don't use cable type to limit 2492 * transfer mode. 2493 */ 2494 int ata_cable_ignore(struct ata_port *ap) 2495 { 2496 return ATA_CBL_PATA_IGN; 2497 } 2498 2499 /** 2500 * ata_cable_sata - return SATA cable type 2501 * @ap: port 2502 * 2503 * Helper method for drivers which have SATA cables 2504 */ 2505 2506 int ata_cable_sata(struct ata_port *ap) 2507 { 2508 return ATA_CBL_SATA; 2509 } 2510 2511 /** 2512 * ata_bus_probe - Reset and probe ATA bus 2513 * @ap: Bus to probe 2514 * 2515 * Master ATA bus probing function. Initiates a hardware-dependent 2516 * bus reset, then attempts to identify any devices found on 2517 * the bus. 2518 * 2519 * LOCKING: 2520 * PCI/etc. bus probe sem. 2521 * 2522 * RETURNS: 2523 * Zero on success, negative errno otherwise. 2524 */ 2525 2526 int ata_bus_probe(struct ata_port *ap) 2527 { 2528 unsigned int classes[ATA_MAX_DEVICES]; 2529 int tries[ATA_MAX_DEVICES]; 2530 int rc; 2531 struct ata_device *dev; 2532 2533 ata_for_each_dev(dev, &ap->link, ALL) 2534 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2535 2536 retry: 2537 ata_for_each_dev(dev, &ap->link, ALL) { 2538 /* If we issue an SRST then an ATA drive (not ATAPI) 2539 * may change configuration and be in PIO0 timing. If 2540 * we do a hard reset (or are coming from power on) 2541 * this is true for ATA or ATAPI. Until we've set a 2542 * suitable controller mode we should not touch the 2543 * bus as we may be talking too fast. 2544 */ 2545 dev->pio_mode = XFER_PIO_0; 2546 2547 /* If the controller has a pio mode setup function 2548 * then use it to set the chipset to rights. Don't 2549 * touch the DMA setup as that will be dealt with when 2550 * configuring devices. 2551 */ 2552 if (ap->ops->set_piomode) 2553 ap->ops->set_piomode(ap, dev); 2554 } 2555 2556 /* reset and determine device classes */ 2557 ap->ops->phy_reset(ap); 2558 2559 ata_for_each_dev(dev, &ap->link, ALL) { 2560 if (dev->class != ATA_DEV_UNKNOWN) 2561 classes[dev->devno] = dev->class; 2562 else 2563 classes[dev->devno] = ATA_DEV_NONE; 2564 2565 dev->class = ATA_DEV_UNKNOWN; 2566 } 2567 2568 /* read IDENTIFY page and configure devices. We have to do the identify 2569 specific sequence bass-ackwards so that PDIAG- is released by 2570 the slave device */ 2571 2572 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2573 if (tries[dev->devno]) 2574 dev->class = classes[dev->devno]; 2575 2576 if (!ata_dev_enabled(dev)) 2577 continue; 2578 2579 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2580 dev->id); 2581 if (rc) 2582 goto fail; 2583 } 2584 2585 /* Now ask for the cable type as PDIAG- should have been released */ 2586 if (ap->ops->cable_detect) 2587 ap->cbl = ap->ops->cable_detect(ap); 2588 2589 /* We may have SATA bridge glue hiding here irrespective of 2590 * the reported cable types and sensed types. When SATA 2591 * drives indicate we have a bridge, we don't know which end 2592 * of the link the bridge is which is a problem. 2593 */ 2594 ata_for_each_dev(dev, &ap->link, ENABLED) 2595 if (ata_id_is_sata(dev->id)) 2596 ap->cbl = ATA_CBL_SATA; 2597 2598 /* After the identify sequence we can now set up the devices. We do 2599 this in the normal order so that the user doesn't get confused */ 2600 2601 ata_for_each_dev(dev, &ap->link, ENABLED) { 2602 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2603 rc = ata_dev_configure(dev); 2604 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2605 if (rc) 2606 goto fail; 2607 } 2608 2609 /* configure transfer mode */ 2610 rc = ata_set_mode(&ap->link, &dev); 2611 if (rc) 2612 goto fail; 2613 2614 ata_for_each_dev(dev, &ap->link, ENABLED) 2615 return 0; 2616 2617 return -ENODEV; 2618 2619 fail: 2620 tries[dev->devno]--; 2621 2622 switch (rc) { 2623 case -EINVAL: 2624 /* eeek, something went very wrong, give up */ 2625 tries[dev->devno] = 0; 2626 break; 2627 2628 case -ENODEV: 2629 /* give it just one more chance */ 2630 tries[dev->devno] = min(tries[dev->devno], 1); 2631 case -EIO: 2632 if (tries[dev->devno] == 1) { 2633 /* This is the last chance, better to slow 2634 * down than lose it. 2635 */ 2636 sata_down_spd_limit(&ap->link, 0); 2637 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2638 } 2639 } 2640 2641 if (!tries[dev->devno]) 2642 ata_dev_disable(dev); 2643 2644 goto retry; 2645 } 2646 2647 /** 2648 * sata_print_link_status - Print SATA link status 2649 * @link: SATA link to printk link status about 2650 * 2651 * This function prints link speed and status of a SATA link. 2652 * 2653 * LOCKING: 2654 * None. 2655 */ 2656 static void sata_print_link_status(struct ata_link *link) 2657 { 2658 u32 sstatus, scontrol, tmp; 2659 2660 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2661 return; 2662 sata_scr_read(link, SCR_CONTROL, &scontrol); 2663 2664 if (ata_phys_link_online(link)) { 2665 tmp = (sstatus >> 4) & 0xf; 2666 ata_link_printk(link, KERN_INFO, 2667 "SATA link up %s (SStatus %X SControl %X)\n", 2668 sata_spd_string(tmp), sstatus, scontrol); 2669 } else { 2670 ata_link_printk(link, KERN_INFO, 2671 "SATA link down (SStatus %X SControl %X)\n", 2672 sstatus, scontrol); 2673 } 2674 } 2675 2676 /** 2677 * ata_dev_pair - return other device on cable 2678 * @adev: device 2679 * 2680 * Obtain the other device on the same cable, or if none is 2681 * present NULL is returned 2682 */ 2683 2684 struct ata_device *ata_dev_pair(struct ata_device *adev) 2685 { 2686 struct ata_link *link = adev->link; 2687 struct ata_device *pair = &link->device[1 - adev->devno]; 2688 if (!ata_dev_enabled(pair)) 2689 return NULL; 2690 return pair; 2691 } 2692 2693 /** 2694 * sata_down_spd_limit - adjust SATA spd limit downward 2695 * @link: Link to adjust SATA spd limit for 2696 * @spd_limit: Additional limit 2697 * 2698 * Adjust SATA spd limit of @link downward. Note that this 2699 * function only adjusts the limit. The change must be applied 2700 * using sata_set_spd(). 2701 * 2702 * If @spd_limit is non-zero, the speed is limited to equal to or 2703 * lower than @spd_limit if such speed is supported. If 2704 * @spd_limit is slower than any supported speed, only the lowest 2705 * supported speed is allowed. 2706 * 2707 * LOCKING: 2708 * Inherited from caller. 2709 * 2710 * RETURNS: 2711 * 0 on success, negative errno on failure 2712 */ 2713 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2714 { 2715 u32 sstatus, spd, mask; 2716 int rc, bit; 2717 2718 if (!sata_scr_valid(link)) 2719 return -EOPNOTSUPP; 2720 2721 /* If SCR can be read, use it to determine the current SPD. 2722 * If not, use cached value in link->sata_spd. 2723 */ 2724 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2725 if (rc == 0 && ata_sstatus_online(sstatus)) 2726 spd = (sstatus >> 4) & 0xf; 2727 else 2728 spd = link->sata_spd; 2729 2730 mask = link->sata_spd_limit; 2731 if (mask <= 1) 2732 return -EINVAL; 2733 2734 /* unconditionally mask off the highest bit */ 2735 bit = fls(mask) - 1; 2736 mask &= ~(1 << bit); 2737 2738 /* Mask off all speeds higher than or equal to the current 2739 * one. Force 1.5Gbps if current SPD is not available. 2740 */ 2741 if (spd > 1) 2742 mask &= (1 << (spd - 1)) - 1; 2743 else 2744 mask &= 1; 2745 2746 /* were we already at the bottom? */ 2747 if (!mask) 2748 return -EINVAL; 2749 2750 if (spd_limit) { 2751 if (mask & ((1 << spd_limit) - 1)) 2752 mask &= (1 << spd_limit) - 1; 2753 else { 2754 bit = ffs(mask) - 1; 2755 mask = 1 << bit; 2756 } 2757 } 2758 2759 link->sata_spd_limit = mask; 2760 2761 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2762 sata_spd_string(fls(mask))); 2763 2764 return 0; 2765 } 2766 2767 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2768 { 2769 struct ata_link *host_link = &link->ap->link; 2770 u32 limit, target, spd; 2771 2772 limit = link->sata_spd_limit; 2773 2774 /* Don't configure downstream link faster than upstream link. 2775 * It doesn't speed up anything and some PMPs choke on such 2776 * configuration. 2777 */ 2778 if (!ata_is_host_link(link) && host_link->sata_spd) 2779 limit &= (1 << host_link->sata_spd) - 1; 2780 2781 if (limit == UINT_MAX) 2782 target = 0; 2783 else 2784 target = fls(limit); 2785 2786 spd = (*scontrol >> 4) & 0xf; 2787 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2788 2789 return spd != target; 2790 } 2791 2792 /** 2793 * sata_set_spd_needed - is SATA spd configuration needed 2794 * @link: Link in question 2795 * 2796 * Test whether the spd limit in SControl matches 2797 * @link->sata_spd_limit. This function is used to determine 2798 * whether hardreset is necessary to apply SATA spd 2799 * configuration. 2800 * 2801 * LOCKING: 2802 * Inherited from caller. 2803 * 2804 * RETURNS: 2805 * 1 if SATA spd configuration is needed, 0 otherwise. 2806 */ 2807 static int sata_set_spd_needed(struct ata_link *link) 2808 { 2809 u32 scontrol; 2810 2811 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2812 return 1; 2813 2814 return __sata_set_spd_needed(link, &scontrol); 2815 } 2816 2817 /** 2818 * sata_set_spd - set SATA spd according to spd limit 2819 * @link: Link to set SATA spd for 2820 * 2821 * Set SATA spd of @link according to sata_spd_limit. 2822 * 2823 * LOCKING: 2824 * Inherited from caller. 2825 * 2826 * RETURNS: 2827 * 0 if spd doesn't need to be changed, 1 if spd has been 2828 * changed. Negative errno if SCR registers are inaccessible. 2829 */ 2830 int sata_set_spd(struct ata_link *link) 2831 { 2832 u32 scontrol; 2833 int rc; 2834 2835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2836 return rc; 2837 2838 if (!__sata_set_spd_needed(link, &scontrol)) 2839 return 0; 2840 2841 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2842 return rc; 2843 2844 return 1; 2845 } 2846 2847 /* 2848 * This mode timing computation functionality is ported over from 2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2850 */ 2851 /* 2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2854 * for UDMA6, which is currently supported only by Maxtor drives. 2855 * 2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2857 */ 2858 2859 static const struct ata_timing ata_timing[] = { 2860 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2861 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2862 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2863 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2864 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2865 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2866 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2867 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2868 2869 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2870 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2871 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2872 2873 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2874 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2875 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2876 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2877 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2878 2879 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2880 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2881 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2882 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2883 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2884 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2885 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2886 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2887 2888 { 0xFF } 2889 }; 2890 2891 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2892 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2893 2894 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2895 { 2896 q->setup = EZ(t->setup * 1000, T); 2897 q->act8b = EZ(t->act8b * 1000, T); 2898 q->rec8b = EZ(t->rec8b * 1000, T); 2899 q->cyc8b = EZ(t->cyc8b * 1000, T); 2900 q->active = EZ(t->active * 1000, T); 2901 q->recover = EZ(t->recover * 1000, T); 2902 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2903 q->cycle = EZ(t->cycle * 1000, T); 2904 q->udma = EZ(t->udma * 1000, UT); 2905 } 2906 2907 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2908 struct ata_timing *m, unsigned int what) 2909 { 2910 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2911 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2912 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2913 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2914 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2915 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2916 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2917 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2918 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2919 } 2920 2921 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2922 { 2923 const struct ata_timing *t = ata_timing; 2924 2925 while (xfer_mode > t->mode) 2926 t++; 2927 2928 if (xfer_mode == t->mode) 2929 return t; 2930 return NULL; 2931 } 2932 2933 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2934 struct ata_timing *t, int T, int UT) 2935 { 2936 const u16 *id = adev->id; 2937 const struct ata_timing *s; 2938 struct ata_timing p; 2939 2940 /* 2941 * Find the mode. 2942 */ 2943 2944 if (!(s = ata_timing_find_mode(speed))) 2945 return -EINVAL; 2946 2947 memcpy(t, s, sizeof(*s)); 2948 2949 /* 2950 * If the drive is an EIDE drive, it can tell us it needs extended 2951 * PIO/MW_DMA cycle timing. 2952 */ 2953 2954 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2955 memset(&p, 0, sizeof(p)); 2956 2957 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2958 if (speed <= XFER_PIO_2) 2959 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2960 else if ((speed <= XFER_PIO_4) || 2961 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2962 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2963 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2964 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2965 2966 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2967 } 2968 2969 /* 2970 * Convert the timing to bus clock counts. 2971 */ 2972 2973 ata_timing_quantize(t, t, T, UT); 2974 2975 /* 2976 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2977 * S.M.A.R.T * and some other commands. We have to ensure that the 2978 * DMA cycle timing is slower/equal than the fastest PIO timing. 2979 */ 2980 2981 if (speed > XFER_PIO_6) { 2982 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2983 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2984 } 2985 2986 /* 2987 * Lengthen active & recovery time so that cycle time is correct. 2988 */ 2989 2990 if (t->act8b + t->rec8b < t->cyc8b) { 2991 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2992 t->rec8b = t->cyc8b - t->act8b; 2993 } 2994 2995 if (t->active + t->recover < t->cycle) { 2996 t->active += (t->cycle - (t->active + t->recover)) / 2; 2997 t->recover = t->cycle - t->active; 2998 } 2999 3000 /* In a few cases quantisation may produce enough errors to 3001 leave t->cycle too low for the sum of active and recovery 3002 if so we must correct this */ 3003 if (t->active + t->recover > t->cycle) 3004 t->cycle = t->active + t->recover; 3005 3006 return 0; 3007 } 3008 3009 /** 3010 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3011 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3012 * @cycle: cycle duration in ns 3013 * 3014 * Return matching xfer mode for @cycle. The returned mode is of 3015 * the transfer type specified by @xfer_shift. If @cycle is too 3016 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3017 * than the fastest known mode, the fasted mode is returned. 3018 * 3019 * LOCKING: 3020 * None. 3021 * 3022 * RETURNS: 3023 * Matching xfer_mode, 0xff if no match found. 