1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal_sg - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @sgl: sg list for the data buffer of the command 1489 * @n_elem: Number of sg entries 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * command on entry and result on return. Timeout and error 1494 * conditions are reported via return value. No recovery action 1495 * is taken after a command times out. It's caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1505 struct ata_taskfile *tf, const u8 *cdb, 1506 int dma_dir, struct scatterlist *sgl, 1507 unsigned int n_elem, unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 int auto_timeout = 0; 1513 struct ata_queued_cmd *qc; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 DECLARE_COMPLETION_ONSTACK(wait); 1519 unsigned long flags; 1520 unsigned int err_mask; 1521 int rc; 1522 1523 spin_lock_irqsave(ap->lock, flags); 1524 1525 /* no internal command while frozen */ 1526 if (ata_port_is_frozen(ap)) { 1527 spin_unlock_irqrestore(ap->lock, flags); 1528 return AC_ERR_SYSTEM; 1529 } 1530 1531 /* initialize internal qc */ 1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1533 1534 qc->tag = ATA_TAG_INTERNAL; 1535 qc->hw_tag = 0; 1536 qc->scsicmd = NULL; 1537 qc->ap = ap; 1538 qc->dev = dev; 1539 ata_qc_reinit(qc); 1540 1541 preempted_tag = link->active_tag; 1542 preempted_sactive = link->sactive; 1543 preempted_qc_active = ap->qc_active; 1544 preempted_nr_active_links = ap->nr_active_links; 1545 link->active_tag = ATA_TAG_POISON; 1546 link->sactive = 0; 1547 ap->qc_active = 0; 1548 ap->nr_active_links = 0; 1549 1550 /* prepare & issue qc */ 1551 qc->tf = *tf; 1552 if (cdb) 1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1554 1555 /* some SATA bridges need us to indicate data xfer direction */ 1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1557 dma_dir == DMA_FROM_DEVICE) 1558 qc->tf.feature |= ATAPI_DMADIR; 1559 1560 qc->flags |= ATA_QCFLAG_RESULT_TF; 1561 qc->dma_dir = dma_dir; 1562 if (dma_dir != DMA_NONE) { 1563 unsigned int i, buflen = 0; 1564 struct scatterlist *sg; 1565 1566 for_each_sg(sgl, sg, n_elem, i) 1567 buflen += sg->length; 1568 1569 ata_sg_init(qc, sgl, n_elem); 1570 qc->nbytes = buflen; 1571 } 1572 1573 qc->private_data = &wait; 1574 qc->complete_fn = ata_qc_complete_internal; 1575 1576 ata_qc_issue(qc); 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 1580 if (!timeout) { 1581 if (ata_probe_timeout) 1582 timeout = ata_probe_timeout * 1000; 1583 else { 1584 timeout = ata_internal_cmd_timeout(dev, command); 1585 auto_timeout = 1; 1586 } 1587 } 1588 1589 ata_eh_release(ap); 1590 1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1592 1593 ata_eh_acquire(ap); 1594 1595 ata_sff_flush_pio_task(ap); 1596 1597 if (!rc) { 1598 spin_lock_irqsave(ap->lock, flags); 1599 1600 /* We're racing with irq here. If we lose, the 1601 * following test prevents us from completing the qc 1602 * twice. If we win, the port is frozen and will be 1603 * cleaned up by ->post_internal_cmd(). 1604 */ 1605 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1606 qc->err_mask |= AC_ERR_TIMEOUT; 1607 1608 ata_port_freeze(ap); 1609 1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1611 timeout, command); 1612 } 1613 1614 spin_unlock_irqrestore(ap->lock, flags); 1615 } 1616 1617 /* do post_internal_cmd */ 1618 if (ap->ops->post_internal_cmd) 1619 ap->ops->post_internal_cmd(qc); 1620 1621 /* perform minimal error analysis */ 1622 if (qc->flags & ATA_QCFLAG_EH) { 1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1624 qc->err_mask |= AC_ERR_DEV; 1625 1626 if (!qc->err_mask) 1627 qc->err_mask |= AC_ERR_OTHER; 1628 1629 if (qc->err_mask & ~AC_ERR_OTHER) 1630 qc->err_mask &= ~AC_ERR_OTHER; 1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1632 qc->result_tf.status |= ATA_SENSE; 1633 } 1634 1635 /* finish up */ 1636 spin_lock_irqsave(ap->lock, flags); 1637 1638 *tf = qc->result_tf; 1639 err_mask = qc->err_mask; 1640 1641 ata_qc_free(qc); 1642 link->active_tag = preempted_tag; 1643 link->sactive = preempted_sactive; 1644 ap->qc_active = preempted_qc_active; 1645 ap->nr_active_links = preempted_nr_active_links; 1646 1647 spin_unlock_irqrestore(ap->lock, flags); 1648 1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1650 ata_internal_cmd_timed_out(dev, command); 1651 1652 return err_mask; 1653 } 1654 1655 /** 1656 * ata_exec_internal - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data transfer direction of the command 1661 * @buf: Data buffer of the command 1662 * @buflen: Length of data buffer 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Wrapper around ata_exec_internal_sg() which takes simple 1666 * buffer instead of sg list. 1667 * 1668 * LOCKING: 1669 * None. Should be called with kernel context, might sleep. 1670 * 1671 * RETURNS: 1672 * Zero on success, AC_ERR_* mask on failure 1673 */ 1674 unsigned ata_exec_internal(struct ata_device *dev, 1675 struct ata_taskfile *tf, const u8 *cdb, 1676 int dma_dir, void *buf, unsigned int buflen, 1677 unsigned int timeout) 1678 { 1679 struct scatterlist *psg = NULL, sg; 1680 unsigned int n_elem = 0; 1681 1682 if (dma_dir != DMA_NONE) { 1683 WARN_ON(!buf); 1684 sg_init_one(&sg, buf, buflen); 1685 psg = &sg; 1686 n_elem++; 1687 } 1688 1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1690 timeout); 1691 } 1692 1693 /** 1694 * ata_pio_need_iordy - check if iordy needed 1695 * @adev: ATA device 1696 * 1697 * Check if the current speed of the device requires IORDY. Used 1698 * by various controllers for chip configuration. 1699 */ 1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1701 { 1702 /* Don't set IORDY if we're preparing for reset. IORDY may 1703 * lead to controller lock up on certain controllers if the 1704 * port is not occupied. See bko#11703 for details. 1705 */ 1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1707 return 0; 1708 /* Controller doesn't support IORDY. Probably a pointless 1709 * check as the caller should know this. 1710 */ 1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1712 return 0; 1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1714 if (ata_id_is_cfa(adev->id) 1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1716 return 0; 1717 /* PIO3 and higher it is mandatory */ 1718 if (adev->pio_mode > XFER_PIO_2) 1719 return 1; 1720 /* We turn it on when possible */ 1721 if (ata_id_has_iordy(adev->id)) 1722 return 1; 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1726 1727 /** 1728 * ata_pio_mask_no_iordy - Return the non IORDY mask 1729 * @adev: ATA device 1730 * 1731 * Compute the highest mode possible if we are not using iordy. Return 1732 * -1 if no iordy mode is available. 1733 */ 1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1735 { 1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1738 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1739 /* Is the speed faster than the drive allows non IORDY ? */ 1740 if (pio) { 1741 /* This is cycle times not frequency - watch the logic! */ 1742 if (pio > 240) /* PIO2 is 240nS per cycle */ 1743 return 3 << ATA_SHIFT_PIO; 1744 return 7 << ATA_SHIFT_PIO; 1745 } 1746 } 1747 return 3 << ATA_SHIFT_PIO; 1748 } 1749 1750 /** 1751 * ata_do_dev_read_id - default ID read method 1752 * @dev: device 1753 * @tf: proposed taskfile 1754 * @id: data buffer 1755 * 1756 * Issue the identify taskfile and hand back the buffer containing 1757 * identify data. For some RAID controllers and for pre ATA devices 1758 * this function is wrapped or replaced by the driver 1759 */ 1760 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1761 struct ata_taskfile *tf, __le16 *id) 1762 { 1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1765 } 1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1767 1768 /** 1769 * ata_dev_read_id - Read ID data from the specified device 1770 * @dev: target device 1771 * @p_class: pointer to class of the target device (may be changed) 1772 * @flags: ATA_READID_* flags 1773 * @id: buffer to read IDENTIFY data into 1774 * 1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1778 * for pre-ATA4 drives. 1779 * 1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1781 * now we abort if we hit that case. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1790 unsigned int flags, u16 *id) 1791 { 1792 struct ata_port *ap = dev->link->ap; 1793 unsigned int class = *p_class; 1794 struct ata_taskfile tf; 1795 unsigned int err_mask = 0; 1796 const char *reason; 1797 bool is_semb = class == ATA_DEV_SEMB; 1798 int may_fallback = 1, tried_spinup = 0; 1799 int rc; 1800 1801 retry: 1802 ata_tf_init(dev, &tf); 1803 1804 switch (class) { 1805 case ATA_DEV_SEMB: 1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1807 fallthrough; 1808 case ATA_DEV_ATA: 1809 case ATA_DEV_ZAC: 1810 tf.command = ATA_CMD_ID_ATA; 1811 break; 1812 case ATA_DEV_ATAPI: 1813 tf.command = ATA_CMD_ID_ATAPI; 1814 break; 1815 default: 1816 rc = -ENODEV; 1817 reason = "unsupported class"; 1818 goto err_out; 1819 } 1820 1821 tf.protocol = ATA_PROT_PIO; 1822 1823 /* Some devices choke if TF registers contain garbage. Make 1824 * sure those are properly initialized. 1825 */ 1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1827 1828 /* Device presence detection is unreliable on some 1829 * controllers. Always poll IDENTIFY if available. 1830 */ 1831 tf.flags |= ATA_TFLAG_POLLING; 1832 1833 if (ap->ops->read_id) 1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1835 else 1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1837 1838 if (err_mask) { 1839 if (err_mask & AC_ERR_NODEV_HINT) { 1840 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1841 return -ENOENT; 1842 } 1843 1844 if (is_semb) { 1845 ata_dev_info(dev, 1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1847 /* SEMB is not supported yet */ 1848 *p_class = ATA_DEV_SEMB_UNSUP; 1849 return 0; 1850 } 1851 1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1853 /* Device or controller might have reported 1854 * the wrong device class. Give a shot at the 1855 * other IDENTIFY if the current one is 1856 * aborted by the device. 1857 */ 1858 if (may_fallback) { 1859 may_fallback = 0; 1860 1861 if (class == ATA_DEV_ATA) 1862 class = ATA_DEV_ATAPI; 1863 else 1864 class = ATA_DEV_ATA; 1865 goto retry; 1866 } 1867 1868 /* Control reaches here iff the device aborted 1869 * both flavors of IDENTIFYs which happens 1870 * sometimes with phantom devices. 1871 */ 1872 ata_dev_dbg(dev, 1873 "both IDENTIFYs aborted, assuming NODEV\n"); 1874 return -ENOENT; 1875 } 1876 1877 rc = -EIO; 1878 reason = "I/O error"; 1879 goto err_out; 1880 } 1881 1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1883 ata_dev_info(dev, "dumping IDENTIFY data, " 1884 "class=%d may_fallback=%d tried_spinup=%d\n", 1885 class, may_fallback, tried_spinup); 1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1888 } 1889 1890 /* Falling back doesn't make sense if ID data was read 1891 * successfully at least once. 1892 */ 1893 may_fallback = 0; 1894 1895 swap_buf_le16(id, ATA_ID_WORDS); 1896 1897 /* sanity check */ 1898 rc = -EINVAL; 1899 reason = "device reports invalid type"; 1900 1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1903 goto err_out; 1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1905 ata_id_is_ata(id)) { 1906 ata_dev_dbg(dev, 1907 "host indicates ignore ATA devices, ignored\n"); 1908 return -ENOENT; 1909 } 1910 } else { 1911 if (ata_id_is_ata(id)) 1912 goto err_out; 1913 } 1914 1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1916 tried_spinup = 1; 1917 /* 1918 * Drive powered-up in standby mode, and requires a specific 1919 * SET_FEATURES spin-up subcommand before it will accept 1920 * anything other than the original IDENTIFY command. 1921 */ 1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1923 if (err_mask && id[2] != 0x738c) { 1924 rc = -EIO; 1925 reason = "SPINUP failed"; 1926 goto err_out; 1927 } 1928 /* 1929 * If the drive initially returned incomplete IDENTIFY info, 1930 * we now must reissue the IDENTIFY command. 1931 */ 1932 if (id[2] == 0x37c8) 1933 goto retry; 1934 } 1935 1936 if ((flags & ATA_READID_POSTRESET) && 1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1938 /* 1939 * The exact sequence expected by certain pre-ATA4 drives is: 1940 * SRST RESET 1941 * IDENTIFY (optional in early ATA) 1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1943 * anything else.. 1944 * Some drives were very specific about that exact sequence. 1945 * 1946 * Note that ATA4 says lba is mandatory so the second check 1947 * should never trigger. 1948 */ 1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1950 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1951 if (err_mask) { 1952 rc = -EIO; 1953 reason = "INIT_DEV_PARAMS failed"; 1954 goto err_out; 1955 } 1956 1957 /* current CHS translation info (id[53-58]) might be 1958 * changed. reread the identify device info. 1959 */ 1960 flags &= ~ATA_READID_POSTRESET; 1961 goto retry; 1962 } 1963 } 1964 1965 *p_class = class; 1966 1967 return 0; 1968 1969 err_out: 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1976 bool set_active) 1977 { 1978 /* Only applies to ATA and ZAC devices */ 1979 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1980 return false; 1981 1982 ata_tf_init(dev, tf); 1983 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1984 tf->protocol = ATA_PROT_NODATA; 1985 1986 if (set_active) { 1987 /* VERIFY for 1 sector at lba=0 */ 1988 tf->command = ATA_CMD_VERIFY; 1989 tf->nsect = 1; 1990 if (dev->flags & ATA_DFLAG_LBA) { 1991 tf->flags |= ATA_TFLAG_LBA; 1992 tf->device |= ATA_LBA; 1993 } else { 1994 /* CHS */ 1995 tf->lbal = 0x1; /* sect */ 1996 } 1997 } else { 1998 tf->command = ATA_CMD_STANDBYNOW1; 1999 } 2000 2001 return true; 2002 } 2003 2004 /** 2005 * ata_dev_power_set_standby - Set a device power mode to standby 2006 * @dev: target device 2007 * 2008 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 2009 * For an HDD device, this spins down the disks. 