xref: /linux/drivers/ata/libata-core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 
71 #include "libata.h"
72 #include "libata-transport.h"
73 
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
77 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
78 
79 const struct ata_port_operations ata_base_port_ops = {
80 	.prereset		= ata_std_prereset,
81 	.postreset		= ata_std_postreset,
82 	.error_handler		= ata_std_error_handler,
83 };
84 
85 const struct ata_port_operations sata_port_ops = {
86 	.inherits		= &ata_base_port_ops,
87 
88 	.qc_defer		= ata_std_qc_defer,
89 	.hardreset		= sata_std_hardreset,
90 };
91 
92 static unsigned int ata_dev_init_params(struct ata_device *dev,
93 					u16 heads, u16 sectors);
94 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
95 static void ata_dev_xfermask(struct ata_device *dev);
96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 
98 atomic_t ata_print_id = ATOMIC_INIT(0);
99 
100 struct ata_force_param {
101 	const char	*name;
102 	unsigned int	cbl;
103 	int		spd_limit;
104 	unsigned long	xfer_mask;
105 	unsigned int	horkage_on;
106 	unsigned int	horkage_off;
107 	unsigned int	lflags;
108 };
109 
110 struct ata_force_ent {
111 	int			port;
112 	int			device;
113 	struct ata_force_param	param;
114 };
115 
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118 
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123 
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127 
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131 
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135 
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139 
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143 
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147 
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151 
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155 
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159 
160 static int atapi_an;
161 module_param(atapi_an, int, 0444);
162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163 
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION);
168 
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			/* fall through */
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			/* fall through */
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			/* fall through */
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 
287 /**
288  *	ata_dev_phys_link - find physical link for a device
289  *	@dev: ATA device to look up physical link for
290  *
291  *	Look up physical link which @dev is attached to.  Note that
292  *	this is different from @dev->link only when @dev is on slave
293  *	link.  For all other cases, it's the same as @dev->link.
294  *
295  *	LOCKING:
296  *	Don't care.
297  *
298  *	RETURNS:
299  *	Pointer to the found physical link.
300  */
301 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 {
303 	struct ata_port *ap = dev->link->ap;
304 
305 	if (!ap->slave_link)
306 		return dev->link;
307 	if (!dev->devno)
308 		return &ap->link;
309 	return ap->slave_link;
310 }
311 
312 /**
313  *	ata_force_cbl - force cable type according to libata.force
314  *	@ap: ATA port of interest
315  *
316  *	Force cable type according to libata.force and whine about it.
317  *	The last entry which has matching port number is used, so it
318  *	can be specified as part of device force parameters.  For
319  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320  *	same effect.
321  *
322  *	LOCKING:
323  *	EH context.
324  */
325 void ata_force_cbl(struct ata_port *ap)
326 {
327 	int i;
328 
329 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 		const struct ata_force_ent *fe = &ata_force_tbl[i];
331 
332 		if (fe->port != -1 && fe->port != ap->print_id)
333 			continue;
334 
335 		if (fe->param.cbl == ATA_CBL_NONE)
336 			continue;
337 
338 		ap->cbl = fe->param.cbl;
339 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
340 		return;
341 	}
342 }
343 
344 /**
345  *	ata_force_link_limits - force link limits according to libata.force
346  *	@link: ATA link of interest
347  *
348  *	Force link flags and SATA spd limit according to libata.force
349  *	and whine about it.  When only the port part is specified
350  *	(e.g. 1:), the limit applies to all links connected to both
351  *	the host link and all fan-out ports connected via PMP.  If the
352  *	device part is specified as 0 (e.g. 1.00:), it specifies the
353  *	first fan-out link not the host link.  Device number 15 always
354  *	points to the host link whether PMP is attached or not.  If the
355  *	controller has slave link, device number 16 points to it.
356  *
357  *	LOCKING:
358  *	EH context.
359  */
360 static void ata_force_link_limits(struct ata_link *link)
361 {
362 	bool did_spd = false;
363 	int linkno = link->pmp;
364 	int i;
365 
366 	if (ata_is_host_link(link))
367 		linkno += 15;
368 
369 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 		const struct ata_force_ent *fe = &ata_force_tbl[i];
371 
372 		if (fe->port != -1 && fe->port != link->ap->print_id)
373 			continue;
374 
375 		if (fe->device != -1 && fe->device != linkno)
376 			continue;
377 
378 		/* only honor the first spd limit */
379 		if (!did_spd && fe->param.spd_limit) {
380 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
382 					fe->param.name);
383 			did_spd = true;
384 		}
385 
386 		/* let lflags stack */
387 		if (fe->param.lflags) {
388 			link->flags |= fe->param.lflags;
389 			ata_link_notice(link,
390 					"FORCE: link flag 0x%x forced -> 0x%x\n",
391 					fe->param.lflags, link->flags);
392 		}
393 	}
394 }
395 
396 /**
397  *	ata_force_xfermask - force xfermask according to libata.force
398  *	@dev: ATA device of interest
399  *
400  *	Force xfer_mask according to libata.force and whine about it.
401  *	For consistency with link selection, device number 15 selects
402  *	the first device connected to the host link.
403  *
404  *	LOCKING:
405  *	EH context.
406  */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 	int devno = dev->link->pmp + dev->devno;
410 	int alt_devno = devno;
411 	int i;
412 
413 	/* allow n.15/16 for devices attached to host port */
414 	if (ata_is_host_link(dev->link))
415 		alt_devno += 15;
416 
417 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 		const struct ata_force_ent *fe = &ata_force_tbl[i];
419 		unsigned long pio_mask, mwdma_mask, udma_mask;
420 
421 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 			continue;
423 
424 		if (fe->device != -1 && fe->device != devno &&
425 		    fe->device != alt_devno)
426 			continue;
427 
428 		if (!fe->param.xfer_mask)
429 			continue;
430 
431 		ata_unpack_xfermask(fe->param.xfer_mask,
432 				    &pio_mask, &mwdma_mask, &udma_mask);
433 		if (udma_mask)
434 			dev->udma_mask = udma_mask;
435 		else if (mwdma_mask) {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = mwdma_mask;
438 		} else {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = 0;
441 			dev->pio_mask = pio_mask;
442 		}
443 
444 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
445 			       fe->param.name);
446 		return;
447 	}
448 }
449 
450 /**
451  *	ata_force_horkage - force horkage according to libata.force
452  *	@dev: ATA device of interest
453  *
454  *	Force horkage according to libata.force and whine about it.
455  *	For consistency with link selection, device number 15 selects
456  *	the first device connected to the host link.
457  *
458  *	LOCKING:
459  *	EH context.
460  */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 	int devno = dev->link->pmp + dev->devno;
464 	int alt_devno = devno;
465 	int i;
466 
467 	/* allow n.15/16 for devices attached to host port */
468 	if (ata_is_host_link(dev->link))
469 		alt_devno += 15;
470 
471 	for (i = 0; i < ata_force_tbl_size; i++) {
472 		const struct ata_force_ent *fe = &ata_force_tbl[i];
473 
474 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 			continue;
476 
477 		if (fe->device != -1 && fe->device != devno &&
478 		    fe->device != alt_devno)
479 			continue;
480 
481 		if (!(~dev->horkage & fe->param.horkage_on) &&
482 		    !(dev->horkage & fe->param.horkage_off))
483 			continue;
484 
485 		dev->horkage |= fe->param.horkage_on;
486 		dev->horkage &= ~fe->param.horkage_off;
487 
488 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
489 			       fe->param.name);
490 	}
491 }
492 
493 /**
494  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495  *	@opcode: SCSI opcode
496  *
497  *	Determine ATAPI command type from @opcode.
498  *
499  *	LOCKING:
500  *	None.
501  *
502  *	RETURNS:
503  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504  */
505 int atapi_cmd_type(u8 opcode)
506 {
507 	switch (opcode) {
508 	case GPCMD_READ_10:
509 	case GPCMD_READ_12:
510 		return ATAPI_READ;
511 
512 	case GPCMD_WRITE_10:
513 	case GPCMD_WRITE_12:
514 	case GPCMD_WRITE_AND_VERIFY_10:
515 		return ATAPI_WRITE;
516 
517 	case GPCMD_READ_CD:
518 	case GPCMD_READ_CD_MSF:
519 		return ATAPI_READ_CD;
520 
521 	case ATA_16:
522 	case ATA_12:
523 		if (atapi_passthru16)
524 			return ATAPI_PASS_THRU;
525 		/* fall thru */
526 	default:
527 		return ATAPI_MISC;
528 	}
529 }
530 
531 /**
532  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533  *	@tf: Taskfile to convert
534  *	@pmp: Port multiplier port
535  *	@is_cmd: This FIS is for command
536  *	@fis: Buffer into which data will output
537  *
538  *	Converts a standard ATA taskfile to a Serial ATA
539  *	FIS structure (Register - Host to Device).
540  *
541  *	LOCKING:
542  *	Inherited from caller.
543  */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 	fis[0] = 0x27;			/* Register - Host to Device FIS */
547 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
548 	if (is_cmd)
549 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
550 
551 	fis[2] = tf->command;
552 	fis[3] = tf->feature;
553 
554 	fis[4] = tf->lbal;
555 	fis[5] = tf->lbam;
556 	fis[6] = tf->lbah;
557 	fis[7] = tf->device;
558 
559 	fis[8] = tf->hob_lbal;
560 	fis[9] = tf->hob_lbam;
561 	fis[10] = tf->hob_lbah;
562 	fis[11] = tf->hob_feature;
563 
564 	fis[12] = tf->nsect;
565 	fis[13] = tf->hob_nsect;
566 	fis[14] = 0;
567 	fis[15] = tf->ctl;
568 
569 	fis[16] = 0;
570 	fis[17] = 0;
571 	fis[18] = 0;
572 	fis[19] = 0;
573 }
574 
575 /**
576  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577  *	@fis: Buffer from which data will be input
578  *	@tf: Taskfile to output
579  *
580  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
581  *
582  *	LOCKING:
583  *	Inherited from caller.
584  */
585 
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 	tf->command	= fis[2];	/* status */
589 	tf->feature	= fis[3];	/* error */
590 
591 	tf->lbal	= fis[4];
592 	tf->lbam	= fis[5];
593 	tf->lbah	= fis[6];
594 	tf->device	= fis[7];
595 
596 	tf->hob_lbal	= fis[8];
597 	tf->hob_lbam	= fis[9];
598 	tf->hob_lbah	= fis[10];
599 
600 	tf->nsect	= fis[12];
601 	tf->hob_nsect	= fis[13];
602 }
603 
604 static const u8 ata_rw_cmds[] = {
605 	/* pio multi */
606 	ATA_CMD_READ_MULTI,
607 	ATA_CMD_WRITE_MULTI,
608 	ATA_CMD_READ_MULTI_EXT,
609 	ATA_CMD_WRITE_MULTI_EXT,
610 	0,
611 	0,
612 	0,
613 	ATA_CMD_WRITE_MULTI_FUA_EXT,
614 	/* pio */
615 	ATA_CMD_PIO_READ,
616 	ATA_CMD_PIO_WRITE,
617 	ATA_CMD_PIO_READ_EXT,
618 	ATA_CMD_PIO_WRITE_EXT,
619 	0,
620 	0,
621 	0,
622 	0,
623 	/* dma */
624 	ATA_CMD_READ,
625 	ATA_CMD_WRITE,
626 	ATA_CMD_READ_EXT,
627 	ATA_CMD_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	ATA_CMD_WRITE_FUA_EXT
632 };
633 
634 /**
635  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
636  *	@tf: command to examine and configure
637  *	@dev: device tf belongs to
638  *
639  *	Examine the device configuration and tf->flags to calculate
640  *	the proper read/write commands and protocol to use.
641  *
642  *	LOCKING:
643  *	caller.
644  */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 	u8 cmd;
648 
649 	int index, fua, lba48, write;
650 
651 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 
655 	if (dev->flags & ATA_DFLAG_PIO) {
656 		tf->protocol = ATA_PROT_PIO;
657 		index = dev->multi_count ? 0 : 8;
658 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 		/* Unable to use DMA due to host limitation */
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else {
663 		tf->protocol = ATA_PROT_DMA;
664 		index = 16;
665 	}
666 
667 	cmd = ata_rw_cmds[index + fua + lba48 + write];
668 	if (cmd) {
669 		tf->command = cmd;
670 		return 0;
671 	}
672 	return -1;
673 }
674 
675 /**
676  *	ata_tf_read_block - Read block address from ATA taskfile
677  *	@tf: ATA taskfile of interest
678  *	@dev: ATA device @tf belongs to
679  *
680  *	LOCKING:
681  *	None.
682  *
683  *	Read block address from @tf.  This function can handle all
684  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
685  *	flags select the address format to use.
686  *
687  *	RETURNS:
688  *	Block address read from @tf.
689  */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 	u64 block = 0;
693 
694 	if (tf->flags & ATA_TFLAG_LBA) {
695 		if (tf->flags & ATA_TFLAG_LBA48) {
696 			block |= (u64)tf->hob_lbah << 40;
697 			block |= (u64)tf->hob_lbam << 32;
698 			block |= (u64)tf->hob_lbal << 24;
699 		} else
700 			block |= (tf->device & 0xf) << 24;
701 
702 		block |= tf->lbah << 16;
703 		block |= tf->lbam << 8;
704 		block |= tf->lbal;
705 	} else {
706 		u32 cyl, head, sect;
707 
708 		cyl = tf->lbam | (tf->lbah << 8);
709 		head = tf->device & 0xf;
710 		sect = tf->lbal;
711 
712 		if (!sect) {
713 			ata_dev_warn(dev,
714 				     "device reported invalid CHS sector 0\n");
715 			sect = 1; /* oh well */
716 		}
717 
718 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
719 	}
720 
721 	return block;
722 }
723 
724 /**
725  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
726  *	@tf: Target ATA taskfile
727  *	@dev: ATA device @tf belongs to
728  *	@block: Block address
729  *	@n_block: Number of blocks
730  *	@tf_flags: RW/FUA etc...
731  *	@tag: tag
732  *
733  *	LOCKING:
734  *	None.
735  *
736  *	Build ATA taskfile @tf for read/write request described by
737  *	@block, @n_block, @tf_flags and @tag on @dev.
738  *
739  *	RETURNS:
740  *
741  *	0 on success, -ERANGE if the request is too large for @dev,
742  *	-EINVAL if the request is invalid.
743  */
744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 		    u64 block, u32 n_block, unsigned int tf_flags,
746 		    unsigned int tag)
747 {
748 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 	tf->flags |= tf_flags;
750 
751 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 		/* yay, NCQ */
753 		if (!lba_48_ok(block, n_block))
754 			return -ERANGE;
755 
756 		tf->protocol = ATA_PROT_NCQ;
757 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758 
759 		if (tf->flags & ATA_TFLAG_WRITE)
760 			tf->command = ATA_CMD_FPDMA_WRITE;
761 		else
762 			tf->command = ATA_CMD_FPDMA_READ;
763 
764 		tf->nsect = tag << 3;
765 		tf->hob_feature = (n_block >> 8) & 0xff;
766 		tf->feature = n_block & 0xff;
767 
768 		tf->hob_lbah = (block >> 40) & 0xff;
769 		tf->hob_lbam = (block >> 32) & 0xff;
770 		tf->hob_lbal = (block >> 24) & 0xff;
771 		tf->lbah = (block >> 16) & 0xff;
772 		tf->lbam = (block >> 8) & 0xff;
773 		tf->lbal = block & 0xff;
774 
775 		tf->device = 1 << 6;
776 		if (tf->flags & ATA_TFLAG_FUA)
777 			tf->device |= 1 << 7;
778 	} else if (dev->flags & ATA_DFLAG_LBA) {
779 		tf->flags |= ATA_TFLAG_LBA;
780 
781 		if (lba_28_ok(block, n_block)) {
782 			/* use LBA28 */
783 			tf->device |= (block >> 24) & 0xf;
784 		} else if (lba_48_ok(block, n_block)) {
785 			if (!(dev->flags & ATA_DFLAG_LBA48))
786 				return -ERANGE;
787 
788 			/* use LBA48 */
789 			tf->flags |= ATA_TFLAG_LBA48;
790 
791 			tf->hob_nsect = (n_block >> 8) & 0xff;
792 
793 			tf->hob_lbah = (block >> 40) & 0xff;
794 			tf->hob_lbam = (block >> 32) & 0xff;
795 			tf->hob_lbal = (block >> 24) & 0xff;
796 		} else
797 			/* request too large even for LBA48 */
798 			return -ERANGE;
799 
800 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 			return -EINVAL;
802 
803 		tf->nsect = n_block & 0xff;
804 
805 		tf->lbah = (block >> 16) & 0xff;
806 		tf->lbam = (block >> 8) & 0xff;
807 		tf->lbal = block & 0xff;
808 
809 		tf->device |= ATA_LBA;
810 	} else {
811 		/* CHS */
812 		u32 sect, head, cyl, track;
813 
814 		/* The request -may- be too large for CHS addressing. */
815 		if (!lba_28_ok(block, n_block))
816 			return -ERANGE;
817 
818 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 			return -EINVAL;
820 
821 		/* Convert LBA to CHS */
822 		track = (u32)block / dev->sectors;
823 		cyl   = track / dev->heads;
824 		head  = track % dev->heads;
825 		sect  = (u32)block % dev->sectors + 1;
826 
827 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 			(u32)block, track, cyl, head, sect);
829 
830 		/* Check whether the converted CHS can fit.
831 		   Cylinder: 0-65535
832 		   Head: 0-15
833 		   Sector: 1-255*/
834 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 			return -ERANGE;
836 
837 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 		tf->lbal = sect;
839 		tf->lbam = cyl;
840 		tf->lbah = cyl >> 8;
841 		tf->device |= head;
842 	}
843 
844 	return 0;
845 }
846 
847 /**
848  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849  *	@pio_mask: pio_mask
850  *	@mwdma_mask: mwdma_mask
851  *	@udma_mask: udma_mask
852  *
853  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854  *	unsigned int xfer_mask.
855  *
856  *	LOCKING:
857  *	None.
858  *
859  *	RETURNS:
860  *	Packed xfer_mask.
861  */
862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 				unsigned long mwdma_mask,
864 				unsigned long udma_mask)
865 {
866 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
869 }
870 
871 /**
872  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873  *	@xfer_mask: xfer_mask to unpack
874  *	@pio_mask: resulting pio_mask
875  *	@mwdma_mask: resulting mwdma_mask
876  *	@udma_mask: resulting udma_mask
877  *
878  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879  *	Any NULL distination masks will be ignored.
880  */
881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
883 {
884 	if (pio_mask)
885 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 	if (mwdma_mask)
887 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 	if (udma_mask)
889 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
890 }
891 
892 static const struct ata_xfer_ent {
893 	int shift, bits;
894 	u8 base;
895 } ata_xfer_tbl[] = {
896 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 	{ -1, },
900 };
901 
902 /**
903  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904  *	@xfer_mask: xfer_mask of interest
905  *
906  *	Return matching XFER_* value for @xfer_mask.  Only the highest
907  *	bit of @xfer_mask is considered.
908  *
909  *	LOCKING:
910  *	None.
911  *
912  *	RETURNS:
913  *	Matching XFER_* value, 0xff if no match found.
914  */
915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916 {
917 	int highbit = fls(xfer_mask) - 1;
918 	const struct ata_xfer_ent *ent;
919 
920 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 			return ent->base + highbit - ent->shift;
923 	return 0xff;
924 }
925 
926 /**
927  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928  *	@xfer_mode: XFER_* of interest
929  *
930  *	Return matching xfer_mask for @xfer_mode.
931  *
932  *	LOCKING:
933  *	None.
934  *
935  *	RETURNS:
936  *	Matching xfer_mask, 0 if no match found.
937  */
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939 {
940 	const struct ata_xfer_ent *ent;
941 
942 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 				& ~((1 << ent->shift) - 1);
946 	return 0;
947 }
948 
949 /**
950  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951  *	@xfer_mode: XFER_* of interest
952  *
953  *	Return matching xfer_shift for @xfer_mode.
954  *
955  *	LOCKING:
956  *	None.
957  *
958  *	RETURNS:
959  *	Matching xfer_shift, -1 if no match found.
960  */
961 int ata_xfer_mode2shift(unsigned long xfer_mode)
962 {
963 	const struct ata_xfer_ent *ent;
964 
965 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 			return ent->shift;
968 	return -1;
969 }
970 
971 /**
972  *	ata_mode_string - convert xfer_mask to string
973  *	@xfer_mask: mask of bits supported; only highest bit counts.
974  *
975  *	Determine string which represents the highest speed
976  *	(highest bit in @modemask).
977  *
978  *	LOCKING:
979  *	None.
980  *
981  *	RETURNS:
982  *	Constant C string representing highest speed listed in
983  *	@mode_mask, or the constant C string "<n/a>".
984  */
985 const char *ata_mode_string(unsigned long xfer_mask)
986 {
987 	static const char * const xfer_mode_str[] = {
988 		"PIO0",
989 		"PIO1",
990 		"PIO2",
991 		"PIO3",
992 		"PIO4",
993 		"PIO5",
994 		"PIO6",
995 		"MWDMA0",
996 		"MWDMA1",
997 		"MWDMA2",
998 		"MWDMA3",
999 		"MWDMA4",
1000 		"UDMA/16",
1001 		"UDMA/25",
1002 		"UDMA/33",
1003 		"UDMA/44",
1004 		"UDMA/66",
1005 		"UDMA/100",
1006 		"UDMA/133",
1007 		"UDMA7",
1008 	};
1009 	int highbit;
1010 
1011 	highbit = fls(xfer_mask) - 1;
1012 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 		return xfer_mode_str[highbit];
1014 	return "<n/a>";
1015 }
1016 
1017 const char *sata_spd_string(unsigned int spd)
1018 {
1019 	static const char * const spd_str[] = {
1020 		"1.5 Gbps",
1021 		"3.0 Gbps",
1022 		"6.0 Gbps",
1023 	};
1024 
1025 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 		return "<unknown>";
1027 	return spd_str[spd - 1];
1028 }
1029 
1030 /**
1031  *	ata_dev_classify - determine device type based on ATA-spec signature
1032  *	@tf: ATA taskfile register set for device to be identified
1033  *
1034  *	Determine from taskfile register contents whether a device is
1035  *	ATA or ATAPI, as per "Signature and persistence" section
1036  *	of ATA/PI spec (volume 1, sect 5.14).
1037  *
1038  *	LOCKING:
1039  *	None.
1040  *
1041  *	RETURNS:
1042  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043  *	%ATA_DEV_UNKNOWN the event of failure.
1044  */
1045 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046 {
1047 	/* Apple's open source Darwin code hints that some devices only
1048 	 * put a proper signature into the LBA mid/high registers,
1049 	 * So, we only check those.  It's sufficient for uniqueness.
1050 	 *
1051 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1053 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1054 	 * spec has never mentioned about using different signatures
1055 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1056 	 * Multiplier specification began to use 0x69/0x96 to identify
1057 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059 	 * 0x69/0x96 shortly and described them as reserved for
1060 	 * SerialATA.
1061 	 *
1062 	 * We follow the current spec and consider that 0x69/0x96
1063 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065 	 * SEMB signature.  This is worked around in
1066 	 * ata_dev_read_id().
1067 	 */
1068 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069 		DPRINTK("found ATA device by sig\n");
1070 		return ATA_DEV_ATA;
1071 	}
1072 
1073 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074 		DPRINTK("found ATAPI device by sig\n");
1075 		return ATA_DEV_ATAPI;
1076 	}
1077 
1078 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079 		DPRINTK("found PMP device by sig\n");
1080 		return ATA_DEV_PMP;
1081 	}
1082 
1083 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085 		return ATA_DEV_SEMB;
1086 	}
1087 
1088 	DPRINTK("unknown device\n");
1089 	return ATA_DEV_UNKNOWN;
1090 }
1091 
1092 /**
1093  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1094  *	@id: IDENTIFY DEVICE results we will examine
1095  *	@s: string into which data is output
1096  *	@ofs: offset into identify device page
1097  *	@len: length of string to return. must be an even number.
1098  *
1099  *	The strings in the IDENTIFY DEVICE page are broken up into
1100  *	16-bit chunks.  Run through the string, and output each
1101  *	8-bit chunk linearly, regardless of platform.
1102  *
1103  *	LOCKING:
1104  *	caller.
1105  */
1106 
1107 void ata_id_string(const u16 *id, unsigned char *s,
1108 		   unsigned int ofs, unsigned int len)
1109 {
1110 	unsigned int c;
1111 
1112 	BUG_ON(len & 1);
1113 
1114 	while (len > 0) {
1115 		c = id[ofs] >> 8;
1116 		*s = c;
1117 		s++;
1118 
1119 		c = id[ofs] & 0xff;
1120 		*s = c;
1121 		s++;
1122 
1123 		ofs++;
1124 		len -= 2;
1125 	}
1126 }
1127 
1128 /**
1129  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130  *	@id: IDENTIFY DEVICE results we will examine
1131  *	@s: string into which data is output
1132  *	@ofs: offset into identify device page
1133  *	@len: length of string to return. must be an odd number.
