1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /* 167 * Iterator helpers. Don't use directly. 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 */ 172 struct ata_link *__ata_port_next_link(struct ata_port *ap, 173 struct ata_link *link, bool dev_only) 174 { 175 /* NULL link indicates start of iteration */ 176 if (!link) { 177 if (dev_only && sata_pmp_attached(ap)) 178 return ap->pmp_link; 179 return &ap->link; 180 } 181 182 /* we just iterated over the host master link, what's next? */ 183 if (link == &ap->link) { 184 if (!sata_pmp_attached(ap)) { 185 if (unlikely(ap->slave_link) && !dev_only) 186 return ap->slave_link; 187 return NULL; 188 } 189 return ap->pmp_link; 190 } 191 192 /* slave_link excludes PMP */ 193 if (unlikely(link == ap->slave_link)) 194 return NULL; 195 196 /* iterate to the next PMP link */ 197 if (++link < ap->pmp_link + ap->nr_pmp_links) 198 return link; 199 return NULL; 200 } 201 202 /** 203 * ata_dev_phys_link - find physical link for a device 204 * @dev: ATA device to look up physical link for 205 * 206 * Look up physical link which @dev is attached to. Note that 207 * this is different from @dev->link only when @dev is on slave 208 * link. For all other cases, it's the same as @dev->link. 209 * 210 * LOCKING: 211 * Don't care. 212 * 213 * RETURNS: 214 * Pointer to the found physical link. 215 */ 216 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 217 { 218 struct ata_port *ap = dev->link->ap; 219 220 if (!ap->slave_link) 221 return dev->link; 222 if (!dev->devno) 223 return &ap->link; 224 return ap->slave_link; 225 } 226 227 /** 228 * ata_force_cbl - force cable type according to libata.force 229 * @ap: ATA port of interest 230 * 231 * Force cable type according to libata.force and whine about it. 232 * The last entry which has matching port number is used, so it 233 * can be specified as part of device force parameters. For 234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 235 * same effect. 236 * 237 * LOCKING: 238 * EH context. 239 */ 240 void ata_force_cbl(struct ata_port *ap) 241 { 242 int i; 243 244 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 245 const struct ata_force_ent *fe = &ata_force_tbl[i]; 246 247 if (fe->port != -1 && fe->port != ap->print_id) 248 continue; 249 250 if (fe->param.cbl == ATA_CBL_NONE) 251 continue; 252 253 ap->cbl = fe->param.cbl; 254 ata_port_printk(ap, KERN_NOTICE, 255 "FORCE: cable set to %s\n", fe->param.name); 256 return; 257 } 258 } 259 260 /** 261 * ata_force_link_limits - force link limits according to libata.force 262 * @link: ATA link of interest 263 * 264 * Force link flags and SATA spd limit according to libata.force 265 * and whine about it. When only the port part is specified 266 * (e.g. 1:), the limit applies to all links connected to both 267 * the host link and all fan-out ports connected via PMP. If the 268 * device part is specified as 0 (e.g. 1.00:), it specifies the 269 * first fan-out link not the host link. Device number 15 always 270 * points to the host link whether PMP is attached or not. If the 271 * controller has slave link, device number 16 points to it. 272 * 273 * LOCKING: 274 * EH context. 275 */ 276 static void ata_force_link_limits(struct ata_link *link) 277 { 278 bool did_spd = false; 279 int linkno = link->pmp; 280 int i; 281 282 if (ata_is_host_link(link)) 283 linkno += 15; 284 285 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 286 const struct ata_force_ent *fe = &ata_force_tbl[i]; 287 288 if (fe->port != -1 && fe->port != link->ap->print_id) 289 continue; 290 291 if (fe->device != -1 && fe->device != linkno) 292 continue; 293 294 /* only honor the first spd limit */ 295 if (!did_spd && fe->param.spd_limit) { 296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 297 ata_link_printk(link, KERN_NOTICE, 298 "FORCE: PHY spd limit set to %s\n", 299 fe->param.name); 300 did_spd = true; 301 } 302 303 /* let lflags stack */ 304 if (fe->param.lflags) { 305 link->flags |= fe->param.lflags; 306 ata_link_printk(link, KERN_NOTICE, 307 "FORCE: link flag 0x%x forced -> 0x%x\n", 308 fe->param.lflags, link->flags); 309 } 310 } 311 } 312 313 /** 314 * ata_force_xfermask - force xfermask according to libata.force 315 * @dev: ATA device of interest 316 * 317 * Force xfer_mask according to libata.force and whine about it. 318 * For consistency with link selection, device number 15 selects 319 * the first device connected to the host link. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 static void ata_force_xfermask(struct ata_device *dev) 325 { 326 int devno = dev->link->pmp + dev->devno; 327 int alt_devno = devno; 328 int i; 329 330 /* allow n.15/16 for devices attached to host port */ 331 if (ata_is_host_link(dev->link)) 332 alt_devno += 15; 333 334 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 335 const struct ata_force_ent *fe = &ata_force_tbl[i]; 336 unsigned long pio_mask, mwdma_mask, udma_mask; 337 338 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 339 continue; 340 341 if (fe->device != -1 && fe->device != devno && 342 fe->device != alt_devno) 343 continue; 344 345 if (!fe->param.xfer_mask) 346 continue; 347 348 ata_unpack_xfermask(fe->param.xfer_mask, 349 &pio_mask, &mwdma_mask, &udma_mask); 350 if (udma_mask) 351 dev->udma_mask = udma_mask; 352 else if (mwdma_mask) { 353 dev->udma_mask = 0; 354 dev->mwdma_mask = mwdma_mask; 355 } else { 356 dev->udma_mask = 0; 357 dev->mwdma_mask = 0; 358 dev->pio_mask = pio_mask; 359 } 360 361 ata_dev_printk(dev, KERN_NOTICE, 362 "FORCE: xfer_mask set to %s\n", fe->param.name); 363 return; 364 } 365 } 366 367 /** 368 * ata_force_horkage - force horkage according to libata.force 369 * @dev: ATA device of interest 370 * 371 * Force horkage according to libata.force and whine about it. 372 * For consistency with link selection, device number 15 selects 373 * the first device connected to the host link. 374 * 375 * LOCKING: 376 * EH context. 377 */ 378 static void ata_force_horkage(struct ata_device *dev) 379 { 380 int devno = dev->link->pmp + dev->devno; 381 int alt_devno = devno; 382 int i; 383 384 /* allow n.15/16 for devices attached to host port */ 385 if (ata_is_host_link(dev->link)) 386 alt_devno += 15; 387 388 for (i = 0; i < ata_force_tbl_size; i++) { 389 const struct ata_force_ent *fe = &ata_force_tbl[i]; 390 391 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 392 continue; 393 394 if (fe->device != -1 && fe->device != devno && 395 fe->device != alt_devno) 396 continue; 397 398 if (!(~dev->horkage & fe->param.horkage_on) && 399 !(dev->horkage & fe->param.horkage_off)) 400 continue; 401 402 dev->horkage |= fe->param.horkage_on; 403 dev->horkage &= ~fe->param.horkage_off; 404 405 ata_dev_printk(dev, KERN_NOTICE, 406 "FORCE: horkage modified (%s)\n", fe->param.name); 407 } 408 } 409 410 /** 411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 412 * @opcode: SCSI opcode 413 * 414 * Determine ATAPI command type from @opcode. 415 * 416 * LOCKING: 417 * None. 418 * 419 * RETURNS: 420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 421 */ 422 int atapi_cmd_type(u8 opcode) 423 { 424 switch (opcode) { 425 case GPCMD_READ_10: 426 case GPCMD_READ_12: 427 return ATAPI_READ; 428 429 case GPCMD_WRITE_10: 430 case GPCMD_WRITE_12: 431 case GPCMD_WRITE_AND_VERIFY_10: 432 return ATAPI_WRITE; 433 434 case GPCMD_READ_CD: 435 case GPCMD_READ_CD_MSF: 436 return ATAPI_READ_CD; 437 438 case ATA_16: 439 case ATA_12: 440 if (atapi_passthru16) 441 return ATAPI_PASS_THRU; 442 /* fall thru */ 443 default: 444 return ATAPI_MISC; 445 } 446 } 447 448 /** 449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 450 * @tf: Taskfile to convert 451 * @pmp: Port multiplier port 452 * @is_cmd: This FIS is for command 453 * @fis: Buffer into which data will output 454 * 455 * Converts a standard ATA taskfile to a Serial ATA 456 * FIS structure (Register - Host to Device). 457 * 458 * LOCKING: 459 * Inherited from caller. 460 */ 461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 462 { 463 fis[0] = 0x27; /* Register - Host to Device FIS */ 464 fis[1] = pmp & 0xf; /* Port multiplier number*/ 465 if (is_cmd) 466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 467 468 fis[2] = tf->command; 469 fis[3] = tf->feature; 470 471 fis[4] = tf->lbal; 472 fis[5] = tf->lbam; 473 fis[6] = tf->lbah; 474 fis[7] = tf->device; 475 476 fis[8] = tf->hob_lbal; 477 fis[9] = tf->hob_lbam; 478 fis[10] = tf->hob_lbah; 479 fis[11] = tf->hob_feature; 480 481 fis[12] = tf->nsect; 482 fis[13] = tf->hob_nsect; 483 fis[14] = 0; 484 fis[15] = tf->ctl; 485 486 fis[16] = 0; 487 fis[17] = 0; 488 fis[18] = 0; 489 fis[19] = 0; 490 } 491 492 /** 493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 494 * @fis: Buffer from which data will be input 495 * @tf: Taskfile to output 496 * 497 * Converts a serial ATA FIS structure to a standard ATA taskfile. 498 * 499 * LOCKING: 500 * Inherited from caller. 501 */ 502 503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 504 { 505 tf->command = fis[2]; /* status */ 506 tf->feature = fis[3]; /* error */ 507 508 tf->lbal = fis[4]; 509 tf->lbam = fis[5]; 510 tf->lbah = fis[6]; 511 tf->device = fis[7]; 512 513 tf->hob_lbal = fis[8]; 514 tf->hob_lbam = fis[9]; 515 tf->hob_lbah = fis[10]; 516 517 tf->nsect = fis[12]; 518 tf->hob_nsect = fis[13]; 519 } 520 521 static const u8 ata_rw_cmds[] = { 522 /* pio multi */ 523 ATA_CMD_READ_MULTI, 524 ATA_CMD_WRITE_MULTI, 525 ATA_CMD_READ_MULTI_EXT, 526 ATA_CMD_WRITE_MULTI_EXT, 527 0, 528 0, 529 0, 530 ATA_CMD_WRITE_MULTI_FUA_EXT, 531 /* pio */ 532 ATA_CMD_PIO_READ, 533 ATA_CMD_PIO_WRITE, 534 ATA_CMD_PIO_READ_EXT, 535 ATA_CMD_PIO_WRITE_EXT, 536 0, 537 0, 538 0, 539 0, 540 /* dma */ 541 ATA_CMD_READ, 542 ATA_CMD_WRITE, 543 ATA_CMD_READ_EXT, 544 ATA_CMD_WRITE_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_FUA_EXT 549 }; 550 551 /** 552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 553 * @tf: command to examine and configure 554 * @dev: device tf belongs to 555 * 556 * Examine the device configuration and tf->flags to calculate 557 * the proper read/write commands and protocol to use. 558 * 559 * LOCKING: 560 * caller. 561 */ 562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 563 { 564 u8 cmd; 565 566 int index, fua, lba48, write; 567 568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 571 572 if (dev->flags & ATA_DFLAG_PIO) { 573 tf->protocol = ATA_PROT_PIO; 574 index = dev->multi_count ? 0 : 8; 575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 576 /* Unable to use DMA due to host limitation */ 577 tf->protocol = ATA_PROT_PIO; 578 index = dev->multi_count ? 0 : 8; 579 } else { 580 tf->protocol = ATA_PROT_DMA; 581 index = 16; 582 } 583 584 cmd = ata_rw_cmds[index + fua + lba48 + write]; 585 if (cmd) { 586 tf->command = cmd; 587 return 0; 588 } 589 return -1; 590 } 591 592 /** 593 * ata_tf_read_block - Read block address from ATA taskfile 594 * @tf: ATA taskfile of interest 595 * @dev: ATA device @tf belongs to 596 * 597 * LOCKING: 598 * None. 599 * 600 * Read block address from @tf. This function can handle all 601 * three address formats - LBA, LBA48 and CHS. tf->protocol and 602 * flags select the address format to use. 603 * 604 * RETURNS: 605 * Block address read from @tf. 606 */ 607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 608 { 609 u64 block = 0; 610 611 if (tf->flags & ATA_TFLAG_LBA) { 612 if (tf->flags & ATA_TFLAG_LBA48) { 613 block |= (u64)tf->hob_lbah << 40; 614 block |= (u64)tf->hob_lbam << 32; 615 block |= tf->hob_lbal << 24; 616 } else 617 block |= (tf->device & 0xf) << 24; 618 619 block |= tf->lbah << 16; 620 block |= tf->lbam << 8; 621 block |= tf->lbal; 622 } else { 623 u32 cyl, head, sect; 624 625 cyl = tf->lbam | (tf->lbah << 8); 626 head = tf->device & 0xf; 627 sect = tf->lbal; 628 629 block = (cyl * dev->heads + head) * dev->sectors + sect; 630 } 631 632 return block; 633 } 634 635 /** 636 * ata_build_rw_tf - Build ATA taskfile for given read/write request 637 * @tf: Target ATA taskfile 638 * @dev: ATA device @tf belongs to 639 * @block: Block address 640 * @n_block: Number of blocks 641 * @tf_flags: RW/FUA etc... 642 * @tag: tag 643 * 644 * LOCKING: 645 * None. 646 * 647 * Build ATA taskfile @tf for read/write request described by 648 * @block, @n_block, @tf_flags and @tag on @dev. 649 * 650 * RETURNS: 651 * 652 * 0 on success, -ERANGE if the request is too large for @dev, 653 * -EINVAL if the request is invalid. 654 */ 655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 656 u64 block, u32 n_block, unsigned int tf_flags, 657 unsigned int tag) 658 { 659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 660 tf->flags |= tf_flags; 661 662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 663 /* yay, NCQ */ 664 if (!lba_48_ok(block, n_block)) 665 return -ERANGE; 666 667 tf->protocol = ATA_PROT_NCQ; 668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 669 670 if (tf->flags & ATA_TFLAG_WRITE) 671 tf->command = ATA_CMD_FPDMA_WRITE; 672 else 673 tf->command = ATA_CMD_FPDMA_READ; 674 675 tf->nsect = tag << 3; 676 tf->hob_feature = (n_block >> 8) & 0xff; 677 tf->feature = n_block & 0xff; 678 679 tf->hob_lbah = (block >> 40) & 0xff; 680 tf->hob_lbam = (block >> 32) & 0xff; 681 tf->hob_lbal = (block >> 24) & 0xff; 682 tf->lbah = (block >> 16) & 0xff; 683 tf->lbam = (block >> 8) & 0xff; 684 tf->lbal = block & 0xff; 685 686 tf->device = 1 << 6; 687 if (tf->flags & ATA_TFLAG_FUA) 688 tf->device |= 1 << 7; 689 } else if (dev->flags & ATA_DFLAG_LBA) { 690 tf->flags |= ATA_TFLAG_LBA; 691 692 if (lba_28_ok(block, n_block)) { 693 /* use LBA28 */ 694 tf->device |= (block >> 24) & 0xf; 695 } else if (lba_48_ok(block, n_block)) { 696 if (!(dev->flags & ATA_DFLAG_LBA48)) 697 return -ERANGE; 698 699 /* use LBA48 */ 700 tf->flags |= ATA_TFLAG_LBA48; 701 702 tf->hob_nsect = (n_block >> 8) & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 } else 708 /* request too large even for LBA48 */ 709 return -ERANGE; 710 711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 712 return -EINVAL; 713 714 tf->nsect = n_block & 0xff; 715 716 tf->lbah = (block >> 16) & 0xff; 717 tf->lbam = (block >> 8) & 0xff; 718 tf->lbal = block & 0xff; 719 720 tf->device |= ATA_LBA; 721 } else { 722 /* CHS */ 723 u32 sect, head, cyl, track; 724 725 /* The request -may- be too large for CHS addressing. */ 726 if (!lba_28_ok(block, n_block)) 727 return -ERANGE; 728 729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 730 return -EINVAL; 731 732 /* Convert LBA to CHS */ 733 track = (u32)block / dev->sectors; 734 cyl = track / dev->heads; 735 head = track % dev->heads; 736 sect = (u32)block % dev->sectors + 1; 737 738 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 739 (u32)block, track, cyl, head, sect); 740 741 /* Check whether the converted CHS can fit. 742 Cylinder: 0-65535 743 Head: 0-15 744 Sector: 1-255*/ 745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 746 return -ERANGE; 747 748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 749 tf->lbal = sect; 750 tf->lbam = cyl; 751 tf->lbah = cyl >> 8; 752 tf->device |= head; 753 } 754 755 return 0; 756 } 757 758 /** 759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 760 * @pio_mask: pio_mask 761 * @mwdma_mask: mwdma_mask 762 * @udma_mask: udma_mask 763 * 764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 765 * unsigned int xfer_mask. 766 * 767 * LOCKING: 768 * None. 769 * 770 * RETURNS: 771 * Packed xfer_mask. 772 */ 773 unsigned long ata_pack_xfermask(unsigned long pio_mask, 774 unsigned long mwdma_mask, 775 unsigned long udma_mask) 776 { 777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 780 } 781 782 /** 783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 784 * @xfer_mask: xfer_mask to unpack 785 * @pio_mask: resulting pio_mask 786 * @mwdma_mask: resulting mwdma_mask 787 * @udma_mask: resulting udma_mask 788 * 789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 790 * Any NULL distination masks will be ignored. 791 */ 792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 793 unsigned long *mwdma_mask, unsigned long *udma_mask) 794 { 795 if (pio_mask) 796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 797 if (mwdma_mask) 798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 799 if (udma_mask) 800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 801 } 802 803 static const struct ata_xfer_ent { 804 int shift, bits; 805 u8 base; 806 } ata_xfer_tbl[] = { 807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 810 { -1, }, 811 }; 812 813 /** 814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 815 * @xfer_mask: xfer_mask of interest 816 * 817 * Return matching XFER_* value for @xfer_mask. Only the highest 818 * bit of @xfer_mask is considered. 819 * 820 * LOCKING: 821 * None. 822 * 823 * RETURNS: 824 * Matching XFER_* value, 0xff if no match found. 825 */ 826 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 827 { 828 int highbit = fls(xfer_mask) - 1; 829 const struct ata_xfer_ent *ent; 830 831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 833 return ent->base + highbit - ent->shift; 834 return 0xff; 835 } 836 837 /** 838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 839 * @xfer_mode: XFER_* of interest 840 * 841 * Return matching xfer_mask for @xfer_mode. 842 * 843 * LOCKING: 844 * None. 845 * 846 * RETURNS: 847 * Matching xfer_mask, 0 if no match found. 848 */ 849 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 850 { 851 const struct ata_xfer_ent *ent; 852 853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 856 & ~((1 << ent->shift) - 1); 857 return 0; 858 } 859 860 /** 861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 862 * @xfer_mode: XFER_* of interest 863 * 864 * Return matching xfer_shift for @xfer_mode. 865 * 866 * LOCKING: 867 * None. 868 * 869 * RETURNS: 870 * Matching xfer_shift, -1 if no match found. 871 */ 872 int ata_xfer_mode2shift(unsigned long xfer_mode) 873 { 874 const struct ata_xfer_ent *ent; 875 876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 878 return ent->shift; 879 return -1; 880 } 881 882 /** 883 * ata_mode_string - convert xfer_mask to string 884 * @xfer_mask: mask of bits supported; only highest bit counts. 885 * 886 * Determine string which represents the highest speed 887 * (highest bit in @modemask). 888 * 889 * LOCKING: 890 * None. 891 * 892 * RETURNS: 893 * Constant C string representing highest speed listed in 894 * @mode_mask, or the constant C string "<n/a>". 895 */ 896 const char *ata_mode_string(unsigned long xfer_mask) 897 { 898 static const char * const xfer_mode_str[] = { 899 "PIO0", 900 "PIO1", 901 "PIO2", 902 "PIO3", 903 "PIO4", 904 "PIO5", 905 "PIO6", 906 "MWDMA0", 907 "MWDMA1", 908 "MWDMA2", 909 "MWDMA3", 910 "MWDMA4", 911 "UDMA/16", 912 "UDMA/25", 913 "UDMA/33", 914 "UDMA/44", 915 "UDMA/66", 916 "UDMA/100", 917 "UDMA/133", 918 "UDMA7", 919 }; 920 int highbit; 921 922 highbit = fls(xfer_mask) - 1; 923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 924 return xfer_mode_str[highbit]; 925 return "<n/a>"; 926 } 927 928 static const char *sata_spd_string(unsigned int spd) 929 { 930 static const char * const spd_str[] = { 931 "1.5 Gbps", 932 "3.0 Gbps", 933 }; 934 935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 936 return "<unknown>"; 937 return spd_str[spd - 1]; 938 } 939 940 void ata_dev_disable(struct ata_device *dev) 941 { 942 if (ata_dev_enabled(dev)) { 943 if (ata_msg_drv(dev->link->ap)) 944 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 945 ata_acpi_on_disable(dev); 946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 947 ATA_DNXFER_QUIET); 948 dev->class++; 949 } 950 } 951 952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 953 { 954 struct ata_link *link = dev->link; 955 struct ata_port *ap = link->ap; 956 u32 scontrol; 957 unsigned int err_mask; 958 int rc; 959 960 /* 961 * disallow DIPM for drivers which haven't set 962 * ATA_FLAG_IPM. This is because when DIPM is enabled, 963 * phy ready will be set in the interrupt status on 964 * state changes, which will cause some drivers to 965 * think there are errors - additionally drivers will 966 * need to disable hot plug. 967 */ 968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 969 ap->pm_policy = NOT_AVAILABLE; 970 return -EINVAL; 971 } 972 973 /* 974 * For DIPM, we will only enable it for the 975 * min_power setting. 976 * 977 * Why? Because Disks are too stupid to know that 978 * If the host rejects a request to go to SLUMBER 979 * they should retry at PARTIAL, and instead it 980 * just would give up. So, for medium_power to 981 * work at all, we need to only allow HIPM. 982 */ 983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 984 if (rc) 985 return rc; 986 987 switch (policy) { 988 case MIN_POWER: 989 /* no restrictions on IPM transitions */ 990 scontrol &= ~(0x3 << 8); 991 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 992 if (rc) 993 return rc; 994 995 /* enable DIPM */ 996 if (dev->flags & ATA_DFLAG_DIPM) 997 err_mask = ata_dev_set_feature(dev, 998 SETFEATURES_SATA_ENABLE, SATA_DIPM); 999 break; 1000 case MEDIUM_POWER: 1001 /* allow IPM to PARTIAL */ 1002 scontrol &= ~(0x1 << 8); 1003 scontrol |= (0x2 << 8); 1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1005 if (rc) 1006 return rc; 1007 1008 /* 1009 * we don't have to disable DIPM since IPM flags 1010 * disallow transitions to SLUMBER, which effectively 1011 * disable DIPM if it does not support PARTIAL 1012 */ 1013 break; 1014 case NOT_AVAILABLE: 1015 case MAX_PERFORMANCE: 1016 /* disable all IPM transitions */ 1017 scontrol |= (0x3 << 8); 1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1019 if (rc) 1020 return rc; 1021 1022 /* 1023 * we don't have to disable DIPM since IPM flags 1024 * disallow all transitions which effectively 1025 * disable DIPM anyway. 1026 */ 1027 break; 1028 } 1029 1030 /* FIXME: handle SET FEATURES failure */ 1031 (void) err_mask; 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ata_dev_enable_pm - enable SATA interface power management 1038 * @dev: device to enable power management 1039 * @policy: the link power management policy 1040 * 1041 * Enable SATA Interface power management. This will enable 1042 * Device Interface Power Management (DIPM) for min_power 1043 * policy, and then call driver specific callbacks for 1044 * enabling Host Initiated Power management. 1045 * 1046 * Locking: Caller. 