2010 * 2011 * LOCKING: 2012 * Kernel thread context (may sleep). 2013 */ 2014 void ata_dev_power_set_standby(struct ata_device *dev) 2015 { 2016 unsigned long ap_flags = dev->link->ap->flags; 2017 struct ata_taskfile tf; 2018 unsigned int err_mask; 2019 2020 /* 2021 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2022 * causing some drives to spin up and down again. For these, do nothing 2023 * if we are being called on shutdown. 2024 */ 2025 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2026 system_state == SYSTEM_POWER_OFF) 2027 return; 2028 2029 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2030 system_entering_hibernation()) 2031 return; 2032 2033 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2034 if (!ata_dev_power_init_tf(dev, &tf, false)) 2035 return; 2036 2037 ata_dev_notice(dev, "Entering standby power mode\n"); 2038 2039 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2040 if (err_mask) 2041 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2042 err_mask); 2043 } 2044 2045 static bool ata_dev_power_is_active(struct ata_device *dev) 2046 { 2047 struct ata_taskfile tf; 2048 unsigned int err_mask; 2049 2050 ata_tf_init(dev, &tf); 2051 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 2052 tf.protocol = ATA_PROT_NODATA; 2053 tf.command = ATA_CMD_CHK_POWER; 2054 2055 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2056 if (err_mask) { 2057 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 2058 err_mask); 2059 /* 2060 * Assume we are in standby mode so that we always force a 2061 * spinup in ata_dev_power_set_active(). 2062 */ 2063 return false; 2064 } 2065 2066 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 2067 2068 /* Active or idle */ 2069 return tf.nsect == 0xff; 2070 } 2071 2072 /** 2073 * ata_dev_power_set_active - Set a device power mode to active 2074 * @dev: target device 2075 * 2076 * Issue a VERIFY command to enter to ensure that the device is in the 2077 * active power mode. For a spun-down HDD (standby or idle power mode), 2078 * the VERIFY command will complete after the disk spins up. 2079 * 2080 * LOCKING: 2081 * Kernel thread context (may sleep). 2082 */ 2083 void ata_dev_power_set_active(struct ata_device *dev) 2084 { 2085 struct ata_taskfile tf; 2086 unsigned int err_mask; 2087 2088 /* 2089 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2090 * if supported by the device. 2091 */ 2092 if (!ata_dev_power_init_tf(dev, &tf, true)) 2093 return; 2094 2095 /* 2096 * Check the device power state & condition and force a spinup with 2097 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2098 */ 2099 if (ata_dev_power_is_active(dev)) 2100 return; 2101 2102 ata_dev_notice(dev, "Entering active power mode\n"); 2103 2104 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2105 if (err_mask) 2106 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2107 err_mask); 2108 } 2109 2110 /** 2111 * ata_read_log_page - read a specific log page 2112 * @dev: target device 2113 * @log: log to read 2114 * @page: page to read 2115 * @buf: buffer to store read page 2116 * @sectors: number of sectors to read 2117 * 2118 * Read log page using READ_LOG_EXT command. 2119 * 2120 * LOCKING: 2121 * Kernel thread context (may sleep). 2122 * 2123 * RETURNS: 2124 * 0 on success, AC_ERR_* mask otherwise. 2125 */ 2126 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2127 u8 page, void *buf, unsigned int sectors) 2128 { 2129 unsigned long ap_flags = dev->link->ap->flags; 2130 struct ata_taskfile tf; 2131 unsigned int err_mask; 2132 bool dma = false; 2133 2134 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2135 2136 /* 2137 * Return error without actually issuing the command on controllers 2138 * which e.g. lockup on a read log page. 2139 */ 2140 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2141 return AC_ERR_DEV; 2142 2143 retry: 2144 ata_tf_init(dev, &tf); 2145 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2146 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2147 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2148 tf.protocol = ATA_PROT_DMA; 2149 dma = true; 2150 } else { 2151 tf.command = ATA_CMD_READ_LOG_EXT; 2152 tf.protocol = ATA_PROT_PIO; 2153 dma = false; 2154 } 2155 tf.lbal = log; 2156 tf.lbam = page; 2157 tf.nsect = sectors; 2158 tf.hob_nsect = sectors >> 8; 2159 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2160 2161 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2162 buf, sectors * ATA_SECT_SIZE, 0); 2163 2164 if (err_mask) { 2165 if (dma) { 2166 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2167 if (!ata_port_is_frozen(dev->link->ap)) 2168 goto retry; 2169 } 2170 ata_dev_err(dev, 2171 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2172 (unsigned int)log, (unsigned int)page, err_mask); 2173 } 2174 2175 return err_mask; 2176 } 2177 2178 static int ata_log_supported(struct ata_device *dev, u8 log) 2179 { 2180 struct ata_port *ap = dev->link->ap; 2181 2182 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2183 return 0; 2184 2185 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2186 return 0; 2187 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2188 } 2189 2190 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2191 { 2192 struct ata_port *ap = dev->link->ap; 2193 unsigned int err, i; 2194 2195 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2196 return false; 2197 2198 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2199 /* 2200 * IDENTIFY DEVICE data log is defined as mandatory starting 2201 * with ACS-3 (ATA version 10). Warn about the missing log 2202 * for drives which implement this ATA level or above. 2203 */ 2204 if (ata_id_major_version(dev->id) >= 10) 2205 ata_dev_warn(dev, 2206 "ATA Identify Device Log not supported\n"); 2207 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2208 return false; 2209 } 2210 2211 /* 2212 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2213 * supported. 2214 */ 2215 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2216 1); 2217 if (err) 2218 return false; 2219 2220 for (i = 0; i < ap->sector_buf[8]; i++) { 2221 if (ap->sector_buf[9 + i] == page) 2222 return true; 2223 } 2224 2225 return false; 2226 } 2227 2228 static int ata_do_link_spd_horkage(struct ata_device *dev) 2229 { 2230 struct ata_link *plink = ata_dev_phys_link(dev); 2231 u32 target, target_limit; 2232 2233 if (!sata_scr_valid(plink)) 2234 return 0; 2235 2236 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2237 target = 1; 2238 else 2239 return 0; 2240 2241 target_limit = (1 << target) - 1; 2242 2243 /* if already on stricter limit, no need to push further */ 2244 if (plink->sata_spd_limit <= target_limit) 2245 return 0; 2246 2247 plink->sata_spd_limit = target_limit; 2248 2249 /* Request another EH round by returning -EAGAIN if link is 2250 * going faster than the target speed. Forward progress is 2251 * guaranteed by setting sata_spd_limit to target_limit above. 2252 */ 2253 if (plink->sata_spd > target) { 2254 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2255 sata_spd_string(target)); 2256 return -EAGAIN; 2257 } 2258 return 0; 2259 } 2260 2261 static inline u8 ata_dev_knobble(struct ata_device *dev) 2262 { 2263 struct ata_port *ap = dev->link->ap; 2264 2265 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2266 return 0; 2267 2268 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2269 } 2270 2271 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2272 { 2273 struct ata_port *ap = dev->link->ap; 2274 unsigned int err_mask; 2275 2276 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2277 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2278 return; 2279 } 2280 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2281 0, ap->sector_buf, 1); 2282 if (!err_mask) { 2283 u8 *cmds = dev->ncq_send_recv_cmds; 2284 2285 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2286 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2287 2288 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2289 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2290 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2291 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2292 } 2293 } 2294 } 2295 2296 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2297 { 2298 struct ata_port *ap = dev->link->ap; 2299 unsigned int err_mask; 2300 2301 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2302 ata_dev_warn(dev, 2303 "NCQ Send/Recv Log not supported\n"); 2304 return; 2305 } 2306 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2307 0, ap->sector_buf, 1); 2308 if (!err_mask) { 2309 u8 *cmds = dev->ncq_non_data_cmds; 2310 2311 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2312 } 2313 } 2314 2315 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2316 { 2317 struct ata_port *ap = dev->link->ap; 2318 unsigned int err_mask; 2319 2320 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2321 return; 2322 2323 err_mask = ata_read_log_page(dev, 2324 ATA_LOG_IDENTIFY_DEVICE, 2325 ATA_LOG_SATA_SETTINGS, 2326 ap->sector_buf, 2327 1); 2328 if (err_mask) 2329 goto not_supported; 2330 2331 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2332 goto not_supported; 2333 2334 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2335 2336 return; 2337 2338 not_supported: 2339 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2340 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2341 } 2342 2343 static bool ata_dev_check_adapter(struct ata_device *dev, 2344 unsigned short vendor_id) 2345 { 2346 struct pci_dev *pcidev = NULL; 2347 struct device *parent_dev = NULL; 2348 2349 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2350 parent_dev = parent_dev->parent) { 2351 if (dev_is_pci(parent_dev)) { 2352 pcidev = to_pci_dev(parent_dev); 2353 if (pcidev->vendor == vendor_id) 2354 return true; 2355 break; 2356 } 2357 } 2358 2359 return false; 2360 } 2361 2362 static int ata_dev_config_ncq(struct ata_device *dev, 2363 char *desc, size_t desc_sz) 2364 { 2365 struct ata_port *ap = dev->link->ap; 2366 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2367 unsigned int err_mask; 2368 char *aa_desc = ""; 2369 2370 if (!ata_id_has_ncq(dev->id)) { 2371 desc[0] = '\0'; 2372 return 0; 2373 } 2374 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2375 return 0; 2376 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2377 snprintf(desc, desc_sz, "NCQ (not used)"); 2378 return 0; 2379 } 2380 2381 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2382 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2383 snprintf(desc, desc_sz, "NCQ (not used)"); 2384 return 0; 2385 } 2386 2387 if (ap->flags & ATA_FLAG_NCQ) { 2388 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2389 dev->flags |= ATA_DFLAG_NCQ; 2390 } 2391 2392 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2393 (ap->flags & ATA_FLAG_FPDMA_AA) && 2394 ata_id_has_fpdma_aa(dev->id)) { 2395 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2396 SATA_FPDMA_AA); 2397 if (err_mask) { 2398 ata_dev_err(dev, 2399 "failed to enable AA (error_mask=0x%x)\n", 2400 err_mask); 2401 if (err_mask != AC_ERR_DEV) { 2402 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2403 return -EIO; 2404 } 2405 } else 2406 aa_desc = ", AA"; 2407 } 2408 2409 if (hdepth >= ddepth) 2410 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2411 else 2412 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2413 ddepth, aa_desc); 2414 2415 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2416 if (ata_id_has_ncq_send_and_recv(dev->id)) 2417 ata_dev_config_ncq_send_recv(dev); 2418 if (ata_id_has_ncq_non_data(dev->id)) 2419 ata_dev_config_ncq_non_data(dev); 2420 if (ata_id_has_ncq_prio(dev->id)) 2421 ata_dev_config_ncq_prio(dev); 2422 } 2423 2424 return 0; 2425 } 2426 2427 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2428 { 2429 unsigned int err_mask; 2430 2431 if (!ata_id_has_sense_reporting(dev->id)) 2432 return; 2433 2434 if (ata_id_sense_reporting_enabled(dev->id)) 2435 return; 2436 2437 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2438 if (err_mask) { 2439 ata_dev_dbg(dev, 2440 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2441 err_mask); 2442 } 2443 } 2444 2445 static void ata_dev_config_zac(struct ata_device *dev) 2446 { 2447 struct ata_port *ap = dev->link->ap; 2448 unsigned int err_mask; 2449 u8 *identify_buf = ap->sector_buf; 2450 2451 dev->zac_zones_optimal_open = U32_MAX; 2452 dev->zac_zones_optimal_nonseq = U32_MAX; 2453 dev->zac_zones_max_open = U32_MAX; 2454 2455 /* 2456 * Always set the 'ZAC' flag for Host-managed devices. 2457 */ 2458 if (dev->class == ATA_DEV_ZAC) 2459 dev->flags |= ATA_DFLAG_ZAC; 2460 else if (ata_id_zoned_cap(dev->id) == 0x01) 2461 /* 2462 * Check for host-aware devices. 2463 */ 2464 dev->flags |= ATA_DFLAG_ZAC; 2465 2466 if (!(dev->flags & ATA_DFLAG_ZAC)) 2467 return; 2468 2469 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2470 ata_dev_warn(dev, 2471 "ATA Zoned Information Log not supported\n"); 2472 return; 2473 } 2474 2475 /* 2476 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2477 */ 2478 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2479 ATA_LOG_ZONED_INFORMATION, 2480 identify_buf, 1); 2481 if (!err_mask) { 2482 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2483 2484 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2485 if ((zoned_cap >> 63)) 2486 dev->zac_zoned_cap = (zoned_cap & 1); 2487 opt_open = get_unaligned_le64(&identify_buf[24]); 2488 if ((opt_open >> 63)) 2489 dev->zac_zones_optimal_open = (u32)opt_open; 2490 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2491 if ((opt_nonseq >> 63)) 2492 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2493 max_open = get_unaligned_le64(&identify_buf[40]); 2494 if ((max_open >> 63)) 2495 dev->zac_zones_max_open = (u32)max_open; 2496 } 2497 } 2498 2499 static void ata_dev_config_trusted(struct ata_device *dev) 2500 { 2501 struct ata_port *ap = dev->link->ap; 2502 u64 trusted_cap; 2503 unsigned int err; 2504 2505 if (!ata_id_has_trusted(dev->id)) 2506 return; 2507 2508 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2509 ata_dev_warn(dev, 2510 "Security Log not supported\n"); 2511 return; 2512 } 2513 2514 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2515 ap->sector_buf, 1); 2516 if (err) 2517 return; 2518 2519 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2520 if (!