1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/init.h> 39 #include <linux/list.h> 40 #include <linux/mm.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/timer.h> 46 #include <linux/interrupt.h> 47 #include <linux/completion.h> 48 #include <linux/suspend.h> 49 #include <linux/workqueue.h> 50 #include <linux/jiffies.h> 51 #include <linux/scatterlist.h> 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_cmnd.h> 54 #include <scsi/scsi_host.h> 55 #include <linux/libata.h> 56 #include <asm/io.h> 57 #include <asm/semaphore.h> 58 #include <asm/byteorder.h> 59 60 #include "libata.h" 61 62 63 /* debounce timing parameters in msecs { interval, duration, timeout } */ 64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 67 68 static unsigned int ata_dev_init_params(struct ata_device *dev, 69 u16 heads, u16 sectors); 70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 71 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable); 72 static void ata_dev_xfermask(struct ata_device *dev); 73 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 74 75 unsigned int ata_print_id = 1; 76 static struct workqueue_struct *ata_wq; 77 78 struct workqueue_struct *ata_aux_wq; 79 80 int atapi_enabled = 1; 81 module_param(atapi_enabled, int, 0444); 82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 83 84 int atapi_dmadir = 0; 85 module_param(atapi_dmadir, int, 0444); 86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 87 88 int atapi_passthru16 = 1; 89 module_param(atapi_passthru16, int, 0444); 90 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 91 92 int libata_fua = 0; 93 module_param_named(fua, libata_fua, int, 0444); 94 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 95 96 static int ata_ignore_hpa = 0; 97 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 98 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 99 100 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 101 module_param_named(dma, libata_dma_mask, int, 0444); 102 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 103 104 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 105 module_param(ata_probe_timeout, int, 0444); 106 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 107 108 int libata_noacpi = 0; 109 module_param_named(noacpi, libata_noacpi, int, 0444); 110 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 111 112 MODULE_AUTHOR("Jeff Garzik"); 113 MODULE_DESCRIPTION("Library module for ATA devices"); 114 MODULE_LICENSE("GPL"); 115 MODULE_VERSION(DRV_VERSION); 116 117 118 /** 119 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 120 * @tf: Taskfile to convert 121 * @pmp: Port multiplier port 122 * @is_cmd: This FIS is for command 123 * @fis: Buffer into which data will output 124 * 125 * Converts a standard ATA taskfile to a Serial ATA 126 * FIS structure (Register - Host to Device). 127 * 128 * LOCKING: 129 * Inherited from caller. 130 */ 131 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 132 { 133 fis[0] = 0x27; /* Register - Host to Device FIS */ 134 fis[1] = pmp & 0xf; /* Port multiplier number*/ 135 if (is_cmd) 136 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 137 138 fis[2] = tf->command; 139 fis[3] = tf->feature; 140 141 fis[4] = tf->lbal; 142 fis[5] = tf->lbam; 143 fis[6] = tf->lbah; 144 fis[7] = tf->device; 145 146 fis[8] = tf->hob_lbal; 147 fis[9] = tf->hob_lbam; 148 fis[10] = tf->hob_lbah; 149 fis[11] = tf->hob_feature; 150 151 fis[12] = tf->nsect; 152 fis[13] = tf->hob_nsect; 153 fis[14] = 0; 154 fis[15] = tf->ctl; 155 156 fis[16] = 0; 157 fis[17] = 0; 158 fis[18] = 0; 159 fis[19] = 0; 160 } 161 162 /** 163 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 164 * @fis: Buffer from which data will be input 165 * @tf: Taskfile to output 166 * 167 * Converts a serial ATA FIS structure to a standard ATA taskfile. 168 * 169 * LOCKING: 170 * Inherited from caller. 171 */ 172 173 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 174 { 175 tf->command = fis[2]; /* status */ 176 tf->feature = fis[3]; /* error */ 177 178 tf->lbal = fis[4]; 179 tf->lbam = fis[5]; 180 tf->lbah = fis[6]; 181 tf->device = fis[7]; 182 183 tf->hob_lbal = fis[8]; 184 tf->hob_lbam = fis[9]; 185 tf->hob_lbah = fis[10]; 186 187 tf->nsect = fis[12]; 188 tf->hob_nsect = fis[13]; 189 } 190 191 static const u8 ata_rw_cmds[] = { 192 /* pio multi */ 193 ATA_CMD_READ_MULTI, 194 ATA_CMD_WRITE_MULTI, 195 ATA_CMD_READ_MULTI_EXT, 196 ATA_CMD_WRITE_MULTI_EXT, 197 0, 198 0, 199 0, 200 ATA_CMD_WRITE_MULTI_FUA_EXT, 201 /* pio */ 202 ATA_CMD_PIO_READ, 203 ATA_CMD_PIO_WRITE, 204 ATA_CMD_PIO_READ_EXT, 205 ATA_CMD_PIO_WRITE_EXT, 206 0, 207 0, 208 0, 209 0, 210 /* dma */ 211 ATA_CMD_READ, 212 ATA_CMD_WRITE, 213 ATA_CMD_READ_EXT, 214 ATA_CMD_WRITE_EXT, 215 0, 216 0, 217 0, 218 ATA_CMD_WRITE_FUA_EXT 219 }; 220 221 /** 222 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 223 * @tf: command to examine and configure 224 * @dev: device tf belongs to 225 * 226 * Examine the device configuration and tf->flags to calculate 227 * the proper read/write commands and protocol to use. 228 * 229 * LOCKING: 230 * caller. 231 */ 232 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 233 { 234 u8 cmd; 235 236 int index, fua, lba48, write; 237 238 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 239 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 240 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 241 242 if (dev->flags & ATA_DFLAG_PIO) { 243 tf->protocol = ATA_PROT_PIO; 244 index = dev->multi_count ? 0 : 8; 245 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 246 /* Unable to use DMA due to host limitation */ 247 tf->protocol = ATA_PROT_PIO; 248 index = dev->multi_count ? 0 : 8; 249 } else { 250 tf->protocol = ATA_PROT_DMA; 251 index = 16; 252 } 253 254 cmd = ata_rw_cmds[index + fua + lba48 + write]; 255 if (cmd) { 256 tf->command = cmd; 257 return 0; 258 } 259 return -1; 260 } 261 262 /** 263 * ata_tf_read_block - Read block address from ATA taskfile 264 * @tf: ATA taskfile of interest 265 * @dev: ATA device @tf belongs to 266 * 267 * LOCKING: 268 * None. 269 * 270 * Read block address from @tf. This function can handle all 271 * three address formats - LBA, LBA48 and CHS. tf->protocol and 272 * flags select the address format to use. 273 * 274 * RETURNS: 275 * Block address read from @tf. 276 */ 277 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 278 { 279 u64 block = 0; 280 281 if (tf->flags & ATA_TFLAG_LBA) { 282 if (tf->flags & ATA_TFLAG_LBA48) { 283 block |= (u64)tf->hob_lbah << 40; 284 block |= (u64)tf->hob_lbam << 32; 285 block |= tf->hob_lbal << 24; 286 } else 287 block |= (tf->device & 0xf) << 24; 288 289 block |= tf->lbah << 16; 290 block |= tf->lbam << 8; 291 block |= tf->lbal; 292 } else { 293 u32 cyl, head, sect; 294 295 cyl = tf->lbam | (tf->lbah << 8); 296 head = tf->device & 0xf; 297 sect = tf->lbal; 298 299 block = (cyl * dev->heads + head) * dev->sectors + sect; 300 } 301 302 return block; 303 } 304 305 /** 306 * ata_build_rw_tf - Build ATA taskfile for given read/write request 307 * @tf: Target ATA taskfile 308 * @dev: ATA device @tf belongs to 309 * @block: Block address 310 * @n_block: Number of blocks 311 * @tf_flags: RW/FUA etc... 312 * @tag: tag 313 * 314 * LOCKING: 315 * None. 316 * 317 * Build ATA taskfile @tf for read/write request described by 318 * @block, @n_block, @tf_flags and @tag on @dev. 319 * 320 * RETURNS: 321 * 322 * 0 on success, -ERANGE if the request is too large for @dev, 323 * -EINVAL if the request is invalid. 324 */ 325 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 326 u64 block, u32 n_block, unsigned int tf_flags, 327 unsigned int tag) 328 { 329 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 330 tf->flags |= tf_flags; 331 332 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 333 /* yay, NCQ */ 334 if (!lba_48_ok(block, n_block)) 335 return -ERANGE; 336 337 tf->protocol = ATA_PROT_NCQ; 338 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 339 340 if (tf->flags & ATA_TFLAG_WRITE) 341 tf->command = ATA_CMD_FPDMA_WRITE; 342 else 343 tf->command = ATA_CMD_FPDMA_READ; 344 345 tf->nsect = tag << 3; 346 tf->hob_feature = (n_block >> 8) & 0xff; 347 tf->feature = n_block & 0xff; 348 349 tf->hob_lbah = (block >> 40) & 0xff; 350 tf->hob_lbam = (block >> 32) & 0xff; 351 tf->hob_lbal = (block >> 24) & 0xff; 352 tf->lbah = (block >> 16) & 0xff; 353 tf->lbam = (block >> 8) & 0xff; 354 tf->lbal = block & 0xff; 355 356 tf->device = 1 << 6; 357 if (tf->flags & ATA_TFLAG_FUA) 358 tf->device |= 1 << 7; 359 } else if (dev->flags & ATA_DFLAG_LBA) { 360 tf->flags |= ATA_TFLAG_LBA; 361 362 if (lba_28_ok(block, n_block)) { 363 /* use LBA28 */ 364 tf->device |= (block >> 24) & 0xf; 365 } else if (lba_48_ok(block, n_block)) { 366 if (!(dev->flags & ATA_DFLAG_LBA48)) 367 return -ERANGE; 368 369 /* use LBA48 */ 370 tf->flags |= ATA_TFLAG_LBA48; 371 372 tf->hob_nsect = (n_block >> 8) & 0xff; 373 374 tf->hob_lbah = (block >> 40) & 0xff; 375 tf->hob_lbam = (block >> 32) & 0xff; 376 tf->hob_lbal = (block >> 24) & 0xff; 377 } else 378 /* request too large even for LBA48 */ 379 return -ERANGE; 380 381 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 382 return -EINVAL; 383 384 tf->nsect = n_block & 0xff; 385 386 tf->lbah = (block >> 16) & 0xff; 387 tf->lbam = (block >> 8) & 0xff; 388 tf->lbal = block & 0xff; 389 390 tf->device |= ATA_LBA; 391 } else { 392 /* CHS */ 393 u32 sect, head, cyl, track; 394 395 /* The request -may- be too large for CHS addressing. */ 396 if (!lba_28_ok(block, n_block)) 397 return -ERANGE; 398 399 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 400 return -EINVAL; 401 402 /* Convert LBA to CHS */ 403 track = (u32)block / dev->sectors; 404 cyl = track / dev->heads; 405 head = track % dev->heads; 406 sect = (u32)block % dev->sectors + 1; 407 408 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 409 (u32)block, track, cyl, head, sect); 410 411 /* Check whether the converted CHS can fit. 412 Cylinder: 0-65535 413 Head: 0-15 414 Sector: 1-255*/ 415 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 416 return -ERANGE; 417 418 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 419 tf->lbal = sect; 420 tf->lbam = cyl; 421 tf->lbah = cyl >> 8; 422 tf->device |= head; 423 } 424 425 return 0; 426 } 427 428 /** 429 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 430 * @pio_mask: pio_mask 431 * @mwdma_mask: mwdma_mask 432 * @udma_mask: udma_mask 433 * 434 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 435 * unsigned int xfer_mask. 436 * 437 * LOCKING: 438 * None. 439 * 440 * RETURNS: 441 * Packed xfer_mask. 442 */ 443 static unsigned int ata_pack_xfermask(unsigned int pio_mask, 444 unsigned int mwdma_mask, 445 unsigned int udma_mask) 446 { 447 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 448 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 449 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 450 } 451 452 /** 453 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 454 * @xfer_mask: xfer_mask to unpack 455 * @pio_mask: resulting pio_mask 456 * @mwdma_mask: resulting mwdma_mask 457 * @udma_mask: resulting udma_mask 458 * 459 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 460 * Any NULL distination masks will be ignored. 461 */ 462 static void ata_unpack_xfermask(unsigned int xfer_mask, 463 unsigned int *pio_mask, 464 unsigned int *mwdma_mask, 465 unsigned int *udma_mask) 466 { 467 if (pio_mask) 468 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 469 if (mwdma_mask) 470 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 471 if (udma_mask) 472 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 473 } 474 475 static const struct ata_xfer_ent { 476 int shift, bits; 477 u8 base; 478 } ata_xfer_tbl[] = { 479 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 }, 480 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 }, 481 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 }, 482 { -1, }, 483 }; 484 485 /** 486 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 487 * @xfer_mask: xfer_mask of interest 488 * 489 * Return matching XFER_* value for @xfer_mask. Only the highest 490 * bit of @xfer_mask is considered. 491 * 492 * LOCKING: 493 * None. 494 * 495 * RETURNS: 496 * Matching XFER_* value, 0 if no match found. 497 */ 498 static u8 ata_xfer_mask2mode(unsigned int xfer_mask) 499 { 500 int highbit = fls(xfer_mask) - 1; 501 const struct ata_xfer_ent *ent; 502 503 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 504 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 505 return ent->base + highbit - ent->shift; 506 return 0; 507 } 508 509 /** 510 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 511 * @xfer_mode: XFER_* of interest 512 * 513 * Return matching xfer_mask for @xfer_mode. 514 * 515 * LOCKING: 516 * None. 517 * 518 * RETURNS: 519 * Matching xfer_mask, 0 if no match found. 520 */ 521 static unsigned int ata_xfer_mode2mask(u8 xfer_mode) 522 { 523 const struct ata_xfer_ent *ent; 524 525 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 526 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 527 return 1 << (ent->shift + xfer_mode - ent->base); 528 return 0; 529 } 530 531 /** 532 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 533 * @xfer_mode: XFER_* of interest 534 * 535 * Return matching xfer_shift for @xfer_mode. 536 * 537 * LOCKING: 538 * None. 539 * 540 * RETURNS: 541 * Matching xfer_shift, -1 if no match found. 542 */ 543 static int ata_xfer_mode2shift(unsigned int xfer_mode) 544 { 545 const struct ata_xfer_ent *ent; 546 547 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 548 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 549 return ent->shift; 550 return -1; 551 } 552 553 /** 554 * ata_mode_string - convert xfer_mask to string 555 * @xfer_mask: mask of bits supported; only highest bit counts. 556 * 557 * Determine string which represents the highest speed 558 * (highest bit in @modemask). 559 * 560 * LOCKING: 561 * None. 562 * 563 * RETURNS: 564 * Constant C string representing highest speed listed in 565 * @mode_mask, or the constant C string "<n/a>". 566 */ 567 static const char *ata_mode_string(unsigned int xfer_mask) 568 { 569 static const char * const xfer_mode_str[] = { 570 "PIO0", 571 "PIO1", 572 "PIO2", 573 "PIO3", 574 "PIO4", 575 "PIO5", 576 "PIO6", 577 "MWDMA0", 578 "MWDMA1", 579 "MWDMA2", 580 "MWDMA3", 581 "MWDMA4", 582 "UDMA/16", 583 "UDMA/25", 584 "UDMA/33", 585 "UDMA/44", 586 "UDMA/66", 587 "UDMA/100", 588 "UDMA/133", 589 "UDMA7", 590 }; 591 int highbit; 592 593 highbit = fls(xfer_mask) - 1; 594 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 595 return xfer_mode_str[highbit]; 596 return "<n/a>"; 597 } 598 599 static const char *sata_spd_string(unsigned int spd) 600 { 601 static const char * const spd_str[] = { 602 "1.5 Gbps", 603 "3.0 Gbps", 604 }; 605 606 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 607 return "<unknown>"; 608 return spd_str[spd - 1]; 609 } 610 611 void ata_dev_disable(struct ata_device *dev) 612 { 613 if (ata_dev_enabled(dev)) { 614 if (ata_msg_drv(dev->link->ap)) 615 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 616 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 617 ATA_DNXFER_QUIET); 618 dev->class++; 619 } 620 } 621 622 /** 623 * ata_devchk - PATA device presence detection 624 * @ap: ATA channel to examine 625 * @device: Device to examine (starting at zero) 626 * 627 * This technique was originally described in 628 * Hale Landis's ATADRVR (www.ata-atapi.com), and 629 * later found its way into the ATA/ATAPI spec. 630 * 631 * Write a pattern to the ATA shadow registers, 632 * and if a device is present, it will respond by 633 * correctly storing and echoing back the 634 * ATA shadow register contents. 635 * 636 * LOCKING: 637 * caller. 638 */ 639 640 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 641 { 642 struct ata_ioports *ioaddr = &ap->ioaddr; 643 u8 nsect, lbal; 644 645 ap->ops->dev_select(ap, device); 646 647 iowrite8(0x55, ioaddr->nsect_addr); 648 iowrite8(0xaa, ioaddr->lbal_addr); 649 650 iowrite8(0xaa, ioaddr->nsect_addr); 651 iowrite8(0x55, ioaddr->lbal_addr); 652 653 iowrite8(0x55, ioaddr->nsect_addr); 654 iowrite8(0xaa, ioaddr->lbal_addr); 655 656 nsect = ioread8(ioaddr->nsect_addr); 657 lbal = ioread8(ioaddr->lbal_addr); 658 659 if ((nsect == 0x55) && (lbal == 0xaa)) 660 return 1; /* we found a device */ 661 662 return 0; /* nothing found */ 663 } 664 665 /** 666 * ata_dev_classify - determine device type based on ATA-spec signature 667 * @tf: ATA taskfile register set for device to be identified 668 * 669 * Determine from taskfile register contents whether a device is 670 * ATA or ATAPI, as per "Signature and persistence" section 671 * of ATA/PI spec (volume 1, sect 5.14). 672 * 673 * LOCKING: 674 * None. 675 * 676 * RETURNS: 677 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 678 * %ATA_DEV_UNKNOWN the event of failure. 679 */ 680 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 681 { 682 /* Apple's open source Darwin code hints that some devices only 683 * put a proper signature into the LBA mid/high registers, 684 * So, we only check those. It's sufficient for uniqueness. 685 * 686 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 687 * signatures for ATA and ATAPI devices attached on SerialATA, 688 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 689 * spec has never mentioned about using different signatures 690 * for ATA/ATAPI devices. Then, Serial ATA II: Port 691 * Multiplier specification began to use 0x69/0x96 to identify 692 * port multpliers and 0x3c/0xc3 to identify SEMB device. 693 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 694 * 0x69/0x96 shortly and described them as reserved for 695 * SerialATA. 696 * 697 * We follow the current spec and consider that 0x69/0x96 698 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 699 */ 700 if ((tf->lbam == 0) && (tf->lbah == 0)) { 701 DPRINTK("found ATA device by sig\n"); 702 return ATA_DEV_ATA; 703 } 704 705 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 706 DPRINTK("found ATAPI device by sig\n"); 707 return ATA_DEV_ATAPI; 708 } 709 710 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 711 DPRINTK("found PMP device by sig\n"); 712 return ATA_DEV_PMP; 713 } 714 715 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 716 printk("ata: SEMB device ignored\n"); 717 return ATA_DEV_SEMB_UNSUP; /* not yet */ 718 } 719 720 DPRINTK("unknown device\n"); 721 return ATA_DEV_UNKNOWN; 722 } 723 724 /** 725 * ata_dev_try_classify - Parse returned ATA device signature 726 * @dev: ATA device to classify (starting at zero) 727 * @present: device seems present 728 * @r_err: Value of error register on completion 729 * 730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 731 * an ATA/ATAPI-defined set of values is placed in the ATA 732 * shadow registers, indicating the results of device detection 733 * and diagnostics. 734 * 735 * Select the ATA device, and read the values from the ATA shadow 736 * registers. Then parse according to the Error register value, 737 * and the spec-defined values examined by ata_dev_classify(). 738 * 739 * LOCKING: 740 * caller. 741 * 742 * RETURNS: 743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 744 */ 745 unsigned int ata_dev_try_classify(struct ata_device *dev, int present, 746 u8 *r_err) 747 { 748 struct ata_port *ap = dev->link->ap; 749 struct ata_taskfile tf; 750 unsigned int class; 751 u8 err; 752 753 ap->ops->dev_select(ap, dev->devno); 754 755 memset(&tf, 0, sizeof(tf)); 756 757 ap->ops->tf_read(ap, &tf); 758 err = tf.feature; 759 if (r_err) 760 *r_err = err; 761 762 /* see if device passed diags: if master then continue and warn later */ 763 if (err == 0 && dev->devno == 0) 764 /* diagnostic fail : do nothing _YET_ */ 765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 766 else if (err == 1) 767 /* do nothing */ ; 768 else if ((dev->devno == 0) && (err == 0x81)) 769 /* do nothing */ ; 770 else 771 return ATA_DEV_NONE; 772 773 /* determine if device is ATA or ATAPI */ 774 class = ata_dev_classify(&tf); 775 776 if (class == ATA_DEV_UNKNOWN) { 777 /* If the device failed diagnostic, it's likely to 778 * have reported incorrect device signature too. 779 * Assume ATA device if the device seems present but 780 * device signature is invalid with diagnostic 781 * failure. 782 */ 783 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 784 class = ATA_DEV_ATA; 785 else 786 class = ATA_DEV_NONE; 787 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) 788 class = ATA_DEV_NONE; 789 790 return class; 791 } 792 793 /** 794 * ata_id_string - Convert IDENTIFY DEVICE page into string 795 * @id: IDENTIFY DEVICE results we will examine 796 * @s: string into which data is output 797 * @ofs: offset into identify device page 798 * @len: length of string to return. must be an even number. 799 * 800 * The strings in the IDENTIFY DEVICE page are broken up into 801 * 16-bit chunks. Run through the string, and output each 802 * 8-bit chunk linearly, regardless of platform. 803 * 804 * LOCKING: 805 * caller. 806 */ 807 808 void ata_id_string(const u16 *id, unsigned char *s, 809 unsigned int ofs, unsigned int len) 810 { 811 unsigned int c; 812 813 while (len > 0) { 814 c = id[ofs] >> 8; 815 *s = c; 816 s++; 817 818 c = id[ofs] & 0xff; 819 *s = c; 820 s++; 821 822 ofs++; 823 len -= 2; 824 } 825 } 826 827 /** 828 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 829 * @id: IDENTIFY DEVICE results we will examine 830 * @s: string into which data is output 831 * @ofs: offset into identify device page 832 * @len: length of string to return. must be an odd number. 833 * 834 * This function is identical to ata_id_string except that it 835 * trims trailing spaces and terminates the resulting string with 836 * null. @len must be actual maximum length (even number) + 1. 837 * 838 * LOCKING: 839 * caller. 840 */ 841 void ata_id_c_string(const u16 *id, unsigned char *s, 842 unsigned int ofs, unsigned int len) 843 { 844 unsigned char *p; 845 846 WARN_ON(!(len & 1)); 847 848 ata_id_string(id, s, ofs, len - 1); 849 850 p = s + strnlen(s, len - 1); 851 while (p > s && p[-1] == ' ') 852 p--; 853 *p = '\0'; 854 } 855 856 static u64 ata_id_n_sectors(const u16 *id) 857 { 858 if (ata_id_has_lba(id)) { 859 if (ata_id_has_lba48(id)) 860 return ata_id_u64(id, 100); 861 else 862 return ata_id_u32(id, 60); 863 } else { 864 if (ata_id_current_chs_valid(id)) 865 return ata_id_u32(id, 57); 866 else 867 return id[1] * id[3] * id[6]; 868 } 869 } 870 871 static u64 ata_tf_to_lba48(struct ata_taskfile *tf) 872 { 873 u64 sectors = 0; 874 875 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 876 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 877 sectors |= (tf->hob_lbal & 0xff) << 24; 878 sectors |= (tf->lbah & 0xff) << 16; 879 sectors |= (tf->lbam & 0xff) << 8; 880 sectors |= (tf->lbal & 0xff); 881 882 return ++sectors; 883 } 884 885 static u64 ata_tf_to_lba(struct ata_taskfile *tf) 886 { 887 u64 sectors = 0; 888 889 sectors |= (tf->device & 0x0f) << 24; 890 sectors |= (tf->lbah & 0xff) << 16; 891 sectors |= (tf->lbam & 0xff) << 8; 892 sectors |= (tf->lbal & 0xff); 893 894 return ++sectors; 895 } 896 897 /** 898 * ata_read_native_max_address - Read native max address 899 * @dev: target device 900 * @max_sectors: out parameter for the result native max address 901 * 902 * Perform an LBA48 or LBA28 native size query upon the device in 903 * question. 904 * 905 * RETURNS: 906 * 0 on success, -EACCES if command is aborted by the drive. 907 * -EIO on other errors. 908 */ 909 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 910 { 911 unsigned int err_mask; 912 struct ata_taskfile tf; 913 int lba48 = ata_id_has_lba48(dev->id); 914 915 ata_tf_init(dev, &tf); 916 917 /* always clear all address registers */ 918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 919 920 if (lba48) { 921 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 922 tf.flags |= ATA_TFLAG_LBA48; 923 } else 924 tf.command = ATA_CMD_READ_NATIVE_MAX; 925 926 tf.protocol |= ATA_PROT_NODATA; 927 tf.device |= ATA_LBA; 928 929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 930 if (err_mask) { 931 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 932 "max address (err_mask=0x%x)\n", err_mask); 933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 934 return -EACCES; 935 return -EIO; 936 } 937 938 if (lba48) 939 *max_sectors = ata_tf_to_lba48(&tf); 940 else 941 *max_sectors = ata_tf_to_lba(&tf); 942 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 943 (*max_sectors)--; 944 return 0; 945 } 946 947 /** 948 * ata_set_max_sectors - Set max sectors 949 * @dev: target device 950 * @new_sectors: new max sectors value to set for the device 951 * 952 * Set max sectors of @dev to @new_sectors. 953 * 954 * RETURNS: 955 * 0 on success, -EACCES if command is aborted or denied (due to 956 * previous non-volatile SET_MAX) by the drive. -EIO on other 957 * errors. 958 */ 959 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 960 { 961 unsigned int err_mask; 962 struct ata_taskfile tf; 963 int lba48 = ata_id_has_lba48(dev->id); 964 965 new_sectors--; 966 967 ata_tf_init(dev, &tf); 968 969 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 970 971 if (lba48) { 972 tf.command = ATA_CMD_SET_MAX_EXT; 973 tf.flags |= ATA_TFLAG_LBA48; 974 975 tf.hob_lbal = (new_sectors >> 24) & 0xff; 976 tf.hob_lbam = (new_sectors >> 32) & 0xff; 977 tf.hob_lbah = (new_sectors >> 40) & 0xff; 978 } else { 979 tf.command = ATA_CMD_SET_MAX; 980 981 tf.device |= (new_sectors >> 24) & 0xf; 982 } 983 984 tf.protocol |= ATA_PROT_NODATA; 985 tf.device |= ATA_LBA; 986 987 tf.lbal = (new_sectors >> 0) & 0xff; 988 tf.lbam = (new_sectors >> 8) & 0xff; 989 tf.lbah = (new_sectors >> 16) & 0xff; 990 991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 992 if (err_mask) { 993 ata_dev_printk(dev, KERN_WARNING, "failed to set " 994 "max address (err_mask=0x%x)\n", err_mask); 995 if (err_mask == AC_ERR_DEV && 996 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 997 return -EACCES; 998 return -EIO; 999 } 1000 1001 return 0; 1002 } 1003 1004 /** 1005 * ata_hpa_resize - Resize a device with an HPA set 1006 * @dev: Device to resize 1007 * 1008 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1009 * it if required to the full size of the media. The caller must check 1010 * the drive has the HPA feature set enabled. 