xref: /linux/drivers/ata/libata-core.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 
71 #include "libata.h"
72 #include "libata-transport.h"
73 
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
77 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
78 
79 const struct ata_port_operations ata_base_port_ops = {
80 	.prereset		= ata_std_prereset,
81 	.postreset		= ata_std_postreset,
82 	.error_handler		= ata_std_error_handler,
83 	.sched_eh		= ata_std_sched_eh,
84 	.end_eh			= ata_std_end_eh,
85 };
86 
87 const struct ata_port_operations sata_port_ops = {
88 	.inherits		= &ata_base_port_ops,
89 
90 	.qc_defer		= ata_std_qc_defer,
91 	.hardreset		= sata_std_hardreset,
92 };
93 
94 static unsigned int ata_dev_init_params(struct ata_device *dev,
95 					u16 heads, u16 sectors);
96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
97 static void ata_dev_xfermask(struct ata_device *dev);
98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99 
100 atomic_t ata_print_id = ATOMIC_INIT(0);
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161 
162 static int atapi_an;
163 module_param(atapi_an, int, 0444);
164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
165 
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION);
170 
171 
172 static bool ata_sstatus_online(u32 sstatus)
173 {
174 	return (sstatus & 0xf) == 0x3;
175 }
176 
177 /**
178  *	ata_link_next - link iteration helper
179  *	@link: the previous link, NULL to start
180  *	@ap: ATA port containing links to iterate
181  *	@mode: iteration mode, one of ATA_LITER_*
182  *
183  *	LOCKING:
184  *	Host lock or EH context.
185  *
186  *	RETURNS:
187  *	Pointer to the next link.
188  */
189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
190 			       enum ata_link_iter_mode mode)
191 {
192 	BUG_ON(mode != ATA_LITER_EDGE &&
193 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
194 
195 	/* NULL link indicates start of iteration */
196 	if (!link)
197 		switch (mode) {
198 		case ATA_LITER_EDGE:
199 		case ATA_LITER_PMP_FIRST:
200 			if (sata_pmp_attached(ap))
201 				return ap->pmp_link;
202 			/* fall through */
203 		case ATA_LITER_HOST_FIRST:
204 			return &ap->link;
205 		}
206 
207 	/* we just iterated over the host link, what's next? */
208 	if (link == &ap->link)
209 		switch (mode) {
210 		case ATA_LITER_HOST_FIRST:
211 			if (sata_pmp_attached(ap))
212 				return ap->pmp_link;
213 			/* fall through */
214 		case ATA_LITER_PMP_FIRST:
215 			if (unlikely(ap->slave_link))
216 				return ap->slave_link;
217 			/* fall through */
218 		case ATA_LITER_EDGE:
219 			return NULL;
220 		}
221 
222 	/* slave_link excludes PMP */
223 	if (unlikely(link == ap->slave_link))
224 		return NULL;
225 
226 	/* we were over a PMP link */
227 	if (++link < ap->pmp_link + ap->nr_pmp_links)
228 		return link;
229 
230 	if (mode == ATA_LITER_PMP_FIRST)
231 		return &ap->link;
232 
233 	return NULL;
234 }
235 
236 /**
237  *	ata_dev_next - device iteration helper
238  *	@dev: the previous device, NULL to start
239  *	@link: ATA link containing devices to iterate
240  *	@mode: iteration mode, one of ATA_DITER_*
241  *
242  *	LOCKING:
243  *	Host lock or EH context.
244  *
245  *	RETURNS:
246  *	Pointer to the next device.
247  */
248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
249 				enum ata_dev_iter_mode mode)
250 {
251 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
252 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
253 
254 	/* NULL dev indicates start of iteration */
255 	if (!dev)
256 		switch (mode) {
257 		case ATA_DITER_ENABLED:
258 		case ATA_DITER_ALL:
259 			dev = link->device;
260 			goto check;
261 		case ATA_DITER_ENABLED_REVERSE:
262 		case ATA_DITER_ALL_REVERSE:
263 			dev = link->device + ata_link_max_devices(link) - 1;
264 			goto check;
265 		}
266 
267  next:
268 	/* move to the next one */
269 	switch (mode) {
270 	case ATA_DITER_ENABLED:
271 	case ATA_DITER_ALL:
272 		if (++dev < link->device + ata_link_max_devices(link))
273 			goto check;
274 		return NULL;
275 	case ATA_DITER_ENABLED_REVERSE:
276 	case ATA_DITER_ALL_REVERSE:
277 		if (--dev >= link->device)
278 			goto check;
279 		return NULL;
280 	}
281 
282  check:
283 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
284 	    !ata_dev_enabled(dev))
285 		goto next;
286 	return dev;
287 }
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 
495 /**
496  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497  *	@opcode: SCSI opcode
498  *
499  *	Determine ATAPI command type from @opcode.
500  *
501  *	LOCKING:
502  *	None.
503  *
504  *	RETURNS:
505  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506  */
507 int atapi_cmd_type(u8 opcode)
508 {
509 	switch (opcode) {
510 	case GPCMD_READ_10:
511 	case GPCMD_READ_12:
512 		return ATAPI_READ;
513 
514 	case GPCMD_WRITE_10:
515 	case GPCMD_WRITE_12:
516 	case GPCMD_WRITE_AND_VERIFY_10:
517 		return ATAPI_WRITE;
518 
519 	case GPCMD_READ_CD:
520 	case GPCMD_READ_CD_MSF:
521 		return ATAPI_READ_CD;
522 
523 	case ATA_16:
524 	case ATA_12:
525 		if (atapi_passthru16)
526 			return ATAPI_PASS_THRU;
527 		/* fall thru */
528 	default:
529 		return ATAPI_MISC;
530 	}
531 }
532 
533 /**
534  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
535  *	@tf: Taskfile to convert
536  *	@pmp: Port multiplier port
537  *	@is_cmd: This FIS is for command
538  *	@fis: Buffer into which data will output
539  *
540  *	Converts a standard ATA taskfile to a Serial ATA
541  *	FIS structure (Register - Host to Device).
542  *
543  *	LOCKING:
544  *	Inherited from caller.
545  */
546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 {
548 	fis[0] = 0x27;			/* Register - Host to Device FIS */
549 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
550 	if (is_cmd)
551 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
552 
553 	fis[2] = tf->command;
554 	fis[3] = tf->feature;
555 
556 	fis[4] = tf->lbal;
557 	fis[5] = tf->lbam;
558 	fis[6] = tf->lbah;
559 	fis[7] = tf->device;
560 
561 	fis[8] = tf->hob_lbal;
562 	fis[9] = tf->hob_lbam;
563 	fis[10] = tf->hob_lbah;
564 	fis[11] = tf->hob_feature;
565 
566 	fis[12] = tf->nsect;
567 	fis[13] = tf->hob_nsect;
568 	fis[14] = 0;
569 	fis[15] = tf->ctl;
570 
571 	fis[16] = 0;
572 	fis[17] = 0;
573 	fis[18] = 0;
574 	fis[19] = 0;
575 }
576 
577 /**
578  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
579  *	@fis: Buffer from which data will be input
580  *	@tf: Taskfile to output
581  *
582  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
583  *
584  *	LOCKING:
585  *	Inherited from caller.
586  */
587 
588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 {
590 	tf->command	= fis[2];	/* status */
591 	tf->feature	= fis[3];	/* error */
592 
593 	tf->lbal	= fis[4];
594 	tf->lbam	= fis[5];
595 	tf->lbah	= fis[6];
596 	tf->device	= fis[7];
597 
598 	tf->hob_lbal	= fis[8];
599 	tf->hob_lbam	= fis[9];
600 	tf->hob_lbah	= fis[10];
601 
602 	tf->nsect	= fis[12];
603 	tf->hob_nsect	= fis[13];
604 }
605 
606 static const u8 ata_rw_cmds[] = {
607 	/* pio multi */
608 	ATA_CMD_READ_MULTI,
609 	ATA_CMD_WRITE_MULTI,
610 	ATA_CMD_READ_MULTI_EXT,
611 	ATA_CMD_WRITE_MULTI_EXT,
612 	0,
613 	0,
614 	0,
615 	ATA_CMD_WRITE_MULTI_FUA_EXT,
616 	/* pio */
617 	ATA_CMD_PIO_READ,
618 	ATA_CMD_PIO_WRITE,
619 	ATA_CMD_PIO_READ_EXT,
620 	ATA_CMD_PIO_WRITE_EXT,
621 	0,
622 	0,
623 	0,
624 	0,
625 	/* dma */
626 	ATA_CMD_READ,
627 	ATA_CMD_WRITE,
628 	ATA_CMD_READ_EXT,
629 	ATA_CMD_WRITE_EXT,
630 	0,
631 	0,
632 	0,
633 	ATA_CMD_WRITE_FUA_EXT
634 };
635 
636 /**
637  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
638  *	@tf: command to examine and configure
639  *	@dev: device tf belongs to
640  *
641  *	Examine the device configuration and tf->flags to calculate
642  *	the proper read/write commands and protocol to use.
643  *
644  *	LOCKING:
645  *	caller.
646  */
647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 {
649 	u8 cmd;
650 
651 	int index, fua, lba48, write;
652 
653 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
654 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
655 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656 
657 	if (dev->flags & ATA_DFLAG_PIO) {
658 		tf->protocol = ATA_PROT_PIO;
659 		index = dev->multi_count ? 0 : 8;
660 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
661 		/* Unable to use DMA due to host limitation */
662 		tf->protocol = ATA_PROT_PIO;
663 		index = dev->multi_count ? 0 : 8;
664 	} else {
665 		tf->protocol = ATA_PROT_DMA;
666 		index = 16;
667 	}
668 
669 	cmd = ata_rw_cmds[index + fua + lba48 + write];
670 	if (cmd) {
671 		tf->command = cmd;
672 		return 0;
673 	}
674 	return -1;
675 }
676 
677 /**
678  *	ata_tf_read_block - Read block address from ATA taskfile
679  *	@tf: ATA taskfile of interest
680  *	@dev: ATA device @tf belongs to
681  *
682  *	LOCKING:
683  *	None.
684  *
685  *	Read block address from @tf.  This function can handle all
686  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
687  *	flags select the address format to use.
688  *
689  *	RETURNS:
690  *	Block address read from @tf.
691  */
692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 {
694 	u64 block = 0;
695 
696 	if (tf->flags & ATA_TFLAG_LBA) {
697 		if (tf->flags & ATA_TFLAG_LBA48) {
698 			block |= (u64)tf->hob_lbah << 40;
699 			block |= (u64)tf->hob_lbam << 32;
700 			block |= (u64)tf->hob_lbal << 24;
701 		} else
702 			block |= (tf->device & 0xf) << 24;
703 
704 		block |= tf->lbah << 16;
705 		block |= tf->lbam << 8;
706 		block |= tf->lbal;
707 	} else {
708 		u32 cyl, head, sect;
709 
710 		cyl = tf->lbam | (tf->lbah << 8);
711 		head = tf->device & 0xf;
712 		sect = tf->lbal;
713 
714 		if (!sect) {
715 			ata_dev_warn(dev,
716 				     "device reported invalid CHS sector 0\n");
717 			sect = 1; /* oh well */
718 		}
719 
720 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 	}
722 
723 	return block;
724 }
725 
726 /**
727  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
728  *	@tf: Target ATA taskfile
729  *	@dev: ATA device @tf belongs to
730  *	@block: Block address
731  *	@n_block: Number of blocks
732  *	@tf_flags: RW/FUA etc...
733  *	@tag: tag
734  *
735  *	LOCKING:
736  *	None.
737  *
738  *	Build ATA taskfile @tf for read/write request described by
739  *	@block, @n_block, @tf_flags and @tag on @dev.
740  *
741  *	RETURNS:
742  *
743  *	0 on success, -ERANGE if the request is too large for @dev,
744  *	-EINVAL if the request is invalid.
745  */
746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
747 		    u64 block, u32 n_block, unsigned int tf_flags,
748 		    unsigned int tag)
749 {
750 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
751 	tf->flags |= tf_flags;
752 
753 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
754 		/* yay, NCQ */
755 		if (!lba_48_ok(block, n_block))
756 			return -ERANGE;
757 
758 		tf->protocol = ATA_PROT_NCQ;
759 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760 
761 		if (tf->flags & ATA_TFLAG_WRITE)
762 			tf->command = ATA_CMD_FPDMA_WRITE;
763 		else
764 			tf->command = ATA_CMD_FPDMA_READ;
765 
766 		tf->nsect = tag << 3;
767 		tf->hob_feature = (n_block >> 8) & 0xff;
768 		tf->feature = n_block & 0xff;
769 
770 		tf->hob_lbah = (block >> 40) & 0xff;
771 		tf->hob_lbam = (block >> 32) & 0xff;
772 		tf->hob_lbal = (block >> 24) & 0xff;
773 		tf->lbah = (block >> 16) & 0xff;
774 		tf->lbam = (block >> 8) & 0xff;
775 		tf->lbal = block & 0xff;
776 
777 		tf->device = 1 << 6;
778 		if (tf->flags & ATA_TFLAG_FUA)
779 			tf->device |= 1 << 7;
780 	} else if (dev->flags & ATA_DFLAG_LBA) {
781 		tf->flags |= ATA_TFLAG_LBA;
782 
783 		if (lba_28_ok(block, n_block)) {
784 			/* use LBA28 */
785 			tf->device |= (block >> 24) & 0xf;
786 		} else if (lba_48_ok(block, n_block)) {
787 			if (!(dev->flags & ATA_DFLAG_LBA48))
788 				return -ERANGE;
789 
790 			/* use LBA48 */
791 			tf->flags |= ATA_TFLAG_LBA48;
792 
793 			tf->hob_nsect = (n_block >> 8) & 0xff;
794 
795 			tf->hob_lbah = (block >> 40) & 0xff;
796 			tf->hob_lbam = (block >> 32) & 0xff;
797 			tf->hob_lbal = (block >> 24) & 0xff;
798 		} else
799 			/* request too large even for LBA48 */
800 			return -ERANGE;
801 
802 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
803 			return -EINVAL;
804 
805 		tf->nsect = n_block & 0xff;
806 
807 		tf->lbah = (block >> 16) & 0xff;
808 		tf->lbam = (block >> 8) & 0xff;
809 		tf->lbal = block & 0xff;
810 
811 		tf->device |= ATA_LBA;
812 	} else {
813 		/* CHS */
814 		u32 sect, head, cyl, track;
815 
816 		/* The request -may- be too large for CHS addressing. */
817 		if (!lba_28_ok(block, n_block))
818 			return -ERANGE;
819 
820 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
821 			return -EINVAL;
822 
823 		/* Convert LBA to CHS */
824 		track = (u32)block / dev->sectors;
825 		cyl   = track / dev->heads;
826 		head  = track % dev->heads;
827 		sect  = (u32)block % dev->sectors + 1;
828 
829 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
830 			(u32)block, track, cyl, head, sect);
831 
832 		/* Check whether the converted CHS can fit.
833 		   Cylinder: 0-65535
834 		   Head: 0-15
835 		   Sector: 1-255*/
836 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
837 			return -ERANGE;
838 
839 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
840 		tf->lbal = sect;
841 		tf->lbam = cyl;
842 		tf->lbah = cyl >> 8;
843 		tf->device |= head;
844 	}
845 
846 	return 0;
847 }
848 
849 /**
850  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
851  *	@pio_mask: pio_mask
852  *	@mwdma_mask: mwdma_mask
853  *	@udma_mask: udma_mask
854  *
855  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
856  *	unsigned int xfer_mask.
857  *
858  *	LOCKING:
859  *	None.
860  *
861  *	RETURNS:
862  *	Packed xfer_mask.
863  */
864 unsigned long ata_pack_xfermask(unsigned long pio_mask,
865 				unsigned long mwdma_mask,
866 				unsigned long udma_mask)
867 {
868 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
869 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
870 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871 }
872 
873 /**
874  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
875  *	@xfer_mask: xfer_mask to unpack
876  *	@pio_mask: resulting pio_mask
877  *	@mwdma_mask: resulting mwdma_mask
878  *	@udma_mask: resulting udma_mask
879  *
880  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
881  *	Any NULL distination masks will be ignored.
882  */
883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
884 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 {
886 	if (pio_mask)
887 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
888 	if (mwdma_mask)
889 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
890 	if (udma_mask)
891 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 }
893 
894 static const struct ata_xfer_ent {
895 	int shift, bits;
896 	u8 base;
897 } ata_xfer_tbl[] = {
898 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
899 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
900 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
901 	{ -1, },
902 };
903 
904 /**
905  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
906  *	@xfer_mask: xfer_mask of interest
907  *
908  *	Return matching XFER_* value for @xfer_mask.  Only the highest
909  *	bit of @xfer_mask is considered.
910  *
911  *	LOCKING:
912  *	None.
913  *
914  *	RETURNS:
915  *	Matching XFER_* value, 0xff if no match found.
916  */
917 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 {
919 	int highbit = fls(xfer_mask) - 1;
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
924 			return ent->base + highbit - ent->shift;
925 	return 0xff;
926 }
927 
928 /**
929  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
930  *	@xfer_mode: XFER_* of interest
931  *
932  *	Return matching xfer_mask for @xfer_mode.
933  *
934  *	LOCKING:
935  *	None.
936  *
937  *	RETURNS:
938  *	Matching xfer_mask, 0 if no match found.
939  */
940 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 {
942 	const struct ata_xfer_ent *ent;
943 
944 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
945 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
946 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
947 				& ~((1 << ent->shift) - 1);
948 	return 0;
949 }
950 
951 /**
952  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
953  *	@xfer_mode: XFER_* of interest
954  *
955  *	Return matching xfer_shift for @xfer_mode.
956  *
957  *	LOCKING:
958  *	None.
959  *
960  *	RETURNS:
961  *	Matching xfer_shift, -1 if no match found.
962  */
963 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 {
965 	const struct ata_xfer_ent *ent;
966 
967 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
968 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
969 			return ent->shift;
970 	return -1;
971 }
972 
973 /**
974  *	ata_mode_string - convert xfer_mask to string
975  *	@xfer_mask: mask of bits supported; only highest bit counts.
976  *
977  *	Determine string which represents the highest speed
978  *	(highest bit in @modemask).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Constant C string representing highest speed listed in
985  *	@mode_mask, or the constant C string "<n/a>".
986  */
987 const char *ata_mode_string(unsigned long xfer_mask)
988 {
989 	static const char * const xfer_mode_str[] = {
990 		"PIO0",
991 		"PIO1",
992 		"PIO2",
993 		"PIO3",
994 		"PIO4",
995 		"PIO5",
996 		"PIO6",
997 		"MWDMA0",
998 		"MWDMA1",
999 		"MWDMA2",
1000 		"MWDMA3",
1001 		"MWDMA4",
1002 		"UDMA/16",
1003 		"UDMA/25",
1004 		"UDMA/33",
1005 		"UDMA/44",
1006 		"UDMA/66",
1007 		"UDMA/100",
1008 		"UDMA/133",
1009 		"UDMA7",
1010 	};
1011 	int highbit;
1012 
1013 	highbit = fls(xfer_mask) - 1;
1014 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015 		return xfer_mode_str[highbit];
1016 	return "<n/a>";
1017 }
1018 
1019 const char *sata_spd_string(unsigned int spd)
1020 {
1021 	static const char * const spd_str[] = {
1022 		"1.5 Gbps",
1023 		"3.0 Gbps",
1024 		"6.0 Gbps",
1025 	};
1026 
1027 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028 		return "<unknown>";
1029 	return spd_str[spd - 1];
1030 }
1031 
1032 /**
1033  *	ata_dev_classify - determine device type based on ATA-spec signature
1034  *	@tf: ATA taskfile register set for device to be identified
1035  *
1036  *	Determine from taskfile register contents whether a device is
1037  *	ATA or ATAPI, as per "Signature and persistence" section
1038  *	of ATA/PI spec (volume 1, sect 5.14).
1039  *
1040  *	LOCKING:
1041  *	None.
1042  *
1043  *	RETURNS:
1044  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045  *	%ATA_DEV_UNKNOWN the event of failure.
1046  */
1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048 {
1049 	/* Apple's open source Darwin code hints that some devices only
1050 	 * put a proper signature into the LBA mid/high registers,
1051 	 * So, we only check those.  It's sufficient for uniqueness.
1052 	 *
1053 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1055 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1056 	 * spec has never mentioned about using different signatures
1057 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1058 	 * Multiplier specification began to use 0x69/0x96 to identify
1059 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061 	 * 0x69/0x96 shortly and described them as reserved for
1062 	 * SerialATA.
1063 	 *
1064 	 * We follow the current spec and consider that 0x69/0x96
1065 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067 	 * SEMB signature.  This is worked around in
1068 	 * ata_dev_read_id().
1069 	 */
1070 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071 		DPRINTK("found ATA device by sig\n");
1072 		return ATA_DEV_ATA;
1073 	}
1074 
1075 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076 		DPRINTK("found ATAPI device by sig\n");
1077 		return ATA_DEV_ATAPI;
1078 	}
1079 
1080 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081 		DPRINTK("found PMP device by sig\n");
1082 		return ATA_DEV_PMP;
1083 	}
1084 
1085 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087 		return ATA_DEV_SEMB;
1088 	}
1089 
1090 	DPRINTK("unknown device\n");
1091 	return ATA_DEV_UNKNOWN;
1092 }
1093 
1094 /**
1095  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1096  *	@id: IDENTIFY DEVICE results we will examine
1097  *	@s: string into which data is output
1098  *	@ofs: offset into identify device page
1099  *	@len: length of string to return. must be an even number.
1100  *
1101  *	The strings in the IDENTIFY DEVICE page are broken up into
1102  *	16-bit chunks.  Run through the string, and output each
1103  *	8-bit chunk linearly, regardless of platform.
1104  *
1105  *	LOCKING:
1106  *	caller.
1107  */
1108 
1109 void ata_id_string(const u16 *id, unsigned char *s,
1110 		   unsigned int ofs, unsigned int len)
1111 {
1112 	unsigned int c;
1113 
1114 	BUG_ON(len & 1);
1115 
1116 	while (len > 0) {
1117 		c = id[ofs] >> 8;
1118 		*s = c;
1119 		s++;
1120 
1121 		c = id[ofs] & 0xff;
1122 		*s = c;
1123 		s++;
1124 
1125 		ofs++;
1126 		len -= 2;
1127 	}
1128 }
1129 
1130 /**
1131  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132  *	@id: IDENTIFY DEVICE results we will examine
1133  *	@s: string into which data is output
1134  *	@ofs: offset into identify device page
1135  *	@len: length of string to return. must be an odd number.
1136  *
1137  *	This function is identical to ata_id_string except that it
1138  *	trims trailing spaces and terminates the resulting string with
1139  *	null.  @len must be actual maximum length (even number) + 1.
1140  *
1141  *	LOCKING:
1142  *	caller.
1143  */
1144 void ata_id_c_string(const u16 *id, unsigned char *s,
1145 		     unsigned int ofs, unsigned int len)
1146 {
1147 	unsigned char *p;
1148 
1149 	ata_id_string(id, s, ofs, len - 1);
1150 
1151 	p = s + strnlen(s, len - 1);
1152 	while (p > s && p[-1] == ' ')
1153 		p--;
1154 	*p = '\0';
1155 }
1156 
1157 static u64 ata_id_n_sectors(const u16 *id)
1158 {
1159 	if (ata_id_has_lba(id)) {
1160 		if (ata_id_has_lba48(id))
1161 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162 		else
1163 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164 	} else {
1165 		if (ata_id_current_chs_valid(id))
1166 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167 			       id[ATA_ID_CUR_SECTORS];
1168 		else
1169 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170 			       id[ATA_ID_SECTORS];
1171 	}
1172 }
1173 
1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175 {
1176 	u64 sectors = 0;
1177 
1178 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181 	sectors |= (tf->lbah & 0xff) << 16;
1182 	sectors |= (tf->lbam & 0xff) << 8;
1183 	sectors |= (tf->lbal & 0xff);
1184 
1185 	return sectors;
1186 }
1187 
1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189 {
1190 	u64 sectors = 0;
1191 
1192 	sectors |= (tf->device & 0x0f) << 24;
1193 	sectors |= (tf->lbah & 0xff) << 16;
1194 	sectors |= (tf->lbam & 0xff) << 8;
1195 	sectors |= (tf->lbal & 0xff);
1196 
1197 	return sectors;
1198 }
1199 
1200 /**
1201  *	ata_read_native_max_address - Read native max address
1202  *	@dev: target device
1203  *	@max_sectors: out parameter for the result native max address
1204  *
1205  *	Perform an LBA48 or LBA28 native size query upon the device in
1206  *	question.