1134  *
1135  *	This function is identical to ata_id_string except that it
1136  *	trims trailing spaces and terminates the resulting string with
1137  *	null.  @len must be actual maximum length (even number) + 1.
1138  *
1139  *	LOCKING:
1140  *	caller.
1141  */
1142 void ata_id_c_string(const u16 *id, unsigned char *s,
1143 		     unsigned int ofs, unsigned int len)
1144 {
1145 	unsigned char *p;
1146 
1147 	ata_id_string(id, s, ofs, len - 1);
1148 
1149 	p = s + strnlen(s, len - 1);
1150 	while (p > s && p[-1] == ' ')
1151 		p--;
1152 	*p = '\0';
1153 }
1154 
1155 static u64 ata_id_n_sectors(const u16 *id)
1156 {
1157 	if (ata_id_has_lba(id)) {
1158 		if (ata_id_has_lba48(id))
1159 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160 		else
1161 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162 	} else {
1163 		if (ata_id_current_chs_valid(id))
1164 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165 			       id[ATA_ID_CUR_SECTORS];
1166 		else
1167 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168 			       id[ATA_ID_SECTORS];
1169 	}
1170 }
1171 
1172 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173 {
1174 	u64 sectors = 0;
1175 
1176 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179 	sectors |= (tf->lbah & 0xff) << 16;
1180 	sectors |= (tf->lbam & 0xff) << 8;
1181 	sectors |= (tf->lbal & 0xff);
1182 
1183 	return sectors;
1184 }
1185 
1186 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187 {
1188 	u64 sectors = 0;
1189 
1190 	sectors |= (tf->device & 0x0f) << 24;
1191 	sectors |= (tf->lbah & 0xff) << 16;
1192 	sectors |= (tf->lbam & 0xff) << 8;
1193 	sectors |= (tf->lbal & 0xff);
1194 
1195 	return sectors;
1196 }
1197 
1198 /**
1199  *	ata_read_native_max_address - Read native max address
1200  *	@dev: target device
1201  *	@max_sectors: out parameter for the result native max address
1202  *
1203  *	Perform an LBA48 or LBA28 native size query upon the device in
1204  *	question.
1205  *
1206  *	RETURNS:
1207  *	0 on success, -EACCES if command is aborted by the drive.
1208  *	-EIO on other errors.
1209  */
1210 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211 {
1212 	unsigned int err_mask;
1213 	struct ata_taskfile tf;
1214 	int lba48 = ata_id_has_lba48(dev->id);
1215 
1216 	ata_tf_init(dev, &tf);
1217 
1218 	/* always clear all address registers */
1219 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220 
1221 	if (lba48) {
1222 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223 		tf.flags |= ATA_TFLAG_LBA48;
1224 	} else
1225 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1226 
1227 	tf.protocol |= ATA_PROT_NODATA;
1228 	tf.device |= ATA_LBA;
1229 
1230 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231 	if (err_mask) {
1232 		ata_dev_warn(dev,
1233 			     "failed to read native max address (err_mask=0x%x)\n",
1234 			     err_mask);
1235 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 			return -EACCES;
1237 		return -EIO;
1238 	}
1239 
1240 	if (lba48)
1241 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 	else
1243 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1244 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 		(*max_sectors)--;
1246 	return 0;
1247 }
1248 
1249 /**
1250  *	ata_set_max_sectors - Set max sectors
1251  *	@dev: target device
1252  *	@new_sectors: new max sectors value to set for the device
1253  *
1254  *	Set max sectors of @dev to @new_sectors.
1255  *
1256  *	RETURNS:
1257  *	0 on success, -EACCES if command is aborted or denied (due to
1258  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1259  *	errors.
1260  */
1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262 {
1263 	unsigned int err_mask;
1264 	struct ata_taskfile tf;
1265 	int lba48 = ata_id_has_lba48(dev->id);
1266 
1267 	new_sectors--;
1268 
1269 	ata_tf_init(dev, &tf);
1270 
1271 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272 
1273 	if (lba48) {
1274 		tf.command = ATA_CMD_SET_MAX_EXT;
1275 		tf.flags |= ATA_TFLAG_LBA48;
1276 
1277 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 	} else {
1281 		tf.command = ATA_CMD_SET_MAX;
1282 
1283 		tf.device |= (new_sectors >> 24) & 0xf;
1284 	}
1285 
1286 	tf.protocol |= ATA_PROT_NODATA;
1287 	tf.device |= ATA_LBA;
1288 
1289 	tf.lbal = (new_sectors >> 0) & 0xff;
1290 	tf.lbam = (new_sectors >> 8) & 0xff;
1291 	tf.lbah = (new_sectors >> 16) & 0xff;
1292 
1293 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 	if (err_mask) {
1295 		ata_dev_warn(dev,
1296 			     "failed to set max address (err_mask=0x%x)\n",
1297 			     err_mask);
1298 		if (err_mask == AC_ERR_DEV &&
1299 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300 			return -EACCES;
1301 		return -EIO;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  *	ata_hpa_resize		-	Resize a device with an HPA set
1309  *	@dev: Device to resize
1310  *
1311  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312  *	it if required to the full size of the media. The caller must check
1313  *	the drive has the HPA feature set enabled.
1314  *
1315  *	RETURNS:
1316  *	0 on success, -errno on failure.
1317  */
1318 static int ata_hpa_resize(struct ata_device *dev)
1319 {
1320 	struct ata_eh_context *ehc = &dev->link->eh_context;
1321 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323 	u64 sectors = ata_id_n_sectors(dev->id);
1324 	u64 native_sectors;
1325 	int rc;
1326 
1327 	/* do we need to do it? */
1328 	if (dev->class != ATA_DEV_ATA ||
1329 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331 		return 0;
1332 
1333 	/* read native max address */
1334 	rc = ata_read_native_max_address(dev, &native_sectors);
1335 	if (rc) {
1336 		/* If device aborted the command or HPA isn't going to
1337 		 * be unlocked, skip HPA resizing.
1338 		 */
1339 		if (rc == -EACCES || !unlock_hpa) {
1340 			ata_dev_warn(dev,
1341 				     "HPA support seems broken, skipping HPA handling\n");
1342 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343 
1344 			/* we can continue if device aborted the command */
1345 			if (rc == -EACCES)
1346 				rc = 0;
1347 		}
1348 
1349 		return rc;
1350 	}
1351 	dev->n_native_sectors = native_sectors;
1352 
1353 	/* nothing to do? */
1354 	if (native_sectors <= sectors || !unlock_hpa) {
1355 		if (!print_info || native_sectors == sectors)
1356 			return 0;
1357 
1358 		if (native_sectors > sectors)
1359 			ata_dev_info(dev,
1360 				"HPA detected: current %llu, native %llu\n",
1361 				(unsigned long long)sectors,
1362 				(unsigned long long)native_sectors);
1363 		else if (native_sectors < sectors)
1364 			ata_dev_warn(dev,
1365 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1366 				(unsigned long long)native_sectors,
1367 				(unsigned long long)sectors);
1368 		return 0;
1369 	}
1370 
1371 	/* let's unlock HPA */
1372 	rc = ata_set_max_sectors(dev, native_sectors);
1373 	if (rc == -EACCES) {
1374 		/* if device aborted the command, skip HPA resizing */
1375 		ata_dev_warn(dev,
1376 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377 			     (unsigned long long)sectors,
1378 			     (unsigned long long)native_sectors);
1379 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 		return 0;
1381 	} else if (rc)
1382 		return rc;
1383 
1384 	/* re-read IDENTIFY data */
1385 	rc = ata_dev_reread_id(dev, 0);
1386 	if (rc) {
1387 		ata_dev_err(dev,
1388 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1389 		return rc;
1390 	}
1391 
1392 	if (print_info) {
1393 		u64 new_sectors = ata_id_n_sectors(dev->id);
1394 		ata_dev_info(dev,
1395 			"HPA unlocked: %llu -> %llu, native %llu\n",
1396 			(unsigned long long)sectors,
1397 			(unsigned long long)new_sectors,
1398 			(unsigned long long)native_sectors);
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1406  *	@id: IDENTIFY DEVICE page to dump
1407  *
1408  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1409  *	page.
1410  *
1411  *	LOCKING:
1412  *	caller.
1413  */
1414 
1415 static inline void ata_dump_id(const u16 *id)
1416 {
1417 	DPRINTK("49==0x%04x  "
1418 		"53==0x%04x  "
1419 		"63==0x%04x  "
1420 		"64==0x%04x  "
1421 		"75==0x%04x  \n",
1422 		id[49],
1423 		id[53],
1424 		id[63],
1425 		id[64],
1426 		id[75]);
1427 	DPRINTK("80==0x%04x  "
1428 		"81==0x%04x  "
1429 		"82==0x%04x  "
1430 		"83==0x%04x  "
1431 		"84==0x%04x  \n",
1432 		id[80],
1433 		id[81],
1434 		id[82],
1435 		id[83],
1436 		id[84]);
1437 	DPRINTK("88==0x%04x  "
1438 		"93==0x%04x\n",
1439 		id[88],
1440 		id[93]);
1441 }
1442 
1443 /**
1444  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445  *	@id: IDENTIFY data to compute xfer mask from
1446  *
1447  *	Compute the xfermask for this device. This is not as trivial
1448  *	as it seems if we must consider early devices correctly.
1449  *
1450  *	FIXME: pre IDE drive timing (do we care ?).
1451  *
1452  *	LOCKING:
1453  *	None.
1454  *
1455  *	RETURNS:
1456  *	Computed xfermask
1457  */
1458 unsigned long ata_id_xfermask(const u16 *id)
1459 {
1460 	unsigned long pio_mask, mwdma_mask, udma_mask;
1461 
1462 	/* Usual case. Word 53 indicates word 64 is valid */
1463 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 		pio_mask <<= 3;
1466 		pio_mask |= 0x7;
1467 	} else {
1468 		/* If word 64 isn't valid then Word 51 high byte holds
1469 		 * the PIO timing number for the maximum. Turn it into
1470 		 * a mask.
1471 		 */
1472 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 		if (mode < 5)	/* Valid PIO range */
1474 			pio_mask = (2 << mode) - 1;
1475 		else
1476 			pio_mask = 1;
1477 
1478 		/* But wait.. there's more. Design your standards by
1479 		 * committee and you too can get a free iordy field to
1480 		 * process. However its the speeds not the modes that
1481 		 * are supported... Note drivers using the timing API
1482 		 * will get this right anyway
1483 		 */
1484 	}
1485 
1486 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487 
1488 	if (ata_id_is_cfa(id)) {
1489 		/*
1490 		 *	Process compact flash extended modes
1491 		 */
1492 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494 
1495 		if (pio)
1496 			pio_mask |= (1 << 5);
1497 		if (pio > 1)
1498 			pio_mask |= (1 << 6);
1499 		if (dma)
1500 			mwdma_mask |= (1 << 3);
1501 		if (dma > 1)
1502 			mwdma_mask |= (1 << 4);
1503 	}
1504 
1505 	udma_mask = 0;
1506 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508 
1509 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510 }
1511 
1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513 {
1514 	struct completion *waiting = qc->private_data;
1515 
1516 	complete(waiting);
1517 }
1518 
1519 /**
1520  *	ata_exec_internal_sg - execute libata internal command
1521  *	@dev: Device to which the command is sent
1522  *	@tf: Taskfile registers for the command and the result
1523  *	@cdb: CDB for packet command
1524  *	@dma_dir: Data tranfer direction of the command
1525  *	@sgl: sg list for the data buffer of the command
1526  *	@n_elem: Number of sg entries
1527  *	@timeout: Timeout in msecs (0 for default)
1528  *
1529  *	Executes libata internal command with timeout.  @tf contains
1530  *	command on entry and result on return.  Timeout and error
1531  *	conditions are reported via return value.  No recovery action
1532  *	is taken after a command times out.  It's caller's duty to
1533  *	clean up after timeout.
1534  *
1535  *	LOCKING:
1536  *	None.  Should be called with kernel context, might sleep.
1537  *
1538  *	RETURNS:
1539  *	Zero on success, AC_ERR_* mask on failure
1540  */
1541 unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 			      struct ata_taskfile *tf, const u8 *cdb,
1543 			      int dma_dir, struct scatterlist *sgl,
1544 			      unsigned int n_elem, unsigned long timeout)
1545 {
1546 	struct ata_link *link = dev->link;
1547 	struct ata_port *ap = link->ap;
1548 	u8 command = tf->command;
1549 	int auto_timeout = 0;
1550 	struct ata_queued_cmd *qc;
1551 	unsigned int tag, preempted_tag;
1552 	u32 preempted_sactive, preempted_qc_active;
1553 	int preempted_nr_active_links;
1554 	DECLARE_COMPLETION_ONSTACK(wait);
1555 	unsigned long flags;
1556 	unsigned int err_mask;
1557 	int rc;
1558 
1559 	spin_lock_irqsave(ap->lock, flags);
1560 
1561 	/* no internal command while frozen */
1562 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 		spin_unlock_irqrestore(ap->lock, flags);
1564 		return AC_ERR_SYSTEM;
1565 	}
1566 
1567 	/* initialize internal qc */
1568 
1569 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1570 	 * drivers choke if any other tag is given.  This breaks
1571 	 * ata_tag_internal() test for those drivers.  Don't use new
1572 	 * EH stuff without converting to it.
1573 	 */
1574 	if (ap->ops->error_handler)
1575 		tag = ATA_TAG_INTERNAL;
1576 	else
1577 		tag = 0;
1578 
1579 	if (test_and_set_bit(tag, &ap->qc_allocated))
1580 		BUG();
1581 	qc = __ata_qc_from_tag(ap, tag);
1582 
1583 	qc->tag = tag;
1584 	qc->scsicmd = NULL;
1585 	qc->ap = ap;
1586 	qc->dev = dev;
1587 	ata_qc_reinit(qc);
1588 
1589 	preempted_tag = link->active_tag;
1590 	preempted_sactive = link->sactive;
1591 	preempted_qc_active = ap->qc_active;
1592 	preempted_nr_active_links = ap->nr_active_links;
1593 	link->active_tag = ATA_TAG_POISON;
1594 	link->sactive = 0;
1595 	ap->qc_active = 0;
1596 	ap->nr_active_links = 0;
1597 
1598 	/* prepare & issue qc */
1599 	qc->tf = *tf;
1600 	if (cdb)
1601 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1603 	qc->dma_dir = dma_dir;
1604 	if (dma_dir != DMA_NONE) {
1605 		unsigned int i, buflen = 0;
1606 		struct scatterlist *sg;
1607 
1608 		for_each_sg(sgl, sg, n_elem, i)
1609 			buflen += sg->length;
1610 
1611 		ata_sg_init(qc, sgl, n_elem);
1612 		qc->nbytes = buflen;
1613 	}
1614 
1615 	qc->private_data = &wait;
1616 	qc->complete_fn = ata_qc_complete_internal;
1617 
1618 	ata_qc_issue(qc);
1619 
1620 	spin_unlock_irqrestore(ap->lock, flags);
1621 
1622 	if (!timeout) {
1623 		if (ata_probe_timeout)
1624 			timeout = ata_probe_timeout * 1000;
1625 		else {
1626 			timeout = ata_internal_cmd_timeout(dev, command);
1627 			auto_timeout = 1;
1628 		}
1629 	}
1630 
1631 	if (ap->ops->error_handler)
1632 		ata_eh_release(ap);
1633 
1634 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635 
1636 	if (ap->ops->error_handler)
1637 		ata_eh_acquire(ap);
1638 
1639 	ata_sff_flush_pio_task(ap);
1640 
1641 	if (!rc) {
1642 		spin_lock_irqsave(ap->lock, flags);
1643 
1644 		/* We're racing with irq here.  If we lose, the
1645 		 * following test prevents us from completing the qc
1646 		 * twice.  If we win, the port is frozen and will be
1647 		 * cleaned up by ->post_internal_cmd().
1648 		 */
1649 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650 			qc->err_mask |= AC_ERR_TIMEOUT;
1651 
1652 			if (ap->ops->error_handler)
1653 				ata_port_freeze(ap);
1654 			else
1655 				ata_qc_complete(qc);
1656 
1657 			if (ata_msg_warn(ap))
1658 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659 					     command);
1660 		}
1661 
1662 		spin_unlock_irqrestore(ap->lock, flags);
1663 	}
1664 
1665 	/* do post_internal_cmd */
1666 	if (ap->ops->post_internal_cmd)
1667 		ap->ops->post_internal_cmd(qc);
1668 
1669 	/* perform minimal error analysis */
1670 	if (qc->flags & ATA_QCFLAG_FAILED) {
1671 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 			qc->err_mask |= AC_ERR_DEV;
1673 
1674 		if (!qc->err_mask)
1675 			qc->err_mask |= AC_ERR_OTHER;
1676 
1677 		if (qc->err_mask & ~AC_ERR_OTHER)
1678 			qc->err_mask &= ~AC_ERR_OTHER;
1679 	}
1680 
1681 	/* finish up */
1682 	spin_lock_irqsave(ap->lock, flags);
1683 
1684 	*tf = qc->result_tf;
1685 	err_mask = qc->err_mask;
1686 
1687 	ata_qc_free(qc);
1688 	link->active_tag = preempted_tag;
1689 	link->sactive = preempted_sactive;
1690 	ap->qc_active = preempted_qc_active;
1691 	ap->nr_active_links = preempted_nr_active_links;
1692 
1693 	spin_unlock_irqrestore(ap->lock, flags);
1694 
1695 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 		ata_internal_cmd_timed_out(dev, command);
1697 
1698 	return err_mask;
1699 }
1700 
1701 /**
1702  *	ata_exec_internal - execute libata internal command
1703  *	@dev: Device to which the command is sent
1704  *	@tf: Taskfile registers for the command and the result
1705  *	@cdb: CDB for packet command
1706  *	@dma_dir: Data tranfer direction of the command
1707  *	@buf: Data buffer of the command
1708  *	@buflen: Length of data buffer
1709  *	@timeout: Timeout in msecs (0 for default)
1710  *
1711  *	Wrapper around ata_exec_internal_sg() which takes simple
1712  *	buffer instead of sg list.
1713  *
1714  *	LOCKING:
1715  *	None.  Should be called with kernel context, might sleep.
1716  *
1717  *	RETURNS:
1718  *	Zero on success, AC_ERR_* mask on failure
1719  */
1720 unsigned ata_exec_internal(struct ata_device *dev,
1721 			   struct ata_taskfile *tf, const u8 *cdb,
1722 			   int dma_dir, void *buf, unsigned int buflen,
1723 			   unsigned long timeout)
1724 {
1725 	struct scatterlist *psg = NULL, sg;
1726 	unsigned int n_elem = 0;
1727 
1728 	if (dma_dir != DMA_NONE) {
1729 		WARN_ON(!buf);
1730 		sg_init_one(&sg, buf, buflen);
1731 		psg = &sg;
1732 		n_elem++;
1733 	}
1734 
1735 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 				    timeout);
1737 }
1738 
1739 /**
1740  *	ata_do_simple_cmd - execute simple internal command
1741  *	@dev: Device to which the command is sent
1742  *	@cmd: Opcode to execute
1743  *
1744  *	Execute a 'simple' command, that only consists of the opcode
1745  *	'cmd' itself, without filling any other registers
1746  *
1747  *	LOCKING:
1748  *	Kernel thread context (may sleep).
1749  *
1750  *	RETURNS:
1751  *	Zero on success, AC_ERR_* mask on failure
1752  */
1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754 {
1755 	struct ata_taskfile tf;
1756 
1757 	ata_tf_init(dev, &tf);
1758 
1759 	tf.command = cmd;
1760 	tf.flags |= ATA_TFLAG_DEVICE;
1761 	tf.protocol = ATA_PROT_NODATA;
1762 
1763 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764 }
1765 
1766 /**
1767  *	ata_pio_need_iordy	-	check if iordy needed
1768  *	@adev: ATA device
1769  *
1770  *	Check if the current speed of the device requires IORDY. Used
1771  *	by various controllers for chip configuration.
1772  */
1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774 {
1775 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1776 	 * lead to controller lock up on certain controllers if the
1777 	 * port is not occupied.  See bko#11703 for details.
1778 	 */
1779 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 		return 0;
1781 	/* Controller doesn't support IORDY.  Probably a pointless
1782 	 * check as the caller should know this.
1783 	 */
1784 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785 		return 0;
1786 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1787 	if (ata_id_is_cfa(adev->id)
1788 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 		return 0;
1790 	/* PIO3 and higher it is mandatory */
1791 	if (adev->pio_mode > XFER_PIO_2)
1792 		return 1;
1793 	/* We turn it on when possible */
1794 	if (ata_id_has_iordy(adev->id))
1795 		return 1;
1796 	return 0;
1797 }
1798 
1799 /**
1800  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1801  *	@adev: ATA device
1802  *
1803  *	Compute the highest mode possible if we are not using iordy. Return
1804  *	-1 if no iordy mode is available.
1805  */
1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807 {
1808 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1809 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1810 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811 		/* Is the speed faster than the drive allows non IORDY ? */
1812 		if (pio) {
1813 			/* This is cycle times not frequency - watch the logic! */
1814 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1815 				return 3 << ATA_SHIFT_PIO;
1816 			return 7 << ATA_SHIFT_PIO;
1817 		}
1818 	}
1819 	return 3 << ATA_SHIFT_PIO;
1820 }
1821 
1822 /**
1823  *	ata_do_dev_read_id		-	default ID read method
1824  *	@dev: device
1825  *	@tf: proposed taskfile
1826  *	@id: data buffer
1827  *
1828  *	Issue the identify taskfile and hand back the buffer containing
1829  *	identify data. For some RAID controllers and for pre ATA devices
1830  *	this function is wrapped or replaced by the driver
1831  */
1832 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 					struct ata_taskfile *tf, u16 *id)
1834 {
1835 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837 }
1838 
1839 /**
1840  *	ata_dev_read_id - Read ID data from the specified device
1841  *	@dev: target device
1842  *	@p_class: pointer to class of the target device (may be changed)
1843  *	@flags: ATA_READID_* flags
1844  *	@id: buffer to read IDENTIFY data into
1845  *
1846  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1847  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1849  *	for pre-ATA4 drives.
1850  *
1851  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852  *	now we abort if we hit that case.
1853  *
1854  *	LOCKING:
1855  *	Kernel thread context (may sleep)
1856  *
1857  *	RETURNS:
1858  *	0 on success, -errno otherwise.
1859  */
1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861 		    unsigned int flags, u16 *id)
1862 {
1863 	struct ata_port *ap = dev->link->ap;
1864 	unsigned int class = *p_class;
1865 	struct ata_taskfile tf;
1866 	unsigned int err_mask = 0;
1867 	const char *reason;
1868 	bool is_semb = class == ATA_DEV_SEMB;
1869 	int may_fallback = 1, tried_spinup = 0;
1870 	int rc;
1871 
1872 	if (ata_msg_ctl(ap))
1873 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874 
1875 retry:
1876 	ata_tf_init(dev, &tf);
1877 
1878 	switch (class) {
1879 	case ATA_DEV_SEMB:
1880 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1881 	case ATA_DEV_ATA:
1882 		tf.command = ATA_CMD_ID_ATA;
1883 		break;
1884 	case ATA_DEV_ATAPI:
1885 		tf.command = ATA_CMD_ID_ATAPI;
1886 		break;
1887 	default:
1888 		rc = -ENODEV;
1889 		reason = "unsupported class";
1890 		goto err_out;
1891 	}
1892 
1893 	tf.protocol = ATA_PROT_PIO;
1894 
1895 	/* Some devices choke if TF registers contain garbage.  Make
1896 	 * sure those are properly initialized.
1897 	 */
1898 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899 
1900 	/* Device presence detection is unreliable on some
1901 	 * controllers.  Always poll IDENTIFY if available.
1902 	 */
1903 	tf.flags |= ATA_TFLAG_POLLING;
1904 
1905 	if (ap->ops->read_id)
1906 		err_mask = ap->ops->read_id(dev, &tf, id);
1907 	else
1908 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1909 
1910 	if (err_mask) {
1911 		if (err_mask & AC_ERR_NODEV_HINT) {
1912 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 			return -ENOENT;
1914 		}
1915 
1916 		if (is_semb) {
1917 			ata_dev_info(dev,
1918 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 			/* SEMB is not supported yet */
1920 			*p_class = ATA_DEV_SEMB_UNSUP;
1921 			return 0;
1922 		}
1923 
1924 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 			/* Device or controller might have reported
1926 			 * the wrong device class.  Give a shot at the
1927 			 * other IDENTIFY if the current one is
1928 			 * aborted by the device.