1011 * 1012 * RETURNS: 1013 * 0 on success, -errno on failure. 1014 */ 1015 static int ata_hpa_resize(struct ata_device *dev) 1016 { 1017 struct ata_eh_context *ehc = &dev->link->eh_context; 1018 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1019 u64 sectors = ata_id_n_sectors(dev->id); 1020 u64 native_sectors; 1021 int rc; 1022 1023 /* do we need to do it? */ 1024 if (dev->class != ATA_DEV_ATA || 1025 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1026 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1027 return 0; 1028 1029 /* read native max address */ 1030 rc = ata_read_native_max_address(dev, &native_sectors); 1031 if (rc) { 1032 /* If HPA isn't going to be unlocked, skip HPA 1033 * resizing from the next try. 1034 */ 1035 if (!ata_ignore_hpa) { 1036 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1037 "broken, will skip HPA handling\n"); 1038 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1039 1040 /* we can continue if device aborted the command */ 1041 if (rc == -EACCES) 1042 rc = 0; 1043 } 1044 1045 return rc; 1046 } 1047 1048 /* nothing to do? */ 1049 if (native_sectors <= sectors || !ata_ignore_hpa) { 1050 if (!print_info || native_sectors == sectors) 1051 return 0; 1052 1053 if (native_sectors > sectors) 1054 ata_dev_printk(dev, KERN_INFO, 1055 "HPA detected: current %llu, native %llu\n", 1056 (unsigned long long)sectors, 1057 (unsigned long long)native_sectors); 1058 else if (native_sectors < sectors) 1059 ata_dev_printk(dev, KERN_WARNING, 1060 "native sectors (%llu) is smaller than " 1061 "sectors (%llu)\n", 1062 (unsigned long long)native_sectors, 1063 (unsigned long long)sectors); 1064 return 0; 1065 } 1066 1067 /* let's unlock HPA */ 1068 rc = ata_set_max_sectors(dev, native_sectors); 1069 if (rc == -EACCES) { 1070 /* if device aborted the command, skip HPA resizing */ 1071 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1072 "(%llu -> %llu), skipping HPA handling\n", 1073 (unsigned long long)sectors, 1074 (unsigned long long)native_sectors); 1075 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1076 return 0; 1077 } else if (rc) 1078 return rc; 1079 1080 /* re-read IDENTIFY data */ 1081 rc = ata_dev_reread_id(dev, 0); 1082 if (rc) { 1083 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1084 "data after HPA resizing\n"); 1085 return rc; 1086 } 1087 1088 if (print_info) { 1089 u64 new_sectors = ata_id_n_sectors(dev->id); 1090 ata_dev_printk(dev, KERN_INFO, 1091 "HPA unlocked: %llu -> %llu, native %llu\n", 1092 (unsigned long long)sectors, 1093 (unsigned long long)new_sectors, 1094 (unsigned long long)native_sectors); 1095 } 1096 1097 return 0; 1098 } 1099 1100 /** 1101 * ata_id_to_dma_mode - Identify DMA mode from id block 1102 * @dev: device to identify 1103 * @unknown: mode to assume if we cannot tell 1104 * 1105 * Set up the timing values for the device based upon the identify 1106 * reported values for the DMA mode. This function is used by drivers 1107 * which rely upon firmware configured modes, but wish to report the 1108 * mode correctly when possible. 1109 * 1110 * In addition we emit similarly formatted messages to the default 1111 * ata_dev_set_mode handler, in order to provide consistency of 1112 * presentation. 1113 */ 1114 1115 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown) 1116 { 1117 unsigned int mask; 1118 u8 mode; 1119 1120 /* Pack the DMA modes */ 1121 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA; 1122 if (dev->id[53] & 0x04) 1123 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA; 1124 1125 /* Select the mode in use */ 1126 mode = ata_xfer_mask2mode(mask); 1127 1128 if (mode != 0) { 1129 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 1130 ata_mode_string(mask)); 1131 } else { 1132 /* SWDMA perhaps ? */ 1133 mode = unknown; 1134 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n"); 1135 } 1136 1137 /* Configure the device reporting */ 1138 dev->xfer_mode = mode; 1139 dev->xfer_shift = ata_xfer_mode2shift(mode); 1140 } 1141 1142 /** 1143 * ata_noop_dev_select - Select device 0/1 on ATA bus 1144 * @ap: ATA channel to manipulate 1145 * @device: ATA device (numbered from zero) to select 1146 * 1147 * This function performs no actual function. 1148 * 1149 * May be used as the dev_select() entry in ata_port_operations. 1150 * 1151 * LOCKING: 1152 * caller. 1153 */ 1154 void ata_noop_dev_select (struct ata_port *ap, unsigned int device) 1155 { 1156 } 1157 1158 1159 /** 1160 * ata_std_dev_select - Select device 0/1 on ATA bus 1161 * @ap: ATA channel to manipulate 1162 * @device: ATA device (numbered from zero) to select 1163 * 1164 * Use the method defined in the ATA specification to 1165 * make either device 0, or device 1, active on the 1166 * ATA channel. Works with both PIO and MMIO. 1167 * 1168 * May be used as the dev_select() entry in ata_port_operations. 1169 * 1170 * LOCKING: 1171 * caller. 1172 */ 1173 1174 void ata_std_dev_select (struct ata_port *ap, unsigned int device) 1175 { 1176 u8 tmp; 1177 1178 if (device == 0) 1179 tmp = ATA_DEVICE_OBS; 1180 else 1181 tmp = ATA_DEVICE_OBS | ATA_DEV1; 1182 1183 iowrite8(tmp, ap->ioaddr.device_addr); 1184 ata_pause(ap); /* needed; also flushes, for mmio */ 1185 } 1186 1187 /** 1188 * ata_dev_select - Select device 0/1 on ATA bus 1189 * @ap: ATA channel to manipulate 1190 * @device: ATA device (numbered from zero) to select 1191 * @wait: non-zero to wait for Status register BSY bit to clear 1192 * @can_sleep: non-zero if context allows sleeping 1193 * 1194 * Use the method defined in the ATA specification to 1195 * make either device 0, or device 1, active on the 1196 * ATA channel. 1197 * 1198 * This is a high-level version of ata_std_dev_select(), 1199 * which additionally provides the services of inserting 1200 * the proper pauses and status polling, where needed. 1201 * 1202 * LOCKING: 1203 * caller. 1204 */ 1205 1206 void ata_dev_select(struct ata_port *ap, unsigned int device, 1207 unsigned int wait, unsigned int can_sleep) 1208 { 1209 if (ata_msg_probe(ap)) 1210 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 1211 "device %u, wait %u\n", device, wait); 1212 1213 if (wait) 1214 ata_wait_idle(ap); 1215 1216 ap->ops->dev_select(ap, device); 1217 1218 if (wait) { 1219 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 1220 msleep(150); 1221 ata_wait_idle(ap); 1222 } 1223 } 1224 1225 /** 1226 * ata_dump_id - IDENTIFY DEVICE info debugging output 1227 * @id: IDENTIFY DEVICE page to dump 1228 * 1229 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1230 * page. 1231 * 1232 * LOCKING: 1233 * caller. 1234 */ 1235 1236 static inline void ata_dump_id(const u16 *id) 1237 { 1238 DPRINTK("49==0x%04x " 1239 "53==0x%04x " 1240 "63==0x%04x " 1241 "64==0x%04x " 1242 "75==0x%04x \n", 1243 id[49], 1244 id[53], 1245 id[63], 1246 id[64], 1247 id[75]); 1248 DPRINTK("80==0x%04x " 1249 "81==0x%04x " 1250 "82==0x%04x " 1251 "83==0x%04x " 1252 "84==0x%04x \n", 1253 id[80], 1254 id[81], 1255 id[82], 1256 id[83], 1257 id[84]); 1258 DPRINTK("88==0x%04x " 1259 "93==0x%04x\n", 1260 id[88], 1261 id[93]); 1262 } 1263 1264 /** 1265 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1266 * @id: IDENTIFY data to compute xfer mask from 1267 * 1268 * Compute the xfermask for this device. This is not as trivial 1269 * as it seems if we must consider early devices correctly. 1270 * 1271 * FIXME: pre IDE drive timing (do we care ?). 1272 * 1273 * LOCKING: 1274 * None. 1275 * 1276 * RETURNS: 1277 * Computed xfermask 1278 */ 1279 static unsigned int ata_id_xfermask(const u16 *id) 1280 { 1281 unsigned int pio_mask, mwdma_mask, udma_mask; 1282 1283 /* Usual case. Word 53 indicates word 64 is valid */ 1284 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1285 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1286 pio_mask <<= 3; 1287 pio_mask |= 0x7; 1288 } else { 1289 /* If word 64 isn't valid then Word 51 high byte holds 1290 * the PIO timing number for the maximum. Turn it into 1291 * a mask. 1292 */ 1293 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1294 if (mode < 5) /* Valid PIO range */ 1295 pio_mask = (2 << mode) - 1; 1296 else 1297 pio_mask = 1; 1298 1299 /* But wait.. there's more. Design your standards by 1300 * committee and you too can get a free iordy field to 1301 * process. However its the speeds not the modes that 1302 * are supported... Note drivers using the timing API 1303 * will get this right anyway 1304 */ 1305 } 1306 1307 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1308 1309 if (ata_id_is_cfa(id)) { 1310 /* 1311 * Process compact flash extended modes 1312 */ 1313 int pio = id[163] & 0x7; 1314 int dma = (id[163] >> 3) & 7; 1315 1316 if (pio) 1317 pio_mask |= (1 << 5); 1318 if (pio > 1) 1319 pio_mask |= (1 << 6); 1320 if (dma) 1321 mwdma_mask |= (1 << 3); 1322 if (dma > 1) 1323 mwdma_mask |= (1 << 4); 1324 } 1325 1326 udma_mask = 0; 1327 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1328 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1329 1330 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1331 } 1332 1333 /** 1334 * ata_port_queue_task - Queue port_task 1335 * @ap: The ata_port to queue port_task for 1336 * @fn: workqueue function to be scheduled 1337 * @data: data for @fn to use 1338 * @delay: delay time for workqueue function 1339 * 1340 * Schedule @fn(@data) for execution after @delay jiffies using 1341 * port_task. There is one port_task per port and it's the 1342 * user(low level driver)'s responsibility to make sure that only 1343 * one task is active at any given time. 1344 * 1345 * libata core layer takes care of synchronization between 1346 * port_task and EH. ata_port_queue_task() may be ignored for EH 1347 * synchronization. 1348 * 1349 * LOCKING: 1350 * Inherited from caller. 1351 */ 1352 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data, 1353 unsigned long delay) 1354 { 1355 PREPARE_DELAYED_WORK(&ap->port_task, fn); 1356 ap->port_task_data = data; 1357 1358 /* may fail if ata_port_flush_task() in progress */ 1359 queue_delayed_work(ata_wq, &ap->port_task, delay); 1360 } 1361 1362 /** 1363 * ata_port_flush_task - Flush port_task 1364 * @ap: The ata_port to flush port_task for 1365 * 1366 * After this function completes, port_task is guranteed not to 1367 * be running or scheduled. 1368 * 1369 * LOCKING: 1370 * Kernel thread context (may sleep) 1371 */ 1372 void ata_port_flush_task(struct ata_port *ap) 1373 { 1374 DPRINTK("ENTER\n"); 1375 1376 cancel_rearming_delayed_work(&ap->port_task); 1377 1378 if (ata_msg_ctl(ap)) 1379 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__); 1380 } 1381 1382 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1383 { 1384 struct completion *waiting = qc->private_data; 1385 1386 complete(waiting); 1387 } 1388 1389 /** 1390 * ata_exec_internal_sg - execute libata internal command 1391 * @dev: Device to which the command is sent 1392 * @tf: Taskfile registers for the command and the result 1393 * @cdb: CDB for packet command 1394 * @dma_dir: Data tranfer direction of the command 1395 * @sg: sg list for the data buffer of the command 1396 * @n_elem: Number of sg entries 1397 * @timeout: Timeout in msecs (0 for default) 1398 * 1399 * Executes libata internal command with timeout. @tf contains 1400 * command on entry and result on return. Timeout and error 1401 * conditions are reported via return value. No recovery action 1402 * is taken after a command times out. It's caller's duty to 1403 * clean up after timeout. 1404 * 1405 * LOCKING: 1406 * None. Should be called with kernel context, might sleep. 1407 * 1408 * RETURNS: 1409 * Zero on success, AC_ERR_* mask on failure 1410 */ 1411 unsigned ata_exec_internal_sg(struct ata_device *dev, 1412 struct ata_taskfile *tf, const u8 *cdb, 1413 int dma_dir, struct scatterlist *sg, 1414 unsigned int n_elem, unsigned long timeout) 1415 { 1416 struct ata_link *link = dev->link; 1417 struct ata_port *ap = link->ap; 1418 u8 command = tf->command; 1419 struct ata_queued_cmd *qc; 1420 unsigned int tag, preempted_tag; 1421 u32 preempted_sactive, preempted_qc_active; 1422 int preempted_nr_active_links; 1423 DECLARE_COMPLETION_ONSTACK(wait); 1424 unsigned long flags; 1425 unsigned int err_mask; 1426 int rc; 1427 1428 spin_lock_irqsave(ap->lock, flags); 1429 1430 /* no internal command while frozen */ 1431 if (ap->pflags & ATA_PFLAG_FROZEN) { 1432 spin_unlock_irqrestore(ap->lock, flags); 1433 return AC_ERR_SYSTEM; 1434 } 1435 1436 /* initialize internal qc */ 1437 1438 /* XXX: Tag 0 is used for drivers with legacy EH as some 1439 * drivers choke if any other tag is given. This breaks 1440 * ata_tag_internal() test for those drivers. Don't use new 1441 * EH stuff without converting to it. 1442 */ 1443 if (ap->ops->error_handler) 1444 tag = ATA_TAG_INTERNAL; 1445 else 1446 tag = 0; 1447 1448 if (test_and_set_bit(tag, &ap->qc_allocated)) 1449 BUG(); 1450 qc = __ata_qc_from_tag(ap, tag); 1451 1452 qc->tag = tag; 1453 qc->scsicmd = NULL; 1454 qc->ap = ap; 1455 qc->dev = dev; 1456 ata_qc_reinit(qc); 1457 1458 preempted_tag = link->active_tag; 1459 preempted_sactive = link->sactive; 1460 preempted_qc_active = ap->qc_active; 1461 preempted_nr_active_links = ap->nr_active_links; 1462 link->active_tag = ATA_TAG_POISON; 1463 link->sactive = 0; 1464 ap->qc_active = 0; 1465 ap->nr_active_links = 0; 1466 1467 /* prepare & issue qc */ 1468 qc->tf = *tf; 1469 if (cdb) 1470 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1471 qc->flags |= ATA_QCFLAG_RESULT_TF; 1472 qc->dma_dir = dma_dir; 1473 if (dma_dir != DMA_NONE) { 1474 unsigned int i, buflen = 0; 1475 1476 for (i = 0; i < n_elem; i++) 1477 buflen += sg[i].length; 1478 1479 ata_sg_init(qc, sg, n_elem); 1480 qc->nbytes = buflen; 1481 } 1482 1483 qc->private_data = &wait; 1484 qc->complete_fn = ata_qc_complete_internal; 1485 1486 ata_qc_issue(qc); 1487 1488 spin_unlock_irqrestore(ap->lock, flags); 1489 1490 if (!timeout) 1491 timeout = ata_probe_timeout * 1000 / HZ; 1492 1493 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1494 1495 ata_port_flush_task(ap); 1496 1497 if (!rc) { 1498 spin_lock_irqsave(ap->lock, flags); 1499 1500 /* We're racing with irq here. If we lose, the 1501 * following test prevents us from completing the qc 1502 * twice. If we win, the port is frozen and will be 1503 * cleaned up by ->post_internal_cmd(). 1504 */ 1505 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1506 qc->err_mask |= AC_ERR_TIMEOUT; 1507 1508 if (ap->ops->error_handler) 1509 ata_port_freeze(ap); 1510 else 1511 ata_qc_complete(qc); 1512 1513 if (ata_msg_warn(ap)) 1514 ata_dev_printk(dev, KERN_WARNING, 1515 "qc timeout (cmd 0x%x)\n", command); 1516 } 1517 1518 spin_unlock_irqrestore(ap->lock, flags); 1519 } 1520 1521 /* do post_internal_cmd */ 1522 if (ap->ops->post_internal_cmd) 1523 ap->ops->post_internal_cmd(qc); 1524 1525 /* perform minimal error analysis */ 1526 if (qc->flags & ATA_QCFLAG_FAILED) { 1527 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1528 qc->err_mask |= AC_ERR_DEV; 1529 1530 if (!qc->err_mask) 1531 qc->err_mask |= AC_ERR_OTHER; 1532 1533 if (qc->err_mask & ~AC_ERR_OTHER) 1534 qc->err_mask &= ~AC_ERR_OTHER; 1535 } 1536 1537 /* finish up */ 1538 spin_lock_irqsave(ap->lock, flags); 1539 1540 *tf = qc->result_tf; 1541 err_mask = qc->err_mask; 1542 1543 ata_qc_free(qc); 1544 link->active_tag = preempted_tag; 1545 link->sactive = preempted_sactive; 1546 ap->qc_active = preempted_qc_active; 1547 ap->nr_active_links = preempted_nr_active_links; 1548 1549 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1550 * Until those drivers are fixed, we detect the condition 1551 * here, fail the command with AC_ERR_SYSTEM and reenable the 1552 * port. 1553 * 1554 * Note that this doesn't change any behavior as internal 1555 * command failure results in disabling the device in the 1556 * higher layer for LLDDs without new reset/EH callbacks. 1557 * 1558 * Kill the following code as soon as those drivers are fixed. 1559 */ 1560 if (ap->flags & ATA_FLAG_DISABLED) { 1561 err_mask |= AC_ERR_SYSTEM; 1562 ata_port_probe(ap); 1563 } 1564 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 1567 return err_mask; 1568 } 1569 1570 /** 1571 * ata_exec_internal - execute libata internal command 1572 * @dev: Device to which the command is sent 1573 * @tf: Taskfile registers for the command and the result 1574 * @cdb: CDB for packet command 1575 * @dma_dir: Data tranfer direction of the command 1576 * @buf: Data buffer of the command 1577 * @buflen: Length of data buffer 1578 * @timeout: Timeout in msecs (0 for default) 1579 * 1580 * Wrapper around ata_exec_internal_sg() which takes simple 1581 * buffer instead of sg list. 1582 * 1583 * LOCKING: 1584 * None. Should be called with kernel context, might sleep. 1585 * 1586 * RETURNS: 1587 * Zero on success, AC_ERR_* mask on failure 1588 */ 1589 unsigned ata_exec_internal(struct ata_device *dev, 1590 struct ata_taskfile *tf, const u8 *cdb, 1591 int dma_dir, void *buf, unsigned int buflen, 1592 unsigned long timeout) 1593 { 1594 struct scatterlist *psg = NULL, sg; 1595 unsigned int n_elem = 0; 1596 1597 if (dma_dir != DMA_NONE) { 1598 WARN_ON(!buf); 1599 sg_init_one(&sg, buf, buflen); 1600 psg = &sg; 1601 n_elem++; 1602 } 1603 1604 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1605 timeout); 1606 } 1607 1608 /** 1609 * ata_do_simple_cmd - execute simple internal command 1610 * @dev: Device to which the command is sent 1611 * @cmd: Opcode to execute 1612 * 1613 * Execute a 'simple' command, that only consists of the opcode 1614 * 'cmd' itself, without filling any other registers 1615 * 1616 * LOCKING: 1617 * Kernel thread context (may sleep). 1618 * 1619 * RETURNS: 1620 * Zero on success, AC_ERR_* mask on failure 1621 */ 1622 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1623 { 1624 struct ata_taskfile tf; 1625 1626 ata_tf_init(dev, &tf); 1627 1628 tf.command = cmd; 1629 tf.flags |= ATA_TFLAG_DEVICE; 1630 tf.protocol = ATA_PROT_NODATA; 1631 1632 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1633 } 1634 1635 /** 1636 * ata_pio_need_iordy - check if iordy needed 1637 * @adev: ATA device 1638 * 1639 * Check if the current speed of the device requires IORDY. Used 1640 * by various controllers for chip configuration. 1641 */ 1642 1643 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1644 { 1645 /* Controller doesn't support IORDY. Probably a pointless check 1646 as the caller should know this */ 1647 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1648 return 0; 1649 /* PIO3 and higher it is mandatory */ 1650 if (adev->pio_mode > XFER_PIO_2) 1651 return 1; 1652 /* We turn it on when possible */ 1653 if (ata_id_has_iordy(adev->id)) 1654 return 1; 1655 return 0; 1656 } 1657 1658 /** 1659 * ata_pio_mask_no_iordy - Return the non IORDY mask 1660 * @adev: ATA device 1661 * 1662 * Compute the highest mode possible if we are not using iordy. Return 1663 * -1 if no iordy mode is available. 1664 */ 1665 1666 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1667 { 1668 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1669 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1670 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1671 /* Is the speed faster than the drive allows non IORDY ? */ 1672 if (pio) { 1673 /* This is cycle times not frequency - watch the logic! */ 1674 if (pio > 240) /* PIO2 is 240nS per cycle */ 1675 return 3 << ATA_SHIFT_PIO; 1676 return 7 << ATA_SHIFT_PIO; 1677 } 1678 } 1679 return 3 << ATA_SHIFT_PIO; 1680 } 1681 1682 /** 1683 * ata_dev_read_id - Read ID data from the specified device 1684 * @dev: target device 1685 * @p_class: pointer to class of the target device (may be changed) 1686 * @flags: ATA_READID_* flags 1687 * @id: buffer to read IDENTIFY data into 1688 * 1689 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1690 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1691 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1692 * for pre-ATA4 drives. 1693 * 1694 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1695 * now we abort if we hit that case. 1696 * 1697 * LOCKING: 1698 * Kernel thread context (may sleep) 1699 * 1700 * RETURNS: 1701 * 0 on success, -errno otherwise. 1702 */ 1703 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1704 unsigned int flags, u16 *id) 1705 { 1706 struct ata_port *ap = dev->link->ap; 1707 unsigned int class = *p_class; 1708 struct ata_taskfile tf; 1709 unsigned int err_mask = 0; 1710 const char *reason; 1711 int may_fallback = 1, tried_spinup = 0; 1712 int rc; 1713 1714 if (ata_msg_ctl(ap)) 1715 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1716 1717 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */ 1718 retry: 1719 ata_tf_init(dev, &tf); 1720 1721 switch (class) { 1722 case ATA_DEV_ATA: 1723 tf.command = ATA_CMD_ID_ATA; 1724 break; 1725 case ATA_DEV_ATAPI: 1726 tf.command = ATA_CMD_ID_ATAPI; 1727 break; 1728 default: 1729 rc = -ENODEV; 1730 reason = "unsupported class"; 1731 goto err_out; 1732 } 1733 1734 tf.protocol = ATA_PROT_PIO; 1735 1736 /* Some devices choke if TF registers contain garbage. Make 1737 * sure those are properly initialized. 1738 */ 1739 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1740 1741 /* Device presence detection is unreliable on some 1742 * controllers. Always poll IDENTIFY if available. 1743 */ 1744 tf.flags |= ATA_TFLAG_POLLING; 1745 1746 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1747 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1748 if (err_mask) { 1749 if (err_mask & AC_ERR_NODEV_HINT) { 1750 DPRINTK("ata%u.%d: NODEV after polling detection\n", 1751 ap->print_id, dev->devno); 1752 return -ENOENT; 1753 } 1754 1755 /* Device or controller might have reported the wrong 1756 * device class. Give a shot at the other IDENTIFY if 1757 * the current one is aborted by the device. 1758 */ 1759 if (may_fallback && 1760 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1761 may_fallback = 0; 1762 1763 if (class == ATA_DEV_ATA) 1764 class = ATA_DEV_ATAPI; 1765 else 1766 class = ATA_DEV_ATA; 1767 goto retry; 1768 } 1769 1770 rc = -EIO; 1771 reason = "I/O error"; 1772 goto err_out; 1773 } 1774 1775 /* Falling back doesn't make sense if ID data was read 1776 * successfully at least once. 1777 */ 1778 may_fallback = 0; 1779 1780 swap_buf_le16(id, ATA_ID_WORDS); 1781 1782 /* sanity check */ 1783 rc = -EINVAL; 1784 reason = "device reports invalid type"; 1785 1786 if (class == ATA_DEV_ATA) { 1787 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1788 goto err_out; 1789 } else { 1790 if (ata_id_is_ata(id)) 1791 goto err_out; 1792 } 1793 1794 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1795 tried_spinup = 1; 1796 /* 1797 * Drive powered-up in standby mode, and requires a specific 1798 * SET_FEATURES spin-up subcommand before it will accept 1799 * anything other than the original IDENTIFY command. 1800 */ 1801 ata_tf_init(dev, &tf); 1802 tf.command = ATA_CMD_SET_FEATURES; 1803 tf.feature = SETFEATURES_SPINUP; 1804 tf.protocol = ATA_PROT_NODATA; 1805 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1806 err_mask = ata_exec_internal(dev, &tf, NULL, 1807 DMA_NONE, NULL, 0, 0); 1808 if (err_mask && id[2] != 0x738c) { 1809 rc = -EIO; 1810 reason = "SPINUP failed"; 1811 goto err_out; 1812 } 1813 /* 1814 * If the drive initially returned incomplete IDENTIFY info, 1815 * we now must reissue the IDENTIFY command. 1816 */ 1817 if (id[2] == 0x37c8) 1818 goto retry; 1819 } 1820 1821 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 1822 /* 1823 * The exact sequence expected by certain pre-ATA4 drives is: 1824 * SRST RESET 1825 * IDENTIFY (optional in early ATA) 1826 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1827 * anything else.. 1828 * Some drives were very specific about that exact sequence. 1829 * 1830 * Note that ATA4 says lba is mandatory so the second check 1831 * shoud never trigger. 1832 */ 1833 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1834 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1835 if (err_mask) { 1836 rc = -EIO; 1837 reason = "INIT_DEV_PARAMS failed"; 1838 goto err_out; 1839 } 1840 1841 /* current CHS translation info (id[53-58]) might be 1842 * changed. reread the identify device info. 1843 */ 1844 flags &= ~ATA_READID_POSTRESET; 1845 goto retry; 1846 } 1847 } 1848 1849 *p_class = class; 1850 1851 return 0; 1852 1853 err_out: 1854 if (ata_msg_warn(ap)) 1855 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 1856 "(%s, err_mask=0x%x)\n", reason, err_mask); 1857 return rc; 1858 } 1859 1860 static inline u8 ata_dev_knobble(struct ata_device *dev) 1861 { 1862 struct ata_port *ap = dev->link->ap; 1863 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 1864 } 1865 1866 static void ata_dev_config_ncq(struct ata_device *dev, 1867 char *desc, size_t desc_sz) 1868 { 1869 struct ata_port *ap = dev->link->ap; 1870 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 1871 1872 if (!ata_id_has_ncq(dev->id)) { 1873 desc[0] = '\0'; 1874 return; 1875 } 1876 if (dev->horkage & ATA_HORKAGE_NONCQ) { 1877 snprintf(desc, desc_sz, "NCQ (not used)"); 1878 return; 1879 } 1880 if (ap->flags & ATA_FLAG_NCQ) { 1881 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 1882 dev->flags |= ATA_DFLAG_NCQ; 1883 } 1884 1885 if (hdepth >= ddepth) 1886 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 1887 else 1888 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 1889 } 1890 1891 /** 1892 * ata_dev_configure - Configure the specified ATA/ATAPI device 1893 * @dev: Target device to configure 1894 * 1895 * Configure @dev according to @dev->id. Generic and low-level 1896 * driver specific fixups are also applied. 