1207  *
1208  *	RETURNS:
1209  *	0 on success, -EACCES if command is aborted by the drive.
1210  *	-EIO on other errors.
1211  */
1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213 {
1214 	unsigned int err_mask;
1215 	struct ata_taskfile tf;
1216 	int lba48 = ata_id_has_lba48(dev->id);
1217 
1218 	ata_tf_init(dev, &tf);
1219 
1220 	/* always clear all address registers */
1221 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222 
1223 	if (lba48) {
1224 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225 		tf.flags |= ATA_TFLAG_LBA48;
1226 	} else
1227 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1228 
1229 	tf.protocol |= ATA_PROT_NODATA;
1230 	tf.device |= ATA_LBA;
1231 
1232 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 	if (err_mask) {
1234 		ata_dev_warn(dev,
1235 			     "failed to read native max address (err_mask=0x%x)\n",
1236 			     err_mask);
1237 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238 			return -EACCES;
1239 		return -EIO;
1240 	}
1241 
1242 	if (lba48)
1243 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1244 	else
1245 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1246 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247 		(*max_sectors)--;
1248 	return 0;
1249 }
1250 
1251 /**
1252  *	ata_set_max_sectors - Set max sectors
1253  *	@dev: target device
1254  *	@new_sectors: new max sectors value to set for the device
1255  *
1256  *	Set max sectors of @dev to @new_sectors.
1257  *
1258  *	RETURNS:
1259  *	0 on success, -EACCES if command is aborted or denied (due to
1260  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1261  *	errors.
1262  */
1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264 {
1265 	unsigned int err_mask;
1266 	struct ata_taskfile tf;
1267 	int lba48 = ata_id_has_lba48(dev->id);
1268 
1269 	new_sectors--;
1270 
1271 	ata_tf_init(dev, &tf);
1272 
1273 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274 
1275 	if (lba48) {
1276 		tf.command = ATA_CMD_SET_MAX_EXT;
1277 		tf.flags |= ATA_TFLAG_LBA48;
1278 
1279 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282 	} else {
1283 		tf.command = ATA_CMD_SET_MAX;
1284 
1285 		tf.device |= (new_sectors >> 24) & 0xf;
1286 	}
1287 
1288 	tf.protocol |= ATA_PROT_NODATA;
1289 	tf.device |= ATA_LBA;
1290 
1291 	tf.lbal = (new_sectors >> 0) & 0xff;
1292 	tf.lbam = (new_sectors >> 8) & 0xff;
1293 	tf.lbah = (new_sectors >> 16) & 0xff;
1294 
1295 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296 	if (err_mask) {
1297 		ata_dev_warn(dev,
1298 			     "failed to set max address (err_mask=0x%x)\n",
1299 			     err_mask);
1300 		if (err_mask == AC_ERR_DEV &&
1301 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302 			return -EACCES;
1303 		return -EIO;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  *	ata_hpa_resize		-	Resize a device with an HPA set
1311  *	@dev: Device to resize
1312  *
1313  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314  *	it if required to the full size of the media. The caller must check
1315  *	the drive has the HPA feature set enabled.
1316  *
1317  *	RETURNS:
1318  *	0 on success, -errno on failure.
1319  */
1320 static int ata_hpa_resize(struct ata_device *dev)
1321 {
1322 	struct ata_eh_context *ehc = &dev->link->eh_context;
1323 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325 	u64 sectors = ata_id_n_sectors(dev->id);
1326 	u64 native_sectors;
1327 	int rc;
1328 
1329 	/* do we need to do it? */
1330 	if (dev->class != ATA_DEV_ATA ||
1331 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333 		return 0;
1334 
1335 	/* read native max address */
1336 	rc = ata_read_native_max_address(dev, &native_sectors);
1337 	if (rc) {
1338 		/* If device aborted the command or HPA isn't going to
1339 		 * be unlocked, skip HPA resizing.
1340 		 */
1341 		if (rc == -EACCES || !unlock_hpa) {
1342 			ata_dev_warn(dev,
1343 				     "HPA support seems broken, skipping HPA handling\n");
1344 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345 
1346 			/* we can continue if device aborted the command */
1347 			if (rc == -EACCES)
1348 				rc = 0;
1349 		}
1350 
1351 		return rc;
1352 	}
1353 	dev->n_native_sectors = native_sectors;
1354 
1355 	/* nothing to do? */
1356 	if (native_sectors <= sectors || !unlock_hpa) {
1357 		if (!print_info || native_sectors == sectors)
1358 			return 0;
1359 
1360 		if (native_sectors > sectors)
1361 			ata_dev_info(dev,
1362 				"HPA detected: current %llu, native %llu\n",
1363 				(unsigned long long)sectors,
1364 				(unsigned long long)native_sectors);
1365 		else if (native_sectors < sectors)
1366 			ata_dev_warn(dev,
1367 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1368 				(unsigned long long)native_sectors,
1369 				(unsigned long long)sectors);
1370 		return 0;
1371 	}
1372 
1373 	/* let's unlock HPA */
1374 	rc = ata_set_max_sectors(dev, native_sectors);
1375 	if (rc == -EACCES) {
1376 		/* if device aborted the command, skip HPA resizing */
1377 		ata_dev_warn(dev,
1378 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379 			     (unsigned long long)sectors,
1380 			     (unsigned long long)native_sectors);
1381 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382 		return 0;
1383 	} else if (rc)
1384 		return rc;
1385 
1386 	/* re-read IDENTIFY data */
1387 	rc = ata_dev_reread_id(dev, 0);
1388 	if (rc) {
1389 		ata_dev_err(dev,
1390 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1391 		return rc;
1392 	}
1393 
1394 	if (print_info) {
1395 		u64 new_sectors = ata_id_n_sectors(dev->id);
1396 		ata_dev_info(dev,
1397 			"HPA unlocked: %llu -> %llu, native %llu\n",
1398 			(unsigned long long)sectors,
1399 			(unsigned long long)new_sectors,
1400 			(unsigned long long)native_sectors);
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 /**
1407  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1408  *	@id: IDENTIFY DEVICE page to dump
1409  *
1410  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1411  *	page.
1412  *
1413  *	LOCKING:
1414  *	caller.
1415  */
1416 
1417 static inline void ata_dump_id(const u16 *id)
1418 {
1419 	DPRINTK("49==0x%04x  "
1420 		"53==0x%04x  "
1421 		"63==0x%04x  "
1422 		"64==0x%04x  "
1423 		"75==0x%04x  \n",
1424 		id[49],
1425 		id[53],
1426 		id[63],
1427 		id[64],
1428 		id[75]);
1429 	DPRINTK("80==0x%04x  "
1430 		"81==0x%04x  "
1431 		"82==0x%04x  "
1432 		"83==0x%04x  "
1433 		"84==0x%04x  \n",
1434 		id[80],
1435 		id[81],
1436 		id[82],
1437 		id[83],
1438 		id[84]);
1439 	DPRINTK("88==0x%04x  "
1440 		"93==0x%04x\n",
1441 		id[88],
1442 		id[93]);
1443 }
1444 
1445 /**
1446  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447  *	@id: IDENTIFY data to compute xfer mask from
1448  *
1449  *	Compute the xfermask for this device. This is not as trivial
1450  *	as it seems if we must consider early devices correctly.
1451  *
1452  *	FIXME: pre IDE drive timing (do we care ?).
1453  *
1454  *	LOCKING:
1455  *	None.
1456  *
1457  *	RETURNS:
1458  *	Computed xfermask
1459  */
1460 unsigned long ata_id_xfermask(const u16 *id)
1461 {
1462 	unsigned long pio_mask, mwdma_mask, udma_mask;
1463 
1464 	/* Usual case. Word 53 indicates word 64 is valid */
1465 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467 		pio_mask <<= 3;
1468 		pio_mask |= 0x7;
1469 	} else {
1470 		/* If word 64 isn't valid then Word 51 high byte holds
1471 		 * the PIO timing number for the maximum. Turn it into
1472 		 * a mask.
1473 		 */
1474 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475 		if (mode < 5)	/* Valid PIO range */
1476 			pio_mask = (2 << mode) - 1;
1477 		else
1478 			pio_mask = 1;
1479 
1480 		/* But wait.. there's more. Design your standards by
1481 		 * committee and you too can get a free iordy field to
1482 		 * process. However its the speeds not the modes that
1483 		 * are supported... Note drivers using the timing API
1484 		 * will get this right anyway
1485 		 */
1486 	}
1487 
1488 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489 
1490 	if (ata_id_is_cfa(id)) {
1491 		/*
1492 		 *	Process compact flash extended modes
1493 		 */
1494 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496 
1497 		if (pio)
1498 			pio_mask |= (1 << 5);
1499 		if (pio > 1)
1500 			pio_mask |= (1 << 6);
1501 		if (dma)
1502 			mwdma_mask |= (1 << 3);
1503 		if (dma > 1)
1504 			mwdma_mask |= (1 << 4);
1505 	}
1506 
1507 	udma_mask = 0;
1508 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510 
1511 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 }
1513 
1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515 {
1516 	struct completion *waiting = qc->private_data;
1517 
1518 	complete(waiting);
1519 }
1520 
1521 /**
1522  *	ata_exec_internal_sg - execute libata internal command
1523  *	@dev: Device to which the command is sent
1524  *	@tf: Taskfile registers for the command and the result
1525  *	@cdb: CDB for packet command
1526  *	@dma_dir: Data tranfer direction of the command
1527  *	@sgl: sg list for the data buffer of the command
1528  *	@n_elem: Number of sg entries
1529  *	@timeout: Timeout in msecs (0 for default)
1530  *
1531  *	Executes libata internal command with timeout.  @tf contains
1532  *	command on entry and result on return.  Timeout and error
1533  *	conditions are reported via return value.  No recovery action
1534  *	is taken after a command times out.  It's caller's duty to
1535  *	clean up after timeout.
1536  *
1537  *	LOCKING:
1538  *	None.  Should be called with kernel context, might sleep.
1539  *
1540  *	RETURNS:
1541  *	Zero on success, AC_ERR_* mask on failure
1542  */
1543 unsigned ata_exec_internal_sg(struct ata_device *dev,
1544 			      struct ata_taskfile *tf, const u8 *cdb,
1545 			      int dma_dir, struct scatterlist *sgl,
1546 			      unsigned int n_elem, unsigned long timeout)
1547 {
1548 	struct ata_link *link = dev->link;
1549 	struct ata_port *ap = link->ap;
1550 	u8 command = tf->command;
1551 	int auto_timeout = 0;
1552 	struct ata_queued_cmd *qc;
1553 	unsigned int tag, preempted_tag;
1554 	u32 preempted_sactive, preempted_qc_active;
1555 	int preempted_nr_active_links;
1556 	DECLARE_COMPLETION_ONSTACK(wait);
1557 	unsigned long flags;
1558 	unsigned int err_mask;
1559 	int rc;
1560 
1561 	spin_lock_irqsave(ap->lock, flags);
1562 
1563 	/* no internal command while frozen */
1564 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1565 		spin_unlock_irqrestore(ap->lock, flags);
1566 		return AC_ERR_SYSTEM;
1567 	}
1568 
1569 	/* initialize internal qc */
1570 
1571 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1572 	 * drivers choke if any other tag is given.  This breaks
1573 	 * ata_tag_internal() test for those drivers.  Don't use new
1574 	 * EH stuff without converting to it.
1575 	 */
1576 	if (ap->ops->error_handler)
1577 		tag = ATA_TAG_INTERNAL;
1578 	else
1579 		tag = 0;
1580 
1581 	if (test_and_set_bit(tag, &ap->qc_allocated))
1582 		BUG();
1583 	qc = __ata_qc_from_tag(ap, tag);
1584 
1585 	qc->tag = tag;
1586 	qc->scsicmd = NULL;
1587 	qc->ap = ap;
1588 	qc->dev = dev;
1589 	ata_qc_reinit(qc);
1590 
1591 	preempted_tag = link->active_tag;
1592 	preempted_sactive = link->sactive;
1593 	preempted_qc_active = ap->qc_active;
1594 	preempted_nr_active_links = ap->nr_active_links;
1595 	link->active_tag = ATA_TAG_POISON;
1596 	link->sactive = 0;
1597 	ap->qc_active = 0;
1598 	ap->nr_active_links = 0;
1599 
1600 	/* prepare & issue qc */
1601 	qc->tf = *tf;
1602 	if (cdb)
1603 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1605 	qc->dma_dir = dma_dir;
1606 	if (dma_dir != DMA_NONE) {
1607 		unsigned int i, buflen = 0;
1608 		struct scatterlist *sg;
1609 
1610 		for_each_sg(sgl, sg, n_elem, i)
1611 			buflen += sg->length;
1612 
1613 		ata_sg_init(qc, sgl, n_elem);
1614 		qc->nbytes = buflen;
1615 	}
1616 
1617 	qc->private_data = &wait;
1618 	qc->complete_fn = ata_qc_complete_internal;
1619 
1620 	ata_qc_issue(qc);
1621 
1622 	spin_unlock_irqrestore(ap->lock, flags);
1623 
1624 	if (!timeout) {
1625 		if (ata_probe_timeout)
1626 			timeout = ata_probe_timeout * 1000;
1627 		else {
1628 			timeout = ata_internal_cmd_timeout(dev, command);
1629 			auto_timeout = 1;
1630 		}
1631 	}
1632 
1633 	if (ap->ops->error_handler)
1634 		ata_eh_release(ap);
1635 
1636 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637 
1638 	if (ap->ops->error_handler)
1639 		ata_eh_acquire(ap);
1640 
1641 	ata_sff_flush_pio_task(ap);
1642 
1643 	if (!rc) {
1644 		spin_lock_irqsave(ap->lock, flags);
1645 
1646 		/* We're racing with irq here.  If we lose, the
1647 		 * following test prevents us from completing the qc
1648 		 * twice.  If we win, the port is frozen and will be
1649 		 * cleaned up by ->post_internal_cmd().
1650 		 */
1651 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652 			qc->err_mask |= AC_ERR_TIMEOUT;
1653 
1654 			if (ap->ops->error_handler)
1655 				ata_port_freeze(ap);
1656 			else
1657 				ata_qc_complete(qc);
1658 
1659 			if (ata_msg_warn(ap))
1660 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661 					     command);
1662 		}
1663 
1664 		spin_unlock_irqrestore(ap->lock, flags);
1665 	}
1666 
1667 	/* do post_internal_cmd */
1668 	if (ap->ops->post_internal_cmd)
1669 		ap->ops->post_internal_cmd(qc);
1670 
1671 	/* perform minimal error analysis */
1672 	if (qc->flags & ATA_QCFLAG_FAILED) {
1673 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674 			qc->err_mask |= AC_ERR_DEV;
1675 
1676 		if (!qc->err_mask)
1677 			qc->err_mask |= AC_ERR_OTHER;
1678 
1679 		if (qc->err_mask & ~AC_ERR_OTHER)
1680 			qc->err_mask &= ~AC_ERR_OTHER;
1681 	}
1682 
1683 	/* finish up */
1684 	spin_lock_irqsave(ap->lock, flags);
1685 
1686 	*tf = qc->result_tf;
1687 	err_mask = qc->err_mask;
1688 
1689 	ata_qc_free(qc);
1690 	link->active_tag = preempted_tag;
1691 	link->sactive = preempted_sactive;
1692 	ap->qc_active = preempted_qc_active;
1693 	ap->nr_active_links = preempted_nr_active_links;
1694 
1695 	spin_unlock_irqrestore(ap->lock, flags);
1696 
1697 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698 		ata_internal_cmd_timed_out(dev, command);
1699 
1700 	return err_mask;
1701 }
1702 
1703 /**
1704  *	ata_exec_internal - execute libata internal command
1705  *	@dev: Device to which the command is sent
1706  *	@tf: Taskfile registers for the command and the result
1707  *	@cdb: CDB for packet command
1708  *	@dma_dir: Data tranfer direction of the command
1709  *	@buf: Data buffer of the command
1710  *	@buflen: Length of data buffer
1711  *	@timeout: Timeout in msecs (0 for default)
1712  *
1713  *	Wrapper around ata_exec_internal_sg() which takes simple
1714  *	buffer instead of sg list.
1715  *
1716  *	LOCKING:
1717  *	None.  Should be called with kernel context, might sleep.
1718  *
1719  *	RETURNS:
1720  *	Zero on success, AC_ERR_* mask on failure
1721  */
1722 unsigned ata_exec_internal(struct ata_device *dev,
1723 			   struct ata_taskfile *tf, const u8 *cdb,
1724 			   int dma_dir, void *buf, unsigned int buflen,
1725 			   unsigned long timeout)
1726 {
1727 	struct scatterlist *psg = NULL, sg;
1728 	unsigned int n_elem = 0;
1729 
1730 	if (dma_dir != DMA_NONE) {
1731 		WARN_ON(!buf);
1732 		sg_init_one(&sg, buf, buflen);
1733 		psg = &sg;
1734 		n_elem++;
1735 	}
1736 
1737 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738 				    timeout);
1739 }
1740 
1741 /**
1742  *	ata_do_simple_cmd - execute simple internal command
1743  *	@dev: Device to which the command is sent
1744  *	@cmd: Opcode to execute
1745  *
1746  *	Execute a 'simple' command, that only consists of the opcode
1747  *	'cmd' itself, without filling any other registers
1748  *
1749  *	LOCKING:
1750  *	Kernel thread context (may sleep).
1751  *
1752  *	RETURNS:
1753  *	Zero on success, AC_ERR_* mask on failure
1754  */
1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756 {
1757 	struct ata_taskfile tf;
1758 
1759 	ata_tf_init(dev, &tf);
1760 
1761 	tf.command = cmd;
1762 	tf.flags |= ATA_TFLAG_DEVICE;
1763 	tf.protocol = ATA_PROT_NODATA;
1764 
1765 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766 }
1767 
1768 /**
1769  *	ata_pio_need_iordy	-	check if iordy needed
1770  *	@adev: ATA device
1771  *
1772  *	Check if the current speed of the device requires IORDY. Used
1773  *	by various controllers for chip configuration.
1774  */
1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776 {
1777 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1778 	 * lead to controller lock up on certain controllers if the
1779 	 * port is not occupied.  See bko#11703 for details.
1780 	 */
1781 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782 		return 0;
1783 	/* Controller doesn't support IORDY.  Probably a pointless
1784 	 * check as the caller should know this.
1785 	 */
1786 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787 		return 0;
1788 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1789 	if (ata_id_is_cfa(adev->id)
1790 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791 		return 0;
1792 	/* PIO3 and higher it is mandatory */
1793 	if (adev->pio_mode > XFER_PIO_2)
1794 		return 1;
1795 	/* We turn it on when possible */
1796 	if (ata_id_has_iordy(adev->id))
1797 		return 1;
1798 	return 0;
1799 }
1800 
1801 /**
1802  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1803  *	@adev: ATA device
1804  *
1805  *	Compute the highest mode possible if we are not using iordy. Return
1806  *	-1 if no iordy mode is available.
1807  */
1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809 {
1810 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1811 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1812 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813 		/* Is the speed faster than the drive allows non IORDY ? */
1814 		if (pio) {
1815 			/* This is cycle times not frequency - watch the logic! */
1816 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1817 				return 3 << ATA_SHIFT_PIO;
1818 			return 7 << ATA_SHIFT_PIO;
1819 		}
1820 	}
1821 	return 3 << ATA_SHIFT_PIO;
1822 }
1823 
1824 /**
1825  *	ata_do_dev_read_id		-	default ID read method
1826  *	@dev: device
1827  *	@tf: proposed taskfile
1828  *	@id: data buffer
1829  *
1830  *	Issue the identify taskfile and hand back the buffer containing
1831  *	identify data. For some RAID controllers and for pre ATA devices
1832  *	this function is wrapped or replaced by the driver
1833  */
1834 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835 					struct ata_taskfile *tf, u16 *id)
1836 {
1837 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839 }
1840 
1841 /**
1842  *	ata_dev_read_id - Read ID data from the specified device
1843  *	@dev: target device
1844  *	@p_class: pointer to class of the target device (may be changed)
1845  *	@flags: ATA_READID_* flags
1846  *	@id: buffer to read IDENTIFY data into
1847  *
1848  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1849  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1851  *	for pre-ATA4 drives.
1852  *
1853  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854  *	now we abort if we hit that case.
1855  *
1856  *	LOCKING:
1857  *	Kernel thread context (may sleep)
1858  *
1859  *	RETURNS:
1860  *	0 on success, -errno otherwise.
1861  */
1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863 		    unsigned int flags, u16 *id)
1864 {
1865 	struct ata_port *ap = dev->link->ap;
1866 	unsigned int class = *p_class;
1867 	struct ata_taskfile tf;
1868 	unsigned int err_mask = 0;
1869 	const char *reason;
1870 	bool is_semb = class == ATA_DEV_SEMB;
1871 	int may_fallback = 1, tried_spinup = 0;
1872 	int rc;
1873 
1874 	if (ata_msg_ctl(ap))
1875 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876 
1877 retry:
1878 	ata_tf_init(dev, &tf);
1879 
1880 	switch (class) {
1881 	case ATA_DEV_SEMB:
1882 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1883 	case ATA_DEV_ATA:
1884 		tf.command = ATA_CMD_ID_ATA;
1885 		break;
1886 	case ATA_DEV_ATAPI:
1887 		tf.command = ATA_CMD_ID_ATAPI;
1888 		break;
1889 	default:
1890 		rc = -ENODEV;
1891 		reason = "unsupported class";
1892 		goto err_out;
1893 	}
1894 
1895 	tf.protocol = ATA_PROT_PIO;
1896 
1897 	/* Some devices choke if TF registers contain garbage.  Make
1898 	 * sure those are properly initialized.
1899 	 */
1900 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901 
1902 	/* Device presence detection is unreliable on some
1903 	 * controllers.  Always poll IDENTIFY if available.
1904 	 */
1905 	tf.flags |= ATA_TFLAG_POLLING;
1906 
1907 	if (ap->ops->read_id)
1908 		err_mask = ap->ops->read_id(dev, &tf, id);
1909 	else
1910 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1911 
1912 	if (err_mask) {
1913 		if (err_mask & AC_ERR_NODEV_HINT) {
1914 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 			return -ENOENT;
1916 		}
1917 
1918 		if (is_semb) {
1919 			ata_dev_info(dev,
1920 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 			/* SEMB is not supported yet */
1922 			*p_class = ATA_DEV_SEMB_UNSUP;
1923 			return 0;
1924 		}
1925 
1926 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 			/* Device or controller might have reported
1928 			 * the wrong device class.  Give a shot at the
1929 			 * other IDENTIFY if the current one is
1930 			 * aborted by the device.
1931 			 */
1932 			if (may_fallback) {
1933 				may_fallback = 0;
1934 
1935 				if (class == ATA_DEV_ATA)
1936 					class = ATA_DEV_ATAPI;
1937 				else
1938 					class = ATA_DEV_ATA;
1939 				goto retry;
1940 			}
1941 
1942 			/* Control reaches here iff the device aborted
1943 			 * both flavors of IDENTIFYs which happens
1944 			 * sometimes with phantom devices.
1945 			 */
1946 			ata_dev_dbg(dev,
1947 				    "both IDENTIFYs aborted, assuming NODEV\n");
1948 			return -ENOENT;
1949 		}
1950 
1951 		rc = -EIO;
1952 		reason = "I/O error";
1953 		goto err_out;
1954 	}
1955 
1956 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1959 			    class, may_fallback, tried_spinup);
1960 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 	}
1963 
1964 	/* Falling back doesn't make sense if ID data was read
1965 	 * successfully at least once.
1966 	 */
1967 	may_fallback = 0;
1968 
1969 	swap_buf_le16(id, ATA_ID_WORDS);
1970 
1971 	/* sanity check */
1972 	rc = -EINVAL;
1973 	reason = "device reports invalid type";
1974 
1975 	if (class == ATA_DEV_ATA) {
1976 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 			goto err_out;
1978 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 							ata_id_is_ata(id)) {
1980 			ata_dev_dbg(dev,
1981 				"host indicates ignore ATA devices, ignored\n");
1982 			return -ENOENT;
1983 		}
1984 	} else {
1985 		if (ata_id_is_ata(id))
1986 			goto err_out;
1987 	}
1988 
1989 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 		tried_spinup = 1;
1991 		/*
1992 		 * Drive powered-up in standby mode, and requires a specific
1993 		 * SET_FEATURES spin-up subcommand before it will accept
1994 		 * anything other than the original IDENTIFY command.