1929 			 */
1930 			if (may_fallback) {
1931 				may_fallback = 0;
1932 
1933 				if (class == ATA_DEV_ATA)
1934 					class = ATA_DEV_ATAPI;
1935 				else
1936 					class = ATA_DEV_ATA;
1937 				goto retry;
1938 			}
1939 
1940 			/* Control reaches here iff the device aborted
1941 			 * both flavors of IDENTIFYs which happens
1942 			 * sometimes with phantom devices.
1943 			 */
1944 			ata_dev_dbg(dev,
1945 				    "both IDENTIFYs aborted, assuming NODEV\n");
1946 			return -ENOENT;
1947 		}
1948 
1949 		rc = -EIO;
1950 		reason = "I/O error";
1951 		goto err_out;
1952 	}
1953 
1954 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1957 			    class, may_fallback, tried_spinup);
1958 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960 	}
1961 
1962 	/* Falling back doesn't make sense if ID data was read
1963 	 * successfully at least once.
1964 	 */
1965 	may_fallback = 0;
1966 
1967 	swap_buf_le16(id, ATA_ID_WORDS);
1968 
1969 	/* sanity check */
1970 	rc = -EINVAL;
1971 	reason = "device reports invalid type";
1972 
1973 	if (class == ATA_DEV_ATA) {
1974 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 			goto err_out;
1976 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977 							ata_id_is_ata(id)) {
1978 			ata_dev_dbg(dev,
1979 				"host indicates ignore ATA devices, ignored\n");
1980 			return -ENOENT;
1981 		}
1982 	} else {
1983 		if (ata_id_is_ata(id))
1984 			goto err_out;
1985 	}
1986 
1987 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 		tried_spinup = 1;
1989 		/*
1990 		 * Drive powered-up in standby mode, and requires a specific
1991 		 * SET_FEATURES spin-up subcommand before it will accept
1992 		 * anything other than the original IDENTIFY command.
1993 		 */
1994 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 		if (err_mask && id[2] != 0x738c) {
1996 			rc = -EIO;
1997 			reason = "SPINUP failed";
1998 			goto err_out;
1999 		}
2000 		/*
2001 		 * If the drive initially returned incomplete IDENTIFY info,
2002 		 * we now must reissue the IDENTIFY command.
2003 		 */
2004 		if (id[2] == 0x37c8)
2005 			goto retry;
2006 	}
2007 
2008 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009 		/*
2010 		 * The exact sequence expected by certain pre-ATA4 drives is:
2011 		 * SRST RESET
2012 		 * IDENTIFY (optional in early ATA)
2013 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014 		 * anything else..
2015 		 * Some drives were very specific about that exact sequence.
2016 		 *
2017 		 * Note that ATA4 says lba is mandatory so the second check
2018 		 * should never trigger.
2019 		 */
2020 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022 			if (err_mask) {
2023 				rc = -EIO;
2024 				reason = "INIT_DEV_PARAMS failed";
2025 				goto err_out;
2026 			}
2027 
2028 			/* current CHS translation info (id[53-58]) might be
2029 			 * changed. reread the identify device info.
2030 			 */
2031 			flags &= ~ATA_READID_POSTRESET;
2032 			goto retry;
2033 		}
2034 	}
2035 
2036 	*p_class = class;
2037 
2038 	return 0;
2039 
2040  err_out:
2041 	if (ata_msg_warn(ap))
2042 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043 			     reason, err_mask);
2044 	return rc;
2045 }
2046 
2047 static int ata_do_link_spd_horkage(struct ata_device *dev)
2048 {
2049 	struct ata_link *plink = ata_dev_phys_link(dev);
2050 	u32 target, target_limit;
2051 
2052 	if (!sata_scr_valid(plink))
2053 		return 0;
2054 
2055 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2056 		target = 1;
2057 	else
2058 		return 0;
2059 
2060 	target_limit = (1 << target) - 1;
2061 
2062 	/* if already on stricter limit, no need to push further */
2063 	if (plink->sata_spd_limit <= target_limit)
2064 		return 0;
2065 
2066 	plink->sata_spd_limit = target_limit;
2067 
2068 	/* Request another EH round by returning -EAGAIN if link is
2069 	 * going faster than the target speed.  Forward progress is
2070 	 * guaranteed by setting sata_spd_limit to target_limit above.
2071 	 */
2072 	if (plink->sata_spd > target) {
2073 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2074 			     sata_spd_string(target));
2075 		return -EAGAIN;
2076 	}
2077 	return 0;
2078 }
2079 
2080 static inline u8 ata_dev_knobble(struct ata_device *dev)
2081 {
2082 	struct ata_port *ap = dev->link->ap;
2083 
2084 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2085 		return 0;
2086 
2087 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2088 }
2089 
2090 static int ata_dev_config_ncq(struct ata_device *dev,
2091 			       char *desc, size_t desc_sz)
2092 {
2093 	struct ata_port *ap = dev->link->ap;
2094 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2095 	unsigned int err_mask;
2096 	char *aa_desc = "";
2097 
2098 	if (!ata_id_has_ncq(dev->id)) {
2099 		desc[0] = '\0';
2100 		return 0;
2101 	}
2102 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2103 		snprintf(desc, desc_sz, "NCQ (not used)");
2104 		return 0;
2105 	}
2106 	if (ap->flags & ATA_FLAG_NCQ) {
2107 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2108 		dev->flags |= ATA_DFLAG_NCQ;
2109 	}
2110 
2111 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2112 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2113 		ata_id_has_fpdma_aa(dev->id)) {
2114 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2115 			SATA_FPDMA_AA);
2116 		if (err_mask) {
2117 			ata_dev_err(dev,
2118 				    "failed to enable AA (error_mask=0x%x)\n",
2119 				    err_mask);
2120 			if (err_mask != AC_ERR_DEV) {
2121 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2122 				return -EIO;
2123 			}
2124 		} else
2125 			aa_desc = ", AA";
2126 	}
2127 
2128 	if (hdepth >= ddepth)
2129 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2130 	else
2131 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2132 			ddepth, aa_desc);
2133 	return 0;
2134 }
2135 
2136 /**
2137  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2138  *	@dev: Target device to configure
2139  *
2140  *	Configure @dev according to @dev->id.  Generic and low-level
2141  *	driver specific fixups are also applied.
2142  *
2143  *	LOCKING:
2144  *	Kernel thread context (may sleep)
2145  *
2146  *	RETURNS:
2147  *	0 on success, -errno otherwise
2148  */
2149 int ata_dev_configure(struct ata_device *dev)
2150 {
2151 	struct ata_port *ap = dev->link->ap;
2152 	struct ata_eh_context *ehc = &dev->link->eh_context;
2153 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2154 	const u16 *id = dev->id;
2155 	unsigned long xfer_mask;
2156 	char revbuf[7];		/* XYZ-99\0 */
2157 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2158 	char modelbuf[ATA_ID_PROD_LEN+1];
2159 	int rc;
2160 
2161 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2162 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2163 		return 0;
2164 	}
2165 
2166 	if (ata_msg_probe(ap))
2167 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2168 
2169 	/* set horkage */
2170 	dev->horkage |= ata_dev_blacklisted(dev);
2171 	ata_force_horkage(dev);
2172 
2173 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2174 		ata_dev_info(dev, "unsupported device, disabling\n");
2175 		ata_dev_disable(dev);
2176 		return 0;
2177 	}
2178 
2179 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2180 	    dev->class == ATA_DEV_ATAPI) {
2181 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2182 			     atapi_enabled ? "not supported with this driver"
2183 			     : "disabled");
2184 		ata_dev_disable(dev);
2185 		return 0;
2186 	}
2187 
2188 	rc = ata_do_link_spd_horkage(dev);
2189 	if (rc)
2190 		return rc;
2191 
2192 	/* let ACPI work its magic */
2193 	rc = ata_acpi_on_devcfg(dev);
2194 	if (rc)
2195 		return rc;
2196 
2197 	/* massage HPA, do it early as it might change IDENTIFY data */
2198 	rc = ata_hpa_resize(dev);
2199 	if (rc)
2200 		return rc;
2201 
2202 	/* print device capabilities */
2203 	if (ata_msg_probe(ap))
2204 		ata_dev_dbg(dev,
2205 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2206 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2207 			    __func__,
2208 			    id[49], id[82], id[83], id[84],
2209 			    id[85], id[86], id[87], id[88]);
2210 
2211 	/* initialize to-be-configured parameters */
2212 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2213 	dev->max_sectors = 0;
2214 	dev->cdb_len = 0;
2215 	dev->n_sectors = 0;
2216 	dev->cylinders = 0;
2217 	dev->heads = 0;
2218 	dev->sectors = 0;
2219 	dev->multi_count = 0;
2220 
2221 	/*
2222 	 * common ATA, ATAPI feature tests
2223 	 */
2224 
2225 	/* find max transfer mode; for printk only */
2226 	xfer_mask = ata_id_xfermask(id);
2227 
2228 	if (ata_msg_probe(ap))
2229 		ata_dump_id(id);
2230 
2231 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2232 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2233 			sizeof(fwrevbuf));
2234 
2235 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2236 			sizeof(modelbuf));
2237 
2238 	/* ATA-specific feature tests */
2239 	if (dev->class == ATA_DEV_ATA) {
2240 		if (ata_id_is_cfa(id)) {
2241 			/* CPRM may make this media unusable */
2242 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2243 				ata_dev_warn(dev,
2244 	"supports DRM functions and may not be fully accessible\n");
2245 			snprintf(revbuf, 7, "CFA");
2246 		} else {
2247 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2248 			/* Warn the user if the device has TPM extensions */
2249 			if (ata_id_has_tpm(id))
2250 				ata_dev_warn(dev,
2251 	"supports DRM functions and may not be fully accessible\n");
2252 		}
2253 
2254 		dev->n_sectors = ata_id_n_sectors(id);
2255 
2256 		/* get current R/W Multiple count setting */
2257 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258 			unsigned int max = dev->id[47] & 0xff;
2259 			unsigned int cnt = dev->id[59] & 0xff;
2260 			/* only recognize/allow powers of two here */
2261 			if (is_power_of_2(max) && is_power_of_2(cnt))
2262 				if (cnt <= max)
2263 					dev->multi_count = cnt;
2264 		}
2265 
2266 		if (ata_id_has_lba(id)) {
2267 			const char *lba_desc;
2268 			char ncq_desc[24];
2269 
2270 			lba_desc = "LBA";
2271 			dev->flags |= ATA_DFLAG_LBA;
2272 			if (ata_id_has_lba48(id)) {
2273 				dev->flags |= ATA_DFLAG_LBA48;
2274 				lba_desc = "LBA48";
2275 
2276 				if (dev->n_sectors >= (1UL << 28) &&
2277 				    ata_id_has_flush_ext(id))
2278 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279 			}
2280 
2281 			/* config NCQ */
2282 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 			if (rc)
2284 				return rc;
2285 
2286 			/* print device info to dmesg */
2287 			if (ata_msg_drv(ap) && print_info) {
2288 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2289 					     revbuf, modelbuf, fwrevbuf,
2290 					     ata_mode_string(xfer_mask));
2291 				ata_dev_info(dev,
2292 					     "%llu sectors, multi %u: %s %s\n",
2293 					(unsigned long long)dev->n_sectors,
2294 					dev->multi_count, lba_desc, ncq_desc);
2295 			}
2296 		} else {
2297 			/* CHS */
2298 
2299 			/* Default translation */
2300 			dev->cylinders	= id[1];
2301 			dev->heads	= id[3];
2302 			dev->sectors	= id[6];
2303 
2304 			if (ata_id_current_chs_valid(id)) {
2305 				/* Current CHS translation is valid. */
2306 				dev->cylinders = id[54];
2307 				dev->heads     = id[55];
2308 				dev->sectors   = id[56];
2309 			}
2310 
2311 			/* print device info to dmesg */
2312 			if (ata_msg_drv(ap) && print_info) {
2313 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314 					     revbuf,	modelbuf, fwrevbuf,
2315 					     ata_mode_string(xfer_mask));
2316 				ata_dev_info(dev,
2317 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2318 					     (unsigned long long)dev->n_sectors,
2319 					     dev->multi_count, dev->cylinders,
2320 					     dev->heads, dev->sectors);
2321 			}
2322 		}
2323 
2324 		dev->cdb_len = 16;
2325 	}
2326 
2327 	/* ATAPI-specific feature tests */
2328 	else if (dev->class == ATA_DEV_ATAPI) {
2329 		const char *cdb_intr_string = "";
2330 		const char *atapi_an_string = "";
2331 		const char *dma_dir_string = "";
2332 		u32 sntf;
2333 
2334 		rc = atapi_cdb_len(id);
2335 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2336 			if (ata_msg_warn(ap))
2337 				ata_dev_warn(dev, "unsupported CDB len\n");
2338 			rc = -EINVAL;
2339 			goto err_out_nosup;
2340 		}
2341 		dev->cdb_len = (unsigned int) rc;
2342 
2343 		/* Enable ATAPI AN if both the host and device have
2344 		 * the support.  If PMP is attached, SNTF is required
2345 		 * to enable ATAPI AN to discern between PHY status
2346 		 * changed notifications and ATAPI ANs.
2347 		 */
2348 		if (atapi_an &&
2349 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350 		    (!sata_pmp_attached(ap) ||
2351 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352 			unsigned int err_mask;
2353 
2354 			/* issue SET feature command to turn this on */
2355 			err_mask = ata_dev_set_feature(dev,
2356 					SETFEATURES_SATA_ENABLE, SATA_AN);
2357 			if (err_mask)
2358 				ata_dev_err(dev,
2359 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2360 					    err_mask);
2361 			else {
2362 				dev->flags |= ATA_DFLAG_AN;
2363 				atapi_an_string = ", ATAPI AN";
2364 			}
2365 		}
2366 
2367 		if (ata_id_cdb_intr(dev->id)) {
2368 			dev->flags |= ATA_DFLAG_CDB_INTR;
2369 			cdb_intr_string = ", CDB intr";
2370 		}
2371 
2372 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373 			dev->flags |= ATA_DFLAG_DMADIR;
2374 			dma_dir_string = ", DMADIR";
2375 		}
2376 
2377 		/* print device info to dmesg */
2378 		if (ata_msg_drv(ap) && print_info)
2379 			ata_dev_info(dev,
2380 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2381 				     modelbuf, fwrevbuf,
2382 				     ata_mode_string(xfer_mask),
2383 				     cdb_intr_string, atapi_an_string,
2384 				     dma_dir_string);
2385 	}
2386 
2387 	/* determine max_sectors */
2388 	dev->max_sectors = ATA_MAX_SECTORS;
2389 	if (dev->flags & ATA_DFLAG_LBA48)
2390 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2391 
2392 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2393 	   200 sectors */
2394 	if (ata_dev_knobble(dev)) {
2395 		if (ata_msg_drv(ap) && print_info)
2396 			ata_dev_info(dev, "applying bridge limits\n");
2397 		dev->udma_mask &= ATA_UDMA5;
2398 		dev->max_sectors = ATA_MAX_SECTORS;
2399 	}
2400 
2401 	if ((dev->class == ATA_DEV_ATAPI) &&
2402 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2403 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2404 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405 	}
2406 
2407 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2408 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2409 					 dev->max_sectors);
2410 
2411 	if (ap->ops->dev_config)
2412 		ap->ops->dev_config(dev);
2413 
2414 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2415 		/* Let the user know. We don't want to disallow opens for
2416 		   rescue purposes, or in case the vendor is just a blithering
2417 		   idiot. Do this after the dev_config call as some controllers
2418 		   with buggy firmware may want to avoid reporting false device
2419 		   bugs */
2420 
2421 		if (print_info) {
2422 			ata_dev_warn(dev,
2423 "Drive reports diagnostics failure. This may indicate a drive\n");
2424 			ata_dev_warn(dev,
2425 "fault or invalid emulation. Contact drive vendor for information.\n");
2426 		}
2427 	}
2428 
2429 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2430 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2431 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2432 	}
2433 
2434 	return 0;
2435 
2436 err_out_nosup:
2437 	if (ata_msg_probe(ap))
2438 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2439 	return rc;
2440 }
2441 
2442 /**
2443  *	ata_cable_40wire	-	return 40 wire cable type
2444  *	@ap: port
2445  *
2446  *	Helper method for drivers which want to hardwire 40 wire cable
2447  *	detection.
2448  */
2449 
2450 int ata_cable_40wire(struct ata_port *ap)
2451 {
2452 	return ATA_CBL_PATA40;
2453 }
2454 
2455 /**
2456  *	ata_cable_80wire	-	return 80 wire cable type
2457  *	@ap: port
2458  *
2459  *	Helper method for drivers which want to hardwire 80 wire cable
2460  *	detection.
2461  */
2462 
2463 int ata_cable_80wire(struct ata_port *ap)
2464 {
2465 	return ATA_CBL_PATA80;
2466 }
2467 
2468 /**
2469  *	ata_cable_unknown	-	return unknown PATA cable.
2470  *	@ap: port
2471  *
2472  *	Helper method for drivers which have no PATA cable detection.
2473  */
2474 
2475 int ata_cable_unknown(struct ata_port *ap)
2476 {
2477 	return ATA_CBL_PATA_UNK;
2478 }
2479 
2480 /**
2481  *	ata_cable_ignore	-	return ignored PATA cable.
2482  *	@ap: port
2483  *
2484  *	Helper method for drivers which don't use cable type to limit
2485  *	transfer mode.
2486  */
2487 int ata_cable_ignore(struct ata_port *ap)
2488 {
2489 	return ATA_CBL_PATA_IGN;
2490 }
2491 
2492 /**
2493  *	ata_cable_sata	-	return SATA cable type
2494  *	@ap: port
2495  *
2496  *	Helper method for drivers which have SATA cables
2497  */
2498 
2499 int ata_cable_sata(struct ata_port *ap)
2500 {
2501 	return ATA_CBL_SATA;
2502 }
2503 
2504 /**
2505  *	ata_bus_probe - Reset and probe ATA bus
2506  *	@ap: Bus to probe
2507  *
2508  *	Master ATA bus probing function.  Initiates a hardware-dependent
2509  *	bus reset, then attempts to identify any devices found on
2510  *	the bus.
2511  *
2512  *	LOCKING:
2513  *	PCI/etc. bus probe sem.
2514  *
2515  *	RETURNS:
2516  *	Zero on success, negative errno otherwise.
2517  */
2518 
2519 int ata_bus_probe(struct ata_port *ap)
2520 {
2521 	unsigned int classes[ATA_MAX_DEVICES];
2522 	int tries[ATA_MAX_DEVICES];
2523 	int rc;
2524 	struct ata_device *dev;
2525 
2526 	ata_for_each_dev(dev, &ap->link, ALL)
2527 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2528 
2529  retry:
2530 	ata_for_each_dev(dev, &ap->link, ALL) {
2531 		/* If we issue an SRST then an ATA drive (not ATAPI)
2532 		 * may change configuration and be in PIO0 timing. If
2533 		 * we do a hard reset (or are coming from power on)
2534 		 * this is true for ATA or ATAPI. Until we've set a
2535 		 * suitable controller mode we should not touch the
2536 		 * bus as we may be talking too fast.
2537 		 */
2538 		dev->pio_mode = XFER_PIO_0;
2539 
2540 		/* If the controller has a pio mode setup function
2541 		 * then use it to set the chipset to rights. Don't
2542 		 * touch the DMA setup as that will be dealt with when
2543 		 * configuring devices.
2544 		 */
2545 		if (ap->ops->set_piomode)
2546 			ap->ops->set_piomode(ap, dev);
2547 	}
2548 
2549 	/* reset and determine device classes */
2550 	ap->ops->phy_reset(ap);
2551 
2552 	ata_for_each_dev(dev, &ap->link, ALL) {
2553 		if (dev->class != ATA_DEV_UNKNOWN)
2554 			classes[dev->devno] = dev->class;
2555 		else
2556 			classes[dev->devno] = ATA_DEV_NONE;
2557 
2558 		dev->class = ATA_DEV_UNKNOWN;
2559 	}
2560 
2561 	/* read IDENTIFY page and configure devices. We have to do the identify
2562 	   specific sequence bass-ackwards so that PDIAG- is released by
2563 	   the slave device */
2564 
2565 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2566 		if (tries[dev->devno])
2567 			dev->class = classes[dev->devno];
2568 
2569 		if (!ata_dev_enabled(dev))
2570 			continue;
2571 
2572 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2573 				     dev->id);
2574 		if (rc)
2575 			goto fail;
2576 	}
2577 
2578 	/* Now ask for the cable type as PDIAG- should have been released */
2579 	if (ap->ops->cable_detect)
2580 		ap->cbl = ap->ops->cable_detect(ap);
2581 
2582 	/* We may have SATA bridge glue hiding here irrespective of
2583 	 * the reported cable types and sensed types.  When SATA
2584 	 * drives indicate we have a bridge, we don't know which end
2585 	 * of the link the bridge is which is a problem.
2586 	 */
2587 	ata_for_each_dev(dev, &ap->link, ENABLED)
2588 		if (ata_id_is_sata(dev->id))
2589 			ap->cbl = ATA_CBL_SATA;
2590 
2591 	/* After the identify sequence we can now set up the devices. We do
2592 	   this in the normal order so that the user doesn't get confused */
2593 
2594 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2595 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2596 		rc = ata_dev_configure(dev);
2597 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2598 		if (rc)
2599 			goto fail;
2600 	}
2601 
2602 	/* configure transfer mode */
2603 	rc = ata_set_mode(&ap->link, &dev);
2604 	if (rc)
2605 		goto fail;
2606 
2607 	ata_for_each_dev(dev, &ap->link, ENABLED)
2608 		return 0;
2609 
2610 	return -ENODEV;
2611 
2612  fail:
2613 	tries[dev->devno]--;
2614 
2615 	switch (rc) {
2616 	case -EINVAL:
2617 		/* eeek, something went very wrong, give up */
2618 		tries[dev->devno] = 0;
2619 		break;
2620 
2621 	case -ENODEV:
2622 		/* give it just one more chance */
2623 		tries[dev->devno] = min(tries[dev->devno], 1);
2624 	case -EIO:
2625 		if (tries[dev->devno] == 1) {
2626 			/* This is the last chance, better to slow
2627 			 * down than lose it.
2628 			 */
2629 			sata_down_spd_limit(&ap->link, 0);
2630 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2631 		}
2632 	}
2633 
2634 	if (!tries[dev->devno])
2635 		ata_dev_disable(dev);
2636 
2637 	goto retry;
2638 }
2639 
2640 /**
2641  *	sata_print_link_status - Print SATA link status
2642  *	@link: SATA link to printk link status about
2643  *
2644  *	This function prints link speed and status of a SATA link.
2645  *
2646  *	LOCKING:
2647  *	None.
2648  */
2649 static void sata_print_link_status(struct ata_link *link)
2650 {
2651 	u32 sstatus, scontrol, tmp;
2652 
2653 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2654 		return;
2655 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2656 
2657 	if (ata_phys_link_online(link)) {
2658 		tmp = (sstatus >> 4) & 0xf;
2659 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2660 			      sata_spd_string(tmp), sstatus, scontrol);
2661 	} else {
2662 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2663 			      sstatus, scontrol);
2664 	}
2665 }
2666 
2667 /**
2668  *	ata_dev_pair		-	return other device on cable
2669  *	@adev: device
2670  *
2671  *	Obtain the other device on the same cable, or if none is
2672  *	present NULL is returned
2673  */
2674 
2675 struct ata_device *ata_dev_pair(struct ata_device *adev)
2676 {
2677 	struct ata_link *link = adev->link;
2678 	struct ata_device *pair = &link->device[1 - adev->devno];
2679 	if (!ata_dev_enabled(pair))
2680 		return NULL;
2681 	return pair;
2682 }
2683 
2684 /**
2685  *	sata_down_spd_limit - adjust SATA spd limit downward
2686  *	@link: Link to adjust SATA spd limit for
2687  *	@spd_limit: Additional limit
2688  *
2689  *	Adjust SATA spd limit of @link downward.  Note that this
2690  *	function only adjusts the limit.  The change must be applied
2691  *	using sata_set_spd().
2692  *
2693  *	If @spd_limit is non-zero, the speed is limited to equal to or
2694  *	lower than @spd_limit if such speed is supported.  If
2695  *	@spd_limit is slower than any supported speed, only the lowest
2696  *	supported speed is allowed.
2697  *
2698  *	LOCKING:
2699  *	Inherited from caller.
2700  *
2701  *	RETURNS:
2702  *	0 on success, negative errno on failure
2703  */
2704 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2705 {
2706 	u32 sstatus, spd, mask;
2707 	int rc, bit;
2708 
2709 	if (!sata_scr_valid(link))
2710 		return -EOPNOTSUPP;
2711 
2712 	/* If SCR can be read, use it to determine the current SPD.