3024 */ 3025 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3026 { 3027 u8 base_mode = 0xff, last_mode = 0xff; 3028 const struct ata_xfer_ent *ent; 3029 const struct ata_timing *t; 3030 3031 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3032 if (ent->shift == xfer_shift) 3033 base_mode = ent->base; 3034 3035 for (t = ata_timing_find_mode(base_mode); 3036 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3037 unsigned short this_cycle; 3038 3039 switch (xfer_shift) { 3040 case ATA_SHIFT_PIO: 3041 case ATA_SHIFT_MWDMA: 3042 this_cycle = t->cycle; 3043 break; 3044 case ATA_SHIFT_UDMA: 3045 this_cycle = t->udma; 3046 break; 3047 default: 3048 return 0xff; 3049 } 3050 3051 if (cycle > this_cycle) 3052 break; 3053 3054 last_mode = t->mode; 3055 } 3056 3057 return last_mode; 3058 } 3059 3060 /** 3061 * ata_down_xfermask_limit - adjust dev xfer masks downward 3062 * @dev: Device to adjust xfer masks 3063 * @sel: ATA_DNXFER_* selector 3064 * 3065 * Adjust xfer masks of @dev downward. Note that this function 3066 * does not apply the change. Invoking ata_set_mode() afterwards 3067 * will apply the limit. 3068 * 3069 * LOCKING: 3070 * Inherited from caller. 3071 * 3072 * RETURNS: 3073 * 0 on success, negative errno on failure 3074 */ 3075 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3076 { 3077 char buf[32]; 3078 unsigned long orig_mask, xfer_mask; 3079 unsigned long pio_mask, mwdma_mask, udma_mask; 3080 int quiet, highbit; 3081 3082 quiet = !!(sel & ATA_DNXFER_QUIET); 3083 sel &= ~ATA_DNXFER_QUIET; 3084 3085 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3086 dev->mwdma_mask, 3087 dev->udma_mask); 3088 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3089 3090 switch (sel) { 3091 case ATA_DNXFER_PIO: 3092 highbit = fls(pio_mask) - 1; 3093 pio_mask &= ~(1 << highbit); 3094 break; 3095 3096 case ATA_DNXFER_DMA: 3097 if (udma_mask) { 3098 highbit = fls(udma_mask) - 1; 3099 udma_mask &= ~(1 << highbit); 3100 if (!udma_mask) 3101 return -ENOENT; 3102 } else if (mwdma_mask) { 3103 highbit = fls(mwdma_mask) - 1; 3104 mwdma_mask &= ~(1 << highbit); 3105 if (!mwdma_mask) 3106 return -ENOENT; 3107 } 3108 break; 3109 3110 case ATA_DNXFER_40C: 3111 udma_mask &= ATA_UDMA_MASK_40C; 3112 break; 3113 3114 case ATA_DNXFER_FORCE_PIO0: 3115 pio_mask &= 1; 3116 case ATA_DNXFER_FORCE_PIO: 3117 mwdma_mask = 0; 3118 udma_mask = 0; 3119 break; 3120 3121 default: 3122 BUG(); 3123 } 3124 3125 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3126 3127 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3128 return -ENOENT; 3129 3130 if (!quiet) { 3131 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3132 snprintf(buf, sizeof(buf), "%s:%s", 3133 ata_mode_string(xfer_mask), 3134 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3135 else 3136 snprintf(buf, sizeof(buf), "%s", 3137 ata_mode_string(xfer_mask)); 3138 3139 ata_dev_printk(dev, KERN_WARNING, 3140 "limiting speed to %s\n", buf); 3141 } 3142 3143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3144 &dev->udma_mask); 3145 3146 return 0; 3147 } 3148 3149 static int ata_dev_set_mode(struct ata_device *dev) 3150 { 3151 struct ata_port *ap = dev->link->ap; 3152 struct ata_eh_context *ehc = &dev->link->eh_context; 3153 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3154 const char *dev_err_whine = ""; 3155 int ign_dev_err = 0; 3156 unsigned int err_mask = 0; 3157 int rc; 3158 3159 dev->flags &= ~ATA_DFLAG_PIO; 3160 if (dev->xfer_shift == ATA_SHIFT_PIO) 3161 dev->flags |= ATA_DFLAG_PIO; 3162 3163 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3164 dev_err_whine = " (SET_XFERMODE skipped)"; 3165 else { 3166 if (nosetxfer) 3167 ata_dev_printk(dev, KERN_WARNING, 3168 "NOSETXFER but PATA detected - can't " 3169 "skip SETXFER, might malfunction\n"); 3170 err_mask = ata_dev_set_xfermode(dev); 3171 } 3172 3173 if (err_mask & ~AC_ERR_DEV) 3174 goto fail; 3175 3176 /* revalidate */ 3177 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3178 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3179 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3180 if (rc) 3181 return rc; 3182 3183 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3184 /* Old CFA may refuse this command, which is just fine */ 3185 if (ata_id_is_cfa(dev->id)) 3186 ign_dev_err = 1; 3187 /* Catch several broken garbage emulations plus some pre 3188 ATA devices */ 3189 if (ata_id_major_version(dev->id) == 0 && 3190 dev->pio_mode <= XFER_PIO_2) 3191 ign_dev_err = 1; 3192 /* Some very old devices and some bad newer ones fail 3193 any kind of SET_XFERMODE request but support PIO0-2 3194 timings and no IORDY */ 3195 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3196 ign_dev_err = 1; 3197 } 3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3200 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3201 dev->dma_mode == XFER_MW_DMA_0 && 3202 (dev->id[63] >> 8) & 1) 3203 ign_dev_err = 1; 3204 3205 /* if the device is actually configured correctly, ignore dev err */ 3206 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3207 ign_dev_err = 1; 3208 3209 if (err_mask & AC_ERR_DEV) { 3210 if (!ign_dev_err) 3211 goto fail; 3212 else 3213 dev_err_whine = " (device error ignored)"; 3214 } 3215 3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3217 dev->xfer_shift, (int)dev->xfer_mode); 3218 3219 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3220 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3221 dev_err_whine); 3222 3223 return 0; 3224 3225 fail: 3226 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3227 "(err_mask=0x%x)\n", err_mask); 3228 return -EIO; 3229 } 3230 3231 /** 3232 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3233 * @link: link on which timings will be programmed 3234 * @r_failed_dev: out parameter for failed device 3235 * 3236 * Standard implementation of the function used to tune and set 3237 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3238 * ata_dev_set_mode() fails, pointer to the failing device is 3239 * returned in @r_failed_dev. 3240 * 3241 * LOCKING: 3242 * PCI/etc. bus probe sem. 3243 * 3244 * RETURNS: 3245 * 0 on success, negative errno otherwise 3246 */ 3247 3248 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3249 { 3250 struct ata_port *ap = link->ap; 3251 struct ata_device *dev; 3252 int rc = 0, used_dma = 0, found = 0; 3253 3254 /* step 1: calculate xfer_mask */ 3255 ata_for_each_dev(dev, link, ENABLED) { 3256 unsigned long pio_mask, dma_mask; 3257 unsigned int mode_mask; 3258 3259 mode_mask = ATA_DMA_MASK_ATA; 3260 if (dev->class == ATA_DEV_ATAPI) 3261 mode_mask = ATA_DMA_MASK_ATAPI; 3262 else if (ata_id_is_cfa(dev->id)) 3263 mode_mask = ATA_DMA_MASK_CFA; 3264 3265 ata_dev_xfermask(dev); 3266 ata_force_xfermask(dev); 3267 3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3270 3271 if (libata_dma_mask & mode_mask) 3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3273 else 3274 dma_mask = 0; 3275 3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3278 3279 found = 1; 3280 if (ata_dma_enabled(dev)) 3281 used_dma = 1; 3282 } 3283 if (!found) 3284 goto out; 3285 3286 /* step 2: always set host PIO timings */ 3287 ata_for_each_dev(dev, link, ENABLED) { 3288 if (dev->pio_mode == 0xff) { 3289 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3290 rc = -EINVAL; 3291 goto out; 3292 } 3293 3294 dev->xfer_mode = dev->pio_mode; 3295 dev->xfer_shift = ATA_SHIFT_PIO; 3296 if (ap->ops->set_piomode) 3297 ap->ops->set_piomode(ap, dev); 3298 } 3299 3300 /* step 3: set host DMA timings */ 3301 ata_for_each_dev(dev, link, ENABLED) { 3302 if (!ata_dma_enabled(dev)) 3303 continue; 3304 3305 dev->xfer_mode = dev->dma_mode; 3306 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3307 if (ap->ops->set_dmamode) 3308 ap->ops->set_dmamode(ap, dev); 3309 } 3310 3311 /* step 4: update devices' xfer mode */ 3312 ata_for_each_dev(dev, link, ENABLED) { 3313 rc = ata_dev_set_mode(dev); 3314 if (rc) 3315 goto out; 3316 } 3317 3318 /* Record simplex status. If we selected DMA then the other 3319 * host channels are not permitted to do so. 3320 */ 3321 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3322 ap->host->simplex_claimed = ap; 3323 3324 out: 3325 if (rc) 3326 *r_failed_dev = dev; 3327 return rc; 3328 } 3329 3330 /** 3331 * ata_wait_ready - wait for link to become ready 3332 * @link: link to be waited on 3333 * @deadline: deadline jiffies for the operation 3334 * @check_ready: callback to check link readiness 3335 * 3336 * Wait for @link to become ready. @check_ready should return 3337 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3338 * link doesn't seem to be occupied, other errno for other error 3339 * conditions. 3340 * 3341 * Transient -ENODEV conditions are allowed for 3342 * ATA_TMOUT_FF_WAIT. 3343 * 3344 * LOCKING: 3345 * EH context. 3346 * 3347 * RETURNS: 3348 * 0 if @linke is ready before @deadline; otherwise, -errno. 3349 */ 3350 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3351 int (*check_ready)(struct ata_link *link)) 3352 { 3353 unsigned long start = jiffies; 3354 unsigned long nodev_deadline; 3355 int warned = 0; 3356 3357 /* choose which 0xff timeout to use, read comment in libata.h */ 3358 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3359 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3360 else 3361 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3362 3363 /* Slave readiness can't be tested separately from master. On 3364 * M/S emulation configuration, this function should be called 3365 * only on the master and it will handle both master and slave. 3366 */ 3367 WARN_ON(link == link->ap->slave_link); 3368 3369 if (time_after(nodev_deadline, deadline)) 3370 nodev_deadline = deadline; 3371 3372 while (1) { 3373 unsigned long now = jiffies; 3374 int ready, tmp; 3375 3376 ready = tmp = check_ready(link); 3377 if (ready > 0) 3378 return 0; 3379 3380 /* 3381 * -ENODEV could be transient. Ignore -ENODEV if link 3382 * is online. Also, some SATA devices take a long 3383 * time to clear 0xff after reset. Wait for 3384 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3385 * offline. 3386 * 3387 * Note that some PATA controllers (pata_ali) explode 3388 * if status register is read more than once when 3389 * there's no device attached. 3390 */ 3391 if (ready == -ENODEV) { 3392 if (ata_link_online(link)) 3393 ready = 0; 3394 else if ((link->ap->flags & ATA_FLAG_SATA) && 3395 !ata_link_offline(link) && 3396 time_before(now, nodev_deadline)) 3397 ready = 0; 3398 } 3399 3400 if (ready) 3401 return ready; 3402 if (time_after(now, deadline)) 3403 return -EBUSY; 3404 3405 if (!warned && time_after(now, start + 5 * HZ) && 3406 (deadline - now > 3 * HZ)) { 3407 ata_link_printk(link, KERN_WARNING, 3408 "link is slow to respond, please be patient " 3409 "(ready=%d)\n", tmp); 3410 warned = 1; 3411 } 3412 3413 ata_msleep(link->ap, 50); 3414 } 3415 } 3416 3417 /** 3418 * ata_wait_after_reset - wait for link to become ready after reset 3419 * @link: link to be waited on 3420 * @deadline: deadline jiffies for the operation 3421 * @check_ready: callback to check link readiness 3422 * 3423 * Wait for @link to become ready after reset. 3424 * 3425 * LOCKING: 3426 * EH context. 3427 * 3428 * RETURNS: 3429 * 0 if @linke is ready before @deadline; otherwise, -errno. 3430 */ 3431 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3432 int (*check_ready)(struct ata_link *link)) 3433 { 3434 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3435 3436 return ata_wait_ready(link, deadline, check_ready); 3437 } 3438 3439 /** 3440 * sata_link_debounce - debounce SATA phy status 3441 * @link: ATA link to debounce SATA phy status for 3442 * @params: timing parameters { interval, duratinon, timeout } in msec 3443 * @deadline: deadline jiffies for the operation 3444 * 3445 * Make sure SStatus of @link reaches stable state, determined by 3446 * holding the same value where DET is not 1 for @duration polled 3447 * every @interval, before @timeout. Timeout constraints the 3448 * beginning of the stable state. Because DET gets stuck at 1 on 3449 * some controllers after hot unplugging, this functions waits 3450 * until timeout then returns 0 if DET is stable at 1. 3451 * 3452 * @timeout is further limited by @deadline. The sooner of the 3453 * two is used. 3454 * 3455 * LOCKING: 3456 * Kernel thread context (may sleep) 3457 * 3458 * RETURNS: 3459 * 0 on success, -errno on failure. 3460 */ 3461 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3462 unsigned long deadline) 3463 { 3464 unsigned long interval = params[0]; 3465 unsigned long duration = params[1]; 3466 unsigned long last_jiffies, t; 3467 u32 last, cur; 3468 int rc; 3469 3470 t = ata_deadline(jiffies, params[2]); 3471 if (time_before(t, deadline)) 3472 deadline = t; 3473 3474 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3475 return rc; 3476 cur &= 0xf; 3477 3478 last = cur; 3479 last_jiffies = jiffies; 3480 3481 while (1) { 3482 ata_msleep(link->ap, interval); 3483 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3484 return rc; 3485 cur &= 0xf; 3486 3487 /* DET stable? */ 3488 if (cur == last) { 3489 if (cur == 1 && time_before(jiffies, deadline)) 3490 continue; 3491 if (time_after(jiffies, 3492 ata_deadline(last_jiffies, duration))) 3493 return 0; 3494 continue; 3495 } 3496 3497 /* unstable, start over */ 3498 last = cur; 3499 last_jiffies = jiffies; 3500 3501 /* Check deadline. If debouncing failed, return 3502 * -EPIPE to tell upper layer to lower link speed. 3503 */ 3504 if (time_after(jiffies, deadline)) 3505 return -EPIPE; 3506 } 3507 } 3508 3509 /** 3510 * sata_link_resume - resume SATA link 3511 * @link: ATA link to resume SATA 3512 * @params: timing parameters { interval, duratinon, timeout } in msec 3513 * @deadline: deadline jiffies for the operation 3514 * 3515 * Resume SATA phy @link and debounce it. 3516 * 3517 * LOCKING: 3518 * Kernel thread context (may sleep) 3519 * 3520 * RETURNS: 3521 * 0 on success, -errno on failure. 3522 */ 3523 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3524 unsigned long deadline) 3525 { 3526 int tries = ATA_LINK_RESUME_TRIES; 3527 u32 scontrol, serror; 3528 int rc; 3529 3530 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3531 return rc; 3532 3533 /* 3534 * Writes to SControl sometimes get ignored under certain 3535 * controllers (ata_piix SIDPR). Make sure DET actually is 3536 * cleared. 3537 */ 3538 do { 3539 scontrol = (scontrol & 0x0f0) | 0x300; 3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3541 return rc; 3542 /* 3543 * Some PHYs react badly if SStatus is pounded 3544 * immediately after resuming. Delay 200ms before 3545 * debouncing. 3546 */ 3547 ata_msleep(link->ap, 200); 3548 3549 /* is SControl restored correctly? */ 3550 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3551 return rc; 3552 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3553 3554 if ((scontrol & 0xf0f) != 0x300) { 3555 ata_link_printk(link, KERN_ERR, 3556 "failed to resume link (SControl %X)\n", 3557 scontrol); 3558 return 0; 3559 } 3560 3561 if (tries < ATA_LINK_RESUME_TRIES) 3562 ata_link_printk(link, KERN_WARNING, 3563 "link resume succeeded after %d retries\n", 3564 ATA_LINK_RESUME_TRIES - tries); 3565 3566 if ((rc = sata_link_debounce(link, params, deadline))) 3567 return rc; 3568 3569 /* clear SError, some PHYs require this even for SRST to work */ 3570 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3571 rc = sata_scr_write(link, SCR_ERROR, serror); 3572 3573 return rc != -EINVAL ? rc : 0; 3574 } 3575 3576 /** 3577 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3578 * @link: ATA link to manipulate SControl for 3579 * @policy: LPM policy to configure 3580 * @spm_wakeup: initiate LPM transition to active state 3581 * 3582 * Manipulate the IPM field of the SControl register of @link 3583 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3584 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3585 * the link. This function also clears PHYRDY_CHG before 3586 * returning. 