(trusted_cap & (1ULL << 63))) { 2521 ata_dev_dbg(dev, 2522 "Trusted Computing capability qword not valid!\n"); 2523 return; 2524 } 2525 2526 if (trusted_cap & (1 << 0)) 2527 dev->flags |= ATA_DFLAG_TRUSTED; 2528 } 2529 2530 static void ata_dev_config_cdl(struct ata_device *dev) 2531 { 2532 struct ata_port *ap = dev->link->ap; 2533 unsigned int err_mask; 2534 bool cdl_enabled; 2535 u64 val; 2536 2537 if (ata_id_major_version(dev->id) < 12) 2538 goto not_supported; 2539 2540 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2541 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2542 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2543 goto not_supported; 2544 2545 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2546 ATA_LOG_SUPPORTED_CAPABILITIES, 2547 ap->sector_buf, 1); 2548 if (err_mask) 2549 goto not_supported; 2550 2551 /* Check Command Duration Limit Supported bits */ 2552 val = get_unaligned_le64(&ap->sector_buf[168]); 2553 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2554 goto not_supported; 2555 2556 /* Warn the user if command duration guideline is not supported */ 2557 if (!(val & BIT_ULL(1))) 2558 ata_dev_warn(dev, 2559 "Command duration guideline is not supported\n"); 2560 2561 /* 2562 * We must have support for the sense data for successful NCQ commands 2563 * log indicated by the successful NCQ command sense data supported bit. 2564 */ 2565 val = get_unaligned_le64(&ap->sector_buf[8]); 2566 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2567 ata_dev_warn(dev, 2568 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2569 goto not_supported; 2570 } 2571 2572 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2573 if (!ata_id_has_ncq_autosense(dev->id)) { 2574 ata_dev_warn(dev, 2575 "CDL supported but NCQ autosense is not supported\n"); 2576 goto not_supported; 2577 } 2578 2579 /* 2580 * If CDL is marked as enabled, make sure the feature is enabled too. 2581 * Conversely, if CDL is disabled, make sure the feature is turned off. 2582 */ 2583 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2584 ATA_LOG_CURRENT_SETTINGS, 2585 ap->sector_buf, 1); 2586 if (err_mask) 2587 goto not_supported; 2588 2589 val = get_unaligned_le64(&ap->sector_buf[8]); 2590 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2591 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2592 if (!cdl_enabled) { 2593 /* Enable CDL on the device */ 2594 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2595 if (err_mask) { 2596 ata_dev_err(dev, 2597 "Enable CDL feature failed\n"); 2598 goto not_supported; 2599 } 2600 } 2601 } else { 2602 if (cdl_enabled) { 2603 /* Disable CDL on the device */ 2604 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2605 if (err_mask) { 2606 ata_dev_err(dev, 2607 "Disable CDL feature failed\n"); 2608 goto not_supported; 2609 } 2610 } 2611 } 2612 2613 /* 2614 * While CDL itself has to be enabled using sysfs, CDL requires that 2615 * sense data for successful NCQ commands is enabled to work properly. 2616 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2617 * if supported. 2618 */ 2619 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2620 err_mask = ata_dev_set_feature(dev, 2621 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2622 if (err_mask) { 2623 ata_dev_warn(dev, 2624 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2625 err_mask); 2626 goto not_supported; 2627 } 2628 } 2629 2630 /* 2631 * Allocate a buffer to handle reading the sense data for successful 2632 * NCQ Commands log page for commands using a CDL with one of the limit 2633 * policy set to 0xD (successful completion with sense data available 2634 * bit set). 2635 */ 2636 if (!ap->ncq_sense_buf) { 2637 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2638 if (!ap->ncq_sense_buf) 2639 goto not_supported; 2640 } 2641 2642 /* 2643 * Command duration limits is supported: cache the CDL log page 18h 2644 * (command duration descriptors). 2645 */ 2646 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2647 if (err_mask) { 2648 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2649 goto not_supported; 2650 } 2651 2652 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2653 dev->flags |= ATA_DFLAG_CDL; 2654 2655 return; 2656 2657 not_supported: 2658 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2659 kfree(ap->ncq_sense_buf); 2660 ap->ncq_sense_buf = NULL; 2661 } 2662 2663 static int ata_dev_config_lba(struct ata_device *dev) 2664 { 2665 const u16 *id = dev->id; 2666 const char *lba_desc; 2667 char ncq_desc[32]; 2668 int ret; 2669 2670 dev->flags |= ATA_DFLAG_LBA; 2671 2672 if (ata_id_has_lba48(id)) { 2673 lba_desc = "LBA48"; 2674 dev->flags |= ATA_DFLAG_LBA48; 2675 if (dev->n_sectors >= (1UL << 28) && 2676 ata_id_has_flush_ext(id)) 2677 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2678 } else { 2679 lba_desc = "LBA"; 2680 } 2681 2682 /* config NCQ */ 2683 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2684 2685 /* print device info to dmesg */ 2686 if (ata_dev_print_info(dev)) 2687 ata_dev_info(dev, 2688 "%llu sectors, multi %u: %s %s\n", 2689 (unsigned long long)dev->n_sectors, 2690 dev->multi_count, lba_desc, ncq_desc); 2691 2692 return ret; 2693 } 2694 2695 static void ata_dev_config_chs(struct ata_device *dev) 2696 { 2697 const u16 *id = dev->id; 2698 2699 if (ata_id_current_chs_valid(id)) { 2700 /* Current CHS translation is valid. */ 2701 dev->cylinders = id[54]; 2702 dev->heads = id[55]; 2703 dev->sectors = id[56]; 2704 } else { 2705 /* Default translation */ 2706 dev->cylinders = id[1]; 2707 dev->heads = id[3]; 2708 dev->sectors = id[6]; 2709 } 2710 2711 /* print device info to dmesg */ 2712 if (ata_dev_print_info(dev)) 2713 ata_dev_info(dev, 2714 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2715 (unsigned long long)dev->n_sectors, 2716 dev->multi_count, dev->cylinders, 2717 dev->heads, dev->sectors); 2718 } 2719 2720 static void ata_dev_config_fua(struct ata_device *dev) 2721 { 2722 /* Ignore FUA support if its use is disabled globally */ 2723 if (!libata_fua) 2724 goto nofua; 2725 2726 /* Ignore devices without support for WRITE DMA FUA EXT */ 2727 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2728 goto nofua; 2729 2730 /* Ignore known bad devices and devices that lack NCQ support */ 2731 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2732 goto nofua; 2733 2734 dev->flags |= ATA_DFLAG_FUA; 2735 2736 return; 2737 2738 nofua: 2739 dev->flags &= ~ATA_DFLAG_FUA; 2740 } 2741 2742 static void ata_dev_config_devslp(struct ata_device *dev) 2743 { 2744 u8 *sata_setting = dev->link->ap->sector_buf; 2745 unsigned int err_mask; 2746 int i, j; 2747 2748 /* 2749 * Check device sleep capability. Get DevSlp timing variables 2750 * from SATA Settings page of Identify Device Data Log. 2751 */ 2752 if (!ata_id_has_devslp(dev->id) || 2753 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2754 return; 2755 2756 err_mask = ata_read_log_page(dev, 2757 ATA_LOG_IDENTIFY_DEVICE, 2758 ATA_LOG_SATA_SETTINGS, 2759 sata_setting, 1); 2760 if (err_mask) 2761 return; 2762 2763 dev->flags |= ATA_DFLAG_DEVSLP; 2764 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2765 j = ATA_LOG_DEVSLP_OFFSET + i; 2766 dev->devslp_timing[i] = sata_setting[j]; 2767 } 2768 } 2769 2770 static void ata_dev_config_cpr(struct ata_device *dev) 2771 { 2772 unsigned int err_mask; 2773 size_t buf_len; 2774 int i, nr_cpr = 0; 2775 struct ata_cpr_log *cpr_log = NULL; 2776 u8 *desc, *buf = NULL; 2777 2778 if (ata_id_major_version(dev->id) < 11) 2779 goto out; 2780 2781 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2782 if (buf_len == 0) 2783 goto out; 2784 2785 /* 2786 * Read the concurrent positioning ranges log (0x47). We can have at 2787 * most 255 32B range descriptors plus a 64B header. This log varies in 2788 * size, so use the size reported in the GPL directory. Reading beyond 2789 * the supported length will result in an error. 2790 */ 2791 buf_len <<= 9; 2792 buf = kzalloc(buf_len, GFP_KERNEL); 2793 if (!buf) 2794 goto out; 2795 2796 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2797 0, buf, buf_len >> 9); 2798 if (err_mask) 2799 goto out; 2800 2801 nr_cpr = buf[0]; 2802 if (!nr_cpr) 2803 goto out; 2804 2805 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2806 if (!cpr_log) 2807 goto out; 2808 2809 cpr_log->nr_cpr = nr_cpr; 2810 desc = &buf[64]; 2811 for (i = 0; i < nr_cpr; i++, desc += 32) { 2812 cpr_log->cpr[i].num = desc[0]; 2813 cpr_log->cpr[i].num_storage_elements = desc[1]; 2814 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2815 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2816 } 2817 2818 out: 2819 swap(dev->cpr_log, cpr_log); 2820 kfree(cpr_log); 2821 kfree(buf); 2822 } 2823 2824 static void ata_dev_print_features(struct ata_device *dev) 2825 { 2826 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2827 return; 2828 2829 ata_dev_info(dev, 2830 "Features:%s%s%s%s%s%s%s%s\n", 2831 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2832 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2833 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2834 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2835 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2836 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2837 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2838 dev->cpr_log ? " CPR" : ""); 2839 } 2840 2841 /** 2842 * ata_dev_configure - Configure the specified ATA/ATAPI device 2843 * @dev: Target device to configure 2844 * 2845 * Configure @dev according to @dev->id. Generic and low-level 2846 * driver specific fixups are also applied. 2847 * 2848 * LOCKING: 2849 * Kernel thread context (may sleep) 2850 * 2851 * RETURNS: 2852 * 0 on success, -errno otherwise 2853 */ 2854 int ata_dev_configure(struct ata_device *dev) 2855 { 2856 struct ata_port *ap = dev->link->ap; 2857 bool print_info = ata_dev_print_info(dev); 2858 const u16 *id = dev->id; 2859 unsigned int xfer_mask; 2860 unsigned int err_mask; 2861 char revbuf[7]; /* XYZ-99\0 */ 2862 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2863 char modelbuf[ATA_ID_PROD_LEN+1]; 2864 int rc; 2865 2866 if (!ata_dev_enabled(dev)) { 2867 ata_dev_dbg(dev, "no device\n"); 2868 return 0; 2869 } 2870 2871 /* set horkage */ 2872 dev->horkage |= ata_dev_blacklisted(dev); 2873 ata_force_horkage(dev); 2874 2875 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2876 ata_dev_info(dev, "unsupported device, disabling\n"); 2877 ata_dev_disable(dev); 2878 return 0; 2879 } 2880 2881 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2882 dev->class == ATA_DEV_ATAPI) { 2883 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2884 atapi_enabled ? "not supported with this driver" 2885 : "disabled"); 2886 ata_dev_disable(dev); 2887 return 0; 2888 } 2889 2890 rc = ata_do_link_spd_horkage(dev); 2891 if (rc) 2892 return rc; 2893 2894 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2895 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2896 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2897 dev->horkage |= ATA_HORKAGE_NOLPM; 2898 2899 if (ap->flags & ATA_FLAG_NO_LPM) 2900 dev->horkage |= ATA_HORKAGE_NOLPM; 2901 2902 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2903 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2904 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2905 } 2906 2907 /* let ACPI work its magic */ 2908 rc = ata_acpi_on_devcfg(dev); 2909 if (rc) 2910 return rc; 2911 2912 /* massage HPA, do it early as it might change IDENTIFY data */ 2913 rc = ata_hpa_resize(dev); 2914 if (rc) 2915 return rc; 2916 2917 /* print device capabilities */ 2918 ata_dev_dbg(dev, 2919 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2920 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2921 __func__, 2922 id[49], id[82], id[83], id[84], 2923 id[85], id[86], id[87], id[88]); 2924 2925 /* initialize to-be-configured parameters */ 2926 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2927 dev->max_sectors = 0; 2928 dev->cdb_len = 0; 2929 dev->n_sectors = 0; 2930 dev->cylinders = 0; 2931 dev->heads = 0; 2932 dev->sectors = 0; 2933 dev->multi_count = 0; 2934 2935 /* 2936 * common ATA, ATAPI feature tests 2937 */ 2938 2939 /* find max transfer mode; for printk only */ 2940 xfer_mask = ata_id_xfermask(id); 2941 2942 ata_dump_id(dev, id); 2943 2944 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2945 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2946 sizeof(fwrevbuf)); 2947 2948 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2949 sizeof(modelbuf)); 2950 2951 /* ATA-specific feature tests */ 2952 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2953 if (ata_id_is_cfa(id)) { 2954 /* CPRM may make this media unusable */ 2955 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2956 ata_dev_warn(dev, 2957 "supports DRM functions and may not be fully accessible\n"); 2958 snprintf(revbuf, 7, "CFA"); 2959 } else { 2960 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2961 /* Warn the user if the device has TPM extensions */ 2962 if (ata_id_has_tpm(id)) 2963 ata_dev_warn(dev, 2964 "supports DRM functions and may not be fully accessible\n"); 2965 } 2966 2967 dev->n_sectors = ata_id_n_sectors(id); 2968 2969 /* get current R/W Multiple count setting */ 2970 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2971 