1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1048 */ 1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1050 { 1051 int rc = 0; 1052 struct ata_port *ap = dev->link->ap; 1053 1054 /* set HIPM first, then DIPM */ 1055 if (ap->ops->enable_pm) 1056 rc = ap->ops->enable_pm(ap, policy); 1057 if (rc) 1058 goto enable_pm_out; 1059 rc = ata_dev_set_dipm(dev, policy); 1060 1061 enable_pm_out: 1062 if (rc) 1063 ap->pm_policy = MAX_PERFORMANCE; 1064 else 1065 ap->pm_policy = policy; 1066 return /* rc */; /* hopefully we can use 'rc' eventually */ 1067 } 1068 1069 #ifdef CONFIG_PM 1070 /** 1071 * ata_dev_disable_pm - disable SATA interface power management 1072 * @dev: device to disable power management 1073 * 1074 * Disable SATA Interface power management. This will disable 1075 * Device Interface Power Management (DIPM) without changing 1076 * policy, call driver specific callbacks for disabling Host 1077 * Initiated Power management. 1078 * 1079 * Locking: Caller. 1080 * Returns: void 1081 */ 1082 static void ata_dev_disable_pm(struct ata_device *dev) 1083 { 1084 struct ata_port *ap = dev->link->ap; 1085 1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1087 if (ap->ops->disable_pm) 1088 ap->ops->disable_pm(ap); 1089 } 1090 #endif /* CONFIG_PM */ 1091 1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1093 { 1094 ap->pm_policy = policy; 1095 ap->link.eh_info.action |= ATA_EH_LPM; 1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1097 ata_port_schedule_eh(ap); 1098 } 1099 1100 #ifdef CONFIG_PM 1101 static void ata_lpm_enable(struct ata_host *host) 1102 { 1103 struct ata_link *link; 1104 struct ata_port *ap; 1105 struct ata_device *dev; 1106 int i; 1107 1108 for (i = 0; i < host->n_ports; i++) { 1109 ap = host->ports[i]; 1110 ata_port_for_each_link(link, ap) { 1111 ata_link_for_each_dev(dev, link) 1112 ata_dev_disable_pm(dev); 1113 } 1114 } 1115 } 1116 1117 static void ata_lpm_disable(struct ata_host *host) 1118 { 1119 int i; 1120 1121 for (i = 0; i < host->n_ports; i++) { 1122 struct ata_port *ap = host->ports[i]; 1123 ata_lpm_schedule(ap, ap->pm_policy); 1124 } 1125 } 1126 #endif /* CONFIG_PM */ 1127 1128 /** 1129 * ata_dev_classify - determine device type based on ATA-spec signature 1130 * @tf: ATA taskfile register set for device to be identified 1131 * 1132 * Determine from taskfile register contents whether a device is 1133 * ATA or ATAPI, as per "Signature and persistence" section 1134 * of ATA/PI spec (volume 1, sect 5.14). 1135 * 1136 * LOCKING: 1137 * None. 1138 * 1139 * RETURNS: 1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1141 * %ATA_DEV_UNKNOWN the event of failure. 1142 */ 1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1144 { 1145 /* Apple's open source Darwin code hints that some devices only 1146 * put a proper signature into the LBA mid/high registers, 1147 * So, we only check those. It's sufficient for uniqueness. 1148 * 1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1150 * signatures for ATA and ATAPI devices attached on SerialATA, 1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1152 * spec has never mentioned about using different signatures 1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1154 * Multiplier specification began to use 0x69/0x96 to identify 1155 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1157 * 0x69/0x96 shortly and described them as reserved for 1158 * SerialATA. 1159 * 1160 * We follow the current spec and consider that 0x69/0x96 1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1162 */ 1163 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1164 DPRINTK("found ATA device by sig\n"); 1165 return ATA_DEV_ATA; 1166 } 1167 1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1169 DPRINTK("found ATAPI device by sig\n"); 1170 return ATA_DEV_ATAPI; 1171 } 1172 1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1174 DPRINTK("found PMP device by sig\n"); 1175 return ATA_DEV_PMP; 1176 } 1177 1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1179 printk(KERN_INFO "ata: SEMB device ignored\n"); 1180 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1181 } 1182 1183 DPRINTK("unknown device\n"); 1184 return ATA_DEV_UNKNOWN; 1185 } 1186 1187 /** 1188 * ata_id_string - Convert IDENTIFY DEVICE page into string 1189 * @id: IDENTIFY DEVICE results we will examine 1190 * @s: string into which data is output 1191 * @ofs: offset into identify device page 1192 * @len: length of string to return. must be an even number. 1193 * 1194 * The strings in the IDENTIFY DEVICE page are broken up into 1195 * 16-bit chunks. Run through the string, and output each 1196 * 8-bit chunk linearly, regardless of platform. 1197 * 1198 * LOCKING: 1199 * caller. 1200 */ 1201 1202 void ata_id_string(const u16 *id, unsigned char *s, 1203 unsigned int ofs, unsigned int len) 1204 { 1205 unsigned int c; 1206 1207 BUG_ON(len & 1); 1208 1209 while (len > 0) { 1210 c = id[ofs] >> 8; 1211 *s = c; 1212 s++; 1213 1214 c = id[ofs] & 0xff; 1215 *s = c; 1216 s++; 1217 1218 ofs++; 1219 len -= 2; 1220 } 1221 } 1222 1223 /** 1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1225 * @id: IDENTIFY DEVICE results we will examine 1226 * @s: string into which data is output 1227 * @ofs: offset into identify device page 1228 * @len: length of string to return. must be an odd number. 1229 * 1230 * This function is identical to ata_id_string except that it 1231 * trims trailing spaces and terminates the resulting string with 1232 * null. @len must be actual maximum length (even number) + 1. 1233 * 1234 * LOCKING: 1235 * caller. 1236 */ 1237 void ata_id_c_string(const u16 *id, unsigned char *s, 1238 unsigned int ofs, unsigned int len) 1239 { 1240 unsigned char *p; 1241 1242 ata_id_string(id, s, ofs, len - 1); 1243 1244 p = s + strnlen(s, len - 1); 1245 while (p > s && p[-1] == ' ') 1246 p--; 1247 *p = '\0'; 1248 } 1249 1250 static u64 ata_id_n_sectors(const u16 *id) 1251 { 1252 if (ata_id_has_lba(id)) { 1253 if (ata_id_has_lba48(id)) 1254 return ata_id_u64(id, 100); 1255 else 1256 return ata_id_u32(id, 60); 1257 } else { 1258 if (ata_id_current_chs_valid(id)) 1259 return ata_id_u32(id, 57); 1260 else 1261 return id[1] * id[3] * id[6]; 1262 } 1263 } 1264 1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1266 { 1267 u64 sectors = 0; 1268 1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1271 sectors |= (tf->hob_lbal & 0xff) << 24; 1272 sectors |= (tf->lbah & 0xff) << 16; 1273 sectors |= (tf->lbam & 0xff) << 8; 1274 sectors |= (tf->lbal & 0xff); 1275 1276 return sectors; 1277 } 1278 1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1280 { 1281 u64 sectors = 0; 1282 1283 sectors |= (tf->device & 0x0f) << 24; 1284 sectors |= (tf->lbah & 0xff) << 16; 1285 sectors |= (tf->lbam & 0xff) << 8; 1286 sectors |= (tf->lbal & 0xff); 1287 1288 return sectors; 1289 } 1290 1291 /** 1292 * ata_read_native_max_address - Read native max address 1293 * @dev: target device 1294 * @max_sectors: out parameter for the result native max address 1295 * 1296 * Perform an LBA48 or LBA28 native size query upon the device in 1297 * question. 1298 * 1299 * RETURNS: 1300 * 0 on success, -EACCES if command is aborted by the drive. 1301 * -EIO on other errors. 1302 */ 1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1304 { 1305 unsigned int err_mask; 1306 struct ata_taskfile tf; 1307 int lba48 = ata_id_has_lba48(dev->id); 1308 1309 ata_tf_init(dev, &tf); 1310 1311 /* always clear all address registers */ 1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1313 1314 if (lba48) { 1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1316 tf.flags |= ATA_TFLAG_LBA48; 1317 } else 1318 tf.command = ATA_CMD_READ_NATIVE_MAX; 1319 1320 tf.protocol |= ATA_PROT_NODATA; 1321 tf.device |= ATA_LBA; 1322 1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1324 if (err_mask) { 1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1326 "max address (err_mask=0x%x)\n", err_mask); 1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1328 return -EACCES; 1329 return -EIO; 1330 } 1331 1332 if (lba48) 1333 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1334 else 1335 *max_sectors = ata_tf_to_lba(&tf) + 1; 1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1337 (*max_sectors)--; 1338 return 0; 1339 } 1340 1341 /** 1342 * ata_set_max_sectors - Set max sectors 1343 * @dev: target device 1344 * @new_sectors: new max sectors value to set for the device 1345 * 1346 * Set max sectors of @dev to @new_sectors. 1347 * 1348 * RETURNS: 1349 * 0 on success, -EACCES if command is aborted or denied (due to 1350 * previous non-volatile SET_MAX) by the drive. -EIO on other 1351 * errors. 1352 */ 1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1354 { 1355 unsigned int err_mask; 1356 struct ata_taskfile tf; 1357 int lba48 = ata_id_has_lba48(dev->id); 1358 1359 new_sectors--; 1360 1361 ata_tf_init(dev, &tf); 1362 1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1364 1365 if (lba48) { 1366 tf.command = ATA_CMD_SET_MAX_EXT; 1367 tf.flags |= ATA_TFLAG_LBA48; 1368 1369 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1370 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1371 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1372 } else { 1373 tf.command = ATA_CMD_SET_MAX; 1374 1375 tf.device |= (new_sectors >> 24) & 0xf; 1376 } 1377 1378 tf.protocol |= ATA_PROT_NODATA; 1379 tf.device |= ATA_LBA; 1380 1381 tf.lbal = (new_sectors >> 0) & 0xff; 1382 tf.lbam = (new_sectors >> 8) & 0xff; 1383 tf.lbah = (new_sectors >> 16) & 0xff; 1384 1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1386 if (err_mask) { 1387 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1388 "max address (err_mask=0x%x)\n", err_mask); 1389 if (err_mask == AC_ERR_DEV && 1390 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1391 return -EACCES; 1392 return -EIO; 1393 } 1394 1395 return 0; 1396 } 1397 1398 /** 1399 * ata_hpa_resize - Resize a device with an HPA set 1400 * @dev: Device to resize 1401 * 1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1403 * it if required to the full size of the media. The caller must check 1404 * the drive has the HPA feature set enabled. 1405 * 1406 * RETURNS: 1407 * 0 on success, -errno on failure. 1408 */ 1409 static int ata_hpa_resize(struct ata_device *dev) 1410 { 1411 struct ata_eh_context *ehc = &dev->link->eh_context; 1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1413 u64 sectors = ata_id_n_sectors(dev->id); 1414 u64 native_sectors; 1415 int rc; 1416 1417 /* do we need to do it? */ 1418 if (dev->class != ATA_DEV_ATA || 1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1421 return 0; 1422 1423 /* read native max address */ 1424 rc = ata_read_native_max_address(dev, &native_sectors); 1425 if (rc) { 1426 /* If device aborted the command or HPA isn't going to 1427 * be unlocked, skip HPA resizing. 1428 */ 1429 if (rc == -EACCES || !ata_ignore_hpa) { 1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1431 "broken, skipping HPA handling\n"); 1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1433 1434 /* we can continue if device aborted the command */ 1435 if (rc == -EACCES) 1436 rc = 0; 1437 } 1438 1439 return rc; 1440 } 1441 1442 /* nothing to do? */ 1443 if (native_sectors <= sectors || !ata_ignore_hpa) { 1444 if (!print_info || native_sectors == sectors) 1445 return 0; 1446 1447 if (native_sectors > sectors) 1448 ata_dev_printk(dev, KERN_INFO, 1449 "HPA detected: current %llu, native %llu\n", 1450 (unsigned long long)sectors, 1451 (unsigned long long)native_sectors); 1452 else if (native_sectors < sectors) 1453 ata_dev_printk(dev, KERN_WARNING, 1454 "native sectors (%llu) is smaller than " 1455 "sectors (%llu)\n", 1456 (unsigned long long)native_sectors, 1457 (unsigned long long)sectors); 1458 return 0; 1459 } 1460 1461 /* let's unlock HPA */ 1462 rc = ata_set_max_sectors(dev, native_sectors); 1463 if (rc == -EACCES) { 1464 /* if device aborted the command, skip HPA resizing */ 1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1466 "(%llu -> %llu), skipping HPA handling\n", 1467 (unsigned long long)sectors, 1468 (unsigned long long)native_sectors); 1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1470 return 0; 1471 } else if (rc) 1472 return rc; 1473 1474 /* re-read IDENTIFY data */ 1475 rc = ata_dev_reread_id(dev, 0); 1476 if (rc) { 1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1478 "data after HPA resizing\n"); 1479 return rc; 1480 } 1481 1482 if (print_info) { 1483 u64 new_sectors = ata_id_n_sectors(dev->id); 1484 ata_dev_printk(dev, KERN_INFO, 1485 "HPA unlocked: %llu -> %llu, native %llu\n", 1486 (unsigned long long)sectors, 1487 (unsigned long long)new_sectors, 1488 (unsigned long long)native_sectors); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * ata_dump_id - IDENTIFY DEVICE info debugging output 1496 * @id: IDENTIFY DEVICE page to dump 1497 * 1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1499 * page. 1500 * 1501 * LOCKING: 1502 * caller. 1503 */ 1504 1505 static inline void ata_dump_id(const u16 *id) 1506 { 1507 DPRINTK("49==0x%04x " 1508 "53==0x%04x " 1509 "63==0x%04x " 1510 "64==0x%04x " 1511 "75==0x%04x \n", 1512 id[49], 1513 id[53], 1514 id[63], 1515 id[64], 1516 id[75]); 1517 DPRINTK("80==0x%04x " 1518 "81==0x%04x " 1519 "82==0x%04x " 1520 "83==0x%04x " 1521 "84==0x%04x \n", 1522 id[80], 1523 id[81], 1524 id[82], 1525 id[83], 1526 id[84]); 1527 DPRINTK("88==0x%04x " 1528 "93==0x%04x\n", 1529 id[88], 1530 id[93]); 1531 } 1532 1533 /** 1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1535 * @id: IDENTIFY data to compute xfer mask from 1536 * 1537 * Compute the xfermask for this device. This is not as trivial 1538 * as it seems if we must consider early devices correctly. 1539 * 1540 * FIXME: pre IDE drive timing (do we care ?). 1541 * 1542 * LOCKING: 1543 * None. 1544 * 1545 * RETURNS: 1546 * Computed xfermask 1547 */ 1548 unsigned long ata_id_xfermask(const u16 *id) 1549 { 1550 unsigned long pio_mask, mwdma_mask, udma_mask; 1551 1552 /* Usual case. Word 53 indicates word 64 is valid */ 1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1555 pio_mask <<= 3; 1556 pio_mask |= 0x7; 1557 } else { 1558 /* If word 64 isn't valid then Word 51 high byte holds 1559 * the PIO timing number for the maximum. Turn it into 1560 * a mask. 1561 */ 1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1563 if (mode < 5) /* Valid PIO range */ 1564 pio_mask = (2 << mode) - 1; 1565 else 1566 pio_mask = 1; 1567 1568 /* But wait.. there's more. Design your standards by 1569 * committee and you too can get a free iordy field to 1570 * process. However its the speeds not the modes that 1571 * are supported... Note drivers using the timing API 1572 * will get this right anyway 1573 */ 1574 } 1575 1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1577 1578 if (ata_id_is_cfa(id)) { 1579 /* 1580 * Process compact flash extended modes 1581 */ 1582 int pio = id[163] & 0x7; 1583 int dma = (id[163] >> 3) & 7; 1584 1585 if (pio) 1586 pio_mask |= (1 << 5); 1587 if (pio > 1) 1588 pio_mask |= (1 << 6); 1589 if (dma) 1590 mwdma_mask |= (1 << 3); 1591 if (dma > 1) 1592 mwdma_mask |= (1 << 4); 1593 } 1594 1595 udma_mask = 0; 1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1598 1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1600 } 1601 1602 /** 1603 * ata_pio_queue_task - Queue port_task 1604 * @ap: The ata_port to queue port_task for 1605 * @fn: workqueue function to be scheduled 1606 * @data: data for @fn to use 1607 * @delay: delay time in msecs for workqueue function 1608 * 1609 * Schedule @fn(@data) for execution after @delay jiffies using 1610 * port_task. There is one port_task per port and it's the 1611 * user(low level driver)'s responsibility to make sure that only 1612 * one task is active at any given time. 1613 * 1614 * libata core layer takes care of synchronization between 1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1616 * synchronization. 1617 * 1618 * LOCKING: 1619 * Inherited from caller. 1620 */ 1621 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1622 { 1623 ap->port_task_data = data; 1624 1625 /* may fail if ata_port_flush_task() in progress */ 1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1627 } 1628 1629 /** 1630 * ata_port_flush_task - Flush port_task 1631 * @ap: The ata_port to flush port_task for 1632 * 1633 * After this function completes, port_task is guranteed not to 1634 * be running or scheduled. 1635 * 1636 * LOCKING: 1637 * Kernel thread context (may sleep) 1638 */ 1639 void ata_port_flush_task(struct ata_port *ap) 1640 { 1641 DPRINTK("ENTER\n"); 1642 1643 cancel_rearming_delayed_work(&ap->port_task); 1644 1645 if (ata_msg_ctl(ap)) 1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1647 } 1648 1649 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1650 { 1651 struct completion *waiting = qc->private_data; 1652 1653 complete(waiting); 1654 } 1655 1656 /** 1657 * ata_exec_internal_sg - execute libata internal command 1658 * @dev: Device to which the command is sent 1659 * @tf: Taskfile registers for the command and the result 1660 * @cdb: CDB for packet command 1661 * @dma_dir: Data tranfer direction of the command 1662 * @sgl: sg list for the data buffer of the command 1663 * @n_elem: Number of sg entries 1664 * @timeout: Timeout in msecs (0 for default) 1665 * 1666 * Executes libata internal command with timeout. @tf contains 1667 * command on entry and result on return. Timeout and error 1668 * conditions are reported via return value. No recovery action 1669 * is taken after a command times out. It's caller's duty to 1670 * clean up after timeout. 1671 * 1672 * LOCKING: 1673 * None. Should be called with kernel context, might sleep. 1674 * 1675 * RETURNS: 1676 * Zero on success, AC_ERR_* mask on failure 1677 */ 1678 unsigned ata_exec_internal_sg(struct ata_device *dev, 1679 struct ata_taskfile *tf, const u8 *cdb, 1680 int dma_dir, struct scatterlist *sgl, 1681 unsigned int n_elem, unsigned long timeout) 1682 { 1683 struct ata_link *link = dev->link; 1684 struct ata_port *ap = link->ap; 1685 u8 command = tf->command; 1686 int auto_timeout = 0; 1687 struct ata_queued_cmd *qc; 1688 unsigned int tag, preempted_tag; 1689 u32 preempted_sactive, preempted_qc_active; 1690 int preempted_nr_active_links; 1691 DECLARE_COMPLETION_ONSTACK(wait); 1692 unsigned long flags; 1693 unsigned int err_mask; 1694 int rc; 1695 1696 spin_lock_irqsave(ap->lock, flags); 1697 1698 /* no internal command while frozen */ 1699 if (ap->pflags & ATA_PFLAG_FROZEN) { 1700 spin_unlock_irqrestore(ap->lock, flags); 1701 return AC_ERR_SYSTEM; 1702 } 1703 1704 /* initialize internal qc */ 1705 1706 /* XXX: Tag 0 is used for drivers with legacy EH as some 1707 * drivers choke if any other tag is given. This breaks 1708 * ata_tag_internal() test for those drivers. Don't use new 1709 * EH stuff without converting to it. 1710 */ 1711 if (ap->ops->error_handler) 1712 tag = ATA_TAG_INTERNAL; 1713 else 1714 tag = 0; 1715 1716 qc = __ata_qc_from_tag(ap, tag); 1717 1718 qc->tag = tag; 1719 qc->scsicmd = NULL; 1720 qc->ap = ap; 1721 qc->dev = dev; 1722 ata_qc_reinit(qc); 1723 1724 preempted_tag = link->active_tag; 1725 preempted_sactive = link->sactive; 1726 preempted_qc_active = ap->qc_active; 1727 preempted_nr_active_links = ap->nr_active_links; 1728 link->active_tag = ATA_TAG_POISON; 1729 link->sactive = 0; 1730 ap->qc_active = 0; 1731 ap->nr_active_links = 0; 1732 1733 /* prepare & issue qc */ 1734 qc->tf = *tf; 1735 if (cdb) 1736 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1737 qc->flags |= ATA_QCFLAG_RESULT_TF; 1738 qc->dma_dir = dma_dir; 1739 if (dma_dir != DMA_NONE) { 1740 unsigned int i, buflen = 0; 1741 struct scatterlist *sg; 1742 1743 for_each_sg(sgl, sg, n_elem, i) 1744 buflen += sg->length; 1745 1746 ata_sg_init(qc, sgl, n_elem); 1747 qc->nbytes = buflen; 1748 } 1749 1750 qc->private_data = &wait; 1751 qc->complete_fn = ata_qc_complete_internal; 1752 1753 ata_qc_issue(qc); 1754 1755 spin_unlock_irqrestore(ap->lock, flags); 1756 1757 if (!timeout) { 1758 if (ata_probe_timeout) 1759 timeout = ata_probe_timeout * 1000; 1760 else { 1761 timeout = ata_internal_cmd_timeout(dev, command); 1762 auto_timeout = 1; 1763 } 1764 } 1765 1766 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1767 1768 ata_port_flush_task(ap); 1769 1770 if (!rc) { 1771 spin_lock_irqsave(ap->lock, flags); 1772 1773 /* We're racing with irq here. If we lose, the 1774 * following test prevents us from completing the qc 1775 * twice. If we win, the port is frozen and will be 1776 * cleaned up by ->post_internal_cmd(). 1777 */ 1778 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1779 qc->err_mask |= AC_ERR_TIMEOUT; 1780 1781 if (ap->ops->error_handler) 1782 ata_port_freeze(ap); 1783 else 1784 ata_qc_complete(qc); 1785 1786 if (ata_msg_warn(ap)) 1787 ata_dev_printk(dev, KERN_WARNING, 1788 "qc timeout (cmd 0x%x)\n", command); 1789 } 1790 1791 spin_unlock_irqrestore(ap->lock, flags); 1792 } 1793 1794 /* do post_internal_cmd */ 1795 if (ap->ops->post_internal_cmd) 1796 ap->ops->post_internal_cmd(qc); 1797 1798 /* perform minimal error analysis */ 1799 if (qc->flags & ATA_QCFLAG_FAILED) { 1800 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1801 qc->err_mask |= AC_ERR_DEV; 1802 1803 if (!qc->err_mask) 1804 qc->err_mask |= AC_ERR_OTHER; 1805 1806 if (qc->err_mask & ~AC_ERR_OTHER) 1807 qc->err_mask &= ~AC_ERR_OTHER; 1808 } 1809 1810 /* finish up */ 1811 spin_lock_irqsave(ap->lock, flags); 1812 1813 *tf = qc->result_tf; 1814 err_mask = qc->err_mask; 1815 1816 ata_qc_free(qc); 1817 link->active_tag = preempted_tag; 1818 link->sactive = preempted_sactive; 1819 ap->qc_active = preempted_qc_active; 1820 ap->nr_active_links = preempted_nr_active_links; 1821 1822 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1823 * Until those drivers are fixed, we detect the condition 1824 * here, fail the command with AC_ERR_SYSTEM and reenable the 1825 * port. 1826 * 1827 * Note that this doesn't change any behavior as internal 1828 * command failure results in disabling the device in the 1829 * higher layer for LLDDs without new reset/EH callbacks. 1830 * 1831 * Kill the following code as soon as those drivers are fixed. 1832 */ 1833 if (ap->flags & ATA_FLAG_DISABLED) { 1834 err_mask |= AC_ERR_SYSTEM; 1835 ata_port_probe(ap); 1836 } 1837 1838 spin_unlock_irqrestore(ap->lock, flags); 1839 1840 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1841 ata_internal_cmd_timed_out(dev, command); 1842 1843 return err_mask; 1844 } 1845 1846 /** 1847 * ata_exec_internal - execute libata internal command 1848 * @dev: Device to which the command is sent 1849 * @tf: Taskfile registers for the command and the result 1850 * @cdb: CDB for packet command 1851 * @dma_dir: Data tranfer direction of the command 1852 * @buf: Data buffer of the command 1853 * @buflen: Length of data buffer 1854 * @timeout: Timeout in msecs (0 for default) 1855 * 1856 * Wrapper around ata_exec_internal_sg() which takes simple 1857 * buffer instead of sg list. 1858 * 1859 * LOCKING: 1860 * None. Should be called with kernel context, might sleep. 