3587 * 3588 * LOCKING: 3589 * EH context. 3590 * 3591 * RETURNS: 3592 * 0 on succes, -errno otherwise. 3593 */ 3594 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3595 bool spm_wakeup) 3596 { 3597 struct ata_eh_context *ehc = &link->eh_context; 3598 bool woken_up = false; 3599 u32 scontrol; 3600 int rc; 3601 3602 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3603 if (rc) 3604 return rc; 3605 3606 switch (policy) { 3607 case ATA_LPM_MAX_POWER: 3608 /* disable all LPM transitions */ 3609 scontrol |= (0x3 << 8); 3610 /* initiate transition to active state */ 3611 if (spm_wakeup) { 3612 scontrol |= (0x4 << 12); 3613 woken_up = true; 3614 } 3615 break; 3616 case ATA_LPM_MED_POWER: 3617 /* allow LPM to PARTIAL */ 3618 scontrol &= ~(0x1 << 8); 3619 scontrol |= (0x2 << 8); 3620 break; 3621 case ATA_LPM_MIN_POWER: 3622 if (ata_link_nr_enabled(link) > 0) 3623 /* no restrictions on LPM transitions */ 3624 scontrol &= ~(0x3 << 8); 3625 else { 3626 /* empty port, power off */ 3627 scontrol &= ~0xf; 3628 scontrol |= (0x1 << 2); 3629 } 3630 break; 3631 default: 3632 WARN_ON(1); 3633 } 3634 3635 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3636 if (rc) 3637 return rc; 3638 3639 /* give the link time to transit out of LPM state */ 3640 if (woken_up) 3641 msleep(10); 3642 3643 /* clear PHYRDY_CHG from SError */ 3644 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3645 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3646 } 3647 3648 /** 3649 * ata_std_prereset - prepare for reset 3650 * @link: ATA link to be reset 3651 * @deadline: deadline jiffies for the operation 3652 * 3653 * @link is about to be reset. Initialize it. Failure from 3654 * prereset makes libata abort whole reset sequence and give up 3655 * that port, so prereset should be best-effort. It does its 3656 * best to prepare for reset sequence but if things go wrong, it 3657 * should just whine, not fail. 3658 * 3659 * LOCKING: 3660 * Kernel thread context (may sleep) 3661 * 3662 * RETURNS: 3663 * 0 on success, -errno otherwise. 3664 */ 3665 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3666 { 3667 struct ata_port *ap = link->ap; 3668 struct ata_eh_context *ehc = &link->eh_context; 3669 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3670 int rc; 3671 3672 /* if we're about to do hardreset, nothing more to do */ 3673 if (ehc->i.action & ATA_EH_HARDRESET) 3674 return 0; 3675 3676 /* if SATA, resume link */ 3677 if (ap->flags & ATA_FLAG_SATA) { 3678 rc = sata_link_resume(link, timing, deadline); 3679 /* whine about phy resume failure but proceed */ 3680 if (rc && rc != -EOPNOTSUPP) 3681 ata_link_printk(link, KERN_WARNING, "failed to resume " 3682 "link for reset (errno=%d)\n", rc); 3683 } 3684 3685 /* no point in trying softreset on offline link */ 3686 if (ata_phys_link_offline(link)) 3687 ehc->i.action &= ~ATA_EH_SOFTRESET; 3688 3689 return 0; 3690 } 3691 3692 /** 3693 * sata_link_hardreset - reset link via SATA phy reset 3694 * @link: link to reset 3695 * @timing: timing parameters { interval, duratinon, timeout } in msec 3696 * @deadline: deadline jiffies for the operation 3697 * @online: optional out parameter indicating link onlineness 3698 * @check_ready: optional callback to check link readiness 3699 * 3700 * SATA phy-reset @link using DET bits of SControl register. 3701 * After hardreset, link readiness is waited upon using 3702 * ata_wait_ready() if @check_ready is specified. LLDs are 3703 * allowed to not specify @check_ready and wait itself after this 3704 * function returns. Device classification is LLD's 3705 * responsibility. 3706 * 3707 * *@online is set to one iff reset succeeded and @link is online 3708 * after reset. 3709 * 3710 * LOCKING: 3711 * Kernel thread context (may sleep) 3712 * 3713 * RETURNS: 3714 * 0 on success, -errno otherwise. 3715 */ 3716 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3717 unsigned long deadline, 3718 bool *online, int (*check_ready)(struct ata_link *)) 3719 { 3720 u32 scontrol; 3721 int rc; 3722 3723 DPRINTK("ENTER\n"); 3724 3725 if (online) 3726 *online = false; 3727 3728 if (sata_set_spd_needed(link)) { 3729 /* SATA spec says nothing about how to reconfigure 3730 * spd. To be on the safe side, turn off phy during 3731 * reconfiguration. This works for at least ICH7 AHCI 3732 * and Sil3124. 3733 */ 3734 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3735 goto out; 3736 3737 scontrol = (scontrol & 0x0f0) | 0x304; 3738 3739 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3740 goto out; 3741 3742 sata_set_spd(link); 3743 } 3744 3745 /* issue phy wake/reset */ 3746 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3747 goto out; 3748 3749 scontrol = (scontrol & 0x0f0) | 0x301; 3750 3751 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3752 goto out; 3753 3754 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3755 * 10.4.2 says at least 1 ms. 3756 */ 3757 ata_msleep(link->ap, 1); 3758 3759 /* bring link back */ 3760 rc = sata_link_resume(link, timing, deadline); 3761 if (rc) 3762 goto out; 3763 /* if link is offline nothing more to do */ 3764 if (ata_phys_link_offline(link)) 3765 goto out; 3766 3767 /* Link is online. From this point, -ENODEV too is an error. */ 3768 if (online) 3769 *online = true; 3770 3771 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3772 /* If PMP is supported, we have to do follow-up SRST. 3773 * Some PMPs don't send D2H Reg FIS after hardreset if 3774 * the first port is empty. Wait only for 3775 * ATA_TMOUT_PMP_SRST_WAIT. 3776 */ 3777 if (check_ready) { 3778 unsigned long pmp_deadline; 3779 3780 pmp_deadline = ata_deadline(jiffies, 3781 ATA_TMOUT_PMP_SRST_WAIT); 3782 if (time_after(pmp_deadline, deadline)) 3783 pmp_deadline = deadline; 3784 ata_wait_ready(link, pmp_deadline, check_ready); 3785 } 3786 rc = -EAGAIN; 3787 goto out; 3788 } 3789 3790 rc = 0; 3791 if (check_ready) 3792 rc = ata_wait_ready(link, deadline, check_ready); 3793 out: 3794 if (rc && rc != -EAGAIN) { 3795 /* online is set iff link is online && reset succeeded */ 3796 if (online) 3797 *online = false; 3798 ata_link_printk(link, KERN_ERR, 3799 "COMRESET failed (errno=%d)\n", rc); 3800 } 3801 DPRINTK("EXIT, rc=%d\n", rc); 3802 return rc; 3803 } 3804 3805 /** 3806 * sata_std_hardreset - COMRESET w/o waiting or classification 3807 * @link: link to reset 3808 * @class: resulting class of attached device 3809 * @deadline: deadline jiffies for the operation 3810 * 3811 * Standard SATA COMRESET w/o waiting or classification. 3812 * 3813 * LOCKING: 3814 * Kernel thread context (may sleep) 3815 * 3816 * RETURNS: 3817 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3818 */ 3819 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3820 unsigned long deadline) 3821 { 3822 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3823 bool online; 3824 int rc; 3825 3826 /* do hardreset */ 3827 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3828 return online ? -EAGAIN : rc; 3829 } 3830 3831 /** 3832 * ata_std_postreset - standard postreset callback 3833 * @link: the target ata_link 3834 * @classes: classes of attached devices 3835 * 3836 * This function is invoked after a successful reset. Note that 3837 * the device might have been reset more than once using 3838 * different reset methods before postreset is invoked. 3839 * 3840 * LOCKING: 3841 * Kernel thread context (may sleep) 3842 */ 3843 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3844 { 3845 u32 serror; 3846 3847 DPRINTK("ENTER\n"); 3848 3849 /* reset complete, clear SError */ 3850 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3851 sata_scr_write(link, SCR_ERROR, serror); 3852 3853 /* print link status */ 3854 sata_print_link_status(link); 3855 3856 DPRINTK("EXIT\n"); 3857 } 3858 3859 /** 3860 * ata_dev_same_device - Determine whether new ID matches configured device 3861 * @dev: device to compare against 3862 * @new_class: class of the new device 3863 * @new_id: IDENTIFY page of the new device 3864 * 3865 * Compare @new_class and @new_id against @dev and determine 3866 * whether @dev is the device indicated by @new_class and 3867 * @new_id. 3868 * 3869 * LOCKING: 3870 * None. 3871 * 3872 * RETURNS: 3873 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3874 */ 3875 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3876 const u16 *new_id) 3877 { 3878 const u16 *old_id = dev->id; 3879 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3880 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3881 3882 if (dev->class != new_class) { 3883 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3884 dev->class, new_class); 3885 return 0; 3886 } 3887 3888 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3889 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3890 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3891 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3892 3893 if (strcmp(model[0], model[1])) { 3894 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3895 "'%s' != '%s'\n", model[0], model[1]); 3896 return 0; 3897 } 3898 3899 if (strcmp(serial[0], serial[1])) { 3900 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3901 "'%s' != '%s'\n", serial[0], serial[1]); 3902 return 0; 3903 } 3904 3905 return 1; 3906 } 3907 3908 /** 3909 * ata_dev_reread_id - Re-read IDENTIFY data 3910 * @dev: target ATA device 3911 * @readid_flags: read ID flags 3912 * 3913 * Re-read IDENTIFY page and make sure @dev is still attached to 3914 * the port. 3915 * 3916 * LOCKING: 3917 * Kernel thread context (may sleep) 3918 * 3919 * RETURNS: 3920 * 0 on success, negative errno otherwise 3921 */ 3922 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3923 { 3924 unsigned int class = dev->class; 3925 u16 *id = (void *)dev->link->ap->sector_buf; 3926 int rc; 3927 3928 /* read ID data */ 3929 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3930 if (rc) 3931 return rc; 3932 3933 /* is the device still there? */ 3934 if (!ata_dev_same_device(dev, class, id)) 3935 return -ENODEV; 3936 3937 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3938 return 0; 3939 } 3940 3941 /** 3942 * ata_dev_revalidate - Revalidate ATA device 3943 * @dev: device to revalidate 3944 * @new_class: new class code 3945 * @readid_flags: read ID flags 3946 * 3947 * Re-read IDENTIFY page, make sure @dev is still attached to the 3948 * port and reconfigure it according to the new IDENTIFY page. 3949 * 3950 * LOCKING: 3951 * Kernel thread context (may sleep) 3952 * 3953 * RETURNS: 3954 * 0 on success, negative errno otherwise 3955 */ 3956 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3957 unsigned int readid_flags) 3958 { 3959 u64 n_sectors = dev->n_sectors; 3960 u64 n_native_sectors = dev->n_native_sectors; 3961 int rc; 3962 3963 if (!ata_dev_enabled(dev)) 3964 return -ENODEV; 3965 3966 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3967 if (ata_class_enabled(new_class) && 3968 new_class != ATA_DEV_ATA && 3969 new_class != ATA_DEV_ATAPI && 3970 new_class != ATA_DEV_SEMB) { 3971 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3972 dev->class, new_class); 3973 rc = -ENODEV; 3974 goto fail; 3975 } 3976 3977 /* re-read ID */ 3978 rc = ata_dev_reread_id(dev, readid_flags); 3979 if (rc) 3980 goto fail; 3981 3982 /* configure device according to the new ID */ 3983 rc = ata_dev_configure(dev); 3984 if (rc) 3985 goto fail; 3986 3987 /* verify n_sectors hasn't changed */ 3988 if (dev->class != ATA_DEV_ATA || !n_sectors || 3989 dev->n_sectors == n_sectors) 3990 return 0; 3991 3992 /* n_sectors has changed */ 3993 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n", 3994 (unsigned long long)n_sectors, 3995 (unsigned long long)dev->n_sectors); 3996 3997 /* 3998 * Something could have caused HPA to be unlocked 3999 * involuntarily. If n_native_sectors hasn't changed and the 4000 * new size matches it, keep the device. 4001 */ 4002 if (dev->n_native_sectors == n_native_sectors && 4003 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4004 ata_dev_printk(dev, KERN_WARNING, 4005 "new n_sectors matches native, probably " 4006 "late HPA unlock, n_sectors updated\n"); 4007 /* use the larger n_sectors */ 4008 return 0; 4009 } 4010 4011 /* 4012 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4013 * unlocking HPA in those cases. 4014 * 4015 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4016 */ 4017 if (dev->n_native_sectors == n_native_sectors && 4018 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4019 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4020 ata_dev_printk(dev, KERN_WARNING, 4021 "old n_sectors matches native, probably " 4022 "late HPA lock, will try to unlock HPA\n"); 4023 /* try unlocking HPA */ 4024 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4025 rc = -EIO; 4026 } else 4027 rc = -ENODEV; 4028 4029 /* restore original n_[native_]sectors and fail */ 4030 dev->n_native_sectors = n_native_sectors; 4031 dev->n_sectors = n_sectors; 4032 fail: 4033 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4034 return rc; 4035 } 4036 4037 struct ata_blacklist_entry { 4038 const char *model_num; 4039 const char *model_rev; 4040 unsigned long horkage; 4041 }; 4042 4043 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4044 /* Devices with DMA related problems under Linux */ 4045 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4046 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4047 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4048 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4049 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4050 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4051 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4052 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4053 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4054 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4055 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4056 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4057 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4058 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4059 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4060 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4061 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4062 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4063 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4064 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4065 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4066 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4067 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4068 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4069 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4070 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4071 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4072 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4073 /* Odd clown on sil3726/4726 PMPs */ 4074 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4075 4076 /* Weird ATAPI devices */ 4077 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4078 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4079 4080 /* Devices we expect to fail diagnostics */ 4081 4082 /* Devices where NCQ should be avoided */ 4083 /* NCQ is slow */ 4084 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4085 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4086 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4087 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4088 /* NCQ is broken */ 4089 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4090 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4091 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4092 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4093 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4094 4095 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4096 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4097 ATA_HORKAGE_FIRMWARE_WARN }, 4098 4099 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4100 ATA_HORKAGE_FIRMWARE_WARN }, 4101 4102 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4103 ATA_HORKAGE_FIRMWARE_WARN }, 4104 4105 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4106 ATA_HORKAGE_FIRMWARE_WARN }, 4107 4108 /* Blacklist entries taken from Silicon Image 3124/3132 4109 Windows driver .inf file - also several Linux problem reports */ 4110 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4111 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4112 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4113 4114 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4115 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4116 4117 /* devices which puke on READ_NATIVE_MAX */ 4118 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4119 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4120 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4121 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4122 4123 /* this one allows HPA unlocking but fails IOs on the area */ 4124 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4125 4126 /* Devices which report 1 sector over size HPA */ 4127 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4128 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4129 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4130 4131 /* Devices which get the IVB wrong */ 4132 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4133 /* Maybe we should just blacklist TSSTcorp... */ 4134 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4135 4136 /* Devices that do not need bridging limits applied */ 4137 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4138 4139 /* Devices which aren't very happy with higher link speeds */ 4140 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4141 4142 /* 4143 * Devices which choke on SETXFER. Applies only if both the 4144 * device and controller are SATA. 4145 */ 4146 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4147 { "PIONEER DVD-RW DVR-212D", "1.28", ATA_HORKAGE_NOSETXFER }, 4148 { "PIONEER DVD-RW DVR-216D", "1.08", ATA_HORKAGE_NOSETXFER }, 4149 4150 /* End Marker */ 4151 { } 4152 }; 4153 4154 /** 4155 * glob_match - match a text string against a glob-style pattern 4156 * @text: the string to be examined 4157 * @pattern: the glob-style pattern to be matched against 4158 * 4159 * Either/both of text and pattern can be empty strings. 4160 * 4161 * Match text against a glob-style pattern, with wildcards and simple sets: 4162 * 4163 * ? matches any single character. 4164 * * matches any run of characters. 4165 * [xyz] matches a single character from the set: x, y, or z. 4166 * [a-d] matches a single character from the range: a, b, c, or d. 4167 * [a-d0-9] matches a single character from either range. 4168 * 4169 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4170 * Behaviour with malformed patterns is undefined, though generally reasonable. 4171 * 4172 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4173 * 4174 * This function uses one level of recursion per '*' in pattern. 4175 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4176 * this will not cause stack problems for any reasonable use here. 4177 * 4178 * RETURNS: 4179 * 0 on match, 1 otherwise. 4180 */ 4181 static int glob_match (const char *text, const char *pattern) 4182 { 4183 do { 4184 /* Match single character or a '?' wildcard */ 4185 if (*text == *pattern || *pattern == '?') { 4186 if (!*pattern++) 4187 return 0; /* End of both strings: match */ 4188 } else { 4189 /* Match single char against a '[' bracketed ']' pattern set */ 4190 if (!*text || *pattern != '[') 4191 break; /* Not a pattern set */ 4192 while (*++pattern && *pattern != ']' && *text != *pattern) { 4193 if (*pattern == '-' && *(pattern - 1) != '[') 4194 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4195 ++pattern; 4196 break; 4197 } 4198 } 4199 if (!*pattern || *pattern == ']') 4200 return 1; /* No match */ 4201 while (*pattern && *pattern++ != ']'); 4202 } 4203 } while (*++text && *pattern); 4204 4205 /* Match any run of chars against a '*' wildcard */ 4206 if (*pattern == '*') { 4207 if (!*++pattern) 4208 return 0; /* Match: avoid recursion at end of pattern */ 4209 /* Loop to handle additional pattern chars after the wildcard */ 4210 while (*text) { 4211 if (glob_match(text, pattern) == 0) 4212 return 0; /* Remainder matched */ 4213 ++text; /* Absorb (match) this char and try again */ 4214 } 4215 } 4216 if (!*text && !*pattern) 4217 return 0; /* End of both strings: match */ 4218 return 1; /* No match */ 4219 } 4220 4221 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4222 { 4223 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4224 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4225 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4226 4227 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4228 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4229 4230 while (ad->model_num) { 4231 if (!glob_match(model_num, ad->model_num)) { 4232 if (ad->model_rev == NULL) 4233 return ad->horkage; 4234 if (!glob_match(model_rev, ad->model_rev)) 4235 return ad->horkage; 4236 } 4237 ad++; 4238 } 4239 return 0; 4240 } 4241 4242 static int ata_dma_blacklisted(const struct ata_device *dev) 4243 { 4244 /* We don't support polling DMA. 4245 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4246 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4247 */ 4248 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4249 (dev->flags & ATA_DFLAG_CDB_INTR)) 4250 return 1; 4251 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4252 } 4253 4254 /** 4255 * ata_is_40wire - check drive side detection 4256 * @dev: device 4257 * 4258 * Perform drive side detection decoding, allowing for device vendors 4259 * who can't follow the documentation. 4260 */ 4261 4262 static int ata_is_40wire(struct ata_device *dev) 4263 { 4264 if (dev->horkage & ATA_HORKAGE_IVB) 4265 return ata_drive_40wire_relaxed(dev->id); 4266 return ata_drive_40wire(dev->id); 4267 } 4268 4269 /** 4270 * cable_is_40wire - 40/80/SATA decider 4271 * @ap: port to consider 4272 * 4273 * This function encapsulates the policy for speed management 4274 * in one place. At the moment we don't cache the result but 4275 * there is a good case for setting ap->cbl to the result when 4276 * we are called with unknown cables (and figuring out if it 4277 * impacts hotplug at all). 4278 * 4279 * Return 1 if the cable appears to be 40 wire. 4280 */ 4281 4282 static int cable_is_40wire(struct ata_port *ap) 4283 { 4284 struct ata_link *link; 4285 struct ata_device *dev; 4286 4287 /* If the controller thinks we are 40 wire, we are. */ 4288 if (ap->cbl == ATA_CBL_PATA40) 4289 return 1; 4290 4291 /* If the controller thinks we are 80 wire, we are. */ 4292 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4293 return 0; 4294 4295 /* If the system is known to be 40 wire short cable (eg 4296 * laptop), then we allow 80 wire modes even if the drive 4297 * isn't sure. 4298 */ 4299 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4300 return 0; 4301 4302 /* If the controller doesn't know, we scan. 4303 * 4304 * Note: We look for all 40 wire detects at this point. Any 4305 * 80 wire detect is taken to be 80 wire cable because 4306 * - in many setups only the one drive (slave if present) will 4307 * give a valid detect 4308 * - if you have a non detect capable drive you don't want it 4309 * to colour the choice 4310 */ 4311 ata_for_each_link(link, ap, EDGE) { 4312 ata_for_each_dev(dev, link, ENABLED) { 4313 if (!ata_is_40wire(dev)) 4314 return 0; 4315 } 4316 } 4317 return 1; 4318 } 4319 4320 /** 4321 * ata_dev_xfermask - Compute supported xfermask of the given device 4322 * @dev: Device to compute xfermask for 4323 * 4324 * Compute supported xfermask of @dev and store it in 4325 * dev->*_mask. This function is responsible for applying all 4326 * known limits including host controller limits, device 4327 * blacklist, etc... 4328 * 4329 * LOCKING: 4330 * None. 4331 */ 4332 static void ata_dev_xfermask(struct ata_device *dev) 4333 { 4334 struct ata_link *link = dev->link; 4335 struct ata_port *ap = link->ap; 4336 struct ata_host *host = ap->host; 4337 unsigned long xfer_mask; 4338 4339 /* controller modes available */ 4340 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4341 ap->mwdma_mask, ap->udma_mask); 4342 4343 /* drive modes available */ 4344 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4345 dev->mwdma_mask, dev->udma_mask); 4346 xfer_mask &= ata_id_xfermask(dev->id); 4347 4348 /* 4349 * CFA Advanced TrueIDE timings are not allowed on a shared 4350 * cable 4351 */ 4352 if (ata_dev_pair(dev)) { 4353 /* No PIO5 or PIO6 */ 4354 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4355 /* No MWDMA3 or MWDMA 4 */ 4356 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4357 } 4358 4359 if (ata_dma_blacklisted(dev)) { 4360 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4361 ata_dev_printk(dev, KERN_WARNING, 4362 "device is on DMA blacklist, disabling DMA\n"); 4363 } 4364 4365 if ((host->flags & ATA_HOST_SIMPLEX) && 4366 host->simplex_claimed && host->simplex_claimed != ap) { 4367 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4368 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4369 "other device, disabling DMA\n"); 4370 } 4371 4372 if (ap->flags & ATA_FLAG_NO_IORDY) 4373 xfer_mask &= ata_pio_mask_no_iordy(dev); 4374 4375 if (ap->ops->mode_filter) 4376 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4377 4378 /* Apply cable rule here. Don't apply it early because when 4379 * we handle hot plug the cable type can itself change. 4380 * Check this last so that we know if the transfer rate was 4381 * solely limited by the cable. 4382 * Unknown or 80 wire cables reported host side are checked 4383 * drive side as well. Cases where we know a 40wire cable 4384 * is used safely for 80 are not checked here. 4385 */ 4386 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4387 /* UDMA/44 or higher would be available */ 4388 if (cable_is_40wire(ap)) { 4389 ata_dev_printk(dev, KERN_WARNING, 4390 "limited to UDMA/33 due to 40-wire cable\n"); 4391 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4392 } 4393 4394 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4395 &dev->mwdma_mask, &dev->udma_mask); 4396 } 4397 4398 /** 4399 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4400 * @dev: Device to which command will be sent 4401 * 4402 * Issue SET FEATURES - XFER MODE command to device @dev 4403 * on port @ap. 4404 * 4405 * LOCKING: 4406 * PCI/etc. bus probe sem. 4407 * 4408 * RETURNS: 4409 * 0 on success, AC_ERR_* mask otherwise. 4410 */ 4411 4412 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4413 { 4414 struct ata_taskfile tf; 4415 unsigned int err_mask; 4416 4417 /* set up set-features taskfile */ 4418 DPRINTK("set features - xfer mode\n"); 4419 4420 /* Some controllers and ATAPI devices show flaky interrupt 4421 * behavior after setting xfer mode. Use polling instead. 4422 */ 4423 ata_tf_init(dev, &tf); 4424 tf.command = ATA_CMD_SET_FEATURES; 4425 tf.feature = SETFEATURES_XFER; 4426 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4427 tf.protocol = ATA_PROT_NODATA; 4428 /* If we are using IORDY we must send the mode setting command */ 4429 if (ata_pio_need_iordy(dev)) 4430 tf.nsect = dev->xfer_mode; 4431 /* If the device has IORDY and the controller does not - turn it off */ 4432 else if (ata_id_has_iordy(dev->id)) 4433 tf.nsect = 0x01; 4434 else /* In the ancient relic department - skip all of this */ 4435 return 0; 4436 4437 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4438 4439 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4440 return err_mask; 4441 } 4442 4443 /** 4444 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4445 * @dev: Device to which command will be sent 4446 * @enable: Whether to enable or disable the feature 4447 * @feature: The sector count represents the feature to set 4448 * 4449 * Issue SET FEATURES - SATA FEATURES command to device @dev 4450 * on port @ap with sector count 4451 * 4452 * LOCKING: 4453 * PCI/etc. bus probe sem. 4454 * 4455 * RETURNS: 4456 * 0 on success, AC_ERR_* mask otherwise. 4457 */ 4458 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4459 { 4460 struct ata_taskfile tf; 4461 unsigned int err_mask; 4462 4463 /* set up set-features taskfile */ 4464 DPRINTK("set features - SATA features\n"); 4465 4466 ata_tf_init(dev, &tf); 4467 tf.command = ATA_CMD_SET_FEATURES; 4468 tf.feature = enable; 4469 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4470 tf.protocol = ATA_PROT_NODATA; 4471 tf.nsect = feature; 4472 4473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4474 4475 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4476 return err_mask; 4477 } 4478 4479 /** 4480 * ata_dev_init_params - Issue INIT DEV PARAMS command 4481 * @dev: Device to which command will be sent 4482 * @heads: Number of heads (taskfile parameter) 4483 * @sectors: Number of sectors (taskfile parameter) 4484 * 4485 * LOCKING: 4486 * Kernel thread context (may sleep) 4487 * 4488 * RETURNS: 4489 * 0 on success, AC_ERR_* mask otherwise. 4490 */ 4491 static unsigned int ata_dev_init_params(struct ata_device *dev, 4492 u16 heads, u16 sectors) 4493 { 4494 struct ata_taskfile tf; 4495 unsigned int err_mask; 4496 4497 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4498 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4499 return AC_ERR_INVALID; 4500 4501 /* set up init dev params taskfile */ 4502 DPRINTK("init dev params \n"); 4503 4504 ata_tf_init(dev, &tf); 4505 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4506 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4507 tf.protocol = ATA_PROT_NODATA; 4508 tf.nsect = sectors; 4509 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4510 4511 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4512 /* A clean abort indicates an original or just out of spec drive 4513 and we should continue as we issue the setup based on the 4514 drive reported working geometry */ 4515 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4516 err_mask = 0; 4517 4518 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4519 return err_mask; 4520 } 4521 4522 /** 4523 * ata_sg_clean - Unmap DMA memory associated with command 4524 * @qc: Command containing DMA memory to be released 4525 * 4526 * Unmap all mapped DMA memory associated with this command. 4527 * 4528 * LOCKING: 4529 * spin_lock_irqsave(host lock) 4530 */ 4531 void ata_sg_clean(struct ata_queued_cmd *qc) 4532 { 4533 struct ata_port *ap = qc->ap; 4534 struct scatterlist *sg = qc->sg; 4535 int dir = qc->dma_dir; 4536 4537 WARN_ON_ONCE(sg == NULL); 4538 4539 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4540 4541 if (qc->n_elem) 4542 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4543 4544 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4545 qc->sg = NULL; 4546 } 4547 4548 /** 4549 * atapi_check_dma - Check whether ATAPI DMA can be supported 4550 * @qc: Metadata associated with taskfile to check 4551 * 4552 * Allow low-level driver to filter ATA PACKET commands, returning 4553 * a status indicating whether or not it is OK to use DMA for the 4554 * supplied PACKET command. 