unsigned int max = dev->id[47] & 0xff; 2972 unsigned int cnt = dev->id[59] & 0xff; 2973 /* only recognize/allow powers of two here */ 2974 if (is_power_of_2(max) && is_power_of_2(cnt)) 2975 if (cnt <= max) 2976 dev->multi_count = cnt; 2977 } 2978 2979 /* print device info to dmesg */ 2980 if (print_info) 2981 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2982 revbuf, modelbuf, fwrevbuf, 2983 ata_mode_string(xfer_mask)); 2984 2985 if (ata_id_has_lba(id)) { 2986 rc = ata_dev_config_lba(dev); 2987 if (rc) 2988 return rc; 2989 } else { 2990 ata_dev_config_chs(dev); 2991 } 2992 2993 ata_dev_config_fua(dev); 2994 ata_dev_config_devslp(dev); 2995 ata_dev_config_sense_reporting(dev); 2996 ata_dev_config_zac(dev); 2997 ata_dev_config_trusted(dev); 2998 ata_dev_config_cpr(dev); 2999 ata_dev_config_cdl(dev); 3000 dev->cdb_len = 32; 3001 3002 if (print_info) 3003 ata_dev_print_features(dev); 3004 } 3005 3006 /* ATAPI-specific feature tests */ 3007 else if (dev->class == ATA_DEV_ATAPI) { 3008 const char *cdb_intr_string = ""; 3009 const char *atapi_an_string = ""; 3010 const char *dma_dir_string = ""; 3011 u32 sntf; 3012 3013 rc = atapi_cdb_len(id); 3014 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 3015 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 3016 rc = -EINVAL; 3017 goto err_out_nosup; 3018 } 3019 dev->cdb_len = (unsigned int) rc; 3020 3021 /* Enable ATAPI AN if both the host and device have 3022 * the support. If PMP is attached, SNTF is required 3023 * to enable ATAPI AN to discern between PHY status 3024 * changed notifications and ATAPI ANs. 3025 */ 3026 if (atapi_an && 3027 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 3028 (!sata_pmp_attached(ap) || 3029 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 3030 /* issue SET feature command to turn this on */ 3031 err_mask = ata_dev_set_feature(dev, 3032 SETFEATURES_SATA_ENABLE, SATA_AN); 3033 if (err_mask) 3034 ata_dev_err(dev, 3035 "failed to enable ATAPI AN (err_mask=0x%x)\n", 3036 err_mask); 3037 else { 3038 dev->flags |= ATA_DFLAG_AN; 3039 atapi_an_string = ", ATAPI AN"; 3040 } 3041 } 3042 3043 if (ata_id_cdb_intr(dev->id)) { 3044 dev->flags |= ATA_DFLAG_CDB_INTR; 3045 cdb_intr_string = ", CDB intr"; 3046 } 3047 3048 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 3049 dev->flags |= ATA_DFLAG_DMADIR; 3050 dma_dir_string = ", DMADIR"; 3051 } 3052 3053 if (ata_id_has_da(dev->id)) { 3054 dev->flags |= ATA_DFLAG_DA; 3055 zpodd_init(dev); 3056 } 3057 3058 /* print device info to dmesg */ 3059 if (print_info) 3060 ata_dev_info(dev, 3061 "ATAPI: %s, %s, max %s%s%s%s\n", 3062 modelbuf, fwrevbuf, 3063 ata_mode_string(xfer_mask), 3064 cdb_intr_string, atapi_an_string, 3065 dma_dir_string); 3066 } 3067 3068 /* determine max_sectors */ 3069 dev->max_sectors = ATA_MAX_SECTORS; 3070 if (dev->flags & ATA_DFLAG_LBA48) 3071 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3072 3073 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3074 200 sectors */ 3075 if (ata_dev_knobble(dev)) { 3076 if (print_info) 3077 ata_dev_info(dev, "applying bridge limits\n"); 3078 dev->udma_mask &= ATA_UDMA5; 3079 dev->max_sectors = ATA_MAX_SECTORS; 3080 } 3081 3082 if ((dev->class == ATA_DEV_ATAPI) && 3083 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3084 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3085 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 3086 } 3087 3088 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 3089 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3090 dev->max_sectors); 3091 3092 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 3093 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3094 dev->max_sectors); 3095 3096 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 3097 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3098 3099 if (ap->ops->dev_config) 3100 ap->ops->dev_config(dev); 3101 3102 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 3103 /* Let the user know. We don't want to disallow opens for 3104 rescue purposes, or in case the vendor is just a blithering 3105 idiot. Do this after the dev_config call as some controllers 3106 with buggy firmware may want to avoid reporting false device 3107 bugs */ 3108 3109 if (print_info) { 3110 ata_dev_warn(dev, 3111 "Drive reports diagnostics failure. This may indicate a drive\n"); 3112 ata_dev_warn(dev, 3113 "fault or invalid emulation. Contact drive vendor for information.\n"); 3114 } 3115 } 3116 3117 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 3118 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3119 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3120 } 3121 3122 return 0; 3123 3124 err_out_nosup: 3125 return rc; 3126 } 3127 3128 /** 3129 * ata_cable_40wire - return 40 wire cable type 3130 * @ap: port 3131 * 3132 * Helper method for drivers which want to hardwire 40 wire cable 3133 * detection. 3134 */ 3135 3136 int ata_cable_40wire(struct ata_port *ap) 3137 { 3138 return ATA_CBL_PATA40; 3139 } 3140 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3141 3142 /** 3143 * ata_cable_80wire - return 80 wire cable type 3144 * @ap: port 3145 * 3146 * Helper method for drivers which want to hardwire 80 wire cable 3147 * detection. 3148 */ 3149 3150 int ata_cable_80wire(struct ata_port *ap) 3151 { 3152 return ATA_CBL_PATA80; 3153 } 3154 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3155 3156 /** 3157 * ata_cable_unknown - return unknown PATA cable. 3158 * @ap: port 3159 * 3160 * Helper method for drivers which have no PATA cable detection. 3161 */ 3162 3163 int ata_cable_unknown(struct ata_port *ap) 3164 { 3165 return ATA_CBL_PATA_UNK; 3166 } 3167 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3168 3169 /** 3170 * ata_cable_ignore - return ignored PATA cable. 3171 * @ap: port 3172 * 3173 * Helper method for drivers which don't use cable type to limit 3174 * transfer mode. 3175 */ 3176 int ata_cable_ignore(struct ata_port *ap) 3177 { 3178 return ATA_CBL_PATA_IGN; 3179 } 3180 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3181 3182 /** 3183 * ata_cable_sata - return SATA cable type 3184 * @ap: port 3185 * 3186 * Helper method for drivers which have SATA cables 3187 */ 3188 3189 int ata_cable_sata(struct ata_port *ap) 3190 { 3191 return ATA_CBL_SATA; 3192 } 3193 EXPORT_SYMBOL_GPL(ata_cable_sata); 3194 3195 /** 3196 * sata_print_link_status - Print SATA link status 3197 * @link: SATA link to printk link status about 3198 * 3199 * This function prints link speed and status of a SATA link. 3200 * 3201 * LOCKING: 3202 * None. 3203 */ 3204 static void sata_print_link_status(struct ata_link *link) 3205 { 3206 u32 sstatus, scontrol, tmp; 3207 3208 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3209 return; 3210 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3211 return; 3212 3213 if (ata_phys_link_online(link)) { 3214 tmp = (sstatus >> 4) & 0xf; 3215 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3216 sata_spd_string(tmp), sstatus, scontrol); 3217 } else { 3218 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3219 sstatus, scontrol); 3220 } 3221 } 3222 3223 /** 3224 * ata_dev_pair - return other device on cable 3225 * @adev: device 3226 * 3227 * Obtain the other device on the same cable, or if none is 3228 * present NULL is returned 3229 */ 3230 3231 struct ata_device *ata_dev_pair(struct ata_device *adev) 3232 { 3233 struct ata_link *link = adev->link; 3234 struct ata_device *pair = &link->device[1 - adev->devno]; 3235 if (!ata_dev_enabled(pair)) 3236 return NULL; 3237 return pair; 3238 } 3239 EXPORT_SYMBOL_GPL(ata_dev_pair); 3240 3241 /** 3242 * sata_down_spd_limit - adjust SATA spd limit downward 3243 * @link: Link to adjust SATA spd limit for 3244 * @spd_limit: Additional limit 3245 * 3246 * Adjust SATA spd limit of @link downward. Note that this 3247 * function only adjusts the limit. The change must be applied 3248 * using sata_set_spd(). 3249 * 3250 * If @spd_limit is non-zero, the speed is limited to equal to or 3251 * lower than @spd_limit if such speed is supported. If 3252 * @spd_limit is slower than any supported speed, only the lowest 3253 * supported speed is allowed. 3254 * 3255 * LOCKING: 3256 * Inherited from caller. 3257 * 3258 * RETURNS: 3259 * 0 on success, negative errno on failure 3260 */ 3261 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3262 { 3263 u32 sstatus, spd, mask; 3264 int rc, bit; 3265 3266 if (!sata_scr_valid(link)) 3267 return -EOPNOTSUPP; 3268 3269 /* If SCR can be read, use it to determine the current SPD. 3270 * If not, use cached value in link->sata_spd. 3271 */ 3272 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3273 if (rc == 0 && ata_sstatus_online(sstatus)) 3274 spd = (sstatus >> 4) & 0xf; 3275 else 3276 spd = link->sata_spd; 3277 3278 mask = link->sata_spd_limit; 3279 if (mask <= 1) 3280 return -EINVAL; 3281 3282 /* unconditionally mask off the highest bit */ 3283 bit = fls(mask) - 1; 3284 mask &= ~(1 << bit); 3285 3286 /* 3287 * Mask off all speeds higher than or equal to the current one. At 3288 * this point, if current SPD is not available and we previously 3289 * recorded the link speed from SStatus, the driver has already 3290 * masked off the highest bit so mask should already be 1 or 0. 3291 * Otherwise, we should not force 1.5Gbps on a link where we have 3292 * not previously recorded speed from SStatus. Just return in this 3293 * case. 3294 */ 3295 if (spd > 1) 3296 mask &= (1 << (spd - 1)) - 1; 3297 else if (link->sata_spd) 3298 return -EINVAL; 3299 3300 /* were we already at the bottom? */ 3301 if (!mask) 3302 return -EINVAL; 3303 3304 if (spd_limit) { 3305 if (mask & ((1 << spd_limit) - 1)) 3306 mask &= (1 << spd_limit) - 1; 3307 else { 3308 bit = ffs(mask) - 1; 3309 mask = 1 << bit; 3310 } 3311 } 3312 3313 link->sata_spd_limit = mask; 3314 3315 ata_link_warn(link, "limiting SATA link speed to %s\n", 3316 sata_spd_string(fls(mask))); 3317 3318 return 0; 3319 } 3320 3321 #ifdef CONFIG_ATA_ACPI 3322 /** 3323 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3324 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3325 * @cycle: cycle duration in ns 3326 * 3327 * Return matching xfer mode for @cycle. The returned mode is of 3328 * the transfer type specified by @xfer_shift. If @cycle is too 3329 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3330 * than the fastest known mode, the fasted mode is returned. 3331 * 3332 * LOCKING: 3333 * None. 3334 * 3335 * RETURNS: 3336 * Matching xfer_mode, 0xff if no match found. 3337 */ 3338 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3339 { 3340 u8 base_mode = 0xff, last_mode = 0xff; 3341 const struct ata_xfer_ent *ent; 3342 const struct ata_timing *t; 3343 3344 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3345 if (ent->shift == xfer_shift) 3346 base_mode = ent->base; 3347 3348 for (t = ata_timing_find_mode(base_mode); 3349 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3350 unsigned short this_cycle; 3351 3352 switch (xfer_shift) { 3353 case ATA_SHIFT_PIO: 3354 case ATA_SHIFT_MWDMA: 3355 this_cycle = t->cycle; 3356 break; 3357 case ATA_SHIFT_UDMA: 3358 this_cycle = t->udma; 3359 break; 3360 default: 3361 return 0xff; 3362 } 3363 3364 if (cycle > this_cycle) 3365 break; 3366 3367 last_mode = t->mode; 3368 } 3369 3370 return last_mode; 3371 } 3372 #endif 3373 3374 /** 3375 * ata_down_xfermask_limit - adjust dev xfer masks downward 3376 * @dev: Device to adjust xfer masks 3377 * @sel: ATA_DNXFER_* selector 3378 * 3379 * Adjust xfer masks of @dev downward. Note that this function 3380 * does not apply the change. Invoking ata_set_mode() afterwards 3381 * will apply the limit. 3382 * 3383 * LOCKING: 3384 * Inherited from caller. 3385 * 3386 * RETURNS: 3387 * 0 on success, negative errno on failure 3388 */ 3389 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3390 { 3391 char buf[32]; 3392 unsigned int orig_mask, xfer_mask; 3393 unsigned int pio_mask, mwdma_mask, udma_mask; 3394 int quiet, highbit; 3395 3396 quiet = !!