2713 	 * If not, use cached value in link->sata_spd.
2714 	 */
2715 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716 	if (rc == 0 && ata_sstatus_online(sstatus))
2717 		spd = (sstatus >> 4) & 0xf;
2718 	else
2719 		spd = link->sata_spd;
2720 
2721 	mask = link->sata_spd_limit;
2722 	if (mask <= 1)
2723 		return -EINVAL;
2724 
2725 	/* unconditionally mask off the highest bit */
2726 	bit = fls(mask) - 1;
2727 	mask &= ~(1 << bit);
2728 
2729 	/* Mask off all speeds higher than or equal to the current
2730 	 * one.  Force 1.5Gbps if current SPD is not available.
2731 	 */
2732 	if (spd > 1)
2733 		mask &= (1 << (spd - 1)) - 1;
2734 	else
2735 		mask &= 1;
2736 
2737 	/* were we already at the bottom? */
2738 	if (!mask)
2739 		return -EINVAL;
2740 
2741 	if (spd_limit) {
2742 		if (mask & ((1 << spd_limit) - 1))
2743 			mask &= (1 << spd_limit) - 1;
2744 		else {
2745 			bit = ffs(mask) - 1;
2746 			mask = 1 << bit;
2747 		}
2748 	}
2749 
2750 	link->sata_spd_limit = mask;
2751 
2752 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2753 		      sata_spd_string(fls(mask)));
2754 
2755 	return 0;
2756 }
2757 
2758 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2759 {
2760 	struct ata_link *host_link = &link->ap->link;
2761 	u32 limit, target, spd;
2762 
2763 	limit = link->sata_spd_limit;
2764 
2765 	/* Don't configure downstream link faster than upstream link.
2766 	 * It doesn't speed up anything and some PMPs choke on such
2767 	 * configuration.
2768 	 */
2769 	if (!ata_is_host_link(link) && host_link->sata_spd)
2770 		limit &= (1 << host_link->sata_spd) - 1;
2771 
2772 	if (limit == UINT_MAX)
2773 		target = 0;
2774 	else
2775 		target = fls(limit);
2776 
2777 	spd = (*scontrol >> 4) & 0xf;
2778 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2779 
2780 	return spd != target;
2781 }
2782 
2783 /**
2784  *	sata_set_spd_needed - is SATA spd configuration needed
2785  *	@link: Link in question
2786  *
2787  *	Test whether the spd limit in SControl matches
2788  *	@link->sata_spd_limit.  This function is used to determine
2789  *	whether hardreset is necessary to apply SATA spd
2790  *	configuration.
2791  *
2792  *	LOCKING:
2793  *	Inherited from caller.
2794  *
2795  *	RETURNS:
2796  *	1 if SATA spd configuration is needed, 0 otherwise.
2797  */
2798 static int sata_set_spd_needed(struct ata_link *link)
2799 {
2800 	u32 scontrol;
2801 
2802 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2803 		return 1;
2804 
2805 	return __sata_set_spd_needed(link, &scontrol);
2806 }
2807 
2808 /**
2809  *	sata_set_spd - set SATA spd according to spd limit
2810  *	@link: Link to set SATA spd for
2811  *
2812  *	Set SATA spd of @link according to sata_spd_limit.
2813  *
2814  *	LOCKING:
2815  *	Inherited from caller.
2816  *
2817  *	RETURNS:
2818  *	0 if spd doesn't need to be changed, 1 if spd has been
2819  *	changed.  Negative errno if SCR registers are inaccessible.
2820  */
2821 int sata_set_spd(struct ata_link *link)
2822 {
2823 	u32 scontrol;
2824 	int rc;
2825 
2826 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2827 		return rc;
2828 
2829 	if (!__sata_set_spd_needed(link, &scontrol))
2830 		return 0;
2831 
2832 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2833 		return rc;
2834 
2835 	return 1;
2836 }
2837 
2838 /*
2839  * This mode timing computation functionality is ported over from
2840  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2841  */
2842 /*
2843  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2844  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2845  * for UDMA6, which is currently supported only by Maxtor drives.
2846  *
2847  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2848  */
2849 
2850 static const struct ata_timing ata_timing[] = {
2851 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2852 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2853 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2854 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2855 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2856 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2857 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2858 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2859 
2860 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2861 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2862 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2863 
2864 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2865 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2866 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2867 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2868 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2869 
2870 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2871 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2872 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2873 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2874 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2875 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2876 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2877 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2878 
2879 	{ 0xFF }
2880 };
2881 
2882 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2883 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2884 
2885 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2886 {
2887 	q->setup	= EZ(t->setup      * 1000,  T);
2888 	q->act8b	= EZ(t->act8b      * 1000,  T);
2889 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2890 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2891 	q->active	= EZ(t->active     * 1000,  T);
2892 	q->recover	= EZ(t->recover    * 1000,  T);
2893 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2894 	q->cycle	= EZ(t->cycle      * 1000,  T);
2895 	q->udma		= EZ(t->udma       * 1000, UT);
2896 }
2897 
2898 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 		      struct ata_timing *m, unsigned int what)
2900 {
2901 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2902 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2903 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2904 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2905 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2906 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2908 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2909 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2910 }
2911 
2912 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2913 {
2914 	const struct ata_timing *t = ata_timing;
2915 
2916 	while (xfer_mode > t->mode)
2917 		t++;
2918 
2919 	if (xfer_mode == t->mode)
2920 		return t;
2921 	return NULL;
2922 }
2923 
2924 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2925 		       struct ata_timing *t, int T, int UT)
2926 {
2927 	const u16 *id = adev->id;
2928 	const struct ata_timing *s;
2929 	struct ata_timing p;
2930 
2931 	/*
2932 	 * Find the mode.
2933 	 */
2934 
2935 	if (!(s = ata_timing_find_mode(speed)))
2936 		return -EINVAL;
2937 
2938 	memcpy(t, s, sizeof(*s));
2939 
2940 	/*
2941 	 * If the drive is an EIDE drive, it can tell us it needs extended
2942 	 * PIO/MW_DMA cycle timing.
2943 	 */
2944 
2945 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2946 		memset(&p, 0, sizeof(p));
2947 
2948 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2949 			if (speed <= XFER_PIO_2)
2950 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2951 			else if ((speed <= XFER_PIO_4) ||
2952 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2953 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2954 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2955 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2956 
2957 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2958 	}
2959 
2960 	/*
2961 	 * Convert the timing to bus clock counts.
2962 	 */
2963 
2964 	ata_timing_quantize(t, t, T, UT);
2965 
2966 	/*
2967 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2968 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2969 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2970 	 */
2971 
2972 	if (speed > XFER_PIO_6) {
2973 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2974 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2975 	}
2976 
2977 	/*
2978 	 * Lengthen active & recovery time so that cycle time is correct.
2979 	 */
2980 
2981 	if (t->act8b + t->rec8b < t->cyc8b) {
2982 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2983 		t->rec8b = t->cyc8b - t->act8b;
2984 	}
2985 
2986 	if (t->active + t->recover < t->cycle) {
2987 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2988 		t->recover = t->cycle - t->active;
2989 	}
2990 
2991 	/* In a few cases quantisation may produce enough errors to
2992 	   leave t->cycle too low for the sum of active and recovery
2993 	   if so we must correct this */
2994 	if (t->active + t->recover > t->cycle)
2995 		t->cycle = t->active + t->recover;
2996 
2997 	return 0;
2998 }
2999 
3000 /**
3001  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3002  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3003  *	@cycle: cycle duration in ns
3004  *
3005  *	Return matching xfer mode for @cycle.  The returned mode is of
3006  *	the transfer type specified by @xfer_shift.  If @cycle is too
3007  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3008  *	than the fastest known mode, the fasted mode is returned.
3009  *
3010  *	LOCKING:
3011  *	None.
3012  *
3013  *	RETURNS:
3014  *	Matching xfer_mode, 0xff if no match found.
3015  */
3016 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3017 {
3018 	u8 base_mode = 0xff, last_mode = 0xff;
3019 	const struct ata_xfer_ent *ent;
3020 	const struct ata_timing *t;
3021 
3022 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3023 		if (ent->shift == xfer_shift)
3024 			base_mode = ent->base;
3025 
3026 	for (t = ata_timing_find_mode(base_mode);
3027 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3028 		unsigned short this_cycle;
3029 
3030 		switch (xfer_shift) {
3031 		case ATA_SHIFT_PIO:
3032 		case ATA_SHIFT_MWDMA:
3033 			this_cycle = t->cycle;
3034 			break;
3035 		case ATA_SHIFT_UDMA:
3036 			this_cycle = t->udma;
3037 			break;
3038 		default:
3039 			return 0xff;
3040 		}
3041 
3042 		if (cycle > this_cycle)
3043 			break;
3044 
3045 		last_mode = t->mode;
3046 	}
3047 
3048 	return last_mode;
3049 }
3050 
3051 /**
3052  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3053  *	@dev: Device to adjust xfer masks
3054  *	@sel: ATA_DNXFER_* selector
3055  *
3056  *	Adjust xfer masks of @dev downward.  Note that this function
3057  *	does not apply the change.  Invoking ata_set_mode() afterwards
3058  *	will apply the limit.
3059  *
3060  *	LOCKING:
3061  *	Inherited from caller.
3062  *
3063  *	RETURNS:
3064  *	0 on success, negative errno on failure
3065  */
3066 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3067 {
3068 	char buf[32];
3069 	unsigned long orig_mask, xfer_mask;
3070 	unsigned long pio_mask, mwdma_mask, udma_mask;
3071 	int quiet, highbit;
3072 
3073 	quiet = !!(sel & ATA_DNXFER_QUIET);
3074 	sel &= ~ATA_DNXFER_QUIET;
3075 
3076 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3077 						  dev->mwdma_mask,
3078 						  dev->udma_mask);
3079 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3080 
3081 	switch (sel) {
3082 	case ATA_DNXFER_PIO:
3083 		highbit = fls(pio_mask) - 1;
3084 		pio_mask &= ~(1 << highbit);
3085 		break;
3086 
3087 	case ATA_DNXFER_DMA:
3088 		if (udma_mask) {
3089 			highbit = fls(udma_mask) - 1;
3090 			udma_mask &= ~(1 << highbit);
3091 			if (!udma_mask)
3092 				return -ENOENT;
3093 		} else if (mwdma_mask) {
3094 			highbit = fls(mwdma_mask) - 1;
3095 			mwdma_mask &= ~(1 << highbit);
3096 			if (!mwdma_mask)
3097 				return -ENOENT;
3098 		}
3099 		break;
3100 
3101 	case ATA_DNXFER_40C:
3102 		udma_mask &= ATA_UDMA_MASK_40C;
3103 		break;
3104 
3105 	case ATA_DNXFER_FORCE_PIO0:
3106 		pio_mask &= 1;
3107 	case ATA_DNXFER_FORCE_PIO:
3108 		mwdma_mask = 0;
3109 		udma_mask = 0;
3110 		break;
3111 
3112 	default:
3113 		BUG();
3114 	}
3115 
3116 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3117 
3118 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3119 		return -ENOENT;
3120 
3121 	if (!quiet) {
3122 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3123 			snprintf(buf, sizeof(buf), "%s:%s",
3124 				 ata_mode_string(xfer_mask),
3125 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3126 		else
3127 			snprintf(buf, sizeof(buf), "%s",
3128 				 ata_mode_string(xfer_mask));
3129 
3130 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3131 	}
3132 
3133 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3134 			    &dev->udma_mask);
3135 
3136 	return 0;
3137 }
3138 
3139 static int ata_dev_set_mode(struct ata_device *dev)
3140 {
3141 	struct ata_port *ap = dev->link->ap;
3142 	struct ata_eh_context *ehc = &dev->link->eh_context;
3143 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3144 	const char *dev_err_whine = "";
3145 	int ign_dev_err = 0;
3146 	unsigned int err_mask = 0;
3147 	int rc;
3148 
3149 	dev->flags &= ~ATA_DFLAG_PIO;
3150 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3151 		dev->flags |= ATA_DFLAG_PIO;
3152 
3153 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3154 		dev_err_whine = " (SET_XFERMODE skipped)";
3155 	else {
3156 		if (nosetxfer)
3157 			ata_dev_warn(dev,
3158 				     "NOSETXFER but PATA detected - can't "
3159 				     "skip SETXFER, might malfunction\n");
3160 		err_mask = ata_dev_set_xfermode(dev);
3161 	}
3162 
3163 	if (err_mask & ~AC_ERR_DEV)
3164 		goto fail;
3165 
3166 	/* revalidate */
3167 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3168 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3169 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3170 	if (rc)
3171 		return rc;
3172 
3173 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3174 		/* Old CFA may refuse this command, which is just fine */
3175 		if (ata_id_is_cfa(dev->id))
3176 			ign_dev_err = 1;
3177 		/* Catch several broken garbage emulations plus some pre
3178 		   ATA devices */
3179 		if (ata_id_major_version(dev->id) == 0 &&
3180 					dev->pio_mode <= XFER_PIO_2)
3181 			ign_dev_err = 1;
3182 		/* Some very old devices and some bad newer ones fail
3183 		   any kind of SET_XFERMODE request but support PIO0-2
3184 		   timings and no IORDY */
3185 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3186 			ign_dev_err = 1;
3187 	}
3188 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3189 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3190 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3191 	    dev->dma_mode == XFER_MW_DMA_0 &&
3192 	    (dev->id[63] >> 8) & 1)
3193 		ign_dev_err = 1;
3194 
3195 	/* if the device is actually configured correctly, ignore dev err */
3196 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3197 		ign_dev_err = 1;
3198 
3199 	if (err_mask & AC_ERR_DEV) {
3200 		if (!ign_dev_err)
3201 			goto fail;
3202 		else
3203 			dev_err_whine = " (device error ignored)";
3204 	}
3205 
3206 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3207 		dev->xfer_shift, (int)dev->xfer_mode);
3208 
3209 	ata_dev_info(dev, "configured for %s%s\n",
3210 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3211 		     dev_err_whine);
3212 
3213 	return 0;
3214 
3215  fail:
3216 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3217 	return -EIO;
3218 }
3219 
3220 /**
3221  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3222  *	@link: link on which timings will be programmed
3223  *	@r_failed_dev: out parameter for failed device
3224  *
3225  *	Standard implementation of the function used to tune and set
3226  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3227  *	ata_dev_set_mode() fails, pointer to the failing device is
3228  *	returned in @r_failed_dev.
3229  *
3230  *	LOCKING:
3231  *	PCI/etc. bus probe sem.
3232  *
3233  *	RETURNS:
3234  *	0 on success, negative errno otherwise
3235  */
3236 
3237 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238 {
3239 	struct ata_port *ap = link->ap;
3240 	struct ata_device *dev;
3241 	int rc = 0, used_dma = 0, found = 0;
3242 
3243 	/* step 1: calculate xfer_mask */
3244 	ata_for_each_dev(dev, link, ENABLED) {
3245 		unsigned long pio_mask, dma_mask;
3246 		unsigned int mode_mask;
3247 
3248 		mode_mask = ATA_DMA_MASK_ATA;
3249 		if (dev->class == ATA_DEV_ATAPI)
3250 			mode_mask = ATA_DMA_MASK_ATAPI;
3251 		else if (ata_id_is_cfa(dev->id))
3252 			mode_mask = ATA_DMA_MASK_CFA;
3253 
3254 		ata_dev_xfermask(dev);
3255 		ata_force_xfermask(dev);
3256 
3257 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3258 
3259 		if (libata_dma_mask & mode_mask)
3260 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3261 						     dev->udma_mask);
3262 		else
3263 			dma_mask = 0;
3264 
3265 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3266 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3267 
3268 		found = 1;
3269 		if (ata_dma_enabled(dev))
3270 			used_dma = 1;
3271 	}
3272 	if (!found)
3273 		goto out;
3274 
3275 	/* step 2: always set host PIO timings */
3276 	ata_for_each_dev(dev, link, ENABLED) {
3277 		if (dev->pio_mode == 0xff) {
3278 			ata_dev_warn(dev, "no PIO support\n");
3279 			rc = -EINVAL;
3280 			goto out;
3281 		}
3282 
3283 		dev->xfer_mode = dev->pio_mode;
3284 		dev->xfer_shift = ATA_SHIFT_PIO;
3285 		if (ap->ops->set_piomode)
3286 			ap->ops->set_piomode(ap, dev);
3287 	}
3288 
3289 	/* step 3: set host DMA timings */
3290 	ata_for_each_dev(dev, link, ENABLED) {
3291 		if (!ata_dma_enabled(dev))
3292 			continue;
3293 
3294 		dev->xfer_mode = dev->dma_mode;
3295 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3296 		if (ap->ops->set_dmamode)
3297 			ap->ops->set_dmamode(ap, dev);
3298 	}
3299 
3300 	/* step 4: update devices' xfer mode */
3301 	ata_for_each_dev(dev, link, ENABLED) {
3302 		rc = ata_dev_set_mode(dev);
3303 		if (rc)
3304 			goto out;
3305 	}
3306 
3307 	/* Record simplex status. If we selected DMA then the other
3308 	 * host channels are not permitted to do so.
3309 	 */
3310 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3311 		ap->host->simplex_claimed = ap;
3312 
3313  out:
3314 	if (rc)
3315 		*r_failed_dev = dev;
3316 	return rc;
3317 }
3318 
3319 /**
3320  *	ata_wait_ready - wait for link to become ready
3321  *	@link: link to be waited on
3322  *	@deadline: deadline jiffies for the operation
3323  *	@check_ready: callback to check link readiness
3324  *
3325  *	Wait for @link to become ready.  @check_ready should return
3326  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3327  *	link doesn't seem to be occupied, other errno for other error
3328  *	conditions.
3329  *
3330  *	Transient -ENODEV conditions are allowed for
3331  *	ATA_TMOUT_FF_WAIT.
3332  *
3333  *	LOCKING:
3334  *	EH context.
3335  *
3336  *	RETURNS:
3337  *	0 if @linke is ready before @deadline; otherwise, -errno.
3338  */
3339 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3340 		   int (*check_ready)(struct ata_link *link))
3341 {
3342 	unsigned long start = jiffies;
3343 	unsigned long nodev_deadline;
3344 	int warned = 0;
3345 
3346 	/* choose which 0xff timeout to use, read comment in libata.h */
3347 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3348 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3349 	else
3350 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3351 
3352 	/* Slave readiness can't be tested separately from master.  On
3353 	 * M/S emulation configuration, this function should be called
3354 	 * only on the master and it will handle both master and slave.
3355 	 */
3356 	WARN_ON(link == link->ap->slave_link);
3357 
3358 	if (time_after(nodev_deadline, deadline))
3359 		nodev_deadline = deadline;
3360 
3361 	while (1) {
3362 		unsigned long now = jiffies;
3363 		int ready, tmp;
3364 
3365 		ready = tmp = check_ready(link);
3366 		if (ready > 0)
3367 			return 0;
3368 
3369 		/*
3370 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3371 		 * is online.  Also, some SATA devices take a long
3372 		 * time to clear 0xff after reset.  Wait for
3373 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3374 		 * offline.
3375 		 *
3376 		 * Note that some PATA controllers (pata_ali) explode
3377 		 * if status register is read more than once when
3378 		 * there's no device attached.
3379 		 */
3380 		if (ready == -ENODEV) {
3381 			if (ata_link_online(link))
3382 				ready = 0;
3383 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3384 				 !ata_link_offline(link) &&
3385 				 time_before(now, nodev_deadline))
3386 				ready = 0;
3387 		}
3388 
3389 		if (ready)
3390 			return ready;
3391 		if (time_after(now, deadline))
3392 			return -EBUSY;
3393 
3394 		if (!warned && time_after(now, start + 5 * HZ) &&
3395 		    (deadline - now > 3 * HZ)) {
3396 			ata_link_warn(link,
3397 				"link is slow to respond, please be patient "
3398 				"(ready=%d)\n", tmp);
3399 			warned = 1;
3400 		}
3401 
3402 		ata_msleep(link->ap, 50);
3403 	}
3404 }
3405 
3406 /**
3407  *	ata_wait_after_reset - wait for link to become ready after reset
3408  *	@link: link to be waited on
3409  *	@deadline: deadline jiffies for the operation
3410  *	@check_ready: callback to check link readiness
3411  *
3412  *	Wait for @link to become ready after reset.
3413  *
3414  *	LOCKING:
3415  *	EH context.
3416  *
3417  *	RETURNS:
3418  *	0 if @linke is ready before @deadline; otherwise, -errno.
3419  */
3420 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3421 				int (*check_ready)(struct ata_link *link))
3422 {
3423 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3424 
3425 	return ata_wait_ready(link, deadline, check_ready);
3426 }
3427 
3428 /**
3429  *	sata_link_debounce - debounce SATA phy status
3430  *	@link: ATA link to debounce SATA phy status for
3431  *	@params: timing parameters { interval, duratinon, timeout } in msec
3432  *	@deadline: deadline jiffies for the operation
3433  *
3434  *	Make sure SStatus of @link reaches stable state, determined by
3435  *	holding the same value where DET is not 1 for @duration polled
3436  *	every @interval, before @timeout.  Timeout constraints the
3437  *	beginning of the stable state.  Because DET gets stuck at 1 on
3438  *	some controllers after hot unplugging, this functions waits
3439  *	until timeout then returns 0 if DET is stable at 1.
3440  *
3441  *	@timeout is further limited by @deadline.  The sooner of the
3442  *	two is used.
3443  *
3444  *	LOCKING:
3445  *	Kernel thread context (may sleep)
3446  *
3447  *	RETURNS:
3448  *	0 on success, -errno on failure.
3449  */
3450 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3451 		       unsigned long deadline)
3452 {
3453 	unsigned long interval = params[0];
3454 	unsigned long duration = params[1];
3455 	unsigned long last_jiffies, t;
3456 	u32 last, cur;
3457 	int rc;
3458 
3459 	t = ata_deadline(jiffies, params[2]);
3460 	if (time_before(t, deadline))
3461 		deadline = t;
3462 
3463 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3464 		return rc;
3465 	cur &= 0xf;
3466 
3467 	last = cur;
3468 	last_jiffies = jiffies;
3469 
3470 	while (1) {
3471 		ata_msleep(link->ap, interval);
3472 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3473 			return rc;
3474 		cur &= 0xf;
3475 
3476 		/* DET stable? */
3477 		if (cur == last) {
3478 			if (cur == 1 && time_before(jiffies, deadline))
3479 				continue;
3480 			if (time_after(jiffies,
3481 				       ata_deadline(last_jiffies, duration)))
3482 				return 0;
3483 			continue;
3484 		}
3485 
3486 		/* unstable, start over */
3487 		last = cur;
3488 		last_jiffies = jiffies;
3489 
3490 		/* Check deadline.  If debouncing failed, return
3491 		 * -EPIPE to tell upper layer to lower link speed.
3492 		 */
3493 		if (time_after(jiffies, deadline))
3494 			return -EPIPE;
3495 	}
3496 }
3497 
3498 /**
3499  *	sata_link_resume - resume SATA link
3500  *	@link: ATA link to resume SATA
3501  *	@params: timing parameters { interval, duratinon, timeout } in msec
3502  *	@deadline: deadline jiffies for the operation
3503  *
3504  *	Resume SATA phy @link and debounce it.
3505  *
3506  *	LOCKING:
3507  *	Kernel thread context (may sleep)
3508  *
3509  *	RETURNS:
3510  *	0 on success, -errno on failure.
3511  */
3512 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3513 		     unsigned long deadline)
3514 {
3515 	int tries = ATA_LINK_RESUME_TRIES;
3516 	u32 scontrol, serror;
3517 	int rc;
3518 
3519 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3520 		return rc;
3521 
3522 	/*
3523 	 * Writes to SControl sometimes get ignored under certain
3524 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3525 	 * cleared.
3526 	 */
3527 	do {
3528 		scontrol = (scontrol & 0x0f0) | 0x300;
3529 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530 			return rc;
3531 		/*
3532 		 * Some PHYs react badly if SStatus is pounded
3533 		 * immediately after resuming.  Delay 200ms before
3534 		 * debouncing.
3535 		 */
3536 		ata_msleep(link->ap, 200);
3537 
3538 		/* is SControl restored correctly? */
3539 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3540 			return rc;
3541 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3542 
3543 	if ((scontrol & 0xf0f) != 0x300) {
3544 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3545 			     scontrol);
3546 		return 0;
3547 	}
3548 
3549 	if (tries < ATA_LINK_RESUME_TRIES)
3550 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3551 			      ATA_LINK_RESUME_TRIES - tries);
3552 
3553 	if ((rc = sata_link_debounce(link, params, deadline)))
3554 		return rc;
3555 
3556 	/* clear SError, some PHYs require this even for SRST to work */
3557 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3558 		rc = sata_scr_write(link, SCR_ERROR, serror);
3559 
3560 	return rc != -EINVAL ? rc : 0;
3561 }
3562 
3563 /**
3564  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3565  *	@link: ATA link to manipulate SControl for
3566  *	@policy: LPM policy to configure
3567  *	@spm_wakeup: initiate LPM transition to active state
3568  *
3569  *	Manipulate the IPM field of the SControl register of @link
3570  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3571  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3572  *	the link.  This function also clears PHYRDY_CHG before
3573  *	returning.