1897 * 1898 * LOCKING: 1899 * Kernel thread context (may sleep) 1900 * 1901 * RETURNS: 1902 * 0 on success, -errno otherwise 1903 */ 1904 int ata_dev_configure(struct ata_device *dev) 1905 { 1906 struct ata_port *ap = dev->link->ap; 1907 struct ata_eh_context *ehc = &dev->link->eh_context; 1908 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1909 const u16 *id = dev->id; 1910 unsigned int xfer_mask; 1911 char revbuf[7]; /* XYZ-99\0 */ 1912 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 1913 char modelbuf[ATA_ID_PROD_LEN+1]; 1914 int rc; 1915 1916 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 1917 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 1918 __FUNCTION__); 1919 return 0; 1920 } 1921 1922 if (ata_msg_probe(ap)) 1923 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__); 1924 1925 /* set horkage */ 1926 dev->horkage |= ata_dev_blacklisted(dev); 1927 1928 /* let ACPI work its magic */ 1929 rc = ata_acpi_on_devcfg(dev); 1930 if (rc) 1931 return rc; 1932 1933 /* massage HPA, do it early as it might change IDENTIFY data */ 1934 rc = ata_hpa_resize(dev); 1935 if (rc) 1936 return rc; 1937 1938 /* print device capabilities */ 1939 if (ata_msg_probe(ap)) 1940 ata_dev_printk(dev, KERN_DEBUG, 1941 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 1942 "85:%04x 86:%04x 87:%04x 88:%04x\n", 1943 __FUNCTION__, 1944 id[49], id[82], id[83], id[84], 1945 id[85], id[86], id[87], id[88]); 1946 1947 /* initialize to-be-configured parameters */ 1948 dev->flags &= ~ATA_DFLAG_CFG_MASK; 1949 dev->max_sectors = 0; 1950 dev->cdb_len = 0; 1951 dev->n_sectors = 0; 1952 dev->cylinders = 0; 1953 dev->heads = 0; 1954 dev->sectors = 0; 1955 1956 /* 1957 * common ATA, ATAPI feature tests 1958 */ 1959 1960 /* find max transfer mode; for printk only */ 1961 xfer_mask = ata_id_xfermask(id); 1962 1963 if (ata_msg_probe(ap)) 1964 ata_dump_id(id); 1965 1966 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 1967 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 1968 sizeof(fwrevbuf)); 1969 1970 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 1971 sizeof(modelbuf)); 1972 1973 /* ATA-specific feature tests */ 1974 if (dev->class == ATA_DEV_ATA) { 1975 if (ata_id_is_cfa(id)) { 1976 if (id[162] & 1) /* CPRM may make this media unusable */ 1977 ata_dev_printk(dev, KERN_WARNING, 1978 "supports DRM functions and may " 1979 "not be fully accessable.\n"); 1980 snprintf(revbuf, 7, "CFA"); 1981 } 1982 else 1983 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 1984 1985 dev->n_sectors = ata_id_n_sectors(id); 1986 1987 if (dev->id[59] & 0x100) 1988 dev->multi_count = dev->id[59] & 0xff; 1989 1990 if (ata_id_has_lba(id)) { 1991 const char *lba_desc; 1992 char ncq_desc[20]; 1993 1994 lba_desc = "LBA"; 1995 dev->flags |= ATA_DFLAG_LBA; 1996 if (ata_id_has_lba48(id)) { 1997 dev->flags |= ATA_DFLAG_LBA48; 1998 lba_desc = "LBA48"; 1999 2000 if (dev->n_sectors >= (1UL << 28) && 2001 ata_id_has_flush_ext(id)) 2002 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2003 } 2004 2005 /* config NCQ */ 2006 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2007 2008 /* print device info to dmesg */ 2009 if (ata_msg_drv(ap) && print_info) { 2010 ata_dev_printk(dev, KERN_INFO, 2011 "%s: %s, %s, max %s\n", 2012 revbuf, modelbuf, fwrevbuf, 2013 ata_mode_string(xfer_mask)); 2014 ata_dev_printk(dev, KERN_INFO, 2015 "%Lu sectors, multi %u: %s %s\n", 2016 (unsigned long long)dev->n_sectors, 2017 dev->multi_count, lba_desc, ncq_desc); 2018 } 2019 } else { 2020 /* CHS */ 2021 2022 /* Default translation */ 2023 dev->cylinders = id[1]; 2024 dev->heads = id[3]; 2025 dev->sectors = id[6]; 2026 2027 if (ata_id_current_chs_valid(id)) { 2028 /* Current CHS translation is valid. */ 2029 dev->cylinders = id[54]; 2030 dev->heads = id[55]; 2031 dev->sectors = id[56]; 2032 } 2033 2034 /* print device info to dmesg */ 2035 if (ata_msg_drv(ap) && print_info) { 2036 ata_dev_printk(dev, KERN_INFO, 2037 "%s: %s, %s, max %s\n", 2038 revbuf, modelbuf, fwrevbuf, 2039 ata_mode_string(xfer_mask)); 2040 ata_dev_printk(dev, KERN_INFO, 2041 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2042 (unsigned long long)dev->n_sectors, 2043 dev->multi_count, dev->cylinders, 2044 dev->heads, dev->sectors); 2045 } 2046 } 2047 2048 dev->cdb_len = 16; 2049 } 2050 2051 /* ATAPI-specific feature tests */ 2052 else if (dev->class == ATA_DEV_ATAPI) { 2053 const char *cdb_intr_string = ""; 2054 const char *atapi_an_string = ""; 2055 u32 sntf; 2056 2057 rc = atapi_cdb_len(id); 2058 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2059 if (ata_msg_warn(ap)) 2060 ata_dev_printk(dev, KERN_WARNING, 2061 "unsupported CDB len\n"); 2062 rc = -EINVAL; 2063 goto err_out_nosup; 2064 } 2065 dev->cdb_len = (unsigned int) rc; 2066 2067 /* Enable ATAPI AN if both the host and device have 2068 * the support. If PMP is attached, SNTF is required 2069 * to enable ATAPI AN to discern between PHY status 2070 * changed notifications and ATAPI ANs. 2071 */ 2072 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2073 (!ap->nr_pmp_links || 2074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2075 unsigned int err_mask; 2076 2077 /* issue SET feature command to turn this on */ 2078 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE); 2079 if (err_mask) 2080 ata_dev_printk(dev, KERN_ERR, 2081 "failed to enable ATAPI AN " 2082 "(err_mask=0x%x)\n", err_mask); 2083 else { 2084 dev->flags |= ATA_DFLAG_AN; 2085 atapi_an_string = ", ATAPI AN"; 2086 } 2087 } 2088 2089 if (ata_id_cdb_intr(dev->id)) { 2090 dev->flags |= ATA_DFLAG_CDB_INTR; 2091 cdb_intr_string = ", CDB intr"; 2092 } 2093 2094 /* print device info to dmesg */ 2095 if (ata_msg_drv(ap) && print_info) 2096 ata_dev_printk(dev, KERN_INFO, 2097 "ATAPI: %s, %s, max %s%s%s\n", 2098 modelbuf, fwrevbuf, 2099 ata_mode_string(xfer_mask), 2100 cdb_intr_string, atapi_an_string); 2101 } 2102 2103 /* determine max_sectors */ 2104 dev->max_sectors = ATA_MAX_SECTORS; 2105 if (dev->flags & ATA_DFLAG_LBA48) 2106 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2107 2108 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2109 /* Let the user know. We don't want to disallow opens for 2110 rescue purposes, or in case the vendor is just a blithering 2111 idiot */ 2112 if (print_info) { 2113 ata_dev_printk(dev, KERN_WARNING, 2114 "Drive reports diagnostics failure. This may indicate a drive\n"); 2115 ata_dev_printk(dev, KERN_WARNING, 2116 "fault or invalid emulation. Contact drive vendor for information.\n"); 2117 } 2118 } 2119 2120 /* limit bridge transfers to udma5, 200 sectors */ 2121 if (ata_dev_knobble(dev)) { 2122 if (ata_msg_drv(ap) && print_info) 2123 ata_dev_printk(dev, KERN_INFO, 2124 "applying bridge limits\n"); 2125 dev->udma_mask &= ATA_UDMA5; 2126 dev->max_sectors = ATA_MAX_SECTORS; 2127 } 2128 2129 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2130 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2131 dev->max_sectors); 2132 2133 if (ap->ops->dev_config) 2134 ap->ops->dev_config(dev); 2135 2136 if (ata_msg_probe(ap)) 2137 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n", 2138 __FUNCTION__, ata_chk_status(ap)); 2139 return 0; 2140 2141 err_out_nosup: 2142 if (ata_msg_probe(ap)) 2143 ata_dev_printk(dev, KERN_DEBUG, 2144 "%s: EXIT, err\n", __FUNCTION__); 2145 return rc; 2146 } 2147 2148 /** 2149 * ata_cable_40wire - return 40 wire cable type 2150 * @ap: port 2151 * 2152 * Helper method for drivers which want to hardwire 40 wire cable 2153 * detection. 2154 */ 2155 2156 int ata_cable_40wire(struct ata_port *ap) 2157 { 2158 return ATA_CBL_PATA40; 2159 } 2160 2161 /** 2162 * ata_cable_80wire - return 80 wire cable type 2163 * @ap: port 2164 * 2165 * Helper method for drivers which want to hardwire 80 wire cable 2166 * detection. 2167 */ 2168 2169 int ata_cable_80wire(struct ata_port *ap) 2170 { 2171 return ATA_CBL_PATA80; 2172 } 2173 2174 /** 2175 * ata_cable_unknown - return unknown PATA cable. 2176 * @ap: port 2177 * 2178 * Helper method for drivers which have no PATA cable detection. 2179 */ 2180 2181 int ata_cable_unknown(struct ata_port *ap) 2182 { 2183 return ATA_CBL_PATA_UNK; 2184 } 2185 2186 /** 2187 * ata_cable_sata - return SATA cable type 2188 * @ap: port 2189 * 2190 * Helper method for drivers which have SATA cables 2191 */ 2192 2193 int ata_cable_sata(struct ata_port *ap) 2194 { 2195 return ATA_CBL_SATA; 2196 } 2197 2198 /** 2199 * ata_bus_probe - Reset and probe ATA bus 2200 * @ap: Bus to probe 2201 * 2202 * Master ATA bus probing function. Initiates a hardware-dependent 2203 * bus reset, then attempts to identify any devices found on 2204 * the bus. 2205 * 2206 * LOCKING: 2207 * PCI/etc. bus probe sem. 2208 * 2209 * RETURNS: 2210 * Zero on success, negative errno otherwise. 2211 */ 2212 2213 int ata_bus_probe(struct ata_port *ap) 2214 { 2215 unsigned int classes[ATA_MAX_DEVICES]; 2216 int tries[ATA_MAX_DEVICES]; 2217 int rc; 2218 struct ata_device *dev; 2219 2220 ata_port_probe(ap); 2221 2222 ata_link_for_each_dev(dev, &ap->link) 2223 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2224 2225 retry: 2226 /* reset and determine device classes */ 2227 ap->ops->phy_reset(ap); 2228 2229 ata_link_for_each_dev(dev, &ap->link) { 2230 if (!(ap->flags & ATA_FLAG_DISABLED) && 2231 dev->class != ATA_DEV_UNKNOWN) 2232 classes[dev->devno] = dev->class; 2233 else 2234 classes[dev->devno] = ATA_DEV_NONE; 2235 2236 dev->class = ATA_DEV_UNKNOWN; 2237 } 2238 2239 ata_port_probe(ap); 2240 2241 /* after the reset the device state is PIO 0 and the controller 2242 state is undefined. Record the mode */ 2243 2244 ata_link_for_each_dev(dev, &ap->link) 2245 dev->pio_mode = XFER_PIO_0; 2246 2247 /* read IDENTIFY page and configure devices. We have to do the identify 2248 specific sequence bass-ackwards so that PDIAG- is released by 2249 the slave device */ 2250 2251 ata_link_for_each_dev(dev, &ap->link) { 2252 if (tries[dev->devno]) 2253 dev->class = classes[dev->devno]; 2254 2255 if (!ata_dev_enabled(dev)) 2256 continue; 2257 2258 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2259 dev->id); 2260 if (rc) 2261 goto fail; 2262 } 2263 2264 /* Now ask for the cable type as PDIAG- should have been released */ 2265 if (ap->ops->cable_detect) 2266 ap->cbl = ap->ops->cable_detect(ap); 2267 2268 /* We may have SATA bridge glue hiding here irrespective of the 2269 reported cable types and sensed types */ 2270 ata_link_for_each_dev(dev, &ap->link) { 2271 if (!ata_dev_enabled(dev)) 2272 continue; 2273 /* SATA drives indicate we have a bridge. We don't know which 2274 end of the link the bridge is which is a problem */ 2275 if (ata_id_is_sata(dev->id)) 2276 ap->cbl = ATA_CBL_SATA; 2277 } 2278 2279 /* After the identify sequence we can now set up the devices. We do 2280 this in the normal order so that the user doesn't get confused */ 2281 2282 ata_link_for_each_dev(dev, &ap->link) { 2283 if (!ata_dev_enabled(dev)) 2284 continue; 2285 2286 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2287 rc = ata_dev_configure(dev); 2288 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2289 if (rc) 2290 goto fail; 2291 } 2292 2293 /* configure transfer mode */ 2294 rc = ata_set_mode(&ap->link, &dev); 2295 if (rc) 2296 goto fail; 2297 2298 ata_link_for_each_dev(dev, &ap->link) 2299 if (ata_dev_enabled(dev)) 2300 return 0; 2301 2302 /* no device present, disable port */ 2303 ata_port_disable(ap); 2304 return -ENODEV; 2305 2306 fail: 2307 tries[dev->devno]--; 2308 2309 switch (rc) { 2310 case -EINVAL: 2311 /* eeek, something went very wrong, give up */ 2312 tries[dev->devno] = 0; 2313 break; 2314 2315 case -ENODEV: 2316 /* give it just one more chance */ 2317 tries[dev->devno] = min(tries[dev->devno], 1); 2318 case -EIO: 2319 if (tries[dev->devno] == 1) { 2320 /* This is the last chance, better to slow 2321 * down than lose it. 2322 */ 2323 sata_down_spd_limit(&ap->link); 2324 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2325 } 2326 } 2327 2328 if (!tries[dev->devno]) 2329 ata_dev_disable(dev); 2330 2331 goto retry; 2332 } 2333 2334 /** 2335 * ata_port_probe - Mark port as enabled 2336 * @ap: Port for which we indicate enablement 2337 * 2338 * Modify @ap data structure such that the system 2339 * thinks that the entire port is enabled. 2340 * 2341 * LOCKING: host lock, or some other form of 2342 * serialization. 2343 */ 2344 2345 void ata_port_probe(struct ata_port *ap) 2346 { 2347 ap->flags &= ~ATA_FLAG_DISABLED; 2348 } 2349 2350 /** 2351 * sata_print_link_status - Print SATA link status 2352 * @link: SATA link to printk link status about 2353 * 2354 * This function prints link speed and status of a SATA link. 2355 * 2356 * LOCKING: 2357 * None. 2358 */ 2359 void sata_print_link_status(struct ata_link *link) 2360 { 2361 u32 sstatus, scontrol, tmp; 2362 2363 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2364 return; 2365 sata_scr_read(link, SCR_CONTROL, &scontrol); 2366 2367 if (ata_link_online(link)) { 2368 tmp = (sstatus >> 4) & 0xf; 2369 ata_link_printk(link, KERN_INFO, 2370 "SATA link up %s (SStatus %X SControl %X)\n", 2371 sata_spd_string(tmp), sstatus, scontrol); 2372 } else { 2373 ata_link_printk(link, KERN_INFO, 2374 "SATA link down (SStatus %X SControl %X)\n", 2375 sstatus, scontrol); 2376 } 2377 } 2378 2379 /** 2380 * __sata_phy_reset - Wake/reset a low-level SATA PHY 2381 * @ap: SATA port associated with target SATA PHY. 2382 * 2383 * This function issues commands to standard SATA Sxxx 2384 * PHY registers, to wake up the phy (and device), and 2385 * clear any reset condition. 2386 * 2387 * LOCKING: 2388 * PCI/etc. bus probe sem. 2389 * 2390 */ 2391 void __sata_phy_reset(struct ata_port *ap) 2392 { 2393 struct ata_link *link = &ap->link; 2394 unsigned long timeout = jiffies + (HZ * 5); 2395 u32 sstatus; 2396 2397 if (ap->flags & ATA_FLAG_SATA_RESET) { 2398 /* issue phy wake/reset */ 2399 sata_scr_write_flush(link, SCR_CONTROL, 0x301); 2400 /* Couldn't find anything in SATA I/II specs, but 2401 * AHCI-1.1 10.4.2 says at least 1 ms. */ 2402 mdelay(1); 2403 } 2404 /* phy wake/clear reset */ 2405 sata_scr_write_flush(link, SCR_CONTROL, 0x300); 2406 2407 /* wait for phy to become ready, if necessary */ 2408 do { 2409 msleep(200); 2410 sata_scr_read(link, SCR_STATUS, &sstatus); 2411 if ((sstatus & 0xf) != 1) 2412 break; 2413 } while (time_before(jiffies, timeout)); 2414 2415 /* print link status */ 2416 sata_print_link_status(link); 2417 2418 /* TODO: phy layer with polling, timeouts, etc. */ 2419 if (!ata_link_offline(link)) 2420 ata_port_probe(ap); 2421 else 2422 ata_port_disable(ap); 2423 2424 if (ap->flags & ATA_FLAG_DISABLED) 2425 return; 2426 2427 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { 2428 ata_port_disable(ap); 2429 return; 2430 } 2431 2432 ap->cbl = ATA_CBL_SATA; 2433 } 2434 2435 /** 2436 * sata_phy_reset - Reset SATA bus. 2437 * @ap: SATA port associated with target SATA PHY. 2438 * 2439 * This function resets the SATA bus, and then probes 2440 * the bus for devices. 2441 * 2442 * LOCKING: 2443 * PCI/etc. bus probe sem. 2444 * 2445 */ 2446 void sata_phy_reset(struct ata_port *ap) 2447 { 2448 __sata_phy_reset(ap); 2449 if (ap->flags & ATA_FLAG_DISABLED) 2450 return; 2451 ata_bus_reset(ap); 2452 } 2453 2454 /** 2455 * ata_dev_pair - return other device on cable 2456 * @adev: device 2457 * 2458 * Obtain the other device on the same cable, or if none is 2459 * present NULL is returned 2460 */ 2461 2462 struct ata_device *ata_dev_pair(struct ata_device *adev) 2463 { 2464 struct ata_link *link = adev->link; 2465 struct ata_device *pair = &link->device[1 - adev->devno]; 2466 if (!ata_dev_enabled(pair)) 2467 return NULL; 2468 return pair; 2469 } 2470 2471 /** 2472 * ata_port_disable - Disable port. 2473 * @ap: Port to be disabled. 2474 * 2475 * Modify @ap data structure such that the system 2476 * thinks that the entire port is disabled, and should 2477 * never attempt to probe or communicate with devices 2478 * on this port. 2479 * 2480 * LOCKING: host lock, or some other form of 2481 * serialization. 2482 */ 2483 2484 void ata_port_disable(struct ata_port *ap) 2485 { 2486 ap->link.device[0].class = ATA_DEV_NONE; 2487 ap->link.device[1].class = ATA_DEV_NONE; 2488 ap->flags |= ATA_FLAG_DISABLED; 2489 } 2490 2491 /** 2492 * sata_down_spd_limit - adjust SATA spd limit downward 2493 * @link: Link to adjust SATA spd limit for 2494 * 2495 * Adjust SATA spd limit of @link downward. Note that this 2496 * function only adjusts the limit. The change must be applied 2497 * using sata_set_spd(). 2498 * 2499 * LOCKING: 2500 * Inherited from caller. 2501 * 2502 * RETURNS: 2503 * 0 on success, negative errno on failure 2504 */ 2505 int sata_down_spd_limit(struct ata_link *link) 2506 { 2507 u32 sstatus, spd, mask; 2508 int rc, highbit; 2509 2510 if (!sata_scr_valid(link)) 2511 return -EOPNOTSUPP; 2512 2513 /* If SCR can be read, use it to determine the current SPD. 2514 * If not, use cached value in link->sata_spd. 2515 */ 2516 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2517 if (rc == 0) 2518 spd = (sstatus >> 4) & 0xf; 2519 else 2520 spd = link->sata_spd; 2521 2522 mask = link->sata_spd_limit; 2523 if (mask <= 1) 2524 return -EINVAL; 2525 2526 /* unconditionally mask off the highest bit */ 2527 highbit = fls(mask) - 1; 2528 mask &= ~(1 << highbit); 2529 2530 /* Mask off all speeds higher than or equal to the current 2531 * one. Force 1.5Gbps if current SPD is not available. 2532 */ 2533 if (spd > 1) 2534 mask &= (1 << (spd - 1)) - 1; 2535 else 2536 mask &= 1; 2537 2538 /* were we already at the bottom? */ 2539 if (!mask) 2540 return -EINVAL; 2541 2542 link->sata_spd_limit = mask; 2543 2544 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2545 sata_spd_string(fls(mask))); 2546 2547 return 0; 2548 } 2549 2550 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2551 { 2552 u32 spd, limit; 2553 2554 if (link->sata_spd_limit == UINT_MAX) 2555 limit = 0; 2556 else 2557 limit = fls(link->sata_spd_limit); 2558 2559 spd = (*scontrol >> 4) & 0xf; 2560 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4); 2561 2562 return spd != limit; 2563 } 2564 2565 /** 2566 * sata_set_spd_needed - is SATA spd configuration needed 2567 * @link: Link in question 2568 * 2569 * Test whether the spd limit in SControl matches 2570 * @link->sata_spd_limit. This function is used to determine 2571 * whether hardreset is necessary to apply SATA spd 2572 * configuration. 2573 * 2574 * LOCKING: 2575 * Inherited from caller. 2576 * 2577 * RETURNS: 2578 * 1 if SATA spd configuration is needed, 0 otherwise. 2579 */ 2580 int sata_set_spd_needed(struct ata_link *link) 2581 { 2582 u32 scontrol; 2583 2584 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2585 return 0; 2586 2587 return __sata_set_spd_needed(link, &scontrol); 2588 } 2589 2590 /** 2591 * sata_set_spd - set SATA spd according to spd limit 2592 * @link: Link to set SATA spd for 2593 * 2594 * Set SATA spd of @link according to sata_spd_limit. 2595 * 2596 * LOCKING: 2597 * Inherited from caller. 2598 * 2599 * RETURNS: 2600 * 0 if spd doesn't need to be changed, 1 if spd has been 2601 * changed. Negative errno if SCR registers are inaccessible. 2602 */ 2603 int sata_set_spd(struct ata_link *link) 2604 { 2605 u32 scontrol; 2606 int rc; 2607 2608 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2609 return rc; 2610 2611 if (!__sata_set_spd_needed(link, &scontrol)) 2612 return 0; 2613 2614 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2615 return rc; 2616 2617 return 1; 2618 } 2619 2620 /* 2621 * This mode timing computation functionality is ported over from 2622 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2623 */ 2624 /* 2625 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2626 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2627 * for UDMA6, which is currently supported only by Maxtor drives. 2628 * 2629 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2630 */ 2631 2632 static const struct ata_timing ata_timing[] = { 2633 2634 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2635 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2636 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2637 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2638 2639 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2640 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2641 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2642 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2643 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2644 2645 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2646 2647 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2648 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2649 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2650 2651 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2652 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2653 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2654 2655 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2656 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2657 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2658 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2659 2660 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2661 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2662 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2663 2664 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2665 2666 { 0xFF } 2667 }; 2668 2669 #define ENOUGH(v,unit) (((v)-1)/(unit)+1) 2670 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) 2671 2672 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2673 { 2674 q->setup = EZ(t->setup * 1000, T); 2675 q->act8b = EZ(t->act8b * 1000, T); 2676 q->rec8b = EZ(t->rec8b * 1000, T); 2677 q->cyc8b = EZ(t->cyc8b * 1000, T); 2678 q->active = EZ(t->active * 1000, T); 2679 q->recover = EZ(t->recover * 1000, T); 2680 q->cycle = EZ(t->cycle * 1000, T); 2681 q->udma = EZ(t->udma * 1000, UT); 2682 } 2683 2684 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2685 struct ata_timing *m, unsigned int what) 2686 { 2687 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2688 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2689 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2690 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2691 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2692 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2693 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2694 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2695 } 2696 2697 static const struct ata_timing* ata_timing_find_mode(unsigned short speed) 2698 { 2699 const struct ata_timing *t; 2700 2701 for (t = ata_timing; t->mode != speed; t++) 2702 if (t->mode == 0xFF) 2703 return NULL; 2704 return t; 2705 } 2706 2707 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2708 struct ata_timing *t, int T, int UT) 2709 { 2710 const struct ata_timing *s; 2711 struct ata_timing p; 2712 2713 /* 2714 * Find the mode. 2715 */ 2716 2717 if (!(s = ata_timing_find_mode(speed))) 2718 return -EINVAL; 2719 2720 memcpy(t, s, sizeof(*s)); 2721 2722 /* 2723 * If the drive is an EIDE drive, it can tell us it needs extended 2724 * PIO/MW_DMA cycle timing. 2725 */ 2726 2727 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2728 memset(&p, 0, sizeof(p)); 2729 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2730 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2731 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2732 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2733 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2734 } 2735 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2736 } 2737 2738 /* 2739 * Convert the timing to bus clock counts. 2740 */ 2741 2742 ata_timing_quantize(t, t, T, UT); 2743 2744 /* 2745 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2746 * S.M.A.R.T * and some other commands. We have to ensure that the 2747 * DMA cycle timing is slower/equal than the fastest PIO timing. 2748 */ 2749 2750 if (speed > XFER_PIO_6) { 2751 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2752 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2753 } 2754 2755 /* 2756 * Lengthen active & recovery time so that cycle time is correct. 2757 */ 2758 2759 if (t->act8b + t->rec8b < t->cyc8b) { 2760 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2761 t->rec8b = t->cyc8b - t->act8b; 2762 } 2763 2764 if (t->active + t->recover < t->cycle) { 2765 t->active += (t->cycle - (t->active + t->recover)) / 2; 2766 t->recover = t->cycle - t->active; 2767 } 2768 2769 /* In a few cases quantisation may produce enough errors to 2770 leave t->cycle too low for the sum of active and recovery 2771 if so we must correct this */ 2772 if (t->active + t->recover > t->cycle) 2773 t->cycle = t->active + t->recover; 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * ata_down_xfermask_limit - adjust dev xfer masks downward 2780 * @dev: Device to adjust xfer masks 2781 * @sel: ATA_DNXFER_* selector 2782 * 2783 * Adjust xfer masks of @dev downward. Note that this function 2784 * does not apply the change. Invoking ata_set_mode() afterwards 2785 * will apply the limit. 2786 * 2787 * LOCKING: 2788 * Inherited from caller. 2789 * 2790 * RETURNS: 2791 * 0 on success, negative errno on failure 2792 */ 2793 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 2794 { 2795 char buf[32]; 2796 unsigned int orig_mask, xfer_mask; 2797 unsigned int pio_mask, mwdma_mask, udma_mask; 2798 int quiet, highbit; 2799 2800 quiet = !!