(sel & ATA_DNXFER_QUIET); 3397 sel &= ~ATA_DNXFER_QUIET; 3398 3399 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3400 dev->mwdma_mask, 3401 dev->udma_mask); 3402 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3403 3404 switch (sel) { 3405 case ATA_DNXFER_PIO: 3406 highbit = fls(pio_mask) - 1; 3407 pio_mask &= ~(1 << highbit); 3408 break; 3409 3410 case ATA_DNXFER_DMA: 3411 if (udma_mask) { 3412 highbit = fls(udma_mask) - 1; 3413 udma_mask &= ~(1 << highbit); 3414 if (!udma_mask) 3415 return -ENOENT; 3416 } else if (mwdma_mask) { 3417 highbit = fls(mwdma_mask) - 1; 3418 mwdma_mask &= ~(1 << highbit); 3419 if (!mwdma_mask) 3420 return -ENOENT; 3421 } 3422 break; 3423 3424 case ATA_DNXFER_40C: 3425 udma_mask &= ATA_UDMA_MASK_40C; 3426 break; 3427 3428 case ATA_DNXFER_FORCE_PIO0: 3429 pio_mask &= 1; 3430 fallthrough; 3431 case ATA_DNXFER_FORCE_PIO: 3432 mwdma_mask = 0; 3433 udma_mask = 0; 3434 break; 3435 3436 default: 3437 BUG(); 3438 } 3439 3440 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3441 3442 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3443 return -ENOENT; 3444 3445 if (!quiet) { 3446 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3447 snprintf(buf, sizeof(buf), "%s:%s", 3448 ata_mode_string(xfer_mask), 3449 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3450 else 3451 snprintf(buf, sizeof(buf), "%s", 3452 ata_mode_string(xfer_mask)); 3453 3454 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3455 } 3456 3457 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3458 &dev->udma_mask); 3459 3460 return 0; 3461 } 3462 3463 static int ata_dev_set_mode(struct ata_device *dev) 3464 { 3465 struct ata_port *ap = dev->link->ap; 3466 struct ata_eh_context *ehc = &dev->link->eh_context; 3467 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3468 const char *dev_err_whine = ""; 3469 int ign_dev_err = 0; 3470 unsigned int err_mask = 0; 3471 int rc; 3472 3473 dev->flags &= ~ATA_DFLAG_PIO; 3474 if (dev->xfer_shift == ATA_SHIFT_PIO) 3475 dev->flags |= ATA_DFLAG_PIO; 3476 3477 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3478 dev_err_whine = " (SET_XFERMODE skipped)"; 3479 else { 3480 if (nosetxfer) 3481 ata_dev_warn(dev, 3482 "NOSETXFER but PATA detected - can't " 3483 "skip SETXFER, might malfunction\n"); 3484 err_mask = ata_dev_set_xfermode(dev); 3485 } 3486 3487 if (err_mask & ~AC_ERR_DEV) 3488 goto fail; 3489 3490 /* revalidate */ 3491 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3492 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3493 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3494 if (rc) 3495 return rc; 3496 3497 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3498 /* Old CFA may refuse this command, which is just fine */ 3499 if (ata_id_is_cfa(dev->id)) 3500 ign_dev_err = 1; 3501 /* Catch several broken garbage emulations plus some pre 3502 ATA devices */ 3503 if (ata_id_major_version(dev->id) == 0 && 3504 dev->pio_mode <= XFER_PIO_2) 3505 ign_dev_err = 1; 3506 /* Some very old devices and some bad newer ones fail 3507 any kind of SET_XFERMODE request but support PIO0-2 3508 timings and no IORDY */ 3509 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3510 ign_dev_err = 1; 3511 } 3512 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3513 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3514 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3515 dev->dma_mode == XFER_MW_DMA_0 && 3516 (dev->id[63] >> 8) & 1) 3517 ign_dev_err = 1; 3518 3519 /* if the device is actually configured correctly, ignore dev err */ 3520 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3521 ign_dev_err = 1; 3522 3523 if (err_mask & AC_ERR_DEV) { 3524 if (!ign_dev_err) 3525 goto fail; 3526 else 3527 dev_err_whine = " (device error ignored)"; 3528 } 3529 3530 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3531 dev->xfer_shift, (int)dev->xfer_mode); 3532 3533 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3534 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3535 ata_dev_info(dev, "configured for %s%s\n", 3536 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3537 dev_err_whine); 3538 3539 return 0; 3540 3541 fail: 3542 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3543 return -EIO; 3544 } 3545 3546 /** 3547 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3548 * @link: link on which timings will be programmed 3549 * @r_failed_dev: out parameter for failed device 3550 * 3551 * Standard implementation of the function used to tune and set 3552 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3553 * ata_dev_set_mode() fails, pointer to the failing device is 3554 * returned in @r_failed_dev. 3555 * 3556 * LOCKING: 3557 * PCI/etc. bus probe sem. 3558 * 3559 * RETURNS: 3560 * 0 on success, negative errno otherwise 3561 */ 3562 3563 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3564 { 3565 struct ata_port *ap = link->ap; 3566 struct ata_device *dev; 3567 int rc = 0, used_dma = 0, found = 0; 3568 3569 /* step 1: calculate xfer_mask */ 3570 ata_for_each_dev(dev, link, ENABLED) { 3571 unsigned int pio_mask, dma_mask; 3572 unsigned int mode_mask; 3573 3574 mode_mask = ATA_DMA_MASK_ATA; 3575 if (dev->class == ATA_DEV_ATAPI) 3576 mode_mask = ATA_DMA_MASK_ATAPI; 3577 else if (ata_id_is_cfa(dev->id)) 3578 mode_mask = ATA_DMA_MASK_CFA; 3579 3580 ata_dev_xfermask(dev); 3581 ata_force_xfermask(dev); 3582 3583 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3584 3585 if (libata_dma_mask & mode_mask) 3586 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3587 dev->udma_mask); 3588 else 3589 dma_mask = 0; 3590 3591 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3592 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3593 3594 found = 1; 3595 if (ata_dma_enabled(dev)) 3596 used_dma = 1; 3597 } 3598 if (!found) 3599 goto out; 3600 3601 /* step 2: always set host PIO timings */ 3602 ata_for_each_dev(dev, link, ENABLED) { 3603 if (dev->pio_mode == 0xff) { 3604 ata_dev_warn(dev, "no PIO support\n"); 3605 rc = -EINVAL; 3606 goto out; 3607 } 3608 3609 dev->xfer_mode = dev->pio_mode; 3610 dev->xfer_shift = ATA_SHIFT_PIO; 3611 if (ap->ops->set_piomode) 3612 ap->ops->set_piomode(ap, dev); 3613 } 3614 3615 /* step 3: set host DMA timings */ 3616 ata_for_each_dev(dev, link, ENABLED) { 3617 if (!ata_dma_enabled(dev)) 3618 continue; 3619 3620 dev->xfer_mode = dev->dma_mode; 3621 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3622 if (ap->ops->set_dmamode) 3623 ap->ops->set_dmamode(ap, dev); 3624 } 3625 3626 /* step 4: update devices' xfer mode */ 3627 ata_for_each_dev(dev, link, ENABLED) { 3628 rc = ata_dev_set_mode(dev); 3629 if (rc) 3630 goto out; 3631 } 3632 3633 /* Record simplex status. If we selected DMA then the other 3634 * host channels are not permitted to do so. 3635 */ 3636 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3637 ap->host->simplex_claimed = ap; 3638 3639 out: 3640 if (rc) 3641 *r_failed_dev = dev; 3642 return rc; 3643 } 3644 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3645 3646 /** 3647 * ata_wait_ready - wait for link to become ready 3648 * @link: link to be waited on 3649 * @deadline: deadline jiffies for the operation 3650 * @check_ready: callback to check link readiness 3651 * 3652 * Wait for @link to become ready. @check_ready should return 3653 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3654 * link doesn't seem to be occupied, other errno for other error 3655 * conditions. 3656 * 3657 * Transient -ENODEV conditions are allowed for 3658 * ATA_TMOUT_FF_WAIT. 3659 * 3660 * LOCKING: 3661 * EH context. 3662 * 3663 * RETURNS: 3664 * 0 if @link is ready before @deadline; otherwise, -errno. 3665 */ 3666 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3667 int (*check_ready)(struct ata_link *link)) 3668 { 3669 unsigned long start = jiffies; 3670 unsigned long nodev_deadline; 3671 int warned = 0; 3672 3673 /* choose which 0xff timeout to use, read comment in libata.h */ 3674 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3675 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3676 else 3677 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3678 3679 /* Slave readiness can't be tested separately from master. On 3680 * M/S emulation configuration, this function should be called 3681 * only on the master and it will handle both master and slave. 3682 */ 3683 WARN_ON(link == link->ap->slave_link); 3684 3685 if (time_after(nodev_deadline, deadline)) 3686 nodev_deadline = deadline; 3687 3688 while (1) { 3689 unsigned long now = jiffies; 3690 int ready, tmp; 3691 3692 ready = tmp = check_ready(link); 3693 if (ready > 0) 3694 return 0; 3695 3696 /* 3697 * -ENODEV could be transient. Ignore -ENODEV if link 3698 * is online. Also, some SATA devices take a long 3699 * time to clear 0xff after reset. Wait for 3700 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3701 * offline. 3702 * 3703 * Note that some PATA controllers (pata_ali) explode 3704 * if status register is read more than once when 3705 * there's no device attached. 3706 */ 3707 if (ready == -ENODEV) { 3708 if (ata_link_online(link)) 3709 ready = 0; 3710 else if ((link->ap->flags & ATA_FLAG_SATA) && 3711 !ata_link_offline(link) && 3712 time_before(now, nodev_deadline)) 3713 ready = 0; 3714 } 3715 3716 if (ready) 3717 return ready; 3718 if (time_after(now, deadline)) 3719 return -EBUSY; 3720 3721 if (!warned && time_after(now, start + 5 * HZ) && 3722 (deadline - now > 3 * HZ)) { 3723 ata_link_warn(link, 3724 "link is slow to respond, please be patient " 3725 "(ready=%d)\n", tmp); 3726 warned = 1; 3727 } 3728 3729 ata_msleep(link->ap, 50); 3730 } 3731 } 3732 3733 /** 3734 * ata_wait_after_reset - wait for link to become ready after reset 3735 * @link: link to be waited on 3736 * @deadline: deadline jiffies for the operation 3737 * @check_ready: callback to check link readiness 3738 * 3739 * Wait for @link to become ready after reset. 3740 * 3741 * LOCKING: 3742 * EH context. 3743 * 3744 * RETURNS: 3745 * 0 if @link is ready before @deadline; otherwise, -errno. 3746 */ 3747 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3748 int (*check_ready)(struct ata_link *link)) 3749 { 3750 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3751 3752 return ata_wait_ready(link, deadline, check_ready); 3753 } 3754 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3755 3756 /** 3757 * ata_std_prereset - prepare for reset 3758 * @link: ATA link to be reset 3759 * @deadline: deadline jiffies for the operation 3760 * 3761 * @link is about to be reset. Initialize it. Failure from 3762 * prereset makes libata abort whole reset sequence and give up 3763 * that port, so prereset should be best-effort. It does its 3764 * best to prepare for reset sequence but if things go wrong, it 3765 * should just whine, not fail. 3766 * 3767 * LOCKING: 3768 * Kernel thread context (may sleep) 3769 * 3770 * RETURNS: 3771 * Always 0. 3772 */ 3773 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3774 { 3775 struct ata_port *ap = link->ap; 3776 struct ata_eh_context *ehc = &link->eh_context; 3777 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3778 int rc; 3779 3780 /* if we're about to do hardreset, nothing more to do */ 3781 if (ehc->i.action & ATA_EH_HARDRESET) 3782 return 0; 3783 3784 /* if SATA, resume link */ 3785 if (ap->flags & ATA_FLAG_SATA) { 3786 rc = sata_link_resume(link, timing, deadline); 3787 /* whine about phy resume failure but proceed */ 3788 if (rc && rc != -EOPNOTSUPP) 3789 ata_link_warn(link, 3790 "failed to resume link for reset (errno=%d)\n", 3791 rc); 3792 } 3793 3794 /* no point in trying softreset on offline link */ 3795 if (ata_phys_link_offline(link)) 3796 ehc->i.action &= ~ATA_EH_SOFTRESET; 3797 3798 return 0; 3799 } 3800 EXPORT_SYMBOL_GPL(ata_std_prereset); 3801 3802 /** 3803 * sata_std_hardreset - COMRESET w/o waiting or classification 3804 * @link: link to reset 3805 * @class: resulting class of attached device 3806 * @deadline: deadline jiffies for the operation 3807 * 3808 * Standard SATA COMRESET w/o waiting or classification. 3809 * 3810 * LOCKING: 3811 * Kernel thread context (may sleep) 3812 * 3813 * RETURNS: 3814 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3815 */ 3816 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3817 unsigned long deadline) 3818 { 3819 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context); 3820 bool online; 3821 int rc; 3822 3823 /* do hardreset */ 3824 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3825 return online ? -EAGAIN : rc; 3826 } 3827 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3828 3829 /** 3830 * ata_std_postreset - standard postreset callback 3831 * @link: the target ata_link 3832 * @classes: classes of attached devices 3833 * 3834 * This function is invoked after a successful reset. Note that 3835 * the device might have been reset more than once using 3836 * different reset methods before postreset is invoked. 3837 * 3838 * LOCKING: 3839 * Kernel thread context (may sleep) 3840 */ 3841 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3842 { 3843 u32 serror; 3844 3845 /* reset complete, clear SError */ 3846 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3847 sata_scr_write(link, SCR_ERROR, serror); 3848 3849 /* print link status */ 3850 sata_print_link_status(link); 3851 } 3852 EXPORT_SYMBOL_GPL(ata_std_postreset); 3853 3854 /** 3855 * ata_dev_same_device - Determine whether new ID matches configured device 3856 * @dev: device to compare against 3857 * @new_class: class of the new device 3858 * @new_id: IDENTIFY page of the new device 3859 * 3860 * Compare @new_class and @new_id against @dev and determine 3861 * whether @dev is the device indicated by @new_class and 3862 * @new_id. 3863 * 3864 * LOCKING: 3865 * None. 3866 * 3867 * RETURNS: 3868 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3869 */ 3870 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3871 const u16 *new_id) 3872 { 3873 const u16 *old_id = dev->id; 3874 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3875 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3876 3877 if (dev->class != new_class) { 3878 ata_dev_info(dev, "class mismatch %d != %d\n", 3879 dev->class, new_class); 3880 return 0; 3881 } 3882 3883 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3884 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3885 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3886 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3887 3888 if (strcmp(model[0], model[1])) { 3889 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3890 model[0], model[1]); 3891 return 0; 3892 } 3893 3894 if (strcmp(serial[0], serial[1])) { 3895 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3896 serial[0], serial[1]); 3897 return 0; 3898 } 3899 3900 return 1; 3901 } 3902 3903 /** 3904 * ata_dev_reread_id - Re-read IDENTIFY data 3905 * @dev: target ATA device 3906 * @readid_flags: read ID flags 3907 * 3908 * Re-read IDENTIFY page and make sure @dev is still attached to 3909 * the port. 3910 * 3911 * LOCKING: 3912 * Kernel thread context (may sleep) 3913 * 3914 * RETURNS: 3915 * 0 on success, negative errno otherwise 3916 */ 3917 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3918 { 3919 unsigned int class = dev->class; 3920 u16 *id = (void *)dev->link->ap->sector_buf; 3921 int rc; 3922 3923 /* read ID data */ 3924 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3925 if (rc) 3926 return rc; 3927 3928 /* is the device still there? */ 3929 if (!ata_dev_same_device(dev, class, id)) 3930 return -ENODEV; 3931 3932 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3933 return 0; 3934 } 3935 3936 /** 3937 * ata_dev_revalidate - Revalidate ATA device 3938 * @dev: device to revalidate 3939 * @new_class: new class code 3940 * @readid_flags: read ID flags 3941 * 3942 * Re-read IDENTIFY page, make sure @dev is still attached to the 3943 * port and reconfigure it according to the new IDENTIFY page. 3944 * 3945 * LOCKING: 3946 * Kernel thread context (may sleep) 3947 * 3948 * RETURNS: 3949 * 0 on success, negative errno otherwise 3950 */ 3951 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3952 unsigned int readid_flags) 3953 { 3954 u64 n_sectors = dev->n_sectors; 3955 u64 n_native_sectors = dev->n_native_sectors; 3956 int rc; 3957 3958 if (!ata_dev_enabled(dev)) 3959 return -ENODEV; 3960 3961 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3962 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3963 ata_dev_info(dev, "class mismatch %u != %u\n", 3964 dev->class, new_class); 3965 rc = -ENODEV; 3966 goto fail; 3967 } 3968 3969 /* re-read ID */ 3970 rc = ata_dev_reread_id(dev, readid_flags); 3971 if (rc) 3972 goto fail; 3973 3974 /* configure device according to the new ID */ 3975 rc = ata_dev_configure(dev); 3976 if (rc) 3977 goto fail; 3978 3979 /* verify n_sectors hasn't changed */ 3980 if (dev->class != ATA_DEV_ATA || !n_sectors || 3981 dev->n_sectors == n_sectors) 3982 return 0; 3983 3984 /* n_sectors has changed */ 3985 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3986 (unsigned long long)n_sectors, 3987 (unsigned long long)dev->n_sectors); 3988 3989 /* 3990 * Something could have caused HPA to be unlocked 3991 * involuntarily. If n_native_sectors hasn't changed and the 3992 * new size matches it, keep the device. 