1861 * 1862 * RETURNS: 1863 * Zero on success, AC_ERR_* mask on failure 1864 */ 1865 unsigned ata_exec_internal(struct ata_device *dev, 1866 struct ata_taskfile *tf, const u8 *cdb, 1867 int dma_dir, void *buf, unsigned int buflen, 1868 unsigned long timeout) 1869 { 1870 struct scatterlist *psg = NULL, sg; 1871 unsigned int n_elem = 0; 1872 1873 if (dma_dir != DMA_NONE) { 1874 WARN_ON(!buf); 1875 sg_init_one(&sg, buf, buflen); 1876 psg = &sg; 1877 n_elem++; 1878 } 1879 1880 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1881 timeout); 1882 } 1883 1884 /** 1885 * ata_do_simple_cmd - execute simple internal command 1886 * @dev: Device to which the command is sent 1887 * @cmd: Opcode to execute 1888 * 1889 * Execute a 'simple' command, that only consists of the opcode 1890 * 'cmd' itself, without filling any other registers 1891 * 1892 * LOCKING: 1893 * Kernel thread context (may sleep). 1894 * 1895 * RETURNS: 1896 * Zero on success, AC_ERR_* mask on failure 1897 */ 1898 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1899 { 1900 struct ata_taskfile tf; 1901 1902 ata_tf_init(dev, &tf); 1903 1904 tf.command = cmd; 1905 tf.flags |= ATA_TFLAG_DEVICE; 1906 tf.protocol = ATA_PROT_NODATA; 1907 1908 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1909 } 1910 1911 /** 1912 * ata_pio_need_iordy - check if iordy needed 1913 * @adev: ATA device 1914 * 1915 * Check if the current speed of the device requires IORDY. Used 1916 * by various controllers for chip configuration. 1917 */ 1918 1919 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1920 { 1921 /* Controller doesn't support IORDY. Probably a pointless check 1922 as the caller should know this */ 1923 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1924 return 0; 1925 /* PIO3 and higher it is mandatory */ 1926 if (adev->pio_mode > XFER_PIO_2) 1927 return 1; 1928 /* We turn it on when possible */ 1929 if (ata_id_has_iordy(adev->id)) 1930 return 1; 1931 return 0; 1932 } 1933 1934 /** 1935 * ata_pio_mask_no_iordy - Return the non IORDY mask 1936 * @adev: ATA device 1937 * 1938 * Compute the highest mode possible if we are not using iordy. Return 1939 * -1 if no iordy mode is available. 1940 */ 1941 1942 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1943 { 1944 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1945 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1946 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1947 /* Is the speed faster than the drive allows non IORDY ? */ 1948 if (pio) { 1949 /* This is cycle times not frequency - watch the logic! */ 1950 if (pio > 240) /* PIO2 is 240nS per cycle */ 1951 return 3 << ATA_SHIFT_PIO; 1952 return 7 << ATA_SHIFT_PIO; 1953 } 1954 } 1955 return 3 << ATA_SHIFT_PIO; 1956 } 1957 1958 /** 1959 * ata_do_dev_read_id - default ID read method 1960 * @dev: device 1961 * @tf: proposed taskfile 1962 * @id: data buffer 1963 * 1964 * Issue the identify taskfile and hand back the buffer containing 1965 * identify data. For some RAID controllers and for pre ATA devices 1966 * this function is wrapped or replaced by the driver 1967 */ 1968 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1969 struct ata_taskfile *tf, u16 *id) 1970 { 1971 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1972 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1973 } 1974 1975 /** 1976 * ata_dev_read_id - Read ID data from the specified device 1977 * @dev: target device 1978 * @p_class: pointer to class of the target device (may be changed) 1979 * @flags: ATA_READID_* flags 1980 * @id: buffer to read IDENTIFY data into 1981 * 1982 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1983 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1984 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1985 * for pre-ATA4 drives. 1986 * 1987 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1988 * now we abort if we hit that case. 1989 * 1990 * LOCKING: 1991 * Kernel thread context (may sleep) 1992 * 1993 * RETURNS: 1994 * 0 on success, -errno otherwise. 1995 */ 1996 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1997 unsigned int flags, u16 *id) 1998 { 1999 struct ata_port *ap = dev->link->ap; 2000 unsigned int class = *p_class; 2001 struct ata_taskfile tf; 2002 unsigned int err_mask = 0; 2003 const char *reason; 2004 int may_fallback = 1, tried_spinup = 0; 2005 int rc; 2006 2007 if (ata_msg_ctl(ap)) 2008 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2009 2010 retry: 2011 ata_tf_init(dev, &tf); 2012 2013 switch (class) { 2014 case ATA_DEV_ATA: 2015 tf.command = ATA_CMD_ID_ATA; 2016 break; 2017 case ATA_DEV_ATAPI: 2018 tf.command = ATA_CMD_ID_ATAPI; 2019 break; 2020 default: 2021 rc = -ENODEV; 2022 reason = "unsupported class"; 2023 goto err_out; 2024 } 2025 2026 tf.protocol = ATA_PROT_PIO; 2027 2028 /* Some devices choke if TF registers contain garbage. Make 2029 * sure those are properly initialized. 2030 */ 2031 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2032 2033 /* Device presence detection is unreliable on some 2034 * controllers. Always poll IDENTIFY if available. 2035 */ 2036 tf.flags |= ATA_TFLAG_POLLING; 2037 2038 if (ap->ops->read_id) 2039 err_mask = ap->ops->read_id(dev, &tf, id); 2040 else 2041 err_mask = ata_do_dev_read_id(dev, &tf, id); 2042 2043 if (err_mask) { 2044 if (err_mask & AC_ERR_NODEV_HINT) { 2045 ata_dev_printk(dev, KERN_DEBUG, 2046 "NODEV after polling detection\n"); 2047 return -ENOENT; 2048 } 2049 2050 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2051 /* Device or controller might have reported 2052 * the wrong device class. Give a shot at the 2053 * other IDENTIFY if the current one is 2054 * aborted by the device. 2055 */ 2056 if (may_fallback) { 2057 may_fallback = 0; 2058 2059 if (class == ATA_DEV_ATA) 2060 class = ATA_DEV_ATAPI; 2061 else 2062 class = ATA_DEV_ATA; 2063 goto retry; 2064 } 2065 2066 /* Control reaches here iff the device aborted 2067 * both flavors of IDENTIFYs which happens 2068 * sometimes with phantom devices. 2069 */ 2070 ata_dev_printk(dev, KERN_DEBUG, 2071 "both IDENTIFYs aborted, assuming NODEV\n"); 2072 return -ENOENT; 2073 } 2074 2075 rc = -EIO; 2076 reason = "I/O error"; 2077 goto err_out; 2078 } 2079 2080 /* Falling back doesn't make sense if ID data was read 2081 * successfully at least once. 2082 */ 2083 may_fallback = 0; 2084 2085 swap_buf_le16(id, ATA_ID_WORDS); 2086 2087 /* sanity check */ 2088 rc = -EINVAL; 2089 reason = "device reports invalid type"; 2090 2091 if (class == ATA_DEV_ATA) { 2092 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2093 goto err_out; 2094 } else { 2095 if (ata_id_is_ata(id)) 2096 goto err_out; 2097 } 2098 2099 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2100 tried_spinup = 1; 2101 /* 2102 * Drive powered-up in standby mode, and requires a specific 2103 * SET_FEATURES spin-up subcommand before it will accept 2104 * anything other than the original IDENTIFY command. 2105 */ 2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2107 if (err_mask && id[2] != 0x738c) { 2108 rc = -EIO; 2109 reason = "SPINUP failed"; 2110 goto err_out; 2111 } 2112 /* 2113 * If the drive initially returned incomplete IDENTIFY info, 2114 * we now must reissue the IDENTIFY command. 2115 */ 2116 if (id[2] == 0x37c8) 2117 goto retry; 2118 } 2119 2120 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2121 /* 2122 * The exact sequence expected by certain pre-ATA4 drives is: 2123 * SRST RESET 2124 * IDENTIFY (optional in early ATA) 2125 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2126 * anything else.. 2127 * Some drives were very specific about that exact sequence. 2128 * 2129 * Note that ATA4 says lba is mandatory so the second check 2130 * shoud never trigger. 2131 */ 2132 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2133 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2134 if (err_mask) { 2135 rc = -EIO; 2136 reason = "INIT_DEV_PARAMS failed"; 2137 goto err_out; 2138 } 2139 2140 /* current CHS translation info (id[53-58]) might be 2141 * changed. reread the identify device info. 2142 */ 2143 flags &= ~ATA_READID_POSTRESET; 2144 goto retry; 2145 } 2146 } 2147 2148 *p_class = class; 2149 2150 return 0; 2151 2152 err_out: 2153 if (ata_msg_warn(ap)) 2154 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2155 "(%s, err_mask=0x%x)\n", reason, err_mask); 2156 return rc; 2157 } 2158 2159 static inline u8 ata_dev_knobble(struct ata_device *dev) 2160 { 2161 struct ata_port *ap = dev->link->ap; 2162 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2163 } 2164 2165 static void ata_dev_config_ncq(struct ata_device *dev, 2166 char *desc, size_t desc_sz) 2167 { 2168 struct ata_port *ap = dev->link->ap; 2169 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2170 2171 if (!ata_id_has_ncq(dev->id)) { 2172 desc[0] = '\0'; 2173 return; 2174 } 2175 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2176 snprintf(desc, desc_sz, "NCQ (not used)"); 2177 return; 2178 } 2179 if (ap->flags & ATA_FLAG_NCQ) { 2180 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2181 dev->flags |= ATA_DFLAG_NCQ; 2182 } 2183 2184 if (hdepth >= ddepth) 2185 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2186 else 2187 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2188 } 2189 2190 /** 2191 * ata_dev_configure - Configure the specified ATA/ATAPI device 2192 * @dev: Target device to configure 2193 * 2194 * Configure @dev according to @dev->id. Generic and low-level 2195 * driver specific fixups are also applied. 2196 * 2197 * LOCKING: 2198 * Kernel thread context (may sleep) 2199 * 2200 * RETURNS: 2201 * 0 on success, -errno otherwise 2202 */ 2203 int ata_dev_configure(struct ata_device *dev) 2204 { 2205 struct ata_port *ap = dev->link->ap; 2206 struct ata_eh_context *ehc = &dev->link->eh_context; 2207 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2208 const u16 *id = dev->id; 2209 unsigned long xfer_mask; 2210 char revbuf[7]; /* XYZ-99\0 */ 2211 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2212 char modelbuf[ATA_ID_PROD_LEN+1]; 2213 int rc; 2214 2215 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2216 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2217 __func__); 2218 return 0; 2219 } 2220 2221 if (ata_msg_probe(ap)) 2222 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2223 2224 /* set horkage */ 2225 dev->horkage |= ata_dev_blacklisted(dev); 2226 ata_force_horkage(dev); 2227 2228 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2229 ata_dev_printk(dev, KERN_INFO, 2230 "unsupported device, disabling\n"); 2231 ata_dev_disable(dev); 2232 return 0; 2233 } 2234 2235 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2236 dev->class == ATA_DEV_ATAPI) { 2237 ata_dev_printk(dev, KERN_WARNING, 2238 "WARNING: ATAPI is %s, device ignored.\n", 2239 atapi_enabled ? "not supported with this driver" 2240 : "disabled"); 2241 ata_dev_disable(dev); 2242 return 0; 2243 } 2244 2245 /* let ACPI work its magic */ 2246 rc = ata_acpi_on_devcfg(dev); 2247 if (rc) 2248 return rc; 2249 2250 /* massage HPA, do it early as it might change IDENTIFY data */ 2251 rc = ata_hpa_resize(dev); 2252 if (rc) 2253 return rc; 2254 2255 /* print device capabilities */ 2256 if (ata_msg_probe(ap)) 2257 ata_dev_printk(dev, KERN_DEBUG, 2258 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2259 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2260 __func__, 2261 id[49], id[82], id[83], id[84], 2262 id[85], id[86], id[87], id[88]); 2263 2264 /* initialize to-be-configured parameters */ 2265 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2266 dev->max_sectors = 0; 2267 dev->cdb_len = 0; 2268 dev->n_sectors = 0; 2269 dev->cylinders = 0; 2270 dev->heads = 0; 2271 dev->sectors = 0; 2272 2273 /* 2274 * common ATA, ATAPI feature tests 2275 */ 2276 2277 /* find max transfer mode; for printk only */ 2278 xfer_mask = ata_id_xfermask(id); 2279 2280 if (ata_msg_probe(ap)) 2281 ata_dump_id(id); 2282 2283 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2284 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2285 sizeof(fwrevbuf)); 2286 2287 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2288 sizeof(modelbuf)); 2289 2290 /* ATA-specific feature tests */ 2291 if (dev->class == ATA_DEV_ATA) { 2292 if (ata_id_is_cfa(id)) { 2293 if (id[162] & 1) /* CPRM may make this media unusable */ 2294 ata_dev_printk(dev, KERN_WARNING, 2295 "supports DRM functions and may " 2296 "not be fully accessable.\n"); 2297 snprintf(revbuf, 7, "CFA"); 2298 } else { 2299 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2300 /* Warn the user if the device has TPM extensions */ 2301 if (ata_id_has_tpm(id)) 2302 ata_dev_printk(dev, KERN_WARNING, 2303 "supports DRM functions and may " 2304 "not be fully accessable.\n"); 2305 } 2306 2307 dev->n_sectors = ata_id_n_sectors(id); 2308 2309 if (dev->id[59] & 0x100) 2310 dev->multi_count = dev->id[59] & 0xff; 2311 2312 if (ata_id_has_lba(id)) { 2313 const char *lba_desc; 2314 char ncq_desc[20]; 2315 2316 lba_desc = "LBA"; 2317 dev->flags |= ATA_DFLAG_LBA; 2318 if (ata_id_has_lba48(id)) { 2319 dev->flags |= ATA_DFLAG_LBA48; 2320 lba_desc = "LBA48"; 2321 2322 if (dev->n_sectors >= (1UL << 28) && 2323 ata_id_has_flush_ext(id)) 2324 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2325 } 2326 2327 /* config NCQ */ 2328 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2329 2330 /* print device info to dmesg */ 2331 if (ata_msg_drv(ap) && print_info) { 2332 ata_dev_printk(dev, KERN_INFO, 2333 "%s: %s, %s, max %s\n", 2334 revbuf, modelbuf, fwrevbuf, 2335 ata_mode_string(xfer_mask)); 2336 ata_dev_printk(dev, KERN_INFO, 2337 "%Lu sectors, multi %u: %s %s\n", 2338 (unsigned long long)dev->n_sectors, 2339 dev->multi_count, lba_desc, ncq_desc); 2340 } 2341 } else { 2342 /* CHS */ 2343 2344 /* Default translation */ 2345 dev->cylinders = id[1]; 2346 dev->heads = id[3]; 2347 dev->sectors = id[6]; 2348 2349 if (ata_id_current_chs_valid(id)) { 2350 /* Current CHS translation is valid. */ 2351 dev->cylinders = id[54]; 2352 dev->heads = id[55]; 2353 dev->sectors = id[56]; 2354 } 2355 2356 /* print device info to dmesg */ 2357 if (ata_msg_drv(ap) && print_info) { 2358 ata_dev_printk(dev, KERN_INFO, 2359 "%s: %s, %s, max %s\n", 2360 revbuf, modelbuf, fwrevbuf, 2361 ata_mode_string(xfer_mask)); 2362 ata_dev_printk(dev, KERN_INFO, 2363 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2364 (unsigned long long)dev->n_sectors, 2365 dev->multi_count, dev->cylinders, 2366 dev->heads, dev->sectors); 2367 } 2368 } 2369 2370 dev->cdb_len = 16; 2371 } 2372 2373 /* ATAPI-specific feature tests */ 2374 else if (dev->class == ATA_DEV_ATAPI) { 2375 const char *cdb_intr_string = ""; 2376 const char *atapi_an_string = ""; 2377 const char *dma_dir_string = ""; 2378 u32 sntf; 2379 2380 rc = atapi_cdb_len(id); 2381 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2382 if (ata_msg_warn(ap)) 2383 ata_dev_printk(dev, KERN_WARNING, 2384 "unsupported CDB len\n"); 2385 rc = -EINVAL; 2386 goto err_out_nosup; 2387 } 2388 dev->cdb_len = (unsigned int) rc; 2389 2390 /* Enable ATAPI AN if both the host and device have 2391 * the support. If PMP is attached, SNTF is required 2392 * to enable ATAPI AN to discern between PHY status 2393 * changed notifications and ATAPI ANs. 2394 */ 2395 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2396 (!sata_pmp_attached(ap) || 2397 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2398 unsigned int err_mask; 2399 2400 /* issue SET feature command to turn this on */ 2401 err_mask = ata_dev_set_feature(dev, 2402 SETFEATURES_SATA_ENABLE, SATA_AN); 2403 if (err_mask) 2404 ata_dev_printk(dev, KERN_ERR, 2405 "failed to enable ATAPI AN " 2406 "(err_mask=0x%x)\n", err_mask); 2407 else { 2408 dev->flags |= ATA_DFLAG_AN; 2409 atapi_an_string = ", ATAPI AN"; 2410 } 2411 } 2412 2413 if (ata_id_cdb_intr(dev->id)) { 2414 dev->flags |= ATA_DFLAG_CDB_INTR; 2415 cdb_intr_string = ", CDB intr"; 2416 } 2417 2418 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2419 dev->flags |= ATA_DFLAG_DMADIR; 2420 dma_dir_string = ", DMADIR"; 2421 } 2422 2423 /* print device info to dmesg */ 2424 if (ata_msg_drv(ap) && print_info) 2425 ata_dev_printk(dev, KERN_INFO, 2426 "ATAPI: %s, %s, max %s%s%s%s\n", 2427 modelbuf, fwrevbuf, 2428 ata_mode_string(xfer_mask), 2429 cdb_intr_string, atapi_an_string, 2430 dma_dir_string); 2431 } 2432 2433 /* determine max_sectors */ 2434 dev->max_sectors = ATA_MAX_SECTORS; 2435 if (dev->flags & ATA_DFLAG_LBA48) 2436 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2437 2438 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2439 if (ata_id_has_hipm(dev->id)) 2440 dev->flags |= ATA_DFLAG_HIPM; 2441 if (ata_id_has_dipm(dev->id)) 2442 dev->flags |= ATA_DFLAG_DIPM; 2443 } 2444 2445 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2446 200 sectors */ 2447 if (ata_dev_knobble(dev)) { 2448 if (ata_msg_drv(ap) && print_info) 2449 ata_dev_printk(dev, KERN_INFO, 2450 "applying bridge limits\n"); 2451 dev->udma_mask &= ATA_UDMA5; 2452 dev->max_sectors = ATA_MAX_SECTORS; 2453 } 2454 2455 if ((dev->class == ATA_DEV_ATAPI) && 2456 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2457 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2458 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2459 } 2460 2461 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2462 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2463 dev->max_sectors); 2464 2465 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2466 dev->horkage |= ATA_HORKAGE_IPM; 2467 2468 /* reset link pm_policy for this port to no pm */ 2469 ap->pm_policy = MAX_PERFORMANCE; 2470 } 2471 2472 if (ap->ops->dev_config) 2473 ap->ops->dev_config(dev); 2474 2475 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2476 /* Let the user know. We don't want to disallow opens for 2477 rescue purposes, or in case the vendor is just a blithering 2478 idiot. Do this after the dev_config call as some controllers 2479 with buggy firmware may want to avoid reporting false device 2480 bugs */ 2481 2482 if (print_info) { 2483 ata_dev_printk(dev, KERN_WARNING, 2484 "Drive reports diagnostics failure. This may indicate a drive\n"); 2485 ata_dev_printk(dev, KERN_WARNING, 2486 "fault or invalid emulation. Contact drive vendor for information.\n"); 2487 } 2488 } 2489 2490 return 0; 2491 2492 err_out_nosup: 2493 if (ata_msg_probe(ap)) 2494 ata_dev_printk(dev, KERN_DEBUG, 2495 "%s: EXIT, err\n", __func__); 2496 return rc; 2497 } 2498 2499 /** 2500 * ata_cable_40wire - return 40 wire cable type 2501 * @ap: port 2502 * 2503 * Helper method for drivers which want to hardwire 40 wire cable 2504 * detection. 2505 */ 2506 2507 int ata_cable_40wire(struct ata_port *ap) 2508 { 2509 return ATA_CBL_PATA40; 2510 } 2511 2512 /** 2513 * ata_cable_80wire - return 80 wire cable type 2514 * @ap: port 2515 * 2516 * Helper method for drivers which want to hardwire 80 wire cable 2517 * detection. 2518 */ 2519 2520 int ata_cable_80wire(struct ata_port *ap) 2521 { 2522 return ATA_CBL_PATA80; 2523 } 2524 2525 /** 2526 * ata_cable_unknown - return unknown PATA cable. 2527 * @ap: port 2528 * 2529 * Helper method for drivers which have no PATA cable detection. 2530 */ 2531 2532 int ata_cable_unknown(struct ata_port *ap) 2533 { 2534 return ATA_CBL_PATA_UNK; 2535 } 2536 2537 /** 2538 * ata_cable_ignore - return ignored PATA cable. 2539 * @ap: port 2540 * 2541 * Helper method for drivers which don't use cable type to limit 2542 * transfer mode. 2543 */ 2544 int ata_cable_ignore(struct ata_port *ap) 2545 { 2546 return ATA_CBL_PATA_IGN; 2547 } 2548 2549 /** 2550 * ata_cable_sata - return SATA cable type 2551 * @ap: port 2552 * 2553 * Helper method for drivers which have SATA cables 2554 */ 2555 2556 int ata_cable_sata(struct ata_port *ap) 2557 { 2558 return ATA_CBL_SATA; 2559 } 2560 2561 /** 2562 * ata_bus_probe - Reset and probe ATA bus 2563 * @ap: Bus to probe 2564 * 2565 * Master ATA bus probing function. Initiates a hardware-dependent 2566 * bus reset, then attempts to identify any devices found on 2567 * the bus. 2568 * 2569 * LOCKING: 2570 * PCI/etc. bus probe sem. 2571 * 2572 * RETURNS: 2573 * Zero on success, negative errno otherwise. 2574 */ 2575 2576 int ata_bus_probe(struct ata_port *ap) 2577 { 2578 unsigned int classes[ATA_MAX_DEVICES]; 2579 int tries[ATA_MAX_DEVICES]; 2580 int rc; 2581 struct ata_device *dev; 2582 2583 ata_port_probe(ap); 2584 2585 ata_link_for_each_dev(dev, &ap->link) 2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2587 2588 retry: 2589 ata_link_for_each_dev(dev, &ap->link) { 2590 /* If we issue an SRST then an ATA drive (not ATAPI) 2591 * may change configuration and be in PIO0 timing. If 2592 * we do a hard reset (or are coming from power on) 2593 * this is true for ATA or ATAPI. Until we've set a 2594 * suitable controller mode we should not touch the 2595 * bus as we may be talking too fast. 2596 */ 2597 dev->pio_mode = XFER_PIO_0; 2598 2599 /* If the controller has a pio mode setup function 2600 * then use it to set the chipset to rights. Don't 2601 * touch the DMA setup as that will be dealt with when 2602 * configuring devices. 2603 */ 2604 if (ap->ops->set_piomode) 2605 ap->ops->set_piomode(ap, dev); 2606 } 2607 2608 /* reset and determine device classes */ 2609 ap->ops->phy_reset(ap); 2610 2611 ata_link_for_each_dev(dev, &ap->link) { 2612 if (!