3574  *
3575  *	LOCKING:
3576  *	EH context.
3577  *
3578  *	RETURNS:
3579  *	0 on succes, -errno otherwise.
3580  */
3581 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3582 		      bool spm_wakeup)
3583 {
3584 	struct ata_eh_context *ehc = &link->eh_context;
3585 	bool woken_up = false;
3586 	u32 scontrol;
3587 	int rc;
3588 
3589 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3590 	if (rc)
3591 		return rc;
3592 
3593 	switch (policy) {
3594 	case ATA_LPM_MAX_POWER:
3595 		/* disable all LPM transitions */
3596 		scontrol |= (0x3 << 8);
3597 		/* initiate transition to active state */
3598 		if (spm_wakeup) {
3599 			scontrol |= (0x4 << 12);
3600 			woken_up = true;
3601 		}
3602 		break;
3603 	case ATA_LPM_MED_POWER:
3604 		/* allow LPM to PARTIAL */
3605 		scontrol &= ~(0x1 << 8);
3606 		scontrol |= (0x2 << 8);
3607 		break;
3608 	case ATA_LPM_MIN_POWER:
3609 		if (ata_link_nr_enabled(link) > 0)
3610 			/* no restrictions on LPM transitions */
3611 			scontrol &= ~(0x3 << 8);
3612 		else {
3613 			/* empty port, power off */
3614 			scontrol &= ~0xf;
3615 			scontrol |= (0x1 << 2);
3616 		}
3617 		break;
3618 	default:
3619 		WARN_ON(1);
3620 	}
3621 
3622 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3623 	if (rc)
3624 		return rc;
3625 
3626 	/* give the link time to transit out of LPM state */
3627 	if (woken_up)
3628 		msleep(10);
3629 
3630 	/* clear PHYRDY_CHG from SError */
3631 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3632 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3633 }
3634 
3635 /**
3636  *	ata_std_prereset - prepare for reset
3637  *	@link: ATA link to be reset
3638  *	@deadline: deadline jiffies for the operation
3639  *
3640  *	@link is about to be reset.  Initialize it.  Failure from
3641  *	prereset makes libata abort whole reset sequence and give up
3642  *	that port, so prereset should be best-effort.  It does its
3643  *	best to prepare for reset sequence but if things go wrong, it
3644  *	should just whine, not fail.
3645  *
3646  *	LOCKING:
3647  *	Kernel thread context (may sleep)
3648  *
3649  *	RETURNS:
3650  *	0 on success, -errno otherwise.
3651  */
3652 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653 {
3654 	struct ata_port *ap = link->ap;
3655 	struct ata_eh_context *ehc = &link->eh_context;
3656 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657 	int rc;
3658 
3659 	/* if we're about to do hardreset, nothing more to do */
3660 	if (ehc->i.action & ATA_EH_HARDRESET)
3661 		return 0;
3662 
3663 	/* if SATA, resume link */
3664 	if (ap->flags & ATA_FLAG_SATA) {
3665 		rc = sata_link_resume(link, timing, deadline);
3666 		/* whine about phy resume failure but proceed */
3667 		if (rc && rc != -EOPNOTSUPP)
3668 			ata_link_warn(link,
3669 				      "failed to resume link for reset (errno=%d)\n",
3670 				      rc);
3671 	}
3672 
3673 	/* no point in trying softreset on offline link */
3674 	if (ata_phys_link_offline(link))
3675 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3676 
3677 	return 0;
3678 }
3679 
3680 /**
3681  *	sata_link_hardreset - reset link via SATA phy reset
3682  *	@link: link to reset
3683  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3684  *	@deadline: deadline jiffies for the operation
3685  *	@online: optional out parameter indicating link onlineness
3686  *	@check_ready: optional callback to check link readiness
3687  *
3688  *	SATA phy-reset @link using DET bits of SControl register.
3689  *	After hardreset, link readiness is waited upon using
3690  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3691  *	allowed to not specify @check_ready and wait itself after this
3692  *	function returns.  Device classification is LLD's
3693  *	responsibility.
3694  *
3695  *	*@online is set to one iff reset succeeded and @link is online
3696  *	after reset.
3697  *
3698  *	LOCKING:
3699  *	Kernel thread context (may sleep)
3700  *
3701  *	RETURNS:
3702  *	0 on success, -errno otherwise.
3703  */
3704 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705 			unsigned long deadline,
3706 			bool *online, int (*check_ready)(struct ata_link *))
3707 {
3708 	u32 scontrol;
3709 	int rc;
3710 
3711 	DPRINTK("ENTER\n");
3712 
3713 	if (online)
3714 		*online = false;
3715 
3716 	if (sata_set_spd_needed(link)) {
3717 		/* SATA spec says nothing about how to reconfigure
3718 		 * spd.  To be on the safe side, turn off phy during
3719 		 * reconfiguration.  This works for at least ICH7 AHCI
3720 		 * and Sil3124.
3721 		 */
3722 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723 			goto out;
3724 
3725 		scontrol = (scontrol & 0x0f0) | 0x304;
3726 
3727 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728 			goto out;
3729 
3730 		sata_set_spd(link);
3731 	}
3732 
3733 	/* issue phy wake/reset */
3734 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735 		goto out;
3736 
3737 	scontrol = (scontrol & 0x0f0) | 0x301;
3738 
3739 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740 		goto out;
3741 
3742 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743 	 * 10.4.2 says at least 1 ms.
3744 	 */
3745 	ata_msleep(link->ap, 1);
3746 
3747 	/* bring link back */
3748 	rc = sata_link_resume(link, timing, deadline);
3749 	if (rc)
3750 		goto out;
3751 	/* if link is offline nothing more to do */
3752 	if (ata_phys_link_offline(link))
3753 		goto out;
3754 
3755 	/* Link is online.  From this point, -ENODEV too is an error. */
3756 	if (online)
3757 		*online = true;
3758 
3759 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760 		/* If PMP is supported, we have to do follow-up SRST.
3761 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3762 		 * the first port is empty.  Wait only for
3763 		 * ATA_TMOUT_PMP_SRST_WAIT.
3764 		 */
3765 		if (check_ready) {
3766 			unsigned long pmp_deadline;
3767 
3768 			pmp_deadline = ata_deadline(jiffies,
3769 						    ATA_TMOUT_PMP_SRST_WAIT);
3770 			if (time_after(pmp_deadline, deadline))
3771 				pmp_deadline = deadline;
3772 			ata_wait_ready(link, pmp_deadline, check_ready);
3773 		}
3774 		rc = -EAGAIN;
3775 		goto out;
3776 	}
3777 
3778 	rc = 0;
3779 	if (check_ready)
3780 		rc = ata_wait_ready(link, deadline, check_ready);
3781  out:
3782 	if (rc && rc != -EAGAIN) {
3783 		/* online is set iff link is online && reset succeeded */
3784 		if (online)
3785 			*online = false;
3786 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3787 	}
3788 	DPRINTK("EXIT, rc=%d\n", rc);
3789 	return rc;
3790 }
3791 
3792 /**
3793  *	sata_std_hardreset - COMRESET w/o waiting or classification
3794  *	@link: link to reset
3795  *	@class: resulting class of attached device
3796  *	@deadline: deadline jiffies for the operation
3797  *
3798  *	Standard SATA COMRESET w/o waiting or classification.
3799  *
3800  *	LOCKING:
3801  *	Kernel thread context (may sleep)
3802  *
3803  *	RETURNS:
3804  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3805  */
3806 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807 		       unsigned long deadline)
3808 {
3809 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810 	bool online;
3811 	int rc;
3812 
3813 	/* do hardreset */
3814 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815 	return online ? -EAGAIN : rc;
3816 }
3817 
3818 /**
3819  *	ata_std_postreset - standard postreset callback
3820  *	@link: the target ata_link
3821  *	@classes: classes of attached devices
3822  *
3823  *	This function is invoked after a successful reset.  Note that
3824  *	the device might have been reset more than once using
3825  *	different reset methods before postreset is invoked.
3826  *
3827  *	LOCKING:
3828  *	Kernel thread context (may sleep)
3829  */
3830 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831 {
3832 	u32 serror;
3833 
3834 	DPRINTK("ENTER\n");
3835 
3836 	/* reset complete, clear SError */
3837 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3838 		sata_scr_write(link, SCR_ERROR, serror);
3839 
3840 	/* print link status */
3841 	sata_print_link_status(link);
3842 
3843 	DPRINTK("EXIT\n");
3844 }
3845 
3846 /**
3847  *	ata_dev_same_device - Determine whether new ID matches configured device
3848  *	@dev: device to compare against
3849  *	@new_class: class of the new device
3850  *	@new_id: IDENTIFY page of the new device
3851  *
3852  *	Compare @new_class and @new_id against @dev and determine
3853  *	whether @dev is the device indicated by @new_class and
3854  *	@new_id.
3855  *
3856  *	LOCKING:
3857  *	None.
3858  *
3859  *	RETURNS:
3860  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3861  */
3862 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863 			       const u16 *new_id)
3864 {
3865 	const u16 *old_id = dev->id;
3866 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868 
3869 	if (dev->class != new_class) {
3870 		ata_dev_info(dev, "class mismatch %d != %d\n",
3871 			     dev->class, new_class);
3872 		return 0;
3873 	}
3874 
3875 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879 
3880 	if (strcmp(model[0], model[1])) {
3881 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3882 			     model[0], model[1]);
3883 		return 0;
3884 	}
3885 
3886 	if (strcmp(serial[0], serial[1])) {
3887 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3888 			     serial[0], serial[1]);
3889 		return 0;
3890 	}
3891 
3892 	return 1;
3893 }
3894 
3895 /**
3896  *	ata_dev_reread_id - Re-read IDENTIFY data
3897  *	@dev: target ATA device
3898  *	@readid_flags: read ID flags
3899  *
3900  *	Re-read IDENTIFY page and make sure @dev is still attached to
3901  *	the port.
3902  *
3903  *	LOCKING:
3904  *	Kernel thread context (may sleep)
3905  *
3906  *	RETURNS:
3907  *	0 on success, negative errno otherwise
3908  */
3909 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910 {
3911 	unsigned int class = dev->class;
3912 	u16 *id = (void *)dev->link->ap->sector_buf;
3913 	int rc;
3914 
3915 	/* read ID data */
3916 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917 	if (rc)
3918 		return rc;
3919 
3920 	/* is the device still there? */
3921 	if (!ata_dev_same_device(dev, class, id))
3922 		return -ENODEV;
3923 
3924 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925 	return 0;
3926 }
3927 
3928 /**
3929  *	ata_dev_revalidate - Revalidate ATA device
3930  *	@dev: device to revalidate
3931  *	@new_class: new class code
3932  *	@readid_flags: read ID flags
3933  *
3934  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3935  *	port and reconfigure it according to the new IDENTIFY page.
3936  *
3937  *	LOCKING:
3938  *	Kernel thread context (may sleep)
3939  *
3940  *	RETURNS:
3941  *	0 on success, negative errno otherwise
3942  */
3943 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944 		       unsigned int readid_flags)
3945 {
3946 	u64 n_sectors = dev->n_sectors;
3947 	u64 n_native_sectors = dev->n_native_sectors;
3948 	int rc;
3949 
3950 	if (!ata_dev_enabled(dev))
3951 		return -ENODEV;
3952 
3953 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3954 	if (ata_class_enabled(new_class) &&
3955 	    new_class != ATA_DEV_ATA &&
3956 	    new_class != ATA_DEV_ATAPI &&
3957 	    new_class != ATA_DEV_SEMB) {
3958 		ata_dev_info(dev, "class mismatch %u != %u\n",
3959 			     dev->class, new_class);
3960 		rc = -ENODEV;
3961 		goto fail;
3962 	}
3963 
3964 	/* re-read ID */
3965 	rc = ata_dev_reread_id(dev, readid_flags);
3966 	if (rc)
3967 		goto fail;
3968 
3969 	/* configure device according to the new ID */
3970 	rc = ata_dev_configure(dev);
3971 	if (rc)
3972 		goto fail;
3973 
3974 	/* verify n_sectors hasn't changed */
3975 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3976 	    dev->n_sectors == n_sectors)
3977 		return 0;
3978 
3979 	/* n_sectors has changed */
3980 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3981 		     (unsigned long long)n_sectors,
3982 		     (unsigned long long)dev->n_sectors);
3983 
3984 	/*
3985 	 * Something could have caused HPA to be unlocked
3986 	 * involuntarily.  If n_native_sectors hasn't changed and the
3987 	 * new size matches it, keep the device.
3988 	 */
3989 	if (dev->n_native_sectors == n_native_sectors &&
3990 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3991 		ata_dev_warn(dev,
3992 			     "new n_sectors matches native, probably "
3993 			     "late HPA unlock, n_sectors updated\n");
3994 		/* use the larger n_sectors */
3995 		return 0;
3996 	}
3997 
3998 	/*
3999 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4000 	 * unlocking HPA in those cases.
4001 	 *
4002 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4003 	 */
4004 	if (dev->n_native_sectors == n_native_sectors &&
4005 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4006 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4007 		ata_dev_warn(dev,
4008 			     "old n_sectors matches native, probably "
4009 			     "late HPA lock, will try to unlock HPA\n");
4010 		/* try unlocking HPA */
4011 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4012 		rc = -EIO;
4013 	} else
4014 		rc = -ENODEV;
4015 
4016 	/* restore original n_[native_]sectors and fail */
4017 	dev->n_native_sectors = n_native_sectors;
4018 	dev->n_sectors = n_sectors;
4019  fail:
4020 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4021 	return rc;
4022 }
4023 
4024 struct ata_blacklist_entry {
4025 	const char *model_num;
4026 	const char *model_rev;
4027 	unsigned long horkage;
4028 };
4029 
4030 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4031 	/* Devices with DMA related problems under Linux */
4032 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4033 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4034 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4035 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4036 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4037 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4038 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4039 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4040 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4041 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4042 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4043 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4044 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4045 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4046 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4047 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4048 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4049 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4050 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4051 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4052 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4053 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4054 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4055 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4056 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4057 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4058 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4059 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4060 	{ "2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4061 	/* Odd clown on sil3726/4726 PMPs */
4062 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4063 
4064 	/* Weird ATAPI devices */
4065 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4066 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4067 
4068 	/* Devices we expect to fail diagnostics */
4069 
4070 	/* Devices where NCQ should be avoided */
4071 	/* NCQ is slow */
4072 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4073 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4074 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4075 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4076 	/* NCQ is broken */
4077 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4078 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4079 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4080 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4081 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4082 
4083 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4084 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4085 						ATA_HORKAGE_FIRMWARE_WARN },
4086 
4087 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4088 						ATA_HORKAGE_FIRMWARE_WARN },
4089 
4090 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4091 						ATA_HORKAGE_FIRMWARE_WARN },
4092 
4093 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4094 						ATA_HORKAGE_FIRMWARE_WARN },
4095 
4096 	/* Blacklist entries taken from Silicon Image 3124/3132
4097 	   Windows driver .inf file - also several Linux problem reports */
4098 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4099 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4100 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4101 
4102 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4104 
4105 	/* devices which puke on READ_NATIVE_MAX */
4106 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4107 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4110 
4111 	/* this one allows HPA unlocking but fails IOs on the area */
4112 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4113 
4114 	/* Devices which report 1 sector over size HPA */
4115 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4116 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4117 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4118 
4119 	/* Devices which get the IVB wrong */
4120 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121 	/* Maybe we should just blacklist TSSTcorp... */
4122 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4123 
4124 	/* Devices that do not need bridging limits applied */
4125 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4126 
4127 	/* Devices which aren't very happy with higher link speeds */
4128 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4129 
4130 	/*
4131 	 * Devices which choke on SETXFER.  Applies only if both the
4132 	 * device and controller are SATA.
4133 	 */
4134 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4135 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4136 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4137 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4138 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4139 
4140 	/* End Marker */
4141 	{ }
4142 };
4143 
4144 /**
4145  *	glob_match - match a text string against a glob-style pattern
4146  *	@text: the string to be examined
4147  *	@pattern: the glob-style pattern to be matched against
4148  *
4149  *	Either/both of text and pattern can be empty strings.
4150  *
4151  *	Match text against a glob-style pattern, with wildcards and simple sets:
4152  *
4153  *		?	matches any single character.
4154  *		*	matches any run of characters.
4155  *		[xyz]	matches a single character from the set: x, y, or z.
4156  *		[a-d]	matches a single character from the range: a, b, c, or d.
4157  *		[a-d0-9] matches a single character from either range.
4158  *
4159  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4160  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4161  *
4162  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4163  *
4164  *	This function uses one level of recursion per '*' in pattern.
4165  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4166  *	this will not cause stack problems for any reasonable use here.
4167  *
4168  *	RETURNS:
4169  *	0 on match, 1 otherwise.
4170  */
4171 static int glob_match (const char *text, const char *pattern)
4172 {
4173 	do {
4174 		/* Match single character or a '?' wildcard */
4175 		if (*text == *pattern || *pattern == '?') {
4176 			if (!*pattern++)
4177 				return 0;  /* End of both strings: match */
4178 		} else {
4179 			/* Match single char against a '[' bracketed ']' pattern set */
4180 			if (!*text || *pattern != '[')
4181 				break;  /* Not a pattern set */
4182 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4183 				if (*pattern == '-' && *(pattern - 1) != '[')
4184 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4185 						++pattern;
4186 						break;
4187 					}
4188 			}
4189 			if (!*pattern || *pattern == ']')
4190 				return 1;  /* No match */
4191 			while (*pattern && *pattern++ != ']');
4192 		}
4193 	} while (*++text && *pattern);
4194 
4195 	/* Match any run of chars against a '*' wildcard */
4196 	if (*pattern == '*') {
4197 		if (!*++pattern)
4198 			return 0;  /* Match: avoid recursion at end of pattern */
4199 		/* Loop to handle additional pattern chars after the wildcard */
4200 		while (*text) {
4201 			if (glob_match(text, pattern) == 0)
4202 				return 0;  /* Remainder matched */
4203 			++text;  /* Absorb (match) this char and try again */
4204 		}
4205 	}
4206 	if (!*text && !*pattern)
4207 		return 0;  /* End of both strings: match */
4208 	return 1;  /* No match */
4209 }
4210 
4211 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4212 {
4213 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4214 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4215 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4216 
4217 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4218 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4219 
4220 	while (ad->model_num) {
4221 		if (!glob_match(model_num, ad->model_num)) {
4222 			if (ad->model_rev == NULL)
4223 				return ad->horkage;
4224 			if (!glob_match(model_rev, ad->model_rev))
4225 				return ad->horkage;
4226 		}
4227 		ad++;
4228 	}
4229 	return 0;
4230 }
4231 
4232 static int ata_dma_blacklisted(const struct ata_device *dev)
4233 {
4234 	/* We don't support polling DMA.
4235 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4236 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4237 	 */
4238 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4239 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4240 		return 1;
4241 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4242 }
4243 
4244 /**
4245  *	ata_is_40wire		-	check drive side detection
4246  *	@dev: device
4247  *
4248  *	Perform drive side detection decoding, allowing for device vendors
4249  *	who can't follow the documentation.
4250  */
4251 
4252 static int ata_is_40wire(struct ata_device *dev)
4253 {
4254 	if (dev->horkage & ATA_HORKAGE_IVB)
4255 		return ata_drive_40wire_relaxed(dev->id);
4256 	return ata_drive_40wire(dev->id);
4257 }
4258 
4259 /**
4260  *	cable_is_40wire		-	40/80/SATA decider
4261  *	@ap: port to consider
4262  *
4263  *	This function encapsulates the policy for speed management
4264  *	in one place. At the moment we don't cache the result but
4265  *	there is a good case for setting ap->cbl to the result when
4266  *	we are called with unknown cables (and figuring out if it
4267  *	impacts hotplug at all).
4268  *
4269  *	Return 1 if the cable appears to be 40 wire.
4270  */
4271 
4272 static int cable_is_40wire(struct ata_port *ap)
4273 {
4274 	struct ata_link *link;
4275 	struct ata_device *dev;
4276 
4277 	/* If the controller thinks we are 40 wire, we are. */
4278 	if (ap->cbl == ATA_CBL_PATA40)
4279 		return 1;
4280 
4281 	/* If the controller thinks we are 80 wire, we are. */
4282 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4283 		return 0;
4284 
4285 	/* If the system is known to be 40 wire short cable (eg
4286 	 * laptop), then we allow 80 wire modes even if the drive
4287 	 * isn't sure.
4288 	 */
4289 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4290 		return 0;
4291 
4292 	/* If the controller doesn't know, we scan.
4293 	 *
4294 	 * Note: We look for all 40 wire detects at this point.  Any
4295 	 *       80 wire detect is taken to be 80 wire cable because
4296 	 * - in many setups only the one drive (slave if present) will
4297 	 *   give a valid detect
4298 	 * - if you have a non detect capable drive you don't want it
4299 	 *   to colour the choice
4300 	 */
4301 	ata_for_each_link(link, ap, EDGE) {
4302 		ata_for_each_dev(dev, link, ENABLED) {
4303 			if (!ata_is_40wire(dev))
4304 				return 0;
4305 		}
4306 	}
4307 	return 1;
4308 }
4309 
4310 /**
4311  *	ata_dev_xfermask - Compute supported xfermask of the given device
4312  *	@dev: Device to compute xfermask for
4313  *
4314  *	Compute supported xfermask of @dev and store it in
4315  *	dev->*_mask.  This function is responsible for applying all
4316  *	known limits including host controller limits, device
4317  *	blacklist, etc...
4318  *
4319  *	LOCKING:
4320  *	None.
4321  */
4322 static void ata_dev_xfermask(struct ata_device *dev)
4323 {
4324 	struct ata_link *link = dev->link;
4325 	struct ata_port *ap = link->ap;
4326 	struct ata_host *host = ap->host;
4327 	unsigned long xfer_mask;
4328 
4329 	/* controller modes available */
4330 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4331 				      ap->mwdma_mask, ap->udma_mask);
4332 
4333 	/* drive modes available */
4334 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4335 				       dev->mwdma_mask, dev->udma_mask);
4336 	xfer_mask &= ata_id_xfermask(dev->id);
4337 
4338 	/*
4339 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4340 	 *	cable
4341 	 */
4342 	if (ata_dev_pair(dev)) {
4343 		/* No PIO5 or PIO6 */
4344 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4345 		/* No MWDMA3 or MWDMA 4 */
4346 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4347 	}
4348 
4349 	if (ata_dma_blacklisted(dev)) {
4350 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4351 		ata_dev_warn(dev,
4352 			     "device is on DMA blacklist, disabling DMA\n");
4353 	}
4354 
4355 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4356 	    host->simplex_claimed && host->simplex_claimed != ap) {
4357 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4358 		ata_dev_warn(dev,
4359 			     "simplex DMA is claimed by other device, disabling DMA\n");
4360 	}
4361 
4362 	if (ap->flags & ATA_FLAG_NO_IORDY)
4363 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4364 
4365 	if (ap->ops->mode_filter)
4366 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4367 
4368 	/* Apply cable rule here.  Don't apply it early because when
4369 	 * we handle hot plug the cable type can itself change.
4370 	 * Check this last so that we know if the transfer rate was
4371 	 * solely limited by the cable.
4372 	 * Unknown or 80 wire cables reported host side are checked
4373 	 * drive side as well. Cases where we know a 40wire cable
4374 	 * is used safely for 80 are not checked here.
4375 	 */
4376 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4377 		/* UDMA/44 or higher would be available */
4378 		if (cable_is_40wire(ap)) {
4379 			ata_dev_warn(dev,
4380 				     "limited to UDMA/33 due to 40-wire cable\n");
4381 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4382 		}
4383 
4384 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4385 			    &dev->mwdma_mask, &dev->udma_mask);
4386 }
4387 
4388 /**
4389  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4390  *	@dev: Device to which command will be sent
4391  *
4392  *	Issue SET FEATURES - XFER MODE command to device @dev
4393  *	on port @ap.
4394  *
4395  *	LOCKING:
4396  *	PCI/etc. bus probe sem.
4397  *
4398  *	RETURNS:
4399  *	0 on success, AC_ERR_* mask otherwise.