1995 		 */
1996 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 		if (err_mask && id[2] != 0x738c) {
1998 			rc = -EIO;
1999 			reason = "SPINUP failed";
2000 			goto err_out;
2001 		}
2002 		/*
2003 		 * If the drive initially returned incomplete IDENTIFY info,
2004 		 * we now must reissue the IDENTIFY command.
2005 		 */
2006 		if (id[2] == 0x37c8)
2007 			goto retry;
2008 	}
2009 
2010 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011 		/*
2012 		 * The exact sequence expected by certain pre-ATA4 drives is:
2013 		 * SRST RESET
2014 		 * IDENTIFY (optional in early ATA)
2015 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016 		 * anything else..
2017 		 * Some drives were very specific about that exact sequence.
2018 		 *
2019 		 * Note that ATA4 says lba is mandatory so the second check
2020 		 * should never trigger.
2021 		 */
2022 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024 			if (err_mask) {
2025 				rc = -EIO;
2026 				reason = "INIT_DEV_PARAMS failed";
2027 				goto err_out;
2028 			}
2029 
2030 			/* current CHS translation info (id[53-58]) might be
2031 			 * changed. reread the identify device info.
2032 			 */
2033 			flags &= ~ATA_READID_POSTRESET;
2034 			goto retry;
2035 		}
2036 	}
2037 
2038 	*p_class = class;
2039 
2040 	return 0;
2041 
2042  err_out:
2043 	if (ata_msg_warn(ap))
2044 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045 			     reason, err_mask);
2046 	return rc;
2047 }
2048 
2049 static int ata_do_link_spd_horkage(struct ata_device *dev)
2050 {
2051 	struct ata_link *plink = ata_dev_phys_link(dev);
2052 	u32 target, target_limit;
2053 
2054 	if (!sata_scr_valid(plink))
2055 		return 0;
2056 
2057 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058 		target = 1;
2059 	else
2060 		return 0;
2061 
2062 	target_limit = (1 << target) - 1;
2063 
2064 	/* if already on stricter limit, no need to push further */
2065 	if (plink->sata_spd_limit <= target_limit)
2066 		return 0;
2067 
2068 	plink->sata_spd_limit = target_limit;
2069 
2070 	/* Request another EH round by returning -EAGAIN if link is
2071 	 * going faster than the target speed.  Forward progress is
2072 	 * guaranteed by setting sata_spd_limit to target_limit above.
2073 	 */
2074 	if (plink->sata_spd > target) {
2075 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076 			     sata_spd_string(target));
2077 		return -EAGAIN;
2078 	}
2079 	return 0;
2080 }
2081 
2082 static inline u8 ata_dev_knobble(struct ata_device *dev)
2083 {
2084 	struct ata_port *ap = dev->link->ap;
2085 
2086 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087 		return 0;
2088 
2089 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090 }
2091 
2092 static int ata_dev_config_ncq(struct ata_device *dev,
2093 			       char *desc, size_t desc_sz)
2094 {
2095 	struct ata_port *ap = dev->link->ap;
2096 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097 	unsigned int err_mask;
2098 	char *aa_desc = "";
2099 
2100 	if (!ata_id_has_ncq(dev->id)) {
2101 		desc[0] = '\0';
2102 		return 0;
2103 	}
2104 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105 		snprintf(desc, desc_sz, "NCQ (not used)");
2106 		return 0;
2107 	}
2108 	if (ap->flags & ATA_FLAG_NCQ) {
2109 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110 		dev->flags |= ATA_DFLAG_NCQ;
2111 	}
2112 
2113 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2115 		ata_id_has_fpdma_aa(dev->id)) {
2116 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117 			SATA_FPDMA_AA);
2118 		if (err_mask) {
2119 			ata_dev_err(dev,
2120 				    "failed to enable AA (error_mask=0x%x)\n",
2121 				    err_mask);
2122 			if (err_mask != AC_ERR_DEV) {
2123 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124 				return -EIO;
2125 			}
2126 		} else
2127 			aa_desc = ", AA";
2128 	}
2129 
2130 	if (hdepth >= ddepth)
2131 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132 	else
2133 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134 			ddepth, aa_desc);
2135 	return 0;
2136 }
2137 
2138 /**
2139  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2140  *	@dev: Target device to configure
2141  *
2142  *	Configure @dev according to @dev->id.  Generic and low-level
2143  *	driver specific fixups are also applied.
2144  *
2145  *	LOCKING:
2146  *	Kernel thread context (may sleep)
2147  *
2148  *	RETURNS:
2149  *	0 on success, -errno otherwise
2150  */
2151 int ata_dev_configure(struct ata_device *dev)
2152 {
2153 	struct ata_port *ap = dev->link->ap;
2154 	struct ata_eh_context *ehc = &dev->link->eh_context;
2155 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156 	const u16 *id = dev->id;
2157 	unsigned long xfer_mask;
2158 	char revbuf[7];		/* XYZ-99\0 */
2159 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2160 	char modelbuf[ATA_ID_PROD_LEN+1];
2161 	int rc;
2162 
2163 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2164 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2165 		return 0;
2166 	}
2167 
2168 	if (ata_msg_probe(ap))
2169 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2170 
2171 	/* set horkage */
2172 	dev->horkage |= ata_dev_blacklisted(dev);
2173 	ata_force_horkage(dev);
2174 
2175 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2176 		ata_dev_info(dev, "unsupported device, disabling\n");
2177 		ata_dev_disable(dev);
2178 		return 0;
2179 	}
2180 
2181 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2182 	    dev->class == ATA_DEV_ATAPI) {
2183 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2184 			     atapi_enabled ? "not supported with this driver"
2185 			     : "disabled");
2186 		ata_dev_disable(dev);
2187 		return 0;
2188 	}
2189 
2190 	rc = ata_do_link_spd_horkage(dev);
2191 	if (rc)
2192 		return rc;
2193 
2194 	/* let ACPI work its magic */
2195 	rc = ata_acpi_on_devcfg(dev);
2196 	if (rc)
2197 		return rc;
2198 
2199 	/* massage HPA, do it early as it might change IDENTIFY data */
2200 	rc = ata_hpa_resize(dev);
2201 	if (rc)
2202 		return rc;
2203 
2204 	/* print device capabilities */
2205 	if (ata_msg_probe(ap))
2206 		ata_dev_dbg(dev,
2207 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2208 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2209 			    __func__,
2210 			    id[49], id[82], id[83], id[84],
2211 			    id[85], id[86], id[87], id[88]);
2212 
2213 	/* initialize to-be-configured parameters */
2214 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2215 	dev->max_sectors = 0;
2216 	dev->cdb_len = 0;
2217 	dev->n_sectors = 0;
2218 	dev->cylinders = 0;
2219 	dev->heads = 0;
2220 	dev->sectors = 0;
2221 	dev->multi_count = 0;
2222 
2223 	/*
2224 	 * common ATA, ATAPI feature tests
2225 	 */
2226 
2227 	/* find max transfer mode; for printk only */
2228 	xfer_mask = ata_id_xfermask(id);
2229 
2230 	if (ata_msg_probe(ap))
2231 		ata_dump_id(id);
2232 
2233 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2234 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2235 			sizeof(fwrevbuf));
2236 
2237 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2238 			sizeof(modelbuf));
2239 
2240 	/* ATA-specific feature tests */
2241 	if (dev->class == ATA_DEV_ATA) {
2242 		if (ata_id_is_cfa(id)) {
2243 			/* CPRM may make this media unusable */
2244 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2245 				ata_dev_warn(dev,
2246 	"supports DRM functions and may not be fully accessible\n");
2247 			snprintf(revbuf, 7, "CFA");
2248 		} else {
2249 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2250 			/* Warn the user if the device has TPM extensions */
2251 			if (ata_id_has_tpm(id))
2252 				ata_dev_warn(dev,
2253 	"supports DRM functions and may not be fully accessible\n");
2254 		}
2255 
2256 		dev->n_sectors = ata_id_n_sectors(id);
2257 
2258 		/* get current R/W Multiple count setting */
2259 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2260 			unsigned int max = dev->id[47] & 0xff;
2261 			unsigned int cnt = dev->id[59] & 0xff;
2262 			/* only recognize/allow powers of two here */
2263 			if (is_power_of_2(max) && is_power_of_2(cnt))
2264 				if (cnt <= max)
2265 					dev->multi_count = cnt;
2266 		}
2267 
2268 		if (ata_id_has_lba(id)) {
2269 			const char *lba_desc;
2270 			char ncq_desc[24];
2271 
2272 			lba_desc = "LBA";
2273 			dev->flags |= ATA_DFLAG_LBA;
2274 			if (ata_id_has_lba48(id)) {
2275 				dev->flags |= ATA_DFLAG_LBA48;
2276 				lba_desc = "LBA48";
2277 
2278 				if (dev->n_sectors >= (1UL << 28) &&
2279 				    ata_id_has_flush_ext(id))
2280 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2281 			}
2282 
2283 			/* config NCQ */
2284 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2285 			if (rc)
2286 				return rc;
2287 
2288 			/* print device info to dmesg */
2289 			if (ata_msg_drv(ap) && print_info) {
2290 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2291 					     revbuf, modelbuf, fwrevbuf,
2292 					     ata_mode_string(xfer_mask));
2293 				ata_dev_info(dev,
2294 					     "%llu sectors, multi %u: %s %s\n",
2295 					(unsigned long long)dev->n_sectors,
2296 					dev->multi_count, lba_desc, ncq_desc);
2297 			}
2298 		} else {
2299 			/* CHS */
2300 
2301 			/* Default translation */
2302 			dev->cylinders	= id[1];
2303 			dev->heads	= id[3];
2304 			dev->sectors	= id[6];
2305 
2306 			if (ata_id_current_chs_valid(id)) {
2307 				/* Current CHS translation is valid. */
2308 				dev->cylinders = id[54];
2309 				dev->heads     = id[55];
2310 				dev->sectors   = id[56];
2311 			}
2312 
2313 			/* print device info to dmesg */
2314 			if (ata_msg_drv(ap) && print_info) {
2315 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2316 					     revbuf,	modelbuf, fwrevbuf,
2317 					     ata_mode_string(xfer_mask));
2318 				ata_dev_info(dev,
2319 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2320 					     (unsigned long long)dev->n_sectors,
2321 					     dev->multi_count, dev->cylinders,
2322 					     dev->heads, dev->sectors);
2323 			}
2324 		}
2325 
2326 		dev->cdb_len = 16;
2327 	}
2328 
2329 	/* ATAPI-specific feature tests */
2330 	else if (dev->class == ATA_DEV_ATAPI) {
2331 		const char *cdb_intr_string = "";
2332 		const char *atapi_an_string = "";
2333 		const char *dma_dir_string = "";
2334 		u32 sntf;
2335 
2336 		rc = atapi_cdb_len(id);
2337 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2338 			if (ata_msg_warn(ap))
2339 				ata_dev_warn(dev, "unsupported CDB len\n");
2340 			rc = -EINVAL;
2341 			goto err_out_nosup;
2342 		}
2343 		dev->cdb_len = (unsigned int) rc;
2344 
2345 		/* Enable ATAPI AN if both the host and device have
2346 		 * the support.  If PMP is attached, SNTF is required
2347 		 * to enable ATAPI AN to discern between PHY status
2348 		 * changed notifications and ATAPI ANs.
2349 		 */
2350 		if (atapi_an &&
2351 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2352 		    (!sata_pmp_attached(ap) ||
2353 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2354 			unsigned int err_mask;
2355 
2356 			/* issue SET feature command to turn this on */
2357 			err_mask = ata_dev_set_feature(dev,
2358 					SETFEATURES_SATA_ENABLE, SATA_AN);
2359 			if (err_mask)
2360 				ata_dev_err(dev,
2361 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2362 					    err_mask);
2363 			else {
2364 				dev->flags |= ATA_DFLAG_AN;
2365 				atapi_an_string = ", ATAPI AN";
2366 			}
2367 		}
2368 
2369 		if (ata_id_cdb_intr(dev->id)) {
2370 			dev->flags |= ATA_DFLAG_CDB_INTR;
2371 			cdb_intr_string = ", CDB intr";
2372 		}
2373 
2374 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2375 			dev->flags |= ATA_DFLAG_DMADIR;
2376 			dma_dir_string = ", DMADIR";
2377 		}
2378 
2379 		if (ata_id_has_da(dev->id))
2380 			dev->flags |= ATA_DFLAG_DA;
2381 
2382 		/* print device info to dmesg */
2383 		if (ata_msg_drv(ap) && print_info)
2384 			ata_dev_info(dev,
2385 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2386 				     modelbuf, fwrevbuf,
2387 				     ata_mode_string(xfer_mask),
2388 				     cdb_intr_string, atapi_an_string,
2389 				     dma_dir_string);
2390 	}
2391 
2392 	/* determine max_sectors */
2393 	dev->max_sectors = ATA_MAX_SECTORS;
2394 	if (dev->flags & ATA_DFLAG_LBA48)
2395 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2396 
2397 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2398 	   200 sectors */
2399 	if (ata_dev_knobble(dev)) {
2400 		if (ata_msg_drv(ap) && print_info)
2401 			ata_dev_info(dev, "applying bridge limits\n");
2402 		dev->udma_mask &= ATA_UDMA5;
2403 		dev->max_sectors = ATA_MAX_SECTORS;
2404 	}
2405 
2406 	if ((dev->class == ATA_DEV_ATAPI) &&
2407 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2408 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2409 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2410 	}
2411 
2412 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2413 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2414 					 dev->max_sectors);
2415 
2416 	if (ap->ops->dev_config)
2417 		ap->ops->dev_config(dev);
2418 
2419 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2420 		/* Let the user know. We don't want to disallow opens for
2421 		   rescue purposes, or in case the vendor is just a blithering
2422 		   idiot. Do this after the dev_config call as some controllers
2423 		   with buggy firmware may want to avoid reporting false device
2424 		   bugs */
2425 
2426 		if (print_info) {
2427 			ata_dev_warn(dev,
2428 "Drive reports diagnostics failure. This may indicate a drive\n");
2429 			ata_dev_warn(dev,
2430 "fault or invalid emulation. Contact drive vendor for information.\n");
2431 		}
2432 	}
2433 
2434 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2435 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2436 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2437 	}
2438 
2439 	return 0;
2440 
2441 err_out_nosup:
2442 	if (ata_msg_probe(ap))
2443 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2444 	return rc;
2445 }
2446 
2447 /**
2448  *	ata_cable_40wire	-	return 40 wire cable type
2449  *	@ap: port
2450  *
2451  *	Helper method for drivers which want to hardwire 40 wire cable
2452  *	detection.
2453  */
2454 
2455 int ata_cable_40wire(struct ata_port *ap)
2456 {
2457 	return ATA_CBL_PATA40;
2458 }
2459 
2460 /**
2461  *	ata_cable_80wire	-	return 80 wire cable type
2462  *	@ap: port
2463  *
2464  *	Helper method for drivers which want to hardwire 80 wire cable
2465  *	detection.
2466  */
2467 
2468 int ata_cable_80wire(struct ata_port *ap)
2469 {
2470 	return ATA_CBL_PATA80;
2471 }
2472 
2473 /**
2474  *	ata_cable_unknown	-	return unknown PATA cable.
2475  *	@ap: port
2476  *
2477  *	Helper method for drivers which have no PATA cable detection.
2478  */
2479 
2480 int ata_cable_unknown(struct ata_port *ap)
2481 {
2482 	return ATA_CBL_PATA_UNK;
2483 }
2484 
2485 /**
2486  *	ata_cable_ignore	-	return ignored PATA cable.
2487  *	@ap: port
2488  *
2489  *	Helper method for drivers which don't use cable type to limit
2490  *	transfer mode.
2491  */
2492 int ata_cable_ignore(struct ata_port *ap)
2493 {
2494 	return ATA_CBL_PATA_IGN;
2495 }
2496 
2497 /**
2498  *	ata_cable_sata	-	return SATA cable type
2499  *	@ap: port
2500  *
2501  *	Helper method for drivers which have SATA cables
2502  */
2503 
2504 int ata_cable_sata(struct ata_port *ap)
2505 {
2506 	return ATA_CBL_SATA;
2507 }
2508 
2509 /**
2510  *	ata_bus_probe - Reset and probe ATA bus
2511  *	@ap: Bus to probe
2512  *
2513  *	Master ATA bus probing function.  Initiates a hardware-dependent
2514  *	bus reset, then attempts to identify any devices found on
2515  *	the bus.
2516  *
2517  *	LOCKING:
2518  *	PCI/etc. bus probe sem.
2519  *
2520  *	RETURNS:
2521  *	Zero on success, negative errno otherwise.
2522  */
2523 
2524 int ata_bus_probe(struct ata_port *ap)
2525 {
2526 	unsigned int classes[ATA_MAX_DEVICES];
2527 	int tries[ATA_MAX_DEVICES];
2528 	int rc;
2529 	struct ata_device *dev;
2530 
2531 	ata_for_each_dev(dev, &ap->link, ALL)
2532 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2533 
2534  retry:
2535 	ata_for_each_dev(dev, &ap->link, ALL) {
2536 		/* If we issue an SRST then an ATA drive (not ATAPI)
2537 		 * may change configuration and be in PIO0 timing. If
2538 		 * we do a hard reset (or are coming from power on)
2539 		 * this is true for ATA or ATAPI. Until we've set a
2540 		 * suitable controller mode we should not touch the
2541 		 * bus as we may be talking too fast.
2542 		 */
2543 		dev->pio_mode = XFER_PIO_0;
2544 
2545 		/* If the controller has a pio mode setup function
2546 		 * then use it to set the chipset to rights. Don't
2547 		 * touch the DMA setup as that will be dealt with when
2548 		 * configuring devices.
2549 		 */
2550 		if (ap->ops->set_piomode)
2551 			ap->ops->set_piomode(ap, dev);
2552 	}
2553 
2554 	/* reset and determine device classes */
2555 	ap->ops->phy_reset(ap);
2556 
2557 	ata_for_each_dev(dev, &ap->link, ALL) {
2558 		if (dev->class != ATA_DEV_UNKNOWN)
2559 			classes[dev->devno] = dev->class;
2560 		else
2561 			classes[dev->devno] = ATA_DEV_NONE;
2562 
2563 		dev->class = ATA_DEV_UNKNOWN;
2564 	}
2565 
2566 	/* read IDENTIFY page and configure devices. We have to do the identify
2567 	   specific sequence bass-ackwards so that PDIAG- is released by
2568 	   the slave device */
2569 
2570 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2571 		if (tries[dev->devno])
2572 			dev->class = classes[dev->devno];
2573 
2574 		if (!ata_dev_enabled(dev))
2575 			continue;
2576 
2577 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2578 				     dev->id);
2579 		if (rc)
2580 			goto fail;
2581 	}
2582 
2583 	/* Now ask for the cable type as PDIAG- should have been released */
2584 	if (ap->ops->cable_detect)
2585 		ap->cbl = ap->ops->cable_detect(ap);
2586 
2587 	/* We may have SATA bridge glue hiding here irrespective of
2588 	 * the reported cable types and sensed types.  When SATA
2589 	 * drives indicate we have a bridge, we don't know which end
2590 	 * of the link the bridge is which is a problem.
2591 	 */
2592 	ata_for_each_dev(dev, &ap->link, ENABLED)
2593 		if (ata_id_is_sata(dev->id))
2594 			ap->cbl = ATA_CBL_SATA;
2595 
2596 	/* After the identify sequence we can now set up the devices. We do
2597 	   this in the normal order so that the user doesn't get confused */
2598 
2599 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2600 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2601 		rc = ata_dev_configure(dev);
2602 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2603 		if (rc)
2604 			goto fail;
2605 	}
2606 
2607 	/* configure transfer mode */
2608 	rc = ata_set_mode(&ap->link, &dev);
2609 	if (rc)
2610 		goto fail;
2611 
2612 	ata_for_each_dev(dev, &ap->link, ENABLED)
2613 		return 0;
2614 
2615 	return -ENODEV;
2616 
2617  fail:
2618 	tries[dev->devno]--;
2619 
2620 	switch (rc) {
2621 	case -EINVAL:
2622 		/* eeek, something went very wrong, give up */
2623 		tries[dev->devno] = 0;
2624 		break;
2625 
2626 	case -ENODEV:
2627 		/* give it just one more chance */
2628 		tries[dev->devno] = min(tries[dev->devno], 1);
2629 	case -EIO:
2630 		if (tries[dev->devno] == 1) {
2631 			/* This is the last chance, better to slow
2632 			 * down than lose it.
2633 			 */
2634 			sata_down_spd_limit(&ap->link, 0);
2635 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2636 		}
2637 	}
2638 
2639 	if (!tries[dev->devno])
2640 		ata_dev_disable(dev);
2641 
2642 	goto retry;
2643 }
2644 
2645 /**
2646  *	sata_print_link_status - Print SATA link status
2647  *	@link: SATA link to printk link status about
2648  *
2649  *	This function prints link speed and status of a SATA link.
2650  *
2651  *	LOCKING:
2652  *	None.
2653  */
2654 static void sata_print_link_status(struct ata_link *link)
2655 {
2656 	u32 sstatus, scontrol, tmp;
2657 
2658 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2659 		return;
2660 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2661 
2662 	if (ata_phys_link_online(link)) {
2663 		tmp = (sstatus >> 4) & 0xf;
2664 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2665 			      sata_spd_string(tmp), sstatus, scontrol);
2666 	} else {
2667 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2668 			      sstatus, scontrol);
2669 	}
2670 }
2671 
2672 /**
2673  *	ata_dev_pair		-	return other device on cable
2674  *	@adev: device
2675  *
2676  *	Obtain the other device on the same cable, or if none is
2677  *	present NULL is returned
2678  */
2679 
2680 struct ata_device *ata_dev_pair(struct ata_device *adev)
2681 {
2682 	struct ata_link *link = adev->link;
2683 	struct ata_device *pair = &link->device[1 - adev->devno];
2684 	if (!ata_dev_enabled(pair))
2685 		return NULL;
2686 	return pair;
2687 }
2688 
2689 /**
2690  *	sata_down_spd_limit - adjust SATA spd limit downward
2691  *	@link: Link to adjust SATA spd limit for
2692  *	@spd_limit: Additional limit
2693  *
2694  *	Adjust SATA spd limit of @link downward.  Note that this
2695  *	function only adjusts the limit.  The change must be applied
2696  *	using sata_set_spd().
2697  *
2698  *	If @spd_limit is non-zero, the speed is limited to equal to or
2699  *	lower than @spd_limit if such speed is supported.  If
2700  *	@spd_limit is slower than any supported speed, only the lowest
2701  *	supported speed is allowed.
2702  *
2703  *	LOCKING:
2704  *	Inherited from caller.
2705  *
2706  *	RETURNS:
2707  *	0 on success, negative errno on failure
2708  */
2709 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2710 {
2711 	u32 sstatus, spd, mask;
2712 	int rc, bit;
2713 
2714 	if (!sata_scr_valid(link))
2715 		return -EOPNOTSUPP;
2716 
2717 	/* If SCR can be read, use it to determine the current SPD.
2718 	 * If not, use cached value in link->sata_spd.
2719 	 */
2720 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2721 	if (rc == 0 && ata_sstatus_online(sstatus))
2722 		spd = (sstatus >> 4) & 0xf;
2723 	else
2724 		spd = link->sata_spd;
2725 
2726 	mask = link->sata_spd_limit;
2727 	if (mask <= 1)
2728 		return -EINVAL;
2729 
2730 	/* unconditionally mask off the highest bit */
2731 	bit = fls(mask) - 1;
2732 	mask &= ~(1 << bit);
2733 
2734 	/* Mask off all speeds higher than or equal to the current
2735 	 * one.  Force 1.5Gbps if current SPD is not available.
2736 	 */
2737 	if (spd > 1)
2738 		mask &= (1 << (spd - 1)) - 1;
2739 	else
2740 		mask &= 1;
2741 
2742 	/* were we already at the bottom? */
2743 	if (!mask)
2744 		return -EINVAL;
2745 
2746 	if (spd_limit) {
2747 		if (mask & ((1 << spd_limit) - 1))
2748 			mask &= (1 << spd_limit) - 1;
2749 		else {
2750 			bit = ffs(mask) - 1;
2751 			mask = 1 << bit;
2752 		}
2753 	}
2754 
2755 	link->sata_spd_limit = mask;
2756 
2757 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2758 		      sata_spd_string(fls(mask)));
2759 
2760 	return 0;
2761 }
2762 
2763 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2764 {
2765 	struct ata_link *host_link = &link->ap->link;
2766 	u32 limit, target, spd;
2767 
2768 	limit = link->sata_spd_limit;
2769 
2770 	/* Don't configure downstream link faster than upstream link.