3993 */ 3994 if (dev->n_native_sectors == n_native_sectors && 3995 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3996 ata_dev_warn(dev, 3997 "new n_sectors matches native, probably " 3998 "late HPA unlock, n_sectors updated\n"); 3999 /* use the larger n_sectors */ 4000 return 0; 4001 } 4002 4003 /* 4004 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4005 * unlocking HPA in those cases. 4006 * 4007 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4008 */ 4009 if (dev->n_native_sectors == n_native_sectors && 4010 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4011 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4012 ata_dev_warn(dev, 4013 "old n_sectors matches native, probably " 4014 "late HPA lock, will try to unlock HPA\n"); 4015 /* try unlocking HPA */ 4016 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4017 rc = -EIO; 4018 } else 4019 rc = -ENODEV; 4020 4021 /* restore original n_[native_]sectors and fail */ 4022 dev->n_native_sectors = n_native_sectors; 4023 dev->n_sectors = n_sectors; 4024 fail: 4025 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4026 return rc; 4027 } 4028 4029 struct ata_blacklist_entry { 4030 const char *model_num; 4031 const char *model_rev; 4032 unsigned long horkage; 4033 }; 4034 4035 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4036 /* Devices with DMA related problems under Linux */ 4037 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4038 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4039 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4040 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4041 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4042 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4043 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4044 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4045 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4046 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4047 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4048 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4049 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4050 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4051 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4052 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4053 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4054 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4055 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4056 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4057 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4058 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4059 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4060 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4061 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4062 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4063 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4064 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4065 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4066 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4067 /* Odd clown on sil3726/4726 PMPs */ 4068 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4069 /* Similar story with ASMedia 1092 */ 4070 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 4071 4072 /* Weird ATAPI devices */ 4073 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4074 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4075 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4076 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4077 4078 /* 4079 * Causes silent data corruption with higher max sects. 4080 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4081 */ 4082 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4083 4084 /* 4085 * These devices time out with higher max sects. 4086 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4087 */ 4088 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4089 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4090 4091 /* Devices we expect to fail diagnostics */ 4092 4093 /* Devices where NCQ should be avoided */ 4094 /* NCQ is slow */ 4095 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4096 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 4097 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4098 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4099 /* NCQ is broken */ 4100 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4101 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4102 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4103 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4104 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4105 4106 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4107 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4108 ATA_HORKAGE_FIRMWARE_WARN }, 4109 4110 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4111 ATA_HORKAGE_FIRMWARE_WARN }, 4112 4113 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4114 ATA_HORKAGE_FIRMWARE_WARN }, 4115 4116 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4117 ATA_HORKAGE_FIRMWARE_WARN }, 4118 4119 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4120 the ST disks also have LPM issues */ 4121 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 4122 ATA_HORKAGE_NOLPM }, 4123 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4124 4125 /* Blacklist entries taken from Silicon Image 3124/3132 4126 Windows driver .inf file - also several Linux problem reports */ 4127 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 4128 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 4129 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 4130 4131 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4132 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 4133 4134 /* Sandisk SD7/8/9s lock up hard on large trims */ 4135 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4136 4137 /* devices which puke on READ_NATIVE_MAX */ 4138 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4139 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4140 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4141 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4142 4143 /* this one allows HPA unlocking but fails IOs on the area */ 4144 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4145 4146 /* Devices which report 1 sector over size HPA */ 4147 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4148 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4149 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4150 4151 /* Devices which get the IVB wrong */ 4152 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4153 /* Maybe we should just blacklist TSSTcorp... */ 4154 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4155 4156 /* Devices that do not need bridging limits applied */ 4157 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4158 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4159 4160 /* Devices which aren't very happy with higher link speeds */ 4161 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4162 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4163 4164 /* 4165 * Devices which choke on SETXFER. Applies only if both the 4166 * device and controller are SATA. 4167 */ 4168 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4169 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4170 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4171 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4172 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4173 4174 /* These specific Pioneer models have LPM issues */ 4175 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4176 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4177 4178 /* Crucial BX100 SSD 500GB has broken LPM support */ 4179 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4180 4181 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4182 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4183 ATA_HORKAGE_ZERO_AFTER_TRIM | 4184 ATA_HORKAGE_NOLPM }, 4185 /* 512GB MX100 with newer firmware has only LPM issues */ 4186 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4187 ATA_HORKAGE_NOLPM }, 4188 4189 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4190 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4191 ATA_HORKAGE_ZERO_AFTER_TRIM | 4192 ATA_HORKAGE_NOLPM }, 4193 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4194 ATA_HORKAGE_ZERO_AFTER_TRIM | 4195 ATA_HORKAGE_NOLPM }, 4196 4197 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4198 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4199 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4200 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4201 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4202 4203 /* devices that don't properly handle queued TRIM commands */ 4204 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4205 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4206 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4207 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4208 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4209 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4210 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4211 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4212 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4213 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4214 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4215 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4216 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4217 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4218 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4219 ATA_HORKAGE_NO_DMA_LOG | 4220 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4221 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4222 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4223 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4224 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4225 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4226 ATA_HORKAGE_ZERO_AFTER_TRIM | 4227 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4228 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4229 ATA_HORKAGE_ZERO_AFTER_TRIM | 4230 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4231 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4232 ATA_HORKAGE_ZERO_AFTER_TRIM | 4233 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4234 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4235 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4236 4237 /* devices that don't properly handle TRIM commands */ 4238 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4239 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4240 4241 /* 4242 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4243 * (Return Zero After Trim) flags in the ATA Command Set are 4244 * unreliable in the sense that they only define what happens if 4245 * the device successfully executed the DSM TRIM command. TRIM 4246 * is only advisory, however, and the device is free to silently 4247 * ignore all or parts of the request. 4248 * 4249 * Whitelist drives that are known to reliably return zeroes 4250 * after TRIM. 4251 */ 4252 4253 /* 4254 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4255 * that model before whitelisting all other intel SSDs. 4256 */ 4257 { "INTEL*SSDSC2MH*", NULL, 0 }, 4258 4259 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4260 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4261 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4262 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4263 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4264 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4265 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4266 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4267 4268 /* 4269 * Some WD SATA-I drives spin up and down erratically when the link 4270 * is put into the slumber mode. We don't have full list of the 4271 * affected devices. Disable LPM if the device matches one of the 4272 * known prefixes and is SATA-1. As a side effect LPM partial is 4273 * lost too. 4274 * 4275 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4276 */ 4277 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4278 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4279 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4280 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4281 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4282 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4283 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4284 4285 /* 4286 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4287 * log page is accessed. Ensure we never ask for this log page with 4288 * these devices. 