4400  */
4401 
4402 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4403 {
4404 	struct ata_taskfile tf;
4405 	unsigned int err_mask;
4406 
4407 	/* set up set-features taskfile */
4408 	DPRINTK("set features - xfer mode\n");
4409 
4410 	/* Some controllers and ATAPI devices show flaky interrupt
4411 	 * behavior after setting xfer mode.  Use polling instead.
4412 	 */
4413 	ata_tf_init(dev, &tf);
4414 	tf.command = ATA_CMD_SET_FEATURES;
4415 	tf.feature = SETFEATURES_XFER;
4416 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4417 	tf.protocol = ATA_PROT_NODATA;
4418 	/* If we are using IORDY we must send the mode setting command */
4419 	if (ata_pio_need_iordy(dev))
4420 		tf.nsect = dev->xfer_mode;
4421 	/* If the device has IORDY and the controller does not - turn it off */
4422  	else if (ata_id_has_iordy(dev->id))
4423 		tf.nsect = 0x01;
4424 	else /* In the ancient relic department - skip all of this */
4425 		return 0;
4426 
4427 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4428 
4429 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4430 	return err_mask;
4431 }
4432 
4433 /**
4434  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4435  *	@dev: Device to which command will be sent
4436  *	@enable: Whether to enable or disable the feature
4437  *	@feature: The sector count represents the feature to set
4438  *
4439  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4440  *	on port @ap with sector count
4441  *
4442  *	LOCKING:
4443  *	PCI/etc. bus probe sem.
4444  *
4445  *	RETURNS:
4446  *	0 on success, AC_ERR_* mask otherwise.
4447  */
4448 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4449 {
4450 	struct ata_taskfile tf;
4451 	unsigned int err_mask;
4452 
4453 	/* set up set-features taskfile */
4454 	DPRINTK("set features - SATA features\n");
4455 
4456 	ata_tf_init(dev, &tf);
4457 	tf.command = ATA_CMD_SET_FEATURES;
4458 	tf.feature = enable;
4459 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4460 	tf.protocol = ATA_PROT_NODATA;
4461 	tf.nsect = feature;
4462 
4463 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4464 
4465 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4466 	return err_mask;
4467 }
4468 
4469 /**
4470  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4471  *	@dev: Device to which command will be sent
4472  *	@heads: Number of heads (taskfile parameter)
4473  *	@sectors: Number of sectors (taskfile parameter)
4474  *
4475  *	LOCKING:
4476  *	Kernel thread context (may sleep)
4477  *
4478  *	RETURNS:
4479  *	0 on success, AC_ERR_* mask otherwise.
4480  */
4481 static unsigned int ata_dev_init_params(struct ata_device *dev,
4482 					u16 heads, u16 sectors)
4483 {
4484 	struct ata_taskfile tf;
4485 	unsigned int err_mask;
4486 
4487 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4488 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4489 		return AC_ERR_INVALID;
4490 
4491 	/* set up init dev params taskfile */
4492 	DPRINTK("init dev params \n");
4493 
4494 	ata_tf_init(dev, &tf);
4495 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4496 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4497 	tf.protocol = ATA_PROT_NODATA;
4498 	tf.nsect = sectors;
4499 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4500 
4501 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4502 	/* A clean abort indicates an original or just out of spec drive
4503 	   and we should continue as we issue the setup based on the
4504 	   drive reported working geometry */
4505 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4506 		err_mask = 0;
4507 
4508 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 	return err_mask;
4510 }
4511 
4512 /**
4513  *	ata_sg_clean - Unmap DMA memory associated with command
4514  *	@qc: Command containing DMA memory to be released
4515  *
4516  *	Unmap all mapped DMA memory associated with this command.
4517  *
4518  *	LOCKING:
4519  *	spin_lock_irqsave(host lock)
4520  */
4521 void ata_sg_clean(struct ata_queued_cmd *qc)
4522 {
4523 	struct ata_port *ap = qc->ap;
4524 	struct scatterlist *sg = qc->sg;
4525 	int dir = qc->dma_dir;
4526 
4527 	WARN_ON_ONCE(sg == NULL);
4528 
4529 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4530 
4531 	if (qc->n_elem)
4532 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4533 
4534 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535 	qc->sg = NULL;
4536 }
4537 
4538 /**
4539  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4540  *	@qc: Metadata associated with taskfile to check
4541  *
4542  *	Allow low-level driver to filter ATA PACKET commands, returning
4543  *	a status indicating whether or not it is OK to use DMA for the
4544  *	supplied PACKET command.
4545  *
4546  *	LOCKING:
4547  *	spin_lock_irqsave(host lock)
4548  *
4549  *	RETURNS: 0 when ATAPI DMA can be used
4550  *               nonzero otherwise
4551  */
4552 int atapi_check_dma(struct ata_queued_cmd *qc)
4553 {
4554 	struct ata_port *ap = qc->ap;
4555 
4556 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4557 	 * few ATAPI devices choke on such DMA requests.
4558 	 */
4559 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4560 	    unlikely(qc->nbytes & 15))
4561 		return 1;
4562 
4563 	if (ap->ops->check_atapi_dma)
4564 		return ap->ops->check_atapi_dma(qc);
4565 
4566 	return 0;
4567 }
4568 
4569 /**
4570  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4571  *	@qc: ATA command in question
4572  *
4573  *	Non-NCQ commands cannot run with any other command, NCQ or
4574  *	not.  As upper layer only knows the queue depth, we are
4575  *	responsible for maintaining exclusion.  This function checks
4576  *	whether a new command @qc can be issued.
4577  *
4578  *	LOCKING:
4579  *	spin_lock_irqsave(host lock)
4580  *
4581  *	RETURNS:
4582  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4583  */
4584 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4585 {
4586 	struct ata_link *link = qc->dev->link;
4587 
4588 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4589 		if (!ata_tag_valid(link->active_tag))
4590 			return 0;
4591 	} else {
4592 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4593 			return 0;
4594 	}
4595 
4596 	return ATA_DEFER_LINK;
4597 }
4598 
4599 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4600 
4601 /**
4602  *	ata_sg_init - Associate command with scatter-gather table.
4603  *	@qc: Command to be associated
4604  *	@sg: Scatter-gather table.
4605  *	@n_elem: Number of elements in s/g table.
4606  *
4607  *	Initialize the data-related elements of queued_cmd @qc
4608  *	to point to a scatter-gather table @sg, containing @n_elem
4609  *	elements.
4610  *
4611  *	LOCKING:
4612  *	spin_lock_irqsave(host lock)
4613  */
4614 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4615 		 unsigned int n_elem)
4616 {
4617 	qc->sg = sg;
4618 	qc->n_elem = n_elem;
4619 	qc->cursg = qc->sg;
4620 }
4621 
4622 /**
4623  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4624  *	@qc: Command with scatter-gather table to be mapped.
4625  *
4626  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4627  *
4628  *	LOCKING:
4629  *	spin_lock_irqsave(host lock)
4630  *
4631  *	RETURNS:
4632  *	Zero on success, negative on error.
4633  *
4634  */
4635 static int ata_sg_setup(struct ata_queued_cmd *qc)
4636 {
4637 	struct ata_port *ap = qc->ap;
4638 	unsigned int n_elem;
4639 
4640 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4641 
4642 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4643 	if (n_elem < 1)
4644 		return -1;
4645 
4646 	DPRINTK("%d sg elements mapped\n", n_elem);
4647 	qc->orig_n_elem = qc->n_elem;
4648 	qc->n_elem = n_elem;
4649 	qc->flags |= ATA_QCFLAG_DMAMAP;
4650 
4651 	return 0;
4652 }
4653 
4654 /**
4655  *	swap_buf_le16 - swap halves of 16-bit words in place
4656  *	@buf:  Buffer to swap
4657  *	@buf_words:  Number of 16-bit words in buffer.
4658  *
4659  *	Swap halves of 16-bit words if needed to convert from
4660  *	little-endian byte order to native cpu byte order, or
4661  *	vice-versa.
4662  *
4663  *	LOCKING:
4664  *	Inherited from caller.
4665  */
4666 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4667 {
4668 #ifdef __BIG_ENDIAN
4669 	unsigned int i;
4670 
4671 	for (i = 0; i < buf_words; i++)
4672 		buf[i] = le16_to_cpu(buf[i]);
4673 #endif /* __BIG_ENDIAN */
4674 }
4675 
4676 /**
4677  *	ata_qc_new - Request an available ATA command, for queueing
4678  *	@ap: target port
4679  *
4680  *	LOCKING:
4681  *	None.
4682  */
4683 
4684 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4685 {
4686 	struct ata_queued_cmd *qc = NULL;
4687 	unsigned int i;
4688 
4689 	/* no command while frozen */
4690 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4691 		return NULL;
4692 
4693 	/* the last tag is reserved for internal command. */
4694 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4695 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4696 			qc = __ata_qc_from_tag(ap, i);
4697 			break;
4698 		}
4699 
4700 	if (qc)
4701 		qc->tag = i;
4702 
4703 	return qc;
4704 }
4705 
4706 /**
4707  *	ata_qc_new_init - Request an available ATA command, and initialize it
4708  *	@dev: Device from whom we request an available command structure
4709  *
4710  *	LOCKING:
4711  *	None.
4712  */
4713 
4714 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4715 {
4716 	struct ata_port *ap = dev->link->ap;
4717 	struct ata_queued_cmd *qc;
4718 
4719 	qc = ata_qc_new(ap);
4720 	if (qc) {
4721 		qc->scsicmd = NULL;
4722 		qc->ap = ap;
4723 		qc->dev = dev;
4724 
4725 		ata_qc_reinit(qc);
4726 	}
4727 
4728 	return qc;
4729 }
4730 
4731 /**
4732  *	ata_qc_free - free unused ata_queued_cmd
4733  *	@qc: Command to complete
4734  *
4735  *	Designed to free unused ata_queued_cmd object
4736  *	in case something prevents using it.
4737  *
4738  *	LOCKING:
4739  *	spin_lock_irqsave(host lock)
4740  */
4741 void ata_qc_free(struct ata_queued_cmd *qc)
4742 {
4743 	struct ata_port *ap;
4744 	unsigned int tag;
4745 
4746 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4747 	ap = qc->ap;
4748 
4749 	qc->flags = 0;
4750 	tag = qc->tag;
4751 	if (likely(ata_tag_valid(tag))) {
4752 		qc->tag = ATA_TAG_POISON;
4753 		clear_bit(tag, &ap->qc_allocated);
4754 	}
4755 }
4756 
4757 void __ata_qc_complete(struct ata_queued_cmd *qc)
4758 {
4759 	struct ata_port *ap;
4760 	struct ata_link *link;
4761 
4762 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4763 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4764 	ap = qc->ap;
4765 	link = qc->dev->link;
4766 
4767 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4768 		ata_sg_clean(qc);
4769 
4770 	/* command should be marked inactive atomically with qc completion */
4771 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4772 		link->sactive &= ~(1 << qc->tag);
4773 		if (!link->sactive)
4774 			ap->nr_active_links--;
4775 	} else {
4776 		link->active_tag = ATA_TAG_POISON;
4777 		ap->nr_active_links--;
4778 	}
4779 
4780 	/* clear exclusive status */
4781 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4782 		     ap->excl_link == link))
4783 		ap->excl_link = NULL;
4784 
4785 	/* atapi: mark qc as inactive to prevent the interrupt handler
4786 	 * from completing the command twice later, before the error handler
4787 	 * is called. (when rc != 0 and atapi request sense is needed)
4788 	 */
4789 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4790 	ap->qc_active &= ~(1 << qc->tag);
4791 
4792 	/* call completion callback */
4793 	qc->complete_fn(qc);
4794 }
4795 
4796 static void fill_result_tf(struct ata_queued_cmd *qc)
4797 {
4798 	struct ata_port *ap = qc->ap;
4799 
4800 	qc->result_tf.flags = qc->tf.flags;
4801 	ap->ops->qc_fill_rtf(qc);
4802 }
4803 
4804 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4805 {
4806 	struct ata_device *dev = qc->dev;
4807 
4808 	if (ata_is_nodata(qc->tf.protocol))
4809 		return;
4810 
4811 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4812 		return;
4813 
4814 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4815 }
4816 
4817 /**
4818  *	ata_qc_complete - Complete an active ATA command
4819  *	@qc: Command to complete
4820  *
4821  *	Indicate to the mid and upper layers that an ATA command has
4822  *	completed, with either an ok or not-ok status.
4823  *
4824  *	Refrain from calling this function multiple times when
4825  *	successfully completing multiple NCQ commands.
4826  *	ata_qc_complete_multiple() should be used instead, which will
4827  *	properly update IRQ expect state.
4828  *
4829  *	LOCKING:
4830  *	spin_lock_irqsave(host lock)
4831  */
4832 void ata_qc_complete(struct ata_queued_cmd *qc)
4833 {
4834 	struct ata_port *ap = qc->ap;
4835 
4836 	/* XXX: New EH and old EH use different mechanisms to
4837 	 * synchronize EH with regular execution path.
4838 	 *
4839 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4840 	 * Normal execution path is responsible for not accessing a
4841 	 * failed qc.  libata core enforces the rule by returning NULL
4842 	 * from ata_qc_from_tag() for failed qcs.
4843 	 *
4844 	 * Old EH depends on ata_qc_complete() nullifying completion
4845 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4846 	 * not synchronize with interrupt handler.  Only PIO task is
4847 	 * taken care of.
4848 	 */
4849 	if (ap->ops->error_handler) {
4850 		struct ata_device *dev = qc->dev;
4851 		struct ata_eh_info *ehi = &dev->link->eh_info;
4852 
4853 		if (unlikely(qc->err_mask))
4854 			qc->flags |= ATA_QCFLAG_FAILED;
4855 
4856 		/*
4857 		 * Finish internal commands without any further processing
4858 		 * and always with the result TF filled.
4859 		 */
4860 		if (unlikely(ata_tag_internal(qc->tag))) {
4861 			fill_result_tf(qc);
4862 			__ata_qc_complete(qc);
4863 			return;
4864 		}
4865 
4866 		/*
4867 		 * Non-internal qc has failed.  Fill the result TF and
4868 		 * summon EH.
4869 		 */
4870 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4871 			fill_result_tf(qc);
4872 			ata_qc_schedule_eh(qc);
4873 			return;
4874 		}
4875 
4876 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4877 
4878 		/* read result TF if requested */
4879 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4880 			fill_result_tf(qc);
4881 
4882 		/* Some commands need post-processing after successful
4883 		 * completion.
4884 		 */
4885 		switch (qc->tf.command) {
4886 		case ATA_CMD_SET_FEATURES:
4887 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4888 			    qc->tf.feature != SETFEATURES_WC_OFF)
4889 				break;
4890 			/* fall through */
4891 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4892 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4893 			/* revalidate device */
4894 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4895 			ata_port_schedule_eh(ap);
4896 			break;
4897 
4898 		case ATA_CMD_SLEEP:
4899 			dev->flags |= ATA_DFLAG_SLEEPING;
4900 			break;
4901 		}
4902 
4903 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4904 			ata_verify_xfer(qc);
4905 
4906 		__ata_qc_complete(qc);
4907 	} else {
4908 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4909 			return;
4910 
4911 		/* read result TF if failed or requested */
4912 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4913 			fill_result_tf(qc);
4914 
4915 		__ata_qc_complete(qc);
4916 	}
4917 }
4918 
4919 /**
4920  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4921  *	@ap: port in question
4922  *	@qc_active: new qc_active mask
4923  *
4924  *	Complete in-flight commands.  This functions is meant to be
4925  *	called from low-level driver's interrupt routine to complete
4926  *	requests normally.  ap->qc_active and @qc_active is compared
4927  *	and commands are completed accordingly.
4928  *
4929  *	Always use this function when completing multiple NCQ commands
4930  *	from IRQ handlers instead of calling ata_qc_complete()
4931  *	multiple times to keep IRQ expect status properly in sync.
4932  *
4933  *	LOCKING:
4934  *	spin_lock_irqsave(host lock)
4935  *
4936  *	RETURNS:
4937  *	Number of completed commands on success, -errno otherwise.
4938  */
4939 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4940 {
4941 	int nr_done = 0;
4942 	u32 done_mask;
4943 
4944 	done_mask = ap->qc_active ^ qc_active;
4945 
4946 	if (unlikely(done_mask & qc_active)) {
4947 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4948 			     ap->qc_active, qc_active);
4949 		return -EINVAL;
4950 	}
4951 
4952 	while (done_mask) {
4953 		struct ata_queued_cmd *qc;
4954 		unsigned int tag = __ffs(done_mask);
4955 
4956 		qc = ata_qc_from_tag(ap, tag);
4957 		if (qc) {
4958 			ata_qc_complete(qc);
4959 			nr_done++;
4960 		}
4961 		done_mask &= ~(1 << tag);
4962 	}
4963 
4964 	return nr_done;
4965 }
4966 
4967 /**
4968  *	ata_qc_issue - issue taskfile to device
4969  *	@qc: command to issue to device
4970  *
4971  *	Prepare an ATA command to submission to device.
4972  *	This includes mapping the data into a DMA-able
4973  *	area, filling in the S/G table, and finally
4974  *	writing the taskfile to hardware, starting the command.
4975  *
4976  *	LOCKING:
4977  *	spin_lock_irqsave(host lock)
4978  */
4979 void ata_qc_issue(struct ata_queued_cmd *qc)
4980 {
4981 	struct ata_port *ap = qc->ap;
4982 	struct ata_link *link = qc->dev->link;
4983 	u8 prot = qc->tf.protocol;
4984 
4985 	/* Make sure only one non-NCQ command is outstanding.  The
4986 	 * check is skipped for old EH because it reuses active qc to
4987 	 * request ATAPI sense.
4988 	 */
4989 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4990 
4991 	if (ata_is_ncq(prot)) {
4992 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4993 
4994 		if (!link->sactive)
4995 			ap->nr_active_links++;
4996 		link->sactive |= 1 << qc->tag;
4997 	} else {
4998 		WARN_ON_ONCE(link->sactive);
4999 
5000 		ap->nr_active_links++;
5001 		link->active_tag = qc->tag;
5002 	}
5003 
5004 	qc->flags |= ATA_QCFLAG_ACTIVE;
5005 	ap->qc_active |= 1 << qc->tag;
5006 
5007 	/*
5008 	 * We guarantee to LLDs that they will have at least one
5009 	 * non-zero sg if the command is a data command.
5010 	 */
5011 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5012 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5013 		goto sys_err;
5014 
5015 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5016 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5017 		if (ata_sg_setup(qc))
5018 			goto sys_err;
5019 
5020 	/* if device is sleeping, schedule reset and abort the link */
5021 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5022 		link->eh_info.action |= ATA_EH_RESET;
5023 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5024 		ata_link_abort(link);
5025 		return;
5026 	}
5027 
5028 	ap->ops->qc_prep(qc);
5029 
5030 	qc->err_mask |= ap->ops->qc_issue(qc);
5031 	if (unlikely(qc->err_mask))
5032 		goto err;
5033 	return;
5034 
5035 sys_err:
5036 	qc->err_mask |= AC_ERR_SYSTEM;
5037 err:
5038 	ata_qc_complete(qc);
5039 }
5040 
5041 /**
5042  *	sata_scr_valid - test whether SCRs are accessible
5043  *	@link: ATA link to test SCR accessibility for
5044  *
5045  *	Test whether SCRs are accessible for @link.
5046  *
5047  *	LOCKING:
5048  *	None.
5049  *
5050  *	RETURNS:
5051  *	1 if SCRs are accessible, 0 otherwise.
5052  */
5053 int sata_scr_valid(struct ata_link *link)
5054 {
5055 	struct ata_port *ap = link->ap;
5056 
5057 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5058 }
5059 
5060 /**
5061  *	sata_scr_read - read SCR register of the specified port
5062  *	@link: ATA link to read SCR for
5063  *	@reg: SCR to read
5064  *	@val: Place to store read value
5065  *
5066  *	Read SCR register @reg of @link into *@val.  This function is
5067  *	guaranteed to succeed if @link is ap->link, the cable type of
5068  *	the port is SATA and the port implements ->scr_read.
5069  *
5070  *	LOCKING:
5071  *	None if @link is ap->link.  Kernel thread context otherwise.
5072  *
5073  *	RETURNS:
5074  *	0 on success, negative errno on failure.
5075  */
5076 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5077 {
5078 	if (ata_is_host_link(link)) {
5079 		if (sata_scr_valid(link))
5080 			return link->ap->ops->scr_read(link, reg, val);
5081 		return -EOPNOTSUPP;
5082 	}
5083 
5084 	return sata_pmp_scr_read(link, reg, val);
5085 }
5086 
5087 /**
5088  *	sata_scr_write - write SCR register of the specified port
5089  *	@link: ATA link to write SCR for
5090  *	@reg: SCR to write
5091  *	@val: value to write
5092  *
5093  *	Write @val to SCR register @reg of @link.  This function is
5094  *	guaranteed to succeed if @link is ap->link, the cable type of
5095  *	the port is SATA and the port implements ->scr_read.
5096  *
5097  *	LOCKING:
5098  *	None if @link is ap->link.  Kernel thread context otherwise.
5099  *
5100  *	RETURNS:
5101  *	0 on success, negative errno on failure.
5102  */
5103 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5104 {
5105 	if (ata_is_host_link(link)) {
5106 		if (sata_scr_valid(link))
5107 			return link->ap->ops->scr_write(link, reg, val);
5108 		return -EOPNOTSUPP;
5109 	}
5110 
5111 	return sata_pmp_scr_write(link, reg, val);
5112 }
5113 
5114 /**
5115  *	sata_scr_write_flush - write SCR register of the specified port and flush
5116  *	@link: ATA link to write SCR for
5117  *	@reg: SCR to write
5118  *	@val: value to write
5119  *
5120  *	This function is identical to sata_scr_write() except that this
5121  *	function performs flush after writing to the register.
5122  *
5123  *	LOCKING:
5124  *	None if @link is ap->link.  Kernel thread context otherwise.
5125  *
5126  *	RETURNS:
5127  *	0 on success, negative errno on failure.
5128  */
5129 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5130 {
5131 	if (ata_is_host_link(link)) {
5132 		int rc;
5133 
5134 		if (sata_scr_valid(link)) {
5135 			rc = link->ap->ops->scr_write(link, reg, val);
5136 			if (rc == 0)
5137 				rc = link->ap->ops->scr_read(link, reg, &val);
5138 			return rc;
5139 		}
5140 		return -EOPNOTSUPP;
5141 	}
5142 
5143 	return sata_pmp_scr_write(link, reg, val);
5144 }
5145 
5146 /**
5147  *	ata_phys_link_online - test whether the given link is online
5148  *	@link: ATA link to test
5149  *
5150  *	Test whether @link is online.  Note that this function returns
5151  *	0 if online status of @link cannot be obtained, so
5152  *	ata_link_online(link) != !ata_link_offline(link).
5153  *
5154  *	LOCKING:
5155  *	None.
5156  *
5157  *	RETURNS:
5158  *	True if the port online status is available and online.
5159  */
5160 bool ata_phys_link_online(struct ata_link *link)
5161 {
5162 	u32 sstatus;
5163 
5164 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5165 	    ata_sstatus_online(sstatus))
5166 		return true;
5167 	return false;
5168 }
5169 
5170 /**
5171  *	ata_phys_link_offline - test whether the given link is offline
5172  *	@link: ATA link to test
5173  *
5174  *	Test whether @link is offline.  Note that this function
5175  *	returns 0 if offline status of @link cannot be obtained, so
5176  *	ata_link_online(link) != !ata_link_offline(link).
5177  *
5178  *	LOCKING:
5179  *	None.
5180  *
5181  *	RETURNS:
5182  *	True if the port offline status is available and offline.
5183  */
5184 bool ata_phys_link_offline(struct ata_link *link)
5185 {
5186 	u32 sstatus;
5187 
5188 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5189 	    !ata_sstatus_online(sstatus))
5190 		return true;
5191 	return false;
5192 }
5193 
5194 /**
5195  *	ata_link_online - test whether the given link is online
5196  *	@link: ATA link to test
5197  *
5198  *	Test whether @link is online.  This is identical to
5199  *	ata_phys_link_online() when there's no slave link.  When
5200  *	there's a slave link, this function should only be called on
5201  *	the master link and will return true if any of M/S links is
5202  *	online.
5203  *
5204  *	LOCKING:
5205  *	None.
5206  *
5207  *	RETURNS:
5208  *	True if the port online status is available and online.
5209  */
5210 bool ata_link_online(struct ata_link *link)
5211 {
5212 	struct ata_link *slave = link->ap->slave_link;
5213 
5214 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5215 
5216 	return ata_phys_link_online(link) ||
5217 		(slave && ata_phys_link_online(slave));
5218 }
5219 
5220 /**
5221  *	ata_link_offline - test whether the given link is offline
5222  *	@link: ATA link to test
5223  *
5224  *	Test whether @link is offline.  This is identical to
5225  *	ata_phys_link_offline() when there's no slave link.  When
5226  *	there's a slave link, this function should only be called on
5227  *	the master link and will return true if both M/S links are
5228  *	offline.