2771 	 * It doesn't speed up anything and some PMPs choke on such
2772 	 * configuration.
2773 	 */
2774 	if (!ata_is_host_link(link) && host_link->sata_spd)
2775 		limit &= (1 << host_link->sata_spd) - 1;
2776 
2777 	if (limit == UINT_MAX)
2778 		target = 0;
2779 	else
2780 		target = fls(limit);
2781 
2782 	spd = (*scontrol >> 4) & 0xf;
2783 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2784 
2785 	return spd != target;
2786 }
2787 
2788 /**
2789  *	sata_set_spd_needed - is SATA spd configuration needed
2790  *	@link: Link in question
2791  *
2792  *	Test whether the spd limit in SControl matches
2793  *	@link->sata_spd_limit.  This function is used to determine
2794  *	whether hardreset is necessary to apply SATA spd
2795  *	configuration.
2796  *
2797  *	LOCKING:
2798  *	Inherited from caller.
2799  *
2800  *	RETURNS:
2801  *	1 if SATA spd configuration is needed, 0 otherwise.
2802  */
2803 static int sata_set_spd_needed(struct ata_link *link)
2804 {
2805 	u32 scontrol;
2806 
2807 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2808 		return 1;
2809 
2810 	return __sata_set_spd_needed(link, &scontrol);
2811 }
2812 
2813 /**
2814  *	sata_set_spd - set SATA spd according to spd limit
2815  *	@link: Link to set SATA spd for
2816  *
2817  *	Set SATA spd of @link according to sata_spd_limit.
2818  *
2819  *	LOCKING:
2820  *	Inherited from caller.
2821  *
2822  *	RETURNS:
2823  *	0 if spd doesn't need to be changed, 1 if spd has been
2824  *	changed.  Negative errno if SCR registers are inaccessible.
2825  */
2826 int sata_set_spd(struct ata_link *link)
2827 {
2828 	u32 scontrol;
2829 	int rc;
2830 
2831 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2832 		return rc;
2833 
2834 	if (!__sata_set_spd_needed(link, &scontrol))
2835 		return 0;
2836 
2837 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2838 		return rc;
2839 
2840 	return 1;
2841 }
2842 
2843 /*
2844  * This mode timing computation functionality is ported over from
2845  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2846  */
2847 /*
2848  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2849  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2850  * for UDMA6, which is currently supported only by Maxtor drives.
2851  *
2852  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2853  */
2854 
2855 static const struct ata_timing ata_timing[] = {
2856 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2857 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2858 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2859 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2860 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2861 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2862 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2863 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2864 
2865 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2866 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2867 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2868 
2869 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2870 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2871 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2872 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2873 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2874 
2875 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2876 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2877 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2878 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2879 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2880 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2881 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2882 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2883 
2884 	{ 0xFF }
2885 };
2886 
2887 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2888 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2889 
2890 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2891 {
2892 	q->setup	= EZ(t->setup      * 1000,  T);
2893 	q->act8b	= EZ(t->act8b      * 1000,  T);
2894 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2895 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2896 	q->active	= EZ(t->active     * 1000,  T);
2897 	q->recover	= EZ(t->recover    * 1000,  T);
2898 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2899 	q->cycle	= EZ(t->cycle      * 1000,  T);
2900 	q->udma		= EZ(t->udma       * 1000, UT);
2901 }
2902 
2903 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2904 		      struct ata_timing *m, unsigned int what)
2905 {
2906 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2907 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2908 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2909 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2910 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2911 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2912 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2913 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2914 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2915 }
2916 
2917 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2918 {
2919 	const struct ata_timing *t = ata_timing;
2920 
2921 	while (xfer_mode > t->mode)
2922 		t++;
2923 
2924 	if (xfer_mode == t->mode)
2925 		return t;
2926 	return NULL;
2927 }
2928 
2929 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2930 		       struct ata_timing *t, int T, int UT)
2931 {
2932 	const u16 *id = adev->id;
2933 	const struct ata_timing *s;
2934 	struct ata_timing p;
2935 
2936 	/*
2937 	 * Find the mode.
2938 	 */
2939 
2940 	if (!(s = ata_timing_find_mode(speed)))
2941 		return -EINVAL;
2942 
2943 	memcpy(t, s, sizeof(*s));
2944 
2945 	/*
2946 	 * If the drive is an EIDE drive, it can tell us it needs extended
2947 	 * PIO/MW_DMA cycle timing.
2948 	 */
2949 
2950 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2951 		memset(&p, 0, sizeof(p));
2952 
2953 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2954 			if (speed <= XFER_PIO_2)
2955 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2956 			else if ((speed <= XFER_PIO_4) ||
2957 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2958 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2959 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2960 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2961 
2962 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2963 	}
2964 
2965 	/*
2966 	 * Convert the timing to bus clock counts.
2967 	 */
2968 
2969 	ata_timing_quantize(t, t, T, UT);
2970 
2971 	/*
2972 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2973 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2974 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2975 	 */
2976 
2977 	if (speed > XFER_PIO_6) {
2978 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2979 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2980 	}
2981 
2982 	/*
2983 	 * Lengthen active & recovery time so that cycle time is correct.
2984 	 */
2985 
2986 	if (t->act8b + t->rec8b < t->cyc8b) {
2987 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2988 		t->rec8b = t->cyc8b - t->act8b;
2989 	}
2990 
2991 	if (t->active + t->recover < t->cycle) {
2992 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2993 		t->recover = t->cycle - t->active;
2994 	}
2995 
2996 	/* In a few cases quantisation may produce enough errors to
2997 	   leave t->cycle too low for the sum of active and recovery
2998 	   if so we must correct this */
2999 	if (t->active + t->recover > t->cycle)
3000 		t->cycle = t->active + t->recover;
3001 
3002 	return 0;
3003 }
3004 
3005 /**
3006  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3007  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3008  *	@cycle: cycle duration in ns
3009  *
3010  *	Return matching xfer mode for @cycle.  The returned mode is of
3011  *	the transfer type specified by @xfer_shift.  If @cycle is too
3012  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3013  *	than the fastest known mode, the fasted mode is returned.
3014  *
3015  *	LOCKING:
3016  *	None.
3017  *
3018  *	RETURNS:
3019  *	Matching xfer_mode, 0xff if no match found.
3020  */
3021 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3022 {
3023 	u8 base_mode = 0xff, last_mode = 0xff;
3024 	const struct ata_xfer_ent *ent;
3025 	const struct ata_timing *t;
3026 
3027 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3028 		if (ent->shift == xfer_shift)
3029 			base_mode = ent->base;
3030 
3031 	for (t = ata_timing_find_mode(base_mode);
3032 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3033 		unsigned short this_cycle;
3034 
3035 		switch (xfer_shift) {
3036 		case ATA_SHIFT_PIO:
3037 		case ATA_SHIFT_MWDMA:
3038 			this_cycle = t->cycle;
3039 			break;
3040 		case ATA_SHIFT_UDMA:
3041 			this_cycle = t->udma;
3042 			break;
3043 		default:
3044 			return 0xff;
3045 		}
3046 
3047 		if (cycle > this_cycle)
3048 			break;
3049 
3050 		last_mode = t->mode;
3051 	}
3052 
3053 	return last_mode;
3054 }
3055 
3056 /**
3057  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3058  *	@dev: Device to adjust xfer masks
3059  *	@sel: ATA_DNXFER_* selector
3060  *
3061  *	Adjust xfer masks of @dev downward.  Note that this function
3062  *	does not apply the change.  Invoking ata_set_mode() afterwards
3063  *	will apply the limit.
3064  *
3065  *	LOCKING:
3066  *	Inherited from caller.
3067  *
3068  *	RETURNS:
3069  *	0 on success, negative errno on failure
3070  */
3071 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3072 {
3073 	char buf[32];
3074 	unsigned long orig_mask, xfer_mask;
3075 	unsigned long pio_mask, mwdma_mask, udma_mask;
3076 	int quiet, highbit;
3077 
3078 	quiet = !!(sel & ATA_DNXFER_QUIET);
3079 	sel &= ~ATA_DNXFER_QUIET;
3080 
3081 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3082 						  dev->mwdma_mask,
3083 						  dev->udma_mask);
3084 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3085 
3086 	switch (sel) {
3087 	case ATA_DNXFER_PIO:
3088 		highbit = fls(pio_mask) - 1;
3089 		pio_mask &= ~(1 << highbit);
3090 		break;
3091 
3092 	case ATA_DNXFER_DMA:
3093 		if (udma_mask) {
3094 			highbit = fls(udma_mask) - 1;
3095 			udma_mask &= ~(1 << highbit);
3096 			if (!udma_mask)
3097 				return -ENOENT;
3098 		} else if (mwdma_mask) {
3099 			highbit = fls(mwdma_mask) - 1;
3100 			mwdma_mask &= ~(1 << highbit);
3101 			if (!mwdma_mask)
3102 				return -ENOENT;
3103 		}
3104 		break;
3105 
3106 	case ATA_DNXFER_40C:
3107 		udma_mask &= ATA_UDMA_MASK_40C;
3108 		break;
3109 
3110 	case ATA_DNXFER_FORCE_PIO0:
3111 		pio_mask &= 1;
3112 	case ATA_DNXFER_FORCE_PIO:
3113 		mwdma_mask = 0;
3114 		udma_mask = 0;
3115 		break;
3116 
3117 	default:
3118 		BUG();
3119 	}
3120 
3121 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3122 
3123 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3124 		return -ENOENT;
3125 
3126 	if (!quiet) {
3127 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3128 			snprintf(buf, sizeof(buf), "%s:%s",
3129 				 ata_mode_string(xfer_mask),
3130 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3131 		else
3132 			snprintf(buf, sizeof(buf), "%s",
3133 				 ata_mode_string(xfer_mask));
3134 
3135 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3136 	}
3137 
3138 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3139 			    &dev->udma_mask);
3140 
3141 	return 0;
3142 }
3143 
3144 static int ata_dev_set_mode(struct ata_device *dev)
3145 {
3146 	struct ata_port *ap = dev->link->ap;
3147 	struct ata_eh_context *ehc = &dev->link->eh_context;
3148 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3149 	const char *dev_err_whine = "";
3150 	int ign_dev_err = 0;
3151 	unsigned int err_mask = 0;
3152 	int rc;
3153 
3154 	dev->flags &= ~ATA_DFLAG_PIO;
3155 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3156 		dev->flags |= ATA_DFLAG_PIO;
3157 
3158 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3159 		dev_err_whine = " (SET_XFERMODE skipped)";
3160 	else {
3161 		if (nosetxfer)
3162 			ata_dev_warn(dev,
3163 				     "NOSETXFER but PATA detected - can't "
3164 				     "skip SETXFER, might malfunction\n");
3165 		err_mask = ata_dev_set_xfermode(dev);
3166 	}
3167 
3168 	if (err_mask & ~AC_ERR_DEV)
3169 		goto fail;
3170 
3171 	/* revalidate */
3172 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3173 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3174 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3175 	if (rc)
3176 		return rc;
3177 
3178 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3179 		/* Old CFA may refuse this command, which is just fine */
3180 		if (ata_id_is_cfa(dev->id))
3181 			ign_dev_err = 1;
3182 		/* Catch several broken garbage emulations plus some pre
3183 		   ATA devices */
3184 		if (ata_id_major_version(dev->id) == 0 &&
3185 					dev->pio_mode <= XFER_PIO_2)
3186 			ign_dev_err = 1;
3187 		/* Some very old devices and some bad newer ones fail
3188 		   any kind of SET_XFERMODE request but support PIO0-2
3189 		   timings and no IORDY */
3190 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3191 			ign_dev_err = 1;
3192 	}
3193 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3194 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3195 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3196 	    dev->dma_mode == XFER_MW_DMA_0 &&
3197 	    (dev->id[63] >> 8) & 1)
3198 		ign_dev_err = 1;
3199 
3200 	/* if the device is actually configured correctly, ignore dev err */
3201 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3202 		ign_dev_err = 1;
3203 
3204 	if (err_mask & AC_ERR_DEV) {
3205 		if (!ign_dev_err)
3206 			goto fail;
3207 		else
3208 			dev_err_whine = " (device error ignored)";
3209 	}
3210 
3211 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3212 		dev->xfer_shift, (int)dev->xfer_mode);
3213 
3214 	ata_dev_info(dev, "configured for %s%s\n",
3215 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3216 		     dev_err_whine);
3217 
3218 	return 0;
3219 
3220  fail:
3221 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3222 	return -EIO;
3223 }
3224 
3225 /**
3226  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3227  *	@link: link on which timings will be programmed
3228  *	@r_failed_dev: out parameter for failed device
3229  *
3230  *	Standard implementation of the function used to tune and set
3231  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3232  *	ata_dev_set_mode() fails, pointer to the failing device is
3233  *	returned in @r_failed_dev.
3234  *
3235  *	LOCKING:
3236  *	PCI/etc. bus probe sem.
3237  *
3238  *	RETURNS:
3239  *	0 on success, negative errno otherwise
3240  */
3241 
3242 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3243 {
3244 	struct ata_port *ap = link->ap;
3245 	struct ata_device *dev;
3246 	int rc = 0, used_dma = 0, found = 0;
3247 
3248 	/* step 1: calculate xfer_mask */
3249 	ata_for_each_dev(dev, link, ENABLED) {
3250 		unsigned long pio_mask, dma_mask;
3251 		unsigned int mode_mask;
3252 
3253 		mode_mask = ATA_DMA_MASK_ATA;
3254 		if (dev->class == ATA_DEV_ATAPI)
3255 			mode_mask = ATA_DMA_MASK_ATAPI;
3256 		else if (ata_id_is_cfa(dev->id))
3257 			mode_mask = ATA_DMA_MASK_CFA;
3258 
3259 		ata_dev_xfermask(dev);
3260 		ata_force_xfermask(dev);
3261 
3262 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3263 
3264 		if (libata_dma_mask & mode_mask)
3265 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3266 						     dev->udma_mask);
3267 		else
3268 			dma_mask = 0;
3269 
3270 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3271 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3272 
3273 		found = 1;
3274 		if (ata_dma_enabled(dev))
3275 			used_dma = 1;
3276 	}
3277 	if (!found)
3278 		goto out;
3279 
3280 	/* step 2: always set host PIO timings */
3281 	ata_for_each_dev(dev, link, ENABLED) {
3282 		if (dev->pio_mode == 0xff) {
3283 			ata_dev_warn(dev, "no PIO support\n");
3284 			rc = -EINVAL;
3285 			goto out;
3286 		}
3287 
3288 		dev->xfer_mode = dev->pio_mode;
3289 		dev->xfer_shift = ATA_SHIFT_PIO;
3290 		if (ap->ops->set_piomode)
3291 			ap->ops->set_piomode(ap, dev);
3292 	}
3293 
3294 	/* step 3: set host DMA timings */
3295 	ata_for_each_dev(dev, link, ENABLED) {
3296 		if (!ata_dma_enabled(dev))
3297 			continue;
3298 
3299 		dev->xfer_mode = dev->dma_mode;
3300 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3301 		if (ap->ops->set_dmamode)
3302 			ap->ops->set_dmamode(ap, dev);
3303 	}
3304 
3305 	/* step 4: update devices' xfer mode */
3306 	ata_for_each_dev(dev, link, ENABLED) {
3307 		rc = ata_dev_set_mode(dev);
3308 		if (rc)
3309 			goto out;
3310 	}
3311 
3312 	/* Record simplex status. If we selected DMA then the other
3313 	 * host channels are not permitted to do so.
3314 	 */
3315 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3316 		ap->host->simplex_claimed = ap;
3317 
3318  out:
3319 	if (rc)
3320 		*r_failed_dev = dev;
3321 	return rc;
3322 }
3323 
3324 /**
3325  *	ata_wait_ready - wait for link to become ready
3326  *	@link: link to be waited on
3327  *	@deadline: deadline jiffies for the operation
3328  *	@check_ready: callback to check link readiness
3329  *
3330  *	Wait for @link to become ready.  @check_ready should return
3331  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3332  *	link doesn't seem to be occupied, other errno for other error
3333  *	conditions.
3334  *
3335  *	Transient -ENODEV conditions are allowed for
3336  *	ATA_TMOUT_FF_WAIT.
3337  *
3338  *	LOCKING:
3339  *	EH context.
3340  *
3341  *	RETURNS:
3342  *	0 if @linke is ready before @deadline; otherwise, -errno.
3343  */
3344 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3345 		   int (*check_ready)(struct ata_link *link))
3346 {
3347 	unsigned long start = jiffies;
3348 	unsigned long nodev_deadline;
3349 	int warned = 0;
3350 
3351 	/* choose which 0xff timeout to use, read comment in libata.h */
3352 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3353 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3354 	else
3355 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3356 
3357 	/* Slave readiness can't be tested separately from master.  On
3358 	 * M/S emulation configuration, this function should be called
3359 	 * only on the master and it will handle both master and slave.
3360 	 */
3361 	WARN_ON(link == link->ap->slave_link);
3362 
3363 	if (time_after(nodev_deadline, deadline))
3364 		nodev_deadline = deadline;
3365 
3366 	while (1) {
3367 		unsigned long now = jiffies;
3368 		int ready, tmp;
3369 
3370 		ready = tmp = check_ready(link);
3371 		if (ready > 0)
3372 			return 0;
3373 
3374 		/*
3375 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3376 		 * is online.  Also, some SATA devices take a long
3377 		 * time to clear 0xff after reset.  Wait for
3378 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3379 		 * offline.
3380 		 *
3381 		 * Note that some PATA controllers (pata_ali) explode
3382 		 * if status register is read more than once when
3383 		 * there's no device attached.
3384 		 */
3385 		if (ready == -ENODEV) {
3386 			if (ata_link_online(link))
3387 				ready = 0;
3388 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3389 				 !ata_link_offline(link) &&
3390 				 time_before(now, nodev_deadline))
3391 				ready = 0;
3392 		}
3393 
3394 		if (ready)
3395 			return ready;
3396 		if (time_after(now, deadline))
3397 			return -EBUSY;
3398 
3399 		if (!warned && time_after(now, start + 5 * HZ) &&
3400 		    (deadline - now > 3 * HZ)) {
3401 			ata_link_warn(link,
3402 				"link is slow to respond, please be patient "
3403 				"(ready=%d)\n", tmp);
3404 			warned = 1;
3405 		}
3406 
3407 		ata_msleep(link->ap, 50);
3408 	}
3409 }
3410 
3411 /**
3412  *	ata_wait_after_reset - wait for link to become ready after reset
3413  *	@link: link to be waited on
3414  *	@deadline: deadline jiffies for the operation
3415  *	@check_ready: callback to check link readiness
3416  *
3417  *	Wait for @link to become ready after reset.
3418  *
3419  *	LOCKING:
3420  *	EH context.
3421  *
3422  *	RETURNS:
3423  *	0 if @linke is ready before @deadline; otherwise, -errno.
3424  */
3425 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3426 				int (*check_ready)(struct ata_link *link))
3427 {
3428 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3429 
3430 	return ata_wait_ready(link, deadline, check_ready);
3431 }
3432 
3433 /**
3434  *	sata_link_debounce - debounce SATA phy status
3435  *	@link: ATA link to debounce SATA phy status for
3436  *	@params: timing parameters { interval, duratinon, timeout } in msec
3437  *	@deadline: deadline jiffies for the operation
3438  *
3439  *	Make sure SStatus of @link reaches stable state, determined by
3440  *	holding the same value where DET is not 1 for @duration polled
3441  *	every @interval, before @timeout.  Timeout constraints the
3442  *	beginning of the stable state.  Because DET gets stuck at 1 on
3443  *	some controllers after hot unplugging, this functions waits
3444  *	until timeout then returns 0 if DET is stable at 1.
3445  *
3446  *	@timeout is further limited by @deadline.  The sooner of the
3447  *	two is used.
3448  *
3449  *	LOCKING:
3450  *	Kernel thread context (may sleep)
3451  *
3452  *	RETURNS:
3453  *	0 on success, -errno on failure.
3454  */
3455 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3456 		       unsigned long deadline)
3457 {
3458 	unsigned long interval = params[0];
3459 	unsigned long duration = params[1];
3460 	unsigned long last_jiffies, t;
3461 	u32 last, cur;
3462 	int rc;
3463 
3464 	t = ata_deadline(jiffies, params[2]);
3465 	if (time_before(t, deadline))
3466 		deadline = t;
3467 
3468 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3469 		return rc;
3470 	cur &= 0xf;
3471 
3472 	last = cur;
3473 	last_jiffies = jiffies;
3474 
3475 	while (1) {
3476 		ata_msleep(link->ap, interval);
3477 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3478 			return rc;
3479 		cur &= 0xf;
3480 
3481 		/* DET stable? */
3482 		if (cur == last) {
3483 			if (cur == 1 && time_before(jiffies, deadline))
3484 				continue;
3485 			if (time_after(jiffies,
3486 				       ata_deadline(last_jiffies, duration)))
3487 				return 0;
3488 			continue;
3489 		}
3490 
3491 		/* unstable, start over */
3492 		last = cur;
3493 		last_jiffies = jiffies;
3494 
3495 		/* Check deadline.  If debouncing failed, return
3496 		 * -EPIPE to tell upper layer to lower link speed.
3497 		 */
3498 		if (time_after(jiffies, deadline))
3499 			return -EPIPE;
3500 	}
3501 }
3502 
3503 /**
3504  *	sata_link_resume - resume SATA link
3505  *	@link: ATA link to resume SATA
3506  *	@params: timing parameters { interval, duratinon, timeout } in msec
3507  *	@deadline: deadline jiffies for the operation
3508  *
3509  *	Resume SATA phy @link and debounce it.
3510  *
3511  *	LOCKING:
3512  *	Kernel thread context (may sleep)
3513  *
3514  *	RETURNS:
3515  *	0 on success, -errno on failure.
3516  */
3517 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3518 		     unsigned long deadline)
3519 {
3520 	int tries = ATA_LINK_RESUME_TRIES;
3521 	u32 scontrol, serror;
3522 	int rc;
3523 
3524 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3525 		return rc;
3526 
3527 	/*
3528 	 * Writes to SControl sometimes get ignored under certain
3529 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3530 	 * cleared.
3531 	 */
3532 	do {
3533 		scontrol = (scontrol & 0x0f0) | 0x300;
3534 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3535 			return rc;
3536 		/*
3537 		 * Some PHYs react badly if SStatus is pounded
3538 		 * immediately after resuming.  Delay 200ms before
3539 		 * debouncing.
3540 		 */
3541 		ata_msleep(link->ap, 200);
3542 
3543 		/* is SControl restored correctly? */
3544 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3545 			return rc;
3546 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3547 
3548 	if ((scontrol & 0xf0f) != 0x300) {
3549 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3550 			     scontrol);
3551 		return 0;
3552 	}
3553 
3554 	if (tries < ATA_LINK_RESUME_TRIES)
3555 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3556 			      ATA_LINK_RESUME_TRIES - tries);
3557 
3558 	if ((rc = sata_link_debounce(link, params, deadline)))
3559 		return rc;
3560 
3561 	/* clear SError, some PHYs require this even for SRST to work */
3562 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3563 		rc = sata_scr_write(link, SCR_ERROR, serror);
3564 
3565 	return rc != -EINVAL ? rc : 0;
3566 }
3567 
3568 /**
3569  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3570  *	@link: ATA link to manipulate SControl for
3571  *	@policy: LPM policy to configure
3572  *	@spm_wakeup: initiate LPM transition to active state
3573  *
3574  *	Manipulate the IPM field of the SControl register of @link
3575  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3576  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3577  *	the link.  This function also clears PHYRDY_CHG before
3578  *	returning.
3579  *
3580  *	LOCKING:
3581  *	EH context.
3582  *
3583  *	RETURNS:
3584  *	0 on succes, -errno otherwise.