(ap->flags & ATA_FLAG_DISABLED) && 2613 dev->class != ATA_DEV_UNKNOWN) 2614 classes[dev->devno] = dev->class; 2615 else 2616 classes[dev->devno] = ATA_DEV_NONE; 2617 2618 dev->class = ATA_DEV_UNKNOWN; 2619 } 2620 2621 ata_port_probe(ap); 2622 2623 /* read IDENTIFY page and configure devices. We have to do the identify 2624 specific sequence bass-ackwards so that PDIAG- is released by 2625 the slave device */ 2626 2627 ata_link_for_each_dev_reverse(dev, &ap->link) { 2628 if (tries[dev->devno]) 2629 dev->class = classes[dev->devno]; 2630 2631 if (!ata_dev_enabled(dev)) 2632 continue; 2633 2634 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2635 dev->id); 2636 if (rc) 2637 goto fail; 2638 } 2639 2640 /* Now ask for the cable type as PDIAG- should have been released */ 2641 if (ap->ops->cable_detect) 2642 ap->cbl = ap->ops->cable_detect(ap); 2643 2644 /* We may have SATA bridge glue hiding here irrespective of the 2645 reported cable types and sensed types */ 2646 ata_link_for_each_dev(dev, &ap->link) { 2647 if (!ata_dev_enabled(dev)) 2648 continue; 2649 /* SATA drives indicate we have a bridge. We don't know which 2650 end of the link the bridge is which is a problem */ 2651 if (ata_id_is_sata(dev->id)) 2652 ap->cbl = ATA_CBL_SATA; 2653 } 2654 2655 /* After the identify sequence we can now set up the devices. We do 2656 this in the normal order so that the user doesn't get confused */ 2657 2658 ata_link_for_each_dev(dev, &ap->link) { 2659 if (!ata_dev_enabled(dev)) 2660 continue; 2661 2662 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2663 rc = ata_dev_configure(dev); 2664 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2665 if (rc) 2666 goto fail; 2667 } 2668 2669 /* configure transfer mode */ 2670 rc = ata_set_mode(&ap->link, &dev); 2671 if (rc) 2672 goto fail; 2673 2674 ata_link_for_each_dev(dev, &ap->link) 2675 if (ata_dev_enabled(dev)) 2676 return 0; 2677 2678 /* no device present, disable port */ 2679 ata_port_disable(ap); 2680 return -ENODEV; 2681 2682 fail: 2683 tries[dev->devno]--; 2684 2685 switch (rc) { 2686 case -EINVAL: 2687 /* eeek, something went very wrong, give up */ 2688 tries[dev->devno] = 0; 2689 break; 2690 2691 case -ENODEV: 2692 /* give it just one more chance */ 2693 tries[dev->devno] = min(tries[dev->devno], 1); 2694 case -EIO: 2695 if (tries[dev->devno] == 1) { 2696 /* This is the last chance, better to slow 2697 * down than lose it. 2698 */ 2699 sata_down_spd_limit(&ap->link); 2700 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2701 } 2702 } 2703 2704 if (!tries[dev->devno]) 2705 ata_dev_disable(dev); 2706 2707 goto retry; 2708 } 2709 2710 /** 2711 * ata_port_probe - Mark port as enabled 2712 * @ap: Port for which we indicate enablement 2713 * 2714 * Modify @ap data structure such that the system 2715 * thinks that the entire port is enabled. 2716 * 2717 * LOCKING: host lock, or some other form of 2718 * serialization. 2719 */ 2720 2721 void ata_port_probe(struct ata_port *ap) 2722 { 2723 ap->flags &= ~ATA_FLAG_DISABLED; 2724 } 2725 2726 /** 2727 * sata_print_link_status - Print SATA link status 2728 * @link: SATA link to printk link status about 2729 * 2730 * This function prints link speed and status of a SATA link. 2731 * 2732 * LOCKING: 2733 * None. 2734 */ 2735 static void sata_print_link_status(struct ata_link *link) 2736 { 2737 u32 sstatus, scontrol, tmp; 2738 2739 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2740 return; 2741 sata_scr_read(link, SCR_CONTROL, &scontrol); 2742 2743 if (ata_phys_link_online(link)) { 2744 tmp = (sstatus >> 4) & 0xf; 2745 ata_link_printk(link, KERN_INFO, 2746 "SATA link up %s (SStatus %X SControl %X)\n", 2747 sata_spd_string(tmp), sstatus, scontrol); 2748 } else { 2749 ata_link_printk(link, KERN_INFO, 2750 "SATA link down (SStatus %X SControl %X)\n", 2751 sstatus, scontrol); 2752 } 2753 } 2754 2755 /** 2756 * ata_dev_pair - return other device on cable 2757 * @adev: device 2758 * 2759 * Obtain the other device on the same cable, or if none is 2760 * present NULL is returned 2761 */ 2762 2763 struct ata_device *ata_dev_pair(struct ata_device *adev) 2764 { 2765 struct ata_link *link = adev->link; 2766 struct ata_device *pair = &link->device[1 - adev->devno]; 2767 if (!ata_dev_enabled(pair)) 2768 return NULL; 2769 return pair; 2770 } 2771 2772 /** 2773 * ata_port_disable - Disable port. 2774 * @ap: Port to be disabled. 2775 * 2776 * Modify @ap data structure such that the system 2777 * thinks that the entire port is disabled, and should 2778 * never attempt to probe or communicate with devices 2779 * on this port. 2780 * 2781 * LOCKING: host lock, or some other form of 2782 * serialization. 2783 */ 2784 2785 void ata_port_disable(struct ata_port *ap) 2786 { 2787 ap->link.device[0].class = ATA_DEV_NONE; 2788 ap->link.device[1].class = ATA_DEV_NONE; 2789 ap->flags |= ATA_FLAG_DISABLED; 2790 } 2791 2792 /** 2793 * sata_down_spd_limit - adjust SATA spd limit downward 2794 * @link: Link to adjust SATA spd limit for 2795 * 2796 * Adjust SATA spd limit of @link downward. Note that this 2797 * function only adjusts the limit. The change must be applied 2798 * using sata_set_spd(). 2799 * 2800 * LOCKING: 2801 * Inherited from caller. 2802 * 2803 * RETURNS: 2804 * 0 on success, negative errno on failure 2805 */ 2806 int sata_down_spd_limit(struct ata_link *link) 2807 { 2808 u32 sstatus, spd, mask; 2809 int rc, highbit; 2810 2811 if (!sata_scr_valid(link)) 2812 return -EOPNOTSUPP; 2813 2814 /* If SCR can be read, use it to determine the current SPD. 2815 * If not, use cached value in link->sata_spd. 2816 */ 2817 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2818 if (rc == 0) 2819 spd = (sstatus >> 4) & 0xf; 2820 else 2821 spd = link->sata_spd; 2822 2823 mask = link->sata_spd_limit; 2824 if (mask <= 1) 2825 return -EINVAL; 2826 2827 /* unconditionally mask off the highest bit */ 2828 highbit = fls(mask) - 1; 2829 mask &= ~(1 << highbit); 2830 2831 /* Mask off all speeds higher than or equal to the current 2832 * one. Force 1.5Gbps if current SPD is not available. 2833 */ 2834 if (spd > 1) 2835 mask &= (1 << (spd - 1)) - 1; 2836 else 2837 mask &= 1; 2838 2839 /* were we already at the bottom? */ 2840 if (!mask) 2841 return -EINVAL; 2842 2843 link->sata_spd_limit = mask; 2844 2845 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2846 sata_spd_string(fls(mask))); 2847 2848 return 0; 2849 } 2850 2851 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2852 { 2853 struct ata_link *host_link = &link->ap->link; 2854 u32 limit, target, spd; 2855 2856 limit = link->sata_spd_limit; 2857 2858 /* Don't configure downstream link faster than upstream link. 2859 * It doesn't speed up anything and some PMPs choke on such 2860 * configuration. 2861 */ 2862 if (!ata_is_host_link(link) && host_link->sata_spd) 2863 limit &= (1 << host_link->sata_spd) - 1; 2864 2865 if (limit == UINT_MAX) 2866 target = 0; 2867 else 2868 target = fls(limit); 2869 2870 spd = (*scontrol >> 4) & 0xf; 2871 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2872 2873 return spd != target; 2874 } 2875 2876 /** 2877 * sata_set_spd_needed - is SATA spd configuration needed 2878 * @link: Link in question 2879 * 2880 * Test whether the spd limit in SControl matches 2881 * @link->sata_spd_limit. This function is used to determine 2882 * whether hardreset is necessary to apply SATA spd 2883 * configuration. 2884 * 2885 * LOCKING: 2886 * Inherited from caller. 2887 * 2888 * RETURNS: 2889 * 1 if SATA spd configuration is needed, 0 otherwise. 2890 */ 2891 static int sata_set_spd_needed(struct ata_link *link) 2892 { 2893 u32 scontrol; 2894 2895 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2896 return 1; 2897 2898 return __sata_set_spd_needed(link, &scontrol); 2899 } 2900 2901 /** 2902 * sata_set_spd - set SATA spd according to spd limit 2903 * @link: Link to set SATA spd for 2904 * 2905 * Set SATA spd of @link according to sata_spd_limit. 2906 * 2907 * LOCKING: 2908 * Inherited from caller. 2909 * 2910 * RETURNS: 2911 * 0 if spd doesn't need to be changed, 1 if spd has been 2912 * changed. Negative errno if SCR registers are inaccessible. 2913 */ 2914 int sata_set_spd(struct ata_link *link) 2915 { 2916 u32 scontrol; 2917 int rc; 2918 2919 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2920 return rc; 2921 2922 if (!__sata_set_spd_needed(link, &scontrol)) 2923 return 0; 2924 2925 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2926 return rc; 2927 2928 return 1; 2929 } 2930 2931 /* 2932 * This mode timing computation functionality is ported over from 2933 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2934 */ 2935 /* 2936 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2937 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2938 * for UDMA6, which is currently supported only by Maxtor drives. 2939 * 2940 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2941 */ 2942 2943 static const struct ata_timing ata_timing[] = { 2944 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2945 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2946 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2947 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2948 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2949 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2950 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2951 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2952 2953 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2954 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2955 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2956 2957 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2958 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2959 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2960 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2961 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2962 2963 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2964 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2965 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2966 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2968 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2969 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2970 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2971 2972 { 0xFF } 2973 }; 2974 2975 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2976 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2977 2978 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2979 { 2980 q->setup = EZ(t->setup * 1000, T); 2981 q->act8b = EZ(t->act8b * 1000, T); 2982 q->rec8b = EZ(t->rec8b * 1000, T); 2983 q->cyc8b = EZ(t->cyc8b * 1000, T); 2984 q->active = EZ(t->active * 1000, T); 2985 q->recover = EZ(t->recover * 1000, T); 2986 q->cycle = EZ(t->cycle * 1000, T); 2987 q->udma = EZ(t->udma * 1000, UT); 2988 } 2989 2990 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2991 struct ata_timing *m, unsigned int what) 2992 { 2993 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2994 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2995 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2996 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2997 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2998 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2999 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3000 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3001 } 3002 3003 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3004 { 3005 const struct ata_timing *t = ata_timing; 3006 3007 while (xfer_mode > t->mode) 3008 t++; 3009 3010 if (xfer_mode == t->mode) 3011 return t; 3012 return NULL; 3013 } 3014 3015 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3016 struct ata_timing *t, int T, int UT) 3017 { 3018 const struct ata_timing *s; 3019 struct ata_timing p; 3020 3021 /* 3022 * Find the mode. 3023 */ 3024 3025 if (!(s = ata_timing_find_mode(speed))) 3026 return -EINVAL; 3027 3028 memcpy(t, s, sizeof(*s)); 3029 3030 /* 3031 * If the drive is an EIDE drive, it can tell us it needs extended 3032 * PIO/MW_DMA cycle timing. 3033 */ 3034 3035 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3036 memset(&p, 0, sizeof(p)); 3037 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3038 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3039 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3040 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3041 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3042 } 3043 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3044 } 3045 3046 /* 3047 * Convert the timing to bus clock counts. 3048 */ 3049 3050 ata_timing_quantize(t, t, T, UT); 3051 3052 /* 3053 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3054 * S.M.A.R.T * and some other commands. We have to ensure that the 3055 * DMA cycle timing is slower/equal than the fastest PIO timing. 3056 */ 3057 3058 if (speed > XFER_PIO_6) { 3059 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3060 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3061 } 3062 3063 /* 3064 * Lengthen active & recovery time so that cycle time is correct. 3065 */ 3066 3067 if (t->act8b + t->rec8b < t->cyc8b) { 3068 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3069 t->rec8b = t->cyc8b - t->act8b; 3070 } 3071 3072 if (t->active + t->recover < t->cycle) { 3073 t->active += (t->cycle - (t->active + t->recover)) / 2; 3074 t->recover = t->cycle - t->active; 3075 } 3076 3077 /* In a few cases quantisation may produce enough errors to 3078 leave t->cycle too low for the sum of active and recovery 3079 if so we must correct this */ 3080 if (t->active + t->recover > t->cycle) 3081 t->cycle = t->active + t->recover; 3082 3083 return 0; 3084 } 3085 3086 /** 3087 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3088 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3089 * @cycle: cycle duration in ns 3090 * 3091 * Return matching xfer mode for @cycle. The returned mode is of 3092 * the transfer type specified by @xfer_shift. If @cycle is too 3093 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3094 * than the fastest known mode, the fasted mode is returned. 3095 * 3096 * LOCKING: 3097 * None. 3098 * 3099 * RETURNS: 3100 * Matching xfer_mode, 0xff if no match found. 3101 */ 3102 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3103 { 3104 u8 base_mode = 0xff, last_mode = 0xff; 3105 const struct ata_xfer_ent *ent; 3106 const struct ata_timing *t; 3107 3108 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3109 if (ent->shift == xfer_shift) 3110 base_mode = ent->base; 3111 3112 for (t = ata_timing_find_mode(base_mode); 3113 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3114 unsigned short this_cycle; 3115 3116 switch (xfer_shift) { 3117 case ATA_SHIFT_PIO: 3118 case ATA_SHIFT_MWDMA: 3119 this_cycle = t->cycle; 3120 break; 3121 case ATA_SHIFT_UDMA: 3122 this_cycle = t->udma; 3123 break; 3124 default: 3125 return 0xff; 3126 } 3127 3128 if (cycle > this_cycle) 3129 break; 3130 3131 last_mode = t->mode; 3132 } 3133 3134 return last_mode; 3135 } 3136 3137 /** 3138 * ata_down_xfermask_limit - adjust dev xfer masks downward 3139 * @dev: Device to adjust xfer masks 3140 * @sel: ATA_DNXFER_* selector 3141 * 3142 * Adjust xfer masks of @dev downward. Note that this function 3143 * does not apply the change. Invoking ata_set_mode() afterwards 3144 * will apply the limit. 3145 * 3146 * LOCKING: 3147 * Inherited from caller. 3148 * 3149 * RETURNS: 3150 * 0 on success, negative errno on failure 3151 */ 3152 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3153 { 3154 char buf[32]; 3155 unsigned long orig_mask, xfer_mask; 3156 unsigned long pio_mask, mwdma_mask, udma_mask; 3157 int quiet, highbit; 3158 3159 quiet = !!(sel & ATA_DNXFER_QUIET); 3160 sel &= ~ATA_DNXFER_QUIET; 3161 3162 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3163 dev->mwdma_mask, 3164 dev->udma_mask); 3165 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3166 3167 switch (sel) { 3168 case ATA_DNXFER_PIO: 3169 highbit = fls(pio_mask) - 1; 3170 pio_mask &= ~(1 << highbit); 3171 break; 3172 3173 case ATA_DNXFER_DMA: 3174 if (udma_mask) { 3175 highbit = fls(udma_mask) - 1; 3176 udma_mask &= ~(1 << highbit); 3177 if (!udma_mask) 3178 return -ENOENT; 3179 } else if (mwdma_mask) { 3180 highbit = fls(mwdma_mask) - 1; 3181 mwdma_mask &= ~(1 << highbit); 3182 if (!mwdma_mask) 3183 return -ENOENT; 3184 } 3185 break; 3186 3187 case ATA_DNXFER_40C: 3188 udma_mask &= ATA_UDMA_MASK_40C; 3189 break; 3190 3191 case ATA_DNXFER_FORCE_PIO0: 3192 pio_mask &= 1; 3193 case ATA_DNXFER_FORCE_PIO: 3194 mwdma_mask = 0; 3195 udma_mask = 0; 3196 break; 3197 3198 default: 3199 BUG(); 3200 } 3201 3202 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3203 3204 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3205 return -ENOENT; 3206 3207 if (!quiet) { 3208 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3209 snprintf(buf, sizeof(buf), "%s:%s", 3210 ata_mode_string(xfer_mask), 3211 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3212 else 3213 snprintf(buf, sizeof(buf), "%s", 3214 ata_mode_string(xfer_mask)); 3215 3216 ata_dev_printk(dev, KERN_WARNING, 3217 "limiting speed to %s\n", buf); 3218 } 3219 3220 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3221 &dev->udma_mask); 3222 3223 return 0; 3224 } 3225 3226 static int ata_dev_set_mode(struct ata_device *dev) 3227 { 3228 struct ata_eh_context *ehc = &dev->link->eh_context; 3229 const char *dev_err_whine = ""; 3230 int ign_dev_err = 0; 3231 unsigned int err_mask; 3232 int rc; 3233 3234 dev->flags &= ~ATA_DFLAG_PIO; 3235 if (dev->xfer_shift == ATA_SHIFT_PIO) 3236 dev->flags |= ATA_DFLAG_PIO; 3237 3238 err_mask = ata_dev_set_xfermode(dev); 3239 3240 if (err_mask & ~AC_ERR_DEV) 3241 goto fail; 3242 3243 /* revalidate */ 3244 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3245 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3246 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3247 if (rc) 3248 return rc; 3249 3250 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3251 /* Old CFA may refuse this command, which is just fine */ 3252 if (ata_id_is_cfa(dev->id)) 3253 ign_dev_err = 1; 3254 /* Catch several broken garbage emulations plus some pre 3255 ATA devices */ 3256 if (ata_id_major_version(dev->id) == 0 && 3257 dev->pio_mode <= XFER_PIO_2) 3258 ign_dev_err = 1; 3259 /* Some very old devices and some bad newer ones fail 3260 any kind of SET_XFERMODE request but support PIO0-2 3261 timings and no IORDY */ 3262 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3263 ign_dev_err = 1; 3264 } 3265 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3266 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3267 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3268 dev->dma_mode == XFER_MW_DMA_0 && 3269 (dev->id[63] >> 8) & 1) 3270 ign_dev_err = 1; 3271 3272 /* if the device is actually configured correctly, ignore dev err */ 3273 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3274 ign_dev_err = 1; 3275 3276 if (err_mask & AC_ERR_DEV) { 3277 if (!ign_dev_err) 3278 goto fail; 3279 else 3280 dev_err_whine = " (device error ignored)"; 3281 } 3282 3283 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3284 dev->xfer_shift, (int)dev->xfer_mode); 3285 3286 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3287 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3288 dev_err_whine); 3289 3290 return 0; 3291 3292 fail: 3293 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3294 "(err_mask=0x%x)\n", err_mask); 3295 return -EIO; 3296 } 3297 3298 /** 3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3300 * @link: link on which timings will be programmed 3301 * @r_failed_dev: out parameter for failed device 3302 * 3303 * Standard implementation of the function used to tune and set 3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3305 * ata_dev_set_mode() fails, pointer to the failing device is 3306 * returned in @r_failed_dev. 3307 * 3308 * LOCKING: 3309 * PCI/etc. bus probe sem. 3310 * 3311 * RETURNS: 3312 * 0 on success, negative errno otherwise 3313 */ 3314 3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3316 { 3317 struct ata_port *ap = link->ap; 3318 struct ata_device *dev; 3319 int rc = 0, used_dma = 0, found = 0; 3320 3321 /* step 1: calculate xfer_mask */ 3322 ata_link_for_each_dev(dev, link) { 3323 unsigned long pio_mask, dma_mask; 3324 unsigned int mode_mask; 3325 3326 if (!ata_dev_enabled(dev)) 3327 continue; 3328 3329 mode_mask = ATA_DMA_MASK_ATA; 3330 if (dev->class == ATA_DEV_ATAPI) 3331 mode_mask = ATA_DMA_MASK_ATAPI; 3332 else if (ata_id_is_cfa(dev->id)) 3333 mode_mask = ATA_DMA_MASK_CFA; 3334 3335 ata_dev_xfermask(dev); 3336 ata_force_xfermask(dev); 3337 3338 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3339 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3340 3341 if (libata_dma_mask & mode_mask) 3342 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3343 else 3344 dma_mask = 0; 3345 3346 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3347 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3348 3349 found = 1; 3350 if (ata_dma_enabled(dev)) 3351 used_dma = 1; 3352 } 3353 if (!found) 3354 goto out; 3355 3356 /* step 2: always set host PIO timings */ 3357 ata_link_for_each_dev(dev, link) { 3358 if (!ata_dev_enabled(dev)) 3359 continue; 3360 3361 if (dev->pio_mode == 0xff) { 3362 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3363 rc = -EINVAL; 3364 goto out; 3365 } 3366 3367 dev->xfer_mode = dev->pio_mode; 3368 dev->xfer_shift = ATA_SHIFT_PIO; 3369 if (ap->ops->set_piomode) 3370 ap->ops->set_piomode(ap, dev); 3371 } 3372 3373 /* step 3: set host DMA timings */ 3374 ata_link_for_each_dev(dev, link) { 3375 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev)) 3376 continue; 3377 3378 dev->xfer_mode = dev->dma_mode; 3379 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3380 if (ap->ops->set_dmamode) 3381 ap->ops->set_dmamode(ap, dev); 3382 } 3383 3384 /* step 4: update devices' xfer mode */ 3385 ata_link_for_each_dev(dev, link) { 3386 /* don't update suspended devices' xfer mode */ 3387 if (!ata_dev_enabled(dev)) 3388 continue; 3389 3390 rc = ata_dev_set_mode(dev); 3391 if (rc) 3392 goto out; 3393 } 3394 3395 /* Record simplex status. If we selected DMA then the other 3396 * host channels are not permitted to do so. 3397 */ 3398 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3399 ap->host->simplex_claimed = ap; 3400 3401 out: 3402 if (rc) 3403 *r_failed_dev = dev; 3404 return rc; 3405 } 3406 3407 /** 3408 * ata_wait_ready - wait for link to become ready 3409 * @link: link to be waited on 3410 * @deadline: deadline jiffies for the operation 3411 * @check_ready: callback to check link readiness 3412 * 3413 * Wait for @link to become ready. @check_ready should return 3414 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3415 * link doesn't seem to be occupied, other errno for other error 3416 * conditions. 3417 * 3418 * Transient -ENODEV conditions are allowed for 3419 * ATA_TMOUT_FF_WAIT. 3420 * 3421 * LOCKING: 3422 * EH context. 3423 * 3424 * RETURNS: 3425 * 0 if @linke is ready before @deadline; otherwise, -errno. 3426 */ 3427 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3428 int (*check_ready)(struct ata_link *link)) 3429 { 3430 unsigned long start = jiffies; 3431 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3432 int warned = 0; 3433 3434 /* Slave readiness can't be tested separately from master. On 3435 * M/S emulation configuration, this function should be called 3436 * only on the master and it will handle both master and slave. 