(sel & ATA_DNXFER_QUIET); 2801 sel &= ~ATA_DNXFER_QUIET; 2802 2803 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 2804 dev->mwdma_mask, 2805 dev->udma_mask); 2806 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 2807 2808 switch (sel) { 2809 case ATA_DNXFER_PIO: 2810 highbit = fls(pio_mask) - 1; 2811 pio_mask &= ~(1 << highbit); 2812 break; 2813 2814 case ATA_DNXFER_DMA: 2815 if (udma_mask) { 2816 highbit = fls(udma_mask) - 1; 2817 udma_mask &= ~(1 << highbit); 2818 if (!udma_mask) 2819 return -ENOENT; 2820 } else if (mwdma_mask) { 2821 highbit = fls(mwdma_mask) - 1; 2822 mwdma_mask &= ~(1 << highbit); 2823 if (!mwdma_mask) 2824 return -ENOENT; 2825 } 2826 break; 2827 2828 case ATA_DNXFER_40C: 2829 udma_mask &= ATA_UDMA_MASK_40C; 2830 break; 2831 2832 case ATA_DNXFER_FORCE_PIO0: 2833 pio_mask &= 1; 2834 case ATA_DNXFER_FORCE_PIO: 2835 mwdma_mask = 0; 2836 udma_mask = 0; 2837 break; 2838 2839 default: 2840 BUG(); 2841 } 2842 2843 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 2844 2845 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 2846 return -ENOENT; 2847 2848 if (!quiet) { 2849 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 2850 snprintf(buf, sizeof(buf), "%s:%s", 2851 ata_mode_string(xfer_mask), 2852 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 2853 else 2854 snprintf(buf, sizeof(buf), "%s", 2855 ata_mode_string(xfer_mask)); 2856 2857 ata_dev_printk(dev, KERN_WARNING, 2858 "limiting speed to %s\n", buf); 2859 } 2860 2861 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 2862 &dev->udma_mask); 2863 2864 return 0; 2865 } 2866 2867 static int ata_dev_set_mode(struct ata_device *dev) 2868 { 2869 struct ata_eh_context *ehc = &dev->link->eh_context; 2870 unsigned int err_mask; 2871 int rc; 2872 2873 dev->flags &= ~ATA_DFLAG_PIO; 2874 if (dev->xfer_shift == ATA_SHIFT_PIO) 2875 dev->flags |= ATA_DFLAG_PIO; 2876 2877 err_mask = ata_dev_set_xfermode(dev); 2878 /* Old CFA may refuse this command, which is just fine */ 2879 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id)) 2880 err_mask &= ~AC_ERR_DEV; 2881 /* Some very old devices and some bad newer ones fail any kind of 2882 SET_XFERMODE request but support PIO0-2 timings and no IORDY */ 2883 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) && 2884 dev->pio_mode <= XFER_PIO_2) 2885 err_mask &= ~AC_ERR_DEV; 2886 if (err_mask) { 2887 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 2888 "(err_mask=0x%x)\n", err_mask); 2889 return -EIO; 2890 } 2891 2892 ehc->i.flags |= ATA_EHI_POST_SETMODE; 2893 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 2894 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 2895 if (rc) 2896 return rc; 2897 2898 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 2899 dev->xfer_shift, (int)dev->xfer_mode); 2900 2901 ata_dev_printk(dev, KERN_INFO, "configured for %s\n", 2902 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode))); 2903 return 0; 2904 } 2905 2906 /** 2907 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 2908 * @link: link on which timings will be programmed 2909 * @r_failed_dev: out paramter for failed device 2910 * 2911 * Standard implementation of the function used to tune and set 2912 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 2913 * ata_dev_set_mode() fails, pointer to the failing device is 2914 * returned in @r_failed_dev. 2915 * 2916 * LOCKING: 2917 * PCI/etc. bus probe sem. 2918 * 2919 * RETURNS: 2920 * 0 on success, negative errno otherwise 2921 */ 2922 2923 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 2924 { 2925 struct ata_port *ap = link->ap; 2926 struct ata_device *dev; 2927 int rc = 0, used_dma = 0, found = 0; 2928 2929 /* step 1: calculate xfer_mask */ 2930 ata_link_for_each_dev(dev, link) { 2931 unsigned int pio_mask, dma_mask; 2932 unsigned int mode_mask; 2933 2934 if (!ata_dev_enabled(dev)) 2935 continue; 2936 2937 mode_mask = ATA_DMA_MASK_ATA; 2938 if (dev->class == ATA_DEV_ATAPI) 2939 mode_mask = ATA_DMA_MASK_ATAPI; 2940 else if (ata_id_is_cfa(dev->id)) 2941 mode_mask = ATA_DMA_MASK_CFA; 2942 2943 ata_dev_xfermask(dev); 2944 2945 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 2946 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2947 2948 if (libata_dma_mask & mode_mask) 2949 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 2950 else 2951 dma_mask = 0; 2952 2953 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 2954 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 2955 2956 found = 1; 2957 if (dev->dma_mode) 2958 used_dma = 1; 2959 } 2960 if (!found) 2961 goto out; 2962 2963 /* step 2: always set host PIO timings */ 2964 ata_link_for_each_dev(dev, link) { 2965 if (!ata_dev_enabled(dev)) 2966 continue; 2967 2968 if (!dev->pio_mode) { 2969 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 2970 rc = -EINVAL; 2971 goto out; 2972 } 2973 2974 dev->xfer_mode = dev->pio_mode; 2975 dev->xfer_shift = ATA_SHIFT_PIO; 2976 if (ap->ops->set_piomode) 2977 ap->ops->set_piomode(ap, dev); 2978 } 2979 2980 /* step 3: set host DMA timings */ 2981 ata_link_for_each_dev(dev, link) { 2982 if (!ata_dev_enabled(dev) || !dev->dma_mode) 2983 continue; 2984 2985 dev->xfer_mode = dev->dma_mode; 2986 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 2987 if (ap->ops->set_dmamode) 2988 ap->ops->set_dmamode(ap, dev); 2989 } 2990 2991 /* step 4: update devices' xfer mode */ 2992 ata_link_for_each_dev(dev, link) { 2993 /* don't update suspended devices' xfer mode */ 2994 if (!ata_dev_enabled(dev)) 2995 continue; 2996 2997 rc = ata_dev_set_mode(dev); 2998 if (rc) 2999 goto out; 3000 } 3001 3002 /* Record simplex status. If we selected DMA then the other 3003 * host channels are not permitted to do so. 3004 */ 3005 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3006 ap->host->simplex_claimed = ap; 3007 3008 out: 3009 if (rc) 3010 *r_failed_dev = dev; 3011 return rc; 3012 } 3013 3014 /** 3015 * ata_set_mode - Program timings and issue SET FEATURES - XFER 3016 * @link: link on which timings will be programmed 3017 * @r_failed_dev: out paramter for failed device 3018 * 3019 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3020 * ata_set_mode() fails, pointer to the failing device is 3021 * returned in @r_failed_dev. 3022 * 3023 * LOCKING: 3024 * PCI/etc. bus probe sem. 3025 * 3026 * RETURNS: 3027 * 0 on success, negative errno otherwise 3028 */ 3029 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3030 { 3031 struct ata_port *ap = link->ap; 3032 3033 /* has private set_mode? */ 3034 if (ap->ops->set_mode) 3035 return ap->ops->set_mode(link, r_failed_dev); 3036 return ata_do_set_mode(link, r_failed_dev); 3037 } 3038 3039 /** 3040 * ata_tf_to_host - issue ATA taskfile to host controller 3041 * @ap: port to which command is being issued 3042 * @tf: ATA taskfile register set 3043 * 3044 * Issues ATA taskfile register set to ATA host controller, 3045 * with proper synchronization with interrupt handler and 3046 * other threads. 3047 * 3048 * LOCKING: 3049 * spin_lock_irqsave(host lock) 3050 */ 3051 3052 static inline void ata_tf_to_host(struct ata_port *ap, 3053 const struct ata_taskfile *tf) 3054 { 3055 ap->ops->tf_load(ap, tf); 3056 ap->ops->exec_command(ap, tf); 3057 } 3058 3059 /** 3060 * ata_busy_sleep - sleep until BSY clears, or timeout 3061 * @ap: port containing status register to be polled 3062 * @tmout_pat: impatience timeout 3063 * @tmout: overall timeout 3064 * 3065 * Sleep until ATA Status register bit BSY clears, 3066 * or a timeout occurs. 3067 * 3068 * LOCKING: 3069 * Kernel thread context (may sleep). 3070 * 3071 * RETURNS: 3072 * 0 on success, -errno otherwise. 3073 */ 3074 int ata_busy_sleep(struct ata_port *ap, 3075 unsigned long tmout_pat, unsigned long tmout) 3076 { 3077 unsigned long timer_start, timeout; 3078 u8 status; 3079 3080 status = ata_busy_wait(ap, ATA_BUSY, 300); 3081 timer_start = jiffies; 3082 timeout = timer_start + tmout_pat; 3083 while (status != 0xff && (status & ATA_BUSY) && 3084 time_before(jiffies, timeout)) { 3085 msleep(50); 3086 status = ata_busy_wait(ap, ATA_BUSY, 3); 3087 } 3088 3089 if (status != 0xff && (status & ATA_BUSY)) 3090 ata_port_printk(ap, KERN_WARNING, 3091 "port is slow to respond, please be patient " 3092 "(Status 0x%x)\n", status); 3093 3094 timeout = timer_start + tmout; 3095 while (status != 0xff && (status & ATA_BUSY) && 3096 time_before(jiffies, timeout)) { 3097 msleep(50); 3098 status = ata_chk_status(ap); 3099 } 3100 3101 if (status == 0xff) 3102 return -ENODEV; 3103 3104 if (status & ATA_BUSY) { 3105 ata_port_printk(ap, KERN_ERR, "port failed to respond " 3106 "(%lu secs, Status 0x%x)\n", 3107 tmout / HZ, status); 3108 return -EBUSY; 3109 } 3110 3111 return 0; 3112 } 3113 3114 /** 3115 * ata_wait_ready - sleep until BSY clears, or timeout 3116 * @ap: port containing status register to be polled 3117 * @deadline: deadline jiffies for the operation 3118 * 3119 * Sleep until ATA Status register bit BSY clears, or timeout 3120 * occurs. 3121 * 3122 * LOCKING: 3123 * Kernel thread context (may sleep). 3124 * 3125 * RETURNS: 3126 * 0 on success, -errno otherwise. 3127 */ 3128 int ata_wait_ready(struct ata_port *ap, unsigned long deadline) 3129 { 3130 unsigned long start = jiffies; 3131 int warned = 0; 3132 3133 while (1) { 3134 u8 status = ata_chk_status(ap); 3135 unsigned long now = jiffies; 3136 3137 if (!(status & ATA_BUSY)) 3138 return 0; 3139 if (!ata_link_online(&ap->link) && status == 0xff) 3140 return -ENODEV; 3141 if (time_after(now, deadline)) 3142 return -EBUSY; 3143 3144 if (!warned && time_after(now, start + 5 * HZ) && 3145 (deadline - now > 3 * HZ)) { 3146 ata_port_printk(ap, KERN_WARNING, 3147 "port is slow to respond, please be patient " 3148 "(Status 0x%x)\n", status); 3149 warned = 1; 3150 } 3151 3152 msleep(50); 3153 } 3154 } 3155 3156 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, 3157 unsigned long deadline) 3158 { 3159 struct ata_ioports *ioaddr = &ap->ioaddr; 3160 unsigned int dev0 = devmask & (1 << 0); 3161 unsigned int dev1 = devmask & (1 << 1); 3162 int rc, ret = 0; 3163 3164 /* if device 0 was found in ata_devchk, wait for its 3165 * BSY bit to clear 3166 */ 3167 if (dev0) { 3168 rc = ata_wait_ready(ap, deadline); 3169 if (rc) { 3170 if (rc != -ENODEV) 3171 return rc; 3172 ret = rc; 3173 } 3174 } 3175 3176 /* if device 1 was found in ata_devchk, wait for register 3177 * access briefly, then wait for BSY to clear. 3178 */ 3179 if (dev1) { 3180 int i; 3181 3182 ap->ops->dev_select(ap, 1); 3183 3184 /* Wait for register access. Some ATAPI devices fail 3185 * to set nsect/lbal after reset, so don't waste too 3186 * much time on it. We're gonna wait for !BSY anyway. 3187 */ 3188 for (i = 0; i < 2; i++) { 3189 u8 nsect, lbal; 3190 3191 nsect = ioread8(ioaddr->nsect_addr); 3192 lbal = ioread8(ioaddr->lbal_addr); 3193 if ((nsect == 1) && (lbal == 1)) 3194 break; 3195 msleep(50); /* give drive a breather */ 3196 } 3197 3198 rc = ata_wait_ready(ap, deadline); 3199 if (rc) { 3200 if (rc != -ENODEV) 3201 return rc; 3202 ret = rc; 3203 } 3204 } 3205 3206 /* is all this really necessary? */ 3207 ap->ops->dev_select(ap, 0); 3208 if (dev1) 3209 ap->ops->dev_select(ap, 1); 3210 if (dev0) 3211 ap->ops->dev_select(ap, 0); 3212 3213 return ret; 3214 } 3215 3216 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 3217 unsigned long deadline) 3218 { 3219 struct ata_ioports *ioaddr = &ap->ioaddr; 3220 struct ata_device *dev; 3221 int i = 0; 3222 3223 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 3224 3225 /* software reset. causes dev0 to be selected */ 3226 iowrite8(ap->ctl, ioaddr->ctl_addr); 3227 udelay(20); /* FIXME: flush */ 3228 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 3229 udelay(20); /* FIXME: flush */ 3230 iowrite8(ap->ctl, ioaddr->ctl_addr); 3231 3232 /* If we issued an SRST then an ATA drive (not ATAPI) 3233 * may have changed configuration and be in PIO0 timing. If 3234 * we did a hard reset (or are coming from power on) this is 3235 * true for ATA or ATAPI. Until we've set a suitable controller 3236 * mode we should not touch the bus as we may be talking too fast. 3237 */ 3238 3239 ata_link_for_each_dev(dev, &ap->link) 3240 dev->pio_mode = XFER_PIO_0; 3241 3242 /* If the controller has a pio mode setup function then use 3243 it to set the chipset to rights. Don't touch the DMA setup 3244 as that will be dealt with when revalidating */ 3245 if (ap->ops->set_piomode) { 3246 ata_link_for_each_dev(dev, &ap->link) 3247 if (devmask & (1 << i++)) 3248 ap->ops->set_piomode(ap, dev); 3249 } 3250 3251 /* spec mandates ">= 2ms" before checking status. 3252 * We wait 150ms, because that was the magic delay used for 3253 * ATAPI devices in Hale Landis's ATADRVR, for the period of time 3254 * between when the ATA command register is written, and then 3255 * status is checked. Because waiting for "a while" before 3256 * checking status is fine, post SRST, we perform this magic 3257 * delay here as well. 3258 * 3259 * Old drivers/ide uses the 2mS rule and then waits for ready 3260 */ 3261 msleep(150); 3262 3263 /* Before we perform post reset processing we want to see if 3264 * the bus shows 0xFF because the odd clown forgets the D7 3265 * pulldown resistor. 3266 */ 3267 if (ata_check_status(ap) == 0xFF) 3268 return -ENODEV; 3269 3270 return ata_bus_post_reset(ap, devmask, deadline); 3271 } 3272 3273 /** 3274 * ata_bus_reset - reset host port and associated ATA channel 3275 * @ap: port to reset 3276 * 3277 * This is typically the first time we actually start issuing 3278 * commands to the ATA channel. We wait for BSY to clear, then 3279 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 3280 * result. Determine what devices, if any, are on the channel 3281 * by looking at the device 0/1 error register. Look at the signature 3282 * stored in each device's taskfile registers, to determine if 3283 * the device is ATA or ATAPI. 3284 * 3285 * LOCKING: 3286 * PCI/etc. bus probe sem. 3287 * Obtains host lock. 3288 * 3289 * SIDE EFFECTS: 3290 * Sets ATA_FLAG_DISABLED if bus reset fails. 3291 */ 3292 3293 void ata_bus_reset(struct ata_port *ap) 3294 { 3295 struct ata_device *device = ap->link.device; 3296 struct ata_ioports *ioaddr = &ap->ioaddr; 3297 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3298 u8 err; 3299 unsigned int dev0, dev1 = 0, devmask = 0; 3300 int rc; 3301 3302 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 3303 3304 /* determine if device 0/1 are present */ 3305 if (ap->flags & ATA_FLAG_SATA_RESET) 3306 dev0 = 1; 3307 else { 3308 dev0 = ata_devchk(ap, 0); 3309 if (slave_possible) 3310 dev1 = ata_devchk(ap, 1); 3311 } 3312 3313 if (dev0) 3314 devmask |= (1 << 0); 3315 if (dev1) 3316 devmask |= (1 << 1); 3317 3318 /* select device 0 again */ 3319 ap->ops->dev_select(ap, 0); 3320 3321 /* issue bus reset */ 3322 if (ap->flags & ATA_FLAG_SRST) { 3323 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 3324 if (rc && rc != -ENODEV) 3325 goto err_out; 3326 } 3327 3328 /* 3329 * determine by signature whether we have ATA or ATAPI devices 3330 */ 3331 device[0].class = ata_dev_try_classify(&device[0], dev0, &err); 3332 if ((slave_possible) && (err != 0x81)) 3333 device[1].class = ata_dev_try_classify(&device[1], dev1, &err); 3334 3335 /* is double-select really necessary? */ 3336 if (device[1].class != ATA_DEV_NONE) 3337 ap->ops->dev_select(ap, 1); 3338 if (device[0].class != ATA_DEV_NONE) 3339 ap->ops->dev_select(ap, 0); 3340 3341 /* if no devices were detected, disable this port */ 3342 if ((device[0].class == ATA_DEV_NONE) && 3343 (device[1].class == ATA_DEV_NONE)) 3344 goto err_out; 3345 3346 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 3347 /* set up device control for ATA_FLAG_SATA_RESET */ 3348 iowrite8(ap->ctl, ioaddr->ctl_addr); 3349 } 3350 3351 DPRINTK("EXIT\n"); 3352 return; 3353 3354 err_out: 3355 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 3356 ata_port_disable(ap); 3357 3358 DPRINTK("EXIT\n"); 3359 } 3360 3361 /** 3362 * sata_link_debounce - debounce SATA phy status 3363 * @link: ATA link to debounce SATA phy status for 3364 * @params: timing parameters { interval, duratinon, timeout } in msec 3365 * @deadline: deadline jiffies for the operation 3366 * 3367 * Make sure SStatus of @link reaches stable state, determined by 3368 * holding the same value where DET is not 1 for @duration polled 3369 * every @interval, before @timeout. Timeout constraints the 3370 * beginning of the stable state. Because DET gets stuck at 1 on 3371 * some controllers after hot unplugging, this functions waits 3372 * until timeout then returns 0 if DET is stable at 1. 3373 * 3374 * @timeout is further limited by @deadline. The sooner of the 3375 * two is used. 3376 * 3377 * LOCKING: 3378 * Kernel thread context (may sleep) 3379 * 3380 * RETURNS: 3381 * 0 on success, -errno on failure. 3382 */ 3383 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3384 unsigned long deadline) 3385 { 3386 unsigned long interval_msec = params[0]; 3387 unsigned long duration = msecs_to_jiffies(params[1]); 3388 unsigned long last_jiffies, t; 3389 u32 last, cur; 3390 int rc; 3391 3392 t = jiffies + msecs_to_jiffies(params[2]); 3393 if (time_before(t, deadline)) 3394 deadline = t; 3395 3396 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3397 return rc; 3398 cur &= 0xf; 3399 3400 last = cur; 3401 last_jiffies = jiffies; 3402 3403 while (1) { 3404 msleep(interval_msec); 3405 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3406 return rc; 3407 cur &= 0xf; 3408 3409 /* DET stable? */ 3410 if (cur == last) { 3411 if (cur == 1 && time_before(jiffies, deadline)) 3412 continue; 3413 if (time_after(jiffies, last_jiffies + duration)) 3414 return 0; 3415 continue; 3416 } 3417 3418 /* unstable, start over */ 3419 last = cur; 3420 last_jiffies = jiffies; 3421 3422 /* Check deadline. If debouncing failed, return 3423 * -EPIPE to tell upper layer to lower link speed. 3424 */ 3425 if (time_after(jiffies, deadline)) 3426 return -EPIPE; 3427 } 3428 } 3429 3430 /** 3431 * sata_link_resume - resume SATA link 3432 * @link: ATA link to resume SATA 3433 * @params: timing parameters { interval, duratinon, timeout } in msec 3434 * @deadline: deadline jiffies for the operation 3435 * 3436 * Resume SATA phy @link and debounce it. 3437 * 3438 * LOCKING: 3439 * Kernel thread context (may sleep) 3440 * 3441 * RETURNS: 3442 * 0 on success, -errno on failure. 3443 */ 3444 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3445 unsigned long deadline) 3446 { 3447 u32 scontrol; 3448 int rc; 3449 3450 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3451 return rc; 3452 3453 scontrol = (scontrol & 0x0f0) | 0x300; 3454 3455 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3456 return rc; 3457 3458 /* Some PHYs react badly if SStatus is pounded immediately 3459 * after resuming. Delay 200ms before debouncing. 3460 */ 3461 msleep(200); 3462 3463 return sata_link_debounce(link, params, deadline); 3464 } 3465 3466 /** 3467 * ata_std_prereset - prepare for reset 3468 * @link: ATA link to be reset 3469 * @deadline: deadline jiffies for the operation 3470 * 3471 * @link is about to be reset. Initialize it. Failure from 3472 * prereset makes libata abort whole reset sequence and give up 3473 * that port, so prereset should be best-effort. It does its 3474 * best to prepare for reset sequence but if things go wrong, it 3475 * should just whine, not fail. 3476 * 3477 * LOCKING: 3478 * Kernel thread context (may sleep) 3479 * 3480 * RETURNS: 3481 * 0 on success, -errno otherwise. 3482 */ 3483 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3484 { 3485 struct ata_port *ap = link->ap; 3486 struct ata_eh_context *ehc = &link->eh_context; 3487 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3488 int rc; 3489 3490 /* handle link resume */ 3491 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) && 3492 (link->flags & ATA_LFLAG_HRST_TO_RESUME)) 3493 ehc->i.action |= ATA_EH_HARDRESET; 3494 3495 /* Some PMPs don't work with only SRST, force hardreset if PMP 3496 * is supported. 3497 */ 3498 if (ap->flags & ATA_FLAG_PMP) 3499 ehc->i.action |= ATA_EH_HARDRESET; 3500 3501 /* if we're about to do hardreset, nothing more to do */ 3502 if (ehc->i.action & ATA_EH_HARDRESET) 3503 return 0; 3504 3505 /* if SATA, resume link */ 3506 if (ap->flags & ATA_FLAG_SATA) { 3507 rc = sata_link_resume(link, timing, deadline); 3508 /* whine about phy resume failure but proceed */ 3509 if (rc && rc != -EOPNOTSUPP) 3510 ata_link_printk(link, KERN_WARNING, "failed to resume " 3511 "link for reset (errno=%d)\n", rc); 3512 } 3513 3514 /* Wait for !BSY if the controller can wait for the first D2H 3515 * Reg FIS and we don't know that no device is attached. 3516 */ 3517 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) { 3518 rc = ata_wait_ready(ap, deadline); 3519 if (rc && rc != -ENODEV) { 3520 ata_link_printk(link, KERN_WARNING, "device not ready " 3521 "(errno=%d), forcing hardreset\n", rc); 3522 ehc->i.action |= ATA_EH_HARDRESET; 3523 } 3524 } 3525 3526 return 0; 3527 } 3528 3529 /** 3530 * ata_std_softreset - reset host port via ATA SRST 3531 * @link: ATA link to reset 3532 * @classes: resulting classes of attached devices 3533 * @deadline: deadline jiffies for the operation 3534 * 3535 * Reset host port using ATA SRST. 3536 * 3537 * LOCKING: 3538 * Kernel thread context (may sleep) 3539 * 3540 * RETURNS: 3541 * 0 on success, -errno otherwise. 3542 */ 3543 int ata_std_softreset(struct ata_link *link, unsigned int *classes, 3544 unsigned long deadline) 3545 { 3546 struct ata_port *ap = link->ap; 3547 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 3548 unsigned int devmask = 0; 3549 int rc; 3550 u8 err; 3551 3552 DPRINTK("ENTER\n"); 3553 3554 if (ata_link_offline(link)) { 3555 classes[0] = ATA_DEV_NONE; 3556 goto out; 3557 } 3558 3559 /* determine if device 0/1 are present */ 3560 if (ata_devchk(ap, 0)) 3561 devmask |= (1 << 0); 3562 if (slave_possible && ata_devchk(ap, 1)) 3563 devmask |= (1 << 1); 3564 3565 /* select device 0 again */ 3566 ap->ops->dev_select(ap, 0); 3567 3568 /* issue bus reset */ 3569 DPRINTK("about to softreset, devmask=%x\n", devmask); 3570 rc = ata_bus_softreset(ap, devmask, deadline); 3571 /* if link is occupied, -ENODEV too is an error */ 3572 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 3573 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 3574 return rc; 3575 } 3576 3577 /* determine by signature whether we have ATA or ATAPI devices */ 3578 classes[0] = ata_dev_try_classify(&link->device[0], 3579 devmask & (1 << 0), &err); 3580 if (slave_possible && err != 0x81) 3581 classes[1] = ata_dev_try_classify(&link->device[1], 3582 devmask & (1 << 1), &err); 3583 3584 out: 3585 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 3586 return 0; 3587 } 3588 3589 /** 3590 * sata_link_hardreset - reset link via SATA phy reset 3591 * @link: link to reset 3592 * @timing: timing parameters { interval, duratinon, timeout } in msec 3593 * @deadline: deadline jiffies for the operation 3594 * 3595 * SATA phy-reset @link using DET bits of SControl register. 3596 * 3597 * LOCKING: 3598 * Kernel thread context (may sleep) 3599 * 3600 * RETURNS: 3601 * 0 on success, -errno otherwise. 3602 */ 3603 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3604 unsigned long deadline) 3605 { 3606 u32 scontrol; 3607 int rc; 3608 3609 DPRINTK("ENTER\n"); 3610 3611 if (sata_set_spd_needed(link)) { 3612 /* SATA spec says nothing about how to reconfigure 3613 * spd. To be on the safe side, turn off phy during 3614 * reconfiguration. This works for at least ICH7 AHCI 3615 * and Sil3124. 3616 */ 3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3618 goto out; 3619 3620 scontrol = (scontrol & 0x0f0) | 0x304; 3621 3622 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3623 goto out; 3624 3625 sata_set_spd(link); 3626 } 3627 3628 /* issue phy wake/reset */ 3629 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3630 goto out; 3631 3632 scontrol = (scontrol & 0x0f0) | 0x301; 3633 3634 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3635 goto out; 3636 3637 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3638 * 10.4.2 says at least 1 ms. 3639 */ 3640 msleep(1); 3641 3642 /* bring link back */ 3643 rc = sata_link_resume(link, timing, deadline); 3644 out: 3645 DPRINTK("EXIT, rc=%d\n", rc); 3646 return rc; 3647 } 3648 3649 /** 3650 * sata_std_hardreset - reset host port via SATA phy reset 3651 * @link: link to reset 3652 * @class: resulting class of attached device 3653 * @deadline: deadline jiffies for the operation 3654 * 3655 * SATA phy-reset host port using DET bits of SControl register, 3656 * wait for !BSY and classify the attached device. 3657 * 3658 * LOCKING: 3659 * Kernel thread context (may sleep) 3660 * 3661 * RETURNS: 3662 * 0 on success, -errno otherwise. 3663 */ 3664 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3665 unsigned long deadline) 3666 { 3667 struct ata_port *ap = link->ap; 3668 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3669 int rc; 3670 3671 DPRINTK("ENTER\n"); 3672 3673 /* do hardreset */ 3674 rc = sata_link_hardreset(link, timing, deadline); 3675 if (rc) { 3676 ata_link_printk(link, KERN_ERR, 3677 "COMRESET failed (errno=%d)\n", rc); 3678 return rc; 3679 } 3680 3681 /* TODO: phy layer with polling, timeouts, etc. */ 3682 if (ata_link_offline(link)) { 3683 *class = ATA_DEV_NONE; 3684 DPRINTK("EXIT, link offline\n"); 3685 return 0; 3686 } 3687 3688 /* wait a while before checking status, see SRST for more info */ 3689 msleep(150); 3690 3691 /* If PMP is supported, we have to do follow-up SRST. Note 3692 * that some PMPs don't send D2H Reg FIS after hardreset at 3693 * all if the first port is empty. Wait for it just for a 3694 * second and request follow-up SRST. 3695 */ 3696 if (ap->flags & ATA_FLAG_PMP) { 3697 ata_wait_ready(ap, jiffies + HZ); 3698 return -EAGAIN; 3699 } 3700 3701 rc = ata_wait_ready(ap, deadline); 3702 /* link occupied, -ENODEV too is an error */ 3703 if (rc) { 3704 ata_link_printk(link, KERN_ERR, 3705 "COMRESET failed (errno=%d)\n", rc); 3706 return rc; 3707 } 3708 3709 ap->ops->dev_select(ap, 0); /* probably unnecessary */ 3710 3711 *class = ata_dev_try_classify(link->device, 1, NULL); 3712 3713 DPRINTK("EXIT, class=%u\n", *class); 3714 return 0; 3715 } 3716 3717 /** 3718 * ata_std_postreset - standard postreset callback 3719 * @link: the target ata_link 3720 * @classes: classes of attached devices 3721 * 3722 * This function is invoked after a successful reset. Note that 3723 * the device might have been reset more than once using 3724 * different reset methods before postreset is invoked. 