4555 * 4556 * LOCKING: 4557 * spin_lock_irqsave(host lock) 4558 * 4559 * RETURNS: 0 when ATAPI DMA can be used 4560 * nonzero otherwise 4561 */ 4562 int atapi_check_dma(struct ata_queued_cmd *qc) 4563 { 4564 struct ata_port *ap = qc->ap; 4565 4566 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4567 * few ATAPI devices choke on such DMA requests. 4568 */ 4569 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4570 unlikely(qc->nbytes & 15)) 4571 return 1; 4572 4573 if (ap->ops->check_atapi_dma) 4574 return ap->ops->check_atapi_dma(qc); 4575 4576 return 0; 4577 } 4578 4579 /** 4580 * ata_std_qc_defer - Check whether a qc needs to be deferred 4581 * @qc: ATA command in question 4582 * 4583 * Non-NCQ commands cannot run with any other command, NCQ or 4584 * not. As upper layer only knows the queue depth, we are 4585 * responsible for maintaining exclusion. This function checks 4586 * whether a new command @qc can be issued. 4587 * 4588 * LOCKING: 4589 * spin_lock_irqsave(host lock) 4590 * 4591 * RETURNS: 4592 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4593 */ 4594 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4595 { 4596 struct ata_link *link = qc->dev->link; 4597 4598 if (qc->tf.protocol == ATA_PROT_NCQ) { 4599 if (!ata_tag_valid(link->active_tag)) 4600 return 0; 4601 } else { 4602 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4603 return 0; 4604 } 4605 4606 return ATA_DEFER_LINK; 4607 } 4608 4609 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4610 4611 /** 4612 * ata_sg_init - Associate command with scatter-gather table. 4613 * @qc: Command to be associated 4614 * @sg: Scatter-gather table. 4615 * @n_elem: Number of elements in s/g table. 4616 * 4617 * Initialize the data-related elements of queued_cmd @qc 4618 * to point to a scatter-gather table @sg, containing @n_elem 4619 * elements. 4620 * 4621 * LOCKING: 4622 * spin_lock_irqsave(host lock) 4623 */ 4624 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4625 unsigned int n_elem) 4626 { 4627 qc->sg = sg; 4628 qc->n_elem = n_elem; 4629 qc->cursg = qc->sg; 4630 } 4631 4632 /** 4633 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4634 * @qc: Command with scatter-gather table to be mapped. 4635 * 4636 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4637 * 4638 * LOCKING: 4639 * spin_lock_irqsave(host lock) 4640 * 4641 * RETURNS: 4642 * Zero on success, negative on error. 4643 * 4644 */ 4645 static int ata_sg_setup(struct ata_queued_cmd *qc) 4646 { 4647 struct ata_port *ap = qc->ap; 4648 unsigned int n_elem; 4649 4650 VPRINTK("ENTER, ata%u\n", ap->print_id); 4651 4652 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4653 if (n_elem < 1) 4654 return -1; 4655 4656 DPRINTK("%d sg elements mapped\n", n_elem); 4657 qc->orig_n_elem = qc->n_elem; 4658 qc->n_elem = n_elem; 4659 qc->flags |= ATA_QCFLAG_DMAMAP; 4660 4661 return 0; 4662 } 4663 4664 /** 4665 * swap_buf_le16 - swap halves of 16-bit words in place 4666 * @buf: Buffer to swap 4667 * @buf_words: Number of 16-bit words in buffer. 4668 * 4669 * Swap halves of 16-bit words if needed to convert from 4670 * little-endian byte order to native cpu byte order, or 4671 * vice-versa. 4672 * 4673 * LOCKING: 4674 * Inherited from caller. 4675 */ 4676 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4677 { 4678 #ifdef __BIG_ENDIAN 4679 unsigned int i; 4680 4681 for (i = 0; i < buf_words; i++) 4682 buf[i] = le16_to_cpu(buf[i]); 4683 #endif /* __BIG_ENDIAN */ 4684 } 4685 4686 /** 4687 * ata_qc_new - Request an available ATA command, for queueing 4688 * @ap: target port 4689 * 4690 * LOCKING: 4691 * None. 4692 */ 4693 4694 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4695 { 4696 struct ata_queued_cmd *qc = NULL; 4697 unsigned int i; 4698 4699 /* no command while frozen */ 4700 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4701 return NULL; 4702 4703 /* the last tag is reserved for internal command. */ 4704 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4705 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4706 qc = __ata_qc_from_tag(ap, i); 4707 break; 4708 } 4709 4710 if (qc) 4711 qc->tag = i; 4712 4713 return qc; 4714 } 4715 4716 /** 4717 * ata_qc_new_init - Request an available ATA command, and initialize it 4718 * @dev: Device from whom we request an available command structure 4719 * 4720 * LOCKING: 4721 * None. 4722 */ 4723 4724 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4725 { 4726 struct ata_port *ap = dev->link->ap; 4727 struct ata_queued_cmd *qc; 4728 4729 qc = ata_qc_new(ap); 4730 if (qc) { 4731 qc->scsicmd = NULL; 4732 qc->ap = ap; 4733 qc->dev = dev; 4734 4735 ata_qc_reinit(qc); 4736 } 4737 4738 return qc; 4739 } 4740 4741 /** 4742 * ata_qc_free - free unused ata_queued_cmd 4743 * @qc: Command to complete 4744 * 4745 * Designed to free unused ata_queued_cmd object 4746 * in case something prevents using it. 4747 * 4748 * LOCKING: 4749 * spin_lock_irqsave(host lock) 4750 */ 4751 void ata_qc_free(struct ata_queued_cmd *qc) 4752 { 4753 struct ata_port *ap; 4754 unsigned int tag; 4755 4756 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4757 ap = qc->ap; 4758 4759 qc->flags = 0; 4760 tag = qc->tag; 4761 if (likely(ata_tag_valid(tag))) { 4762 qc->tag = ATA_TAG_POISON; 4763 clear_bit(tag, &ap->qc_allocated); 4764 } 4765 } 4766 4767 void __ata_qc_complete(struct ata_queued_cmd *qc) 4768 { 4769 struct ata_port *ap; 4770 struct ata_link *link; 4771 4772 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4773 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4774 ap = qc->ap; 4775 link = qc->dev->link; 4776 4777 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4778 ata_sg_clean(qc); 4779 4780 /* command should be marked inactive atomically with qc completion */ 4781 if (qc->tf.protocol == ATA_PROT_NCQ) { 4782 link->sactive &= ~(1 << qc->tag); 4783 if (!link->sactive) 4784 ap->nr_active_links--; 4785 } else { 4786 link->active_tag = ATA_TAG_POISON; 4787 ap->nr_active_links--; 4788 } 4789 4790 /* clear exclusive status */ 4791 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4792 ap->excl_link == link)) 4793 ap->excl_link = NULL; 4794 4795 /* atapi: mark qc as inactive to prevent the interrupt handler 4796 * from completing the command twice later, before the error handler 4797 * is called. (when rc != 0 and atapi request sense is needed) 4798 */ 4799 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4800 ap->qc_active &= ~(1 << qc->tag); 4801 4802 /* call completion callback */ 4803 qc->complete_fn(qc); 4804 } 4805 4806 static void fill_result_tf(struct ata_queued_cmd *qc) 4807 { 4808 struct ata_port *ap = qc->ap; 4809 4810 qc->result_tf.flags = qc->tf.flags; 4811 ap->ops->qc_fill_rtf(qc); 4812 } 4813 4814 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4815 { 4816 struct ata_device *dev = qc->dev; 4817 4818 if (ata_is_nodata(qc->tf.protocol)) 4819 return; 4820 4821 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4822 return; 4823 4824 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4825 } 4826 4827 /** 4828 * ata_qc_complete - Complete an active ATA command 4829 * @qc: Command to complete 4830 * 4831 * Indicate to the mid and upper layers that an ATA command has 4832 * completed, with either an ok or not-ok status. 4833 * 4834 * Refrain from calling this function multiple times when 4835 * successfully completing multiple NCQ commands. 4836 * ata_qc_complete_multiple() should be used instead, which will 4837 * properly update IRQ expect state. 4838 * 4839 * LOCKING: 4840 * spin_lock_irqsave(host lock) 4841 */ 4842 void ata_qc_complete(struct ata_queued_cmd *qc) 4843 { 4844 struct ata_port *ap = qc->ap; 4845 4846 /* XXX: New EH and old EH use different mechanisms to 4847 * synchronize EH with regular execution path. 4848 * 4849 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4850 * Normal execution path is responsible for not accessing a 4851 * failed qc. libata core enforces the rule by returning NULL 4852 * from ata_qc_from_tag() for failed qcs. 4853 * 4854 * Old EH depends on ata_qc_complete() nullifying completion 4855 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4856 * not synchronize with interrupt handler. Only PIO task is 4857 * taken care of. 4858 */ 4859 if (ap->ops->error_handler) { 4860 struct ata_device *dev = qc->dev; 4861 struct ata_eh_info *ehi = &dev->link->eh_info; 4862 4863 if (unlikely(qc->err_mask)) 4864 qc->flags |= ATA_QCFLAG_FAILED; 4865 4866 /* 4867 * Finish internal commands without any further processing 4868 * and always with the result TF filled. 4869 */ 4870 if (unlikely(ata_tag_internal(qc->tag))) { 4871 fill_result_tf(qc); 4872 __ata_qc_complete(qc); 4873 return; 4874 } 4875 4876 /* 4877 * Non-internal qc has failed. Fill the result TF and 4878 * summon EH. 4879 */ 4880 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4881 fill_result_tf(qc); 4882 ata_qc_schedule_eh(qc); 4883 return; 4884 } 4885 4886 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4887 4888 /* read result TF if requested */ 4889 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4890 fill_result_tf(qc); 4891 4892 /* Some commands need post-processing after successful 4893 * completion. 4894 */ 4895 switch (qc->tf.command) { 4896 case ATA_CMD_SET_FEATURES: 4897 if (qc->tf.feature != SETFEATURES_WC_ON && 4898 qc->tf.feature != SETFEATURES_WC_OFF) 4899 break; 4900 /* fall through */ 4901 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4902 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4903 /* revalidate device */ 4904 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4905 ata_port_schedule_eh(ap); 4906 break; 4907 4908 case ATA_CMD_SLEEP: 4909 dev->flags |= ATA_DFLAG_SLEEPING; 4910 break; 4911 } 4912 4913 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4914 ata_verify_xfer(qc); 4915 4916 __ata_qc_complete(qc); 4917 } else { 4918 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4919 return; 4920 4921 /* read result TF if failed or requested */ 4922 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4923 fill_result_tf(qc); 4924 4925 __ata_qc_complete(qc); 4926 } 4927 } 4928 4929 /** 4930 * ata_qc_complete_multiple - Complete multiple qcs successfully 4931 * @ap: port in question 4932 * @qc_active: new qc_active mask 4933 * 4934 * Complete in-flight commands. This functions is meant to be 4935 * called from low-level driver's interrupt routine to complete 4936 * requests normally. ap->qc_active and @qc_active is compared 4937 * and commands are completed accordingly. 4938 * 4939 * Always use this function when completing multiple NCQ commands 4940 * from IRQ handlers instead of calling ata_qc_complete() 4941 * multiple times to keep IRQ expect status properly in sync. 4942 * 4943 * LOCKING: 4944 * spin_lock_irqsave(host lock) 4945 * 4946 * RETURNS: 4947 * Number of completed commands on success, -errno otherwise. 4948 */ 4949 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4950 { 4951 int nr_done = 0; 4952 u32 done_mask; 4953 4954 done_mask = ap->qc_active ^ qc_active; 4955 4956 if (unlikely(done_mask & qc_active)) { 4957 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4958 "(%08x->%08x)\n", ap->qc_active, qc_active); 4959 return -EINVAL; 4960 } 4961 4962 while (done_mask) { 4963 struct ata_queued_cmd *qc; 4964 unsigned int tag = __ffs(done_mask); 4965 4966 qc = ata_qc_from_tag(ap, tag); 4967 if (qc) { 4968 ata_qc_complete(qc); 4969 nr_done++; 4970 } 4971 done_mask &= ~(1 << tag); 4972 } 4973 4974 return nr_done; 4975 } 4976 4977 /** 4978 * ata_qc_issue - issue taskfile to device 4979 * @qc: command to issue to device 4980 * 4981 * Prepare an ATA command to submission to device. 4982 * This includes mapping the data into a DMA-able 4983 * area, filling in the S/G table, and finally 4984 * writing the taskfile to hardware, starting the command. 4985 * 4986 * LOCKING: 4987 * spin_lock_irqsave(host lock) 4988 */ 4989 void ata_qc_issue(struct ata_queued_cmd *qc) 4990 { 4991 struct ata_port *ap = qc->ap; 4992 struct ata_link *link = qc->dev->link; 4993 u8 prot = qc->tf.protocol; 4994 4995 /* Make sure only one non-NCQ command is outstanding. The 4996 * check is skipped for old EH because it reuses active qc to 4997 * request ATAPI sense. 4998 */ 4999 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5000 5001 if (ata_is_ncq(prot)) { 5002 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5003 5004 if (!link->sactive) 5005 ap->nr_active_links++; 5006 link->sactive |= 1 << qc->tag; 5007 } else { 5008 WARN_ON_ONCE(link->sactive); 5009 5010 ap->nr_active_links++; 5011 link->active_tag = qc->tag; 5012 } 5013 5014 qc->flags |= ATA_QCFLAG_ACTIVE; 5015 ap->qc_active |= 1 << qc->tag; 5016 5017 /* 5018 * We guarantee to LLDs that they will have at least one 5019 * non-zero sg if the command is a data command. 5020 */ 5021 if (WARN_ON_ONCE(ata_is_data(prot) && 5022 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5023 goto sys_err; 5024 5025 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5026 (ap->flags & ATA_FLAG_PIO_DMA))) 5027 if (ata_sg_setup(qc)) 5028 goto sys_err; 5029 5030 /* if device is sleeping, schedule reset and abort the link */ 5031 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5032 link->eh_info.action |= ATA_EH_RESET; 5033 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5034 ata_link_abort(link); 5035 return; 5036 } 5037 5038 ap->ops->qc_prep(qc); 5039 5040 qc->err_mask |= ap->ops->qc_issue(qc); 5041 if (unlikely(qc->err_mask)) 5042 goto err; 5043 return; 5044 5045 sys_err: 5046 qc->err_mask |= AC_ERR_SYSTEM; 5047 err: 5048 ata_qc_complete(qc); 5049 } 5050 5051 /** 5052 * sata_scr_valid - test whether SCRs are accessible 5053 * @link: ATA link to test SCR accessibility for 5054 * 5055 * Test whether SCRs are accessible for @link. 5056 * 5057 * LOCKING: 5058 * None. 5059 * 5060 * RETURNS: 5061 * 1 if SCRs are accessible, 0 otherwise. 5062 */ 5063 int sata_scr_valid(struct ata_link *link) 5064 { 5065 struct ata_port *ap = link->ap; 5066 5067 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5068 } 5069 5070 /** 5071 * sata_scr_read - read SCR register of the specified port 5072 * @link: ATA link to read SCR for 5073 * @reg: SCR to read 5074 * @val: Place to store read value 5075 * 5076 * Read SCR register @reg of @link into *@val. This function is 5077 * guaranteed to succeed if @link is ap->link, the cable type of 5078 * the port is SATA and the port implements ->scr_read. 5079 * 5080 * LOCKING: 5081 * None if @link is ap->link. Kernel thread context otherwise. 5082 * 5083 * RETURNS: 5084 * 0 on success, negative errno on failure. 5085 */ 5086 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5087 { 5088 if (ata_is_host_link(link)) { 5089 if (sata_scr_valid(link)) 5090 return link->ap->ops->scr_read(link, reg, val); 5091 return -EOPNOTSUPP; 5092 } 5093 5094 return sata_pmp_scr_read(link, reg, val); 5095 } 5096 5097 /** 5098 * sata_scr_write - write SCR register of the specified port 5099 * @link: ATA link to write SCR for 5100 * @reg: SCR to write 5101 * @val: value to write 5102 * 5103 * Write @val to SCR register @reg of @link. This function is 5104 * guaranteed to succeed if @link is ap->link, the cable type of 5105 * the port is SATA and the port implements ->scr_read. 5106 * 5107 * LOCKING: 5108 * None if @link is ap->link. Kernel thread context otherwise. 5109 * 5110 * RETURNS: 5111 * 0 on success, negative errno on failure. 