3585  */
3586 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3587 		      bool spm_wakeup)
3588 {
3589 	struct ata_eh_context *ehc = &link->eh_context;
3590 	bool woken_up = false;
3591 	u32 scontrol;
3592 	int rc;
3593 
3594 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3595 	if (rc)
3596 		return rc;
3597 
3598 	switch (policy) {
3599 	case ATA_LPM_MAX_POWER:
3600 		/* disable all LPM transitions */
3601 		scontrol |= (0x3 << 8);
3602 		/* initiate transition to active state */
3603 		if (spm_wakeup) {
3604 			scontrol |= (0x4 << 12);
3605 			woken_up = true;
3606 		}
3607 		break;
3608 	case ATA_LPM_MED_POWER:
3609 		/* allow LPM to PARTIAL */
3610 		scontrol &= ~(0x1 << 8);
3611 		scontrol |= (0x2 << 8);
3612 		break;
3613 	case ATA_LPM_MIN_POWER:
3614 		if (ata_link_nr_enabled(link) > 0)
3615 			/* no restrictions on LPM transitions */
3616 			scontrol &= ~(0x3 << 8);
3617 		else {
3618 			/* empty port, power off */
3619 			scontrol &= ~0xf;
3620 			scontrol |= (0x1 << 2);
3621 		}
3622 		break;
3623 	default:
3624 		WARN_ON(1);
3625 	}
3626 
3627 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3628 	if (rc)
3629 		return rc;
3630 
3631 	/* give the link time to transit out of LPM state */
3632 	if (woken_up)
3633 		msleep(10);
3634 
3635 	/* clear PHYRDY_CHG from SError */
3636 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3637 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3638 }
3639 
3640 /**
3641  *	ata_std_prereset - prepare for reset
3642  *	@link: ATA link to be reset
3643  *	@deadline: deadline jiffies for the operation
3644  *
3645  *	@link is about to be reset.  Initialize it.  Failure from
3646  *	prereset makes libata abort whole reset sequence and give up
3647  *	that port, so prereset should be best-effort.  It does its
3648  *	best to prepare for reset sequence but if things go wrong, it
3649  *	should just whine, not fail.
3650  *
3651  *	LOCKING:
3652  *	Kernel thread context (may sleep)
3653  *
3654  *	RETURNS:
3655  *	0 on success, -errno otherwise.
3656  */
3657 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3658 {
3659 	struct ata_port *ap = link->ap;
3660 	struct ata_eh_context *ehc = &link->eh_context;
3661 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3662 	int rc;
3663 
3664 	/* if we're about to do hardreset, nothing more to do */
3665 	if (ehc->i.action & ATA_EH_HARDRESET)
3666 		return 0;
3667 
3668 	/* if SATA, resume link */
3669 	if (ap->flags & ATA_FLAG_SATA) {
3670 		rc = sata_link_resume(link, timing, deadline);
3671 		/* whine about phy resume failure but proceed */
3672 		if (rc && rc != -EOPNOTSUPP)
3673 			ata_link_warn(link,
3674 				      "failed to resume link for reset (errno=%d)\n",
3675 				      rc);
3676 	}
3677 
3678 	/* no point in trying softreset on offline link */
3679 	if (ata_phys_link_offline(link))
3680 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  *	sata_link_hardreset - reset link via SATA phy reset
3687  *	@link: link to reset
3688  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3689  *	@deadline: deadline jiffies for the operation
3690  *	@online: optional out parameter indicating link onlineness
3691  *	@check_ready: optional callback to check link readiness
3692  *
3693  *	SATA phy-reset @link using DET bits of SControl register.
3694  *	After hardreset, link readiness is waited upon using
3695  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3696  *	allowed to not specify @check_ready and wait itself after this
3697  *	function returns.  Device classification is LLD's
3698  *	responsibility.
3699  *
3700  *	*@online is set to one iff reset succeeded and @link is online
3701  *	after reset.
3702  *
3703  *	LOCKING:
3704  *	Kernel thread context (may sleep)
3705  *
3706  *	RETURNS:
3707  *	0 on success, -errno otherwise.
3708  */
3709 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3710 			unsigned long deadline,
3711 			bool *online, int (*check_ready)(struct ata_link *))
3712 {
3713 	u32 scontrol;
3714 	int rc;
3715 
3716 	DPRINTK("ENTER\n");
3717 
3718 	if (online)
3719 		*online = false;
3720 
3721 	if (sata_set_spd_needed(link)) {
3722 		/* SATA spec says nothing about how to reconfigure
3723 		 * spd.  To be on the safe side, turn off phy during
3724 		 * reconfiguration.  This works for at least ICH7 AHCI
3725 		 * and Sil3124.
3726 		 */
3727 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728 			goto out;
3729 
3730 		scontrol = (scontrol & 0x0f0) | 0x304;
3731 
3732 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3733 			goto out;
3734 
3735 		sata_set_spd(link);
3736 	}
3737 
3738 	/* issue phy wake/reset */
3739 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3740 		goto out;
3741 
3742 	scontrol = (scontrol & 0x0f0) | 0x301;
3743 
3744 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3745 		goto out;
3746 
3747 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3748 	 * 10.4.2 says at least 1 ms.
3749 	 */
3750 	ata_msleep(link->ap, 1);
3751 
3752 	/* bring link back */
3753 	rc = sata_link_resume(link, timing, deadline);
3754 	if (rc)
3755 		goto out;
3756 	/* if link is offline nothing more to do */
3757 	if (ata_phys_link_offline(link))
3758 		goto out;
3759 
3760 	/* Link is online.  From this point, -ENODEV too is an error. */
3761 	if (online)
3762 		*online = true;
3763 
3764 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3765 		/* If PMP is supported, we have to do follow-up SRST.
3766 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3767 		 * the first port is empty.  Wait only for
3768 		 * ATA_TMOUT_PMP_SRST_WAIT.
3769 		 */
3770 		if (check_ready) {
3771 			unsigned long pmp_deadline;
3772 
3773 			pmp_deadline = ata_deadline(jiffies,
3774 						    ATA_TMOUT_PMP_SRST_WAIT);
3775 			if (time_after(pmp_deadline, deadline))
3776 				pmp_deadline = deadline;
3777 			ata_wait_ready(link, pmp_deadline, check_ready);
3778 		}
3779 		rc = -EAGAIN;
3780 		goto out;
3781 	}
3782 
3783 	rc = 0;
3784 	if (check_ready)
3785 		rc = ata_wait_ready(link, deadline, check_ready);
3786  out:
3787 	if (rc && rc != -EAGAIN) {
3788 		/* online is set iff link is online && reset succeeded */
3789 		if (online)
3790 			*online = false;
3791 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3792 	}
3793 	DPRINTK("EXIT, rc=%d\n", rc);
3794 	return rc;
3795 }
3796 
3797 /**
3798  *	sata_std_hardreset - COMRESET w/o waiting or classification
3799  *	@link: link to reset
3800  *	@class: resulting class of attached device
3801  *	@deadline: deadline jiffies for the operation
3802  *
3803  *	Standard SATA COMRESET w/o waiting or classification.
3804  *
3805  *	LOCKING:
3806  *	Kernel thread context (may sleep)
3807  *
3808  *	RETURNS:
3809  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3810  */
3811 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3812 		       unsigned long deadline)
3813 {
3814 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3815 	bool online;
3816 	int rc;
3817 
3818 	/* do hardreset */
3819 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3820 	return online ? -EAGAIN : rc;
3821 }
3822 
3823 /**
3824  *	ata_std_postreset - standard postreset callback
3825  *	@link: the target ata_link
3826  *	@classes: classes of attached devices
3827  *
3828  *	This function is invoked after a successful reset.  Note that
3829  *	the device might have been reset more than once using
3830  *	different reset methods before postreset is invoked.
3831  *
3832  *	LOCKING:
3833  *	Kernel thread context (may sleep)
3834  */
3835 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3836 {
3837 	u32 serror;
3838 
3839 	DPRINTK("ENTER\n");
3840 
3841 	/* reset complete, clear SError */
3842 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3843 		sata_scr_write(link, SCR_ERROR, serror);
3844 
3845 	/* print link status */
3846 	sata_print_link_status(link);
3847 
3848 	DPRINTK("EXIT\n");
3849 }
3850 
3851 /**
3852  *	ata_dev_same_device - Determine whether new ID matches configured device
3853  *	@dev: device to compare against
3854  *	@new_class: class of the new device
3855  *	@new_id: IDENTIFY page of the new device
3856  *
3857  *	Compare @new_class and @new_id against @dev and determine
3858  *	whether @dev is the device indicated by @new_class and
3859  *	@new_id.
3860  *
3861  *	LOCKING:
3862  *	None.
3863  *
3864  *	RETURNS:
3865  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3866  */
3867 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3868 			       const u16 *new_id)
3869 {
3870 	const u16 *old_id = dev->id;
3871 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3872 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3873 
3874 	if (dev->class != new_class) {
3875 		ata_dev_info(dev, "class mismatch %d != %d\n",
3876 			     dev->class, new_class);
3877 		return 0;
3878 	}
3879 
3880 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3881 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3882 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3883 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3884 
3885 	if (strcmp(model[0], model[1])) {
3886 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3887 			     model[0], model[1]);
3888 		return 0;
3889 	}
3890 
3891 	if (strcmp(serial[0], serial[1])) {
3892 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3893 			     serial[0], serial[1]);
3894 		return 0;
3895 	}
3896 
3897 	return 1;
3898 }
3899 
3900 /**
3901  *	ata_dev_reread_id - Re-read IDENTIFY data
3902  *	@dev: target ATA device
3903  *	@readid_flags: read ID flags
3904  *
3905  *	Re-read IDENTIFY page and make sure @dev is still attached to
3906  *	the port.
3907  *
3908  *	LOCKING:
3909  *	Kernel thread context (may sleep)
3910  *
3911  *	RETURNS:
3912  *	0 on success, negative errno otherwise
3913  */
3914 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3915 {
3916 	unsigned int class = dev->class;
3917 	u16 *id = (void *)dev->link->ap->sector_buf;
3918 	int rc;
3919 
3920 	/* read ID data */
3921 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3922 	if (rc)
3923 		return rc;
3924 
3925 	/* is the device still there? */
3926 	if (!ata_dev_same_device(dev, class, id))
3927 		return -ENODEV;
3928 
3929 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3930 	return 0;
3931 }
3932 
3933 /**
3934  *	ata_dev_revalidate - Revalidate ATA device
3935  *	@dev: device to revalidate
3936  *	@new_class: new class code
3937  *	@readid_flags: read ID flags
3938  *
3939  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3940  *	port and reconfigure it according to the new IDENTIFY page.
3941  *
3942  *	LOCKING:
3943  *	Kernel thread context (may sleep)
3944  *
3945  *	RETURNS:
3946  *	0 on success, negative errno otherwise
3947  */
3948 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3949 		       unsigned int readid_flags)
3950 {
3951 	u64 n_sectors = dev->n_sectors;
3952 	u64 n_native_sectors = dev->n_native_sectors;
3953 	int rc;
3954 
3955 	if (!ata_dev_enabled(dev))
3956 		return -ENODEV;
3957 
3958 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3959 	if (ata_class_enabled(new_class) &&
3960 	    new_class != ATA_DEV_ATA &&
3961 	    new_class != ATA_DEV_ATAPI &&
3962 	    new_class != ATA_DEV_SEMB) {
3963 		ata_dev_info(dev, "class mismatch %u != %u\n",
3964 			     dev->class, new_class);
3965 		rc = -ENODEV;
3966 		goto fail;
3967 	}
3968 
3969 	/* re-read ID */
3970 	rc = ata_dev_reread_id(dev, readid_flags);
3971 	if (rc)
3972 		goto fail;
3973 
3974 	/* configure device according to the new ID */
3975 	rc = ata_dev_configure(dev);
3976 	if (rc)
3977 		goto fail;
3978 
3979 	/* verify n_sectors hasn't changed */
3980 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3981 	    dev->n_sectors == n_sectors)
3982 		return 0;
3983 
3984 	/* n_sectors has changed */
3985 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3986 		     (unsigned long long)n_sectors,
3987 		     (unsigned long long)dev->n_sectors);
3988 
3989 	/*
3990 	 * Something could have caused HPA to be unlocked
3991 	 * involuntarily.  If n_native_sectors hasn't changed and the
3992 	 * new size matches it, keep the device.
3993 	 */
3994 	if (dev->n_native_sectors == n_native_sectors &&
3995 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3996 		ata_dev_warn(dev,
3997 			     "new n_sectors matches native, probably "
3998 			     "late HPA unlock, n_sectors updated\n");
3999 		/* use the larger n_sectors */
4000 		return 0;
4001 	}
4002 
4003 	/*
4004 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4005 	 * unlocking HPA in those cases.
4006 	 *
4007 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4008 	 */
4009 	if (dev->n_native_sectors == n_native_sectors &&
4010 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4011 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4012 		ata_dev_warn(dev,
4013 			     "old n_sectors matches native, probably "
4014 			     "late HPA lock, will try to unlock HPA\n");
4015 		/* try unlocking HPA */
4016 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4017 		rc = -EIO;
4018 	} else
4019 		rc = -ENODEV;
4020 
4021 	/* restore original n_[native_]sectors and fail */
4022 	dev->n_native_sectors = n_native_sectors;
4023 	dev->n_sectors = n_sectors;
4024  fail:
4025 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4026 	return rc;
4027 }
4028 
4029 struct ata_blacklist_entry {
4030 	const char *model_num;
4031 	const char *model_rev;
4032 	unsigned long horkage;
4033 };
4034 
4035 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4036 	/* Devices with DMA related problems under Linux */
4037 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4038 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4039 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4040 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4041 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4042 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4043 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4044 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4045 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4046 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4047 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4048 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4049 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4050 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4051 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4052 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4053 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4054 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4055 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4056 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4057 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4058 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4059 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4060 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4061 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4062 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4063 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4064 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4065 	{ "2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4066 	/* Odd clown on sil3726/4726 PMPs */
4067 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4068 
4069 	/* Weird ATAPI devices */
4070 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4071 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4072 
4073 	/* Devices we expect to fail diagnostics */
4074 
4075 	/* Devices where NCQ should be avoided */
4076 	/* NCQ is slow */
4077 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4078 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4079 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4080 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4081 	/* NCQ is broken */
4082 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4083 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4084 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4085 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4086 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4087 
4088 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4089 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4090 						ATA_HORKAGE_FIRMWARE_WARN },
4091 
4092 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4093 						ATA_HORKAGE_FIRMWARE_WARN },
4094 
4095 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4096 						ATA_HORKAGE_FIRMWARE_WARN },
4097 
4098 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4099 						ATA_HORKAGE_FIRMWARE_WARN },
4100 
4101 	/* Blacklist entries taken from Silicon Image 3124/3132
4102 	   Windows driver .inf file - also several Linux problem reports */
4103 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4104 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4105 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4106 
4107 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4108 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4109 
4110 	/* devices which puke on READ_NATIVE_MAX */
4111 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4112 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4113 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4114 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4115 
4116 	/* this one allows HPA unlocking but fails IOs on the area */
4117 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4118 
4119 	/* Devices which report 1 sector over size HPA */
4120 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4121 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4122 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4123 
4124 	/* Devices which get the IVB wrong */
4125 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4126 	/* Maybe we should just blacklist TSSTcorp... */
4127 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4128 
4129 	/* Devices that do not need bridging limits applied */
4130 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4131 
4132 	/* Devices which aren't very happy with higher link speeds */
4133 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4134 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4135 
4136 	/*
4137 	 * Devices which choke on SETXFER.  Applies only if both the
4138 	 * device and controller are SATA.
4139 	 */
4140 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4141 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4142 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4143 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4144 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4145 
4146 	/* End Marker */
4147 	{ }
4148 };
4149 
4150 /**
4151  *	glob_match - match a text string against a glob-style pattern
4152  *	@text: the string to be examined
4153  *	@pattern: the glob-style pattern to be matched against
4154  *
4155  *	Either/both of text and pattern can be empty strings.
4156  *
4157  *	Match text against a glob-style pattern, with wildcards and simple sets:
4158  *
4159  *		?	matches any single character.
4160  *		*	matches any run of characters.
4161  *		[xyz]	matches a single character from the set: x, y, or z.
4162  *		[a-d]	matches a single character from the range: a, b, c, or d.
4163  *		[a-d0-9] matches a single character from either range.
4164  *
4165  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4166  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4167  *
4168  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4169  *
4170  *	This function uses one level of recursion per '*' in pattern.
4171  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4172  *	this will not cause stack problems for any reasonable use here.
4173  *
4174  *	RETURNS:
4175  *	0 on match, 1 otherwise.
4176  */
4177 static int glob_match (const char *text, const char *pattern)
4178 {
4179 	do {
4180 		/* Match single character or a '?' wildcard */
4181 		if (*text == *pattern || *pattern == '?') {
4182 			if (!*pattern++)
4183 				return 0;  /* End of both strings: match */
4184 		} else {
4185 			/* Match single char against a '[' bracketed ']' pattern set */
4186 			if (!*text || *pattern != '[')
4187 				break;  /* Not a pattern set */
4188 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4189 				if (*pattern == '-' && *(pattern - 1) != '[')
4190 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4191 						++pattern;
4192 						break;
4193 					}
4194 			}
4195 			if (!*pattern || *pattern == ']')
4196 				return 1;  /* No match */
4197 			while (*pattern && *pattern++ != ']');
4198 		}
4199 	} while (*++text && *pattern);
4200 
4201 	/* Match any run of chars against a '*' wildcard */
4202 	if (*pattern == '*') {
4203 		if (!*++pattern)
4204 			return 0;  /* Match: avoid recursion at end of pattern */
4205 		/* Loop to handle additional pattern chars after the wildcard */
4206 		while (*text) {
4207 			if (glob_match(text, pattern) == 0)
4208 				return 0;  /* Remainder matched */
4209 			++text;  /* Absorb (match) this char and try again */
4210 		}
4211 	}
4212 	if (!*text && !*pattern)
4213 		return 0;  /* End of both strings: match */
4214 	return 1;  /* No match */
4215 }
4216 
4217 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4218 {
4219 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4220 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4221 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4222 
4223 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4224 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4225 
4226 	while (ad->model_num) {
4227 		if (!glob_match(model_num, ad->model_num)) {
4228 			if (ad->model_rev == NULL)
4229 				return ad->horkage;
4230 			if (!glob_match(model_rev, ad->model_rev))
4231 				return ad->horkage;
4232 		}
4233 		ad++;
4234 	}
4235 	return 0;
4236 }
4237 
4238 static int ata_dma_blacklisted(const struct ata_device *dev)
4239 {
4240 	/* We don't support polling DMA.
4241 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4242 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4243 	 */
4244 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4245 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4246 		return 1;
4247 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4248 }
4249 
4250 /**
4251  *	ata_is_40wire		-	check drive side detection
4252  *	@dev: device
4253  *
4254  *	Perform drive side detection decoding, allowing for device vendors
4255  *	who can't follow the documentation.
4256  */
4257 
4258 static int ata_is_40wire(struct ata_device *dev)
4259 {
4260 	if (dev->horkage & ATA_HORKAGE_IVB)
4261 		return ata_drive_40wire_relaxed(dev->id);
4262 	return ata_drive_40wire(dev->id);
4263 }
4264 
4265 /**
4266  *	cable_is_40wire		-	40/80/SATA decider
4267  *	@ap: port to consider
4268  *
4269  *	This function encapsulates the policy for speed management
4270  *	in one place. At the moment we don't cache the result but
4271  *	there is a good case for setting ap->cbl to the result when
4272  *	we are called with unknown cables (and figuring out if it
4273  *	impacts hotplug at all).
4274  *
4275  *	Return 1 if the cable appears to be 40 wire.
4276  */
4277 
4278 static int cable_is_40wire(struct ata_port *ap)
4279 {
4280 	struct ata_link *link;
4281 	struct ata_device *dev;
4282 
4283 	/* If the controller thinks we are 40 wire, we are. */
4284 	if (ap->cbl == ATA_CBL_PATA40)
4285 		return 1;
4286 
4287 	/* If the controller thinks we are 80 wire, we are. */
4288 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4289 		return 0;
4290 
4291 	/* If the system is known to be 40 wire short cable (eg
4292 	 * laptop), then we allow 80 wire modes even if the drive
4293 	 * isn't sure.
4294 	 */
4295 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4296 		return 0;
4297 
4298 	/* If the controller doesn't know, we scan.
4299 	 *
4300 	 * Note: We look for all 40 wire detects at this point.  Any
4301 	 *       80 wire detect is taken to be 80 wire cable because
4302 	 * - in many setups only the one drive (slave if present) will
4303 	 *   give a valid detect
4304 	 * - if you have a non detect capable drive you don't want it
4305 	 *   to colour the choice
4306 	 */
4307 	ata_for_each_link(link, ap, EDGE) {
4308 		ata_for_each_dev(dev, link, ENABLED) {
4309 			if (!ata_is_40wire(dev))
4310 				return 0;
4311 		}
4312 	}
4313 	return 1;
4314 }
4315 
4316 /**
4317  *	ata_dev_xfermask - Compute supported xfermask of the given device
4318  *	@dev: Device to compute xfermask for
4319  *
4320  *	Compute supported xfermask of @dev and store it in
4321  *	dev->*_mask.  This function is responsible for applying all
4322  *	known limits including host controller limits, device
4323  *	blacklist, etc...
4324  *
4325  *	LOCKING:
4326  *	None.
4327  */
4328 static void ata_dev_xfermask(struct ata_device *dev)
4329 {
4330 	struct ata_link *link = dev->link;
4331 	struct ata_port *ap = link->ap;
4332 	struct ata_host *host = ap->host;
4333 	unsigned long xfer_mask;
4334 
4335 	/* controller modes available */
4336 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4337 				      ap->mwdma_mask, ap->udma_mask);
4338 
4339 	/* drive modes available */
4340 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4341 				       dev->mwdma_mask, dev->udma_mask);
4342 	xfer_mask &= ata_id_xfermask(dev->id);
4343 
4344 	/*
4345 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4346 	 *	cable
4347 	 */
4348 	if (ata_dev_pair(dev)) {
4349 		/* No PIO5 or PIO6 */
4350 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4351 		/* No MWDMA3 or MWDMA 4 */
4352 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4353 	}
4354 
4355 	if (ata_dma_blacklisted(dev)) {
4356 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4357 		ata_dev_warn(dev,
4358 			     "device is on DMA blacklist, disabling DMA\n");
4359 	}
4360 
4361 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4362 	    host->simplex_claimed && host->simplex_claimed != ap) {
4363 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4364 		ata_dev_warn(dev,
4365 			     "simplex DMA is claimed by other device, disabling DMA\n");
4366 	}
4367 
4368 	if (ap->flags & ATA_FLAG_NO_IORDY)
4369 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4370 
4371 	if (ap->ops->mode_filter)
4372 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4373 
4374 	/* Apply cable rule here.  Don't apply it early because when
4375 	 * we handle hot plug the cable type can itself change.
4376 	 * Check this last so that we know if the transfer rate was
4377 	 * solely limited by the cable.
4378 	 * Unknown or 80 wire cables reported host side are checked
4379 	 * drive side as well. Cases where we know a 40wire cable
4380 	 * is used safely for 80 are not checked here.
4381 	 */
4382 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4383 		/* UDMA/44 or higher would be available */
4384 		if (cable_is_40wire(ap)) {
4385 			ata_dev_warn(dev,
4386 				     "limited to UDMA/33 due to 40-wire cable\n");
4387 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4388 		}
4389 
4390 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4391 			    &dev->mwdma_mask, &dev->udma_mask);
4392 }
4393 
4394 /**
4395  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4396  *	@dev: Device to which command will be sent
4397  *
4398  *	Issue SET FEATURES - XFER MODE command to device @dev
4399  *	on port @ap.
4400  *
4401  *	LOCKING:
4402  *	PCI/etc. bus probe sem.
4403  *
4404  *	RETURNS:
4405  *	0 on success, AC_ERR_* mask otherwise.
4406  */
4407 
4408 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4409 {
4410 	struct ata_taskfile tf;
4411 	unsigned int err_mask;
4412 
4413 	/* set up set-features taskfile */
4414 	DPRINTK("set features - xfer mode\n");
4415 
4416 	/* Some controllers and ATAPI devices show flaky interrupt
4417 	 * behavior after setting xfer mode.  Use polling instead.
4418 	 */
4419 	ata_tf_init(dev, &tf);
4420 	tf.command = ATA_CMD_SET_FEATURES;
4421 	tf.feature = SETFEATURES_XFER;
4422 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4423 	tf.protocol = ATA_PROT_NODATA;
4424 	/* If we are using IORDY we must send the mode setting command */
4425 	if (ata_pio_need_iordy(dev))
4426 		tf.nsect = dev->xfer_mode;
4427 	/* If the device has IORDY and the controller does not - turn it off */
4428  	else if (ata_id_has_iordy(dev->id))
4429 		tf.nsect = 0x01;
4430 	else /* In the ancient relic department - skip all of this */
4431 		return 0;
4432 
4433 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4434 
4435 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4436 	return err_mask;
4437 }
4438 
4439 /**
4440  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4441  *	@dev: Device to which command will be sent
4442  *	@enable: Whether to enable or disable the feature
4443  *	@feature: The sector count represents the feature to set
4444  *
4445  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4446  *	on port @ap with sector count
4447  *
4448  *	LOCKING:
4449  *	PCI/etc. bus probe sem.