5229  *
5230  *	LOCKING:
5231  *	None.
5232  *
5233  *	RETURNS:
5234  *	True if the port offline status is available and offline.
5235  */
5236 bool ata_link_offline(struct ata_link *link)
5237 {
5238 	struct ata_link *slave = link->ap->slave_link;
5239 
5240 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5241 
5242 	return ata_phys_link_offline(link) &&
5243 		(!slave || ata_phys_link_offline(slave));
5244 }
5245 
5246 #ifdef CONFIG_PM
5247 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5248 			       unsigned int action, unsigned int ehi_flags,
5249 			       int wait)
5250 {
5251 	struct ata_link *link;
5252 	unsigned long flags;
5253 	int rc;
5254 
5255 	/* Previous resume operation might still be in
5256 	 * progress.  Wait for PM_PENDING to clear.
5257 	 */
5258 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5259 		ata_port_wait_eh(ap);
5260 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5261 	}
5262 
5263 	/* request PM ops to EH */
5264 	spin_lock_irqsave(ap->lock, flags);
5265 
5266 	ap->pm_mesg = mesg;
5267 	if (wait) {
5268 		rc = 0;
5269 		ap->pm_result = &rc;
5270 	}
5271 
5272 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5273 	ata_for_each_link(link, ap, HOST_FIRST) {
5274 		link->eh_info.action |= action;
5275 		link->eh_info.flags |= ehi_flags;
5276 	}
5277 
5278 	ata_port_schedule_eh(ap);
5279 
5280 	spin_unlock_irqrestore(ap->lock, flags);
5281 
5282 	/* wait and check result */
5283 	if (wait) {
5284 		ata_port_wait_eh(ap);
5285 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5286 	}
5287 
5288 	return rc;
5289 }
5290 
5291 #define to_ata_port(d) container_of(d, struct ata_port, tdev)
5292 
5293 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5294 {
5295 	struct ata_port *ap = to_ata_port(dev);
5296 	unsigned int ehi_flags = ATA_EHI_QUIET;
5297 	int rc;
5298 
5299 	/*
5300 	 * On some hardware, device fails to respond after spun down
5301 	 * for suspend.  As the device won't be used before being
5302 	 * resumed, we don't need to touch the device.  Ask EH to skip
5303 	 * the usual stuff and proceed directly to suspend.
5304 	 *
5305 	 * http://thread.gmane.org/gmane.linux.ide/46764
5306 	 */
5307 	if (mesg.event == PM_EVENT_SUSPEND)
5308 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5309 
5310 	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5311 	return rc;
5312 }
5313 
5314 static int ata_port_suspend(struct device *dev)
5315 {
5316 	if (pm_runtime_suspended(dev))
5317 		return 0;
5318 
5319 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5320 }
5321 
5322 static int ata_port_do_freeze(struct device *dev)
5323 {
5324 	if (pm_runtime_suspended(dev))
5325 		pm_runtime_resume(dev);
5326 
5327 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5328 }
5329 
5330 static int ata_port_poweroff(struct device *dev)
5331 {
5332 	if (pm_runtime_suspended(dev))
5333 		return 0;
5334 
5335 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5336 }
5337 
5338 static int ata_port_resume_common(struct device *dev)
5339 {
5340 	struct ata_port *ap = to_ata_port(dev);
5341 	int rc;
5342 
5343 	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5344 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5345 	return rc;
5346 }
5347 
5348 static int ata_port_resume(struct device *dev)
5349 {
5350 	int rc;
5351 
5352 	rc = ata_port_resume_common(dev);
5353 	if (!rc) {
5354 		pm_runtime_disable(dev);
5355 		pm_runtime_set_active(dev);
5356 		pm_runtime_enable(dev);
5357 	}
5358 
5359 	return rc;
5360 }
5361 
5362 static int ata_port_runtime_idle(struct device *dev)
5363 {
5364 	return pm_runtime_suspend(dev);
5365 }
5366 
5367 static const struct dev_pm_ops ata_port_pm_ops = {
5368 	.suspend = ata_port_suspend,
5369 	.resume = ata_port_resume,
5370 	.freeze = ata_port_do_freeze,
5371 	.thaw = ata_port_resume,
5372 	.poweroff = ata_port_poweroff,
5373 	.restore = ata_port_resume,
5374 
5375 	.runtime_suspend = ata_port_suspend,
5376 	.runtime_resume = ata_port_resume_common,
5377 	.runtime_idle = ata_port_runtime_idle,
5378 };
5379 
5380 /**
5381  *	ata_host_suspend - suspend host
5382  *	@host: host to suspend
5383  *	@mesg: PM message
5384  *
5385  *	Suspend @host.  Actual operation is performed by port suspend.
5386  */
5387 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5388 {
5389 	host->dev->power.power_state = mesg;
5390 	return 0;
5391 }
5392 
5393 /**
5394  *	ata_host_resume - resume host
5395  *	@host: host to resume
5396  *
5397  *	Resume @host.  Actual operation is performed by port resume.
5398  */
5399 void ata_host_resume(struct ata_host *host)
5400 {
5401 	host->dev->power.power_state = PMSG_ON;
5402 }
5403 #endif
5404 
5405 struct device_type ata_port_type = {
5406 	.name = "ata_port",
5407 #ifdef CONFIG_PM
5408 	.pm = &ata_port_pm_ops,
5409 #endif
5410 };
5411 
5412 /**
5413  *	ata_dev_init - Initialize an ata_device structure
5414  *	@dev: Device structure to initialize
5415  *
5416  *	Initialize @dev in preparation for probing.
5417  *
5418  *	LOCKING:
5419  *	Inherited from caller.
5420  */
5421 void ata_dev_init(struct ata_device *dev)
5422 {
5423 	struct ata_link *link = ata_dev_phys_link(dev);
5424 	struct ata_port *ap = link->ap;
5425 	unsigned long flags;
5426 
5427 	/* SATA spd limit is bound to the attached device, reset together */
5428 	link->sata_spd_limit = link->hw_sata_spd_limit;
5429 	link->sata_spd = 0;
5430 
5431 	/* High bits of dev->flags are used to record warm plug
5432 	 * requests which occur asynchronously.  Synchronize using
5433 	 * host lock.
5434 	 */
5435 	spin_lock_irqsave(ap->lock, flags);
5436 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5437 	dev->horkage = 0;
5438 	spin_unlock_irqrestore(ap->lock, flags);
5439 
5440 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5441 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5442 	dev->pio_mask = UINT_MAX;
5443 	dev->mwdma_mask = UINT_MAX;
5444 	dev->udma_mask = UINT_MAX;
5445 }
5446 
5447 /**
5448  *	ata_link_init - Initialize an ata_link structure
5449  *	@ap: ATA port link is attached to
5450  *	@link: Link structure to initialize
5451  *	@pmp: Port multiplier port number
5452  *
5453  *	Initialize @link.
5454  *
5455  *	LOCKING:
5456  *	Kernel thread context (may sleep)
5457  */
5458 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5459 {
5460 	int i;
5461 
5462 	/* clear everything except for devices */
5463 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5464 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5465 
5466 	link->ap = ap;
5467 	link->pmp = pmp;
5468 	link->active_tag = ATA_TAG_POISON;
5469 	link->hw_sata_spd_limit = UINT_MAX;
5470 
5471 	/* can't use iterator, ap isn't initialized yet */
5472 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5473 		struct ata_device *dev = &link->device[i];
5474 
5475 		dev->link = link;
5476 		dev->devno = dev - link->device;
5477 #ifdef CONFIG_ATA_ACPI
5478 		dev->gtf_filter = ata_acpi_gtf_filter;
5479 #endif
5480 		ata_dev_init(dev);
5481 	}
5482 }
5483 
5484 /**
5485  *	sata_link_init_spd - Initialize link->sata_spd_limit
5486  *	@link: Link to configure sata_spd_limit for
5487  *
5488  *	Initialize @link->[hw_]sata_spd_limit to the currently
5489  *	configured value.
5490  *
5491  *	LOCKING:
5492  *	Kernel thread context (may sleep).
5493  *
5494  *	RETURNS:
5495  *	0 on success, -errno on failure.
5496  */
5497 int sata_link_init_spd(struct ata_link *link)
5498 {
5499 	u8 spd;
5500 	int rc;
5501 
5502 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5503 	if (rc)
5504 		return rc;
5505 
5506 	spd = (link->saved_scontrol >> 4) & 0xf;
5507 	if (spd)
5508 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5509 
5510 	ata_force_link_limits(link);
5511 
5512 	link->sata_spd_limit = link->hw_sata_spd_limit;
5513 
5514 	return 0;
5515 }
5516 
5517 /**
5518  *	ata_port_alloc - allocate and initialize basic ATA port resources
5519  *	@host: ATA host this allocated port belongs to
5520  *
5521  *	Allocate and initialize basic ATA port resources.
5522  *
5523  *	RETURNS:
5524  *	Allocate ATA port on success, NULL on failure.
5525  *
5526  *	LOCKING:
5527  *	Inherited from calling layer (may sleep).
5528  */
5529 struct ata_port *ata_port_alloc(struct ata_host *host)
5530 {
5531 	struct ata_port *ap;
5532 
5533 	DPRINTK("ENTER\n");
5534 
5535 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5536 	if (!ap)
5537 		return NULL;
5538 
5539 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5540 	ap->lock = &host->lock;
5541 	ap->print_id = -1;
5542 	ap->host = host;
5543 	ap->dev = host->dev;
5544 
5545 #if defined(ATA_VERBOSE_DEBUG)
5546 	/* turn on all debugging levels */
5547 	ap->msg_enable = 0x00FF;
5548 #elif defined(ATA_DEBUG)
5549 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5550 #else
5551 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5552 #endif
5553 
5554 	mutex_init(&ap->scsi_scan_mutex);
5555 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5556 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5557 	INIT_LIST_HEAD(&ap->eh_done_q);
5558 	init_waitqueue_head(&ap->eh_wait_q);
5559 	init_completion(&ap->park_req_pending);
5560 	init_timer_deferrable(&ap->fastdrain_timer);
5561 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5562 	ap->fastdrain_timer.data = (unsigned long)ap;
5563 
5564 	ap->cbl = ATA_CBL_NONE;
5565 
5566 	ata_link_init(ap, &ap->link, 0);
5567 
5568 #ifdef ATA_IRQ_TRAP
5569 	ap->stats.unhandled_irq = 1;
5570 	ap->stats.idle_irq = 1;
5571 #endif
5572 	ata_sff_port_init(ap);
5573 
5574 	return ap;
5575 }
5576 
5577 static void ata_host_release(struct device *gendev, void *res)
5578 {
5579 	struct ata_host *host = dev_get_drvdata(gendev);
5580 	int i;
5581 
5582 	for (i = 0; i < host->n_ports; i++) {
5583 		struct ata_port *ap = host->ports[i];
5584 
5585 		if (!ap)
5586 			continue;
5587 
5588 		if (ap->scsi_host)
5589 			scsi_host_put(ap->scsi_host);
5590 
5591 		kfree(ap->pmp_link);
5592 		kfree(ap->slave_link);
5593 		kfree(ap);
5594 		host->ports[i] = NULL;
5595 	}
5596 
5597 	dev_set_drvdata(gendev, NULL);
5598 }
5599 
5600 /**
5601  *	ata_host_alloc - allocate and init basic ATA host resources
5602  *	@dev: generic device this host is associated with
5603  *	@max_ports: maximum number of ATA ports associated with this host
5604  *
5605  *	Allocate and initialize basic ATA host resources.  LLD calls
5606  *	this function to allocate a host, initializes it fully and
5607  *	attaches it using ata_host_register().
5608  *
5609  *	@max_ports ports are allocated and host->n_ports is
5610  *	initialized to @max_ports.  The caller is allowed to decrease
5611  *	host->n_ports before calling ata_host_register().  The unused
5612  *	ports will be automatically freed on registration.
5613  *
5614  *	RETURNS:
5615  *	Allocate ATA host on success, NULL on failure.
5616  *
5617  *	LOCKING:
5618  *	Inherited from calling layer (may sleep).
5619  */
5620 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5621 {
5622 	struct ata_host *host;
5623 	size_t sz;
5624 	int i;
5625 
5626 	DPRINTK("ENTER\n");
5627 
5628 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5629 		return NULL;
5630 
5631 	/* alloc a container for our list of ATA ports (buses) */
5632 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5633 	/* alloc a container for our list of ATA ports (buses) */
5634 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5635 	if (!host)
5636 		goto err_out;
5637 
5638 	devres_add(dev, host);
5639 	dev_set_drvdata(dev, host);
5640 
5641 	spin_lock_init(&host->lock);
5642 	mutex_init(&host->eh_mutex);
5643 	host->dev = dev;
5644 	host->n_ports = max_ports;
5645 
5646 	/* allocate ports bound to this host */
5647 	for (i = 0; i < max_ports; i++) {
5648 		struct ata_port *ap;
5649 
5650 		ap = ata_port_alloc(host);
5651 		if (!ap)
5652 			goto err_out;
5653 
5654 		ap->port_no = i;
5655 		host->ports[i] = ap;
5656 	}
5657 
5658 	devres_remove_group(dev, NULL);
5659 	return host;
5660 
5661  err_out:
5662 	devres_release_group(dev, NULL);
5663 	return NULL;
5664 }
5665 
5666 /**
5667  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5668  *	@dev: generic device this host is associated with
5669  *	@ppi: array of ATA port_info to initialize host with
5670  *	@n_ports: number of ATA ports attached to this host
5671  *
5672  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5673  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5674  *	last entry will be used for the remaining ports.
5675  *
5676  *	RETURNS:
5677  *	Allocate ATA host on success, NULL on failure.
5678  *
5679  *	LOCKING:
5680  *	Inherited from calling layer (may sleep).
5681  */
5682 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5683 				      const struct ata_port_info * const * ppi,
5684 				      int n_ports)
5685 {
5686 	const struct ata_port_info *pi;
5687 	struct ata_host *host;
5688 	int i, j;
5689 
5690 	host = ata_host_alloc(dev, n_ports);
5691 	if (!host)
5692 		return NULL;
5693 
5694 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5695 		struct ata_port *ap = host->ports[i];
5696 
5697 		if (ppi[j])
5698 			pi = ppi[j++];
5699 
5700 		ap->pio_mask = pi->pio_mask;
5701 		ap->mwdma_mask = pi->mwdma_mask;
5702 		ap->udma_mask = pi->udma_mask;
5703 		ap->flags |= pi->flags;
5704 		ap->link.flags |= pi->link_flags;
5705 		ap->ops = pi->port_ops;
5706 
5707 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5708 			host->ops = pi->port_ops;
5709 	}
5710 
5711 	return host;
5712 }
5713 
5714 /**
5715  *	ata_slave_link_init - initialize slave link
5716  *	@ap: port to initialize slave link for
5717  *
5718  *	Create and initialize slave link for @ap.  This enables slave
5719  *	link handling on the port.
5720  *
5721  *	In libata, a port contains links and a link contains devices.
5722  *	There is single host link but if a PMP is attached to it,
5723  *	there can be multiple fan-out links.  On SATA, there's usually
5724  *	a single device connected to a link but PATA and SATA
5725  *	controllers emulating TF based interface can have two - master
5726  *	and slave.
5727  *
5728  *	However, there are a few controllers which don't fit into this
5729  *	abstraction too well - SATA controllers which emulate TF
5730  *	interface with both master and slave devices but also have
5731  *	separate SCR register sets for each device.  These controllers
5732  *	need separate links for physical link handling
5733  *	(e.g. onlineness, link speed) but should be treated like a
5734  *	traditional M/S controller for everything else (e.g. command
5735  *	issue, softreset).
5736  *
5737  *	slave_link is libata's way of handling this class of
5738  *	controllers without impacting core layer too much.  For
5739  *	anything other than physical link handling, the default host
5740  *	link is used for both master and slave.  For physical link
5741  *	handling, separate @ap->slave_link is used.  All dirty details
5742  *	are implemented inside libata core layer.  From LLD's POV, the
5743  *	only difference is that prereset, hardreset and postreset are
5744  *	called once more for the slave link, so the reset sequence
5745  *	looks like the following.
5746  *
5747  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5748  *	softreset(M) -> postreset(M) -> postreset(S)
5749  *
5750  *	Note that softreset is called only for the master.  Softreset
5751  *	resets both M/S by definition, so SRST on master should handle
5752  *	both (the standard method will work just fine).
5753  *
5754  *	LOCKING:
5755  *	Should be called before host is registered.
5756  *
5757  *	RETURNS:
5758  *	0 on success, -errno on failure.
5759  */
5760 int ata_slave_link_init(struct ata_port *ap)
5761 {
5762 	struct ata_link *link;
5763 
5764 	WARN_ON(ap->slave_link);
5765 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5766 
5767 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5768 	if (!link)
5769 		return -ENOMEM;
5770 
5771 	ata_link_init(ap, link, 1);
5772 	ap->slave_link = link;
5773 	return 0;
5774 }
5775 
5776 static void ata_host_stop(struct device *gendev, void *res)
5777 {
5778 	struct ata_host *host = dev_get_drvdata(gendev);
5779 	int i;
5780 
5781 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5782 
5783 	for (i = 0; i < host->n_ports; i++) {
5784 		struct ata_port *ap = host->ports[i];
5785 
5786 		if (ap->ops->port_stop)
5787 			ap->ops->port_stop(ap);
5788 	}
5789 
5790 	if (host->ops->host_stop)
5791 		host->ops->host_stop(host);
5792 }
5793 
5794 /**
5795  *	ata_finalize_port_ops - finalize ata_port_operations
5796  *	@ops: ata_port_operations to finalize
5797  *
5798  *	An ata_port_operations can inherit from another ops and that
5799  *	ops can again inherit from another.  This can go on as many
5800  *	times as necessary as long as there is no loop in the
5801  *	inheritance chain.
5802  *
5803  *	Ops tables are finalized when the host is started.  NULL or
5804  *	unspecified entries are inherited from the closet ancestor
5805  *	which has the method and the entry is populated with it.
5806  *	After finalization, the ops table directly points to all the
5807  *	methods and ->inherits is no longer necessary and cleared.
5808  *
5809  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5810  *
5811  *	LOCKING:
5812  *	None.
5813  */
5814 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5815 {
5816 	static DEFINE_SPINLOCK(lock);
5817 	const struct ata_port_operations *cur;
5818 	void **begin = (void **)ops;
5819 	void **end = (void **)&ops->inherits;
5820 	void **pp;
5821 
5822 	if (!ops || !ops->inherits)
5823 		return;
5824 
5825 	spin_lock(&lock);
5826 
5827 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5828 		void **inherit = (void **)cur;
5829 
5830 		for (pp = begin; pp < end; pp++, inherit++)
5831 			if (!*pp)
5832 				*pp = *inherit;
5833 	}
5834 
5835 	for (pp = begin; pp < end; pp++)
5836 		if (IS_ERR(*pp))
5837 			*pp = NULL;
5838 
5839 	ops->inherits = NULL;
5840 
5841 	spin_unlock(&lock);
5842 }
5843 
5844 /**
5845  *	ata_host_start - start and freeze ports of an ATA host
5846  *	@host: ATA host to start ports for
5847  *
5848  *	Start and then freeze ports of @host.  Started status is
5849  *	recorded in host->flags, so this function can be called
5850  *	multiple times.  Ports are guaranteed to get started only
5851  *	once.  If host->ops isn't initialized yet, its set to the
5852  *	first non-dummy port ops.
5853  *
5854  *	LOCKING:
5855  *	Inherited from calling layer (may sleep).
5856  *
5857  *	RETURNS:
5858  *	0 if all ports are started successfully, -errno otherwise.
5859  */
5860 int ata_host_start(struct ata_host *host)
5861 {
5862 	int have_stop = 0;
5863 	void *start_dr = NULL;
5864 	int i, rc;
5865 
5866 	if (host->flags & ATA_HOST_STARTED)
5867 		return 0;
5868 
5869 	ata_finalize_port_ops(host->ops);
5870 
5871 	for (i = 0; i < host->n_ports; i++) {
5872 		struct ata_port *ap = host->ports[i];
5873 
5874 		ata_finalize_port_ops(ap->ops);
5875 
5876 		if (!host->ops && !ata_port_is_dummy(ap))
5877 			host->ops = ap->ops;
5878 
5879 		if (ap->ops->port_stop)
5880 			have_stop = 1;
5881 	}
5882 
5883 	if (host->ops->host_stop)
5884 		have_stop = 1;
5885 
5886 	if (have_stop) {
5887 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5888 		if (!start_dr)
5889 			return -ENOMEM;
5890 	}
5891 
5892 	for (i = 0; i < host->n_ports; i++) {
5893 		struct ata_port *ap = host->ports[i];
5894 
5895 		if (ap->ops->port_start) {
5896 			rc = ap->ops->port_start(ap);
5897 			if (rc) {
5898 				if (rc != -ENODEV)
5899 					dev_err(host->dev,
5900 						"failed to start port %d (errno=%d)\n",
5901 						i, rc);
5902 				goto err_out;
5903 			}
5904 		}
5905 		ata_eh_freeze_port(ap);
5906 	}
5907 
5908 	if (start_dr)
5909 		devres_add(host->dev, start_dr);
5910 	host->flags |= ATA_HOST_STARTED;
5911 	return 0;
5912 
5913  err_out:
5914 	while (--i >= 0) {
5915 		struct ata_port *ap = host->ports[i];
5916 
5917 		if (ap->ops->port_stop)
5918 			ap->ops->port_stop(ap);
5919 	}
5920 	devres_free(start_dr);
5921 	return rc;
5922 }
5923 
5924 /**
5925  *	ata_sas_host_init - Initialize a host struct
5926  *	@host:	host to initialize
5927  *	@dev:	device host is attached to
5928  *	@flags:	host flags
5929  *	@ops:	port_ops
5930  *
5931  *	LOCKING:
5932  *	PCI/etc. bus probe sem.
5933  *
5934  */
5935 /* KILLME - the only user left is ipr */
5936 void ata_host_init(struct ata_host *host, struct device *dev,
5937 		   unsigned long flags, struct ata_port_operations *ops)
5938 {
5939 	spin_lock_init(&host->lock);
5940 	mutex_init(&host->eh_mutex);
5941 	host->dev = dev;
5942 	host->flags = flags;
5943 	host->ops = ops;
5944 }
5945 
5946 void __ata_port_probe(struct ata_port *ap)
5947 {
5948 	struct ata_eh_info *ehi = &ap->link.eh_info;
5949 	unsigned long flags;
5950 
5951 	/* kick EH for boot probing */
5952 	spin_lock_irqsave(ap->lock, flags);
5953 
5954 	ehi->probe_mask |= ATA_ALL_DEVICES;
5955 	ehi->action |= ATA_EH_RESET;
5956 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5957 
5958 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5959 	ap->pflags |= ATA_PFLAG_LOADING;
5960 	ata_port_schedule_eh(ap);
5961 
5962 	spin_unlock_irqrestore(ap->lock, flags);
5963 }
5964 
5965 int ata_port_probe(struct ata_port *ap)
5966 {
5967 	int rc = 0;
5968 
5969 	if (ap->ops->error_handler) {
5970 		__ata_port_probe(ap);
5971 		ata_port_wait_eh(ap);
5972 	} else {
5973 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5974 		rc = ata_bus_probe(ap);
5975 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5976 	}
5977 	return rc;
5978 }
5979 
5980 
5981 static void async_port_probe(void *data, async_cookie_t cookie)
5982 {
5983 	struct ata_port *ap = data;
5984 
5985 	/*
5986 	 * If we're not allowed to scan this host in parallel,
5987 	 * we need to wait until all previous scans have completed
5988 	 * before going further.
5989 	 * Jeff Garzik says this is only within a controller, so we
5990 	 * don't need to wait for port 0, only for later ports.
5991 	 */
5992 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5993 		async_synchronize_cookie(cookie);
5994 
5995 	(void)ata_port_probe(ap);
5996 
5997 	/* in order to keep device order, we need to synchronize at this point */
5998 	async_synchronize_cookie(cookie);
5999 
6000 	ata_scsi_scan_host(ap, 1);
6001 }
6002 
6003 /**
6004  *	ata_host_register - register initialized ATA host
6005  *	@host: ATA host to register
6006  *	@sht: template for SCSI host
6007  *
6008  *	Register initialized ATA host.  @host is allocated using
6009  *	ata_host_alloc() and fully initialized by LLD.  This function
6010  *	starts ports, registers @host with ATA and SCSI layers and
6011  *	probe registered devices.
6012  *
6013  *	LOCKING:
6014  *	Inherited from calling layer (may sleep).
6015  *
6016  *	RETURNS:
6017  *	0 on success, -errno otherwise.