5112 */ 5113 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5114 { 5115 if (ata_is_host_link(link)) { 5116 if (sata_scr_valid(link)) 5117 return link->ap->ops->scr_write(link, reg, val); 5118 return -EOPNOTSUPP; 5119 } 5120 5121 return sata_pmp_scr_write(link, reg, val); 5122 } 5123 5124 /** 5125 * sata_scr_write_flush - write SCR register of the specified port and flush 5126 * @link: ATA link to write SCR for 5127 * @reg: SCR to write 5128 * @val: value to write 5129 * 5130 * This function is identical to sata_scr_write() except that this 5131 * function performs flush after writing to the register. 5132 * 5133 * LOCKING: 5134 * None if @link is ap->link. Kernel thread context otherwise. 5135 * 5136 * RETURNS: 5137 * 0 on success, negative errno on failure. 5138 */ 5139 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5140 { 5141 if (ata_is_host_link(link)) { 5142 int rc; 5143 5144 if (sata_scr_valid(link)) { 5145 rc = link->ap->ops->scr_write(link, reg, val); 5146 if (rc == 0) 5147 rc = link->ap->ops->scr_read(link, reg, &val); 5148 return rc; 5149 } 5150 return -EOPNOTSUPP; 5151 } 5152 5153 return sata_pmp_scr_write(link, reg, val); 5154 } 5155 5156 /** 5157 * ata_phys_link_online - test whether the given link is online 5158 * @link: ATA link to test 5159 * 5160 * Test whether @link is online. Note that this function returns 5161 * 0 if online status of @link cannot be obtained, so 5162 * ata_link_online(link) != !ata_link_offline(link). 5163 * 5164 * LOCKING: 5165 * None. 5166 * 5167 * RETURNS: 5168 * True if the port online status is available and online. 5169 */ 5170 bool ata_phys_link_online(struct ata_link *link) 5171 { 5172 u32 sstatus; 5173 5174 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5175 ata_sstatus_online(sstatus)) 5176 return true; 5177 return false; 5178 } 5179 5180 /** 5181 * ata_phys_link_offline - test whether the given link is offline 5182 * @link: ATA link to test 5183 * 5184 * Test whether @link is offline. Note that this function 5185 * returns 0 if offline status of @link cannot be obtained, so 5186 * ata_link_online(link) != !ata_link_offline(link). 5187 * 5188 * LOCKING: 5189 * None. 5190 * 5191 * RETURNS: 5192 * True if the port offline status is available and offline. 5193 */ 5194 bool ata_phys_link_offline(struct ata_link *link) 5195 { 5196 u32 sstatus; 5197 5198 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5199 !ata_sstatus_online(sstatus)) 5200 return true; 5201 return false; 5202 } 5203 5204 /** 5205 * ata_link_online - test whether the given link is online 5206 * @link: ATA link to test 5207 * 5208 * Test whether @link is online. This is identical to 5209 * ata_phys_link_online() when there's no slave link. When 5210 * there's a slave link, this function should only be called on 5211 * the master link and will return true if any of M/S links is 5212 * online. 5213 * 5214 * LOCKING: 5215 * None. 5216 * 5217 * RETURNS: 5218 * True if the port online status is available and online. 5219 */ 5220 bool ata_link_online(struct ata_link *link) 5221 { 5222 struct ata_link *slave = link->ap->slave_link; 5223 5224 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5225 5226 return ata_phys_link_online(link) || 5227 (slave && ata_phys_link_online(slave)); 5228 } 5229 5230 /** 5231 * ata_link_offline - test whether the given link is offline 5232 * @link: ATA link to test 5233 * 5234 * Test whether @link is offline. This is identical to 5235 * ata_phys_link_offline() when there's no slave link. When 5236 * there's a slave link, this function should only be called on 5237 * the master link and will return true if both M/S links are 5238 * offline. 5239 * 5240 * LOCKING: 5241 * None. 5242 * 5243 * RETURNS: 5244 * True if the port offline status is available and offline. 5245 */ 5246 bool ata_link_offline(struct ata_link *link) 5247 { 5248 struct ata_link *slave = link->ap->slave_link; 5249 5250 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5251 5252 return ata_phys_link_offline(link) && 5253 (!slave || ata_phys_link_offline(slave)); 5254 } 5255 5256 #ifdef CONFIG_PM 5257 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5258 unsigned int action, unsigned int ehi_flags, 5259 int wait) 5260 { 5261 unsigned long flags; 5262 int i, rc; 5263 5264 for (i = 0; i < host->n_ports; i++) { 5265 struct ata_port *ap = host->ports[i]; 5266 struct ata_link *link; 5267 5268 /* Previous resume operation might still be in 5269 * progress. Wait for PM_PENDING to clear. 5270 */ 5271 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5272 ata_port_wait_eh(ap); 5273 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5274 } 5275 5276 /* request PM ops to EH */ 5277 spin_lock_irqsave(ap->lock, flags); 5278 5279 ap->pm_mesg = mesg; 5280 if (wait) { 5281 rc = 0; 5282 ap->pm_result = &rc; 5283 } 5284 5285 ap->pflags |= ATA_PFLAG_PM_PENDING; 5286 ata_for_each_link(link, ap, HOST_FIRST) { 5287 link->eh_info.action |= action; 5288 link->eh_info.flags |= ehi_flags; 5289 } 5290 5291 ata_port_schedule_eh(ap); 5292 5293 spin_unlock_irqrestore(ap->lock, flags); 5294 5295 /* wait and check result */ 5296 if (wait) { 5297 ata_port_wait_eh(ap); 5298 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5299 if (rc) 5300 return rc; 5301 } 5302 } 5303 5304 return 0; 5305 } 5306 5307 /** 5308 * ata_host_suspend - suspend host 5309 * @host: host to suspend 5310 * @mesg: PM message 5311 * 5312 * Suspend @host. Actual operation is performed by EH. This 5313 * function requests EH to perform PM operations and waits for EH 5314 * to finish. 5315 * 5316 * LOCKING: 5317 * Kernel thread context (may sleep). 5318 * 5319 * RETURNS: 5320 * 0 on success, -errno on failure. 5321 */ 5322 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5323 { 5324 unsigned int ehi_flags = ATA_EHI_QUIET; 5325 int rc; 5326 5327 /* 5328 * On some hardware, device fails to respond after spun down 5329 * for suspend. As the device won't be used before being 5330 * resumed, we don't need to touch the device. Ask EH to skip 5331 * the usual stuff and proceed directly to suspend. 5332 * 5333 * http://thread.gmane.org/gmane.linux.ide/46764 5334 */ 5335 if (mesg.event == PM_EVENT_SUSPEND) 5336 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5337 5338 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1); 5339 if (rc == 0) 5340 host->dev->power.power_state = mesg; 5341 return rc; 5342 } 5343 5344 /** 5345 * ata_host_resume - resume host 5346 * @host: host to resume 5347 * 5348 * Resume @host. Actual operation is performed by EH. This 5349 * function requests EH to perform PM operations and returns. 5350 * Note that all resume operations are performed parallelly. 5351 * 5352 * LOCKING: 5353 * Kernel thread context (may sleep). 5354 */ 5355 void ata_host_resume(struct ata_host *host) 5356 { 5357 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5358 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5359 host->dev->power.power_state = PMSG_ON; 5360 } 5361 #endif 5362 5363 /** 5364 * ata_dev_init - Initialize an ata_device structure 5365 * @dev: Device structure to initialize 5366 * 5367 * Initialize @dev in preparation for probing. 5368 * 5369 * LOCKING: 5370 * Inherited from caller. 5371 */ 5372 void ata_dev_init(struct ata_device *dev) 5373 { 5374 struct ata_link *link = ata_dev_phys_link(dev); 5375 struct ata_port *ap = link->ap; 5376 unsigned long flags; 5377 5378 /* SATA spd limit is bound to the attached device, reset together */ 5379 link->sata_spd_limit = link->hw_sata_spd_limit; 5380 link->sata_spd = 0; 5381 5382 /* High bits of dev->flags are used to record warm plug 5383 * requests which occur asynchronously. Synchronize using 5384 * host lock. 5385 */ 5386 spin_lock_irqsave(ap->lock, flags); 5387 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5388 dev->horkage = 0; 5389 spin_unlock_irqrestore(ap->lock, flags); 5390 5391 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5392 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5393 dev->pio_mask = UINT_MAX; 5394 dev->mwdma_mask = UINT_MAX; 5395 dev->udma_mask = UINT_MAX; 5396 } 5397 5398 /** 5399 * ata_link_init - Initialize an ata_link structure 5400 * @ap: ATA port link is attached to 5401 * @link: Link structure to initialize 5402 * @pmp: Port multiplier port number 5403 * 5404 * Initialize @link. 5405 * 5406 * LOCKING: 5407 * Kernel thread context (may sleep) 5408 */ 5409 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5410 { 5411 int i; 5412 5413 /* clear everything except for devices */ 5414 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5415 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5416 5417 link->ap = ap; 5418 link->pmp = pmp; 5419 link->active_tag = ATA_TAG_POISON; 5420 link->hw_sata_spd_limit = UINT_MAX; 5421 5422 /* can't use iterator, ap isn't initialized yet */ 5423 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5424 struct ata_device *dev = &link->device[i]; 5425 5426 dev->link = link; 5427 dev->devno = dev - link->device; 5428 #ifdef CONFIG_ATA_ACPI 5429 dev->gtf_filter = ata_acpi_gtf_filter; 5430 #endif 5431 ata_dev_init(dev); 5432 } 5433 } 5434 5435 /** 5436 * sata_link_init_spd - Initialize link->sata_spd_limit 5437 * @link: Link to configure sata_spd_limit for 5438 * 5439 * Initialize @link->[hw_]sata_spd_limit to the currently 5440 * configured value. 5441 * 5442 * LOCKING: 5443 * Kernel thread context (may sleep). 5444 * 5445 * RETURNS: 5446 * 0 on success, -errno on failure. 5447 */ 5448 int sata_link_init_spd(struct ata_link *link) 5449 { 5450 u8 spd; 5451 int rc; 5452 5453 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5454 if (rc) 5455 return rc; 5456 5457 spd = (link->saved_scontrol >> 4) & 0xf; 5458 if (spd) 5459 link->hw_sata_spd_limit &= (1 << spd) - 1; 5460 5461 ata_force_link_limits(link); 5462 5463 link->sata_spd_limit = link->hw_sata_spd_limit; 5464 5465 return 0; 5466 } 5467 5468 /** 5469 * ata_port_alloc - allocate and initialize basic ATA port resources 5470 * @host: ATA host this allocated port belongs to 5471 * 5472 * Allocate and initialize basic ATA port resources. 5473 * 5474 * RETURNS: 5475 * Allocate ATA port on success, NULL on failure. 5476 * 5477 * LOCKING: 5478 * Inherited from calling layer (may sleep). 5479 */ 5480 struct ata_port *ata_port_alloc(struct ata_host *host) 5481 { 5482 struct ata_port *ap; 5483 5484 DPRINTK("ENTER\n"); 5485 5486 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5487 if (!ap) 5488 return NULL; 5489 5490 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5491 ap->lock = &host->lock; 5492 ap->print_id = -1; 5493 ap->host = host; 5494 ap->dev = host->dev; 5495 5496 #if defined(ATA_VERBOSE_DEBUG) 5497 /* turn on all debugging levels */ 5498 ap->msg_enable = 0x00FF; 5499 #elif defined(ATA_DEBUG) 5500 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5501 #else 5502 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5503 #endif 5504 5505 mutex_init(&ap->scsi_scan_mutex); 5506 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5507 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5508 INIT_LIST_HEAD(&ap->eh_done_q); 5509 init_waitqueue_head(&ap->eh_wait_q); 5510 init_completion(&ap->park_req_pending); 5511 init_timer_deferrable(&ap->fastdrain_timer); 5512 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5513 ap->fastdrain_timer.data = (unsigned long)ap; 5514 5515 ap->cbl = ATA_CBL_NONE; 5516 5517 ata_link_init(ap, &ap->link, 0); 5518 5519 #ifdef ATA_IRQ_TRAP 5520 ap->stats.unhandled_irq = 1; 5521 ap->stats.idle_irq = 1; 5522 #endif 5523 ata_sff_port_init(ap); 5524 5525 return ap; 5526 } 5527 5528 static void ata_host_release(struct device *gendev, void *res) 5529 { 5530 struct ata_host *host = dev_get_drvdata(gendev); 5531 int i; 5532 5533 for (i = 0; i < host->n_ports; i++) { 5534 struct ata_port *ap = host->ports[i]; 5535 5536 if (!ap) 5537 continue; 5538 5539 if (ap->scsi_host) 5540 scsi_host_put(ap->scsi_host); 5541 5542 kfree(ap->pmp_link); 5543 kfree(ap->slave_link); 5544 kfree(ap); 5545 host->ports[i] = NULL; 5546 } 5547 5548 dev_set_drvdata(gendev, NULL); 5549 } 5550 5551 /** 5552 * ata_host_alloc - allocate and init basic ATA host resources 5553 * @dev: generic device this host is associated with 5554 * @max_ports: maximum number of ATA ports associated with this host 5555 * 5556 * Allocate and initialize basic ATA host resources. LLD calls 5557 * this function to allocate a host, initializes it fully and 5558 * attaches it using ata_host_register(). 5559 * 5560 * @max_ports ports are allocated and host->n_ports is 5561 * initialized to @max_ports. The caller is allowed to decrease 5562 * host->n_ports before calling ata_host_register(). The unused 5563 * ports will be automatically freed on registration. 5564 * 5565 * RETURNS: 5566 * Allocate ATA host on success, NULL on failure. 5567 * 5568 * LOCKING: 5569 * Inherited from calling layer (may sleep). 5570 */ 5571 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5572 { 5573 struct ata_host *host; 5574 size_t sz; 5575 int i; 5576 5577 DPRINTK("ENTER\n"); 5578 5579 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5580 return NULL; 5581 5582 /* alloc a container for our list of ATA ports (buses) */ 5583 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5584 /* alloc a container for our list of ATA ports (buses) */ 5585 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5586 if (!host) 5587 goto err_out; 5588 5589 devres_add(dev, host); 5590 dev_set_drvdata(dev, host); 5591 5592 spin_lock_init(&host->lock); 5593 mutex_init(&host->eh_mutex); 5594 host->dev = dev; 5595 host->n_ports = max_ports; 5596 5597 /* allocate ports bound to this host */ 5598 for (i = 0; i < max_ports; i++) { 5599 struct ata_port *ap; 5600 5601 ap = ata_port_alloc(host); 5602 if (!ap) 5603 goto err_out; 5604 5605 ap->port_no = i; 5606 host->ports[i] = ap; 5607 } 5608 5609 devres_remove_group(dev, NULL); 5610 return host; 5611 5612 err_out: 5613 devres_release_group(dev, NULL); 5614 return NULL; 5615 } 5616 5617 /** 5618 * ata_host_alloc_pinfo - alloc host and init with port_info array 5619 * @dev: generic device this host is associated with 5620 * @ppi: array of ATA port_info to initialize host with 5621 * @n_ports: number of ATA ports attached to this host 5622 * 5623 * Allocate ATA host and initialize with info from @ppi. If NULL 5624 * terminated, @ppi may contain fewer entries than @n_ports. The 5625 * last entry will be used for the remaining ports. 5626 * 5627 * RETURNS: 5628 * Allocate ATA host on success, NULL on failure. 5629 * 5630 * LOCKING: 5631 * Inherited from calling layer (may sleep). 5632 */ 5633 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5634 const struct ata_port_info * const * ppi, 5635 int n_ports) 5636 { 5637 const struct ata_port_info *pi; 5638 struct ata_host *host; 5639 int i, j; 5640 5641 host = ata_host_alloc(dev, n_ports); 5642 if (!host) 5643 return NULL; 5644 5645 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5646 struct ata_port *ap = host->ports[i]; 5647 5648 if (ppi[j]) 5649 pi = ppi[j++]; 5650 5651 ap->pio_mask = pi->pio_mask; 5652 ap->mwdma_mask = pi->mwdma_mask; 5653 ap->udma_mask = pi->udma_mask; 5654 ap->flags |= pi->flags; 5655 ap->link.flags |= pi->link_flags; 5656 ap->ops = pi->port_ops; 5657 5658 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5659 host->ops = pi->port_ops; 5660 } 5661 5662 return host; 5663 } 5664 5665 /** 5666 * ata_slave_link_init - initialize slave link 5667 * @ap: port to initialize slave link for 5668 * 5669 * Create and initialize slave link for @ap. This enables slave 5670 * link handling on the port. 5671 * 5672 * In libata, a port contains links and a link contains devices. 5673 * There is single host link but if a PMP is attached to it, 5674 * there can be multiple fan-out links. On SATA, there's usually 5675 * a single device connected to a link but PATA and SATA 5676 * controllers emulating TF based interface can have two - master 5677 * and slave. 