3437 */ 3438 WARN_ON(link == link->ap->slave_link); 3439 3440 if (time_after(nodev_deadline, deadline)) 3441 nodev_deadline = deadline; 3442 3443 while (1) { 3444 unsigned long now = jiffies; 3445 int ready, tmp; 3446 3447 ready = tmp = check_ready(link); 3448 if (ready > 0) 3449 return 0; 3450 3451 /* -ENODEV could be transient. Ignore -ENODEV if link 3452 * is online. Also, some SATA devices take a long 3453 * time to clear 0xff after reset. For example, 3454 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3455 * GoVault needs even more than that. Wait for 3456 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3457 * 3458 * Note that some PATA controllers (pata_ali) explode 3459 * if status register is read more than once when 3460 * there's no device attached. 3461 */ 3462 if (ready == -ENODEV) { 3463 if (ata_link_online(link)) 3464 ready = 0; 3465 else if ((link->ap->flags & ATA_FLAG_SATA) && 3466 !ata_link_offline(link) && 3467 time_before(now, nodev_deadline)) 3468 ready = 0; 3469 } 3470 3471 if (ready) 3472 return ready; 3473 if (time_after(now, deadline)) 3474 return -EBUSY; 3475 3476 if (!warned && time_after(now, start + 5 * HZ) && 3477 (deadline - now > 3 * HZ)) { 3478 ata_link_printk(link, KERN_WARNING, 3479 "link is slow to respond, please be patient " 3480 "(ready=%d)\n", tmp); 3481 warned = 1; 3482 } 3483 3484 msleep(50); 3485 } 3486 } 3487 3488 /** 3489 * ata_wait_after_reset - wait for link to become ready after reset 3490 * @link: link to be waited on 3491 * @deadline: deadline jiffies for the operation 3492 * @check_ready: callback to check link readiness 3493 * 3494 * Wait for @link to become ready after reset. 3495 * 3496 * LOCKING: 3497 * EH context. 3498 * 3499 * RETURNS: 3500 * 0 if @linke is ready before @deadline; otherwise, -errno. 3501 */ 3502 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3503 int (*check_ready)(struct ata_link *link)) 3504 { 3505 msleep(ATA_WAIT_AFTER_RESET); 3506 3507 return ata_wait_ready(link, deadline, check_ready); 3508 } 3509 3510 /** 3511 * sata_link_debounce - debounce SATA phy status 3512 * @link: ATA link to debounce SATA phy status for 3513 * @params: timing parameters { interval, duratinon, timeout } in msec 3514 * @deadline: deadline jiffies for the operation 3515 * 3516 * Make sure SStatus of @link reaches stable state, determined by 3517 * holding the same value where DET is not 1 for @duration polled 3518 * every @interval, before @timeout. Timeout constraints the 3519 * beginning of the stable state. Because DET gets stuck at 1 on 3520 * some controllers after hot unplugging, this functions waits 3521 * until timeout then returns 0 if DET is stable at 1. 3522 * 3523 * @timeout is further limited by @deadline. The sooner of the 3524 * two is used. 3525 * 3526 * LOCKING: 3527 * Kernel thread context (may sleep) 3528 * 3529 * RETURNS: 3530 * 0 on success, -errno on failure. 3531 */ 3532 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3533 unsigned long deadline) 3534 { 3535 unsigned long interval = params[0]; 3536 unsigned long duration = params[1]; 3537 unsigned long last_jiffies, t; 3538 u32 last, cur; 3539 int rc; 3540 3541 t = ata_deadline(jiffies, params[2]); 3542 if (time_before(t, deadline)) 3543 deadline = t; 3544 3545 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3546 return rc; 3547 cur &= 0xf; 3548 3549 last = cur; 3550 last_jiffies = jiffies; 3551 3552 while (1) { 3553 msleep(interval); 3554 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3555 return rc; 3556 cur &= 0xf; 3557 3558 /* DET stable? */ 3559 if (cur == last) { 3560 if (cur == 1 && time_before(jiffies, deadline)) 3561 continue; 3562 if (time_after(jiffies, 3563 ata_deadline(last_jiffies, duration))) 3564 return 0; 3565 continue; 3566 } 3567 3568 /* unstable, start over */ 3569 last = cur; 3570 last_jiffies = jiffies; 3571 3572 /* Check deadline. If debouncing failed, return 3573 * -EPIPE to tell upper layer to lower link speed. 3574 */ 3575 if (time_after(jiffies, deadline)) 3576 return -EPIPE; 3577 } 3578 } 3579 3580 /** 3581 * sata_link_resume - resume SATA link 3582 * @link: ATA link to resume SATA 3583 * @params: timing parameters { interval, duratinon, timeout } in msec 3584 * @deadline: deadline jiffies for the operation 3585 * 3586 * Resume SATA phy @link and debounce it. 3587 * 3588 * LOCKING: 3589 * Kernel thread context (may sleep) 3590 * 3591 * RETURNS: 3592 * 0 on success, -errno on failure. 3593 */ 3594 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3595 unsigned long deadline) 3596 { 3597 u32 scontrol, serror; 3598 int rc; 3599 3600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3601 return rc; 3602 3603 scontrol = (scontrol & 0x0f0) | 0x300; 3604 3605 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3606 return rc; 3607 3608 /* Some PHYs react badly if SStatus is pounded immediately 3609 * after resuming. Delay 200ms before debouncing. 3610 */ 3611 msleep(200); 3612 3613 if ((rc = sata_link_debounce(link, params, deadline))) 3614 return rc; 3615 3616 /* clear SError, some PHYs require this even for SRST to work */ 3617 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3618 rc = sata_scr_write(link, SCR_ERROR, serror); 3619 3620 return rc != -EINVAL ? rc : 0; 3621 } 3622 3623 /** 3624 * ata_std_prereset - prepare for reset 3625 * @link: ATA link to be reset 3626 * @deadline: deadline jiffies for the operation 3627 * 3628 * @link is about to be reset. Initialize it. Failure from 3629 * prereset makes libata abort whole reset sequence and give up 3630 * that port, so prereset should be best-effort. It does its 3631 * best to prepare for reset sequence but if things go wrong, it 3632 * should just whine, not fail. 3633 * 3634 * LOCKING: 3635 * Kernel thread context (may sleep) 3636 * 3637 * RETURNS: 3638 * 0 on success, -errno otherwise. 3639 */ 3640 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3641 { 3642 struct ata_port *ap = link->ap; 3643 struct ata_eh_context *ehc = &link->eh_context; 3644 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3645 int rc; 3646 3647 /* if we're about to do hardreset, nothing more to do */ 3648 if (ehc->i.action & ATA_EH_HARDRESET) 3649 return 0; 3650 3651 /* if SATA, resume link */ 3652 if (ap->flags & ATA_FLAG_SATA) { 3653 rc = sata_link_resume(link, timing, deadline); 3654 /* whine about phy resume failure but proceed */ 3655 if (rc && rc != -EOPNOTSUPP) 3656 ata_link_printk(link, KERN_WARNING, "failed to resume " 3657 "link for reset (errno=%d)\n", rc); 3658 } 3659 3660 /* no point in trying softreset on offline link */ 3661 if (ata_phys_link_offline(link)) 3662 ehc->i.action &= ~ATA_EH_SOFTRESET; 3663 3664 return 0; 3665 } 3666 3667 /** 3668 * sata_link_hardreset - reset link via SATA phy reset 3669 * @link: link to reset 3670 * @timing: timing parameters { interval, duratinon, timeout } in msec 3671 * @deadline: deadline jiffies for the operation 3672 * @online: optional out parameter indicating link onlineness 3673 * @check_ready: optional callback to check link readiness 3674 * 3675 * SATA phy-reset @link using DET bits of SControl register. 3676 * After hardreset, link readiness is waited upon using 3677 * ata_wait_ready() if @check_ready is specified. LLDs are 3678 * allowed to not specify @check_ready and wait itself after this 3679 * function returns. Device classification is LLD's 3680 * responsibility. 3681 * 3682 * *@online is set to one iff reset succeeded and @link is online 3683 * after reset. 3684 * 3685 * LOCKING: 3686 * Kernel thread context (may sleep) 3687 * 3688 * RETURNS: 3689 * 0 on success, -errno otherwise. 3690 */ 3691 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3692 unsigned long deadline, 3693 bool *online, int (*check_ready)(struct ata_link *)) 3694 { 3695 u32 scontrol; 3696 int rc; 3697 3698 DPRINTK("ENTER\n"); 3699 3700 if (online) 3701 *online = false; 3702 3703 if (sata_set_spd_needed(link)) { 3704 /* SATA spec says nothing about how to reconfigure 3705 * spd. To be on the safe side, turn off phy during 3706 * reconfiguration. This works for at least ICH7 AHCI 3707 * and Sil3124. 3708 */ 3709 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3710 goto out; 3711 3712 scontrol = (scontrol & 0x0f0) | 0x304; 3713 3714 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3715 goto out; 3716 3717 sata_set_spd(link); 3718 } 3719 3720 /* issue phy wake/reset */ 3721 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3722 goto out; 3723 3724 scontrol = (scontrol & 0x0f0) | 0x301; 3725 3726 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3727 goto out; 3728 3729 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3730 * 10.4.2 says at least 1 ms. 3731 */ 3732 msleep(1); 3733 3734 /* bring link back */ 3735 rc = sata_link_resume(link, timing, deadline); 3736 if (rc) 3737 goto out; 3738 /* if link is offline nothing more to do */ 3739 if (ata_phys_link_offline(link)) 3740 goto out; 3741 3742 /* Link is online. From this point, -ENODEV too is an error. */ 3743 if (online) 3744 *online = true; 3745 3746 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3747 /* If PMP is supported, we have to do follow-up SRST. 3748 * Some PMPs don't send D2H Reg FIS after hardreset if 3749 * the first port is empty. Wait only for 3750 * ATA_TMOUT_PMP_SRST_WAIT. 3751 */ 3752 if (check_ready) { 3753 unsigned long pmp_deadline; 3754 3755 pmp_deadline = ata_deadline(jiffies, 3756 ATA_TMOUT_PMP_SRST_WAIT); 3757 if (time_after(pmp_deadline, deadline)) 3758 pmp_deadline = deadline; 3759 ata_wait_ready(link, pmp_deadline, check_ready); 3760 } 3761 rc = -EAGAIN; 3762 goto out; 3763 } 3764 3765 rc = 0; 3766 if (check_ready) 3767 rc = ata_wait_ready(link, deadline, check_ready); 3768 out: 3769 if (rc && rc != -EAGAIN) { 3770 /* online is set iff link is online && reset succeeded */ 3771 if (online) 3772 *online = false; 3773 ata_link_printk(link, KERN_ERR, 3774 "COMRESET failed (errno=%d)\n", rc); 3775 } 3776 DPRINTK("EXIT, rc=%d\n", rc); 3777 return rc; 3778 } 3779 3780 /** 3781 * sata_std_hardreset - COMRESET w/o waiting or classification 3782 * @link: link to reset 3783 * @class: resulting class of attached device 3784 * @deadline: deadline jiffies for the operation 3785 * 3786 * Standard SATA COMRESET w/o waiting or classification. 3787 * 3788 * LOCKING: 3789 * Kernel thread context (may sleep) 3790 * 3791 * RETURNS: 3792 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3793 */ 3794 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3795 unsigned long deadline) 3796 { 3797 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3798 bool online; 3799 int rc; 3800 3801 /* do hardreset */ 3802 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3803 return online ? -EAGAIN : rc; 3804 } 3805 3806 /** 3807 * ata_std_postreset - standard postreset callback 3808 * @link: the target ata_link 3809 * @classes: classes of attached devices 3810 * 3811 * This function is invoked after a successful reset. Note that 3812 * the device might have been reset more than once using 3813 * different reset methods before postreset is invoked. 3814 * 3815 * LOCKING: 3816 * Kernel thread context (may sleep) 3817 */ 3818 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3819 { 3820 u32 serror; 3821 3822 DPRINTK("ENTER\n"); 3823 3824 /* reset complete, clear SError */ 3825 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3826 sata_scr_write(link, SCR_ERROR, serror); 3827 3828 /* print link status */ 3829 sata_print_link_status(link); 3830 3831 DPRINTK("EXIT\n"); 3832 } 3833 3834 /** 3835 * ata_dev_same_device - Determine whether new ID matches configured device 3836 * @dev: device to compare against 3837 * @new_class: class of the new device 3838 * @new_id: IDENTIFY page of the new device 3839 * 3840 * Compare @new_class and @new_id against @dev and determine 3841 * whether @dev is the device indicated by @new_class and 3842 * @new_id. 3843 * 3844 * LOCKING: 3845 * None. 3846 * 3847 * RETURNS: 3848 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3849 */ 3850 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3851 const u16 *new_id) 3852 { 3853 const u16 *old_id = dev->id; 3854 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3855 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3856 3857 if (dev->class != new_class) { 3858 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3859 dev->class, new_class); 3860 return 0; 3861 } 3862 3863 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3864 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3865 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3866 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3867 3868 if (strcmp(model[0], model[1])) { 3869 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3870 "'%s' != '%s'\n", model[0], model[1]); 3871 return 0; 3872 } 3873 3874 if (strcmp(serial[0], serial[1])) { 3875 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3876 "'%s' != '%s'\n", serial[0], serial[1]); 3877 return 0; 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * ata_dev_reread_id - Re-read IDENTIFY data 3885 * @dev: target ATA device 3886 * @readid_flags: read ID flags 3887 * 3888 * Re-read IDENTIFY page and make sure @dev is still attached to 3889 * the port. 3890 * 3891 * LOCKING: 3892 * Kernel thread context (may sleep) 3893 * 3894 * RETURNS: 3895 * 0 on success, negative errno otherwise 3896 */ 3897 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3898 { 3899 unsigned int class = dev->class; 3900 u16 *id = (void *)dev->link->ap->sector_buf; 3901 int rc; 3902 3903 /* read ID data */ 3904 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3905 if (rc) 3906 return rc; 3907 3908 /* is the device still there? */ 3909 if (!ata_dev_same_device(dev, class, id)) 3910 return -ENODEV; 3911 3912 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3913 return 0; 3914 } 3915 3916 /** 3917 * ata_dev_revalidate - Revalidate ATA device 3918 * @dev: device to revalidate 3919 * @new_class: new class code 3920 * @readid_flags: read ID flags 3921 * 3922 * Re-read IDENTIFY page, make sure @dev is still attached to the 3923 * port and reconfigure it according to the new IDENTIFY page. 3924 * 3925 * LOCKING: 3926 * Kernel thread context (may sleep) 3927 * 3928 * RETURNS: 3929 * 0 on success, negative errno otherwise 3930 */ 3931 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3932 unsigned int readid_flags) 3933 { 3934 u64 n_sectors = dev->n_sectors; 3935 int rc; 3936 3937 if (!ata_dev_enabled(dev)) 3938 return -ENODEV; 3939 3940 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3941 if (ata_class_enabled(new_class) && 3942 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3943 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3944 dev->class, new_class); 3945 rc = -ENODEV; 3946 goto fail; 3947 } 3948 3949 /* re-read ID */ 3950 rc = ata_dev_reread_id(dev, readid_flags); 3951 if (rc) 3952 goto fail; 3953 3954 /* configure device according to the new ID */ 3955 rc = ata_dev_configure(dev); 3956 if (rc) 3957 goto fail; 3958 3959 /* verify n_sectors hasn't changed */ 3960 if (dev->class == ATA_DEV_ATA && n_sectors && 3961 dev->n_sectors != n_sectors) { 3962 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3963 "%llu != %llu\n", 3964 (unsigned long long)n_sectors, 3965 (unsigned long long)dev->n_sectors); 3966 3967 /* restore original n_sectors */ 3968 dev->n_sectors = n_sectors; 3969 3970 rc = -ENODEV; 3971 goto fail; 3972 } 3973 3974 return 0; 3975 3976 fail: 3977 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3978 return rc; 3979 } 3980 3981 struct ata_blacklist_entry { 3982 const char *model_num; 3983 const char *model_rev; 3984 unsigned long horkage; 3985 }; 3986 3987 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3988 /* Devices with DMA related problems under Linux */ 3989 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3990 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3991 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3992 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3993 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3994 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3995 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3996 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3997 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3998 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3999 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4000 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4001 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4002 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4003 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4004 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4005 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4006 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4007 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4008 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4009 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4010 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4011 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4012 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4013 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4014 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4015 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4016 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4017 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4018 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4019 /* Odd clown on sil3726/4726 PMPs */ 4020 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4021 4022 /* Weird ATAPI devices */ 4023 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4024 4025 /* Devices we expect to fail diagnostics */ 4026 4027 /* Devices where NCQ should be avoided */ 4028 /* NCQ is slow */ 4029 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4030 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4031 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4032 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4033 /* NCQ is broken */ 4034 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4035 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4036 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4037 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4038 4039 /* Blacklist entries taken from Silicon Image 3124/3132 4040 Windows driver .inf file - also several Linux problem reports */ 4041 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4042 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4043 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4044 4045 /* devices which puke on READ_NATIVE_MAX */ 4046 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4047 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4048 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4049 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4050 4051 /* Devices which report 1 sector over size HPA */ 4052 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4053 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4054 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4055 4056 /* Devices which get the IVB wrong */ 4057 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4058 /* Maybe we should just blacklist TSSTcorp... */ 4059 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4060 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4061 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4062 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4063 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4064 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4065 4066 /* End Marker */ 4067 { } 4068 }; 4069 4070 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4071 { 4072 const char *p; 4073 int len; 4074 4075 /* 4076 * check for trailing wildcard: *\0 4077 */ 4078 p = strchr(patt, wildchar); 4079 if (p && ((*(p + 1)) == 0)) 4080 len = p - patt; 4081 else { 4082 len = strlen(name); 4083 if (!len) { 4084 if (!*patt) 4085 return 0; 4086 return -1; 4087 } 4088 } 4089 4090 return strncmp(patt, name, len); 4091 } 4092 4093 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4094 { 4095 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4096 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4097 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4098 4099 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4100 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4101 4102 while (ad->model_num) { 4103 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4104 if (ad->model_rev == NULL) 4105 return ad->horkage; 4106 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4107 return ad->horkage; 4108 } 4109 ad++; 4110 } 4111 return 0; 4112 } 4113 4114 static int ata_dma_blacklisted(const struct ata_device *dev) 4115 { 4116 /* We don't support polling DMA. 4117 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4118 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4119 */ 4120 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4121 (dev->flags & ATA_DFLAG_CDB_INTR)) 4122 return 1; 4123 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4124 } 4125 4126 /** 4127 * ata_is_40wire - check drive side detection 4128 * @dev: device 4129 * 4130 * Perform drive side detection decoding, allowing for device vendors 4131 * who can't follow the documentation. 4132 */ 4133 4134 static int ata_is_40wire(struct ata_device *dev) 4135 { 4136 if (dev->horkage & ATA_HORKAGE_IVB) 4137 return ata_drive_40wire_relaxed(dev->id); 4138 return ata_drive_40wire(dev->id); 4139 } 4140 4141 /** 4142 * cable_is_40wire - 40/80/SATA decider 4143 * @ap: port to consider 4144 * 4145 * This function encapsulates the policy for speed management 4146 * in one place. At the moment we don't cache the result but 4147 * there is a good case for setting ap->cbl to the result when 4148 * we are called with unknown cables (and figuring out if it 4149 * impacts hotplug at all). 4150 * 4151 * Return 1 if the cable appears to be 40 wire. 4152 */ 4153 4154 static int cable_is_40wire(struct ata_port *ap) 4155 { 4156 struct ata_link *link; 4157 struct ata_device *dev; 4158 4159 /* If the controller thinks we are 40 wire, we are */ 4160 if (ap->cbl == ATA_CBL_PATA40) 4161 return 1; 4162 /* If the controller thinks we are 80 wire, we are */ 4163 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4164 return 0; 4165 /* If the system is known to be 40 wire short cable (eg laptop), 4166 then we allow 80 wire modes even if the drive isn't sure */ 4167 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4168 return 0; 4169 /* If the controller doesn't know we scan 4170 4171 - Note: We look for all 40 wire detects at this point. 