6018  */
6019 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6020 {
6021 	int i, rc;
6022 
6023 	/* host must have been started */
6024 	if (!(host->flags & ATA_HOST_STARTED)) {
6025 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6026 		WARN_ON(1);
6027 		return -EINVAL;
6028 	}
6029 
6030 	/* Blow away unused ports.  This happens when LLD can't
6031 	 * determine the exact number of ports to allocate at
6032 	 * allocation time.
6033 	 */
6034 	for (i = host->n_ports; host->ports[i]; i++)
6035 		kfree(host->ports[i]);
6036 
6037 	/* give ports names and add SCSI hosts */
6038 	for (i = 0; i < host->n_ports; i++)
6039 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6040 
6041 
6042 	/* Create associated sysfs transport objects  */
6043 	for (i = 0; i < host->n_ports; i++) {
6044 		rc = ata_tport_add(host->dev,host->ports[i]);
6045 		if (rc) {
6046 			goto err_tadd;
6047 		}
6048 	}
6049 
6050 	rc = ata_scsi_add_hosts(host, sht);
6051 	if (rc)
6052 		goto err_tadd;
6053 
6054 	/* associate with ACPI nodes */
6055 	ata_acpi_associate(host);
6056 
6057 	/* set cable, sata_spd_limit and report */
6058 	for (i = 0; i < host->n_ports; i++) {
6059 		struct ata_port *ap = host->ports[i];
6060 		unsigned long xfer_mask;
6061 
6062 		/* set SATA cable type if still unset */
6063 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6064 			ap->cbl = ATA_CBL_SATA;
6065 
6066 		/* init sata_spd_limit to the current value */
6067 		sata_link_init_spd(&ap->link);
6068 		if (ap->slave_link)
6069 			sata_link_init_spd(ap->slave_link);
6070 
6071 		/* print per-port info to dmesg */
6072 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6073 					      ap->udma_mask);
6074 
6075 		if (!ata_port_is_dummy(ap)) {
6076 			ata_port_info(ap, "%cATA max %s %s\n",
6077 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6078 				      ata_mode_string(xfer_mask),
6079 				      ap->link.eh_info.desc);
6080 			ata_ehi_clear_desc(&ap->link.eh_info);
6081 		} else
6082 			ata_port_info(ap, "DUMMY\n");
6083 	}
6084 
6085 	/* perform each probe asynchronously */
6086 	for (i = 0; i < host->n_ports; i++) {
6087 		struct ata_port *ap = host->ports[i];
6088 		async_schedule(async_port_probe, ap);
6089 	}
6090 
6091 	return 0;
6092 
6093  err_tadd:
6094 	while (--i >= 0) {
6095 		ata_tport_delete(host->ports[i]);
6096 	}
6097 	return rc;
6098 
6099 }
6100 
6101 /**
6102  *	ata_host_activate - start host, request IRQ and register it
6103  *	@host: target ATA host
6104  *	@irq: IRQ to request
6105  *	@irq_handler: irq_handler used when requesting IRQ
6106  *	@irq_flags: irq_flags used when requesting IRQ
6107  *	@sht: scsi_host_template to use when registering the host
6108  *
6109  *	After allocating an ATA host and initializing it, most libata
6110  *	LLDs perform three steps to activate the host - start host,
6111  *	request IRQ and register it.  This helper takes necessasry
6112  *	arguments and performs the three steps in one go.
6113  *
6114  *	An invalid IRQ skips the IRQ registration and expects the host to
6115  *	have set polling mode on the port. In this case, @irq_handler
6116  *	should be NULL.
6117  *
6118  *	LOCKING:
6119  *	Inherited from calling layer (may sleep).
6120  *
6121  *	RETURNS:
6122  *	0 on success, -errno otherwise.
6123  */
6124 int ata_host_activate(struct ata_host *host, int irq,
6125 		      irq_handler_t irq_handler, unsigned long irq_flags,
6126 		      struct scsi_host_template *sht)
6127 {
6128 	int i, rc;
6129 
6130 	rc = ata_host_start(host);
6131 	if (rc)
6132 		return rc;
6133 
6134 	/* Special case for polling mode */
6135 	if (!irq) {
6136 		WARN_ON(irq_handler);
6137 		return ata_host_register(host, sht);
6138 	}
6139 
6140 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6141 			      dev_driver_string(host->dev), host);
6142 	if (rc)
6143 		return rc;
6144 
6145 	for (i = 0; i < host->n_ports; i++)
6146 		ata_port_desc(host->ports[i], "irq %d", irq);
6147 
6148 	rc = ata_host_register(host, sht);
6149 	/* if failed, just free the IRQ and leave ports alone */
6150 	if (rc)
6151 		devm_free_irq(host->dev, irq, host);
6152 
6153 	return rc;
6154 }
6155 
6156 /**
6157  *	ata_port_detach - Detach ATA port in prepration of device removal
6158  *	@ap: ATA port to be detached
6159  *
6160  *	Detach all ATA devices and the associated SCSI devices of @ap;
6161  *	then, remove the associated SCSI host.  @ap is guaranteed to
6162  *	be quiescent on return from this function.
6163  *
6164  *	LOCKING:
6165  *	Kernel thread context (may sleep).
6166  */
6167 static void ata_port_detach(struct ata_port *ap)
6168 {
6169 	unsigned long flags;
6170 
6171 	if (!ap->ops->error_handler)
6172 		goto skip_eh;
6173 
6174 	/* tell EH we're leaving & flush EH */
6175 	spin_lock_irqsave(ap->lock, flags);
6176 	ap->pflags |= ATA_PFLAG_UNLOADING;
6177 	ata_port_schedule_eh(ap);
6178 	spin_unlock_irqrestore(ap->lock, flags);
6179 
6180 	/* wait till EH commits suicide */
6181 	ata_port_wait_eh(ap);
6182 
6183 	/* it better be dead now */
6184 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6185 
6186 	cancel_delayed_work_sync(&ap->hotplug_task);
6187 
6188  skip_eh:
6189 	if (ap->pmp_link) {
6190 		int i;
6191 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6192 			ata_tlink_delete(&ap->pmp_link[i]);
6193 	}
6194 	ata_tport_delete(ap);
6195 
6196 	/* remove the associated SCSI host */
6197 	scsi_remove_host(ap->scsi_host);
6198 }
6199 
6200 /**
6201  *	ata_host_detach - Detach all ports of an ATA host
6202  *	@host: Host to detach
6203  *
6204  *	Detach all ports of @host.
6205  *
6206  *	LOCKING:
6207  *	Kernel thread context (may sleep).
6208  */
6209 void ata_host_detach(struct ata_host *host)
6210 {
6211 	int i;
6212 
6213 	for (i = 0; i < host->n_ports; i++)
6214 		ata_port_detach(host->ports[i]);
6215 
6216 	/* the host is dead now, dissociate ACPI */
6217 	ata_acpi_dissociate(host);
6218 }
6219 
6220 #ifdef CONFIG_PCI
6221 
6222 /**
6223  *	ata_pci_remove_one - PCI layer callback for device removal
6224  *	@pdev: PCI device that was removed
6225  *
6226  *	PCI layer indicates to libata via this hook that hot-unplug or
6227  *	module unload event has occurred.  Detach all ports.  Resource
6228  *	release is handled via devres.
6229  *
6230  *	LOCKING:
6231  *	Inherited from PCI layer (may sleep).
6232  */
6233 void ata_pci_remove_one(struct pci_dev *pdev)
6234 {
6235 	struct device *dev = &pdev->dev;
6236 	struct ata_host *host = dev_get_drvdata(dev);
6237 
6238 	ata_host_detach(host);
6239 }
6240 
6241 /* move to PCI subsystem */
6242 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243 {
6244 	unsigned long tmp = 0;
6245 
6246 	switch (bits->width) {
6247 	case 1: {
6248 		u8 tmp8 = 0;
6249 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6250 		tmp = tmp8;
6251 		break;
6252 	}
6253 	case 2: {
6254 		u16 tmp16 = 0;
6255 		pci_read_config_word(pdev, bits->reg, &tmp16);
6256 		tmp = tmp16;
6257 		break;
6258 	}
6259 	case 4: {
6260 		u32 tmp32 = 0;
6261 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6262 		tmp = tmp32;
6263 		break;
6264 	}
6265 
6266 	default:
6267 		return -EINVAL;
6268 	}
6269 
6270 	tmp &= bits->mask;
6271 
6272 	return (tmp == bits->val) ? 1 : 0;
6273 }
6274 
6275 #ifdef CONFIG_PM
6276 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6277 {
6278 	pci_save_state(pdev);
6279 	pci_disable_device(pdev);
6280 
6281 	if (mesg.event & PM_EVENT_SLEEP)
6282 		pci_set_power_state(pdev, PCI_D3hot);
6283 }
6284 
6285 int ata_pci_device_do_resume(struct pci_dev *pdev)
6286 {
6287 	int rc;
6288 
6289 	pci_set_power_state(pdev, PCI_D0);
6290 	pci_restore_state(pdev);
6291 
6292 	rc = pcim_enable_device(pdev);
6293 	if (rc) {
6294 		dev_err(&pdev->dev,
6295 			"failed to enable device after resume (%d)\n", rc);
6296 		return rc;
6297 	}
6298 
6299 	pci_set_master(pdev);
6300 	return 0;
6301 }
6302 
6303 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6304 {
6305 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6306 	int rc = 0;
6307 
6308 	rc = ata_host_suspend(host, mesg);
6309 	if (rc)
6310 		return rc;
6311 
6312 	ata_pci_device_do_suspend(pdev, mesg);
6313 
6314 	return 0;
6315 }
6316 
6317 int ata_pci_device_resume(struct pci_dev *pdev)
6318 {
6319 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6320 	int rc;
6321 
6322 	rc = ata_pci_device_do_resume(pdev);
6323 	if (rc == 0)
6324 		ata_host_resume(host);
6325 	return rc;
6326 }
6327 #endif /* CONFIG_PM */
6328 
6329 #endif /* CONFIG_PCI */
6330 
6331 static int __init ata_parse_force_one(char **cur,
6332 				      struct ata_force_ent *force_ent,
6333 				      const char **reason)
6334 {
6335 	/* FIXME: Currently, there's no way to tag init const data and
6336 	 * using __initdata causes build failure on some versions of
6337 	 * gcc.  Once __initdataconst is implemented, add const to the
6338 	 * following structure.
6339 	 */
6340 	static struct ata_force_param force_tbl[] __initdata = {
6341 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6342 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6343 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6344 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6345 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6346 		{ "sata",	.cbl		= ATA_CBL_SATA },
6347 		{ "1.5Gbps",	.spd_limit	= 1 },
6348 		{ "3.0Gbps",	.spd_limit	= 2 },
6349 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6350 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6351 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6352 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6353 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6354 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6355 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6356 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6357 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6358 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6359 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6360 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6361 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6362 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6363 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6364 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6365 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6366 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6367 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6368 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6369 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6370 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6371 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6372 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6373 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6374 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6375 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6376 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6377 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6378 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6379 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6380 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6381 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6382 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6383 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6384 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6385 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6386 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6387 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6388 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6389 	};
6390 	char *start = *cur, *p = *cur;
6391 	char *id, *val, *endp;
6392 	const struct ata_force_param *match_fp = NULL;
6393 	int nr_matches = 0, i;
6394 
6395 	/* find where this param ends and update *cur */
6396 	while (*p != '\0' && *p != ',')
6397 		p++;
6398 
6399 	if (*p == '\0')
6400 		*cur = p;
6401 	else
6402 		*cur = p + 1;
6403 
6404 	*p = '\0';
6405 
6406 	/* parse */
6407 	p = strchr(start, ':');
6408 	if (!p) {
6409 		val = strstrip(start);
6410 		goto parse_val;
6411 	}
6412 	*p = '\0';
6413 
6414 	id = strstrip(start);
6415 	val = strstrip(p + 1);
6416 
6417 	/* parse id */
6418 	p = strchr(id, '.');
6419 	if (p) {
6420 		*p++ = '\0';
6421 		force_ent->device = simple_strtoul(p, &endp, 10);
6422 		if (p == endp || *endp != '\0') {
6423 			*reason = "invalid device";
6424 			return -EINVAL;
6425 		}
6426 	}
6427 
6428 	force_ent->port = simple_strtoul(id, &endp, 10);
6429 	if (p == endp || *endp != '\0') {
6430 		*reason = "invalid port/link";
6431 		return -EINVAL;
6432 	}
6433 
6434  parse_val:
6435 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6436 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6437 		const struct ata_force_param *fp = &force_tbl[i];
6438 
6439 		if (strncasecmp(val, fp->name, strlen(val)))
6440 			continue;
6441 
6442 		nr_matches++;
6443 		match_fp = fp;
6444 
6445 		if (strcasecmp(val, fp->name) == 0) {
6446 			nr_matches = 1;
6447 			break;
6448 		}
6449 	}
6450 
6451 	if (!nr_matches) {
6452 		*reason = "unknown value";
6453 		return -EINVAL;
6454 	}
6455 	if (nr_matches > 1) {
6456 		*reason = "ambigious value";
6457 		return -EINVAL;
6458 	}
6459 
6460 	force_ent->param = *match_fp;
6461 
6462 	return 0;
6463 }
6464 
6465 static void __init ata_parse_force_param(void)
6466 {
6467 	int idx = 0, size = 1;
6468 	int last_port = -1, last_device = -1;
6469 	char *p, *cur, *next;
6470 
6471 	/* calculate maximum number of params and allocate force_tbl */
6472 	for (p = ata_force_param_buf; *p; p++)
6473 		if (*p == ',')
6474 			size++;
6475 
6476 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6477 	if (!ata_force_tbl) {
6478 		printk(KERN_WARNING "ata: failed to extend force table, "
6479 		       "libata.force ignored\n");
6480 		return;
6481 	}
6482 
6483 	/* parse and populate the table */
6484 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6485 		const char *reason = "";
6486 		struct ata_force_ent te = { .port = -1, .device = -1 };
6487 
6488 		next = cur;
6489 		if (ata_parse_force_one(&next, &te, &reason)) {
6490 			printk(KERN_WARNING "ata: failed to parse force "
6491 			       "parameter \"%s\" (%s)\n",
6492 			       cur, reason);
6493 			continue;
6494 		}
6495 
6496 		if (te.port == -1) {
6497 			te.port = last_port;
6498 			te.device = last_device;
6499 		}
6500 
6501 		ata_force_tbl[idx++] = te;
6502 
6503 		last_port = te.port;
6504 		last_device = te.device;
6505 	}
6506 
6507 	ata_force_tbl_size = idx;
6508 }
6509 
6510 static int __init ata_init(void)
6511 {
6512 	int rc;
6513 
6514 	ata_parse_force_param();
6515 
6516 	rc = ata_sff_init();
6517 	if (rc) {
6518 		kfree(ata_force_tbl);
6519 		return rc;
6520 	}
6521 
6522 	libata_transport_init();
6523 	ata_scsi_transport_template = ata_attach_transport();
6524 	if (!ata_scsi_transport_template) {
6525 		ata_sff_exit();
6526 		rc = -ENOMEM;
6527 		goto err_out;
6528 	}
6529 
6530 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6531 	return 0;
6532 
6533 err_out:
6534 	return rc;
6535 }
6536 
6537 static void __exit ata_exit(void)
6538 {
6539 	ata_release_transport(ata_scsi_transport_template);
6540 	libata_transport_exit();
6541 	ata_sff_exit();
6542 	kfree(ata_force_tbl);
6543 }
6544 
6545 subsys_initcall(ata_init);
6546 module_exit(ata_exit);
6547 
6548 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6549 
6550 int ata_ratelimit(void)
6551 {
6552 	return __ratelimit(&ratelimit);
6553 }
6554 
6555 /**
6556  *	ata_msleep - ATA EH owner aware msleep
6557  *	@ap: ATA port to attribute the sleep to
6558  *	@msecs: duration to sleep in milliseconds
6559  *
6560  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6561  *	ownership is released before going to sleep and reacquired
6562  *	after the sleep is complete.  IOW, other ports sharing the
6563  *	@ap->host will be allowed to own the EH while this task is
6564  *	sleeping.
6565  *
6566  *	LOCKING:
6567  *	Might sleep.
6568  */
6569 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6570 {
6571 	bool owns_eh = ap && ap->host->eh_owner == current;
6572 
6573 	if (owns_eh)
6574 		ata_eh_release(ap);
6575 
6576 	msleep(msecs);
6577 
6578 	if (owns_eh)
6579 		ata_eh_acquire(ap);
6580 }
6581 
6582 /**
6583  *	ata_wait_register - wait until register value changes
6584  *	@ap: ATA port to wait register for, can be NULL
6585  *	@reg: IO-mapped register
6586  *	@mask: Mask to apply to read register value
6587  *	@val: Wait condition
6588  *	@interval: polling interval in milliseconds
6589  *	@timeout: timeout in milliseconds
6590  *
6591  *	Waiting for some bits of register to change is a common
6592  *	operation for ATA controllers.  This function reads 32bit LE
6593  *	IO-mapped register @reg and tests for the following condition.
6594  *
6595  *	(*@reg & mask) != val
6596  *
6597  *	If the condition is met, it returns; otherwise, the process is
6598  *	repeated after @interval_msec until timeout.
6599  *
6600  *	LOCKING:
6601  *	Kernel thread context (may sleep)
6602  *
6603  *	RETURNS:
6604  *	The final register value.
6605  */
6606 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6607 		      unsigned long interval, unsigned long timeout)
6608 {
6609 	unsigned long deadline;
6610 	u32 tmp;
6611 
6612 	tmp = ioread32(reg);
6613 
6614 	/* Calculate timeout _after_ the first read to make sure
6615 	 * preceding writes reach the controller before starting to
6616 	 * eat away the timeout.
6617 	 */
6618 	deadline = ata_deadline(jiffies, timeout);
6619 
6620 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6621 		ata_msleep(ap, interval);
6622 		tmp = ioread32(reg);
6623 	}
6624 
6625 	return tmp;
6626 }
6627 
6628 /*
6629  * Dummy port_ops
6630  */
6631 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6632 {
6633 	return AC_ERR_SYSTEM;
6634 }
6635 
6636 static void ata_dummy_error_handler(struct ata_port *ap)
6637 {
6638 	/* truly dummy */
6639 }
6640 
6641 struct ata_port_operations ata_dummy_port_ops = {
6642 	.qc_prep		= ata_noop_qc_prep,
6643 	.qc_issue		= ata_dummy_qc_issue,
6644 	.error_handler		= ata_dummy_error_handler,
6645 };
6646 
6647 const struct ata_port_info ata_dummy_port_info = {
6648 	.port_ops		= &ata_dummy_port_ops,
6649 };
6650 
6651 /*
6652  * Utility print functions
6653  */
6654 int ata_port_printk(const struct ata_port *ap, const char *level,
6655 		    const char *fmt, ...)
6656 {
6657 	struct va_format vaf;
6658 	va_list args;
6659 	int r;
6660 
6661 	va_start(args, fmt);
6662 
6663 	vaf.fmt = fmt;
6664 	vaf.va = &args;
6665 
6666 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6667 
6668 	va_end(args);
6669 
6670 	return r;
6671 }
6672 EXPORT_SYMBOL(ata_port_printk);
6673 
6674 int ata_link_printk(const struct ata_link *link, const char *level,
6675 		    const char *fmt, ...)
6676 {
6677 	struct va_format vaf;
6678 	va_list args;
6679 	int r;
6680 
6681 	va_start(args, fmt);
6682 
6683 	vaf.fmt = fmt;
6684 	vaf.va = &args;
6685 
6686 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6687 		r = printk("%sata%u.%02u: %pV",
6688 			   level, link->ap->print_id, link->pmp, &vaf);
6689 	else
6690 		r = printk("%sata%u: %pV",
6691 			   level, link->ap->print_id, &vaf);
6692 
6693 	va_end(args);
6694 
6695 	return r;
6696 }
6697 EXPORT_SYMBOL(ata_link_printk);
6698 
6699 int ata_dev_printk(const struct ata_device *dev, const char *level,
6700 		    const char *fmt, ...)
6701 {
6702 	struct va_format vaf;
6703 	va_list args;
6704 	int r;
6705 
6706 	va_start(args, fmt);
6707 
6708 	vaf.fmt = fmt;
6709 	vaf.va = &args;
6710 
6711 	r = printk("%sata%u.%02u: %pV",
6712 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6713 		   &vaf);
6714 
6715 	va_end(args);
6716 
6717 	return r;
6718 }
6719 EXPORT_SYMBOL(ata_dev_printk);
6720 
6721 void ata_print_version(const struct device *dev, const char *version)
6722 {
6723 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6724 }
6725 EXPORT_SYMBOL(ata_print_version);
6726 
6727 /*
6728  * libata is essentially a library of internal helper functions for
6729  * low-level ATA host controller drivers.  As such, the API/ABI is
6730  * likely to change as new drivers are added and updated.
6731  * Do not depend on ABI/API stability.
6732  */
6733 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6734 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6735 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6736 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6737 EXPORT_SYMBOL_GPL(sata_port_ops);
6738 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6739 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6740 EXPORT_SYMBOL_GPL(ata_link_next);
6741 EXPORT_SYMBOL_GPL(ata_dev_next);
6742 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6743 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6744 EXPORT_SYMBOL_GPL(ata_host_init);
6745 EXPORT_SYMBOL_GPL(ata_host_alloc);
6746 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6747 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6748 EXPORT_SYMBOL_GPL(ata_host_start);
6749 EXPORT_SYMBOL_GPL(ata_host_register);
6750 EXPORT_SYMBOL_GPL(ata_host_activate);
6751 EXPORT_SYMBOL_GPL(ata_host_detach);
6752 EXPORT_SYMBOL_GPL(ata_sg_init);
6753 EXPORT_SYMBOL_GPL(ata_qc_complete);
6754 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6755 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6756 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6757 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6758 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6759 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6760 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6761 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6762 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6763 EXPORT_SYMBOL_GPL(ata_mode_string);
6764 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6765 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6766 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6767 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6768 EXPORT_SYMBOL_GPL(ata_dev_disable);
6769 EXPORT_SYMBOL_GPL(sata_set_spd);
6770 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6771 EXPORT_SYMBOL_GPL(sata_link_debounce);
6772 EXPORT_SYMBOL_GPL(sata_link_resume);
6773 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6774 EXPORT_SYMBOL_GPL(ata_std_prereset);
6775 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6776 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6777 EXPORT_SYMBOL_GPL(ata_std_postreset);
6778 EXPORT_SYMBOL_GPL(ata_dev_classify);
6779 EXPORT_SYMBOL_GPL(ata_dev_pair);
6780 EXPORT_SYMBOL_GPL(ata_ratelimit);
6781 EXPORT_SYMBOL_GPL(ata_msleep);
6782 EXPORT_SYMBOL_GPL(ata_wait_register);
6783 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6784 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6785 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6786 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6787 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6788 EXPORT_SYMBOL_GPL(sata_scr_valid);
6789 EXPORT_SYMBOL_GPL(sata_scr_read);
6790 EXPORT_SYMBOL_GPL(sata_scr_write);
6791 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6792 EXPORT_SYMBOL_GPL(ata_link_online);
6793 EXPORT_SYMBOL_GPL(ata_link_offline);
6794 #ifdef CONFIG_PM
6795 EXPORT_SYMBOL_GPL(ata_host_suspend);
6796 EXPORT_SYMBOL_GPL(ata_host_resume);
6797 #endif /* CONFIG_PM */
6798 EXPORT_SYMBOL_GPL(ata_id_string);
6799 EXPORT_SYMBOL_GPL(ata_id_c_string);
6800 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6801 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6802 
6803 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6804 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6805 EXPORT_SYMBOL_GPL(ata_timing_compute);
6806 EXPORT_SYMBOL_GPL(ata_timing_merge);
6807 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6808 
6809 #ifdef CONFIG_PCI
6810 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6811 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6812 #ifdef CONFIG_PM
6813 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6814 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6815 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6816 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6817 #endif /* CONFIG_PM */
6818 #endif /* CONFIG_PCI */
6819 
6820 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6821 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6822 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6823 EXPORT_SYMBOL_GPL(ata_port_desc);
6824 #ifdef CONFIG_PCI
6825 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6826 #endif /* CONFIG_PCI */
6827 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6828 EXPORT_SYMBOL_GPL(ata_link_abort);
6829 EXPORT_SYMBOL_GPL(ata_port_abort);
6830 EXPORT_SYMBOL_GPL(ata_port_freeze);
6831 EXPORT_SYMBOL_GPL(sata_async_notification);
6832 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6833 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6834 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6835 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6836 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6837 EXPORT_SYMBOL_GPL(ata_do_eh);
6838 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6839 
6840 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6841 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6842 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6843 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6844 EXPORT_SYMBOL_GPL(ata_cable_sata);
6845