3725 * 3726 * LOCKING: 3727 * Kernel thread context (may sleep) 3728 */ 3729 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3730 { 3731 struct ata_port *ap = link->ap; 3732 u32 serror; 3733 3734 DPRINTK("ENTER\n"); 3735 3736 /* print link status */ 3737 sata_print_link_status(link); 3738 3739 /* clear SError */ 3740 if (sata_scr_read(link, SCR_ERROR, &serror) == 0) 3741 sata_scr_write(link, SCR_ERROR, serror); 3742 3743 /* is double-select really necessary? */ 3744 if (classes[0] != ATA_DEV_NONE) 3745 ap->ops->dev_select(ap, 1); 3746 if (classes[1] != ATA_DEV_NONE) 3747 ap->ops->dev_select(ap, 0); 3748 3749 /* bail out if no device is present */ 3750 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 3751 DPRINTK("EXIT, no device\n"); 3752 return; 3753 } 3754 3755 /* set up device control */ 3756 if (ap->ioaddr.ctl_addr) 3757 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 3758 3759 DPRINTK("EXIT\n"); 3760 } 3761 3762 /** 3763 * ata_dev_same_device - Determine whether new ID matches configured device 3764 * @dev: device to compare against 3765 * @new_class: class of the new device 3766 * @new_id: IDENTIFY page of the new device 3767 * 3768 * Compare @new_class and @new_id against @dev and determine 3769 * whether @dev is the device indicated by @new_class and 3770 * @new_id. 3771 * 3772 * LOCKING: 3773 * None. 3774 * 3775 * RETURNS: 3776 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3777 */ 3778 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3779 const u16 *new_id) 3780 { 3781 const u16 *old_id = dev->id; 3782 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3783 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3784 3785 if (dev->class != new_class) { 3786 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3787 dev->class, new_class); 3788 return 0; 3789 } 3790 3791 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3792 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3793 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3794 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3795 3796 if (strcmp(model[0], model[1])) { 3797 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3798 "'%s' != '%s'\n", model[0], model[1]); 3799 return 0; 3800 } 3801 3802 if (strcmp(serial[0], serial[1])) { 3803 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3804 "'%s' != '%s'\n", serial[0], serial[1]); 3805 return 0; 3806 } 3807 3808 return 1; 3809 } 3810 3811 /** 3812 * ata_dev_reread_id - Re-read IDENTIFY data 3813 * @dev: target ATA device 3814 * @readid_flags: read ID flags 3815 * 3816 * Re-read IDENTIFY page and make sure @dev is still attached to 3817 * the port. 3818 * 3819 * LOCKING: 3820 * Kernel thread context (may sleep) 3821 * 3822 * RETURNS: 3823 * 0 on success, negative errno otherwise 3824 */ 3825 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3826 { 3827 unsigned int class = dev->class; 3828 u16 *id = (void *)dev->link->ap->sector_buf; 3829 int rc; 3830 3831 /* read ID data */ 3832 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3833 if (rc) 3834 return rc; 3835 3836 /* is the device still there? */ 3837 if (!ata_dev_same_device(dev, class, id)) 3838 return -ENODEV; 3839 3840 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3841 return 0; 3842 } 3843 3844 /** 3845 * ata_dev_revalidate - Revalidate ATA device 3846 * @dev: device to revalidate 3847 * @new_class: new class code 3848 * @readid_flags: read ID flags 3849 * 3850 * Re-read IDENTIFY page, make sure @dev is still attached to the 3851 * port and reconfigure it according to the new IDENTIFY page. 3852 * 3853 * LOCKING: 3854 * Kernel thread context (may sleep) 3855 * 3856 * RETURNS: 3857 * 0 on success, negative errno otherwise 3858 */ 3859 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3860 unsigned int readid_flags) 3861 { 3862 u64 n_sectors = dev->n_sectors; 3863 int rc; 3864 3865 if (!ata_dev_enabled(dev)) 3866 return -ENODEV; 3867 3868 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3869 if (ata_class_enabled(new_class) && 3870 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3871 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3872 dev->class, new_class); 3873 rc = -ENODEV; 3874 goto fail; 3875 } 3876 3877 /* re-read ID */ 3878 rc = ata_dev_reread_id(dev, readid_flags); 3879 if (rc) 3880 goto fail; 3881 3882 /* configure device according to the new ID */ 3883 rc = ata_dev_configure(dev); 3884 if (rc) 3885 goto fail; 3886 3887 /* verify n_sectors hasn't changed */ 3888 if (dev->class == ATA_DEV_ATA && n_sectors && 3889 dev->n_sectors != n_sectors) { 3890 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3891 "%llu != %llu\n", 3892 (unsigned long long)n_sectors, 3893 (unsigned long long)dev->n_sectors); 3894 3895 /* restore original n_sectors */ 3896 dev->n_sectors = n_sectors; 3897 3898 rc = -ENODEV; 3899 goto fail; 3900 } 3901 3902 return 0; 3903 3904 fail: 3905 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3906 return rc; 3907 } 3908 3909 struct ata_blacklist_entry { 3910 const char *model_num; 3911 const char *model_rev; 3912 unsigned long horkage; 3913 }; 3914 3915 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3916 /* Devices with DMA related problems under Linux */ 3917 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3918 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3919 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3920 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3921 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3922 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3923 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3924 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3925 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3926 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3927 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3928 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3929 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3930 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3931 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3932 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3933 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3934 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3935 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3936 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3937 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3938 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3939 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3940 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3941 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3942 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3943 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3944 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3945 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA }, 3946 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3947 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */ 3948 { "IOMEGA ZIP 250 ATAPI Floppy", 3949 NULL, ATA_HORKAGE_NODMA }, 3950 /* Odd clown on sil3726/4726 PMPs */ 3951 { "Config Disk", NULL, ATA_HORKAGE_NODMA | 3952 ATA_HORKAGE_SKIP_PM }, 3953 3954 /* Weird ATAPI devices */ 3955 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3956 3957 /* Devices we expect to fail diagnostics */ 3958 3959 /* Devices where NCQ should be avoided */ 3960 /* NCQ is slow */ 3961 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3962 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3963 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3964 /* NCQ is broken */ 3965 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3966 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3967 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ }, 3968 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ }, 3969 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3970 3971 /* Blacklist entries taken from Silicon Image 3124/3132 3972 Windows driver .inf file - also several Linux problem reports */ 3973 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3974 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3975 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3976 /* Drives which do spurious command completion */ 3977 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, }, 3978 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, }, 3979 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, }, 3980 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, }, 3981 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3982 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, }, 3983 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, }, 3984 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, }, 3985 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, }, 3986 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, }, 3987 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, }, 3988 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, }, 3989 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, }, 3990 3991 /* devices which puke on READ_NATIVE_MAX */ 3992 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3993 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3994 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3995 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3996 3997 /* Devices which report 1 sector over size HPA */ 3998 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3999 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4000 4001 /* End Marker */ 4002 { } 4003 }; 4004 4005 int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4006 { 4007 const char *p; 4008 int len; 4009 4010 /* 4011 * check for trailing wildcard: *\0 4012 */ 4013 p = strchr(patt, wildchar); 4014 if (p && ((*(p + 1)) == 0)) 4015 len = p - patt; 4016 else 4017 len = strlen(name); 4018 4019 return strncmp(patt, name, len); 4020 } 4021 4022 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4023 { 4024 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4025 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4026 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4027 4028 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4029 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4030 4031 while (ad->model_num) { 4032 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4033 if (ad->model_rev == NULL) 4034 return ad->horkage; 4035 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4036 return ad->horkage; 4037 } 4038 ad++; 4039 } 4040 return 0; 4041 } 4042 4043 static int ata_dma_blacklisted(const struct ata_device *dev) 4044 { 4045 /* We don't support polling DMA. 4046 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4047 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4048 */ 4049 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4050 (dev->flags & ATA_DFLAG_CDB_INTR)) 4051 return 1; 4052 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4053 } 4054 4055 /** 4056 * ata_dev_xfermask - Compute supported xfermask of the given device 4057 * @dev: Device to compute xfermask for 4058 * 4059 * Compute supported xfermask of @dev and store it in 4060 * dev->*_mask. This function is responsible for applying all 4061 * known limits including host controller limits, device 4062 * blacklist, etc... 4063 * 4064 * LOCKING: 4065 * None. 4066 */ 4067 static void ata_dev_xfermask(struct ata_device *dev) 4068 { 4069 struct ata_link *link = dev->link; 4070 struct ata_port *ap = link->ap; 4071 struct ata_host *host = ap->host; 4072 unsigned long xfer_mask; 4073 4074 /* controller modes available */ 4075 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4076 ap->mwdma_mask, ap->udma_mask); 4077 4078 /* drive modes available */ 4079 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4080 dev->mwdma_mask, dev->udma_mask); 4081 xfer_mask &= ata_id_xfermask(dev->id); 4082 4083 /* 4084 * CFA Advanced TrueIDE timings are not allowed on a shared 4085 * cable 4086 */ 4087 if (ata_dev_pair(dev)) { 4088 /* No PIO5 or PIO6 */ 4089 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4090 /* No MWDMA3 or MWDMA 4 */ 4091 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4092 } 4093 4094 if (ata_dma_blacklisted(dev)) { 4095 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4096 ata_dev_printk(dev, KERN_WARNING, 4097 "device is on DMA blacklist, disabling DMA\n"); 4098 } 4099 4100 if ((host->flags & ATA_HOST_SIMPLEX) && 4101 host->simplex_claimed && host->simplex_claimed != ap) { 4102 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4103 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4104 "other device, disabling DMA\n"); 4105 } 4106 4107 if (ap->flags & ATA_FLAG_NO_IORDY) 4108 xfer_mask &= ata_pio_mask_no_iordy(dev); 4109 4110 if (ap->ops->mode_filter) 4111 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4112 4113 /* Apply cable rule here. Don't apply it early because when 4114 * we handle hot plug the cable type can itself change. 4115 * Check this last so that we know if the transfer rate was 4116 * solely limited by the cable. 4117 * Unknown or 80 wire cables reported host side are checked 4118 * drive side as well. Cases where we know a 40wire cable 4119 * is used safely for 80 are not checked here. 4120 */ 4121 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4122 /* UDMA/44 or higher would be available */ 4123 if((ap->cbl == ATA_CBL_PATA40) || 4124 (ata_drive_40wire(dev->id) && 4125 (ap->cbl == ATA_CBL_PATA_UNK || 4126 ap->cbl == ATA_CBL_PATA80))) { 4127 ata_dev_printk(dev, KERN_WARNING, 4128 "limited to UDMA/33 due to 40-wire cable\n"); 4129 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4130 } 4131 4132 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4133 &dev->mwdma_mask, &dev->udma_mask); 4134 } 4135 4136 /** 4137 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4138 * @dev: Device to which command will be sent 4139 * 4140 * Issue SET FEATURES - XFER MODE command to device @dev 4141 * on port @ap. 4142 * 4143 * LOCKING: 4144 * PCI/etc. bus probe sem. 4145 * 4146 * RETURNS: 4147 * 0 on success, AC_ERR_* mask otherwise. 4148 */ 4149 4150 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4151 { 4152 struct ata_taskfile tf; 4153 unsigned int err_mask; 4154 4155 /* set up set-features taskfile */ 4156 DPRINTK("set features - xfer mode\n"); 4157 4158 /* Some controllers and ATAPI devices show flaky interrupt 4159 * behavior after setting xfer mode. Use polling instead. 4160 */ 4161 ata_tf_init(dev, &tf); 4162 tf.command = ATA_CMD_SET_FEATURES; 4163 tf.feature = SETFEATURES_XFER; 4164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4165 tf.protocol = ATA_PROT_NODATA; 4166 tf.nsect = dev->xfer_mode; 4167 4168 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4169 4170 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4171 return err_mask; 4172 } 4173 4174 /** 4175 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES 4176 * @dev: Device to which command will be sent 4177 * @enable: Whether to enable or disable the feature 4178 * 4179 * Issue SET FEATURES - SATA FEATURES command to device @dev 4180 * on port @ap with sector count set to indicate Asynchronous 4181 * Notification feature 4182 * 4183 * LOCKING: 4184 * PCI/etc. bus probe sem. 4185 * 4186 * RETURNS: 4187 * 0 on success, AC_ERR_* mask otherwise. 4188 */ 4189 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable) 4190 { 4191 struct ata_taskfile tf; 4192 unsigned int err_mask; 4193 4194 /* set up set-features taskfile */ 4195 DPRINTK("set features - SATA features\n"); 4196 4197 ata_tf_init(dev, &tf); 4198 tf.command = ATA_CMD_SET_FEATURES; 4199 tf.feature = enable; 4200 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4201 tf.protocol = ATA_PROT_NODATA; 4202 tf.nsect = SATA_AN; 4203 4204 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4205 4206 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4207 return err_mask; 4208 } 4209 4210 /** 4211 * ata_dev_init_params - Issue INIT DEV PARAMS command 4212 * @dev: Device to which command will be sent 4213 * @heads: Number of heads (taskfile parameter) 4214 * @sectors: Number of sectors (taskfile parameter) 4215 * 4216 * LOCKING: 4217 * Kernel thread context (may sleep) 4218 * 4219 * RETURNS: 4220 * 0 on success, AC_ERR_* mask otherwise. 4221 */ 4222 static unsigned int ata_dev_init_params(struct ata_device *dev, 4223 u16 heads, u16 sectors) 4224 { 4225 struct ata_taskfile tf; 4226 unsigned int err_mask; 4227 4228 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4229 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4230 return AC_ERR_INVALID; 4231 4232 /* set up init dev params taskfile */ 4233 DPRINTK("init dev params \n"); 4234 4235 ata_tf_init(dev, &tf); 4236 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4237 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4238 tf.protocol = ATA_PROT_NODATA; 4239 tf.nsect = sectors; 4240 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4241 4242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4243 /* A clean abort indicates an original or just out of spec drive 4244 and we should continue as we issue the setup based on the 4245 drive reported working geometry */ 4246 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4247 err_mask = 0; 4248 4249 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4250 return err_mask; 4251 } 4252 4253 /** 4254 * ata_sg_clean - Unmap DMA memory associated with command 4255 * @qc: Command containing DMA memory to be released 4256 * 4257 * Unmap all mapped DMA memory associated with this command. 4258 * 4259 * LOCKING: 4260 * spin_lock_irqsave(host lock) 4261 */ 4262 void ata_sg_clean(struct ata_queued_cmd *qc) 4263 { 4264 struct ata_port *ap = qc->ap; 4265 struct scatterlist *sg = qc->__sg; 4266 int dir = qc->dma_dir; 4267 void *pad_buf = NULL; 4268 4269 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP)); 4270 WARN_ON(sg == NULL); 4271 4272 if (qc->flags & ATA_QCFLAG_SINGLE) 4273 WARN_ON(qc->n_elem > 1); 4274 4275 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4276 4277 /* if we padded the buffer out to 32-bit bound, and data 4278 * xfer direction is from-device, we must copy from the 4279 * pad buffer back into the supplied buffer 4280 */ 4281 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) 4282 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4283 4284 if (qc->flags & ATA_QCFLAG_SG) { 4285 if (qc->n_elem) 4286 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4287 /* restore last sg */ 4288 sg[qc->orig_n_elem - 1].length += qc->pad_len; 4289 if (pad_buf) { 4290 struct scatterlist *psg = &qc->pad_sgent; 4291 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4292 memcpy(addr + psg->offset, pad_buf, qc->pad_len); 4293 kunmap_atomic(addr, KM_IRQ0); 4294 } 4295 } else { 4296 if (qc->n_elem) 4297 dma_unmap_single(ap->dev, 4298 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), 4299 dir); 4300 /* restore sg */ 4301 sg->length += qc->pad_len; 4302 if (pad_buf) 4303 memcpy(qc->buf_virt + sg->length - qc->pad_len, 4304 pad_buf, qc->pad_len); 4305 } 4306 4307 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4308 qc->__sg = NULL; 4309 } 4310 4311 /** 4312 * ata_fill_sg - Fill PCI IDE PRD table 4313 * @qc: Metadata associated with taskfile to be transferred 4314 * 4315 * Fill PCI IDE PRD (scatter-gather) table with segments 4316 * associated with the current disk command. 4317 * 4318 * LOCKING: 4319 * spin_lock_irqsave(host lock) 4320 * 4321 */ 4322 static void ata_fill_sg(struct ata_queued_cmd *qc) 4323 { 4324 struct ata_port *ap = qc->ap; 4325 struct scatterlist *sg; 4326 unsigned int idx; 4327 4328 WARN_ON(qc->__sg == NULL); 4329 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4330 4331 idx = 0; 4332 ata_for_each_sg(sg, qc) { 4333 u32 addr, offset; 4334 u32 sg_len, len; 4335 4336 /* determine if physical DMA addr spans 64K boundary. 4337 * Note h/w doesn't support 64-bit, so we unconditionally 4338 * truncate dma_addr_t to u32. 4339 */ 4340 addr = (u32) sg_dma_address(sg); 4341 sg_len = sg_dma_len(sg); 4342 4343 while (sg_len) { 4344 offset = addr & 0xffff; 4345 len = sg_len; 4346 if ((offset + sg_len) > 0x10000) 4347 len = 0x10000 - offset; 4348 4349 ap->prd[idx].addr = cpu_to_le32(addr); 4350 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); 4351 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4352 4353 idx++; 4354 sg_len -= len; 4355 addr += len; 4356 } 4357 } 4358 4359 if (idx) 4360 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4361 } 4362 4363 /** 4364 * ata_fill_sg_dumb - Fill PCI IDE PRD table 4365 * @qc: Metadata associated with taskfile to be transferred 4366 * 4367 * Fill PCI IDE PRD (scatter-gather) table with segments 4368 * associated with the current disk command. Perform the fill 4369 * so that we avoid writing any length 64K records for 4370 * controllers that don't follow the spec. 4371 * 4372 * LOCKING: 4373 * spin_lock_irqsave(host lock) 4374 * 4375 */ 4376 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 4377 { 4378 struct ata_port *ap = qc->ap; 4379 struct scatterlist *sg; 4380 unsigned int idx; 4381 4382 WARN_ON(qc->__sg == NULL); 4383 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0); 4384 4385 idx = 0; 4386 ata_for_each_sg(sg, qc) { 4387 u32 addr, offset; 4388 u32 sg_len, len, blen; 4389 4390 /* determine if physical DMA addr spans 64K boundary. 4391 * Note h/w doesn't support 64-bit, so we unconditionally 4392 * truncate dma_addr_t to u32. 4393 */ 4394 addr = (u32) sg_dma_address(sg); 4395 sg_len = sg_dma_len(sg); 4396 4397 while (sg_len) { 4398 offset = addr & 0xffff; 4399 len = sg_len; 4400 if ((offset + sg_len) > 0x10000) 4401 len = 0x10000 - offset; 4402 4403 blen = len & 0xffff; 4404 ap->prd[idx].addr = cpu_to_le32(addr); 4405 if (blen == 0) { 4406 /* Some PATA chipsets like the CS5530 can't 4407 cope with 0x0000 meaning 64K as the spec says */ 4408 ap->prd[idx].flags_len = cpu_to_le32(0x8000); 4409 blen = 0x8000; 4410 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000); 4411 } 4412 ap->prd[idx].flags_len = cpu_to_le32(blen); 4413 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); 4414 4415 idx++; 4416 sg_len -= len; 4417 addr += len; 4418 } 4419 } 4420 4421 if (idx) 4422 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 4423 } 4424 4425 /** 4426 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4427 * @qc: Metadata associated with taskfile to check 4428 * 4429 * Allow low-level driver to filter ATA PACKET commands, returning 4430 * a status indicating whether or not it is OK to use DMA for the 4431 * supplied PACKET command. 4432 * 4433 * LOCKING: 4434 * spin_lock_irqsave(host lock) 4435 * 4436 * RETURNS: 0 when ATAPI DMA can be used 4437 * nonzero otherwise 4438 */ 4439 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4440 { 4441 struct ata_port *ap = qc->ap; 4442 4443 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4444 * few ATAPI devices choke on such DMA requests. 4445 */ 4446 if (unlikely(qc->nbytes & 15)) 4447 return 1; 4448 4449 if (ap->ops->check_atapi_dma) 4450 return ap->ops->check_atapi_dma(qc); 4451 4452 return 0; 4453 } 4454 4455 /** 4456 * ata_std_qc_defer - Check whether a qc needs to be deferred 4457 * @qc: ATA command in question 4458 * 4459 * Non-NCQ commands cannot run with any other command, NCQ or 4460 * not. As upper layer only knows the queue depth, we are 4461 * responsible for maintaining exclusion. This function checks 4462 * whether a new command @qc can be issued. 4463 * 4464 * LOCKING: 4465 * spin_lock_irqsave(host lock) 4466 * 4467 * RETURNS: 4468 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4469 */ 4470 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4471 { 4472 struct ata_link *link = qc->dev->link; 4473 4474 if (qc->tf.protocol == ATA_PROT_NCQ) { 4475 if (!ata_tag_valid(link->active_tag)) 4476 return 0; 4477 } else { 4478 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4479 return 0; 4480 } 4481 4482 return ATA_DEFER_LINK; 4483 } 4484 4485 /** 4486 * ata_qc_prep - Prepare taskfile for submission 4487 * @qc: Metadata associated with taskfile to be prepared 4488 * 4489 * Prepare ATA taskfile for submission. 4490 * 4491 * LOCKING: 4492 * spin_lock_irqsave(host lock) 4493 */ 4494 void ata_qc_prep(struct ata_queued_cmd *qc) 4495 { 4496 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4497 return; 4498 4499 ata_fill_sg(qc); 4500 } 4501 4502 /** 4503 * ata_dumb_qc_prep - Prepare taskfile for submission 4504 * @qc: Metadata associated with taskfile to be prepared 4505 * 4506 * Prepare ATA taskfile for submission. 4507 * 4508 * LOCKING: 4509 * spin_lock_irqsave(host lock) 4510 */ 4511 void ata_dumb_qc_prep(struct ata_queued_cmd *qc) 4512 { 4513 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 4514 return; 4515 4516 ata_fill_sg_dumb(qc); 4517 } 4518 4519 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4520 4521 /** 4522 * ata_sg_init_one - Associate command with memory buffer 4523 * @qc: Command to be associated 4524 * @buf: Memory buffer 4525 * @buflen: Length of memory buffer, in bytes. 4526 * 4527 * Initialize the data-related elements of queued_cmd @qc 4528 * to point to a single memory buffer, @buf of byte length @buflen. 4529 * 4530 * LOCKING: 4531 * spin_lock_irqsave(host lock) 4532 */ 4533 4534 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) 4535 { 4536 qc->flags |= ATA_QCFLAG_SINGLE; 4537 4538 qc->__sg = &qc->sgent; 4539 qc->n_elem = 1; 4540 qc->orig_n_elem = 1; 4541 qc->buf_virt = buf; 4542 qc->nbytes = buflen; 4543 4544 sg_init_one(&qc->sgent, buf, buflen); 4545 } 4546 4547 /** 4548 * ata_sg_init - Associate command with scatter-gather table. 4549 * @qc: Command to be associated 4550 * @sg: Scatter-gather table. 4551 * @n_elem: Number of elements in s/g table. 4552 * 4553 * Initialize the data-related elements of queued_cmd @qc 4554 * to point to a scatter-gather table @sg, containing @n_elem 4555 * elements. 4556 * 4557 * LOCKING: 4558 * spin_lock_irqsave(host lock) 4559 */ 4560 4561 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4562 unsigned int n_elem) 4563 { 4564 qc->flags |= ATA_QCFLAG_SG; 4565 qc->__sg = sg; 4566 qc->n_elem = n_elem; 4567 qc->orig_n_elem = n_elem; 4568 } 4569 4570 /** 4571 * ata_sg_setup_one - DMA-map the memory buffer associated with a command. 4572 * @qc: Command with memory buffer to be mapped. 4573 * 4574 * DMA-map the memory buffer associated with queued_cmd @qc. 4575 * 4576 * LOCKING: 4577 * spin_lock_irqsave(host lock) 4578 * 4579 * RETURNS: 4580 * Zero on success, negative on error. 