4450  *
4451  *	RETURNS:
4452  *	0 on success, AC_ERR_* mask otherwise.
4453  */
4454 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4455 {
4456 	struct ata_taskfile tf;
4457 	unsigned int err_mask;
4458 
4459 	/* set up set-features taskfile */
4460 	DPRINTK("set features - SATA features\n");
4461 
4462 	ata_tf_init(dev, &tf);
4463 	tf.command = ATA_CMD_SET_FEATURES;
4464 	tf.feature = enable;
4465 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4466 	tf.protocol = ATA_PROT_NODATA;
4467 	tf.nsect = feature;
4468 
4469 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4470 
4471 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4472 	return err_mask;
4473 }
4474 
4475 /**
4476  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4477  *	@dev: Device to which command will be sent
4478  *	@heads: Number of heads (taskfile parameter)
4479  *	@sectors: Number of sectors (taskfile parameter)
4480  *
4481  *	LOCKING:
4482  *	Kernel thread context (may sleep)
4483  *
4484  *	RETURNS:
4485  *	0 on success, AC_ERR_* mask otherwise.
4486  */
4487 static unsigned int ata_dev_init_params(struct ata_device *dev,
4488 					u16 heads, u16 sectors)
4489 {
4490 	struct ata_taskfile tf;
4491 	unsigned int err_mask;
4492 
4493 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4494 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4495 		return AC_ERR_INVALID;
4496 
4497 	/* set up init dev params taskfile */
4498 	DPRINTK("init dev params \n");
4499 
4500 	ata_tf_init(dev, &tf);
4501 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4502 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4503 	tf.protocol = ATA_PROT_NODATA;
4504 	tf.nsect = sectors;
4505 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4506 
4507 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4508 	/* A clean abort indicates an original or just out of spec drive
4509 	   and we should continue as we issue the setup based on the
4510 	   drive reported working geometry */
4511 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4512 		err_mask = 0;
4513 
4514 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4515 	return err_mask;
4516 }
4517 
4518 /**
4519  *	ata_sg_clean - Unmap DMA memory associated with command
4520  *	@qc: Command containing DMA memory to be released
4521  *
4522  *	Unmap all mapped DMA memory associated with this command.
4523  *
4524  *	LOCKING:
4525  *	spin_lock_irqsave(host lock)
4526  */
4527 void ata_sg_clean(struct ata_queued_cmd *qc)
4528 {
4529 	struct ata_port *ap = qc->ap;
4530 	struct scatterlist *sg = qc->sg;
4531 	int dir = qc->dma_dir;
4532 
4533 	WARN_ON_ONCE(sg == NULL);
4534 
4535 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4536 
4537 	if (qc->n_elem)
4538 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4539 
4540 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4541 	qc->sg = NULL;
4542 }
4543 
4544 /**
4545  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4546  *	@qc: Metadata associated with taskfile to check
4547  *
4548  *	Allow low-level driver to filter ATA PACKET commands, returning
4549  *	a status indicating whether or not it is OK to use DMA for the
4550  *	supplied PACKET command.
4551  *
4552  *	LOCKING:
4553  *	spin_lock_irqsave(host lock)
4554  *
4555  *	RETURNS: 0 when ATAPI DMA can be used
4556  *               nonzero otherwise
4557  */
4558 int atapi_check_dma(struct ata_queued_cmd *qc)
4559 {
4560 	struct ata_port *ap = qc->ap;
4561 
4562 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4563 	 * few ATAPI devices choke on such DMA requests.
4564 	 */
4565 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4566 	    unlikely(qc->nbytes & 15))
4567 		return 1;
4568 
4569 	if (ap->ops->check_atapi_dma)
4570 		return ap->ops->check_atapi_dma(qc);
4571 
4572 	return 0;
4573 }
4574 
4575 /**
4576  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4577  *	@qc: ATA command in question
4578  *
4579  *	Non-NCQ commands cannot run with any other command, NCQ or
4580  *	not.  As upper layer only knows the queue depth, we are
4581  *	responsible for maintaining exclusion.  This function checks
4582  *	whether a new command @qc can be issued.
4583  *
4584  *	LOCKING:
4585  *	spin_lock_irqsave(host lock)
4586  *
4587  *	RETURNS:
4588  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4589  */
4590 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4591 {
4592 	struct ata_link *link = qc->dev->link;
4593 
4594 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4595 		if (!ata_tag_valid(link->active_tag))
4596 			return 0;
4597 	} else {
4598 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4599 			return 0;
4600 	}
4601 
4602 	return ATA_DEFER_LINK;
4603 }
4604 
4605 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4606 
4607 /**
4608  *	ata_sg_init - Associate command with scatter-gather table.
4609  *	@qc: Command to be associated
4610  *	@sg: Scatter-gather table.
4611  *	@n_elem: Number of elements in s/g table.
4612  *
4613  *	Initialize the data-related elements of queued_cmd @qc
4614  *	to point to a scatter-gather table @sg, containing @n_elem
4615  *	elements.
4616  *
4617  *	LOCKING:
4618  *	spin_lock_irqsave(host lock)
4619  */
4620 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4621 		 unsigned int n_elem)
4622 {
4623 	qc->sg = sg;
4624 	qc->n_elem = n_elem;
4625 	qc->cursg = qc->sg;
4626 }
4627 
4628 /**
4629  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4630  *	@qc: Command with scatter-gather table to be mapped.
4631  *
4632  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4633  *
4634  *	LOCKING:
4635  *	spin_lock_irqsave(host lock)
4636  *
4637  *	RETURNS:
4638  *	Zero on success, negative on error.
4639  *
4640  */
4641 static int ata_sg_setup(struct ata_queued_cmd *qc)
4642 {
4643 	struct ata_port *ap = qc->ap;
4644 	unsigned int n_elem;
4645 
4646 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4647 
4648 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4649 	if (n_elem < 1)
4650 		return -1;
4651 
4652 	DPRINTK("%d sg elements mapped\n", n_elem);
4653 	qc->orig_n_elem = qc->n_elem;
4654 	qc->n_elem = n_elem;
4655 	qc->flags |= ATA_QCFLAG_DMAMAP;
4656 
4657 	return 0;
4658 }
4659 
4660 /**
4661  *	swap_buf_le16 - swap halves of 16-bit words in place
4662  *	@buf:  Buffer to swap
4663  *	@buf_words:  Number of 16-bit words in buffer.
4664  *
4665  *	Swap halves of 16-bit words if needed to convert from
4666  *	little-endian byte order to native cpu byte order, or
4667  *	vice-versa.
4668  *
4669  *	LOCKING:
4670  *	Inherited from caller.
4671  */
4672 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4673 {
4674 #ifdef __BIG_ENDIAN
4675 	unsigned int i;
4676 
4677 	for (i = 0; i < buf_words; i++)
4678 		buf[i] = le16_to_cpu(buf[i]);
4679 #endif /* __BIG_ENDIAN */
4680 }
4681 
4682 /**
4683  *	ata_qc_new - Request an available ATA command, for queueing
4684  *	@ap: target port
4685  *
4686  *	LOCKING:
4687  *	None.
4688  */
4689 
4690 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4691 {
4692 	struct ata_queued_cmd *qc = NULL;
4693 	unsigned int i;
4694 
4695 	/* no command while frozen */
4696 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4697 		return NULL;
4698 
4699 	/* the last tag is reserved for internal command. */
4700 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4701 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4702 			qc = __ata_qc_from_tag(ap, i);
4703 			break;
4704 		}
4705 
4706 	if (qc)
4707 		qc->tag = i;
4708 
4709 	return qc;
4710 }
4711 
4712 /**
4713  *	ata_qc_new_init - Request an available ATA command, and initialize it
4714  *	@dev: Device from whom we request an available command structure
4715  *
4716  *	LOCKING:
4717  *	None.
4718  */
4719 
4720 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4721 {
4722 	struct ata_port *ap = dev->link->ap;
4723 	struct ata_queued_cmd *qc;
4724 
4725 	qc = ata_qc_new(ap);
4726 	if (qc) {
4727 		qc->scsicmd = NULL;
4728 		qc->ap = ap;
4729 		qc->dev = dev;
4730 
4731 		ata_qc_reinit(qc);
4732 	}
4733 
4734 	return qc;
4735 }
4736 
4737 /**
4738  *	ata_qc_free - free unused ata_queued_cmd
4739  *	@qc: Command to complete
4740  *
4741  *	Designed to free unused ata_queued_cmd object
4742  *	in case something prevents using it.
4743  *
4744  *	LOCKING:
4745  *	spin_lock_irqsave(host lock)
4746  */
4747 void ata_qc_free(struct ata_queued_cmd *qc)
4748 {
4749 	struct ata_port *ap;
4750 	unsigned int tag;
4751 
4752 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4753 	ap = qc->ap;
4754 
4755 	qc->flags = 0;
4756 	tag = qc->tag;
4757 	if (likely(ata_tag_valid(tag))) {
4758 		qc->tag = ATA_TAG_POISON;
4759 		clear_bit(tag, &ap->qc_allocated);
4760 	}
4761 }
4762 
4763 void __ata_qc_complete(struct ata_queued_cmd *qc)
4764 {
4765 	struct ata_port *ap;
4766 	struct ata_link *link;
4767 
4768 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4769 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4770 	ap = qc->ap;
4771 	link = qc->dev->link;
4772 
4773 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4774 		ata_sg_clean(qc);
4775 
4776 	/* command should be marked inactive atomically with qc completion */
4777 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4778 		link->sactive &= ~(1 << qc->tag);
4779 		if (!link->sactive)
4780 			ap->nr_active_links--;
4781 	} else {
4782 		link->active_tag = ATA_TAG_POISON;
4783 		ap->nr_active_links--;
4784 	}
4785 
4786 	/* clear exclusive status */
4787 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4788 		     ap->excl_link == link))
4789 		ap->excl_link = NULL;
4790 
4791 	/* atapi: mark qc as inactive to prevent the interrupt handler
4792 	 * from completing the command twice later, before the error handler
4793 	 * is called. (when rc != 0 and atapi request sense is needed)
4794 	 */
4795 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4796 	ap->qc_active &= ~(1 << qc->tag);
4797 
4798 	/* call completion callback */
4799 	qc->complete_fn(qc);
4800 }
4801 
4802 static void fill_result_tf(struct ata_queued_cmd *qc)
4803 {
4804 	struct ata_port *ap = qc->ap;
4805 
4806 	qc->result_tf.flags = qc->tf.flags;
4807 	ap->ops->qc_fill_rtf(qc);
4808 }
4809 
4810 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4811 {
4812 	struct ata_device *dev = qc->dev;
4813 
4814 	if (ata_is_nodata(qc->tf.protocol))
4815 		return;
4816 
4817 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4818 		return;
4819 
4820 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4821 }
4822 
4823 /**
4824  *	ata_qc_complete - Complete an active ATA command
4825  *	@qc: Command to complete
4826  *
4827  *	Indicate to the mid and upper layers that an ATA command has
4828  *	completed, with either an ok or not-ok status.
4829  *
4830  *	Refrain from calling this function multiple times when
4831  *	successfully completing multiple NCQ commands.
4832  *	ata_qc_complete_multiple() should be used instead, which will
4833  *	properly update IRQ expect state.
4834  *
4835  *	LOCKING:
4836  *	spin_lock_irqsave(host lock)
4837  */
4838 void ata_qc_complete(struct ata_queued_cmd *qc)
4839 {
4840 	struct ata_port *ap = qc->ap;
4841 
4842 	/* XXX: New EH and old EH use different mechanisms to
4843 	 * synchronize EH with regular execution path.
4844 	 *
4845 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4846 	 * Normal execution path is responsible for not accessing a
4847 	 * failed qc.  libata core enforces the rule by returning NULL
4848 	 * from ata_qc_from_tag() for failed qcs.
4849 	 *
4850 	 * Old EH depends on ata_qc_complete() nullifying completion
4851 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4852 	 * not synchronize with interrupt handler.  Only PIO task is
4853 	 * taken care of.
4854 	 */
4855 	if (ap->ops->error_handler) {
4856 		struct ata_device *dev = qc->dev;
4857 		struct ata_eh_info *ehi = &dev->link->eh_info;
4858 
4859 		if (unlikely(qc->err_mask))
4860 			qc->flags |= ATA_QCFLAG_FAILED;
4861 
4862 		/*
4863 		 * Finish internal commands without any further processing
4864 		 * and always with the result TF filled.
4865 		 */
4866 		if (unlikely(ata_tag_internal(qc->tag))) {
4867 			fill_result_tf(qc);
4868 			__ata_qc_complete(qc);
4869 			return;
4870 		}
4871 
4872 		/*
4873 		 * Non-internal qc has failed.  Fill the result TF and
4874 		 * summon EH.
4875 		 */
4876 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4877 			fill_result_tf(qc);
4878 			ata_qc_schedule_eh(qc);
4879 			return;
4880 		}
4881 
4882 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4883 
4884 		/* read result TF if requested */
4885 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4886 			fill_result_tf(qc);
4887 
4888 		/* Some commands need post-processing after successful
4889 		 * completion.
4890 		 */
4891 		switch (qc->tf.command) {
4892 		case ATA_CMD_SET_FEATURES:
4893 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4894 			    qc->tf.feature != SETFEATURES_WC_OFF)
4895 				break;
4896 			/* fall through */
4897 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4898 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4899 			/* revalidate device */
4900 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4901 			ata_port_schedule_eh(ap);
4902 			break;
4903 
4904 		case ATA_CMD_SLEEP:
4905 			dev->flags |= ATA_DFLAG_SLEEPING;
4906 			break;
4907 		}
4908 
4909 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4910 			ata_verify_xfer(qc);
4911 
4912 		__ata_qc_complete(qc);
4913 	} else {
4914 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4915 			return;
4916 
4917 		/* read result TF if failed or requested */
4918 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4919 			fill_result_tf(qc);
4920 
4921 		__ata_qc_complete(qc);
4922 	}
4923 }
4924 
4925 /**
4926  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4927  *	@ap: port in question
4928  *	@qc_active: new qc_active mask
4929  *
4930  *	Complete in-flight commands.  This functions is meant to be
4931  *	called from low-level driver's interrupt routine to complete
4932  *	requests normally.  ap->qc_active and @qc_active is compared
4933  *	and commands are completed accordingly.
4934  *
4935  *	Always use this function when completing multiple NCQ commands
4936  *	from IRQ handlers instead of calling ata_qc_complete()
4937  *	multiple times to keep IRQ expect status properly in sync.
4938  *
4939  *	LOCKING:
4940  *	spin_lock_irqsave(host lock)
4941  *
4942  *	RETURNS:
4943  *	Number of completed commands on success, -errno otherwise.
4944  */
4945 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4946 {
4947 	int nr_done = 0;
4948 	u32 done_mask;
4949 
4950 	done_mask = ap->qc_active ^ qc_active;
4951 
4952 	if (unlikely(done_mask & qc_active)) {
4953 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4954 			     ap->qc_active, qc_active);
4955 		return -EINVAL;
4956 	}
4957 
4958 	while (done_mask) {
4959 		struct ata_queued_cmd *qc;
4960 		unsigned int tag = __ffs(done_mask);
4961 
4962 		qc = ata_qc_from_tag(ap, tag);
4963 		if (qc) {
4964 			ata_qc_complete(qc);
4965 			nr_done++;
4966 		}
4967 		done_mask &= ~(1 << tag);
4968 	}
4969 
4970 	return nr_done;
4971 }
4972 
4973 /**
4974  *	ata_qc_issue - issue taskfile to device
4975  *	@qc: command to issue to device
4976  *
4977  *	Prepare an ATA command to submission to device.
4978  *	This includes mapping the data into a DMA-able
4979  *	area, filling in the S/G table, and finally
4980  *	writing the taskfile to hardware, starting the command.
4981  *
4982  *	LOCKING:
4983  *	spin_lock_irqsave(host lock)
4984  */
4985 void ata_qc_issue(struct ata_queued_cmd *qc)
4986 {
4987 	struct ata_port *ap = qc->ap;
4988 	struct ata_link *link = qc->dev->link;
4989 	u8 prot = qc->tf.protocol;
4990 
4991 	/* Make sure only one non-NCQ command is outstanding.  The
4992 	 * check is skipped for old EH because it reuses active qc to
4993 	 * request ATAPI sense.
4994 	 */
4995 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4996 
4997 	if (ata_is_ncq(prot)) {
4998 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4999 
5000 		if (!link->sactive)
5001 			ap->nr_active_links++;
5002 		link->sactive |= 1 << qc->tag;
5003 	} else {
5004 		WARN_ON_ONCE(link->sactive);
5005 
5006 		ap->nr_active_links++;
5007 		link->active_tag = qc->tag;
5008 	}
5009 
5010 	qc->flags |= ATA_QCFLAG_ACTIVE;
5011 	ap->qc_active |= 1 << qc->tag;
5012 
5013 	/*
5014 	 * We guarantee to LLDs that they will have at least one
5015 	 * non-zero sg if the command is a data command.
5016 	 */
5017 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5018 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5019 		goto sys_err;
5020 
5021 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5022 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5023 		if (ata_sg_setup(qc))
5024 			goto sys_err;
5025 
5026 	/* if device is sleeping, schedule reset and abort the link */
5027 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5028 		link->eh_info.action |= ATA_EH_RESET;
5029 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5030 		ata_link_abort(link);
5031 		return;
5032 	}
5033 
5034 	ap->ops->qc_prep(qc);
5035 
5036 	qc->err_mask |= ap->ops->qc_issue(qc);
5037 	if (unlikely(qc->err_mask))
5038 		goto err;
5039 	return;
5040 
5041 sys_err:
5042 	qc->err_mask |= AC_ERR_SYSTEM;
5043 err:
5044 	ata_qc_complete(qc);
5045 }
5046 
5047 /**
5048  *	sata_scr_valid - test whether SCRs are accessible
5049  *	@link: ATA link to test SCR accessibility for
5050  *
5051  *	Test whether SCRs are accessible for @link.
5052  *
5053  *	LOCKING:
5054  *	None.
5055  *
5056  *	RETURNS:
5057  *	1 if SCRs are accessible, 0 otherwise.
5058  */
5059 int sata_scr_valid(struct ata_link *link)
5060 {
5061 	struct ata_port *ap = link->ap;
5062 
5063 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5064 }
5065 
5066 /**
5067  *	sata_scr_read - read SCR register of the specified port
5068  *	@link: ATA link to read SCR for
5069  *	@reg: SCR to read
5070  *	@val: Place to store read value
5071  *
5072  *	Read SCR register @reg of @link into *@val.  This function is
5073  *	guaranteed to succeed if @link is ap->link, the cable type of
5074  *	the port is SATA and the port implements ->scr_read.
5075  *
5076  *	LOCKING:
5077  *	None if @link is ap->link.  Kernel thread context otherwise.
5078  *
5079  *	RETURNS:
5080  *	0 on success, negative errno on failure.
5081  */
5082 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5083 {
5084 	if (ata_is_host_link(link)) {
5085 		if (sata_scr_valid(link))
5086 			return link->ap->ops->scr_read(link, reg, val);
5087 		return -EOPNOTSUPP;
5088 	}
5089 
5090 	return sata_pmp_scr_read(link, reg, val);
5091 }
5092 
5093 /**
5094  *	sata_scr_write - write SCR register of the specified port
5095  *	@link: ATA link to write SCR for
5096  *	@reg: SCR to write
5097  *	@val: value to write
5098  *
5099  *	Write @val to SCR register @reg of @link.  This function is
5100  *	guaranteed to succeed if @link is ap->link, the cable type of
5101  *	the port is SATA and the port implements ->scr_read.
5102  *
5103  *	LOCKING:
5104  *	None if @link is ap->link.  Kernel thread context otherwise.
5105  *
5106  *	RETURNS:
5107  *	0 on success, negative errno on failure.
5108  */
5109 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5110 {
5111 	if (ata_is_host_link(link)) {
5112 		if (sata_scr_valid(link))
5113 			return link->ap->ops->scr_write(link, reg, val);
5114 		return -EOPNOTSUPP;
5115 	}
5116 
5117 	return sata_pmp_scr_write(link, reg, val);
5118 }
5119 
5120 /**
5121  *	sata_scr_write_flush - write SCR register of the specified port and flush
5122  *	@link: ATA link to write SCR for
5123  *	@reg: SCR to write
5124  *	@val: value to write
5125  *
5126  *	This function is identical to sata_scr_write() except that this
5127  *	function performs flush after writing to the register.
5128  *
5129  *	LOCKING:
5130  *	None if @link is ap->link.  Kernel thread context otherwise.
5131  *
5132  *	RETURNS:
5133  *	0 on success, negative errno on failure.
5134  */
5135 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5136 {
5137 	if (ata_is_host_link(link)) {
5138 		int rc;
5139 
5140 		if (sata_scr_valid(link)) {
5141 			rc = link->ap->ops->scr_write(link, reg, val);
5142 			if (rc == 0)
5143 				rc = link->ap->ops->scr_read(link, reg, &val);
5144 			return rc;
5145 		}
5146 		return -EOPNOTSUPP;
5147 	}
5148 
5149 	return sata_pmp_scr_write(link, reg, val);
5150 }
5151 
5152 /**
5153  *	ata_phys_link_online - test whether the given link is online
5154  *	@link: ATA link to test
5155  *
5156  *	Test whether @link is online.  Note that this function returns
5157  *	0 if online status of @link cannot be obtained, so
5158  *	ata_link_online(link) != !ata_link_offline(link).
5159  *
5160  *	LOCKING:
5161  *	None.
5162  *
5163  *	RETURNS:
5164  *	True if the port online status is available and online.
5165  */
5166 bool ata_phys_link_online(struct ata_link *link)
5167 {
5168 	u32 sstatus;
5169 
5170 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5171 	    ata_sstatus_online(sstatus))
5172 		return true;
5173 	return false;
5174 }
5175 
5176 /**
5177  *	ata_phys_link_offline - test whether the given link is offline
5178  *	@link: ATA link to test
5179  *
5180  *	Test whether @link is offline.  Note that this function
5181  *	returns 0 if offline status of @link cannot be obtained, so
5182  *	ata_link_online(link) != !ata_link_offline(link).
5183  *
5184  *	LOCKING:
5185  *	None.
5186  *
5187  *	RETURNS:
5188  *	True if the port offline status is available and offline.
5189  */
5190 bool ata_phys_link_offline(struct ata_link *link)
5191 {
5192 	u32 sstatus;
5193 
5194 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5195 	    !ata_sstatus_online(sstatus))
5196 		return true;
5197 	return false;
5198 }
5199 
5200 /**
5201  *	ata_link_online - test whether the given link is online
5202  *	@link: ATA link to test
5203  *
5204  *	Test whether @link is online.  This is identical to
5205  *	ata_phys_link_online() when there's no slave link.  When
5206  *	there's a slave link, this function should only be called on
5207  *	the master link and will return true if any of M/S links is
5208  *	online.
5209  *
5210  *	LOCKING:
5211  *	None.
5212  *
5213  *	RETURNS:
5214  *	True if the port online status is available and online.
5215  */
5216 bool ata_link_online(struct ata_link *link)
5217 {
5218 	struct ata_link *slave = link->ap->slave_link;
5219 
5220 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5221 
5222 	return ata_phys_link_online(link) ||
5223 		(slave && ata_phys_link_online(slave));
5224 }
5225 
5226 /**
5227  *	ata_link_offline - test whether the given link is offline
5228  *	@link: ATA link to test
5229  *
5230  *	Test whether @link is offline.  This is identical to
5231  *	ata_phys_link_offline() when there's no slave link.  When
5232  *	there's a slave link, this function should only be called on
5233  *	the master link and will return true if both M/S links are
5234  *	offline.
5235  *
5236  *	LOCKING:
5237  *	None.
5238  *
5239  *	RETURNS:
5240  *	True if the port offline status is available and offline.