4289 */ 4290 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4291 4292 /* Buggy FUA */ 4293 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4294 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4295 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4296 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4297 4298 /* End Marker */ 4299 { } 4300 }; 4301 4302 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4303 { 4304 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4305 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4306 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4307 4308 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4309 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4310 4311 while (ad->model_num) { 4312 if (glob_match(ad->model_num, model_num)) { 4313 if (ad->model_rev == NULL) 4314 return ad->horkage; 4315 if (glob_match(ad->model_rev, model_rev)) 4316 return ad->horkage; 4317 } 4318 ad++; 4319 } 4320 return 0; 4321 } 4322 4323 static int ata_dma_blacklisted(const struct ata_device *dev) 4324 { 4325 /* We don't support polling DMA. 4326 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4327 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4328 */ 4329 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4330 (dev->flags & ATA_DFLAG_CDB_INTR)) 4331 return 1; 4332 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4333 } 4334 4335 /** 4336 * ata_is_40wire - check drive side detection 4337 * @dev: device 4338 * 4339 * Perform drive side detection decoding, allowing for device vendors 4340 * who can't follow the documentation. 4341 */ 4342 4343 static int ata_is_40wire(struct ata_device *dev) 4344 { 4345 if (dev->horkage & ATA_HORKAGE_IVB) 4346 return ata_drive_40wire_relaxed(dev->id); 4347 return ata_drive_40wire(dev->id); 4348 } 4349 4350 /** 4351 * cable_is_40wire - 40/80/SATA decider 4352 * @ap: port to consider 4353 * 4354 * This function encapsulates the policy for speed management 4355 * in one place. At the moment we don't cache the result but 4356 * there is a good case for setting ap->cbl to the result when 4357 * we are called with unknown cables (and figuring out if it 4358 * impacts hotplug at all). 4359 * 4360 * Return 1 if the cable appears to be 40 wire. 4361 */ 4362 4363 static int cable_is_40wire(struct ata_port *ap) 4364 { 4365 struct ata_link *link; 4366 struct ata_device *dev; 4367 4368 /* If the controller thinks we are 40 wire, we are. */ 4369 if (ap->cbl == ATA_CBL_PATA40) 4370 return 1; 4371 4372 /* If the controller thinks we are 80 wire, we are. */ 4373 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4374 return 0; 4375 4376 /* If the system is known to be 40 wire short cable (eg 4377 * laptop), then we allow 80 wire modes even if the drive 4378 * isn't sure. 4379 */ 4380 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4381 return 0; 4382 4383 /* If the controller doesn't know, we scan. 4384 * 4385 * Note: We look for all 40 wire detects at this point. Any 4386 * 80 wire detect is taken to be 80 wire cable because 4387 * - in many setups only the one drive (slave if present) will 4388 * give a valid detect 4389 * - if you have a non detect capable drive you don't want it 4390 * to colour the choice 4391 */ 4392 ata_for_each_link(link, ap, EDGE) { 4393 ata_for_each_dev(dev, link, ENABLED) { 4394 if (!ata_is_40wire(dev)) 4395 return 0; 4396 } 4397 } 4398 return 1; 4399 } 4400 4401 /** 4402 * ata_dev_xfermask - Compute supported xfermask of the given device 4403 * @dev: Device to compute xfermask for 4404 * 4405 * Compute supported xfermask of @dev and store it in 4406 * dev->*_mask. This function is responsible for applying all 4407 * known limits including host controller limits, device 4408 * blacklist, etc... 4409 * 4410 * LOCKING: 4411 * None. 4412 */ 4413 static void ata_dev_xfermask(struct ata_device *dev) 4414 { 4415 struct ata_link *link = dev->link; 4416 struct ata_port *ap = link->ap; 4417 struct ata_host *host = ap->host; 4418 unsigned int xfer_mask; 4419 4420 /* controller modes available */ 4421 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4422 ap->mwdma_mask, ap->udma_mask); 4423 4424 /* drive modes available */ 4425 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4426 dev->mwdma_mask, dev->udma_mask); 4427 xfer_mask &= ata_id_xfermask(dev->id); 4428 4429 /* 4430 * CFA Advanced TrueIDE timings are not allowed on a shared 4431 * cable 4432 */ 4433 if (ata_dev_pair(dev)) { 4434 /* No PIO5 or PIO6 */ 4435 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4436 /* No MWDMA3 or MWDMA 4 */ 4437 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4438 } 4439 4440 if (ata_dma_blacklisted(dev)) { 4441 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4442 ata_dev_warn(dev, 4443 "device is on DMA blacklist, disabling DMA\n"); 4444 } 4445 4446 if ((host->flags & ATA_HOST_SIMPLEX) && 4447 host->simplex_claimed && host->simplex_claimed != ap) { 4448 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4449 ata_dev_warn(dev, 4450 "simplex DMA is claimed by other device, disabling DMA\n"); 4451 } 4452 4453 if (ap->flags & ATA_FLAG_NO_IORDY) 4454 xfer_mask &= ata_pio_mask_no_iordy(dev); 4455 4456 if (ap->ops->mode_filter) 4457 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4458 4459 /* Apply cable rule here. Don't apply it early because when 4460 * we handle hot plug the cable type can itself change. 4461 * Check this last so that we know if the transfer rate was 4462 * solely limited by the cable. 4463 * Unknown or 80 wire cables reported host side are checked 4464 * drive side as well. Cases where we know a 40wire cable 4465 * is used safely for 80 are not checked here. 4466 */ 4467 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4468 /* UDMA/44 or higher would be available */ 4469 if (cable_is_40wire(ap)) { 4470 ata_dev_warn(dev, 4471 "limited to UDMA/33 due to 40-wire cable\n"); 4472 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4473 } 4474 4475 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4476 &dev->mwdma_mask, &dev->udma_mask); 4477 } 4478 4479 /** 4480 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4481 * @dev: Device to which command will be sent 4482 * 4483 * Issue SET FEATURES - XFER MODE command to device @dev 4484 * on port @ap. 4485 * 4486 * LOCKING: 4487 * PCI/etc. bus probe sem. 4488 * 4489 * RETURNS: 4490 * 0 on success, AC_ERR_* mask otherwise. 4491 */ 4492 4493 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4494 { 4495 struct ata_taskfile tf; 4496 4497 /* set up set-features taskfile */ 4498 ata_dev_dbg(dev, "set features - xfer mode\n"); 4499 4500 /* Some controllers and ATAPI devices show flaky interrupt 4501 * behavior after setting xfer mode. Use polling instead. 4502 */ 4503 ata_tf_init(dev, &tf); 4504 tf.command = ATA_CMD_SET_FEATURES; 4505 tf.feature = SETFEATURES_XFER; 4506 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4507 tf.protocol = ATA_PROT_NODATA; 4508 /* If we are using IORDY we must send the mode setting command */ 4509 if (ata_pio_need_iordy(dev)) 4510 tf.nsect = dev->xfer_mode; 4511 /* If the device has IORDY and the controller does not - turn it off */ 4512 else if (ata_id_has_iordy(dev->id)) 4513 tf.nsect = 0x01; 4514 else /* In the ancient relic department - skip all of this */ 4515 return 0; 4516 4517 /* 4518 * On some disks, this command causes spin-up, so we need longer 4519 * timeout. 4520 */ 4521 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4522 } 4523 4524 /** 4525 * ata_dev_set_feature - Issue SET FEATURES 4526 * @dev: Device to which command will be sent 4527 * @subcmd: The SET FEATURES subcommand to be sent 4528 * @action: The sector count represents a subcommand specific action 4529 * 4530 * Issue SET FEATURES command to device @dev on port @ap with sector count 4531 * 4532 * LOCKING: 4533 * PCI/etc. bus probe sem. 4534 * 4535 * RETURNS: 4536 * 0 on success, AC_ERR_* mask otherwise. 4537 */ 4538 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4539 { 4540 struct ata_taskfile tf; 4541 unsigned int timeout = 0; 4542 4543 /* set up set-features taskfile */ 4544 ata_dev_dbg(dev, "set features\n"); 4545 4546 ata_tf_init(dev, &tf); 4547 tf.command = ATA_CMD_SET_FEATURES; 4548 tf.feature = subcmd; 4549 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4550 tf.protocol = ATA_PROT_NODATA; 4551 tf.nsect = action; 4552 4553 if (subcmd == SETFEATURES_SPINUP) 4554 timeout = ata_probe_timeout ? 4555 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4556 4557 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4558 } 4559 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4560 4561 /** 4562 * ata_dev_init_params - Issue INIT DEV PARAMS command 4563 * @dev: Device to which command will be sent 4564 * @heads: Number of heads (taskfile parameter) 4565 * @sectors: Number of sectors (taskfile parameter) 4566 * 4567 * LOCKING: 4568 * Kernel thread context (may sleep) 4569 * 4570 * RETURNS: 4571 * 0 on success, AC_ERR_* mask otherwise. 4572 */ 4573 static unsigned int ata_dev_init_params(struct ata_device *dev, 4574 u16 heads, u16 sectors) 4575 { 4576 struct ata_taskfile tf; 4577 unsigned int err_mask; 4578 4579 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4580 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4581 return AC_ERR_INVALID; 4582 4583 /* set up init dev params taskfile */ 4584 ata_dev_dbg(dev, "init dev params \n"); 4585 4586 ata_tf_init(dev, &tf); 4587 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4588 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4589 tf.protocol = ATA_PROT_NODATA; 4590 tf.nsect = sectors; 4591 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4592 4593 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4594 /* A clean abort indicates an original or just out of spec drive 4595 and we should continue as we issue the setup based on the 4596 drive reported working geometry */ 4597 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4598 err_mask = 0; 4599 4600 return err_mask; 4601 } 4602 4603 /** 4604 * atapi_check_dma - Check whether ATAPI DMA can be supported 4605 * @qc: Metadata associated with taskfile to check 4606 * 4607 * Allow low-level driver to filter ATA PACKET commands, returning 4608 * a status indicating whether or not it is OK to use DMA for the 4609 * supplied PACKET command. 4610 * 4611 * LOCKING: 4612 * spin_lock_irqsave(host lock) 4613 * 4614 * RETURNS: 0 when ATAPI DMA can be used 4615 * nonzero otherwise 4616 */ 4617 int atapi_check_dma(struct ata_queued_cmd *qc) 4618 { 4619 struct ata_port *ap = qc->ap; 4620 4621 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4622 * few ATAPI devices choke on such DMA requests. 4623 */ 4624 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4625 unlikely(qc->nbytes & 15)) 4626 return 1; 4627 4628 if (ap->ops->check_atapi_dma) 4629 return ap->ops->check_atapi_dma(qc); 4630 4631 return 0; 4632 } 4633 4634 /** 4635 * ata_std_qc_defer - Check whether a qc needs to be deferred 4636 * @qc: ATA command in question 4637 * 4638 * Non-NCQ commands cannot run with any other command, NCQ or 4639 * not. As upper layer only knows the queue depth, we are 4640 * responsible for maintaining exclusion. This function checks 4641 * whether a new command @qc can be issued. 4642 * 4643 * LOCKING: 4644 * spin_lock_irqsave(host lock) 4645 * 4646 * RETURNS: 4647 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4648 */ 4649 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4650 { 4651 struct ata_link *link = qc->dev->link; 4652 4653 if (ata_is_ncq(qc->tf.protocol)) { 4654 if (!ata_tag_valid(link->active_tag)) 4655 return 0; 4656 } else { 4657 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4658 return 0; 4659 } 4660 4661 return ATA_DEFER_LINK; 4662 } 4663 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4664 4665 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4666 { 4667 return AC_ERR_OK; 4668 } 4669 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4670 4671 /** 4672 * ata_sg_init - Associate command with scatter-gather table. 4673 * @qc: Command to be associated 4674 * @sg: Scatter-gather table. 4675 * @n_elem: Number of elements in s/g table. 4676 * 4677 * Initialize the data-related elements of queued_cmd @qc 4678 * to point to a scatter-gather table @sg, containing @n_elem 4679 * elements. 4680 * 4681 * LOCKING: 4682 * spin_lock_irqsave(host lock) 4683 */ 4684 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4685 unsigned int n_elem) 4686 { 4687 qc->sg = sg; 4688 qc->n_elem = n_elem; 4689 qc->cursg = qc->sg; 4690 } 4691 4692 #ifdef CONFIG_HAS_DMA 4693 4694 /** 4695 * ata_sg_clean - Unmap DMA memory associated with command 4696 * @qc: Command containing DMA memory to be released 4697 * 4698 * Unmap all mapped DMA memory associated with this command. 4699 * 4700 * LOCKING: 4701 * spin_lock_irqsave(host lock) 4702 */ 4703 static void ata_sg_clean(struct ata_queued_cmd *qc) 4704 { 4705 struct ata_port *ap = qc->ap; 4706 struct scatterlist *sg = qc->sg; 4707 int dir = qc->dma_dir; 4708 4709 WARN_ON_ONCE(sg == NULL); 4710 4711 if (qc->n_elem) 4712 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4713 4714 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4715 qc->sg = NULL; 4716 } 4717 4718 /** 4719 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4720 * @qc: Command with scatter-gather table to be mapped. 