5678 * 5679 * However, there are a few controllers which don't fit into this 5680 * abstraction too well - SATA controllers which emulate TF 5681 * interface with both master and slave devices but also have 5682 * separate SCR register sets for each device. These controllers 5683 * need separate links for physical link handling 5684 * (e.g. onlineness, link speed) but should be treated like a 5685 * traditional M/S controller for everything else (e.g. command 5686 * issue, softreset). 5687 * 5688 * slave_link is libata's way of handling this class of 5689 * controllers without impacting core layer too much. For 5690 * anything other than physical link handling, the default host 5691 * link is used for both master and slave. For physical link 5692 * handling, separate @ap->slave_link is used. All dirty details 5693 * are implemented inside libata core layer. From LLD's POV, the 5694 * only difference is that prereset, hardreset and postreset are 5695 * called once more for the slave link, so the reset sequence 5696 * looks like the following. 5697 * 5698 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5699 * softreset(M) -> postreset(M) -> postreset(S) 5700 * 5701 * Note that softreset is called only for the master. Softreset 5702 * resets both M/S by definition, so SRST on master should handle 5703 * both (the standard method will work just fine). 5704 * 5705 * LOCKING: 5706 * Should be called before host is registered. 5707 * 5708 * RETURNS: 5709 * 0 on success, -errno on failure. 5710 */ 5711 int ata_slave_link_init(struct ata_port *ap) 5712 { 5713 struct ata_link *link; 5714 5715 WARN_ON(ap->slave_link); 5716 WARN_ON(ap->flags & ATA_FLAG_PMP); 5717 5718 link = kzalloc(sizeof(*link), GFP_KERNEL); 5719 if (!link) 5720 return -ENOMEM; 5721 5722 ata_link_init(ap, link, 1); 5723 ap->slave_link = link; 5724 return 0; 5725 } 5726 5727 static void ata_host_stop(struct device *gendev, void *res) 5728 { 5729 struct ata_host *host = dev_get_drvdata(gendev); 5730 int i; 5731 5732 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5733 5734 for (i = 0; i < host->n_ports; i++) { 5735 struct ata_port *ap = host->ports[i]; 5736 5737 if (ap->ops->port_stop) 5738 ap->ops->port_stop(ap); 5739 } 5740 5741 if (host->ops->host_stop) 5742 host->ops->host_stop(host); 5743 } 5744 5745 /** 5746 * ata_finalize_port_ops - finalize ata_port_operations 5747 * @ops: ata_port_operations to finalize 5748 * 5749 * An ata_port_operations can inherit from another ops and that 5750 * ops can again inherit from another. This can go on as many 5751 * times as necessary as long as there is no loop in the 5752 * inheritance chain. 5753 * 5754 * Ops tables are finalized when the host is started. NULL or 5755 * unspecified entries are inherited from the closet ancestor 5756 * which has the method and the entry is populated with it. 5757 * After finalization, the ops table directly points to all the 5758 * methods and ->inherits is no longer necessary and cleared. 5759 * 5760 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5761 * 5762 * LOCKING: 5763 * None. 5764 */ 5765 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5766 { 5767 static DEFINE_SPINLOCK(lock); 5768 const struct ata_port_operations *cur; 5769 void **begin = (void **)ops; 5770 void **end = (void **)&ops->inherits; 5771 void **pp; 5772 5773 if (!ops || !ops->inherits) 5774 return; 5775 5776 spin_lock(&lock); 5777 5778 for (cur = ops->inherits; cur; cur = cur->inherits) { 5779 void **inherit = (void **)cur; 5780 5781 for (pp = begin; pp < end; pp++, inherit++) 5782 if (!*pp) 5783 *pp = *inherit; 5784 } 5785 5786 for (pp = begin; pp < end; pp++) 5787 if (IS_ERR(*pp)) 5788 *pp = NULL; 5789 5790 ops->inherits = NULL; 5791 5792 spin_unlock(&lock); 5793 } 5794 5795 /** 5796 * ata_host_start - start and freeze ports of an ATA host 5797 * @host: ATA host to start ports for 5798 * 5799 * Start and then freeze ports of @host. Started status is 5800 * recorded in host->flags, so this function can be called 5801 * multiple times. Ports are guaranteed to get started only 5802 * once. If host->ops isn't initialized yet, its set to the 5803 * first non-dummy port ops. 5804 * 5805 * LOCKING: 5806 * Inherited from calling layer (may sleep). 5807 * 5808 * RETURNS: 5809 * 0 if all ports are started successfully, -errno otherwise. 5810 */ 5811 int ata_host_start(struct ata_host *host) 5812 { 5813 int have_stop = 0; 5814 void *start_dr = NULL; 5815 int i, rc; 5816 5817 if (host->flags & ATA_HOST_STARTED) 5818 return 0; 5819 5820 ata_finalize_port_ops(host->ops); 5821 5822 for (i = 0; i < host->n_ports; i++) { 5823 struct ata_port *ap = host->ports[i]; 5824 5825 ata_finalize_port_ops(ap->ops); 5826 5827 if (!host->ops && !ata_port_is_dummy(ap)) 5828 host->ops = ap->ops; 5829 5830 if (ap->ops->port_stop) 5831 have_stop = 1; 5832 } 5833 5834 if (host->ops->host_stop) 5835 have_stop = 1; 5836 5837 if (have_stop) { 5838 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5839 if (!start_dr) 5840 return -ENOMEM; 5841 } 5842 5843 for (i = 0; i < host->n_ports; i++) { 5844 struct ata_port *ap = host->ports[i]; 5845 5846 if (ap->ops->port_start) { 5847 rc = ap->ops->port_start(ap); 5848 if (rc) { 5849 if (rc != -ENODEV) 5850 dev_printk(KERN_ERR, host->dev, 5851 "failed to start port %d " 5852 "(errno=%d)\n", i, rc); 5853 goto err_out; 5854 } 5855 } 5856 ata_eh_freeze_port(ap); 5857 } 5858 5859 if (start_dr) 5860 devres_add(host->dev, start_dr); 5861 host->flags |= ATA_HOST_STARTED; 5862 return 0; 5863 5864 err_out: 5865 while (--i >= 0) { 5866 struct ata_port *ap = host->ports[i]; 5867 5868 if (ap->ops->port_stop) 5869 ap->ops->port_stop(ap); 5870 } 5871 devres_free(start_dr); 5872 return rc; 5873 } 5874 5875 /** 5876 * ata_sas_host_init - Initialize a host struct 5877 * @host: host to initialize 5878 * @dev: device host is attached to 5879 * @flags: host flags 5880 * @ops: port_ops 5881 * 5882 * LOCKING: 5883 * PCI/etc. bus probe sem. 5884 * 5885 */ 5886 /* KILLME - the only user left is ipr */ 5887 void ata_host_init(struct ata_host *host, struct device *dev, 5888 unsigned long flags, struct ata_port_operations *ops) 5889 { 5890 spin_lock_init(&host->lock); 5891 mutex_init(&host->eh_mutex); 5892 host->dev = dev; 5893 host->flags = flags; 5894 host->ops = ops; 5895 } 5896 5897 int ata_port_probe(struct ata_port *ap) 5898 { 5899 int rc = 0; 5900 5901 /* probe */ 5902 if (ap->ops->error_handler) { 5903 struct ata_eh_info *ehi = &ap->link.eh_info; 5904 unsigned long flags; 5905 5906 /* kick EH for boot probing */ 5907 spin_lock_irqsave(ap->lock, flags); 5908 5909 ehi->probe_mask |= ATA_ALL_DEVICES; 5910 ehi->action |= ATA_EH_RESET; 5911 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5912 5913 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5914 ap->pflags |= ATA_PFLAG_LOADING; 5915 ata_port_schedule_eh(ap); 5916 5917 spin_unlock_irqrestore(ap->lock, flags); 5918 5919 /* wait for EH to finish */ 5920 ata_port_wait_eh(ap); 5921 } else { 5922 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5923 rc = ata_bus_probe(ap); 5924 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5925 } 5926 return rc; 5927 } 5928 5929 5930 static void async_port_probe(void *data, async_cookie_t cookie) 5931 { 5932 struct ata_port *ap = data; 5933 5934 /* 5935 * If we're not allowed to scan this host in parallel, 5936 * we need to wait until all previous scans have completed 5937 * before going further. 5938 * Jeff Garzik says this is only within a controller, so we 5939 * don't need to wait for port 0, only for later ports. 5940 */ 5941 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5942 async_synchronize_cookie(cookie); 5943 5944 (void)ata_port_probe(ap); 5945 5946 /* in order to keep device order, we need to synchronize at this point */ 5947 async_synchronize_cookie(cookie); 5948 5949 ata_scsi_scan_host(ap, 1); 5950 } 5951 5952 /** 5953 * ata_host_register - register initialized ATA host 5954 * @host: ATA host to register 5955 * @sht: template for SCSI host 5956 * 5957 * Register initialized ATA host. @host is allocated using 5958 * ata_host_alloc() and fully initialized by LLD. This function 5959 * starts ports, registers @host with ATA and SCSI layers and 5960 * probe registered devices. 5961 * 5962 * LOCKING: 5963 * Inherited from calling layer (may sleep). 5964 * 5965 * RETURNS: 5966 * 0 on success, -errno otherwise. 5967 */ 5968 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5969 { 5970 int i, rc; 5971 5972 /* host must have been started */ 5973 if (!(host->flags & ATA_HOST_STARTED)) { 5974 dev_printk(KERN_ERR, host->dev, 5975 "BUG: trying to register unstarted host\n"); 5976 WARN_ON(1); 5977 return -EINVAL; 5978 } 5979 5980 /* Blow away unused ports. This happens when LLD can't 5981 * determine the exact number of ports to allocate at 5982 * allocation time. 5983 */ 5984 for (i = host->n_ports; host->ports[i]; i++) 5985 kfree(host->ports[i]); 5986 5987 /* give ports names and add SCSI hosts */ 5988 for (i = 0; i < host->n_ports; i++) 5989 host->ports[i]->print_id = ata_print_id++; 5990 5991 5992 /* Create associated sysfs transport objects */ 5993 for (i = 0; i < host->n_ports; i++) { 5994 rc = ata_tport_add(host->dev,host->ports[i]); 5995 if (rc) { 5996 goto err_tadd; 5997 } 5998 } 5999 6000 rc = ata_scsi_add_hosts(host, sht); 6001 if (rc) 6002 goto err_tadd; 6003 6004 /* associate with ACPI nodes */ 6005 ata_acpi_associate(host); 6006 6007 /* set cable, sata_spd_limit and report */ 6008 for (i = 0; i < host->n_ports; i++) { 6009 struct ata_port *ap = host->ports[i]; 6010 unsigned long xfer_mask; 6011 6012 /* set SATA cable type if still unset */ 6013 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6014 ap->cbl = ATA_CBL_SATA; 6015 6016 /* init sata_spd_limit to the current value */ 6017 sata_link_init_spd(&ap->link); 6018 if (ap->slave_link) 6019 sata_link_init_spd(ap->slave_link); 6020 6021 /* print per-port info to dmesg */ 6022 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6023 ap->udma_mask); 6024 6025 if (!ata_port_is_dummy(ap)) { 6026 ata_port_printk(ap, KERN_INFO, 6027 "%cATA max %s %s\n", 6028 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6029 ata_mode_string(xfer_mask), 6030 ap->link.eh_info.desc); 6031 ata_ehi_clear_desc(&ap->link.eh_info); 6032 } else 6033 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6034 } 6035 6036 /* perform each probe asynchronously */ 6037 for (i = 0; i < host->n_ports; i++) { 6038 struct ata_port *ap = host->ports[i]; 6039 async_schedule(async_port_probe, ap); 6040 } 6041 6042 return 0; 6043 6044 err_tadd: 6045 while (--i >= 0) { 6046 ata_tport_delete(host->ports[i]); 6047 } 6048 return rc; 6049 6050 } 6051 6052 /** 6053 * ata_host_activate - start host, request IRQ and register it 6054 * @host: target ATA host 6055 * @irq: IRQ to request 6056 * @irq_handler: irq_handler used when requesting IRQ 6057 * @irq_flags: irq_flags used when requesting IRQ 6058 * @sht: scsi_host_template to use when registering the host 6059 * 6060 * After allocating an ATA host and initializing it, most libata 6061 * LLDs perform three steps to activate the host - start host, 6062 * request IRQ and register it. This helper takes necessasry 6063 * arguments and performs the three steps in one go. 6064 * 6065 * An invalid IRQ skips the IRQ registration and expects the host to 6066 * have set polling mode on the port. In this case, @irq_handler 6067 * should be NULL. 6068 * 6069 * LOCKING: 6070 * Inherited from calling layer (may sleep). 6071 * 6072 * RETURNS: 6073 * 0 on success, -errno otherwise. 6074 */ 6075 int ata_host_activate(struct ata_host *host, int irq, 6076 irq_handler_t irq_handler, unsigned long irq_flags, 6077 struct scsi_host_template *sht) 6078 { 6079 int i, rc; 6080 6081 rc = ata_host_start(host); 6082 if (rc) 6083 return rc; 6084 6085 /* Special case for polling mode */ 6086 if (!irq) { 6087 WARN_ON(irq_handler); 6088 return ata_host_register(host, sht); 6089 } 6090 6091 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6092 dev_driver_string(host->dev), host); 6093 if (rc) 6094 return rc; 6095 6096 for (i = 0; i < host->n_ports; i++) 6097 ata_port_desc(host->ports[i], "irq %d", irq); 6098 6099 rc = ata_host_register(host, sht); 6100 /* if failed, just free the IRQ and leave ports alone */ 6101 if (rc) 6102 devm_free_irq(host->dev, irq, host); 6103 6104 return rc; 6105 } 6106 6107 /** 6108 * ata_port_detach - Detach ATA port in prepration of device removal 6109 * @ap: ATA port to be detached 6110 * 6111 * Detach all ATA devices and the associated SCSI devices of @ap; 6112 * then, remove the associated SCSI host. @ap is guaranteed to 6113 * be quiescent on return from this function. 6114 * 6115 * LOCKING: 6116 * Kernel thread context (may sleep). 6117 */ 6118 static void ata_port_detach(struct ata_port *ap) 6119 { 6120 unsigned long flags; 6121 6122 if (!ap->ops->error_handler) 6123 goto skip_eh; 6124 6125 /* tell EH we're leaving & flush EH */ 6126 spin_lock_irqsave(ap->lock, flags); 6127 ap->pflags |= ATA_PFLAG_UNLOADING; 6128 ata_port_schedule_eh(ap); 6129 spin_unlock_irqrestore(ap->lock, flags); 6130 6131 /* wait till EH commits suicide */ 6132 ata_port_wait_eh(ap); 6133 6134 /* it better be dead now */ 6135 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6136 6137 cancel_delayed_work_sync(&ap->hotplug_task); 6138 6139 skip_eh: 6140 if (ap->pmp_link) { 6141 int i; 6142 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6143 ata_tlink_delete(&ap->pmp_link[i]); 6144 } 6145 ata_tport_delete(ap); 6146 6147 /* remove the associated SCSI host */ 6148 scsi_remove_host(ap->scsi_host); 6149 } 6150 6151 /** 6152 * ata_host_detach - Detach all ports of an ATA host 6153 * @host: Host to detach 6154 * 6155 * Detach all ports of @host. 6156 * 6157 * LOCKING: 6158 * Kernel thread context (may sleep). 6159 */ 6160 void ata_host_detach(struct ata_host *host) 6161 { 6162 int i; 6163 6164 for (i = 0; i < host->n_ports; i++) 6165 ata_port_detach(host->ports[i]); 6166 6167 /* the host is dead now, dissociate ACPI */ 6168 ata_acpi_dissociate(host); 6169 } 6170 6171 #ifdef CONFIG_PCI 6172 6173 /** 6174 * ata_pci_remove_one - PCI layer callback for device removal 6175 * @pdev: PCI device that was removed 6176 * 6177 * PCI layer indicates to libata via this hook that hot-unplug or 6178 * module unload event has occurred. Detach all ports. Resource 6179 * release is handled via devres. 6180 * 6181 * LOCKING: 6182 * Inherited from PCI layer (may sleep). 6183 */ 6184 void ata_pci_remove_one(struct pci_dev *pdev) 6185 { 6186 struct device *dev = &pdev->dev; 6187 struct ata_host *host = dev_get_drvdata(dev); 6188 6189 ata_host_detach(host); 6190 } 6191 6192 /* move to PCI subsystem */ 6193 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6194 { 6195 unsigned long tmp = 0; 6196 6197 switch (bits->width) { 6198 case 1: { 6199 u8 tmp8 = 0; 6200 pci_read_config_byte(pdev, bits->reg, &tmp8); 6201 tmp = tmp8; 6202 break; 6203 } 6204 case 2: { 6205 u16 tmp16 = 0; 6206 pci_read_config_word(pdev, bits->reg, &tmp16); 6207 tmp = tmp16; 6208 break; 6209 } 6210 case 4: { 6211 u32 tmp32 = 0; 6212 pci_read_config_dword(pdev, bits->reg, &tmp32); 6213 tmp = tmp32; 6214 break; 6215 } 6216 6217 default: 6218 return -EINVAL; 6219 } 6220 6221 tmp &= bits->mask; 6222 6223 return (tmp == bits->val) ? 