4172 Any 80 wire detect is taken to be 80 wire cable 4173 because 4174 - In many setups only the one drive (slave if present) 4175 will give a valid detect 4176 - If you have a non detect capable drive you don't 4177 want it to colour the choice 4178 */ 4179 ata_port_for_each_link(link, ap) { 4180 ata_link_for_each_dev(dev, link) { 4181 if (!ata_is_40wire(dev)) 4182 return 0; 4183 } 4184 } 4185 return 1; 4186 } 4187 4188 /** 4189 * ata_dev_xfermask - Compute supported xfermask of the given device 4190 * @dev: Device to compute xfermask for 4191 * 4192 * Compute supported xfermask of @dev and store it in 4193 * dev->*_mask. This function is responsible for applying all 4194 * known limits including host controller limits, device 4195 * blacklist, etc... 4196 * 4197 * LOCKING: 4198 * None. 4199 */ 4200 static void ata_dev_xfermask(struct ata_device *dev) 4201 { 4202 struct ata_link *link = dev->link; 4203 struct ata_port *ap = link->ap; 4204 struct ata_host *host = ap->host; 4205 unsigned long xfer_mask; 4206 4207 /* controller modes available */ 4208 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4209 ap->mwdma_mask, ap->udma_mask); 4210 4211 /* drive modes available */ 4212 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4213 dev->mwdma_mask, dev->udma_mask); 4214 xfer_mask &= ata_id_xfermask(dev->id); 4215 4216 /* 4217 * CFA Advanced TrueIDE timings are not allowed on a shared 4218 * cable 4219 */ 4220 if (ata_dev_pair(dev)) { 4221 /* No PIO5 or PIO6 */ 4222 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4223 /* No MWDMA3 or MWDMA 4 */ 4224 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4225 } 4226 4227 if (ata_dma_blacklisted(dev)) { 4228 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4229 ata_dev_printk(dev, KERN_WARNING, 4230 "device is on DMA blacklist, disabling DMA\n"); 4231 } 4232 4233 if ((host->flags & ATA_HOST_SIMPLEX) && 4234 host->simplex_claimed && host->simplex_claimed != ap) { 4235 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4236 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4237 "other device, disabling DMA\n"); 4238 } 4239 4240 if (ap->flags & ATA_FLAG_NO_IORDY) 4241 xfer_mask &= ata_pio_mask_no_iordy(dev); 4242 4243 if (ap->ops->mode_filter) 4244 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4245 4246 /* Apply cable rule here. Don't apply it early because when 4247 * we handle hot plug the cable type can itself change. 4248 * Check this last so that we know if the transfer rate was 4249 * solely limited by the cable. 4250 * Unknown or 80 wire cables reported host side are checked 4251 * drive side as well. Cases where we know a 40wire cable 4252 * is used safely for 80 are not checked here. 4253 */ 4254 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4255 /* UDMA/44 or higher would be available */ 4256 if (cable_is_40wire(ap)) { 4257 ata_dev_printk(dev, KERN_WARNING, 4258 "limited to UDMA/33 due to 40-wire cable\n"); 4259 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4260 } 4261 4262 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4263 &dev->mwdma_mask, &dev->udma_mask); 4264 } 4265 4266 /** 4267 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4268 * @dev: Device to which command will be sent 4269 * 4270 * Issue SET FEATURES - XFER MODE command to device @dev 4271 * on port @ap. 4272 * 4273 * LOCKING: 4274 * PCI/etc. bus probe sem. 4275 * 4276 * RETURNS: 4277 * 0 on success, AC_ERR_* mask otherwise. 4278 */ 4279 4280 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4281 { 4282 struct ata_taskfile tf; 4283 unsigned int err_mask; 4284 4285 /* set up set-features taskfile */ 4286 DPRINTK("set features - xfer mode\n"); 4287 4288 /* Some controllers and ATAPI devices show flaky interrupt 4289 * behavior after setting xfer mode. Use polling instead. 4290 */ 4291 ata_tf_init(dev, &tf); 4292 tf.command = ATA_CMD_SET_FEATURES; 4293 tf.feature = SETFEATURES_XFER; 4294 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4295 tf.protocol = ATA_PROT_NODATA; 4296 /* If we are using IORDY we must send the mode setting command */ 4297 if (ata_pio_need_iordy(dev)) 4298 tf.nsect = dev->xfer_mode; 4299 /* If the device has IORDY and the controller does not - turn it off */ 4300 else if (ata_id_has_iordy(dev->id)) 4301 tf.nsect = 0x01; 4302 else /* In the ancient relic department - skip all of this */ 4303 return 0; 4304 4305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4306 4307 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4308 return err_mask; 4309 } 4310 /** 4311 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4312 * @dev: Device to which command will be sent 4313 * @enable: Whether to enable or disable the feature 4314 * @feature: The sector count represents the feature to set 4315 * 4316 * Issue SET FEATURES - SATA FEATURES command to device @dev 4317 * on port @ap with sector count 4318 * 4319 * LOCKING: 4320 * PCI/etc. bus probe sem. 4321 * 4322 * RETURNS: 4323 * 0 on success, AC_ERR_* mask otherwise. 4324 */ 4325 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4326 u8 feature) 4327 { 4328 struct ata_taskfile tf; 4329 unsigned int err_mask; 4330 4331 /* set up set-features taskfile */ 4332 DPRINTK("set features - SATA features\n"); 4333 4334 ata_tf_init(dev, &tf); 4335 tf.command = ATA_CMD_SET_FEATURES; 4336 tf.feature = enable; 4337 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4338 tf.protocol = ATA_PROT_NODATA; 4339 tf.nsect = feature; 4340 4341 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4342 4343 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4344 return err_mask; 4345 } 4346 4347 /** 4348 * ata_dev_init_params - Issue INIT DEV PARAMS command 4349 * @dev: Device to which command will be sent 4350 * @heads: Number of heads (taskfile parameter) 4351 * @sectors: Number of sectors (taskfile parameter) 4352 * 4353 * LOCKING: 4354 * Kernel thread context (may sleep) 4355 * 4356 * RETURNS: 4357 * 0 on success, AC_ERR_* mask otherwise. 4358 */ 4359 static unsigned int ata_dev_init_params(struct ata_device *dev, 4360 u16 heads, u16 sectors) 4361 { 4362 struct ata_taskfile tf; 4363 unsigned int err_mask; 4364 4365 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4366 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4367 return AC_ERR_INVALID; 4368 4369 /* set up init dev params taskfile */ 4370 DPRINTK("init dev params \n"); 4371 4372 ata_tf_init(dev, &tf); 4373 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4374 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4375 tf.protocol = ATA_PROT_NODATA; 4376 tf.nsect = sectors; 4377 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4378 4379 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4380 /* A clean abort indicates an original or just out of spec drive 4381 and we should continue as we issue the setup based on the 4382 drive reported working geometry */ 4383 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4384 err_mask = 0; 4385 4386 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4387 return err_mask; 4388 } 4389 4390 /** 4391 * ata_sg_clean - Unmap DMA memory associated with command 4392 * @qc: Command containing DMA memory to be released 4393 * 4394 * Unmap all mapped DMA memory associated with this command. 4395 * 4396 * LOCKING: 4397 * spin_lock_irqsave(host lock) 4398 */ 4399 void ata_sg_clean(struct ata_queued_cmd *qc) 4400 { 4401 struct ata_port *ap = qc->ap; 4402 struct scatterlist *sg = qc->sg; 4403 int dir = qc->dma_dir; 4404 4405 WARN_ON(sg == NULL); 4406 4407 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4408 4409 if (qc->n_elem) 4410 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4411 4412 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4413 qc->sg = NULL; 4414 } 4415 4416 /** 4417 * atapi_check_dma - Check whether ATAPI DMA can be supported 4418 * @qc: Metadata associated with taskfile to check 4419 * 4420 * Allow low-level driver to filter ATA PACKET commands, returning 4421 * a status indicating whether or not it is OK to use DMA for the 4422 * supplied PACKET command. 4423 * 4424 * LOCKING: 4425 * spin_lock_irqsave(host lock) 4426 * 4427 * RETURNS: 0 when ATAPI DMA can be used 4428 * nonzero otherwise 4429 */ 4430 int atapi_check_dma(struct ata_queued_cmd *qc) 4431 { 4432 struct ata_port *ap = qc->ap; 4433 4434 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4435 * few ATAPI devices choke on such DMA requests. 4436 */ 4437 if (unlikely(qc->nbytes & 15)) 4438 return 1; 4439 4440 if (ap->ops->check_atapi_dma) 4441 return ap->ops->check_atapi_dma(qc); 4442 4443 return 0; 4444 } 4445 4446 /** 4447 * ata_std_qc_defer - Check whether a qc needs to be deferred 4448 * @qc: ATA command in question 4449 * 4450 * Non-NCQ commands cannot run with any other command, NCQ or 4451 * not. As upper layer only knows the queue depth, we are 4452 * responsible for maintaining exclusion. This function checks 4453 * whether a new command @qc can be issued. 4454 * 4455 * LOCKING: 4456 * spin_lock_irqsave(host lock) 4457 * 4458 * RETURNS: 4459 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4460 */ 4461 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4462 { 4463 struct ata_link *link = qc->dev->link; 4464 4465 if (qc->tf.protocol == ATA_PROT_NCQ) { 4466 if (!ata_tag_valid(link->active_tag)) 4467 return 0; 4468 } else { 4469 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4470 return 0; 4471 } 4472 4473 return ATA_DEFER_LINK; 4474 } 4475 4476 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4477 4478 /** 4479 * ata_sg_init - Associate command with scatter-gather table. 4480 * @qc: Command to be associated 4481 * @sg: Scatter-gather table. 4482 * @n_elem: Number of elements in s/g table. 4483 * 4484 * Initialize the data-related elements of queued_cmd @qc 4485 * to point to a scatter-gather table @sg, containing @n_elem 4486 * elements. 4487 * 4488 * LOCKING: 4489 * spin_lock_irqsave(host lock) 4490 */ 4491 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4492 unsigned int n_elem) 4493 { 4494 qc->sg = sg; 4495 qc->n_elem = n_elem; 4496 qc->cursg = qc->sg; 4497 } 4498 4499 /** 4500 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4501 * @qc: Command with scatter-gather table to be mapped. 4502 * 4503 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4504 * 4505 * LOCKING: 4506 * spin_lock_irqsave(host lock) 4507 * 4508 * RETURNS: 4509 * Zero on success, negative on error. 4510 * 4511 */ 4512 static int ata_sg_setup(struct ata_queued_cmd *qc) 4513 { 4514 struct ata_port *ap = qc->ap; 4515 unsigned int n_elem; 4516 4517 VPRINTK("ENTER, ata%u\n", ap->print_id); 4518 4519 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4520 if (n_elem < 1) 4521 return -1; 4522 4523 DPRINTK("%d sg elements mapped\n", n_elem); 4524 4525 qc->n_elem = n_elem; 4526 qc->flags |= ATA_QCFLAG_DMAMAP; 4527 4528 return 0; 4529 } 4530 4531 /** 4532 * swap_buf_le16 - swap halves of 16-bit words in place 4533 * @buf: Buffer to swap 4534 * @buf_words: Number of 16-bit words in buffer. 4535 * 4536 * Swap halves of 16-bit words if needed to convert from 4537 * little-endian byte order to native cpu byte order, or 4538 * vice-versa. 4539 * 4540 * LOCKING: 4541 * Inherited from caller. 4542 */ 4543 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4544 { 4545 #ifdef __BIG_ENDIAN 4546 unsigned int i; 4547 4548 for (i = 0; i < buf_words; i++) 4549 buf[i] = le16_to_cpu(buf[i]); 4550 #endif /* __BIG_ENDIAN */ 4551 } 4552 4553 /** 4554 * ata_qc_new_init - Request an available ATA command, and initialize it 4555 * @dev: Device from whom we request an available command structure 4556 * 4557 * LOCKING: 4558 * None. 4559 */ 4560 4561 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4562 { 4563 struct ata_port *ap = dev->link->ap; 4564 struct ata_queued_cmd *qc; 4565 4566 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4567 return NULL; 4568 4569 qc = __ata_qc_from_tag(ap, tag); 4570 if (qc) { 4571 qc->scsicmd = NULL; 4572 qc->ap = ap; 4573 qc->dev = dev; 4574 qc->tag = tag; 4575 4576 ata_qc_reinit(qc); 4577 } 4578 4579 return qc; 4580 } 4581 4582 void __ata_qc_complete(struct ata_queued_cmd *qc) 4583 { 4584 struct ata_port *ap = qc->ap; 4585 struct ata_link *link = qc->dev->link; 4586 4587 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4588 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4589 4590 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4591 ata_sg_clean(qc); 4592 4593 /* command should be marked inactive atomically with qc completion */ 4594 if (qc->tf.protocol == ATA_PROT_NCQ) { 4595 link->sactive &= ~(1 << qc->tag); 4596 if (!link->sactive) 4597 ap->nr_active_links--; 4598 } else { 4599 link->active_tag = ATA_TAG_POISON; 4600 ap->nr_active_links--; 4601 } 4602 4603 /* clear exclusive status */ 4604 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4605 ap->excl_link == link)) 4606 ap->excl_link = NULL; 4607 4608 /* atapi: mark qc as inactive to prevent the interrupt handler 4609 * from completing the command twice later, before the error handler 4610 * is called. (when rc != 0 and atapi request sense is needed) 4611 */ 4612 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4613 ap->qc_active &= ~(1 << qc->tag); 4614 4615 /* call completion callback */ 4616 qc->complete_fn(qc); 4617 } 4618 4619 static void fill_result_tf(struct ata_queued_cmd *qc) 4620 { 4621 struct ata_port *ap = qc->ap; 4622 4623 qc->result_tf.flags = qc->tf.flags; 4624 ap->ops->qc_fill_rtf(qc); 4625 } 4626 4627 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4628 { 4629 struct ata_device *dev = qc->dev; 4630 4631 if (ata_tag_internal(qc->tag)) 4632 return; 4633 4634 if (ata_is_nodata(qc->tf.protocol)) 4635 return; 4636 4637 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4638 return; 4639 4640 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4641 } 4642 4643 /** 4644 * ata_qc_complete - Complete an active ATA command 4645 * @qc: Command to complete 4646 * @err_mask: ATA Status register contents 4647 * 4648 * Indicate to the mid and upper layers that an ATA 4649 * command has completed, with either an ok or not-ok status. 4650 * 4651 * LOCKING: 4652 * spin_lock_irqsave(host lock) 4653 */ 4654 void ata_qc_complete(struct ata_queued_cmd *qc) 4655 { 4656 struct ata_port *ap = qc->ap; 4657 4658 /* XXX: New EH and old EH use different mechanisms to 4659 * synchronize EH with regular execution path. 4660 * 4661 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4662 * Normal execution path is responsible for not accessing a 4663 * failed qc. libata core enforces the rule by returning NULL 4664 * from ata_qc_from_tag() for failed qcs. 4665 * 4666 * Old EH depends on ata_qc_complete() nullifying completion 4667 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4668 * not synchronize with interrupt handler. Only PIO task is 4669 * taken care of. 4670 */ 4671 if (ap->ops->error_handler) { 4672 struct ata_device *dev = qc->dev; 4673 struct ata_eh_info *ehi = &dev->link->eh_info; 4674 4675 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4676 4677 if (unlikely(qc->err_mask)) 4678 qc->flags |= ATA_QCFLAG_FAILED; 4679 4680 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4681 if (!ata_tag_internal(qc->tag)) { 4682 /* always fill result TF for failed qc */ 4683 fill_result_tf(qc); 4684 ata_qc_schedule_eh(qc); 4685 return; 4686 } 4687 } 4688 4689 /* read result TF if requested */ 4690 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4691 fill_result_tf(qc); 4692 4693 /* Some commands need post-processing after successful 4694 * completion. 4695 */ 4696 switch (qc->tf.command) { 4697 case ATA_CMD_SET_FEATURES: 4698 if (qc->tf.feature != SETFEATURES_WC_ON && 4699 qc->tf.feature != SETFEATURES_WC_OFF) 4700 break; 4701 /* fall through */ 4702 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4703 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4704 /* revalidate device */ 4705 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4706 ata_port_schedule_eh(ap); 4707 break; 4708 4709 case ATA_CMD_SLEEP: 4710 dev->flags |= ATA_DFLAG_SLEEPING; 4711 break; 4712 } 4713 4714 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4715 ata_verify_xfer(qc); 4716 4717 __ata_qc_complete(qc); 4718 } else { 4719 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4720 return; 4721 4722 /* read result TF if failed or requested */ 4723 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4724 fill_result_tf(qc); 4725 4726 __ata_qc_complete(qc); 4727 } 4728 } 4729 4730 /** 4731 * ata_qc_complete_multiple - Complete multiple qcs successfully 4732 * @ap: port in question 4733 * @qc_active: new qc_active mask 4734 * 4735 * Complete in-flight commands. This functions is meant to be 4736 * called from low-level driver's interrupt routine to complete 4737 * requests normally. ap->qc_active and @qc_active is compared 4738 * and commands are completed accordingly. 4739 * 4740 * LOCKING: 4741 * spin_lock_irqsave(host lock) 4742 * 4743 * RETURNS: 4744 * Number of completed commands on success, -errno otherwise. 4745 */ 4746 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4747 { 4748 int nr_done = 0; 4749 u32 done_mask; 4750 int i; 4751 4752 done_mask = ap->qc_active ^ qc_active; 4753 4754 if (unlikely(done_mask & qc_active)) { 4755 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4756 "(%08x->%08x)\n", ap->qc_active, qc_active); 4757 return -EINVAL; 4758 } 4759 4760 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4761 struct ata_queued_cmd *qc; 4762 4763 if (!(done_mask & (1 << i))) 4764 continue; 4765 4766 if ((qc = ata_qc_from_tag(ap, i))) { 4767 ata_qc_complete(qc); 4768 nr_done++; 4769 } 4770 } 4771 4772 return nr_done; 4773 } 4774 4775 /** 4776 * ata_qc_issue - issue taskfile to device 4777 * @qc: command to issue to device 4778 * 4779 * Prepare an ATA command to submission to device. 4780 * This includes mapping the data into a DMA-able 4781 * area, filling in the S/G table, and finally 4782 * writing the taskfile to hardware, starting the command. 4783 * 4784 * LOCKING: 4785 * spin_lock_irqsave(host lock) 4786 */ 4787 void ata_qc_issue(struct ata_queued_cmd *qc) 4788 { 4789 struct ata_port *ap = qc->ap; 4790 struct ata_link *link = qc->dev->link; 4791 u8 prot = qc->tf.protocol; 4792 4793 /* Make sure only one non-NCQ command is outstanding. The 4794 * check is skipped for old EH because it reuses active qc to 4795 * request ATAPI sense. 4796 */ 4797 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4798 4799 if (ata_is_ncq(prot)) { 4800 WARN_ON(link->sactive & (1 << qc->tag)); 4801 4802 if (!link->sactive) 4803 ap->nr_active_links++; 4804 link->sactive |= 1 << qc->tag; 4805 } else { 4806 WARN_ON(link->sactive); 4807 4808 ap->nr_active_links++; 4809 link->active_tag = qc->tag; 4810 } 4811 4812 qc->flags |= ATA_QCFLAG_ACTIVE; 4813 ap->qc_active |= 1 << qc->tag; 4814 4815 /* We guarantee to LLDs that they will have at least one 4816 * non-zero sg if the command is a data command. 4817 */ 4818 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4819 4820 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4821 (ap->flags & ATA_FLAG_PIO_DMA))) 4822 if (ata_sg_setup(qc)) 4823 goto sg_err; 4824 4825 /* if device is sleeping, schedule reset and abort the link */ 4826 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4827 link->eh_info.action |= ATA_EH_RESET; 4828 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4829 ata_link_abort(link); 4830 return; 4831 } 4832 4833 ap->ops->qc_prep(qc); 4834 4835 qc->err_mask |= ap->ops->qc_issue(qc); 4836 if (unlikely(qc->err_mask)) 4837 goto err; 4838 return; 4839 4840 sg_err: 4841 qc->err_mask |= AC_ERR_SYSTEM; 4842 err: 4843 ata_qc_complete(qc); 4844 } 4845 4846 /** 4847 * sata_scr_valid - test whether SCRs are accessible 4848 * @link: ATA link to test SCR accessibility for 4849 * 4850 * Test whether SCRs are accessible for @link. 4851 * 4852 * LOCKING: 4853 * None. 4854 * 4855 * RETURNS: 4856 * 1 if SCRs are accessible, 0 otherwise. 4857 */ 4858 int sata_scr_valid(struct ata_link *link) 4859 { 4860 struct ata_port *ap = link->ap; 4861 4862 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4863 } 4864 4865 /** 4866 * sata_scr_read - read SCR register of the specified port 4867 * @link: ATA link to read SCR for 4868 * @reg: SCR to read 4869 * @val: Place to store read value 4870 * 4871 * Read SCR register @reg of @link into *@val. This function is 4872 * guaranteed to succeed if @link is ap->link, the cable type of 4873 * the port is SATA and the port implements ->scr_read. 4874 * 4875 * LOCKING: 4876 * None if @link is ap->link. Kernel thread context otherwise. 4877 * 4878 * RETURNS: 4879 * 0 on success, negative errno on failure. 4880 */ 4881 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4882 { 4883 if (ata_is_host_link(link)) { 4884 if (sata_scr_valid(link)) 4885 return link->ap->ops->scr_read(link, reg, val); 4886 return -EOPNOTSUPP; 4887 } 4888 4889 return sata_pmp_scr_read(link, reg, val); 4890 } 4891 4892 /** 4893 * sata_scr_write - write SCR register of the specified port 4894 * @link: ATA link to write SCR for 4895 * @reg: SCR to write 4896 * @val: value to write 4897 * 4898 * Write @val to SCR register @reg of @link. This function is 4899 * guaranteed to succeed if @link is ap->link, the cable type of 4900 * the port is SATA and the port implements ->scr_read. 4901 * 4902 * LOCKING: 4903 * None if @link is ap->link. Kernel thread context otherwise. 4904 * 4905 * RETURNS: 4906 * 0 on success, negative errno on failure. 4907 */ 4908 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4909 { 4910 if (ata_is_host_link(link)) { 4911 if (sata_scr_valid(link)) 4912 return link->ap->ops->scr_write(link, reg, val); 4913 return -EOPNOTSUPP; 4914 } 4915 4916 return sata_pmp_scr_write(link, reg, val); 4917 } 4918 4919 /** 4920 * sata_scr_write_flush - write SCR register of the specified port and flush 4921 * @link: ATA link to write SCR for 4922 * @reg: SCR to write 4923 * @val: value to write 4924 * 4925 * This function is identical to sata_scr_write() except that this 4926 * function performs flush after writing to the register. 4927 * 4928 * LOCKING: 4929 * None if @link is ap->link. Kernel thread context otherwise. 4930 * 4931 * RETURNS: 4932 * 0 on success, negative errno on failure. 4933 */ 4934 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4935 { 4936 if (ata_is_host_link(link)) { 4937 int rc; 4938 4939 if (sata_scr_valid(link)) { 4940 rc = link->ap->ops->scr_write(link, reg, val); 4941 if (rc == 0) 4942 rc = link->ap->ops->scr_read(link, reg, &val); 4943 return rc; 4944 } 4945 return -EOPNOTSUPP; 4946 } 4947 4948 return sata_pmp_scr_write(link, reg, val); 4949 } 4950 4951 /** 4952 * ata_phys_link_online - test whether the given link is online 4953 * @link: ATA link to test 4954 * 4955 * Test whether @link is online. Note that this function returns 4956 * 0 if online status of @link cannot be obtained, so 4957 * ata_link_online(link) != !ata_link_offline(link). 