4581 */ 4582 4583 static int ata_sg_setup_one(struct ata_queued_cmd *qc) 4584 { 4585 struct ata_port *ap = qc->ap; 4586 int dir = qc->dma_dir; 4587 struct scatterlist *sg = qc->__sg; 4588 dma_addr_t dma_address; 4589 int trim_sg = 0; 4590 4591 /* we must lengthen transfers to end on a 32-bit boundary */ 4592 qc->pad_len = sg->length & 3; 4593 if (qc->pad_len) { 4594 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4595 struct scatterlist *psg = &qc->pad_sgent; 4596 4597 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4598 4599 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4600 4601 if (qc->tf.flags & ATA_TFLAG_WRITE) 4602 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, 4603 qc->pad_len); 4604 4605 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4606 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4607 /* trim sg */ 4608 sg->length -= qc->pad_len; 4609 if (sg->length == 0) 4610 trim_sg = 1; 4611 4612 DPRINTK("padding done, sg->length=%u pad_len=%u\n", 4613 sg->length, qc->pad_len); 4614 } 4615 4616 if (trim_sg) { 4617 qc->n_elem--; 4618 goto skip_map; 4619 } 4620 4621 dma_address = dma_map_single(ap->dev, qc->buf_virt, 4622 sg->length, dir); 4623 if (dma_mapping_error(dma_address)) { 4624 /* restore sg */ 4625 sg->length += qc->pad_len; 4626 return -1; 4627 } 4628 4629 sg_dma_address(sg) = dma_address; 4630 sg_dma_len(sg) = sg->length; 4631 4632 skip_map: 4633 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), 4634 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4635 4636 return 0; 4637 } 4638 4639 /** 4640 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4641 * @qc: Command with scatter-gather table to be mapped. 4642 * 4643 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4644 * 4645 * LOCKING: 4646 * spin_lock_irqsave(host lock) 4647 * 4648 * RETURNS: 4649 * Zero on success, negative on error. 4650 * 4651 */ 4652 4653 static int ata_sg_setup(struct ata_queued_cmd *qc) 4654 { 4655 struct ata_port *ap = qc->ap; 4656 struct scatterlist *sg = qc->__sg; 4657 struct scatterlist *lsg = &sg[qc->n_elem - 1]; 4658 int n_elem, pre_n_elem, dir, trim_sg = 0; 4659 4660 VPRINTK("ENTER, ata%u\n", ap->print_id); 4661 WARN_ON(!(qc->flags & ATA_QCFLAG_SG)); 4662 4663 /* we must lengthen transfers to end on a 32-bit boundary */ 4664 qc->pad_len = lsg->length & 3; 4665 if (qc->pad_len) { 4666 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); 4667 struct scatterlist *psg = &qc->pad_sgent; 4668 unsigned int offset; 4669 4670 WARN_ON(qc->dev->class != ATA_DEV_ATAPI); 4671 4672 memset(pad_buf, 0, ATA_DMA_PAD_SZ); 4673 4674 /* 4675 * psg->page/offset are used to copy to-be-written 4676 * data in this function or read data in ata_sg_clean. 4677 */ 4678 offset = lsg->offset + lsg->length - qc->pad_len; 4679 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); 4680 psg->offset = offset_in_page(offset); 4681 4682 if (qc->tf.flags & ATA_TFLAG_WRITE) { 4683 void *addr = kmap_atomic(psg->page, KM_IRQ0); 4684 memcpy(pad_buf, addr + psg->offset, qc->pad_len); 4685 kunmap_atomic(addr, KM_IRQ0); 4686 } 4687 4688 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); 4689 sg_dma_len(psg) = ATA_DMA_PAD_SZ; 4690 /* trim last sg */ 4691 lsg->length -= qc->pad_len; 4692 if (lsg->length == 0) 4693 trim_sg = 1; 4694 4695 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", 4696 qc->n_elem - 1, lsg->length, qc->pad_len); 4697 } 4698 4699 pre_n_elem = qc->n_elem; 4700 if (trim_sg && pre_n_elem) 4701 pre_n_elem--; 4702 4703 if (!pre_n_elem) { 4704 n_elem = 0; 4705 goto skip_map; 4706 } 4707 4708 dir = qc->dma_dir; 4709 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir); 4710 if (n_elem < 1) { 4711 /* restore last sg */ 4712 lsg->length += qc->pad_len; 4713 return -1; 4714 } 4715 4716 DPRINTK("%d sg elements mapped\n", n_elem); 4717 4718 skip_map: 4719 qc->n_elem = n_elem; 4720 4721 return 0; 4722 } 4723 4724 /** 4725 * swap_buf_le16 - swap halves of 16-bit words in place 4726 * @buf: Buffer to swap 4727 * @buf_words: Number of 16-bit words in buffer. 4728 * 4729 * Swap halves of 16-bit words if needed to convert from 4730 * little-endian byte order to native cpu byte order, or 4731 * vice-versa. 4732 * 4733 * LOCKING: 4734 * Inherited from caller. 4735 */ 4736 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4737 { 4738 #ifdef __BIG_ENDIAN 4739 unsigned int i; 4740 4741 for (i = 0; i < buf_words; i++) 4742 buf[i] = le16_to_cpu(buf[i]); 4743 #endif /* __BIG_ENDIAN */ 4744 } 4745 4746 /** 4747 * ata_data_xfer - Transfer data by PIO 4748 * @adev: device to target 4749 * @buf: data buffer 4750 * @buflen: buffer length 4751 * @write_data: read/write 4752 * 4753 * Transfer data from/to the device data register by PIO. 4754 * 4755 * LOCKING: 4756 * Inherited from caller. 4757 */ 4758 void ata_data_xfer(struct ata_device *adev, unsigned char *buf, 4759 unsigned int buflen, int write_data) 4760 { 4761 struct ata_port *ap = adev->link->ap; 4762 unsigned int words = buflen >> 1; 4763 4764 /* Transfer multiple of 2 bytes */ 4765 if (write_data) 4766 iowrite16_rep(ap->ioaddr.data_addr, buf, words); 4767 else 4768 ioread16_rep(ap->ioaddr.data_addr, buf, words); 4769 4770 /* Transfer trailing 1 byte, if any. */ 4771 if (unlikely(buflen & 0x01)) { 4772 u16 align_buf[1] = { 0 }; 4773 unsigned char *trailing_buf = buf + buflen - 1; 4774 4775 if (write_data) { 4776 memcpy(align_buf, trailing_buf, 1); 4777 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); 4778 } else { 4779 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr)); 4780 memcpy(trailing_buf, align_buf, 1); 4781 } 4782 } 4783 } 4784 4785 /** 4786 * ata_data_xfer_noirq - Transfer data by PIO 4787 * @adev: device to target 4788 * @buf: data buffer 4789 * @buflen: buffer length 4790 * @write_data: read/write 4791 * 4792 * Transfer data from/to the device data register by PIO. Do the 4793 * transfer with interrupts disabled. 4794 * 4795 * LOCKING: 4796 * Inherited from caller. 4797 */ 4798 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf, 4799 unsigned int buflen, int write_data) 4800 { 4801 unsigned long flags; 4802 local_irq_save(flags); 4803 ata_data_xfer(adev, buf, buflen, write_data); 4804 local_irq_restore(flags); 4805 } 4806 4807 4808 /** 4809 * ata_pio_sector - Transfer a sector of data. 4810 * @qc: Command on going 4811 * 4812 * Transfer qc->sect_size bytes of data from/to the ATA device. 4813 * 4814 * LOCKING: 4815 * Inherited from caller. 4816 */ 4817 4818 static void ata_pio_sector(struct ata_queued_cmd *qc) 4819 { 4820 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4821 struct scatterlist *sg = qc->__sg; 4822 struct ata_port *ap = qc->ap; 4823 struct page *page; 4824 unsigned int offset; 4825 unsigned char *buf; 4826 4827 if (qc->curbytes == qc->nbytes - qc->sect_size) 4828 ap->hsm_task_state = HSM_ST_LAST; 4829 4830 page = sg[qc->cursg].page; 4831 offset = sg[qc->cursg].offset + qc->cursg_ofs; 4832 4833 /* get the current page and offset */ 4834 page = nth_page(page, (offset >> PAGE_SHIFT)); 4835 offset %= PAGE_SIZE; 4836 4837 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4838 4839 if (PageHighMem(page)) { 4840 unsigned long flags; 4841 4842 /* FIXME: use a bounce buffer */ 4843 local_irq_save(flags); 4844 buf = kmap_atomic(page, KM_IRQ0); 4845 4846 /* do the actual data transfer */ 4847 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4848 4849 kunmap_atomic(buf, KM_IRQ0); 4850 local_irq_restore(flags); 4851 } else { 4852 buf = page_address(page); 4853 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); 4854 } 4855 4856 qc->curbytes += qc->sect_size; 4857 qc->cursg_ofs += qc->sect_size; 4858 4859 if (qc->cursg_ofs == (&sg[qc->cursg])->length) { 4860 qc->cursg++; 4861 qc->cursg_ofs = 0; 4862 } 4863 } 4864 4865 /** 4866 * ata_pio_sectors - Transfer one or many sectors. 4867 * @qc: Command on going 4868 * 4869 * Transfer one or many sectors of data from/to the 4870 * ATA device for the DRQ request. 4871 * 4872 * LOCKING: 4873 * Inherited from caller. 4874 */ 4875 4876 static void ata_pio_sectors(struct ata_queued_cmd *qc) 4877 { 4878 if (is_multi_taskfile(&qc->tf)) { 4879 /* READ/WRITE MULTIPLE */ 4880 unsigned int nsect; 4881 4882 WARN_ON(qc->dev->multi_count == 0); 4883 4884 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 4885 qc->dev->multi_count); 4886 while (nsect--) 4887 ata_pio_sector(qc); 4888 } else 4889 ata_pio_sector(qc); 4890 4891 ata_altstatus(qc->ap); /* flush */ 4892 } 4893 4894 /** 4895 * atapi_send_cdb - Write CDB bytes to hardware 4896 * @ap: Port to which ATAPI device is attached. 4897 * @qc: Taskfile currently active 4898 * 4899 * When device has indicated its readiness to accept 4900 * a CDB, this function is called. Send the CDB. 4901 * 4902 * LOCKING: 4903 * caller. 4904 */ 4905 4906 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 4907 { 4908 /* send SCSI cdb */ 4909 DPRINTK("send cdb\n"); 4910 WARN_ON(qc->dev->cdb_len < 12); 4911 4912 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 4913 ata_altstatus(ap); /* flush */ 4914 4915 switch (qc->tf.protocol) { 4916 case ATA_PROT_ATAPI: 4917 ap->hsm_task_state = HSM_ST; 4918 break; 4919 case ATA_PROT_ATAPI_NODATA: 4920 ap->hsm_task_state = HSM_ST_LAST; 4921 break; 4922 case ATA_PROT_ATAPI_DMA: 4923 ap->hsm_task_state = HSM_ST_LAST; 4924 /* initiate bmdma */ 4925 ap->ops->bmdma_start(qc); 4926 break; 4927 } 4928 } 4929 4930 /** 4931 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 4932 * @qc: Command on going 4933 * @bytes: number of bytes 4934 * 4935 * Transfer Transfer data from/to the ATAPI device. 4936 * 4937 * LOCKING: 4938 * Inherited from caller. 4939 * 4940 */ 4941 4942 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 4943 { 4944 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 4945 struct scatterlist *sg = qc->__sg; 4946 struct ata_port *ap = qc->ap; 4947 struct page *page; 4948 unsigned char *buf; 4949 unsigned int offset, count; 4950 4951 if (qc->curbytes + bytes >= qc->nbytes) 4952 ap->hsm_task_state = HSM_ST_LAST; 4953 4954 next_sg: 4955 if (unlikely(qc->cursg >= qc->n_elem)) { 4956 /* 4957 * The end of qc->sg is reached and the device expects 4958 * more data to transfer. In order not to overrun qc->sg 4959 * and fulfill length specified in the byte count register, 4960 * - for read case, discard trailing data from the device 4961 * - for write case, padding zero data to the device 4962 */ 4963 u16 pad_buf[1] = { 0 }; 4964 unsigned int words = bytes >> 1; 4965 unsigned int i; 4966 4967 if (words) /* warning if bytes > 1 */ 4968 ata_dev_printk(qc->dev, KERN_WARNING, 4969 "%u bytes trailing data\n", bytes); 4970 4971 for (i = 0; i < words; i++) 4972 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write); 4973 4974 ap->hsm_task_state = HSM_ST_LAST; 4975 return; 4976 } 4977 4978 sg = &qc->__sg[qc->cursg]; 4979 4980 page = sg->page; 4981 offset = sg->offset + qc->cursg_ofs; 4982 4983 /* get the current page and offset */ 4984 page = nth_page(page, (offset >> PAGE_SHIFT)); 4985 offset %= PAGE_SIZE; 4986 4987 /* don't overrun current sg */ 4988 count = min(sg->length - qc->cursg_ofs, bytes); 4989 4990 /* don't cross page boundaries */ 4991 count = min(count, (unsigned int)PAGE_SIZE - offset); 4992 4993 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 4994 4995 if (PageHighMem(page)) { 4996 unsigned long flags; 4997 4998 /* FIXME: use bounce buffer */ 4999 local_irq_save(flags); 5000 buf = kmap_atomic(page, KM_IRQ0); 5001 5002 /* do the actual data transfer */ 5003 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 5004 5005 kunmap_atomic(buf, KM_IRQ0); 5006 local_irq_restore(flags); 5007 } else { 5008 buf = page_address(page); 5009 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write); 5010 } 5011 5012 bytes -= count; 5013 qc->curbytes += count; 5014 qc->cursg_ofs += count; 5015 5016 if (qc->cursg_ofs == sg->length) { 5017 qc->cursg++; 5018 qc->cursg_ofs = 0; 5019 } 5020 5021 if (bytes) 5022 goto next_sg; 5023 } 5024 5025 /** 5026 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 5027 * @qc: Command on going 5028 * 5029 * Transfer Transfer data from/to the ATAPI device. 5030 * 5031 * LOCKING: 5032 * Inherited from caller. 5033 */ 5034 5035 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 5036 { 5037 struct ata_port *ap = qc->ap; 5038 struct ata_device *dev = qc->dev; 5039 unsigned int ireason, bc_lo, bc_hi, bytes; 5040 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 5041 5042 /* Abuse qc->result_tf for temp storage of intermediate TF 5043 * here to save some kernel stack usage. 5044 * For normal completion, qc->result_tf is not relevant. For 5045 * error, qc->result_tf is later overwritten by ata_qc_complete(). 5046 * So, the correctness of qc->result_tf is not affected. 5047 */ 5048 ap->ops->tf_read(ap, &qc->result_tf); 5049 ireason = qc->result_tf.nsect; 5050 bc_lo = qc->result_tf.lbam; 5051 bc_hi = qc->result_tf.lbah; 5052 bytes = (bc_hi << 8) | bc_lo; 5053 5054 /* shall be cleared to zero, indicating xfer of data */ 5055 if (ireason & (1 << 0)) 5056 goto err_out; 5057 5058 /* make sure transfer direction matches expected */ 5059 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 5060 if (do_write != i_write) 5061 goto err_out; 5062 5063 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 5064 5065 __atapi_pio_bytes(qc, bytes); 5066 ata_altstatus(ap); /* flush */ 5067 5068 return; 5069 5070 err_out: 5071 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n"); 5072 qc->err_mask |= AC_ERR_HSM; 5073 ap->hsm_task_state = HSM_ST_ERR; 5074 } 5075 5076 /** 5077 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 5078 * @ap: the target ata_port 5079 * @qc: qc on going 5080 * 5081 * RETURNS: 5082 * 1 if ok in workqueue, 0 otherwise. 5083 */ 5084 5085 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 5086 { 5087 if (qc->tf.flags & ATA_TFLAG_POLLING) 5088 return 1; 5089 5090 if (ap->hsm_task_state == HSM_ST_FIRST) { 5091 if (qc->tf.protocol == ATA_PROT_PIO && 5092 (qc->tf.flags & ATA_TFLAG_WRITE)) 5093 return 1; 5094 5095 if (is_atapi_taskfile(&qc->tf) && 5096 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5097 return 1; 5098 } 5099 5100 return 0; 5101 } 5102 5103 /** 5104 * ata_hsm_qc_complete - finish a qc running on standard HSM 5105 * @qc: Command to complete 5106 * @in_wq: 1 if called from workqueue, 0 otherwise 5107 * 5108 * Finish @qc which is running on standard HSM. 5109 * 5110 * LOCKING: 5111 * If @in_wq is zero, spin_lock_irqsave(host lock). 5112 * Otherwise, none on entry and grabs host lock. 5113 */ 5114 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 5115 { 5116 struct ata_port *ap = qc->ap; 5117 unsigned long flags; 5118 5119 if (ap->ops->error_handler) { 5120 if (in_wq) { 5121 spin_lock_irqsave(ap->lock, flags); 5122 5123 /* EH might have kicked in while host lock is 5124 * released. 5125 */ 5126 qc = ata_qc_from_tag(ap, qc->tag); 5127 if (qc) { 5128 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 5129 ap->ops->irq_on(ap); 5130 ata_qc_complete(qc); 5131 } else 5132 ata_port_freeze(ap); 5133 } 5134 5135 spin_unlock_irqrestore(ap->lock, flags); 5136 } else { 5137 if (likely(!(qc->err_mask & AC_ERR_HSM))) 5138 ata_qc_complete(qc); 5139 else 5140 ata_port_freeze(ap); 5141 } 5142 } else { 5143 if (in_wq) { 5144 spin_lock_irqsave(ap->lock, flags); 5145 ap->ops->irq_on(ap); 5146 ata_qc_complete(qc); 5147 spin_unlock_irqrestore(ap->lock, flags); 5148 } else 5149 ata_qc_complete(qc); 5150 } 5151 } 5152 5153 /** 5154 * ata_hsm_move - move the HSM to the next state. 5155 * @ap: the target ata_port 5156 * @qc: qc on going 5157 * @status: current device status 5158 * @in_wq: 1 if called from workqueue, 0 otherwise 5159 * 5160 * RETURNS: 5161 * 1 when poll next status needed, 0 otherwise. 5162 */ 5163 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 5164 u8 status, int in_wq) 5165 { 5166 unsigned long flags = 0; 5167 int poll_next; 5168 5169 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 5170 5171 /* Make sure ata_qc_issue_prot() does not throw things 5172 * like DMA polling into the workqueue. Notice that 5173 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 5174 */ 5175 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 5176 5177 fsm_start: 5178 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 5179 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 5180 5181 switch (ap->hsm_task_state) { 5182 case HSM_ST_FIRST: 5183 /* Send first data block or PACKET CDB */ 5184 5185 /* If polling, we will stay in the work queue after 5186 * sending the data. Otherwise, interrupt handler 5187 * takes over after sending the data. 5188 */ 5189 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 5190 5191 /* check device status */ 5192 if (unlikely((status & ATA_DRQ) == 0)) { 5193 /* handle BSY=0, DRQ=0 as error */ 5194 if (likely(status & (ATA_ERR | ATA_DF))) 5195 /* device stops HSM for abort/error */ 5196 qc->err_mask |= AC_ERR_DEV; 5197 else 5198 /* HSM violation. Let EH handle this */ 5199 qc->err_mask |= AC_ERR_HSM; 5200 5201 ap->hsm_task_state = HSM_ST_ERR; 5202 goto fsm_start; 5203 } 5204 5205 /* Device should not ask for data transfer (DRQ=1) 5206 * when it finds something wrong. 5207 * We ignore DRQ here and stop the HSM by 5208 * changing hsm_task_state to HSM_ST_ERR and 5209 * let the EH abort the command or reset the device. 5210 */ 5211 if (unlikely(status & (ATA_ERR | ATA_DF))) { 5212 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device " 5213 "error, dev_stat 0x%X\n", status); 5214 qc->err_mask |= AC_ERR_HSM; 5215 ap->hsm_task_state = HSM_ST_ERR; 5216 goto fsm_start; 5217 } 5218 5219 /* Send the CDB (atapi) or the first data block (ata pio out). 5220 * During the state transition, interrupt handler shouldn't 5221 * be invoked before the data transfer is complete and 5222 * hsm_task_state is changed. Hence, the following locking. 5223 */ 5224 if (in_wq) 5225 spin_lock_irqsave(ap->lock, flags); 5226 5227 if (qc->tf.protocol == ATA_PROT_PIO) { 5228 /* PIO data out protocol. 5229 * send first data block. 5230 */ 5231 5232 /* ata_pio_sectors() might change the state 5233 * to HSM_ST_LAST. so, the state is changed here 5234 * before ata_pio_sectors(). 5235 */ 5236 ap->hsm_task_state = HSM_ST; 5237 ata_pio_sectors(qc); 5238 } else 5239 /* send CDB */ 5240 atapi_send_cdb(ap, qc); 5241 5242 if (in_wq) 5243 spin_unlock_irqrestore(ap->lock, flags); 5244 5245 /* if polling, ata_pio_task() handles the rest. 5246 * otherwise, interrupt handler takes over from here. 5247 */ 5248 break; 5249 5250 case HSM_ST: 5251 /* complete command or read/write the data register */ 5252 if (qc->tf.protocol == ATA_PROT_ATAPI) { 5253 /* ATAPI PIO protocol */ 5254 if ((status & ATA_DRQ) == 0) { 5255 /* No more data to transfer or device error. 5256 * Device error will be tagged in HSM_ST_LAST. 5257 */ 5258 ap->hsm_task_state = HSM_ST_LAST; 5259 goto fsm_start; 5260 } 5261 5262 /* Device should not ask for data transfer (DRQ=1) 5263 * when it finds something wrong. 5264 * We ignore DRQ here and stop the HSM by 5265 * changing hsm_task_state to HSM_ST_ERR and 5266 * let the EH abort the command or reset the device. 5267 */ 5268 if (unlikely(status & (ATA_ERR | ATA_DF))) { 5269 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 5270 "device error, dev_stat 0x%X\n", 5271 status); 5272 qc->err_mask |= AC_ERR_HSM; 5273 ap->hsm_task_state = HSM_ST_ERR; 5274 goto fsm_start; 5275 } 5276 5277 atapi_pio_bytes(qc); 5278 5279 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 5280 /* bad ireason reported by device */ 5281 goto fsm_start; 5282 5283 } else { 5284 /* ATA PIO protocol */ 5285 if (unlikely((status & ATA_DRQ) == 0)) { 5286 /* handle BSY=0, DRQ=0 as error */ 5287 if (likely(status & (ATA_ERR | ATA_DF))) 5288 /* device stops HSM for abort/error */ 5289 qc->err_mask |= AC_ERR_DEV; 5290 else 5291 /* HSM violation. Let EH handle this. 5292 * Phantom devices also trigger this 5293 * condition. Mark hint. 5294 */ 5295 qc->err_mask |= AC_ERR_HSM | 5296 AC_ERR_NODEV_HINT; 5297 5298 ap->hsm_task_state = HSM_ST_ERR; 5299 goto fsm_start; 5300 } 5301 5302 /* For PIO reads, some devices may ask for 5303 * data transfer (DRQ=1) alone with ERR=1. 5304 * We respect DRQ here and transfer one 5305 * block of junk data before changing the 5306 * hsm_task_state to HSM_ST_ERR. 5307 * 5308 * For PIO writes, ERR=1 DRQ=1 doesn't make 5309 * sense since the data block has been 5310 * transferred to the device. 5311 */ 5312 if (unlikely(status & (ATA_ERR | ATA_DF))) { 5313 /* data might be corrputed */ 5314 qc->err_mask |= AC_ERR_DEV; 5315 5316 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 5317 ata_pio_sectors(qc); 5318 status = ata_wait_idle(ap); 5319 } 5320 5321 if (status & (ATA_BUSY | ATA_DRQ)) 5322 qc->err_mask |= AC_ERR_HSM; 5323 5324 /* ata_pio_sectors() might change the 5325 * state to HSM_ST_LAST. so, the state 5326 * is changed after ata_pio_sectors(). 5327 */ 5328 ap->hsm_task_state = HSM_ST_ERR; 5329 goto fsm_start; 5330 } 5331 5332 ata_pio_sectors(qc); 5333 5334 if (ap->hsm_task_state == HSM_ST_LAST && 5335 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 5336 /* all data read */ 5337 status = ata_wait_idle(ap); 5338 goto fsm_start; 5339 } 5340 } 5341 5342 poll_next = 1; 5343 break; 5344 5345 case HSM_ST_LAST: 5346 if (unlikely(!ata_ok(status))) { 5347 qc->err_mask |= __ac_err_mask(status); 5348 ap->hsm_task_state = HSM_ST_ERR; 5349 goto fsm_start; 5350 } 5351 5352 /* no more data to transfer */ 5353 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 5354 ap->print_id, qc->dev->devno, status); 5355 5356 WARN_ON(qc->err_mask); 5357 5358 ap->hsm_task_state = HSM_ST_IDLE; 5359 5360 /* complete taskfile transaction */ 5361 ata_hsm_qc_complete(qc, in_wq); 5362 5363 poll_next = 0; 5364 break; 5365 5366 case HSM_ST_ERR: 5367 /* make sure qc->err_mask is available to 5368 * know what's wrong and recover 5369 */ 5370 WARN_ON(qc->err_mask == 0); 5371 5372 ap->hsm_task_state = HSM_ST_IDLE; 5373 5374 /* complete taskfile transaction */ 5375 ata_hsm_qc_complete(qc, in_wq); 5376 5377 poll_next = 0; 5378 break; 5379 default: 5380 poll_next = 0; 5381 BUG(); 5382 } 5383 5384 return poll_next; 5385 } 5386 5387 static void ata_pio_task(struct work_struct *work) 5388 { 5389 struct ata_port *ap = 5390 container_of(work, struct ata_port, port_task.work); 5391 struct ata_queued_cmd *qc = ap->port_task_data; 5392 u8 status; 5393 int poll_next; 5394 5395 fsm_start: 5396 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 5397 5398 /* 5399 * This is purely heuristic. This is a fast path. 5400 * Sometimes when we enter, BSY will be cleared in 5401 * a chk-status or two. If not, the drive is probably seeking 5402 * or something. Snooze for a couple msecs, then 5403 * chk-status again. If still busy, queue delayed work. 5404 */ 5405 status = ata_busy_wait(ap, ATA_BUSY, 5); 5406 if (status & ATA_BUSY) { 5407 msleep(2); 5408 status = ata_busy_wait(ap, ATA_BUSY, 10); 5409 if (status & ATA_BUSY) { 5410 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE); 5411 return; 5412 } 5413 } 5414 5415 /* move the HSM */ 5416 poll_next = ata_hsm_move(ap, qc, status, 1); 5417 5418 /* another command or interrupt handler 5419 * may be running at this point. 5420 */ 5421 if (poll_next) 5422 goto fsm_start; 5423 } 5424 5425 /** 5426 * ata_qc_new - Request an available ATA command, for queueing 5427 * @ap: Port associated with device @dev 5428 * @dev: Device from whom we request an available command structure 5429 * 5430 * LOCKING: 5431 * None. 5432 */ 5433 5434 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 5435 { 5436 struct ata_queued_cmd *qc = NULL; 5437 unsigned int i; 5438 5439 /* no command while frozen */ 5440 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5441 return NULL; 5442 5443 /* the last tag is reserved for internal command. */ 5444 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 5445 if (!test_and_set_bit(i, &ap->qc_allocated)) { 5446 qc = __ata_qc_from_tag(ap, i); 5447 break; 5448 } 5449 5450 if (qc) 5451 qc->tag = i; 5452 5453 return qc; 5454 } 5455 5456 /** 5457 * ata_qc_new_init - Request an available ATA command, and initialize it 5458 * @dev: Device from whom we request an available command structure 5459 * 5460 * LOCKING: 5461 * None. 5462 */ 5463 5464 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 5465 { 5466 struct ata_port *ap = dev->link->ap; 5467 struct ata_queued_cmd *qc; 5468 5469 qc = ata_qc_new(ap); 5470 if (qc) { 5471 qc->scsicmd = NULL; 5472 qc->ap = ap; 5473 qc->dev = dev; 5474 5475 ata_qc_reinit(qc); 5476 } 5477 5478 return qc; 5479 } 5480 5481 /** 5482 * ata_qc_free - free unused ata_queued_cmd 5483 * @qc: Command to complete 5484 * 5485 * Designed to free unused ata_queued_cmd object 5486 * in case something prevents using it. 5487 * 5488 * LOCKING: 5489 * spin_lock_irqsave(host lock) 5490 */ 5491 void ata_qc_free(struct ata_queued_cmd *qc) 5492 { 5493 struct ata_port *ap = qc->ap; 5494 unsigned int tag; 5495 5496 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5497 5498 qc->flags = 0; 5499 tag = qc->tag; 5500 if (likely(ata_tag_valid(tag))) { 5501 qc->tag = ATA_TAG_POISON; 5502 clear_bit(tag, &ap->qc_allocated); 5503 } 5504 } 5505 5506 void __ata_qc_complete(struct ata_queued_cmd *qc) 5507 { 5508 struct ata_port *ap = qc->ap; 5509 struct ata_link *link = qc->dev->link; 5510 5511 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5512 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5513 5514 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5515 ata_sg_clean(qc); 5516 5517 /* command should be marked inactive atomically with qc completion */ 5518 if (qc->tf.protocol == ATA_PROT_NCQ) { 5519 link->sactive &= ~(1 << qc->tag); 5520 if (!link->sactive) 5521 ap->nr_active_links--; 5522 } else { 5523 link->active_tag = ATA_TAG_POISON; 5524 ap->nr_active_links--; 5525 } 5526 5527 /* clear exclusive status */ 5528 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5529 ap->excl_link == link)) 5530 ap->excl_link = NULL; 5531 5532 /* atapi: mark qc as inactive to prevent the interrupt handler 5533 * from completing the command twice later, before the error handler 5534 * is called. (when rc != 0 and atapi request sense is needed) 5535 */ 5536 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5537 ap->qc_active &= ~(1 << qc->tag); 5538 5539 /* call completion callback */ 5540 qc->complete_fn(qc); 5541 } 5542 5543 static void fill_result_tf(struct ata_queued_cmd *qc) 5544 { 5545 struct ata_port *ap = qc->ap; 5546 5547 qc->result_tf.flags = qc->tf.flags; 5548 ap->ops->tf_read(ap, &qc->result_tf); 5549 } 5550 5551 /** 5552 * ata_qc_complete - Complete an active ATA command 5553 * @qc: Command to complete 5554 * @err_mask: ATA Status register contents 5555 * 5556 * Indicate to the mid and upper layers that an ATA 5557 * command has completed, with either an ok or not-ok status. 