5241  */
5242 bool ata_link_offline(struct ata_link *link)
5243 {
5244 	struct ata_link *slave = link->ap->slave_link;
5245 
5246 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5247 
5248 	return ata_phys_link_offline(link) &&
5249 		(!slave || ata_phys_link_offline(slave));
5250 }
5251 
5252 #ifdef CONFIG_PM
5253 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5254 			       unsigned int action, unsigned int ehi_flags,
5255 			       int wait)
5256 {
5257 	struct ata_link *link;
5258 	unsigned long flags;
5259 	int rc;
5260 
5261 	/* Previous resume operation might still be in
5262 	 * progress.  Wait for PM_PENDING to clear.
5263 	 */
5264 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5265 		ata_port_wait_eh(ap);
5266 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5267 	}
5268 
5269 	/* request PM ops to EH */
5270 	spin_lock_irqsave(ap->lock, flags);
5271 
5272 	ap->pm_mesg = mesg;
5273 	if (wait) {
5274 		rc = 0;
5275 		ap->pm_result = &rc;
5276 	}
5277 
5278 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5279 	ata_for_each_link(link, ap, HOST_FIRST) {
5280 		link->eh_info.action |= action;
5281 		link->eh_info.flags |= ehi_flags;
5282 	}
5283 
5284 	ata_port_schedule_eh(ap);
5285 
5286 	spin_unlock_irqrestore(ap->lock, flags);
5287 
5288 	/* wait and check result */
5289 	if (wait) {
5290 		ata_port_wait_eh(ap);
5291 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5292 	}
5293 
5294 	return rc;
5295 }
5296 
5297 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5298 {
5299 	struct ata_port *ap = to_ata_port(dev);
5300 	unsigned int ehi_flags = ATA_EHI_QUIET;
5301 	int rc;
5302 
5303 	/*
5304 	 * On some hardware, device fails to respond after spun down
5305 	 * for suspend.  As the device won't be used before being
5306 	 * resumed, we don't need to touch the device.  Ask EH to skip
5307 	 * the usual stuff and proceed directly to suspend.
5308 	 *
5309 	 * http://thread.gmane.org/gmane.linux.ide/46764
5310 	 */
5311 	if (mesg.event == PM_EVENT_SUSPEND)
5312 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5313 
5314 	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5315 	return rc;
5316 }
5317 
5318 static int ata_port_suspend(struct device *dev)
5319 {
5320 	if (pm_runtime_suspended(dev))
5321 		return 0;
5322 
5323 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5324 }
5325 
5326 static int ata_port_do_freeze(struct device *dev)
5327 {
5328 	if (pm_runtime_suspended(dev))
5329 		pm_runtime_resume(dev);
5330 
5331 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5332 }
5333 
5334 static int ata_port_poweroff(struct device *dev)
5335 {
5336 	if (pm_runtime_suspended(dev))
5337 		return 0;
5338 
5339 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5340 }
5341 
5342 static int ata_port_resume_common(struct device *dev)
5343 {
5344 	struct ata_port *ap = to_ata_port(dev);
5345 	int rc;
5346 
5347 	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5348 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5349 	return rc;
5350 }
5351 
5352 static int ata_port_resume(struct device *dev)
5353 {
5354 	int rc;
5355 
5356 	rc = ata_port_resume_common(dev);
5357 	if (!rc) {
5358 		pm_runtime_disable(dev);
5359 		pm_runtime_set_active(dev);
5360 		pm_runtime_enable(dev);
5361 	}
5362 
5363 	return rc;
5364 }
5365 
5366 static int ata_port_runtime_idle(struct device *dev)
5367 {
5368 	return pm_runtime_suspend(dev);
5369 }
5370 
5371 static const struct dev_pm_ops ata_port_pm_ops = {
5372 	.suspend = ata_port_suspend,
5373 	.resume = ata_port_resume,
5374 	.freeze = ata_port_do_freeze,
5375 	.thaw = ata_port_resume,
5376 	.poweroff = ata_port_poweroff,
5377 	.restore = ata_port_resume,
5378 
5379 	.runtime_suspend = ata_port_suspend,
5380 	.runtime_resume = ata_port_resume_common,
5381 	.runtime_idle = ata_port_runtime_idle,
5382 };
5383 
5384 /**
5385  *	ata_host_suspend - suspend host
5386  *	@host: host to suspend
5387  *	@mesg: PM message
5388  *
5389  *	Suspend @host.  Actual operation is performed by port suspend.
5390  */
5391 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5392 {
5393 	host->dev->power.power_state = mesg;
5394 	return 0;
5395 }
5396 
5397 /**
5398  *	ata_host_resume - resume host
5399  *	@host: host to resume
5400  *
5401  *	Resume @host.  Actual operation is performed by port resume.
5402  */
5403 void ata_host_resume(struct ata_host *host)
5404 {
5405 	host->dev->power.power_state = PMSG_ON;
5406 }
5407 #endif
5408 
5409 struct device_type ata_port_type = {
5410 	.name = "ata_port",
5411 #ifdef CONFIG_PM
5412 	.pm = &ata_port_pm_ops,
5413 #endif
5414 };
5415 
5416 /**
5417  *	ata_dev_init - Initialize an ata_device structure
5418  *	@dev: Device structure to initialize
5419  *
5420  *	Initialize @dev in preparation for probing.
5421  *
5422  *	LOCKING:
5423  *	Inherited from caller.
5424  */
5425 void ata_dev_init(struct ata_device *dev)
5426 {
5427 	struct ata_link *link = ata_dev_phys_link(dev);
5428 	struct ata_port *ap = link->ap;
5429 	unsigned long flags;
5430 
5431 	/* SATA spd limit is bound to the attached device, reset together */
5432 	link->sata_spd_limit = link->hw_sata_spd_limit;
5433 	link->sata_spd = 0;
5434 
5435 	/* High bits of dev->flags are used to record warm plug
5436 	 * requests which occur asynchronously.  Synchronize using
5437 	 * host lock.
5438 	 */
5439 	spin_lock_irqsave(ap->lock, flags);
5440 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5441 	dev->horkage = 0;
5442 	spin_unlock_irqrestore(ap->lock, flags);
5443 
5444 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5445 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5446 	dev->pio_mask = UINT_MAX;
5447 	dev->mwdma_mask = UINT_MAX;
5448 	dev->udma_mask = UINT_MAX;
5449 }
5450 
5451 /**
5452  *	ata_link_init - Initialize an ata_link structure
5453  *	@ap: ATA port link is attached to
5454  *	@link: Link structure to initialize
5455  *	@pmp: Port multiplier port number
5456  *
5457  *	Initialize @link.
5458  *
5459  *	LOCKING:
5460  *	Kernel thread context (may sleep)
5461  */
5462 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5463 {
5464 	int i;
5465 
5466 	/* clear everything except for devices */
5467 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5468 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5469 
5470 	link->ap = ap;
5471 	link->pmp = pmp;
5472 	link->active_tag = ATA_TAG_POISON;
5473 	link->hw_sata_spd_limit = UINT_MAX;
5474 
5475 	/* can't use iterator, ap isn't initialized yet */
5476 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5477 		struct ata_device *dev = &link->device[i];
5478 
5479 		dev->link = link;
5480 		dev->devno = dev - link->device;
5481 #ifdef CONFIG_ATA_ACPI
5482 		dev->gtf_filter = ata_acpi_gtf_filter;
5483 #endif
5484 		ata_dev_init(dev);
5485 	}
5486 }
5487 
5488 /**
5489  *	sata_link_init_spd - Initialize link->sata_spd_limit
5490  *	@link: Link to configure sata_spd_limit for
5491  *
5492  *	Initialize @link->[hw_]sata_spd_limit to the currently
5493  *	configured value.
5494  *
5495  *	LOCKING:
5496  *	Kernel thread context (may sleep).
5497  *
5498  *	RETURNS:
5499  *	0 on success, -errno on failure.
5500  */
5501 int sata_link_init_spd(struct ata_link *link)
5502 {
5503 	u8 spd;
5504 	int rc;
5505 
5506 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5507 	if (rc)
5508 		return rc;
5509 
5510 	spd = (link->saved_scontrol >> 4) & 0xf;
5511 	if (spd)
5512 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5513 
5514 	ata_force_link_limits(link);
5515 
5516 	link->sata_spd_limit = link->hw_sata_spd_limit;
5517 
5518 	return 0;
5519 }
5520 
5521 /**
5522  *	ata_port_alloc - allocate and initialize basic ATA port resources
5523  *	@host: ATA host this allocated port belongs to
5524  *
5525  *	Allocate and initialize basic ATA port resources.
5526  *
5527  *	RETURNS:
5528  *	Allocate ATA port on success, NULL on failure.
5529  *
5530  *	LOCKING:
5531  *	Inherited from calling layer (may sleep).
5532  */
5533 struct ata_port *ata_port_alloc(struct ata_host *host)
5534 {
5535 	struct ata_port *ap;
5536 
5537 	DPRINTK("ENTER\n");
5538 
5539 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5540 	if (!ap)
5541 		return NULL;
5542 
5543 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5544 	ap->lock = &host->lock;
5545 	ap->print_id = -1;
5546 	ap->host = host;
5547 	ap->dev = host->dev;
5548 
5549 #if defined(ATA_VERBOSE_DEBUG)
5550 	/* turn on all debugging levels */
5551 	ap->msg_enable = 0x00FF;
5552 #elif defined(ATA_DEBUG)
5553 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5554 #else
5555 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5556 #endif
5557 
5558 	mutex_init(&ap->scsi_scan_mutex);
5559 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5560 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5561 	INIT_LIST_HEAD(&ap->eh_done_q);
5562 	init_waitqueue_head(&ap->eh_wait_q);
5563 	init_completion(&ap->park_req_pending);
5564 	init_timer_deferrable(&ap->fastdrain_timer);
5565 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5566 	ap->fastdrain_timer.data = (unsigned long)ap;
5567 
5568 	ap->cbl = ATA_CBL_NONE;
5569 
5570 	ata_link_init(ap, &ap->link, 0);
5571 
5572 #ifdef ATA_IRQ_TRAP
5573 	ap->stats.unhandled_irq = 1;
5574 	ap->stats.idle_irq = 1;
5575 #endif
5576 	ata_sff_port_init(ap);
5577 
5578 	return ap;
5579 }
5580 
5581 static void ata_host_release(struct device *gendev, void *res)
5582 {
5583 	struct ata_host *host = dev_get_drvdata(gendev);
5584 	int i;
5585 
5586 	for (i = 0; i < host->n_ports; i++) {
5587 		struct ata_port *ap = host->ports[i];
5588 
5589 		if (!ap)
5590 			continue;
5591 
5592 		if (ap->scsi_host)
5593 			scsi_host_put(ap->scsi_host);
5594 
5595 		kfree(ap->pmp_link);
5596 		kfree(ap->slave_link);
5597 		kfree(ap);
5598 		host->ports[i] = NULL;
5599 	}
5600 
5601 	dev_set_drvdata(gendev, NULL);
5602 }
5603 
5604 /**
5605  *	ata_host_alloc - allocate and init basic ATA host resources
5606  *	@dev: generic device this host is associated with
5607  *	@max_ports: maximum number of ATA ports associated with this host
5608  *
5609  *	Allocate and initialize basic ATA host resources.  LLD calls
5610  *	this function to allocate a host, initializes it fully and
5611  *	attaches it using ata_host_register().
5612  *
5613  *	@max_ports ports are allocated and host->n_ports is
5614  *	initialized to @max_ports.  The caller is allowed to decrease
5615  *	host->n_ports before calling ata_host_register().  The unused
5616  *	ports will be automatically freed on registration.
5617  *
5618  *	RETURNS:
5619  *	Allocate ATA host on success, NULL on failure.
5620  *
5621  *	LOCKING:
5622  *	Inherited from calling layer (may sleep).
5623  */
5624 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5625 {
5626 	struct ata_host *host;
5627 	size_t sz;
5628 	int i;
5629 
5630 	DPRINTK("ENTER\n");
5631 
5632 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5633 		return NULL;
5634 
5635 	/* alloc a container for our list of ATA ports (buses) */
5636 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5637 	/* alloc a container for our list of ATA ports (buses) */
5638 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5639 	if (!host)
5640 		goto err_out;
5641 
5642 	devres_add(dev, host);
5643 	dev_set_drvdata(dev, host);
5644 
5645 	spin_lock_init(&host->lock);
5646 	mutex_init(&host->eh_mutex);
5647 	host->dev = dev;
5648 	host->n_ports = max_ports;
5649 
5650 	/* allocate ports bound to this host */
5651 	for (i = 0; i < max_ports; i++) {
5652 		struct ata_port *ap;
5653 
5654 		ap = ata_port_alloc(host);
5655 		if (!ap)
5656 			goto err_out;
5657 
5658 		ap->port_no = i;
5659 		host->ports[i] = ap;
5660 	}
5661 
5662 	devres_remove_group(dev, NULL);
5663 	return host;
5664 
5665  err_out:
5666 	devres_release_group(dev, NULL);
5667 	return NULL;
5668 }
5669 
5670 /**
5671  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5672  *	@dev: generic device this host is associated with
5673  *	@ppi: array of ATA port_info to initialize host with
5674  *	@n_ports: number of ATA ports attached to this host
5675  *
5676  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5677  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5678  *	last entry will be used for the remaining ports.
5679  *
5680  *	RETURNS:
5681  *	Allocate ATA host on success, NULL on failure.
5682  *
5683  *	LOCKING:
5684  *	Inherited from calling layer (may sleep).
5685  */
5686 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5687 				      const struct ata_port_info * const * ppi,
5688 				      int n_ports)
5689 {
5690 	const struct ata_port_info *pi;
5691 	struct ata_host *host;
5692 	int i, j;
5693 
5694 	host = ata_host_alloc(dev, n_ports);
5695 	if (!host)
5696 		return NULL;
5697 
5698 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5699 		struct ata_port *ap = host->ports[i];
5700 
5701 		if (ppi[j])
5702 			pi = ppi[j++];
5703 
5704 		ap->pio_mask = pi->pio_mask;
5705 		ap->mwdma_mask = pi->mwdma_mask;
5706 		ap->udma_mask = pi->udma_mask;
5707 		ap->flags |= pi->flags;
5708 		ap->link.flags |= pi->link_flags;
5709 		ap->ops = pi->port_ops;
5710 
5711 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5712 			host->ops = pi->port_ops;
5713 	}
5714 
5715 	return host;
5716 }
5717 
5718 /**
5719  *	ata_slave_link_init - initialize slave link
5720  *	@ap: port to initialize slave link for
5721  *
5722  *	Create and initialize slave link for @ap.  This enables slave
5723  *	link handling on the port.
5724  *
5725  *	In libata, a port contains links and a link contains devices.
5726  *	There is single host link but if a PMP is attached to it,
5727  *	there can be multiple fan-out links.  On SATA, there's usually
5728  *	a single device connected to a link but PATA and SATA
5729  *	controllers emulating TF based interface can have two - master
5730  *	and slave.
5731  *
5732  *	However, there are a few controllers which don't fit into this
5733  *	abstraction too well - SATA controllers which emulate TF
5734  *	interface with both master and slave devices but also have
5735  *	separate SCR register sets for each device.  These controllers
5736  *	need separate links for physical link handling
5737  *	(e.g. onlineness, link speed) but should be treated like a
5738  *	traditional M/S controller for everything else (e.g. command
5739  *	issue, softreset).
5740  *
5741  *	slave_link is libata's way of handling this class of
5742  *	controllers without impacting core layer too much.  For
5743  *	anything other than physical link handling, the default host
5744  *	link is used for both master and slave.  For physical link
5745  *	handling, separate @ap->slave_link is used.  All dirty details
5746  *	are implemented inside libata core layer.  From LLD's POV, the
5747  *	only difference is that prereset, hardreset and postreset are
5748  *	called once more for the slave link, so the reset sequence
5749  *	looks like the following.
5750  *
5751  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5752  *	softreset(M) -> postreset(M) -> postreset(S)
5753  *
5754  *	Note that softreset is called only for the master.  Softreset
5755  *	resets both M/S by definition, so SRST on master should handle
5756  *	both (the standard method will work just fine).
5757  *
5758  *	LOCKING:
5759  *	Should be called before host is registered.
5760  *
5761  *	RETURNS:
5762  *	0 on success, -errno on failure.
5763  */
5764 int ata_slave_link_init(struct ata_port *ap)
5765 {
5766 	struct ata_link *link;
5767 
5768 	WARN_ON(ap->slave_link);
5769 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5770 
5771 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5772 	if (!link)
5773 		return -ENOMEM;
5774 
5775 	ata_link_init(ap, link, 1);
5776 	ap->slave_link = link;
5777 	return 0;
5778 }
5779 
5780 static void ata_host_stop(struct device *gendev, void *res)
5781 {
5782 	struct ata_host *host = dev_get_drvdata(gendev);
5783 	int i;
5784 
5785 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5786 
5787 	for (i = 0; i < host->n_ports; i++) {
5788 		struct ata_port *ap = host->ports[i];
5789 
5790 		if (ap->ops->port_stop)
5791 			ap->ops->port_stop(ap);
5792 	}
5793 
5794 	if (host->ops->host_stop)
5795 		host->ops->host_stop(host);
5796 }
5797 
5798 /**
5799  *	ata_finalize_port_ops - finalize ata_port_operations
5800  *	@ops: ata_port_operations to finalize
5801  *
5802  *	An ata_port_operations can inherit from another ops and that
5803  *	ops can again inherit from another.  This can go on as many
5804  *	times as necessary as long as there is no loop in the
5805  *	inheritance chain.
5806  *
5807  *	Ops tables are finalized when the host is started.  NULL or
5808  *	unspecified entries are inherited from the closet ancestor
5809  *	which has the method and the entry is populated with it.
5810  *	After finalization, the ops table directly points to all the
5811  *	methods and ->inherits is no longer necessary and cleared.
5812  *
5813  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5814  *
5815  *	LOCKING:
5816  *	None.
5817  */
5818 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5819 {
5820 	static DEFINE_SPINLOCK(lock);
5821 	const struct ata_port_operations *cur;
5822 	void **begin = (void **)ops;
5823 	void **end = (void **)&ops->inherits;
5824 	void **pp;
5825 
5826 	if (!ops || !ops->inherits)
5827 		return;
5828 
5829 	spin_lock(&lock);
5830 
5831 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5832 		void **inherit = (void **)cur;
5833 
5834 		for (pp = begin; pp < end; pp++, inherit++)
5835 			if (!*pp)
5836 				*pp = *inherit;
5837 	}
5838 
5839 	for (pp = begin; pp < end; pp++)
5840 		if (IS_ERR(*pp))
5841 			*pp = NULL;
5842 
5843 	ops->inherits = NULL;
5844 
5845 	spin_unlock(&lock);
5846 }
5847 
5848 /**
5849  *	ata_host_start - start and freeze ports of an ATA host
5850  *	@host: ATA host to start ports for
5851  *
5852  *	Start and then freeze ports of @host.  Started status is
5853  *	recorded in host->flags, so this function can be called
5854  *	multiple times.  Ports are guaranteed to get started only
5855  *	once.  If host->ops isn't initialized yet, its set to the
5856  *	first non-dummy port ops.
5857  *
5858  *	LOCKING:
5859  *	Inherited from calling layer (may sleep).
5860  *
5861  *	RETURNS:
5862  *	0 if all ports are started successfully, -errno otherwise.
5863  */
5864 int ata_host_start(struct ata_host *host)
5865 {
5866 	int have_stop = 0;
5867 	void *start_dr = NULL;
5868 	int i, rc;
5869 
5870 	if (host->flags & ATA_HOST_STARTED)
5871 		return 0;
5872 
5873 	ata_finalize_port_ops(host->ops);
5874 
5875 	for (i = 0; i < host->n_ports; i++) {
5876 		struct ata_port *ap = host->ports[i];
5877 
5878 		ata_finalize_port_ops(ap->ops);
5879 
5880 		if (!host->ops && !ata_port_is_dummy(ap))
5881 			host->ops = ap->ops;
5882 
5883 		if (ap->ops->port_stop)
5884 			have_stop = 1;
5885 	}
5886 
5887 	if (host->ops->host_stop)
5888 		have_stop = 1;
5889 
5890 	if (have_stop) {
5891 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5892 		if (!start_dr)
5893 			return -ENOMEM;
5894 	}
5895 
5896 	for (i = 0; i < host->n_ports; i++) {
5897 		struct ata_port *ap = host->ports[i];
5898 
5899 		if (ap->ops->port_start) {
5900 			rc = ap->ops->port_start(ap);
5901 			if (rc) {
5902 				if (rc != -ENODEV)
5903 					dev_err(host->dev,
5904 						"failed to start port %d (errno=%d)\n",
5905 						i, rc);
5906 				goto err_out;
5907 			}
5908 		}
5909 		ata_eh_freeze_port(ap);
5910 	}
5911 
5912 	if (start_dr)
5913 		devres_add(host->dev, start_dr);
5914 	host->flags |= ATA_HOST_STARTED;
5915 	return 0;
5916 
5917  err_out:
5918 	while (--i >= 0) {
5919 		struct ata_port *ap = host->ports[i];
5920 
5921 		if (ap->ops->port_stop)
5922 			ap->ops->port_stop(ap);
5923 	}
5924 	devres_free(start_dr);
5925 	return rc;
5926 }
5927 
5928 /**
5929  *	ata_sas_host_init - Initialize a host struct
5930  *	@host:	host to initialize
5931  *	@dev:	device host is attached to
5932  *	@flags:	host flags
5933  *	@ops:	port_ops
5934  *
5935  *	LOCKING:
5936  *	PCI/etc. bus probe sem.
5937  *
5938  */
5939 /* KILLME - the only user left is ipr */
5940 void ata_host_init(struct ata_host *host, struct device *dev,
5941 		   unsigned long flags, struct ata_port_operations *ops)
5942 {
5943 	spin_lock_init(&host->lock);
5944 	mutex_init(&host->eh_mutex);
5945 	host->dev = dev;
5946 	host->flags = flags;
5947 	host->ops = ops;
5948 }
5949 
5950 void __ata_port_probe(struct ata_port *ap)
5951 {
5952 	struct ata_eh_info *ehi = &ap->link.eh_info;
5953 	unsigned long flags;
5954 
5955 	/* kick EH for boot probing */
5956 	spin_lock_irqsave(ap->lock, flags);
5957 
5958 	ehi->probe_mask |= ATA_ALL_DEVICES;
5959 	ehi->action |= ATA_EH_RESET;
5960 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5961 
5962 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5963 	ap->pflags |= ATA_PFLAG_LOADING;
5964 	ata_port_schedule_eh(ap);
5965 
5966 	spin_unlock_irqrestore(ap->lock, flags);
5967 }
5968 
5969 int ata_port_probe(struct ata_port *ap)
5970 {
5971 	int rc = 0;
5972 
5973 	if (ap->ops->error_handler) {
5974 		__ata_port_probe(ap);
5975 		ata_port_wait_eh(ap);
5976 	} else {
5977 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5978 		rc = ata_bus_probe(ap);
5979 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5980 	}
5981 	return rc;
5982 }
5983 
5984 
5985 static void async_port_probe(void *data, async_cookie_t cookie)
5986 {
5987 	struct ata_port *ap = data;
5988 
5989 	/*
5990 	 * If we're not allowed to scan this host in parallel,
5991 	 * we need to wait until all previous scans have completed
5992 	 * before going further.
5993 	 * Jeff Garzik says this is only within a controller, so we
5994 	 * don't need to wait for port 0, only for later ports.
5995 	 */
5996 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5997 		async_synchronize_cookie(cookie);
5998 
5999 	(void)ata_port_probe(ap);
6000 
6001 	/* in order to keep device order, we need to synchronize at this point */
6002 	async_synchronize_cookie(cookie);
6003 
6004 	ata_scsi_scan_host(ap, 1);
6005 }
6006 
6007 /**
6008  *	ata_host_register - register initialized ATA host
6009  *	@host: ATA host to register
6010  *	@sht: template for SCSI host
6011  *
6012  *	Register initialized ATA host.  @host is allocated using
6013  *	ata_host_alloc() and fully initialized by LLD.  This function
6014  *	starts ports, registers @host with ATA and SCSI layers and
6015  *	probe registered devices.
6016  *
6017  *	LOCKING:
6018  *	Inherited from calling layer (may sleep).
6019  *
6020  *	RETURNS:
6021  *	0 on success, -errno otherwise.
6022  */
6023 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6024 {
6025 	int i, rc;
6026 
6027 	/* host must have been started */
6028 	if (!(host->flags & ATA_HOST_STARTED)) {
6029 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6030 		WARN_ON(1);
6031 		return -EINVAL;
6032 	}
6033 
6034 	/* Blow away unused ports.  This happens when LLD can't
6035 	 * determine the exact number of ports to allocate at
6036 	 * allocation time.