4958 * 4959 * LOCKING: 4960 * None. 4961 * 4962 * RETURNS: 4963 * True if the port online status is available and online. 4964 */ 4965 bool ata_phys_link_online(struct ata_link *link) 4966 { 4967 u32 sstatus; 4968 4969 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4970 (sstatus & 0xf) == 0x3) 4971 return true; 4972 return false; 4973 } 4974 4975 /** 4976 * ata_phys_link_offline - test whether the given link is offline 4977 * @link: ATA link to test 4978 * 4979 * Test whether @link is offline. Note that this function 4980 * returns 0 if offline status of @link cannot be obtained, so 4981 * ata_link_online(link) != !ata_link_offline(link). 4982 * 4983 * LOCKING: 4984 * None. 4985 * 4986 * RETURNS: 4987 * True if the port offline status is available and offline. 4988 */ 4989 bool ata_phys_link_offline(struct ata_link *link) 4990 { 4991 u32 sstatus; 4992 4993 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4994 (sstatus & 0xf) != 0x3) 4995 return true; 4996 return false; 4997 } 4998 4999 /** 5000 * ata_link_online - test whether the given link is online 5001 * @link: ATA link to test 5002 * 5003 * Test whether @link is online. This is identical to 5004 * ata_phys_link_online() when there's no slave link. When 5005 * there's a slave link, this function should only be called on 5006 * the master link and will return true if any of M/S links is 5007 * online. 5008 * 5009 * LOCKING: 5010 * None. 5011 * 5012 * RETURNS: 5013 * True if the port online status is available and online. 5014 */ 5015 bool ata_link_online(struct ata_link *link) 5016 { 5017 struct ata_link *slave = link->ap->slave_link; 5018 5019 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5020 5021 return ata_phys_link_online(link) || 5022 (slave && ata_phys_link_online(slave)); 5023 } 5024 5025 /** 5026 * ata_link_offline - test whether the given link is offline 5027 * @link: ATA link to test 5028 * 5029 * Test whether @link is offline. This is identical to 5030 * ata_phys_link_offline() when there's no slave link. When 5031 * there's a slave link, this function should only be called on 5032 * the master link and will return true if both M/S links are 5033 * offline. 5034 * 5035 * LOCKING: 5036 * None. 5037 * 5038 * RETURNS: 5039 * True if the port offline status is available and offline. 5040 */ 5041 bool ata_link_offline(struct ata_link *link) 5042 { 5043 struct ata_link *slave = link->ap->slave_link; 5044 5045 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5046 5047 return ata_phys_link_offline(link) && 5048 (!slave || ata_phys_link_offline(slave)); 5049 } 5050 5051 #ifdef CONFIG_PM 5052 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5053 unsigned int action, unsigned int ehi_flags, 5054 int wait) 5055 { 5056 unsigned long flags; 5057 int i, rc; 5058 5059 for (i = 0; i < host->n_ports; i++) { 5060 struct ata_port *ap = host->ports[i]; 5061 struct ata_link *link; 5062 5063 /* Previous resume operation might still be in 5064 * progress. Wait for PM_PENDING to clear. 5065 */ 5066 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5067 ata_port_wait_eh(ap); 5068 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5069 } 5070 5071 /* request PM ops to EH */ 5072 spin_lock_irqsave(ap->lock, flags); 5073 5074 ap->pm_mesg = mesg; 5075 if (wait) { 5076 rc = 0; 5077 ap->pm_result = &rc; 5078 } 5079 5080 ap->pflags |= ATA_PFLAG_PM_PENDING; 5081 __ata_port_for_each_link(link, ap) { 5082 link->eh_info.action |= action; 5083 link->eh_info.flags |= ehi_flags; 5084 } 5085 5086 ata_port_schedule_eh(ap); 5087 5088 spin_unlock_irqrestore(ap->lock, flags); 5089 5090 /* wait and check result */ 5091 if (wait) { 5092 ata_port_wait_eh(ap); 5093 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5094 if (rc) 5095 return rc; 5096 } 5097 } 5098 5099 return 0; 5100 } 5101 5102 /** 5103 * ata_host_suspend - suspend host 5104 * @host: host to suspend 5105 * @mesg: PM message 5106 * 5107 * Suspend @host. Actual operation is performed by EH. This 5108 * function requests EH to perform PM operations and waits for EH 5109 * to finish. 5110 * 5111 * LOCKING: 5112 * Kernel thread context (may sleep). 5113 * 5114 * RETURNS: 5115 * 0 on success, -errno on failure. 5116 */ 5117 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5118 { 5119 int rc; 5120 5121 /* 5122 * disable link pm on all ports before requesting 5123 * any pm activity 5124 */ 5125 ata_lpm_enable(host); 5126 5127 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5128 if (rc == 0) 5129 host->dev->power.power_state = mesg; 5130 return rc; 5131 } 5132 5133 /** 5134 * ata_host_resume - resume host 5135 * @host: host to resume 5136 * 5137 * Resume @host. Actual operation is performed by EH. This 5138 * function requests EH to perform PM operations and returns. 5139 * Note that all resume operations are performed parallely. 5140 * 5141 * LOCKING: 5142 * Kernel thread context (may sleep). 5143 */ 5144 void ata_host_resume(struct ata_host *host) 5145 { 5146 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5147 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5148 host->dev->power.power_state = PMSG_ON; 5149 5150 /* reenable link pm */ 5151 ata_lpm_disable(host); 5152 } 5153 #endif 5154 5155 /** 5156 * ata_port_start - Set port up for dma. 5157 * @ap: Port to initialize 5158 * 5159 * Called just after data structures for each port are 5160 * initialized. Allocates space for PRD table. 5161 * 5162 * May be used as the port_start() entry in ata_port_operations. 5163 * 5164 * LOCKING: 5165 * Inherited from caller. 5166 */ 5167 int ata_port_start(struct ata_port *ap) 5168 { 5169 struct device *dev = ap->dev; 5170 5171 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5172 GFP_KERNEL); 5173 if (!ap->prd) 5174 return -ENOMEM; 5175 5176 return 0; 5177 } 5178 5179 /** 5180 * ata_dev_init - Initialize an ata_device structure 5181 * @dev: Device structure to initialize 5182 * 5183 * Initialize @dev in preparation for probing. 5184 * 5185 * LOCKING: 5186 * Inherited from caller. 5187 */ 5188 void ata_dev_init(struct ata_device *dev) 5189 { 5190 struct ata_link *link = ata_dev_phys_link(dev); 5191 struct ata_port *ap = link->ap; 5192 unsigned long flags; 5193 5194 /* SATA spd limit is bound to the attached device, reset together */ 5195 link->sata_spd_limit = link->hw_sata_spd_limit; 5196 link->sata_spd = 0; 5197 5198 /* High bits of dev->flags are used to record warm plug 5199 * requests which occur asynchronously. Synchronize using 5200 * host lock. 5201 */ 5202 spin_lock_irqsave(ap->lock, flags); 5203 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5204 dev->horkage = 0; 5205 spin_unlock_irqrestore(ap->lock, flags); 5206 5207 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5208 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5209 dev->pio_mask = UINT_MAX; 5210 dev->mwdma_mask = UINT_MAX; 5211 dev->udma_mask = UINT_MAX; 5212 } 5213 5214 /** 5215 * ata_link_init - Initialize an ata_link structure 5216 * @ap: ATA port link is attached to 5217 * @link: Link structure to initialize 5218 * @pmp: Port multiplier port number 5219 * 5220 * Initialize @link. 5221 * 5222 * LOCKING: 5223 * Kernel thread context (may sleep) 5224 */ 5225 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5226 { 5227 int i; 5228 5229 /* clear everything except for devices */ 5230 memset(link, 0, offsetof(struct ata_link, device[0])); 5231 5232 link->ap = ap; 5233 link->pmp = pmp; 5234 link->active_tag = ATA_TAG_POISON; 5235 link->hw_sata_spd_limit = UINT_MAX; 5236 5237 /* can't use iterator, ap isn't initialized yet */ 5238 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5239 struct ata_device *dev = &link->device[i]; 5240 5241 dev->link = link; 5242 dev->devno = dev - link->device; 5243 ata_dev_init(dev); 5244 } 5245 } 5246 5247 /** 5248 * sata_link_init_spd - Initialize link->sata_spd_limit 5249 * @link: Link to configure sata_spd_limit for 5250 * 5251 * Initialize @link->[hw_]sata_spd_limit to the currently 5252 * configured value. 5253 * 5254 * LOCKING: 5255 * Kernel thread context (may sleep). 5256 * 5257 * RETURNS: 5258 * 0 on success, -errno on failure. 5259 */ 5260 int sata_link_init_spd(struct ata_link *link) 5261 { 5262 u8 spd; 5263 int rc; 5264 5265 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5266 if (rc) 5267 return rc; 5268 5269 spd = (link->saved_scontrol >> 4) & 0xf; 5270 if (spd) 5271 link->hw_sata_spd_limit &= (1 << spd) - 1; 5272 5273 ata_force_link_limits(link); 5274 5275 link->sata_spd_limit = link->hw_sata_spd_limit; 5276 5277 return 0; 5278 } 5279 5280 /** 5281 * ata_port_alloc - allocate and initialize basic ATA port resources 5282 * @host: ATA host this allocated port belongs to 5283 * 5284 * Allocate and initialize basic ATA port resources. 5285 * 5286 * RETURNS: 5287 * Allocate ATA port on success, NULL on failure. 5288 * 5289 * LOCKING: 5290 * Inherited from calling layer (may sleep). 5291 */ 5292 struct ata_port *ata_port_alloc(struct ata_host *host) 5293 { 5294 struct ata_port *ap; 5295 5296 DPRINTK("ENTER\n"); 5297 5298 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5299 if (!ap) 5300 return NULL; 5301 5302 ap->pflags |= ATA_PFLAG_INITIALIZING; 5303 ap->lock = &host->lock; 5304 ap->flags = ATA_FLAG_DISABLED; 5305 ap->print_id = -1; 5306 ap->ctl = ATA_DEVCTL_OBS; 5307 ap->host = host; 5308 ap->dev = host->dev; 5309 ap->last_ctl = 0xFF; 5310 5311 #if defined(ATA_VERBOSE_DEBUG) 5312 /* turn on all debugging levels */ 5313 ap->msg_enable = 0x00FF; 5314 #elif defined(ATA_DEBUG) 5315 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5316 #else 5317 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5318 #endif 5319 5320 #ifdef CONFIG_ATA_SFF 5321 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5322 #else 5323 INIT_DELAYED_WORK(&ap->port_task, NULL); 5324 #endif 5325 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5326 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5327 INIT_LIST_HEAD(&ap->eh_done_q); 5328 init_waitqueue_head(&ap->eh_wait_q); 5329 init_completion(&ap->park_req_pending); 5330 init_timer_deferrable(&ap->fastdrain_timer); 5331 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5332 ap->fastdrain_timer.data = (unsigned long)ap; 5333 5334 ap->cbl = ATA_CBL_NONE; 5335 5336 ata_link_init(ap, &ap->link, 0); 5337 5338 #ifdef ATA_IRQ_TRAP 5339 ap->stats.unhandled_irq = 1; 5340 ap->stats.idle_irq = 1; 5341 #endif 5342 return ap; 5343 } 5344 5345 static void ata_host_release(struct device *gendev, void *res) 5346 { 5347 struct ata_host *host = dev_get_drvdata(gendev); 5348 int i; 5349 5350 for (i = 0; i < host->n_ports; i++) { 5351 struct ata_port *ap = host->ports[i]; 5352 5353 if (!ap) 5354 continue; 5355 5356 if (ap->scsi_host) 5357 scsi_host_put(ap->scsi_host); 5358 5359 kfree(ap->pmp_link); 5360 kfree(ap->slave_link); 5361 kfree(ap); 5362 host->ports[i] = NULL; 5363 } 5364 5365 dev_set_drvdata(gendev, NULL); 5366 } 5367 5368 /** 5369 * ata_host_alloc - allocate and init basic ATA host resources 5370 * @dev: generic device this host is associated with 5371 * @max_ports: maximum number of ATA ports associated with this host 5372 * 5373 * Allocate and initialize basic ATA host resources. LLD calls 5374 * this function to allocate a host, initializes it fully and 5375 * attaches it using ata_host_register(). 5376 * 5377 * @max_ports ports are allocated and host->n_ports is 5378 * initialized to @max_ports. The caller is allowed to decrease 5379 * host->n_ports before calling ata_host_register(). The unused 5380 * ports will be automatically freed on registration. 5381 * 5382 * RETURNS: 5383 * Allocate ATA host on success, NULL on failure. 5384 * 5385 * LOCKING: 5386 * Inherited from calling layer (may sleep). 5387 */ 5388 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5389 { 5390 struct ata_host *host; 5391 size_t sz; 5392 int i; 5393 5394 DPRINTK("ENTER\n"); 5395 5396 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5397 return NULL; 5398 5399 /* alloc a container for our list of ATA ports (buses) */ 5400 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5401 /* alloc a container for our list of ATA ports (buses) */ 5402 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5403 if (!host) 5404 goto err_out; 5405 5406 devres_add(dev, host); 5407 dev_set_drvdata(dev, host); 5408 5409 spin_lock_init(&host->lock); 5410 host->dev = dev; 5411 host->n_ports = max_ports; 5412 5413 /* allocate ports bound to this host */ 5414 for (i = 0; i < max_ports; i++) { 5415 struct ata_port *ap; 5416 5417 ap = ata_port_alloc(host); 5418 if (!ap) 5419 goto err_out; 5420 5421 ap->port_no = i; 5422 host->ports[i] = ap; 5423 } 5424 5425 devres_remove_group(dev, NULL); 5426 return host; 5427 5428 err_out: 5429 devres_release_group(dev, NULL); 5430 return NULL; 5431 } 5432 5433 /** 5434 * ata_host_alloc_pinfo - alloc host and init with port_info array 5435 * @dev: generic device this host is associated with 5436 * @ppi: array of ATA port_info to initialize host with 5437 * @n_ports: number of ATA ports attached to this host 5438 * 5439 * Allocate ATA host and initialize with info from @ppi. If NULL 5440 * terminated, @ppi may contain fewer entries than @n_ports. The 5441 * last entry will be used for the remaining ports. 5442 * 5443 * RETURNS: 5444 * Allocate ATA host on success, NULL on failure. 5445 * 5446 * LOCKING: 5447 * Inherited from calling layer (may sleep). 5448 */ 5449 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5450 const struct ata_port_info * const * ppi, 5451 int n_ports) 5452 { 5453 const struct ata_port_info *pi; 5454 struct ata_host *host; 5455 int i, j; 5456 5457 host = ata_host_alloc(dev, n_ports); 5458 if (!host) 5459 return NULL; 5460 5461 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5462 struct ata_port *ap = host->ports[i]; 5463 5464 if (ppi[j]) 5465 pi = ppi[j++]; 5466 5467 ap->pio_mask = pi->pio_mask; 5468 ap->mwdma_mask = pi->mwdma_mask; 5469 ap->udma_mask = pi->udma_mask; 5470 ap->flags |= pi->flags; 5471 ap->link.flags |= pi->link_flags; 5472 ap->ops = pi->port_ops; 5473 5474 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5475 host->ops = pi->port_ops; 5476 } 5477 5478 return host; 5479 } 5480 5481 /** 5482 * ata_slave_link_init - initialize slave link 5483 * @ap: port to initialize slave link for 5484 * 5485 * Create and initialize slave link for @ap. This enables slave 5486 * link handling on the port. 5487 * 5488 * In libata, a port contains links and a link contains devices. 5489 * There is single host link but if a PMP is attached to it, 5490 * there can be multiple fan-out links. On SATA, there's usually 5491 * a single device connected to a link but PATA and SATA 5492 * controllers emulating TF based interface can have two - master 5493 * and slave. 5494 * 5495 * However, there are a few controllers which don't fit into this 5496 * abstraction too well - SATA controllers which emulate TF 5497 * interface with both master and slave devices but also have 5498 * separate SCR register sets for each device. These controllers 5499 * need separate links for physical link handling 5500 * (e.g. onlineness, link speed) but should be treated like a 5501 * traditional M/S controller for everything else (e.g. command 5502 * issue, softreset). 5503 * 5504 * slave_link is libata's way of handling this class of 5505 * controllers without impacting core layer too much. For 5506 * anything other than physical link handling, the default host 5507 * link is used for both master and slave. For physical link 5508 * handling, separate @ap->slave_link is used. All dirty details 5509 * are implemented inside libata core layer. From LLD's POV, the 5510 * only difference is that prereset, hardreset and postreset are 5511 * called once more for the slave link, so the reset sequence 5512 * looks like the following. 5513 * 5514 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5515 * softreset(M) -> postreset(M) -> postreset(S) 5516 * 5517 * Note that softreset is called only for the master. Softreset 5518 * resets both M/S by definition, so SRST on master should handle 5519 * both (the standard method will work just fine). 5520 * 5521 * LOCKING: 5522 * Should be called before host is registered. 5523 * 5524 * RETURNS: 5525 * 0 on success, -errno on failure. 5526 */ 5527 int ata_slave_link_init(struct ata_port *ap) 5528 { 5529 struct ata_link *link; 5530 5531 WARN_ON(ap->slave_link); 5532 WARN_ON(ap->flags & ATA_FLAG_PMP); 5533 5534 link = kzalloc(sizeof(*link), GFP_KERNEL); 5535 if (!link) 5536 return -ENOMEM; 5537 5538 ata_link_init(ap, link, 1); 5539 ap->slave_link = link; 5540 return 0; 5541 } 5542 5543 static void ata_host_stop(struct device *gendev, void *res) 5544 { 5545 struct ata_host *host = dev_get_drvdata(gendev); 5546 int i; 5547 5548 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5549 5550 for (i = 0; i < host->n_ports; i++) { 5551 struct ata_port *ap = host->ports[i]; 5552 5553 if (ap->ops->port_stop) 5554 ap->ops->port_stop(ap); 5555 } 5556 5557 if (host->ops->host_stop) 5558 host->ops->host_stop(host); 5559 } 5560 5561 /** 5562 * ata_finalize_port_ops - finalize ata_port_operations 5563 * @ops: ata_port_operations to finalize 5564 * 5565 * An ata_port_operations can inherit from another ops and that 5566 * ops can again inherit from another. This can go on as many 5567 * times as necessary as long as there is no loop in the 5568 * inheritance chain. 5569 * 5570 * Ops tables are finalized when the host is started. NULL or 5571 * unspecified entries are inherited from the closet ancestor 5572 * which has the method and the entry is populated with it. 5573 * After finalization, the ops table directly points to all the 5574 * methods and ->inherits is no longer necessary and cleared. 5575 * 5576 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5577 * 5578 * LOCKING: 5579 * None. 5580 */ 5581 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5582 { 5583 static DEFINE_SPINLOCK(lock); 5584 const struct ata_port_operations *cur; 5585 void **begin = (void **)ops; 5586 void **end = (void **)&ops->inherits; 5587 void **pp; 5588 5589 if (!ops || !ops->inherits) 5590 return; 5591 5592 spin_lock(&lock); 5593 5594 for (cur = ops->inherits; cur; cur = cur->inherits) { 5595 void **inherit = (void **)cur; 5596 5597 for (pp = begin; pp < end; pp++, inherit++) 5598 if (!*pp) 5599 *pp = *inherit; 5600 } 5601 5602 for (pp = begin; pp < end; pp++) 5603 if (IS_ERR(*pp)) 5604 *pp = NULL; 5605 5606 ops->inherits = NULL; 5607 5608 spin_unlock(&lock); 5609 } 5610 5611 /** 5612 * ata_host_start - start and freeze ports of an ATA host 5613 * @host: ATA host to start ports for 5614 * 5615 * Start and then freeze ports of @host. Started status is 5616 * recorded in host->flags, so this function can be called 5617 * multiple times. Ports are guaranteed to get started only 5618 * once. If host->ops isn't initialized yet, its set to the 5619 * first non-dummy port ops. 5620 * 5621 * LOCKING: 5622 * Inherited from calling layer (may sleep). 5623 * 5624 * RETURNS: 5625 * 0 if all ports are started successfully, -errno otherwise. 5626 */ 5627 int ata_host_start(struct ata_host *host) 5628 { 5629 int have_stop = 0; 5630 void *start_dr = NULL; 5631 int i, rc; 5632 5633 if (host->flags & ATA_HOST_STARTED) 5634 return 0; 5635 5636 ata_finalize_port_ops(host->ops); 5637 5638 for (i = 0; i < host->n_ports; i++) { 5639 struct ata_port *ap = host->ports[i]; 5640 5641 ata_finalize_port_ops(ap->ops); 5642 5643 if (!host->ops && !ata_port_is_dummy(ap)) 5644 host->ops = ap->ops; 5645 5646 if (ap->ops->port_stop) 5647 have_stop = 1; 5648 } 5649 5650 if (host->ops->host_stop) 5651 have_stop = 1; 5652 5653 if (have_stop) { 5654 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5655 if (!start_dr) 5656 return -ENOMEM; 5657 } 5658 5659 for (i = 0; i < host->n_ports; i++) { 5660 struct ata_port *ap = host->ports[i]; 5661 5662 if (ap->ops->port_start) { 5663 rc = ap->ops->port_start(ap); 5664 if (rc) { 5665 if (rc != -ENODEV) 5666 dev_printk(KERN_ERR, host->dev, 5667 "failed to start port %d " 5668 "(errno=%d)\n", i, rc); 5669 goto err_out; 5670 } 5671 } 5672 ata_eh_freeze_port(ap); 5673 } 5674 5675 if (start_dr) 5676 devres_add(host->dev, start_dr); 5677 host->flags |= ATA_HOST_STARTED; 5678 return 0; 5679 5680 err_out: 5681 while (--i >= 0) { 5682 struct ata_port *ap = host->ports[i]; 5683 5684 if (ap->ops->port_stop) 5685 ap->ops->port_stop(ap); 5686 } 5687 devres_free(start_dr); 5688 return rc; 5689 } 5690 5691 /** 5692 * ata_sas_host_init - Initialize a host struct 5693 * @host: host to initialize 5694 * @dev: device host is attached to 5695 * @flags: host flags 5696 * @ops: port_ops 5697 * 5698 * LOCKING: 5699 * PCI/etc. bus probe sem. 5700 * 5701 */ 5702 /* KILLME - the only user left is ipr */ 5703 void ata_host_init(struct ata_host *host, struct device *dev, 5704 unsigned long flags, struct ata_port_operations *ops) 5705 { 5706 spin_lock_init(&host->lock); 5707 host->dev = dev; 5708 host->flags = flags; 5709 host->ops = ops; 5710 } 5711 5712 /** 5713 * ata_host_register - register initialized ATA host 5714 * @host: ATA host to register 5715 * @sht: template for SCSI host 5716 * 5717 * Register initialized ATA host. @host is allocated using 5718 * ata_host_alloc() and fully initialized by LLD. This function 5719 * starts ports, registers @host with ATA and SCSI layers and 5720 * probe registered devices. 5721 * 5722 * LOCKING: 5723 * Inherited from calling layer (may sleep). 5724 * 5725 * RETURNS: 5726 * 0 on success, -errno otherwise. 5727 */ 5728 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5729 { 5730 int i, rc; 5731 5732 /* host must have been started */ 5733 if (!