5558 * 5559 * LOCKING: 5560 * spin_lock_irqsave(host lock) 5561 */ 5562 void ata_qc_complete(struct ata_queued_cmd *qc) 5563 { 5564 struct ata_port *ap = qc->ap; 5565 5566 /* XXX: New EH and old EH use different mechanisms to 5567 * synchronize EH with regular execution path. 5568 * 5569 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5570 * Normal execution path is responsible for not accessing a 5571 * failed qc. libata core enforces the rule by returning NULL 5572 * from ata_qc_from_tag() for failed qcs. 5573 * 5574 * Old EH depends on ata_qc_complete() nullifying completion 5575 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5576 * not synchronize with interrupt handler. Only PIO task is 5577 * taken care of. 5578 */ 5579 if (ap->ops->error_handler) { 5580 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 5581 5582 if (unlikely(qc->err_mask)) 5583 qc->flags |= ATA_QCFLAG_FAILED; 5584 5585 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5586 if (!ata_tag_internal(qc->tag)) { 5587 /* always fill result TF for failed qc */ 5588 fill_result_tf(qc); 5589 ata_qc_schedule_eh(qc); 5590 return; 5591 } 5592 } 5593 5594 /* read result TF if requested */ 5595 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5596 fill_result_tf(qc); 5597 5598 __ata_qc_complete(qc); 5599 } else { 5600 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5601 return; 5602 5603 /* read result TF if failed or requested */ 5604 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5605 fill_result_tf(qc); 5606 5607 __ata_qc_complete(qc); 5608 } 5609 } 5610 5611 /** 5612 * ata_qc_complete_multiple - Complete multiple qcs successfully 5613 * @ap: port in question 5614 * @qc_active: new qc_active mask 5615 * @finish_qc: LLDD callback invoked before completing a qc 5616 * 5617 * Complete in-flight commands. This functions is meant to be 5618 * called from low-level driver's interrupt routine to complete 5619 * requests normally. ap->qc_active and @qc_active is compared 5620 * and commands are completed accordingly. 5621 * 5622 * LOCKING: 5623 * spin_lock_irqsave(host lock) 5624 * 5625 * RETURNS: 5626 * Number of completed commands on success, -errno otherwise. 5627 */ 5628 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active, 5629 void (*finish_qc)(struct ata_queued_cmd *)) 5630 { 5631 int nr_done = 0; 5632 u32 done_mask; 5633 int i; 5634 5635 done_mask = ap->qc_active ^ qc_active; 5636 5637 if (unlikely(done_mask & qc_active)) { 5638 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5639 "(%08x->%08x)\n", ap->qc_active, qc_active); 5640 return -EINVAL; 5641 } 5642 5643 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5644 struct ata_queued_cmd *qc; 5645 5646 if (!(done_mask & (1 << i))) 5647 continue; 5648 5649 if ((qc = ata_qc_from_tag(ap, i))) { 5650 if (finish_qc) 5651 finish_qc(qc); 5652 ata_qc_complete(qc); 5653 nr_done++; 5654 } 5655 } 5656 5657 return nr_done; 5658 } 5659 5660 static inline int ata_should_dma_map(struct ata_queued_cmd *qc) 5661 { 5662 struct ata_port *ap = qc->ap; 5663 5664 switch (qc->tf.protocol) { 5665 case ATA_PROT_NCQ: 5666 case ATA_PROT_DMA: 5667 case ATA_PROT_ATAPI_DMA: 5668 return 1; 5669 5670 case ATA_PROT_ATAPI: 5671 case ATA_PROT_PIO: 5672 if (ap->flags & ATA_FLAG_PIO_DMA) 5673 return 1; 5674 5675 /* fall through */ 5676 5677 default: 5678 return 0; 5679 } 5680 5681 /* never reached */ 5682 } 5683 5684 /** 5685 * ata_qc_issue - issue taskfile to device 5686 * @qc: command to issue to device 5687 * 5688 * Prepare an ATA command to submission to device. 5689 * This includes mapping the data into a DMA-able 5690 * area, filling in the S/G table, and finally 5691 * writing the taskfile to hardware, starting the command. 5692 * 5693 * LOCKING: 5694 * spin_lock_irqsave(host lock) 5695 */ 5696 void ata_qc_issue(struct ata_queued_cmd *qc) 5697 { 5698 struct ata_port *ap = qc->ap; 5699 struct ata_link *link = qc->dev->link; 5700 5701 /* Make sure only one non-NCQ command is outstanding. The 5702 * check is skipped for old EH because it reuses active qc to 5703 * request ATAPI sense. 5704 */ 5705 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5706 5707 if (qc->tf.protocol == ATA_PROT_NCQ) { 5708 WARN_ON(link->sactive & (1 << qc->tag)); 5709 5710 if (!link->sactive) 5711 ap->nr_active_links++; 5712 link->sactive |= 1 << qc->tag; 5713 } else { 5714 WARN_ON(link->sactive); 5715 5716 ap->nr_active_links++; 5717 link->active_tag = qc->tag; 5718 } 5719 5720 qc->flags |= ATA_QCFLAG_ACTIVE; 5721 ap->qc_active |= 1 << qc->tag; 5722 5723 if (ata_should_dma_map(qc)) { 5724 if (qc->flags & ATA_QCFLAG_SG) { 5725 if (ata_sg_setup(qc)) 5726 goto sg_err; 5727 } else if (qc->flags & ATA_QCFLAG_SINGLE) { 5728 if (ata_sg_setup_one(qc)) 5729 goto sg_err; 5730 } 5731 } else { 5732 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5733 } 5734 5735 ap->ops->qc_prep(qc); 5736 5737 qc->err_mask |= ap->ops->qc_issue(qc); 5738 if (unlikely(qc->err_mask)) 5739 goto err; 5740 return; 5741 5742 sg_err: 5743 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5744 qc->err_mask |= AC_ERR_SYSTEM; 5745 err: 5746 ata_qc_complete(qc); 5747 } 5748 5749 /** 5750 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner 5751 * @qc: command to issue to device 5752 * 5753 * Using various libata functions and hooks, this function 5754 * starts an ATA command. ATA commands are grouped into 5755 * classes called "protocols", and issuing each type of protocol 5756 * is slightly different. 5757 * 5758 * May be used as the qc_issue() entry in ata_port_operations. 5759 * 5760 * LOCKING: 5761 * spin_lock_irqsave(host lock) 5762 * 5763 * RETURNS: 5764 * Zero on success, AC_ERR_* mask on failure 5765 */ 5766 5767 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) 5768 { 5769 struct ata_port *ap = qc->ap; 5770 5771 /* Use polling pio if the LLD doesn't handle 5772 * interrupt driven pio and atapi CDB interrupt. 5773 */ 5774 if (ap->flags & ATA_FLAG_PIO_POLLING) { 5775 switch (qc->tf.protocol) { 5776 case ATA_PROT_PIO: 5777 case ATA_PROT_NODATA: 5778 case ATA_PROT_ATAPI: 5779 case ATA_PROT_ATAPI_NODATA: 5780 qc->tf.flags |= ATA_TFLAG_POLLING; 5781 break; 5782 case ATA_PROT_ATAPI_DMA: 5783 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 5784 /* see ata_dma_blacklisted() */ 5785 BUG(); 5786 break; 5787 default: 5788 break; 5789 } 5790 } 5791 5792 /* select the device */ 5793 ata_dev_select(ap, qc->dev->devno, 1, 0); 5794 5795 /* start the command */ 5796 switch (qc->tf.protocol) { 5797 case ATA_PROT_NODATA: 5798 if (qc->tf.flags & ATA_TFLAG_POLLING) 5799 ata_qc_set_polling(qc); 5800 5801 ata_tf_to_host(ap, &qc->tf); 5802 ap->hsm_task_state = HSM_ST_LAST; 5803 5804 if (qc->tf.flags & ATA_TFLAG_POLLING) 5805 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5806 5807 break; 5808 5809 case ATA_PROT_DMA: 5810 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5811 5812 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5813 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5814 ap->ops->bmdma_start(qc); /* initiate bmdma */ 5815 ap->hsm_task_state = HSM_ST_LAST; 5816 break; 5817 5818 case ATA_PROT_PIO: 5819 if (qc->tf.flags & ATA_TFLAG_POLLING) 5820 ata_qc_set_polling(qc); 5821 5822 ata_tf_to_host(ap, &qc->tf); 5823 5824 if (qc->tf.flags & ATA_TFLAG_WRITE) { 5825 /* PIO data out protocol */ 5826 ap->hsm_task_state = HSM_ST_FIRST; 5827 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5828 5829 /* always send first data block using 5830 * the ata_pio_task() codepath. 5831 */ 5832 } else { 5833 /* PIO data in protocol */ 5834 ap->hsm_task_state = HSM_ST; 5835 5836 if (qc->tf.flags & ATA_TFLAG_POLLING) 5837 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5838 5839 /* if polling, ata_pio_task() handles the rest. 5840 * otherwise, interrupt handler takes over from here. 5841 */ 5842 } 5843 5844 break; 5845 5846 case ATA_PROT_ATAPI: 5847 case ATA_PROT_ATAPI_NODATA: 5848 if (qc->tf.flags & ATA_TFLAG_POLLING) 5849 ata_qc_set_polling(qc); 5850 5851 ata_tf_to_host(ap, &qc->tf); 5852 5853 ap->hsm_task_state = HSM_ST_FIRST; 5854 5855 /* send cdb by polling if no cdb interrupt */ 5856 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 5857 (qc->tf.flags & ATA_TFLAG_POLLING)) 5858 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5859 break; 5860 5861 case ATA_PROT_ATAPI_DMA: 5862 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 5863 5864 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 5865 ap->ops->bmdma_setup(qc); /* set up bmdma */ 5866 ap->hsm_task_state = HSM_ST_FIRST; 5867 5868 /* send cdb by polling if no cdb interrupt */ 5869 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5870 ata_port_queue_task(ap, ata_pio_task, qc, 0); 5871 break; 5872 5873 default: 5874 WARN_ON(1); 5875 return AC_ERR_SYSTEM; 5876 } 5877 5878 return 0; 5879 } 5880 5881 /** 5882 * ata_host_intr - Handle host interrupt for given (port, task) 5883 * @ap: Port on which interrupt arrived (possibly...) 5884 * @qc: Taskfile currently active in engine 5885 * 5886 * Handle host interrupt for given queued command. Currently, 5887 * only DMA interrupts are handled. All other commands are 5888 * handled via polling with interrupts disabled (nIEN bit). 5889 * 5890 * LOCKING: 5891 * spin_lock_irqsave(host lock) 5892 * 5893 * RETURNS: 5894 * One if interrupt was handled, zero if not (shared irq). 5895 */ 5896 5897 inline unsigned int ata_host_intr (struct ata_port *ap, 5898 struct ata_queued_cmd *qc) 5899 { 5900 struct ata_eh_info *ehi = &ap->link.eh_info; 5901 u8 status, host_stat = 0; 5902 5903 VPRINTK("ata%u: protocol %d task_state %d\n", 5904 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 5905 5906 /* Check whether we are expecting interrupt in this state */ 5907 switch (ap->hsm_task_state) { 5908 case HSM_ST_FIRST: 5909 /* Some pre-ATAPI-4 devices assert INTRQ 5910 * at this state when ready to receive CDB. 5911 */ 5912 5913 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 5914 * The flag was turned on only for atapi devices. 5915 * No need to check is_atapi_taskfile(&qc->tf) again. 5916 */ 5917 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 5918 goto idle_irq; 5919 break; 5920 case HSM_ST_LAST: 5921 if (qc->tf.protocol == ATA_PROT_DMA || 5922 qc->tf.protocol == ATA_PROT_ATAPI_DMA) { 5923 /* check status of DMA engine */ 5924 host_stat = ap->ops->bmdma_status(ap); 5925 VPRINTK("ata%u: host_stat 0x%X\n", 5926 ap->print_id, host_stat); 5927 5928 /* if it's not our irq... */ 5929 if (!(host_stat & ATA_DMA_INTR)) 5930 goto idle_irq; 5931 5932 /* before we do anything else, clear DMA-Start bit */ 5933 ap->ops->bmdma_stop(qc); 5934 5935 if (unlikely(host_stat & ATA_DMA_ERR)) { 5936 /* error when transfering data to/from memory */ 5937 qc->err_mask |= AC_ERR_HOST_BUS; 5938 ap->hsm_task_state = HSM_ST_ERR; 5939 } 5940 } 5941 break; 5942 case HSM_ST: 5943 break; 5944 default: 5945 goto idle_irq; 5946 } 5947 5948 /* check altstatus */ 5949 status = ata_altstatus(ap); 5950 if (status & ATA_BUSY) 5951 goto idle_irq; 5952 5953 /* check main status, clearing INTRQ */ 5954 status = ata_chk_status(ap); 5955 if (unlikely(status & ATA_BUSY)) 5956 goto idle_irq; 5957 5958 /* ack bmdma irq events */ 5959 ap->ops->irq_clear(ap); 5960 5961 ata_hsm_move(ap, qc, status, 0); 5962 5963 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 5964 qc->tf.protocol == ATA_PROT_ATAPI_DMA)) 5965 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 5966 5967 return 1; /* irq handled */ 5968 5969 idle_irq: 5970 ap->stats.idle_irq++; 5971 5972 #ifdef ATA_IRQ_TRAP 5973 if ((ap->stats.idle_irq % 1000) == 0) { 5974 ata_chk_status(ap); 5975 ap->ops->irq_clear(ap); 5976 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 5977 return 1; 5978 } 5979 #endif 5980 return 0; /* irq not handled */ 5981 } 5982 5983 /** 5984 * ata_interrupt - Default ATA host interrupt handler 5985 * @irq: irq line (unused) 5986 * @dev_instance: pointer to our ata_host information structure 5987 * 5988 * Default interrupt handler for PCI IDE devices. Calls 5989 * ata_host_intr() for each port that is not disabled. 5990 * 5991 * LOCKING: 5992 * Obtains host lock during operation. 5993 * 5994 * RETURNS: 5995 * IRQ_NONE or IRQ_HANDLED. 5996 */ 5997 5998 irqreturn_t ata_interrupt (int irq, void *dev_instance) 5999 { 6000 struct ata_host *host = dev_instance; 6001 unsigned int i; 6002 unsigned int handled = 0; 6003 unsigned long flags; 6004 6005 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 6006 spin_lock_irqsave(&host->lock, flags); 6007 6008 for (i = 0; i < host->n_ports; i++) { 6009 struct ata_port *ap; 6010 6011 ap = host->ports[i]; 6012 if (ap && 6013 !(ap->flags & ATA_FLAG_DISABLED)) { 6014 struct ata_queued_cmd *qc; 6015 6016 qc = ata_qc_from_tag(ap, ap->link.active_tag); 6017 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 6018 (qc->flags & ATA_QCFLAG_ACTIVE)) 6019 handled |= ata_host_intr(ap, qc); 6020 } 6021 } 6022 6023 spin_unlock_irqrestore(&host->lock, flags); 6024 6025 return IRQ_RETVAL(handled); 6026 } 6027 6028 /** 6029 * sata_scr_valid - test whether SCRs are accessible 6030 * @link: ATA link to test SCR accessibility for 6031 * 6032 * Test whether SCRs are accessible for @link. 6033 * 6034 * LOCKING: 6035 * None. 6036 * 6037 * RETURNS: 6038 * 1 if SCRs are accessible, 0 otherwise. 6039 */ 6040 int sata_scr_valid(struct ata_link *link) 6041 { 6042 struct ata_port *ap = link->ap; 6043 6044 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 6045 } 6046 6047 /** 6048 * sata_scr_read - read SCR register of the specified port 6049 * @link: ATA link to read SCR for 6050 * @reg: SCR to read 6051 * @val: Place to store read value 6052 * 6053 * Read SCR register @reg of @link into *@val. This function is 6054 * guaranteed to succeed if @link is ap->link, the cable type of 6055 * the port is SATA and the port implements ->scr_read. 6056 * 6057 * LOCKING: 6058 * None if @link is ap->link. Kernel thread context otherwise. 6059 * 6060 * RETURNS: 6061 * 0 on success, negative errno on failure. 6062 */ 6063 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 6064 { 6065 if (ata_is_host_link(link)) { 6066 struct ata_port *ap = link->ap; 6067 6068 if (sata_scr_valid(link)) 6069 return ap->ops->scr_read(ap, reg, val); 6070 return -EOPNOTSUPP; 6071 } 6072 6073 return sata_pmp_scr_read(link, reg, val); 6074 } 6075 6076 /** 6077 * sata_scr_write - write SCR register of the specified port 6078 * @link: ATA link to write SCR for 6079 * @reg: SCR to write 6080 * @val: value to write 6081 * 6082 * Write @val to SCR register @reg of @link. This function is 6083 * guaranteed to succeed if @link is ap->link, the cable type of 6084 * the port is SATA and the port implements ->scr_read. 6085 * 6086 * LOCKING: 6087 * None if @link is ap->link. Kernel thread context otherwise. 6088 * 6089 * RETURNS: 6090 * 0 on success, negative errno on failure. 6091 */ 6092 int sata_scr_write(struct ata_link *link, int reg, u32 val) 6093 { 6094 if (ata_is_host_link(link)) { 6095 struct ata_port *ap = link->ap; 6096 6097 if (sata_scr_valid(link)) 6098 return ap->ops->scr_write(ap, reg, val); 6099 return -EOPNOTSUPP; 6100 } 6101 6102 return sata_pmp_scr_write(link, reg, val); 6103 } 6104 6105 /** 6106 * sata_scr_write_flush - write SCR register of the specified port and flush 6107 * @link: ATA link to write SCR for 6108 * @reg: SCR to write 6109 * @val: value to write 6110 * 6111 * This function is identical to sata_scr_write() except that this 6112 * function performs flush after writing to the register. 6113 * 6114 * LOCKING: 6115 * None if @link is ap->link. Kernel thread context otherwise. 6116 * 6117 * RETURNS: 6118 * 0 on success, negative errno on failure. 6119 */ 6120 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 6121 { 6122 if (ata_is_host_link(link)) { 6123 struct ata_port *ap = link->ap; 6124 int rc; 6125 6126 if (sata_scr_valid(link)) { 6127 rc = ap->ops->scr_write(ap, reg, val); 6128 if (rc == 0) 6129 rc = ap->ops->scr_read(ap, reg, &val); 6130 return rc; 6131 } 6132 return -EOPNOTSUPP; 6133 } 6134 6135 return sata_pmp_scr_write(link, reg, val); 6136 } 6137 6138 /** 6139 * ata_link_online - test whether the given link is online 6140 * @link: ATA link to test 6141 * 6142 * Test whether @link is online. Note that this function returns 6143 * 0 if online status of @link cannot be obtained, so 6144 * ata_link_online(link) != !ata_link_offline(link). 6145 * 6146 * LOCKING: 6147 * None. 6148 * 6149 * RETURNS: 6150 * 1 if the port online status is available and online. 6151 */ 6152 int ata_link_online(struct ata_link *link) 6153 { 6154 u32 sstatus; 6155 6156 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 6157 (sstatus & 0xf) == 0x3) 6158 return 1; 6159 return 0; 6160 } 6161 6162 /** 6163 * ata_link_offline - test whether the given link is offline 6164 * @link: ATA link to test 6165 * 6166 * Test whether @link is offline. Note that this function 6167 * returns 0 if offline status of @link cannot be obtained, so 6168 * ata_link_online(link) != !ata_link_offline(link). 6169 * 6170 * LOCKING: 6171 * None. 6172 * 6173 * RETURNS: 6174 * 1 if the port offline status is available and offline. 6175 */ 6176 int ata_link_offline(struct ata_link *link) 6177 { 6178 u32 sstatus; 6179 6180 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 6181 (sstatus & 0xf) != 0x3) 6182 return 1; 6183 return 0; 6184 } 6185 6186 int ata_flush_cache(struct ata_device *dev) 6187 { 6188 unsigned int err_mask; 6189 u8 cmd; 6190 6191 if (!ata_try_flush_cache(dev)) 6192 return 0; 6193 6194 if (dev->flags & ATA_DFLAG_FLUSH_EXT) 6195 cmd = ATA_CMD_FLUSH_EXT; 6196 else 6197 cmd = ATA_CMD_FLUSH; 6198 6199 /* This is wrong. On a failed flush we get back the LBA of the lost 6200 sector and we should (assuming it wasn't aborted as unknown) issue 6201 a further flush command to continue the writeback until it 6202 does not error */ 6203 err_mask = ata_do_simple_cmd(dev, cmd); 6204 if (err_mask) { 6205 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n"); 6206 return -EIO; 6207 } 6208 6209 return 0; 6210 } 6211 6212 #ifdef CONFIG_PM 6213 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 6214 unsigned int action, unsigned int ehi_flags, 6215 int wait) 6216 { 6217 unsigned long flags; 6218 int i, rc; 6219 6220 for (i = 0; i < host->n_ports; i++) { 6221 struct ata_port *ap = host->ports[i]; 6222 struct ata_link *link; 6223 6224 /* Previous resume operation might still be in 6225 * progress. Wait for PM_PENDING to clear. 6226 */ 6227 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 6228 ata_port_wait_eh(ap); 6229 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 6230 } 6231 6232 /* request PM ops to EH */ 6233 spin_lock_irqsave(ap->lock, flags); 6234 6235 ap->pm_mesg = mesg; 6236 if (wait) { 6237 rc = 0; 6238 ap->pm_result = &rc; 6239 } 6240 6241 ap->pflags |= ATA_PFLAG_PM_PENDING; 6242 __ata_port_for_each_link(link, ap) { 6243 link->eh_info.action |= action; 6244 link->eh_info.flags |= ehi_flags; 6245 } 6246 6247 ata_port_schedule_eh(ap); 6248 6249 spin_unlock_irqrestore(ap->lock, flags); 6250 6251 /* wait and check result */ 6252 if (wait) { 6253 ata_port_wait_eh(ap); 6254 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 6255 if (rc) 6256 return rc; 6257 } 6258 } 6259 6260 return 0; 6261 } 6262 6263 /** 6264 * ata_host_suspend - suspend host 6265 * @host: host to suspend 6266 * @mesg: PM message 6267 * 6268 * Suspend @host. Actual operation is performed by EH. This 6269 * function requests EH to perform PM operations and waits for EH 6270 * to finish. 6271 * 6272 * LOCKING: 6273 * Kernel thread context (may sleep). 6274 * 6275 * RETURNS: 6276 * 0 on success, -errno on failure. 6277 */ 6278 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 6279 { 6280 int rc; 6281 6282 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 6283 if (rc == 0) 6284 host->dev->power.power_state = mesg; 6285 return rc; 6286 } 6287 6288 /** 6289 * ata_host_resume - resume host 6290 * @host: host to resume 6291 * 6292 * Resume @host. Actual operation is performed by EH. This 6293 * function requests EH to perform PM operations and returns. 6294 * Note that all resume operations are performed parallely. 6295 * 6296 * LOCKING: 6297 * Kernel thread context (may sleep). 6298 */ 6299 void ata_host_resume(struct ata_host *host) 6300 { 6301 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET, 6302 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 6303 host->dev->power.power_state = PMSG_ON; 6304 } 6305 #endif 6306 6307 /** 6308 * ata_port_start - Set port up for dma. 6309 * @ap: Port to initialize 6310 * 6311 * Called just after data structures for each port are 6312 * initialized. Allocates space for PRD table. 6313 * 6314 * May be used as the port_start() entry in ata_port_operations. 6315 * 6316 * LOCKING: 6317 * Inherited from caller. 6318 */ 6319 int ata_port_start(struct ata_port *ap) 6320 { 6321 struct device *dev = ap->dev; 6322 int rc; 6323 6324 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 6325 GFP_KERNEL); 6326 if (!ap->prd) 6327 return -ENOMEM; 6328 6329 rc = ata_pad_alloc(ap, dev); 6330 if (rc) 6331 return rc; 6332 6333 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, 6334 (unsigned long long)ap->prd_dma); 6335 return 0; 6336 } 6337 6338 /** 6339 * ata_dev_init - Initialize an ata_device structure 6340 * @dev: Device structure to initialize 6341 * 6342 * Initialize @dev in preparation for probing. 6343 * 6344 * LOCKING: 6345 * Inherited from caller. 6346 */ 6347 void ata_dev_init(struct ata_device *dev) 6348 { 6349 struct ata_link *link = dev->link; 6350 struct ata_port *ap = link->ap; 6351 unsigned long flags; 6352 6353 /* SATA spd limit is bound to the first device */ 6354 link->sata_spd_limit = link->hw_sata_spd_limit; 6355 link->sata_spd = 0; 6356 6357 /* High bits of dev->flags are used to record warm plug 6358 * requests which occur asynchronously. Synchronize using 6359 * host lock. 6360 */ 6361 spin_lock_irqsave(ap->lock, flags); 6362 dev->flags &= ~ATA_DFLAG_INIT_MASK; 6363 dev->horkage = 0; 6364 spin_unlock_irqrestore(ap->lock, flags); 6365 6366 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 6367 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 6368 dev->pio_mask = UINT_MAX; 6369 dev->mwdma_mask = UINT_MAX; 6370 dev->udma_mask = UINT_MAX; 6371 } 6372 6373 /** 6374 * ata_link_init - Initialize an ata_link structure 6375 * @ap: ATA port link is attached to 6376 * @link: Link structure to initialize 6377 * @pmp: Port multiplier port number 6378 * 6379 * Initialize @link. 6380 * 6381 * LOCKING: 6382 * Kernel thread context (may sleep) 6383 */ 6384 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 6385 { 6386 int i; 6387 6388 /* clear everything except for devices */ 6389 memset(link, 0, offsetof(struct ata_link, device[0])); 6390 6391 link->ap = ap; 6392 link->pmp = pmp; 6393 link->active_tag = ATA_TAG_POISON; 6394 link->hw_sata_spd_limit = UINT_MAX; 6395 6396 /* can't use iterator, ap isn't initialized yet */ 6397 for (i = 0; i < ATA_MAX_DEVICES; i++) { 6398 struct ata_device *dev = &link->device[i]; 6399 6400 dev->link = link; 6401 dev->devno = dev - link->device; 6402 ata_dev_init(dev); 6403 } 6404 } 6405 6406 /** 6407 * sata_link_init_spd - Initialize link->sata_spd_limit 6408 * @link: Link to configure sata_spd_limit for 6409 * 6410 * Initialize @link->[hw_]sata_spd_limit to the currently 6411 * configured value. 6412 * 6413 * LOCKING: 6414 * Kernel thread context (may sleep). 6415 * 6416 * RETURNS: 6417 * 0 on success, -errno on failure. 6418 */ 6419 int sata_link_init_spd(struct ata_link *link) 6420 { 6421 u32 scontrol, spd; 6422 int rc; 6423 6424 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 6425 if (rc) 6426 return rc; 6427 6428 spd = (scontrol >> 4) & 0xf; 6429 if (spd) 6430 link->hw_sata_spd_limit &= (1 << spd) - 1; 6431 6432 link->sata_spd_limit = link->hw_sata_spd_limit; 6433 6434 return 0; 6435 } 6436 6437 /** 6438 * ata_port_alloc - allocate and initialize basic ATA port resources 6439 * @host: ATA host this allocated port belongs to 6440 * 6441 * Allocate and initialize basic ATA port resources. 6442 * 6443 * RETURNS: 6444 * Allocate ATA port on success, NULL on failure. 6445 * 6446 * LOCKING: 6447 * Inherited from calling layer (may sleep). 6448 */ 6449 struct ata_port *ata_port_alloc(struct ata_host *host) 6450 { 6451 struct ata_port *ap; 6452 6453 DPRINTK("ENTER\n"); 6454 6455 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 6456 if (!ap) 6457 return NULL; 6458 6459 ap->pflags |= ATA_PFLAG_INITIALIZING; 6460 ap->lock = &host->lock; 6461 ap->flags = ATA_FLAG_DISABLED; 6462 ap->print_id = -1; 6463 ap->ctl = ATA_DEVCTL_OBS; 6464 ap->host = host; 6465 ap->dev = host->dev; 6466 ap->last_ctl = 0xFF; 6467 6468 #if defined(ATA_VERBOSE_DEBUG) 6469 /* turn on all debugging levels */ 6470 ap->msg_enable = 0x00FF; 6471 #elif defined(ATA_DEBUG) 6472 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6473 #else 6474 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6475 #endif 6476 6477 INIT_DELAYED_WORK(&ap->port_task, NULL); 6478 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6479 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6480 INIT_LIST_HEAD(&ap->eh_done_q); 6481 init_waitqueue_head(&ap->eh_wait_q); 6482 init_timer_deferrable(&ap->fastdrain_timer); 6483 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 6484 ap->fastdrain_timer.data = (unsigned long)ap; 6485 6486 ap->cbl = ATA_CBL_NONE; 6487 6488 ata_link_init(ap, &ap->link, 0); 6489 6490 #ifdef ATA_IRQ_TRAP 6491 ap->stats.unhandled_irq = 1; 6492 ap->stats.idle_irq = 1; 6493 #endif 6494 return ap; 6495 } 6496 6497 static void ata_host_release(struct device *gendev, void *res) 6498 { 6499 struct ata_host *host = dev_get_drvdata(gendev); 6500 int i; 6501 6502 for (i = 0; i < host->n_ports; i++) { 6503 struct ata_port *ap = host->ports[i]; 6504 6505 if (!ap) 6506 continue; 6507 6508 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop) 6509 ap->ops->port_stop(ap); 6510 } 6511 6512 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop) 6513 host->ops->host_stop(host); 6514 6515 for (i = 0; i < host->n_ports; i++) { 6516 struct ata_port *ap = host->ports[i]; 6517 6518 if (!ap) 6519 continue; 6520 6521 if (ap->scsi_host) 6522 scsi_host_put(ap->scsi_host); 6523 6524 kfree(ap->pmp_link); 6525 kfree(ap); 6526 host->ports[i] = NULL; 6527 } 6528 6529 dev_set_drvdata(gendev, NULL); 6530 } 6531 6532 /** 6533 * ata_host_alloc - allocate and init basic ATA host resources 6534 * @dev: generic device this host is associated with 6535 * @max_ports: maximum number of ATA ports associated with this host 6536 * 6537 * Allocate and initialize basic ATA host resources. LLD calls 6538 * this function to allocate a host, initializes it fully and 6539 * attaches it using ata_host_register(). 