6037 	 */
6038 	for (i = host->n_ports; host->ports[i]; i++)
6039 		kfree(host->ports[i]);
6040 
6041 	/* give ports names and add SCSI hosts */
6042 	for (i = 0; i < host->n_ports; i++)
6043 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6044 
6045 
6046 	/* Create associated sysfs transport objects  */
6047 	for (i = 0; i < host->n_ports; i++) {
6048 		rc = ata_tport_add(host->dev,host->ports[i]);
6049 		if (rc) {
6050 			goto err_tadd;
6051 		}
6052 	}
6053 
6054 	rc = ata_scsi_add_hosts(host, sht);
6055 	if (rc)
6056 		goto err_tadd;
6057 
6058 	/* set cable, sata_spd_limit and report */
6059 	for (i = 0; i < host->n_ports; i++) {
6060 		struct ata_port *ap = host->ports[i];
6061 		unsigned long xfer_mask;
6062 
6063 		/* set SATA cable type if still unset */
6064 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6065 			ap->cbl = ATA_CBL_SATA;
6066 
6067 		/* init sata_spd_limit to the current value */
6068 		sata_link_init_spd(&ap->link);
6069 		if (ap->slave_link)
6070 			sata_link_init_spd(ap->slave_link);
6071 
6072 		/* print per-port info to dmesg */
6073 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6074 					      ap->udma_mask);
6075 
6076 		if (!ata_port_is_dummy(ap)) {
6077 			ata_port_info(ap, "%cATA max %s %s\n",
6078 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6079 				      ata_mode_string(xfer_mask),
6080 				      ap->link.eh_info.desc);
6081 			ata_ehi_clear_desc(&ap->link.eh_info);
6082 		} else
6083 			ata_port_info(ap, "DUMMY\n");
6084 	}
6085 
6086 	/* perform each probe asynchronously */
6087 	for (i = 0; i < host->n_ports; i++) {
6088 		struct ata_port *ap = host->ports[i];
6089 		async_schedule(async_port_probe, ap);
6090 	}
6091 
6092 	return 0;
6093 
6094  err_tadd:
6095 	while (--i >= 0) {
6096 		ata_tport_delete(host->ports[i]);
6097 	}
6098 	return rc;
6099 
6100 }
6101 
6102 /**
6103  *	ata_host_activate - start host, request IRQ and register it
6104  *	@host: target ATA host
6105  *	@irq: IRQ to request
6106  *	@irq_handler: irq_handler used when requesting IRQ
6107  *	@irq_flags: irq_flags used when requesting IRQ
6108  *	@sht: scsi_host_template to use when registering the host
6109  *
6110  *	After allocating an ATA host and initializing it, most libata
6111  *	LLDs perform three steps to activate the host - start host,
6112  *	request IRQ and register it.  This helper takes necessasry
6113  *	arguments and performs the three steps in one go.
6114  *
6115  *	An invalid IRQ skips the IRQ registration and expects the host to
6116  *	have set polling mode on the port. In this case, @irq_handler
6117  *	should be NULL.
6118  *
6119  *	LOCKING:
6120  *	Inherited from calling layer (may sleep).
6121  *
6122  *	RETURNS:
6123  *	0 on success, -errno otherwise.
6124  */
6125 int ata_host_activate(struct ata_host *host, int irq,
6126 		      irq_handler_t irq_handler, unsigned long irq_flags,
6127 		      struct scsi_host_template *sht)
6128 {
6129 	int i, rc;
6130 
6131 	rc = ata_host_start(host);
6132 	if (rc)
6133 		return rc;
6134 
6135 	/* Special case for polling mode */
6136 	if (!irq) {
6137 		WARN_ON(irq_handler);
6138 		return ata_host_register(host, sht);
6139 	}
6140 
6141 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6142 			      dev_driver_string(host->dev), host);
6143 	if (rc)
6144 		return rc;
6145 
6146 	for (i = 0; i < host->n_ports; i++)
6147 		ata_port_desc(host->ports[i], "irq %d", irq);
6148 
6149 	rc = ata_host_register(host, sht);
6150 	/* if failed, just free the IRQ and leave ports alone */
6151 	if (rc)
6152 		devm_free_irq(host->dev, irq, host);
6153 
6154 	return rc;
6155 }
6156 
6157 /**
6158  *	ata_port_detach - Detach ATA port in prepration of device removal
6159  *	@ap: ATA port to be detached
6160  *
6161  *	Detach all ATA devices and the associated SCSI devices of @ap;
6162  *	then, remove the associated SCSI host.  @ap is guaranteed to
6163  *	be quiescent on return from this function.
6164  *
6165  *	LOCKING:
6166  *	Kernel thread context (may sleep).
6167  */
6168 static void ata_port_detach(struct ata_port *ap)
6169 {
6170 	unsigned long flags;
6171 
6172 	if (!ap->ops->error_handler)
6173 		goto skip_eh;
6174 
6175 	/* tell EH we're leaving & flush EH */
6176 	spin_lock_irqsave(ap->lock, flags);
6177 	ap->pflags |= ATA_PFLAG_UNLOADING;
6178 	ata_port_schedule_eh(ap);
6179 	spin_unlock_irqrestore(ap->lock, flags);
6180 
6181 	/* wait till EH commits suicide */
6182 	ata_port_wait_eh(ap);
6183 
6184 	/* it better be dead now */
6185 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6186 
6187 	cancel_delayed_work_sync(&ap->hotplug_task);
6188 
6189  skip_eh:
6190 	if (ap->pmp_link) {
6191 		int i;
6192 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6193 			ata_tlink_delete(&ap->pmp_link[i]);
6194 	}
6195 	ata_tport_delete(ap);
6196 
6197 	/* remove the associated SCSI host */
6198 	scsi_remove_host(ap->scsi_host);
6199 }
6200 
6201 /**
6202  *	ata_host_detach - Detach all ports of an ATA host
6203  *	@host: Host to detach
6204  *
6205  *	Detach all ports of @host.
6206  *
6207  *	LOCKING:
6208  *	Kernel thread context (may sleep).
6209  */
6210 void ata_host_detach(struct ata_host *host)
6211 {
6212 	int i;
6213 
6214 	for (i = 0; i < host->n_ports; i++)
6215 		ata_port_detach(host->ports[i]);
6216 
6217 	/* the host is dead now, dissociate ACPI */
6218 	ata_acpi_dissociate(host);
6219 }
6220 
6221 #ifdef CONFIG_PCI
6222 
6223 /**
6224  *	ata_pci_remove_one - PCI layer callback for device removal
6225  *	@pdev: PCI device that was removed
6226  *
6227  *	PCI layer indicates to libata via this hook that hot-unplug or
6228  *	module unload event has occurred.  Detach all ports.  Resource
6229  *	release is handled via devres.
6230  *
6231  *	LOCKING:
6232  *	Inherited from PCI layer (may sleep).
6233  */
6234 void ata_pci_remove_one(struct pci_dev *pdev)
6235 {
6236 	struct device *dev = &pdev->dev;
6237 	struct ata_host *host = dev_get_drvdata(dev);
6238 
6239 	ata_host_detach(host);
6240 }
6241 
6242 /* move to PCI subsystem */
6243 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6244 {
6245 	unsigned long tmp = 0;
6246 
6247 	switch (bits->width) {
6248 	case 1: {
6249 		u8 tmp8 = 0;
6250 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6251 		tmp = tmp8;
6252 		break;
6253 	}
6254 	case 2: {
6255 		u16 tmp16 = 0;
6256 		pci_read_config_word(pdev, bits->reg, &tmp16);
6257 		tmp = tmp16;
6258 		break;
6259 	}
6260 	case 4: {
6261 		u32 tmp32 = 0;
6262 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6263 		tmp = tmp32;
6264 		break;
6265 	}
6266 
6267 	default:
6268 		return -EINVAL;
6269 	}
6270 
6271 	tmp &= bits->mask;
6272 
6273 	return (tmp == bits->val) ? 1 : 0;
6274 }
6275 
6276 #ifdef CONFIG_PM
6277 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278 {
6279 	pci_save_state(pdev);
6280 	pci_disable_device(pdev);
6281 
6282 	if (mesg.event & PM_EVENT_SLEEP)
6283 		pci_set_power_state(pdev, PCI_D3hot);
6284 }
6285 
6286 int ata_pci_device_do_resume(struct pci_dev *pdev)
6287 {
6288 	int rc;
6289 
6290 	pci_set_power_state(pdev, PCI_D0);
6291 	pci_restore_state(pdev);
6292 
6293 	rc = pcim_enable_device(pdev);
6294 	if (rc) {
6295 		dev_err(&pdev->dev,
6296 			"failed to enable device after resume (%d)\n", rc);
6297 		return rc;
6298 	}
6299 
6300 	pci_set_master(pdev);
6301 	return 0;
6302 }
6303 
6304 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6305 {
6306 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6307 	int rc = 0;
6308 
6309 	rc = ata_host_suspend(host, mesg);
6310 	if (rc)
6311 		return rc;
6312 
6313 	ata_pci_device_do_suspend(pdev, mesg);
6314 
6315 	return 0;
6316 }
6317 
6318 int ata_pci_device_resume(struct pci_dev *pdev)
6319 {
6320 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6321 	int rc;
6322 
6323 	rc = ata_pci_device_do_resume(pdev);
6324 	if (rc == 0)
6325 		ata_host_resume(host);
6326 	return rc;
6327 }
6328 #endif /* CONFIG_PM */
6329 
6330 #endif /* CONFIG_PCI */
6331 
6332 static int __init ata_parse_force_one(char **cur,
6333 				      struct ata_force_ent *force_ent,
6334 				      const char **reason)
6335 {
6336 	/* FIXME: Currently, there's no way to tag init const data and
6337 	 * using __initdata causes build failure on some versions of
6338 	 * gcc.  Once __initdataconst is implemented, add const to the
6339 	 * following structure.
6340 	 */
6341 	static struct ata_force_param force_tbl[] __initdata = {
6342 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6343 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6344 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6345 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6346 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6347 		{ "sata",	.cbl		= ATA_CBL_SATA },
6348 		{ "1.5Gbps",	.spd_limit	= 1 },
6349 		{ "3.0Gbps",	.spd_limit	= 2 },
6350 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6351 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6352 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6353 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6354 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6355 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6356 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6357 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6358 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6359 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6360 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6361 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6362 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6363 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6364 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6365 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6366 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6367 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6368 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6369 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6370 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6371 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6372 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6373 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6374 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6375 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6376 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6377 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6378 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6379 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6380 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6381 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6382 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6383 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6384 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6385 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6386 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6387 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6388 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6389 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6390 	};
6391 	char *start = *cur, *p = *cur;
6392 	char *id, *val, *endp;
6393 	const struct ata_force_param *match_fp = NULL;
6394 	int nr_matches = 0, i;
6395 
6396 	/* find where this param ends and update *cur */
6397 	while (*p != '\0' && *p != ',')
6398 		p++;
6399 
6400 	if (*p == '\0')
6401 		*cur = p;
6402 	else
6403 		*cur = p + 1;
6404 
6405 	*p = '\0';
6406 
6407 	/* parse */
6408 	p = strchr(start, ':');
6409 	if (!p) {
6410 		val = strstrip(start);
6411 		goto parse_val;
6412 	}
6413 	*p = '\0';
6414 
6415 	id = strstrip(start);
6416 	val = strstrip(p + 1);
6417 
6418 	/* parse id */
6419 	p = strchr(id, '.');
6420 	if (p) {
6421 		*p++ = '\0';
6422 		force_ent->device = simple_strtoul(p, &endp, 10);
6423 		if (p == endp || *endp != '\0') {
6424 			*reason = "invalid device";
6425 			return -EINVAL;
6426 		}
6427 	}
6428 
6429 	force_ent->port = simple_strtoul(id, &endp, 10);
6430 	if (p == endp || *endp != '\0') {
6431 		*reason = "invalid port/link";
6432 		return -EINVAL;
6433 	}
6434 
6435  parse_val:
6436 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6437 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6438 		const struct ata_force_param *fp = &force_tbl[i];
6439 
6440 		if (strncasecmp(val, fp->name, strlen(val)))
6441 			continue;
6442 
6443 		nr_matches++;
6444 		match_fp = fp;
6445 
6446 		if (strcasecmp(val, fp->name) == 0) {
6447 			nr_matches = 1;
6448 			break;
6449 		}
6450 	}
6451 
6452 	if (!nr_matches) {
6453 		*reason = "unknown value";
6454 		return -EINVAL;
6455 	}
6456 	if (nr_matches > 1) {
6457 		*reason = "ambigious value";
6458 		return -EINVAL;
6459 	}
6460 
6461 	force_ent->param = *match_fp;
6462 
6463 	return 0;
6464 }
6465 
6466 static void __init ata_parse_force_param(void)
6467 {
6468 	int idx = 0, size = 1;
6469 	int last_port = -1, last_device = -1;
6470 	char *p, *cur, *next;
6471 
6472 	/* calculate maximum number of params and allocate force_tbl */
6473 	for (p = ata_force_param_buf; *p; p++)
6474 		if (*p == ',')
6475 			size++;
6476 
6477 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6478 	if (!ata_force_tbl) {
6479 		printk(KERN_WARNING "ata: failed to extend force table, "
6480 		       "libata.force ignored\n");
6481 		return;
6482 	}
6483 
6484 	/* parse and populate the table */
6485 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6486 		const char *reason = "";
6487 		struct ata_force_ent te = { .port = -1, .device = -1 };
6488 
6489 		next = cur;
6490 		if (ata_parse_force_one(&next, &te, &reason)) {
6491 			printk(KERN_WARNING "ata: failed to parse force "
6492 			       "parameter \"%s\" (%s)\n",
6493 			       cur, reason);
6494 			continue;
6495 		}
6496 
6497 		if (te.port == -1) {
6498 			te.port = last_port;
6499 			te.device = last_device;
6500 		}
6501 
6502 		ata_force_tbl[idx++] = te;
6503 
6504 		last_port = te.port;
6505 		last_device = te.device;
6506 	}
6507 
6508 	ata_force_tbl_size = idx;
6509 }
6510 
6511 static int __init ata_init(void)
6512 {
6513 	int rc;
6514 
6515 	ata_parse_force_param();
6516 
6517 	ata_acpi_register();
6518 
6519 	rc = ata_sff_init();
6520 	if (rc) {
6521 		kfree(ata_force_tbl);
6522 		return rc;
6523 	}
6524 
6525 	libata_transport_init();
6526 	ata_scsi_transport_template = ata_attach_transport();
6527 	if (!ata_scsi_transport_template) {
6528 		ata_sff_exit();
6529 		rc = -ENOMEM;
6530 		goto err_out;
6531 	}
6532 
6533 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6534 	return 0;
6535 
6536 err_out:
6537 	return rc;
6538 }
6539 
6540 static void __exit ata_exit(void)
6541 {
6542 	ata_release_transport(ata_scsi_transport_template);
6543 	libata_transport_exit();
6544 	ata_sff_exit();
6545 	ata_acpi_unregister();
6546 	kfree(ata_force_tbl);
6547 }
6548 
6549 subsys_initcall(ata_init);
6550 module_exit(ata_exit);
6551 
6552 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6553 
6554 int ata_ratelimit(void)
6555 {
6556 	return __ratelimit(&ratelimit);
6557 }
6558 
6559 /**
6560  *	ata_msleep - ATA EH owner aware msleep
6561  *	@ap: ATA port to attribute the sleep to
6562  *	@msecs: duration to sleep in milliseconds
6563  *
6564  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6565  *	ownership is released before going to sleep and reacquired
6566  *	after the sleep is complete.  IOW, other ports sharing the
6567  *	@ap->host will be allowed to own the EH while this task is
6568  *	sleeping.
6569  *
6570  *	LOCKING:
6571  *	Might sleep.
6572  */
6573 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6574 {
6575 	bool owns_eh = ap && ap->host->eh_owner == current;
6576 
6577 	if (owns_eh)
6578 		ata_eh_release(ap);
6579 
6580 	msleep(msecs);
6581 
6582 	if (owns_eh)
6583 		ata_eh_acquire(ap);
6584 }
6585 
6586 /**
6587  *	ata_wait_register - wait until register value changes
6588  *	@ap: ATA port to wait register for, can be NULL
6589  *	@reg: IO-mapped register
6590  *	@mask: Mask to apply to read register value
6591  *	@val: Wait condition
6592  *	@interval: polling interval in milliseconds
6593  *	@timeout: timeout in milliseconds
6594  *
6595  *	Waiting for some bits of register to change is a common
6596  *	operation for ATA controllers.  This function reads 32bit LE
6597  *	IO-mapped register @reg and tests for the following condition.
6598  *
6599  *	(*@reg & mask) != val
6600  *
6601  *	If the condition is met, it returns; otherwise, the process is
6602  *	repeated after @interval_msec until timeout.
6603  *
6604  *	LOCKING:
6605  *	Kernel thread context (may sleep)
6606  *
6607  *	RETURNS:
6608  *	The final register value.
6609  */
6610 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6611 		      unsigned long interval, unsigned long timeout)
6612 {
6613 	unsigned long deadline;
6614 	u32 tmp;
6615 
6616 	tmp = ioread32(reg);
6617 
6618 	/* Calculate timeout _after_ the first read to make sure
6619 	 * preceding writes reach the controller before starting to
6620 	 * eat away the timeout.
6621 	 */
6622 	deadline = ata_deadline(jiffies, timeout);
6623 
6624 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6625 		ata_msleep(ap, interval);
6626 		tmp = ioread32(reg);
6627 	}
6628 
6629 	return tmp;
6630 }
6631 
6632 /*
6633  * Dummy port_ops
6634  */
6635 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6636 {
6637 	return AC_ERR_SYSTEM;
6638 }
6639 
6640 static void ata_dummy_error_handler(struct ata_port *ap)
6641 {
6642 	/* truly dummy */
6643 }
6644 
6645 struct ata_port_operations ata_dummy_port_ops = {
6646 	.qc_prep		= ata_noop_qc_prep,
6647 	.qc_issue		= ata_dummy_qc_issue,
6648 	.error_handler		= ata_dummy_error_handler,
6649 	.sched_eh		= ata_std_sched_eh,
6650 	.end_eh			= ata_std_end_eh,
6651 };
6652 
6653 const struct ata_port_info ata_dummy_port_info = {
6654 	.port_ops		= &ata_dummy_port_ops,
6655 };
6656 
6657 /*
6658  * Utility print functions
6659  */
6660 int ata_port_printk(const struct ata_port *ap, const char *level,
6661 		    const char *fmt, ...)
6662 {
6663 	struct va_format vaf;
6664 	va_list args;
6665 	int r;
6666 
6667 	va_start(args, fmt);
6668 
6669 	vaf.fmt = fmt;
6670 	vaf.va = &args;
6671 
6672 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6673 
6674 	va_end(args);
6675 
6676 	return r;
6677 }
6678 EXPORT_SYMBOL(ata_port_printk);
6679 
6680 int ata_link_printk(const struct ata_link *link, const char *level,
6681 		    const char *fmt, ...)
6682 {
6683 	struct va_format vaf;
6684 	va_list args;
6685 	int r;
6686 
6687 	va_start(args, fmt);
6688 
6689 	vaf.fmt = fmt;
6690 	vaf.va = &args;
6691 
6692 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6693 		r = printk("%sata%u.%02u: %pV",
6694 			   level, link->ap->print_id, link->pmp, &vaf);
6695 	else
6696 		r = printk("%sata%u: %pV",
6697 			   level, link->ap->print_id, &vaf);
6698 
6699 	va_end(args);
6700 
6701 	return r;
6702 }
6703 EXPORT_SYMBOL(ata_link_printk);
6704 
6705 int ata_dev_printk(const struct ata_device *dev, const char *level,
6706 		    const char *fmt, ...)
6707 {
6708 	struct va_format vaf;
6709 	va_list args;
6710 	int r;
6711 
6712 	va_start(args, fmt);
6713 
6714 	vaf.fmt = fmt;
6715 	vaf.va = &args;
6716 
6717 	r = printk("%sata%u.%02u: %pV",
6718 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6719 		   &vaf);
6720 
6721 	va_end(args);
6722 
6723 	return r;
6724 }
6725 EXPORT_SYMBOL(ata_dev_printk);
6726 
6727 void ata_print_version(const struct device *dev, const char *version)
6728 {
6729 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6730 }
6731 EXPORT_SYMBOL(ata_print_version);
6732 
6733 /*
6734  * libata is essentially a library of internal helper functions for
6735  * low-level ATA host controller drivers.  As such, the API/ABI is
6736  * likely to change as new drivers are added and updated.
6737  * Do not depend on ABI/API stability.
6738  */
6739 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6740 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6741 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6742 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6743 EXPORT_SYMBOL_GPL(sata_port_ops);
6744 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6745 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6746 EXPORT_SYMBOL_GPL(ata_link_next);
6747 EXPORT_SYMBOL_GPL(ata_dev_next);
6748 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6749 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6750 EXPORT_SYMBOL_GPL(ata_host_init);
6751 EXPORT_SYMBOL_GPL(ata_host_alloc);
6752 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6753 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6754 EXPORT_SYMBOL_GPL(ata_host_start);
6755 EXPORT_SYMBOL_GPL(ata_host_register);
6756 EXPORT_SYMBOL_GPL(ata_host_activate);
6757 EXPORT_SYMBOL_GPL(ata_host_detach);
6758 EXPORT_SYMBOL_GPL(ata_sg_init);
6759 EXPORT_SYMBOL_GPL(ata_qc_complete);
6760 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6761 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6762 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6763 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6764 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6765 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6766 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6767 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6768 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6769 EXPORT_SYMBOL_GPL(ata_mode_string);
6770 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6771 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6772 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6773 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6774 EXPORT_SYMBOL_GPL(ata_dev_disable);
6775 EXPORT_SYMBOL_GPL(sata_set_spd);
6776 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6777 EXPORT_SYMBOL_GPL(sata_link_debounce);
6778 EXPORT_SYMBOL_GPL(sata_link_resume);
6779 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6780 EXPORT_SYMBOL_GPL(ata_std_prereset);
6781 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6782 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6783 EXPORT_SYMBOL_GPL(ata_std_postreset);
6784 EXPORT_SYMBOL_GPL(ata_dev_classify);
6785 EXPORT_SYMBOL_GPL(ata_dev_pair);
6786 EXPORT_SYMBOL_GPL(ata_ratelimit);
6787 EXPORT_SYMBOL_GPL(ata_msleep);
6788 EXPORT_SYMBOL_GPL(ata_wait_register);
6789 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6790 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6791 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6792 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6793 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6794 EXPORT_SYMBOL_GPL(sata_scr_valid);
6795 EXPORT_SYMBOL_GPL(sata_scr_read);
6796 EXPORT_SYMBOL_GPL(sata_scr_write);
6797 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6798 EXPORT_SYMBOL_GPL(ata_link_online);
6799 EXPORT_SYMBOL_GPL(ata_link_offline);
6800 #ifdef CONFIG_PM
6801 EXPORT_SYMBOL_GPL(ata_host_suspend);
6802 EXPORT_SYMBOL_GPL(ata_host_resume);
6803 #endif /* CONFIG_PM */
6804 EXPORT_SYMBOL_GPL(ata_id_string);
6805 EXPORT_SYMBOL_GPL(ata_id_c_string);
6806 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6807 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6808 
6809 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6810 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6811 EXPORT_SYMBOL_GPL(ata_timing_compute);
6812 EXPORT_SYMBOL_GPL(ata_timing_merge);
6813 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6814 
6815 #ifdef CONFIG_PCI
6816 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6817 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6818 #ifdef CONFIG_PM
6819 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6820 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6821 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6822 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6823 #endif /* CONFIG_PM */
6824 #endif /* CONFIG_PCI */
6825 
6826 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6827 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6828 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6829 EXPORT_SYMBOL_GPL(ata_port_desc);
6830 #ifdef CONFIG_PCI
6831 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6832 #endif /* CONFIG_PCI */
6833 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6834 EXPORT_SYMBOL_GPL(ata_link_abort);
6835 EXPORT_SYMBOL_GPL(ata_port_abort);
6836 EXPORT_SYMBOL_GPL(ata_port_freeze);
6837 EXPORT_SYMBOL_GPL(sata_async_notification);
6838 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6839 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6840 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6841 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6842 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6843 EXPORT_SYMBOL_GPL(ata_do_eh);
6844 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6845 
6846 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6847 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6848 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6849 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6850 EXPORT_SYMBOL_GPL(ata_cable_sata);
6851