(host->flags & ATA_HOST_STARTED)) { 5734 dev_printk(KERN_ERR, host->dev, 5735 "BUG: trying to register unstarted host\n"); 5736 WARN_ON(1); 5737 return -EINVAL; 5738 } 5739 5740 /* Blow away unused ports. This happens when LLD can't 5741 * determine the exact number of ports to allocate at 5742 * allocation time. 5743 */ 5744 for (i = host->n_ports; host->ports[i]; i++) 5745 kfree(host->ports[i]); 5746 5747 /* give ports names and add SCSI hosts */ 5748 for (i = 0; i < host->n_ports; i++) 5749 host->ports[i]->print_id = ata_print_id++; 5750 5751 rc = ata_scsi_add_hosts(host, sht); 5752 if (rc) 5753 return rc; 5754 5755 /* associate with ACPI nodes */ 5756 ata_acpi_associate(host); 5757 5758 /* set cable, sata_spd_limit and report */ 5759 for (i = 0; i < host->n_ports; i++) { 5760 struct ata_port *ap = host->ports[i]; 5761 unsigned long xfer_mask; 5762 5763 /* set SATA cable type if still unset */ 5764 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5765 ap->cbl = ATA_CBL_SATA; 5766 5767 /* init sata_spd_limit to the current value */ 5768 sata_link_init_spd(&ap->link); 5769 if (ap->slave_link) 5770 sata_link_init_spd(ap->slave_link); 5771 5772 /* print per-port info to dmesg */ 5773 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5774 ap->udma_mask); 5775 5776 if (!ata_port_is_dummy(ap)) { 5777 ata_port_printk(ap, KERN_INFO, 5778 "%cATA max %s %s\n", 5779 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5780 ata_mode_string(xfer_mask), 5781 ap->link.eh_info.desc); 5782 ata_ehi_clear_desc(&ap->link.eh_info); 5783 } else 5784 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5785 } 5786 5787 /* perform each probe synchronously */ 5788 DPRINTK("probe begin\n"); 5789 for (i = 0; i < host->n_ports; i++) { 5790 struct ata_port *ap = host->ports[i]; 5791 5792 /* probe */ 5793 if (ap->ops->error_handler) { 5794 struct ata_eh_info *ehi = &ap->link.eh_info; 5795 unsigned long flags; 5796 5797 ata_port_probe(ap); 5798 5799 /* kick EH for boot probing */ 5800 spin_lock_irqsave(ap->lock, flags); 5801 5802 ehi->probe_mask |= ATA_ALL_DEVICES; 5803 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5804 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5805 5806 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5807 ap->pflags |= ATA_PFLAG_LOADING; 5808 ata_port_schedule_eh(ap); 5809 5810 spin_unlock_irqrestore(ap->lock, flags); 5811 5812 /* wait for EH to finish */ 5813 ata_port_wait_eh(ap); 5814 } else { 5815 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5816 rc = ata_bus_probe(ap); 5817 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5818 5819 if (rc) { 5820 /* FIXME: do something useful here? 5821 * Current libata behavior will 5822 * tear down everything when 5823 * the module is removed 5824 * or the h/w is unplugged. 5825 */ 5826 } 5827 } 5828 } 5829 5830 /* probes are done, now scan each port's disk(s) */ 5831 DPRINTK("host probe begin\n"); 5832 for (i = 0; i < host->n_ports; i++) { 5833 struct ata_port *ap = host->ports[i]; 5834 5835 ata_scsi_scan_host(ap, 1); 5836 } 5837 5838 return 0; 5839 } 5840 5841 /** 5842 * ata_host_activate - start host, request IRQ and register it 5843 * @host: target ATA host 5844 * @irq: IRQ to request 5845 * @irq_handler: irq_handler used when requesting IRQ 5846 * @irq_flags: irq_flags used when requesting IRQ 5847 * @sht: scsi_host_template to use when registering the host 5848 * 5849 * After allocating an ATA host and initializing it, most libata 5850 * LLDs perform three steps to activate the host - start host, 5851 * request IRQ and register it. This helper takes necessasry 5852 * arguments and performs the three steps in one go. 5853 * 5854 * An invalid IRQ skips the IRQ registration and expects the host to 5855 * have set polling mode on the port. In this case, @irq_handler 5856 * should be NULL. 5857 * 5858 * LOCKING: 5859 * Inherited from calling layer (may sleep). 5860 * 5861 * RETURNS: 5862 * 0 on success, -errno otherwise. 5863 */ 5864 int ata_host_activate(struct ata_host *host, int irq, 5865 irq_handler_t irq_handler, unsigned long irq_flags, 5866 struct scsi_host_template *sht) 5867 { 5868 int i, rc; 5869 5870 rc = ata_host_start(host); 5871 if (rc) 5872 return rc; 5873 5874 /* Special case for polling mode */ 5875 if (!irq) { 5876 WARN_ON(irq_handler); 5877 return ata_host_register(host, sht); 5878 } 5879 5880 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5881 dev_driver_string(host->dev), host); 5882 if (rc) 5883 return rc; 5884 5885 for (i = 0; i < host->n_ports; i++) 5886 ata_port_desc(host->ports[i], "irq %d", irq); 5887 5888 rc = ata_host_register(host, sht); 5889 /* if failed, just free the IRQ and leave ports alone */ 5890 if (rc) 5891 devm_free_irq(host->dev, irq, host); 5892 5893 return rc; 5894 } 5895 5896 /** 5897 * ata_port_detach - Detach ATA port in prepration of device removal 5898 * @ap: ATA port to be detached 5899 * 5900 * Detach all ATA devices and the associated SCSI devices of @ap; 5901 * then, remove the associated SCSI host. @ap is guaranteed to 5902 * be quiescent on return from this function. 5903 * 5904 * LOCKING: 5905 * Kernel thread context (may sleep). 5906 */ 5907 static void ata_port_detach(struct ata_port *ap) 5908 { 5909 unsigned long flags; 5910 struct ata_link *link; 5911 struct ata_device *dev; 5912 5913 if (!ap->ops->error_handler) 5914 goto skip_eh; 5915 5916 /* tell EH we're leaving & flush EH */ 5917 spin_lock_irqsave(ap->lock, flags); 5918 ap->pflags |= ATA_PFLAG_UNLOADING; 5919 spin_unlock_irqrestore(ap->lock, flags); 5920 5921 ata_port_wait_eh(ap); 5922 5923 /* EH is now guaranteed to see UNLOADING - EH context belongs 5924 * to us. Restore SControl and disable all existing devices. 5925 */ 5926 __ata_port_for_each_link(link, ap) { 5927 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol); 5928 ata_link_for_each_dev(dev, link) 5929 ata_dev_disable(dev); 5930 } 5931 5932 /* Final freeze & EH. All in-flight commands are aborted. EH 5933 * will be skipped and retrials will be terminated with bad 5934 * target. 5935 */ 5936 spin_lock_irqsave(ap->lock, flags); 5937 ata_port_freeze(ap); /* won't be thawed */ 5938 spin_unlock_irqrestore(ap->lock, flags); 5939 5940 ata_port_wait_eh(ap); 5941 cancel_rearming_delayed_work(&ap->hotplug_task); 5942 5943 skip_eh: 5944 /* remove the associated SCSI host */ 5945 scsi_remove_host(ap->scsi_host); 5946 } 5947 5948 /** 5949 * ata_host_detach - Detach all ports of an ATA host 5950 * @host: Host to detach 5951 * 5952 * Detach all ports of @host. 5953 * 5954 * LOCKING: 5955 * Kernel thread context (may sleep). 5956 */ 5957 void ata_host_detach(struct ata_host *host) 5958 { 5959 int i; 5960 5961 for (i = 0; i < host->n_ports; i++) 5962 ata_port_detach(host->ports[i]); 5963 5964 /* the host is dead now, dissociate ACPI */ 5965 ata_acpi_dissociate(host); 5966 } 5967 5968 #ifdef CONFIG_PCI 5969 5970 /** 5971 * ata_pci_remove_one - PCI layer callback for device removal 5972 * @pdev: PCI device that was removed 5973 * 5974 * PCI layer indicates to libata via this hook that hot-unplug or 5975 * module unload event has occurred. Detach all ports. Resource 5976 * release is handled via devres. 5977 * 5978 * LOCKING: 5979 * Inherited from PCI layer (may sleep). 5980 */ 5981 void ata_pci_remove_one(struct pci_dev *pdev) 5982 { 5983 struct device *dev = &pdev->dev; 5984 struct ata_host *host = dev_get_drvdata(dev); 5985 5986 ata_host_detach(host); 5987 } 5988 5989 /* move to PCI subsystem */ 5990 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5991 { 5992 unsigned long tmp = 0; 5993 5994 switch (bits->width) { 5995 case 1: { 5996 u8 tmp8 = 0; 5997 pci_read_config_byte(pdev, bits->reg, &tmp8); 5998 tmp = tmp8; 5999 break; 6000 } 6001 case 2: { 6002 u16 tmp16 = 0; 6003 pci_read_config_word(pdev, bits->reg, &tmp16); 6004 tmp = tmp16; 6005 break; 6006 } 6007 case 4: { 6008 u32 tmp32 = 0; 6009 pci_read_config_dword(pdev, bits->reg, &tmp32); 6010 tmp = tmp32; 6011 break; 6012 } 6013 6014 default: 6015 return -EINVAL; 6016 } 6017 6018 tmp &= bits->mask; 6019 6020 return (tmp == bits->val) ? 1 : 0; 6021 } 6022 6023 #ifdef CONFIG_PM 6024 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6025 { 6026 pci_save_state(pdev); 6027 pci_disable_device(pdev); 6028 6029 if (mesg.event & PM_EVENT_SLEEP) 6030 pci_set_power_state(pdev, PCI_D3hot); 6031 } 6032 6033 int ata_pci_device_do_resume(struct pci_dev *pdev) 6034 { 6035 int rc; 6036 6037 pci_set_power_state(pdev, PCI_D0); 6038 pci_restore_state(pdev); 6039 6040 rc = pcim_enable_device(pdev); 6041 if (rc) { 6042 dev_printk(KERN_ERR, &pdev->dev, 6043 "failed to enable device after resume (%d)\n", rc); 6044 return rc; 6045 } 6046 6047 pci_set_master(pdev); 6048 return 0; 6049 } 6050 6051 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6052 { 6053 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6054 int rc = 0; 6055 6056 rc = ata_host_suspend(host, mesg); 6057 if (rc) 6058 return rc; 6059 6060 ata_pci_device_do_suspend(pdev, mesg); 6061 6062 return 0; 6063 } 6064 6065 int ata_pci_device_resume(struct pci_dev *pdev) 6066 { 6067 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6068 int rc; 6069 6070 rc = ata_pci_device_do_resume(pdev); 6071 if (rc == 0) 6072 ata_host_resume(host); 6073 return rc; 6074 } 6075 #endif /* CONFIG_PM */ 6076 6077 #endif /* CONFIG_PCI */ 6078 6079 static int __init ata_parse_force_one(char **cur, 6080 struct ata_force_ent *force_ent, 6081 const char **reason) 6082 { 6083 /* FIXME: Currently, there's no way to tag init const data and 6084 * using __initdata causes build failure on some versions of 6085 * gcc. Once __initdataconst is implemented, add const to the 6086 * following structure. 6087 */ 6088 static struct ata_force_param force_tbl[] __initdata = { 6089 { "40c", .cbl = ATA_CBL_PATA40 }, 6090 { "80c", .cbl = ATA_CBL_PATA80 }, 6091 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6092 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6093 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6094 { "sata", .cbl = ATA_CBL_SATA }, 6095 { "1.5Gbps", .spd_limit = 1 }, 6096 { "3.0Gbps", .spd_limit = 2 }, 6097 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6098 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6099 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6100 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6101 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6102 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6103 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6104 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6105 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6106 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6107 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6108 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6109 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6110 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6111 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6112 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6113 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6114 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6115 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6116 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6117 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6118 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6119 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6120 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6121 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6122 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6123 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6124 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6125 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6126 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6127 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6128 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6129 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6130 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6131 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6132 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6133 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6134 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6135 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6136 }; 6137 char *start = *cur, *p = *cur; 6138 char *id, *val, *endp; 6139 const struct ata_force_param *match_fp = NULL; 6140 int nr_matches = 0, i; 6141 6142 /* find where this param ends and update *cur */ 6143 while (*p != '\0' && *p != ',') 6144 p++; 6145 6146 if (*p == '\0') 6147 *cur = p; 6148 else 6149 *cur = p + 1; 6150 6151 *p = '\0'; 6152 6153 /* parse */ 6154 p = strchr(start, ':'); 6155 if (!p) { 6156 val = strstrip(start); 6157 goto parse_val; 6158 } 6159 *p = '\0'; 6160 6161 id = strstrip(start); 6162 val = strstrip(p + 1); 6163 6164 /* parse id */ 6165 p = strchr(id, '.'); 6166 if (p) { 6167 *p++ = '\0'; 6168 force_ent->device = simple_strtoul(p, &endp, 10); 6169 if (p == endp || *endp != '\0') { 6170 *reason = "invalid device"; 6171 return -EINVAL; 6172 } 6173 } 6174 6175 force_ent->port = simple_strtoul(id, &endp, 10); 6176 if (p == endp || *endp != '\0') { 6177 *reason = "invalid port/link"; 6178 return -EINVAL; 6179 } 6180 6181 parse_val: 6182 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6183 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6184 const struct ata_force_param *fp = &force_tbl[i]; 6185 6186 if (strncasecmp(val, fp->name, strlen(val))) 6187 continue; 6188 6189 nr_matches++; 6190 match_fp = fp; 6191 6192 if (strcasecmp(val, fp->name) == 0) { 6193 nr_matches = 1; 6194 break; 6195 } 6196 } 6197 6198 if (!nr_matches) { 6199 *reason = "unknown value"; 6200 return -EINVAL; 6201 } 6202 if (nr_matches > 1) { 6203 *reason = "ambigious value"; 6204 return -EINVAL; 6205 } 6206 6207 force_ent->param = *match_fp; 6208 6209 return 0; 6210 } 6211 6212 static void __init ata_parse_force_param(void) 6213 { 6214 int idx = 0, size = 1; 6215 int last_port = -1, last_device = -1; 6216 char *p, *cur, *next; 6217 6218 /* calculate maximum number of params and allocate force_tbl */ 6219 for (p = ata_force_param_buf; *p; p++) 6220 if (*p == ',') 6221 size++; 6222 6223 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6224 if (!ata_force_tbl) { 6225 printk(KERN_WARNING "ata: failed to extend force table, " 6226 "libata.force ignored\n"); 6227 return; 6228 } 6229 6230 /* parse and populate the table */ 6231 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6232 const char *reason = ""; 6233 struct ata_force_ent te = { .port = -1, .device = -1 }; 6234 6235 next = cur; 6236 if (ata_parse_force_one(&next, &te, &reason)) { 6237 printk(KERN_WARNING "ata: failed to parse force " 6238 "parameter \"%s\" (%s)\n", 6239 cur, reason); 6240 continue; 6241 } 6242 6243 if (te.port == -1) { 6244 te.port = last_port; 6245 te.device = last_device; 6246 } 6247 6248 ata_force_tbl[idx++] = te; 6249 6250 last_port = te.port; 6251 last_device = te.device; 6252 } 6253 6254 ata_force_tbl_size = idx; 6255 } 6256 6257 static int __init ata_init(void) 6258 { 6259 ata_parse_force_param(); 6260 6261 ata_wq = create_workqueue("ata"); 6262 if (!ata_wq) 6263 goto free_force_tbl; 6264 6265 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6266 if (!ata_aux_wq) 6267 goto free_wq; 6268 6269 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6270 return 0; 6271 6272 free_wq: 6273 destroy_workqueue(ata_wq); 6274 free_force_tbl: 6275 kfree(ata_force_tbl); 6276 return -ENOMEM; 6277 } 6278 6279 static void __exit ata_exit(void) 6280 { 6281 kfree(ata_force_tbl); 6282 destroy_workqueue(ata_wq); 6283 destroy_workqueue(ata_aux_wq); 6284 } 6285 6286 subsys_initcall(ata_init); 6287 module_exit(ata_exit); 6288 6289 static unsigned long ratelimit_time; 6290 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6291 6292 int ata_ratelimit(void) 6293 { 6294 int rc; 6295 unsigned long flags; 6296 6297 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6298 6299 if (time_after(jiffies, ratelimit_time)) { 6300 rc = 1; 6301 ratelimit_time = jiffies + (HZ/5); 6302 } else 6303 rc = 0; 6304 6305 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6306 6307 return rc; 6308 } 6309 6310 /** 6311 * ata_wait_register - wait until register value changes 6312 * @reg: IO-mapped register 6313 * @mask: Mask to apply to read register value 6314 * @val: Wait condition 6315 * @interval: polling interval in milliseconds 6316 * @timeout: timeout in milliseconds 6317 * 6318 * Waiting for some bits of register to change is a common 6319 * operation for ATA controllers. This function reads 32bit LE 6320 * IO-mapped register @reg and tests for the following condition. 6321 * 6322 * (*@reg & mask) != val 6323 * 6324 * If the condition is met, it returns; otherwise, the process is 6325 * repeated after @interval_msec until timeout. 6326 * 6327 * LOCKING: 6328 * Kernel thread context (may sleep) 6329 * 6330 * RETURNS: 6331 * The final register value. 6332 */ 6333 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6334 unsigned long interval, unsigned long timeout) 6335 { 6336 unsigned long deadline; 6337 u32 tmp; 6338 6339 tmp = ioread32(reg); 6340 6341 /* Calculate timeout _after_ the first read to make sure 6342 * preceding writes reach the controller before starting to 6343 * eat away the timeout. 6344 */ 6345 deadline = ata_deadline(jiffies, timeout); 6346 6347 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6348 msleep(interval); 6349 tmp = ioread32(reg); 6350 } 6351 6352 return tmp; 6353 } 6354 6355 /* 6356 * Dummy port_ops 6357 */ 6358 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6359 { 6360 return AC_ERR_SYSTEM; 6361 } 6362 6363 static void ata_dummy_error_handler(struct ata_port *ap) 6364 { 6365 /* truly dummy */ 6366 } 6367 6368 struct ata_port_operations ata_dummy_port_ops = { 6369 .qc_prep = ata_noop_qc_prep, 6370 .qc_issue = ata_dummy_qc_issue, 6371 .error_handler = ata_dummy_error_handler, 6372 }; 6373 6374 const struct ata_port_info ata_dummy_port_info = { 6375 .port_ops = &ata_dummy_port_ops, 6376 }; 6377 6378 /* 6379 * libata is essentially a library of internal helper functions for 6380 * low-level ATA host controller drivers. As such, the API/ABI is 6381 * likely to change as new drivers are added and updated. 6382 * Do not depend on ABI/API stability. 6383 */ 6384 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6385 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6386 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6387 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6388 EXPORT_SYMBOL_GPL(sata_port_ops); 6389 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6390 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6391 EXPORT_SYMBOL_GPL(__ata_port_next_link); 6392 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6393 EXPORT_SYMBOL_GPL(ata_host_init); 6394 EXPORT_SYMBOL_GPL(ata_host_alloc); 6395 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6396 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6397 EXPORT_SYMBOL_GPL(ata_host_start); 6398 EXPORT_SYMBOL_GPL(ata_host_register); 6399 EXPORT_SYMBOL_GPL(ata_host_activate); 6400 EXPORT_SYMBOL_GPL(ata_host_detach); 6401 EXPORT_SYMBOL_GPL(ata_sg_init); 6402 EXPORT_SYMBOL_GPL(ata_qc_complete); 6403 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6404 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6405 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6406 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6407 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6408 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6409 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6410 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6411 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6412 EXPORT_SYMBOL_GPL(ata_mode_string); 6413 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6414 EXPORT_SYMBOL_GPL(ata_port_start); 6415 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6416 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6417 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6418 EXPORT_SYMBOL_GPL(ata_port_probe); 6419 EXPORT_SYMBOL_GPL(ata_dev_disable); 6420 EXPORT_SYMBOL_GPL(sata_set_spd); 6421 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6422 EXPORT_SYMBOL_GPL(sata_link_debounce); 6423 EXPORT_SYMBOL_GPL(sata_link_resume); 6424 EXPORT_SYMBOL_GPL(ata_std_prereset); 6425 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6426 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6427 EXPORT_SYMBOL_GPL(ata_std_postreset); 6428 EXPORT_SYMBOL_GPL(ata_dev_classify); 6429 EXPORT_SYMBOL_GPL(ata_dev_pair); 6430 EXPORT_SYMBOL_GPL(ata_port_disable); 6431 EXPORT_SYMBOL_GPL(ata_ratelimit); 6432 EXPORT_SYMBOL_GPL(ata_wait_register); 6433 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6434 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6435 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6436 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6437 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6438 EXPORT_SYMBOL_GPL(sata_scr_valid); 6439 EXPORT_SYMBOL_GPL(sata_scr_read); 6440 EXPORT_SYMBOL_GPL(sata_scr_write); 6441 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6442 EXPORT_SYMBOL_GPL(ata_link_online); 6443 EXPORT_SYMBOL_GPL(ata_link_offline); 6444 #ifdef CONFIG_PM 6445 EXPORT_SYMBOL_GPL(ata_host_suspend); 6446 EXPORT_SYMBOL_GPL(ata_host_resume); 6447 #endif /* CONFIG_PM */ 6448 EXPORT_SYMBOL_GPL(ata_id_string); 6449 EXPORT_SYMBOL_GPL(ata_id_c_string); 6450 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6451 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6452 6453 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6454 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6455 EXPORT_SYMBOL_GPL(ata_timing_compute); 6456 EXPORT_SYMBOL_GPL(ata_timing_merge); 6457 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6458 6459 #ifdef CONFIG_PCI 6460 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6461 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6462 #ifdef CONFIG_PM 6463 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6464 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6465 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6466 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6467 #endif /* CONFIG_PM */ 6468 #endif /* CONFIG_PCI */ 6469 6470 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6471 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6472 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6473 EXPORT_SYMBOL_GPL(ata_port_desc); 6474 #ifdef CONFIG_PCI 6475 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6476 #endif /* CONFIG_PCI */ 6477 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6478 EXPORT_SYMBOL_GPL(ata_link_abort); 6479 EXPORT_SYMBOL_GPL(ata_port_abort); 6480 EXPORT_SYMBOL_GPL(ata_port_freeze); 6481 EXPORT_SYMBOL_GPL(sata_async_notification); 6482 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6483 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6484 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6485 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6486 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6487 EXPORT_SYMBOL_GPL(ata_do_eh); 6488 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6489 6490 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6491 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6492 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6493 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6494 EXPORT_SYMBOL_GPL(ata_cable_sata); 6495