6540 * 6541 * @max_ports ports are allocated and host->n_ports is 6542 * initialized to @max_ports. The caller is allowed to decrease 6543 * host->n_ports before calling ata_host_register(). The unused 6544 * ports will be automatically freed on registration. 6545 * 6546 * RETURNS: 6547 * Allocate ATA host on success, NULL on failure. 6548 * 6549 * LOCKING: 6550 * Inherited from calling layer (may sleep). 6551 */ 6552 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6553 { 6554 struct ata_host *host; 6555 size_t sz; 6556 int i; 6557 6558 DPRINTK("ENTER\n"); 6559 6560 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6561 return NULL; 6562 6563 /* alloc a container for our list of ATA ports (buses) */ 6564 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6565 /* alloc a container for our list of ATA ports (buses) */ 6566 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6567 if (!host) 6568 goto err_out; 6569 6570 devres_add(dev, host); 6571 dev_set_drvdata(dev, host); 6572 6573 spin_lock_init(&host->lock); 6574 host->dev = dev; 6575 host->n_ports = max_ports; 6576 6577 /* allocate ports bound to this host */ 6578 for (i = 0; i < max_ports; i++) { 6579 struct ata_port *ap; 6580 6581 ap = ata_port_alloc(host); 6582 if (!ap) 6583 goto err_out; 6584 6585 ap->port_no = i; 6586 host->ports[i] = ap; 6587 } 6588 6589 devres_remove_group(dev, NULL); 6590 return host; 6591 6592 err_out: 6593 devres_release_group(dev, NULL); 6594 return NULL; 6595 } 6596 6597 /** 6598 * ata_host_alloc_pinfo - alloc host and init with port_info array 6599 * @dev: generic device this host is associated with 6600 * @ppi: array of ATA port_info to initialize host with 6601 * @n_ports: number of ATA ports attached to this host 6602 * 6603 * Allocate ATA host and initialize with info from @ppi. If NULL 6604 * terminated, @ppi may contain fewer entries than @n_ports. The 6605 * last entry will be used for the remaining ports. 6606 * 6607 * RETURNS: 6608 * Allocate ATA host on success, NULL on failure. 6609 * 6610 * LOCKING: 6611 * Inherited from calling layer (may sleep). 6612 */ 6613 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6614 const struct ata_port_info * const * ppi, 6615 int n_ports) 6616 { 6617 const struct ata_port_info *pi; 6618 struct ata_host *host; 6619 int i, j; 6620 6621 host = ata_host_alloc(dev, n_ports); 6622 if (!host) 6623 return NULL; 6624 6625 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6626 struct ata_port *ap = host->ports[i]; 6627 6628 if (ppi[j]) 6629 pi = ppi[j++]; 6630 6631 ap->pio_mask = pi->pio_mask; 6632 ap->mwdma_mask = pi->mwdma_mask; 6633 ap->udma_mask = pi->udma_mask; 6634 ap->flags |= pi->flags; 6635 ap->link.flags |= pi->link_flags; 6636 ap->ops = pi->port_ops; 6637 6638 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6639 host->ops = pi->port_ops; 6640 if (!host->private_data && pi->private_data) 6641 host->private_data = pi->private_data; 6642 } 6643 6644 return host; 6645 } 6646 6647 /** 6648 * ata_host_start - start and freeze ports of an ATA host 6649 * @host: ATA host to start ports for 6650 * 6651 * Start and then freeze ports of @host. Started status is 6652 * recorded in host->flags, so this function can be called 6653 * multiple times. Ports are guaranteed to get started only 6654 * once. If host->ops isn't initialized yet, its set to the 6655 * first non-dummy port ops. 6656 * 6657 * LOCKING: 6658 * Inherited from calling layer (may sleep). 6659 * 6660 * RETURNS: 6661 * 0 if all ports are started successfully, -errno otherwise. 6662 */ 6663 int ata_host_start(struct ata_host *host) 6664 { 6665 int i, rc; 6666 6667 if (host->flags & ATA_HOST_STARTED) 6668 return 0; 6669 6670 for (i = 0; i < host->n_ports; i++) { 6671 struct ata_port *ap = host->ports[i]; 6672 6673 if (!host->ops && !ata_port_is_dummy(ap)) 6674 host->ops = ap->ops; 6675 6676 if (ap->ops->port_start) { 6677 rc = ap->ops->port_start(ap); 6678 if (rc) { 6679 ata_port_printk(ap, KERN_ERR, "failed to " 6680 "start port (errno=%d)\n", rc); 6681 goto err_out; 6682 } 6683 } 6684 6685 ata_eh_freeze_port(ap); 6686 } 6687 6688 host->flags |= ATA_HOST_STARTED; 6689 return 0; 6690 6691 err_out: 6692 while (--i >= 0) { 6693 struct ata_port *ap = host->ports[i]; 6694 6695 if (ap->ops->port_stop) 6696 ap->ops->port_stop(ap); 6697 } 6698 return rc; 6699 } 6700 6701 /** 6702 * ata_sas_host_init - Initialize a host struct 6703 * @host: host to initialize 6704 * @dev: device host is attached to 6705 * @flags: host flags 6706 * @ops: port_ops 6707 * 6708 * LOCKING: 6709 * PCI/etc. bus probe sem. 6710 * 6711 */ 6712 /* KILLME - the only user left is ipr */ 6713 void ata_host_init(struct ata_host *host, struct device *dev, 6714 unsigned long flags, const struct ata_port_operations *ops) 6715 { 6716 spin_lock_init(&host->lock); 6717 host->dev = dev; 6718 host->flags = flags; 6719 host->ops = ops; 6720 } 6721 6722 /** 6723 * ata_host_register - register initialized ATA host 6724 * @host: ATA host to register 6725 * @sht: template for SCSI host 6726 * 6727 * Register initialized ATA host. @host is allocated using 6728 * ata_host_alloc() and fully initialized by LLD. This function 6729 * starts ports, registers @host with ATA and SCSI layers and 6730 * probe registered devices. 6731 * 6732 * LOCKING: 6733 * Inherited from calling layer (may sleep). 6734 * 6735 * RETURNS: 6736 * 0 on success, -errno otherwise. 6737 */ 6738 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6739 { 6740 int i, rc; 6741 6742 /* host must have been started */ 6743 if (!(host->flags & ATA_HOST_STARTED)) { 6744 dev_printk(KERN_ERR, host->dev, 6745 "BUG: trying to register unstarted host\n"); 6746 WARN_ON(1); 6747 return -EINVAL; 6748 } 6749 6750 /* Blow away unused ports. This happens when LLD can't 6751 * determine the exact number of ports to allocate at 6752 * allocation time. 6753 */ 6754 for (i = host->n_ports; host->ports[i]; i++) 6755 kfree(host->ports[i]); 6756 6757 /* give ports names and add SCSI hosts */ 6758 for (i = 0; i < host->n_ports; i++) 6759 host->ports[i]->print_id = ata_print_id++; 6760 6761 rc = ata_scsi_add_hosts(host, sht); 6762 if (rc) 6763 return rc; 6764 6765 /* associate with ACPI nodes */ 6766 ata_acpi_associate(host); 6767 6768 /* set cable, sata_spd_limit and report */ 6769 for (i = 0; i < host->n_ports; i++) { 6770 struct ata_port *ap = host->ports[i]; 6771 unsigned long xfer_mask; 6772 6773 /* set SATA cable type if still unset */ 6774 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6775 ap->cbl = ATA_CBL_SATA; 6776 6777 /* init sata_spd_limit to the current value */ 6778 sata_link_init_spd(&ap->link); 6779 6780 /* print per-port info to dmesg */ 6781 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6782 ap->udma_mask); 6783 6784 if (!ata_port_is_dummy(ap)) { 6785 ata_port_printk(ap, KERN_INFO, 6786 "%cATA max %s %s\n", 6787 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6788 ata_mode_string(xfer_mask), 6789 ap->link.eh_info.desc); 6790 ata_ehi_clear_desc(&ap->link.eh_info); 6791 } else 6792 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6793 } 6794 6795 /* perform each probe synchronously */ 6796 DPRINTK("probe begin\n"); 6797 for (i = 0; i < host->n_ports; i++) { 6798 struct ata_port *ap = host->ports[i]; 6799 int rc; 6800 6801 /* probe */ 6802 if (ap->ops->error_handler) { 6803 struct ata_eh_info *ehi = &ap->link.eh_info; 6804 unsigned long flags; 6805 6806 ata_port_probe(ap); 6807 6808 /* kick EH for boot probing */ 6809 spin_lock_irqsave(ap->lock, flags); 6810 6811 ehi->probe_mask = 6812 (1 << ata_link_max_devices(&ap->link)) - 1; 6813 ehi->action |= ATA_EH_SOFTRESET; 6814 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6815 6816 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6817 ap->pflags |= ATA_PFLAG_LOADING; 6818 ata_port_schedule_eh(ap); 6819 6820 spin_unlock_irqrestore(ap->lock, flags); 6821 6822 /* wait for EH to finish */ 6823 ata_port_wait_eh(ap); 6824 } else { 6825 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6826 rc = ata_bus_probe(ap); 6827 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6828 6829 if (rc) { 6830 /* FIXME: do something useful here? 6831 * Current libata behavior will 6832 * tear down everything when 6833 * the module is removed 6834 * or the h/w is unplugged. 6835 */ 6836 } 6837 } 6838 } 6839 6840 /* probes are done, now scan each port's disk(s) */ 6841 DPRINTK("host probe begin\n"); 6842 for (i = 0; i < host->n_ports; i++) { 6843 struct ata_port *ap = host->ports[i]; 6844 6845 ata_scsi_scan_host(ap, 1); 6846 } 6847 6848 return 0; 6849 } 6850 6851 /** 6852 * ata_host_activate - start host, request IRQ and register it 6853 * @host: target ATA host 6854 * @irq: IRQ to request 6855 * @irq_handler: irq_handler used when requesting IRQ 6856 * @irq_flags: irq_flags used when requesting IRQ 6857 * @sht: scsi_host_template to use when registering the host 6858 * 6859 * After allocating an ATA host and initializing it, most libata 6860 * LLDs perform three steps to activate the host - start host, 6861 * request IRQ and register it. This helper takes necessasry 6862 * arguments and performs the three steps in one go. 6863 * 6864 * LOCKING: 6865 * Inherited from calling layer (may sleep). 6866 * 6867 * RETURNS: 6868 * 0 on success, -errno otherwise. 6869 */ 6870 int ata_host_activate(struct ata_host *host, int irq, 6871 irq_handler_t irq_handler, unsigned long irq_flags, 6872 struct scsi_host_template *sht) 6873 { 6874 int i, rc; 6875 6876 rc = ata_host_start(host); 6877 if (rc) 6878 return rc; 6879 6880 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6881 dev_driver_string(host->dev), host); 6882 if (rc) 6883 return rc; 6884 6885 for (i = 0; i < host->n_ports; i++) 6886 ata_port_desc(host->ports[i], "irq %d", irq); 6887 6888 rc = ata_host_register(host, sht); 6889 /* if failed, just free the IRQ and leave ports alone */ 6890 if (rc) 6891 devm_free_irq(host->dev, irq, host); 6892 6893 return rc; 6894 } 6895 6896 /** 6897 * ata_port_detach - Detach ATA port in prepration of device removal 6898 * @ap: ATA port to be detached 6899 * 6900 * Detach all ATA devices and the associated SCSI devices of @ap; 6901 * then, remove the associated SCSI host. @ap is guaranteed to 6902 * be quiescent on return from this function. 6903 * 6904 * LOCKING: 6905 * Kernel thread context (may sleep). 6906 */ 6907 void ata_port_detach(struct ata_port *ap) 6908 { 6909 unsigned long flags; 6910 struct ata_link *link; 6911 struct ata_device *dev; 6912 6913 if (!ap->ops->error_handler) 6914 goto skip_eh; 6915 6916 /* tell EH we're leaving & flush EH */ 6917 spin_lock_irqsave(ap->lock, flags); 6918 ap->pflags |= ATA_PFLAG_UNLOADING; 6919 spin_unlock_irqrestore(ap->lock, flags); 6920 6921 ata_port_wait_eh(ap); 6922 6923 /* EH is now guaranteed to see UNLOADING, so no new device 6924 * will be attached. Disable all existing devices. 6925 */ 6926 spin_lock_irqsave(ap->lock, flags); 6927 6928 ata_port_for_each_link(link, ap) { 6929 ata_link_for_each_dev(dev, link) 6930 ata_dev_disable(dev); 6931 } 6932 6933 spin_unlock_irqrestore(ap->lock, flags); 6934 6935 /* Final freeze & EH. All in-flight commands are aborted. EH 6936 * will be skipped and retrials will be terminated with bad 6937 * target. 6938 */ 6939 spin_lock_irqsave(ap->lock, flags); 6940 ata_port_freeze(ap); /* won't be thawed */ 6941 spin_unlock_irqrestore(ap->lock, flags); 6942 6943 ata_port_wait_eh(ap); 6944 cancel_rearming_delayed_work(&ap->hotplug_task); 6945 6946 skip_eh: 6947 /* remove the associated SCSI host */ 6948 scsi_remove_host(ap->scsi_host); 6949 } 6950 6951 /** 6952 * ata_host_detach - Detach all ports of an ATA host 6953 * @host: Host to detach 6954 * 6955 * Detach all ports of @host. 6956 * 6957 * LOCKING: 6958 * Kernel thread context (may sleep). 6959 */ 6960 void ata_host_detach(struct ata_host *host) 6961 { 6962 int i; 6963 6964 for (i = 0; i < host->n_ports; i++) 6965 ata_port_detach(host->ports[i]); 6966 } 6967 6968 /** 6969 * ata_std_ports - initialize ioaddr with standard port offsets. 6970 * @ioaddr: IO address structure to be initialized 6971 * 6972 * Utility function which initializes data_addr, error_addr, 6973 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 6974 * device_addr, status_addr, and command_addr to standard offsets 6975 * relative to cmd_addr. 6976 * 6977 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 6978 */ 6979 6980 void ata_std_ports(struct ata_ioports *ioaddr) 6981 { 6982 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 6983 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 6984 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 6985 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 6986 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 6987 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 6988 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 6989 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 6990 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 6991 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 6992 } 6993 6994 6995 #ifdef CONFIG_PCI 6996 6997 /** 6998 * ata_pci_remove_one - PCI layer callback for device removal 6999 * @pdev: PCI device that was removed 7000 * 7001 * PCI layer indicates to libata via this hook that hot-unplug or 7002 * module unload event has occurred. Detach all ports. Resource 7003 * release is handled via devres. 7004 * 7005 * LOCKING: 7006 * Inherited from PCI layer (may sleep). 7007 */ 7008 void ata_pci_remove_one(struct pci_dev *pdev) 7009 { 7010 struct device *dev = &pdev->dev; 7011 struct ata_host *host = dev_get_drvdata(dev); 7012 7013 ata_host_detach(host); 7014 } 7015 7016 /* move to PCI subsystem */ 7017 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 7018 { 7019 unsigned long tmp = 0; 7020 7021 switch (bits->width) { 7022 case 1: { 7023 u8 tmp8 = 0; 7024 pci_read_config_byte(pdev, bits->reg, &tmp8); 7025 tmp = tmp8; 7026 break; 7027 } 7028 case 2: { 7029 u16 tmp16 = 0; 7030 pci_read_config_word(pdev, bits->reg, &tmp16); 7031 tmp = tmp16; 7032 break; 7033 } 7034 case 4: { 7035 u32 tmp32 = 0; 7036 pci_read_config_dword(pdev, bits->reg, &tmp32); 7037 tmp = tmp32; 7038 break; 7039 } 7040 7041 default: 7042 return -EINVAL; 7043 } 7044 7045 tmp &= bits->mask; 7046 7047 return (tmp == bits->val) ? 1 : 0; 7048 } 7049 7050 #ifdef CONFIG_PM 7051 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 7052 { 7053 pci_save_state(pdev); 7054 pci_disable_device(pdev); 7055 7056 if (mesg.event == PM_EVENT_SUSPEND) 7057 pci_set_power_state(pdev, PCI_D3hot); 7058 } 7059 7060 int ata_pci_device_do_resume(struct pci_dev *pdev) 7061 { 7062 int rc; 7063 7064 pci_set_power_state(pdev, PCI_D0); 7065 pci_restore_state(pdev); 7066 7067 rc = pcim_enable_device(pdev); 7068 if (rc) { 7069 dev_printk(KERN_ERR, &pdev->dev, 7070 "failed to enable device after resume (%d)\n", rc); 7071 return rc; 7072 } 7073 7074 pci_set_master(pdev); 7075 return 0; 7076 } 7077 7078 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 7079 { 7080 struct ata_host *host = dev_get_drvdata(&pdev->dev); 7081 int rc = 0; 7082 7083 rc = ata_host_suspend(host, mesg); 7084 if (rc) 7085 return rc; 7086 7087 ata_pci_device_do_suspend(pdev, mesg); 7088 7089 return 0; 7090 } 7091 7092 int ata_pci_device_resume(struct pci_dev *pdev) 7093 { 7094 struct ata_host *host = dev_get_drvdata(&pdev->dev); 7095 int rc; 7096 7097 rc = ata_pci_device_do_resume(pdev); 7098 if (rc == 0) 7099 ata_host_resume(host); 7100 return rc; 7101 } 7102 #endif /* CONFIG_PM */ 7103 7104 #endif /* CONFIG_PCI */ 7105 7106 7107 static int __init ata_init(void) 7108 { 7109 ata_probe_timeout *= HZ; 7110 ata_wq = create_workqueue("ata"); 7111 if (!ata_wq) 7112 return -ENOMEM; 7113 7114 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 7115 if (!ata_aux_wq) { 7116 destroy_workqueue(ata_wq); 7117 return -ENOMEM; 7118 } 7119 7120 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 7121 return 0; 7122 } 7123 7124 static void __exit ata_exit(void) 7125 { 7126 destroy_workqueue(ata_wq); 7127 destroy_workqueue(ata_aux_wq); 7128 } 7129 7130 subsys_initcall(ata_init); 7131 module_exit(ata_exit); 7132 7133 static unsigned long ratelimit_time; 7134 static DEFINE_SPINLOCK(ata_ratelimit_lock); 7135 7136 int ata_ratelimit(void) 7137 { 7138 int rc; 7139 unsigned long flags; 7140 7141 spin_lock_irqsave(&ata_ratelimit_lock, flags); 7142 7143 if (time_after(jiffies, ratelimit_time)) { 7144 rc = 1; 7145 ratelimit_time = jiffies + (HZ/5); 7146 } else 7147 rc = 0; 7148 7149 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 7150 7151 return rc; 7152 } 7153 7154 /** 7155 * ata_wait_register - wait until register value changes 7156 * @reg: IO-mapped register 7157 * @mask: Mask to apply to read register value 7158 * @val: Wait condition 7159 * @interval_msec: polling interval in milliseconds 7160 * @timeout_msec: timeout in milliseconds 7161 * 7162 * Waiting for some bits of register to change is a common 7163 * operation for ATA controllers. This function reads 32bit LE 7164 * IO-mapped register @reg and tests for the following condition. 7165 * 7166 * (*@reg & mask) != val 7167 * 7168 * If the condition is met, it returns; otherwise, the process is 7169 * repeated after @interval_msec until timeout. 7170 * 7171 * LOCKING: 7172 * Kernel thread context (may sleep) 7173 * 7174 * RETURNS: 7175 * The final register value. 7176 */ 7177 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 7178 unsigned long interval_msec, 7179 unsigned long timeout_msec) 7180 { 7181 unsigned long timeout; 7182 u32 tmp; 7183 7184 tmp = ioread32(reg); 7185 7186 /* Calculate timeout _after_ the first read to make sure 7187 * preceding writes reach the controller before starting to 7188 * eat away the timeout. 7189 */ 7190 timeout = jiffies + (timeout_msec * HZ) / 1000; 7191 7192 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 7193 msleep(interval_msec); 7194 tmp = ioread32(reg); 7195 } 7196 7197 return tmp; 7198 } 7199 7200 /* 7201 * Dummy port_ops 7202 */ 7203 static void ata_dummy_noret(struct ata_port *ap) { } 7204 static int ata_dummy_ret0(struct ata_port *ap) { return 0; } 7205 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { } 7206 7207 static u8 ata_dummy_check_status(struct ata_port *ap) 7208 { 7209 return ATA_DRDY; 7210 } 7211 7212 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7213 { 7214 return AC_ERR_SYSTEM; 7215 } 7216 7217 const struct ata_port_operations ata_dummy_port_ops = { 7218 .check_status = ata_dummy_check_status, 7219 .check_altstatus = ata_dummy_check_status, 7220 .dev_select = ata_noop_dev_select, 7221 .qc_prep = ata_noop_qc_prep, 7222 .qc_issue = ata_dummy_qc_issue, 7223 .freeze = ata_dummy_noret, 7224 .thaw = ata_dummy_noret, 7225 .error_handler = ata_dummy_noret, 7226 .post_internal_cmd = ata_dummy_qc_noret, 7227 .irq_clear = ata_dummy_noret, 7228 .port_start = ata_dummy_ret0, 7229 .port_stop = ata_dummy_noret, 7230 }; 7231 7232 const struct ata_port_info ata_dummy_port_info = { 7233 .port_ops = &ata_dummy_port_ops, 7234 }; 7235 7236 /* 7237 * libata is essentially a library of internal helper functions for 7238 * low-level ATA host controller drivers. As such, the API/ABI is 7239 * likely to change as new drivers are added and updated. 7240 * Do not depend on ABI/API stability. 7241 */ 7242 7243 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7244 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7245 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7246 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7247 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7248 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7249 EXPORT_SYMBOL_GPL(ata_std_ports); 7250 EXPORT_SYMBOL_GPL(ata_host_init); 7251 EXPORT_SYMBOL_GPL(ata_host_alloc); 7252 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7253 EXPORT_SYMBOL_GPL(ata_host_start); 7254 EXPORT_SYMBOL_GPL(ata_host_register); 7255 EXPORT_SYMBOL_GPL(ata_host_activate); 7256 EXPORT_SYMBOL_GPL(ata_host_detach); 7257 EXPORT_SYMBOL_GPL(ata_sg_init); 7258 EXPORT_SYMBOL_GPL(ata_sg_init_one); 7259 EXPORT_SYMBOL_GPL(ata_hsm_move); 7260 EXPORT_SYMBOL_GPL(ata_qc_complete); 7261 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7262 EXPORT_SYMBOL_GPL(ata_qc_issue_prot); 7263 EXPORT_SYMBOL_GPL(ata_tf_load); 7264 EXPORT_SYMBOL_GPL(ata_tf_read); 7265 EXPORT_SYMBOL_GPL(ata_noop_dev_select); 7266 EXPORT_SYMBOL_GPL(ata_std_dev_select); 7267 EXPORT_SYMBOL_GPL(sata_print_link_status); 7268 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7269 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7270 EXPORT_SYMBOL_GPL(ata_check_status); 7271 EXPORT_SYMBOL_GPL(ata_altstatus); 7272 EXPORT_SYMBOL_GPL(ata_exec_command); 7273 EXPORT_SYMBOL_GPL(ata_port_start); 7274 EXPORT_SYMBOL_GPL(ata_sff_port_start); 7275 EXPORT_SYMBOL_GPL(ata_interrupt); 7276 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7277 EXPORT_SYMBOL_GPL(ata_data_xfer); 7278 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq); 7279 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7280 EXPORT_SYMBOL_GPL(ata_qc_prep); 7281 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep); 7282 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7283 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 7284 EXPORT_SYMBOL_GPL(ata_bmdma_start); 7285 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 7286 EXPORT_SYMBOL_GPL(ata_bmdma_status); 7287 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 7288 EXPORT_SYMBOL_GPL(ata_bmdma_freeze); 7289 EXPORT_SYMBOL_GPL(ata_bmdma_thaw); 7290 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh); 7291 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 7292 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 7293 EXPORT_SYMBOL_GPL(ata_port_probe); 7294 EXPORT_SYMBOL_GPL(ata_dev_disable); 7295 EXPORT_SYMBOL_GPL(sata_set_spd); 7296 EXPORT_SYMBOL_GPL(sata_link_debounce); 7297 EXPORT_SYMBOL_GPL(sata_link_resume); 7298 EXPORT_SYMBOL_GPL(sata_phy_reset); 7299 EXPORT_SYMBOL_GPL(__sata_phy_reset); 7300 EXPORT_SYMBOL_GPL(ata_bus_reset); 7301 EXPORT_SYMBOL_GPL(ata_std_prereset); 7302 EXPORT_SYMBOL_GPL(ata_std_softreset); 7303 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7304 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7305 EXPORT_SYMBOL_GPL(ata_std_postreset); 7306 EXPORT_SYMBOL_GPL(ata_dev_classify); 7307 EXPORT_SYMBOL_GPL(ata_dev_pair); 7308 EXPORT_SYMBOL_GPL(ata_port_disable); 7309 EXPORT_SYMBOL_GPL(ata_ratelimit); 7310 EXPORT_SYMBOL_GPL(ata_wait_register); 7311 EXPORT_SYMBOL_GPL(ata_busy_sleep); 7312 EXPORT_SYMBOL_GPL(ata_wait_ready); 7313 EXPORT_SYMBOL_GPL(ata_port_queue_task); 7314 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 7315 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7316 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7317 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7318 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7319 EXPORT_SYMBOL_GPL(ata_host_intr); 7320 EXPORT_SYMBOL_GPL(sata_scr_valid); 7321 EXPORT_SYMBOL_GPL(sata_scr_read); 7322 EXPORT_SYMBOL_GPL(sata_scr_write); 7323 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7324 EXPORT_SYMBOL_GPL(ata_link_online); 7325 EXPORT_SYMBOL_GPL(ata_link_offline); 7326 #ifdef CONFIG_PM 7327 EXPORT_SYMBOL_GPL(ata_host_suspend); 7328 EXPORT_SYMBOL_GPL(ata_host_resume); 7329 #endif /* CONFIG_PM */ 7330 EXPORT_SYMBOL_GPL(ata_id_string); 7331 EXPORT_SYMBOL_GPL(ata_id_c_string); 7332 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode); 7333 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7334 7335 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7336 EXPORT_SYMBOL_GPL(ata_timing_compute); 7337 EXPORT_SYMBOL_GPL(ata_timing_merge); 7338 7339 #ifdef CONFIG_PCI 7340 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7341 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host); 7342 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma); 7343 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host); 7344 EXPORT_SYMBOL_GPL(ata_pci_init_one); 7345 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7346 #ifdef CONFIG_PM 7347 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7348 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7349 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7350 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7351 #endif /* CONFIG_PM */ 7352 EXPORT_SYMBOL_GPL(ata_pci_default_filter); 7353 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex); 7354 #endif /* CONFIG_PCI */ 7355 7356 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch); 7357 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset); 7358 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset); 7359 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset); 7360 EXPORT_SYMBOL_GPL(sata_pmp_do_eh); 7361 7362 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7363 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7364 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7365 EXPORT_SYMBOL_GPL(ata_port_desc); 7366 #ifdef CONFIG_PCI 7367 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7368 #endif /* CONFIG_PCI */ 7369 EXPORT_SYMBOL_GPL(ata_eng_timeout); 7370 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7371 EXPORT_SYMBOL_GPL(ata_link_abort); 7372 EXPORT_SYMBOL_GPL(ata_port_abort); 7373 EXPORT_SYMBOL_GPL(ata_port_freeze); 7374 EXPORT_SYMBOL_GPL(sata_async_notification); 7375 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7376 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7377 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7378 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7379 EXPORT_SYMBOL_GPL(ata_do_eh); 7380 EXPORT_SYMBOL_GPL(ata_irq_on); 7381 EXPORT_SYMBOL_GPL(ata_dev_try_classify); 7382 7383 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7384 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7385 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7386 EXPORT_SYMBOL_GPL(ata_cable_sata); 7387