1 : 0; 6224 } 6225 6226 #ifdef CONFIG_PM 6227 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6228 { 6229 pci_save_state(pdev); 6230 pci_disable_device(pdev); 6231 6232 if (mesg.event & PM_EVENT_SLEEP) 6233 pci_set_power_state(pdev, PCI_D3hot); 6234 } 6235 6236 int ata_pci_device_do_resume(struct pci_dev *pdev) 6237 { 6238 int rc; 6239 6240 pci_set_power_state(pdev, PCI_D0); 6241 pci_restore_state(pdev); 6242 6243 rc = pcim_enable_device(pdev); 6244 if (rc) { 6245 dev_printk(KERN_ERR, &pdev->dev, 6246 "failed to enable device after resume (%d)\n", rc); 6247 return rc; 6248 } 6249 6250 pci_set_master(pdev); 6251 return 0; 6252 } 6253 6254 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6255 { 6256 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6257 int rc = 0; 6258 6259 rc = ata_host_suspend(host, mesg); 6260 if (rc) 6261 return rc; 6262 6263 ata_pci_device_do_suspend(pdev, mesg); 6264 6265 return 0; 6266 } 6267 6268 int ata_pci_device_resume(struct pci_dev *pdev) 6269 { 6270 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6271 int rc; 6272 6273 rc = ata_pci_device_do_resume(pdev); 6274 if (rc == 0) 6275 ata_host_resume(host); 6276 return rc; 6277 } 6278 #endif /* CONFIG_PM */ 6279 6280 #endif /* CONFIG_PCI */ 6281 6282 static int __init ata_parse_force_one(char **cur, 6283 struct ata_force_ent *force_ent, 6284 const char **reason) 6285 { 6286 /* FIXME: Currently, there's no way to tag init const data and 6287 * using __initdata causes build failure on some versions of 6288 * gcc. Once __initdataconst is implemented, add const to the 6289 * following structure. 6290 */ 6291 static struct ata_force_param force_tbl[] __initdata = { 6292 { "40c", .cbl = ATA_CBL_PATA40 }, 6293 { "80c", .cbl = ATA_CBL_PATA80 }, 6294 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6295 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6296 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6297 { "sata", .cbl = ATA_CBL_SATA }, 6298 { "1.5Gbps", .spd_limit = 1 }, 6299 { "3.0Gbps", .spd_limit = 2 }, 6300 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6301 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6302 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6303 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6304 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6305 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6306 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6307 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6308 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6309 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6310 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6311 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6312 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6313 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6314 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6315 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6316 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6317 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6318 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6319 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6320 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6321 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6322 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6323 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6324 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6325 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6326 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6327 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6328 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6329 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6330 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6331 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6332 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6333 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6334 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6335 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6336 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6337 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6338 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6339 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6340 }; 6341 char *start = *cur, *p = *cur; 6342 char *id, *val, *endp; 6343 const struct ata_force_param *match_fp = NULL; 6344 int nr_matches = 0, i; 6345 6346 /* find where this param ends and update *cur */ 6347 while (*p != '\0' && *p != ',') 6348 p++; 6349 6350 if (*p == '\0') 6351 *cur = p; 6352 else 6353 *cur = p + 1; 6354 6355 *p = '\0'; 6356 6357 /* parse */ 6358 p = strchr(start, ':'); 6359 if (!p) { 6360 val = strstrip(start); 6361 goto parse_val; 6362 } 6363 *p = '\0'; 6364 6365 id = strstrip(start); 6366 val = strstrip(p + 1); 6367 6368 /* parse id */ 6369 p = strchr(id, '.'); 6370 if (p) { 6371 *p++ = '\0'; 6372 force_ent->device = simple_strtoul(p, &endp, 10); 6373 if (p == endp || *endp != '\0') { 6374 *reason = "invalid device"; 6375 return -EINVAL; 6376 } 6377 } 6378 6379 force_ent->port = simple_strtoul(id, &endp, 10); 6380 if (p == endp || *endp != '\0') { 6381 *reason = "invalid port/link"; 6382 return -EINVAL; 6383 } 6384 6385 parse_val: 6386 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6387 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6388 const struct ata_force_param *fp = &force_tbl[i]; 6389 6390 if (strncasecmp(val, fp->name, strlen(val))) 6391 continue; 6392 6393 nr_matches++; 6394 match_fp = fp; 6395 6396 if (strcasecmp(val, fp->name) == 0) { 6397 nr_matches = 1; 6398 break; 6399 } 6400 } 6401 6402 if (!nr_matches) { 6403 *reason = "unknown value"; 6404 return -EINVAL; 6405 } 6406 if (nr_matches > 1) { 6407 *reason = "ambigious value"; 6408 return -EINVAL; 6409 } 6410 6411 force_ent->param = *match_fp; 6412 6413 return 0; 6414 } 6415 6416 static void __init ata_parse_force_param(void) 6417 { 6418 int idx = 0, size = 1; 6419 int last_port = -1, last_device = -1; 6420 char *p, *cur, *next; 6421 6422 /* calculate maximum number of params and allocate force_tbl */ 6423 for (p = ata_force_param_buf; *p; p++) 6424 if (*p == ',') 6425 size++; 6426 6427 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6428 if (!ata_force_tbl) { 6429 printk(KERN_WARNING "ata: failed to extend force table, " 6430 "libata.force ignored\n"); 6431 return; 6432 } 6433 6434 /* parse and populate the table */ 6435 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6436 const char *reason = ""; 6437 struct ata_force_ent te = { .port = -1, .device = -1 }; 6438 6439 next = cur; 6440 if (ata_parse_force_one(&next, &te, &reason)) { 6441 printk(KERN_WARNING "ata: failed to parse force " 6442 "parameter \"%s\" (%s)\n", 6443 cur, reason); 6444 continue; 6445 } 6446 6447 if (te.port == -1) { 6448 te.port = last_port; 6449 te.device = last_device; 6450 } 6451 6452 ata_force_tbl[idx++] = te; 6453 6454 last_port = te.port; 6455 last_device = te.device; 6456 } 6457 6458 ata_force_tbl_size = idx; 6459 } 6460 6461 static int __init ata_init(void) 6462 { 6463 int rc; 6464 6465 ata_parse_force_param(); 6466 6467 rc = ata_sff_init(); 6468 if (rc) { 6469 kfree(ata_force_tbl); 6470 return rc; 6471 } 6472 6473 libata_transport_init(); 6474 ata_scsi_transport_template = ata_attach_transport(); 6475 if (!ata_scsi_transport_template) { 6476 ata_sff_exit(); 6477 rc = -ENOMEM; 6478 goto err_out; 6479 } 6480 6481 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6482 return 0; 6483 6484 err_out: 6485 return rc; 6486 } 6487 6488 static void __exit ata_exit(void) 6489 { 6490 ata_release_transport(ata_scsi_transport_template); 6491 libata_transport_exit(); 6492 ata_sff_exit(); 6493 kfree(ata_force_tbl); 6494 } 6495 6496 subsys_initcall(ata_init); 6497 module_exit(ata_exit); 6498 6499 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6500 6501 int ata_ratelimit(void) 6502 { 6503 return __ratelimit(&ratelimit); 6504 } 6505 6506 /** 6507 * ata_msleep - ATA EH owner aware msleep 6508 * @ap: ATA port to attribute the sleep to 6509 * @msecs: duration to sleep in milliseconds 6510 * 6511 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6512 * ownership is released before going to sleep and reacquired 6513 * after the sleep is complete. IOW, other ports sharing the 6514 * @ap->host will be allowed to own the EH while this task is 6515 * sleeping. 6516 * 6517 * LOCKING: 6518 * Might sleep. 6519 */ 6520 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6521 { 6522 bool owns_eh = ap && ap->host->eh_owner == current; 6523 6524 if (owns_eh) 6525 ata_eh_release(ap); 6526 6527 msleep(msecs); 6528 6529 if (owns_eh) 6530 ata_eh_acquire(ap); 6531 } 6532 6533 /** 6534 * ata_wait_register - wait until register value changes 6535 * @ap: ATA port to wait register for, can be NULL 6536 * @reg: IO-mapped register 6537 * @mask: Mask to apply to read register value 6538 * @val: Wait condition 6539 * @interval: polling interval in milliseconds 6540 * @timeout: timeout in milliseconds 6541 * 6542 * Waiting for some bits of register to change is a common 6543 * operation for ATA controllers. This function reads 32bit LE 6544 * IO-mapped register @reg and tests for the following condition. 6545 * 6546 * (*@reg & mask) != val 6547 * 6548 * If the condition is met, it returns; otherwise, the process is 6549 * repeated after @interval_msec until timeout. 6550 * 6551 * LOCKING: 6552 * Kernel thread context (may sleep) 6553 * 6554 * RETURNS: 6555 * The final register value. 6556 */ 6557 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6558 unsigned long interval, unsigned long timeout) 6559 { 6560 unsigned long deadline; 6561 u32 tmp; 6562 6563 tmp = ioread32(reg); 6564 6565 /* Calculate timeout _after_ the first read to make sure 6566 * preceding writes reach the controller before starting to 6567 * eat away the timeout. 6568 */ 6569 deadline = ata_deadline(jiffies, timeout); 6570 6571 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6572 ata_msleep(ap, interval); 6573 tmp = ioread32(reg); 6574 } 6575 6576 return tmp; 6577 } 6578 6579 /* 6580 * Dummy port_ops 6581 */ 6582 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6583 { 6584 return AC_ERR_SYSTEM; 6585 } 6586 6587 static void ata_dummy_error_handler(struct ata_port *ap) 6588 { 6589 /* truly dummy */ 6590 } 6591 6592 struct ata_port_operations ata_dummy_port_ops = { 6593 .qc_prep = ata_noop_qc_prep, 6594 .qc_issue = ata_dummy_qc_issue, 6595 .error_handler = ata_dummy_error_handler, 6596 }; 6597 6598 const struct ata_port_info ata_dummy_port_info = { 6599 .port_ops = &ata_dummy_port_ops, 6600 }; 6601 6602 /* 6603 * libata is essentially a library of internal helper functions for 6604 * low-level ATA host controller drivers. As such, the API/ABI is 6605 * likely to change as new drivers are added and updated. 6606 * Do not depend on ABI/API stability. 6607 */ 6608 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6609 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6610 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6611 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6612 EXPORT_SYMBOL_GPL(sata_port_ops); 6613 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6614 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6615 EXPORT_SYMBOL_GPL(ata_link_next); 6616 EXPORT_SYMBOL_GPL(ata_dev_next); 6617 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6618 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6619 EXPORT_SYMBOL_GPL(ata_host_init); 6620 EXPORT_SYMBOL_GPL(ata_host_alloc); 6621 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6622 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6623 EXPORT_SYMBOL_GPL(ata_host_start); 6624 EXPORT_SYMBOL_GPL(ata_host_register); 6625 EXPORT_SYMBOL_GPL(ata_host_activate); 6626 EXPORT_SYMBOL_GPL(ata_host_detach); 6627 EXPORT_SYMBOL_GPL(ata_sg_init); 6628 EXPORT_SYMBOL_GPL(ata_qc_complete); 6629 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6630 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6631 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6632 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6633 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6634 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6635 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6636 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6637 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6638 EXPORT_SYMBOL_GPL(ata_mode_string); 6639 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6640 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6641 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6642 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6643 EXPORT_SYMBOL_GPL(ata_dev_disable); 6644 EXPORT_SYMBOL_GPL(sata_set_spd); 6645 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6646 EXPORT_SYMBOL_GPL(sata_link_debounce); 6647 EXPORT_SYMBOL_GPL(sata_link_resume); 6648 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6649 EXPORT_SYMBOL_GPL(ata_std_prereset); 6650 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6651 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6652 EXPORT_SYMBOL_GPL(ata_std_postreset); 6653 EXPORT_SYMBOL_GPL(ata_dev_classify); 6654 EXPORT_SYMBOL_GPL(ata_dev_pair); 6655 EXPORT_SYMBOL_GPL(ata_ratelimit); 6656 EXPORT_SYMBOL_GPL(ata_msleep); 6657 EXPORT_SYMBOL_GPL(ata_wait_register); 6658 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6659 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6660 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6661 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6662 EXPORT_SYMBOL_GPL(sata_scr_valid); 6663 EXPORT_SYMBOL_GPL(sata_scr_read); 6664 EXPORT_SYMBOL_GPL(sata_scr_write); 6665 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6666 EXPORT_SYMBOL_GPL(ata_link_online); 6667 EXPORT_SYMBOL_GPL(ata_link_offline); 6668 #ifdef CONFIG_PM 6669 EXPORT_SYMBOL_GPL(ata_host_suspend); 6670 EXPORT_SYMBOL_GPL(ata_host_resume); 6671 #endif /* CONFIG_PM */ 6672 EXPORT_SYMBOL_GPL(ata_id_string); 6673 EXPORT_SYMBOL_GPL(ata_id_c_string); 6674 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6675 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6676 6677 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6678 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6679 EXPORT_SYMBOL_GPL(ata_timing_compute); 6680 EXPORT_SYMBOL_GPL(ata_timing_merge); 6681 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6682 6683 #ifdef CONFIG_PCI 6684 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6685 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6686 #ifdef CONFIG_PM 6687 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6688 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6689 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6690 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6691 #endif /* CONFIG_PM */ 6692 #endif /* CONFIG_PCI */ 6693 6694 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6695 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6696 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6697 EXPORT_SYMBOL_GPL(ata_port_desc); 6698 #ifdef CONFIG_PCI 6699 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6700 #endif /* CONFIG_PCI */ 6701 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6702 EXPORT_SYMBOL_GPL(ata_link_abort); 6703 EXPORT_SYMBOL_GPL(ata_port_abort); 6704 EXPORT_SYMBOL_GPL(ata_port_freeze); 6705 EXPORT_SYMBOL_GPL(sata_async_notification); 6706 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6707 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6708 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6709 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6710 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6711 EXPORT_SYMBOL_GPL(ata_do_eh); 6712 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6713 6714 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6715 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6716 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6717 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6718 EXPORT_SYMBOL_GPL(ata_cable_sata); 6719