4721 * 4722 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4723 * 4724 * LOCKING: 4725 * spin_lock_irqsave(host lock) 4726 * 4727 * RETURNS: 4728 * Zero on success, negative on error. 4729 * 4730 */ 4731 static int ata_sg_setup(struct ata_queued_cmd *qc) 4732 { 4733 struct ata_port *ap = qc->ap; 4734 unsigned int n_elem; 4735 4736 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4737 if (n_elem < 1) 4738 return -1; 4739 4740 qc->orig_n_elem = qc->n_elem; 4741 qc->n_elem = n_elem; 4742 qc->flags |= ATA_QCFLAG_DMAMAP; 4743 4744 return 0; 4745 } 4746 4747 #else /* !CONFIG_HAS_DMA */ 4748 4749 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4750 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4751 4752 #endif /* !CONFIG_HAS_DMA */ 4753 4754 /** 4755 * swap_buf_le16 - swap halves of 16-bit words in place 4756 * @buf: Buffer to swap 4757 * @buf_words: Number of 16-bit words in buffer. 4758 * 4759 * Swap halves of 16-bit words if needed to convert from 4760 * little-endian byte order to native cpu byte order, or 4761 * vice-versa. 4762 * 4763 * LOCKING: 4764 * Inherited from caller. 4765 */ 4766 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4767 { 4768 #ifdef __BIG_ENDIAN 4769 unsigned int i; 4770 4771 for (i = 0; i < buf_words; i++) 4772 buf[i] = le16_to_cpu(buf[i]); 4773 #endif /* __BIG_ENDIAN */ 4774 } 4775 4776 /** 4777 * ata_qc_free - free unused ata_queued_cmd 4778 * @qc: Command to complete 4779 * 4780 * Designed to free unused ata_queued_cmd object 4781 * in case something prevents using it. 4782 * 4783 * LOCKING: 4784 * spin_lock_irqsave(host lock) 4785 */ 4786 void ata_qc_free(struct ata_queued_cmd *qc) 4787 { 4788 qc->flags = 0; 4789 if (ata_tag_valid(qc->tag)) 4790 qc->tag = ATA_TAG_POISON; 4791 } 4792 4793 void __ata_qc_complete(struct ata_queued_cmd *qc) 4794 { 4795 struct ata_port *ap; 4796 struct ata_link *link; 4797 4798 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4799 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4800 ap = qc->ap; 4801 link = qc->dev->link; 4802 4803 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4804 ata_sg_clean(qc); 4805 4806 /* command should be marked inactive atomically with qc completion */ 4807 if (ata_is_ncq(qc->tf.protocol)) { 4808 link->sactive &= ~(1 << qc->hw_tag); 4809 if (!link->sactive) 4810 ap->nr_active_links--; 4811 } else { 4812 link->active_tag = ATA_TAG_POISON; 4813 ap->nr_active_links--; 4814 } 4815 4816 /* clear exclusive status */ 4817 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4818 ap->excl_link == link)) 4819 ap->excl_link = NULL; 4820 4821 /* atapi: mark qc as inactive to prevent the interrupt handler 4822 * from completing the command twice later, before the error handler 4823 * is called. (when rc != 0 and atapi request sense is needed) 4824 */ 4825 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4826 ap->qc_active &= ~(1ULL << qc->tag); 4827 4828 /* call completion callback */ 4829 qc->complete_fn(qc); 4830 } 4831 4832 static void fill_result_tf(struct ata_queued_cmd *qc) 4833 { 4834 struct ata_port *ap = qc->ap; 4835 4836 qc->result_tf.flags = qc->tf.flags; 4837 ap->ops->qc_fill_rtf(qc); 4838 } 4839 4840 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4841 { 4842 struct ata_device *dev = qc->dev; 4843 4844 if (!ata_is_data(qc->tf.protocol)) 4845 return; 4846 4847 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4848 return; 4849 4850 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4851 } 4852 4853 /** 4854 * ata_qc_complete - Complete an active ATA command 4855 * @qc: Command to complete 4856 * 4857 * Indicate to the mid and upper layers that an ATA command has 4858 * completed, with either an ok or not-ok status. 4859 * 4860 * Refrain from calling this function multiple times when 4861 * successfully completing multiple NCQ commands. 4862 * ata_qc_complete_multiple() should be used instead, which will 4863 * properly update IRQ expect state. 4864 * 4865 * LOCKING: 4866 * spin_lock_irqsave(host lock) 4867 */ 4868 void ata_qc_complete(struct ata_queued_cmd *qc) 4869 { 4870 struct ata_port *ap = qc->ap; 4871 struct ata_device *dev = qc->dev; 4872 struct ata_eh_info *ehi = &dev->link->eh_info; 4873 4874 /* Trigger the LED (if available) */ 4875 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4876 4877 /* 4878 * In order to synchronize EH with the regular execution path, a qc that 4879 * is owned by EH is marked with ATA_QCFLAG_EH. 4880 * 4881 * The normal execution path is responsible for not accessing a qc owned 4882 * by EH. libata core enforces the rule by returning NULL from 4883 * ata_qc_from_tag() for qcs owned by EH. 4884 */ 4885 if (unlikely(qc->err_mask)) 4886 qc->flags |= ATA_QCFLAG_EH; 4887 4888 /* 4889 * Finish internal commands without any further processing and always 4890 * with the result TF filled. 4891 */ 4892 if (unlikely(ata_tag_internal(qc->tag))) { 4893 fill_result_tf(qc); 4894 trace_ata_qc_complete_internal(qc); 4895 __ata_qc_complete(qc); 4896 return; 4897 } 4898 4899 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4900 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4901 fill_result_tf(qc); 4902 trace_ata_qc_complete_failed(qc); 4903 ata_qc_schedule_eh(qc); 4904 return; 4905 } 4906 4907 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4908 4909 /* read result TF if requested */ 4910 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4911 fill_result_tf(qc); 4912 4913 trace_ata_qc_complete_done(qc); 4914 4915 /* 4916 * For CDL commands that completed without an error, check if we have 4917 * sense data (ATA_SENSE is set). If we do, then the command may have 4918 * been aborted by the device due to a limit timeout using the policy 4919 * 0xD. For these commands, invoke EH to get the command sense data. 4920 */ 4921 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4922 qc->result_tf.status & ATA_SENSE) { 4923 /* 4924 * Tell SCSI EH to not overwrite scmd->result even if this 4925 * command is finished with result SAM_STAT_GOOD. 4926 */ 4927 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4928 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4929 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4930 4931 /* 4932 * set pending so that ata_qc_schedule_eh() does not trigger 4933 * fast drain, and freeze the port. 4934 */ 4935 ap->pflags |= ATA_PFLAG_EH_PENDING; 4936 ata_qc_schedule_eh(qc); 4937 return; 4938 } 4939 4940 /* Some commands need post-processing after successful completion. */ 4941 switch (qc->tf.command) { 4942 case ATA_CMD_SET_FEATURES: 4943 if (qc->tf.feature != SETFEATURES_WC_ON && 4944 qc->tf.feature != SETFEATURES_WC_OFF && 4945 qc->tf.feature != SETFEATURES_RA_ON && 4946 qc->tf.feature != SETFEATURES_RA_OFF) 4947 break; 4948 fallthrough; 4949 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4950 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4951 /* revalidate device */ 4952 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4953 ata_port_schedule_eh(ap); 4954 break; 4955 4956 case ATA_CMD_SLEEP: 4957 dev->flags |= ATA_DFLAG_SLEEPING; 4958 break; 4959 } 4960 4961 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4962 ata_verify_xfer(qc); 4963 4964 __ata_qc_complete(qc); 4965 } 4966 EXPORT_SYMBOL_GPL(ata_qc_complete); 4967 4968 /** 4969 * ata_qc_get_active - get bitmask of active qcs 4970 * @ap: port in question 4971 * 4972 * LOCKING: 4973 * spin_lock_irqsave(host lock) 4974 * 4975 * RETURNS: 4976 * Bitmask of active qcs 4977 */ 4978 u64 ata_qc_get_active(struct ata_port *ap) 4979 { 4980 u64 qc_active = ap->qc_active; 4981 4982 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4983 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4984 qc_active |= (1 << 0); 4985 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4986 } 4987 4988 return qc_active; 4989 } 4990 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4991 4992 /** 4993 * ata_qc_issue - issue taskfile to device 4994 * @qc: command to issue to device 4995 * 4996 * Prepare an ATA command to submission to device. 4997 * This includes mapping the data into a DMA-able 4998 * area, filling in the S/G table, and finally 4999 * writing the taskfile to hardware, starting the command. 5000 * 5001 * LOCKING: 5002 * spin_lock_irqsave(host lock) 5003 */ 5004 void ata_qc_issue(struct ata_queued_cmd *qc) 5005 { 5006 struct ata_port *ap = qc->ap; 5007 struct ata_link *link = qc->dev->link; 5008 u8 prot = qc->tf.protocol; 5009 5010 /* Make sure only one non-NCQ command is outstanding. */ 5011 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 5012 5013 if (ata_is_ncq(prot)) { 5014 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5015 5016 if (!link->sactive) 5017 ap->nr_active_links++; 5018 link->sactive |= 1 << qc->hw_tag; 5019 } else { 5020 WARN_ON_ONCE(link->sactive); 5021 5022 ap->nr_active_links++; 5023 link->active_tag = qc->tag; 5024 } 5025 5026 qc->flags |= ATA_QCFLAG_ACTIVE; 5027 ap->qc_active |= 1ULL << qc->tag; 5028 5029 /* 5030 * We guarantee to LLDs that they will have at least one 5031 * non-zero sg if the command is a data command. 5032 */ 5033 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5034 goto sys_err; 5035 5036 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5037 (ap->flags & ATA_FLAG_PIO_DMA))) 5038 if (ata_sg_setup(qc)) 5039 goto sys_err; 5040 5041 /* if device is sleeping, schedule reset and abort the link */ 5042 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5043 link->eh_info.action |= ATA_EH_RESET; 5044 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5045 ata_link_abort(link); 5046 return; 5047 } 5048 5049 trace_ata_qc_prep(qc); 5050 qc->err_mask |= ap->ops->qc_prep(qc); 5051 if (unlikely(qc->err_mask)) 5052 goto err; 5053 trace_ata_qc_issue(qc); 5054 qc->err_mask |= ap->ops->qc_issue(qc); 5055 if (unlikely(qc->err_mask)) 5056 goto err; 5057 return; 5058 5059 sys_err: 5060 qc->err_mask |= AC_ERR_SYSTEM; 5061 err: 5062 ata_qc_complete(qc); 5063 } 5064 5065 /** 5066 * ata_phys_link_online - test whether the given link is online 5067 * @link: ATA link to test 5068 * 5069 * Test whether @link is online. Note that this function returns 5070 * 0 if online status of @link cannot be obtained, so 5071 * ata_link_online(link) != !ata_link_offline(link). 5072 * 5073 * LOCKING: 5074 * None. 5075 * 5076 * RETURNS: 5077 * True if the port online status is available and online. 5078 */ 5079 bool ata_phys_link_online(struct ata_link *link) 5080 { 5081 u32 sstatus; 5082 5083 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5084 ata_sstatus_online(sstatus)) 5085 return true; 5086 return false; 5087 } 5088 5089 /** 5090 * ata_phys_link_offline - test whether the given link is offline 5091 * @link: ATA link to test 5092 * 5093 * Test whether @link is offline. Note that this function 5094 * returns 0 if offline status of @link cannot be obtained, so 5095 * ata_link_online(link) != !ata_link_offline(link). 5096 * 5097 * LOCKING: 5098 * None. 5099 * 5100 * RETURNS: 5101 * True if the port offline status is available and offline. 5102 */ 5103 bool ata_phys_link_offline(struct ata_link *link) 5104 { 5105 u32 sstatus; 5106 5107 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5108 !ata_sstatus_online(sstatus)) 5109 return true; 5110 return false; 5111 } 5112 5113 /** 5114 * ata_link_online - test whether the given link is online 5115 * @link: ATA link to test 5116 * 5117 * Test whether @link is online. This is identical to 5118 * ata_phys_link_online() when there's no slave link. When 5119 * there's a slave link, this function should only be called on 5120 * the master link and will return true if any of M/S links is 5121 * online. 5122 * 5123 * LOCKING: 5124 * None. 5125 * 5126 * RETURNS: 5127 * True if the port online status is available and online. 5128 */ 5129 bool ata_link_online(struct ata_link *link) 5130 { 5131 struct ata_link *slave = link->ap->slave_link; 5132 5133 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5134 5135 return ata_phys_link_online(link) || 5136 (slave && ata_phys_link_online(slave)); 5137 } 5138 EXPORT_SYMBOL_GPL(ata_link_online); 5139 5140 /** 5141 * ata_link_offline - test whether the given link is offline 5142 * @link: ATA link to test 5143 * 5144 * Test whether @link is offline. This is identical to 5145 * ata_phys_link_offline() when there's no slave link. When 5146 * there's a slave link, this function should only be called on 5147 * the master link and will return true if both M/S links are 5148 * offline. 5149 * 5150 * LOCKING: 5151 * None. 5152 * 5153 * RETURNS: 5154 * True if the port offline status is available and offline. 5155 */ 5156 bool ata_link_offline(struct ata_link *link) 5157 { 5158 struct ata_link *slave = link->ap->slave_link; 5159 5160 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5161 5162 return ata_phys_link_offline(link) && 5163 (!slave || ata_phys_link_offline(slave)); 5164 } 5165 EXPORT_SYMBOL_GPL(ata_link_offline); 5166 5167 #ifdef CONFIG_PM 5168 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5169 unsigned int action, unsigned int ehi_flags, 5170 bool async) 5171 { 5172 struct ata_link *link; 5173 unsigned long flags; 5174 5175 spin_lock_irqsave(ap->lock, flags); 5176 5177 /* 5178 * A previous PM operation might still be in progress. Wait for 5179 * ATA_PFLAG_PM_PENDING to clear. 5180 */ 5181 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5182 spin_unlock_irqrestore(ap->lock, flags); 5183 ata_port_wait_eh(ap); 5184 spin_lock_irqsave(ap->lock, flags); 5185 } 5186 5187 /* Request PM operation to EH */ 5188 ap->pm_mesg = mesg; 5189 ap->pflags |= ATA_PFLAG_PM_PENDING; 5190 ata_for_each_link(link, ap, HOST_FIRST) { 5191 link->eh_info.action |= action; 5192 link->eh_info.flags |= ehi_flags; 5193 } 5194 5195 ata_port_schedule_eh(ap); 5196 5197 spin_unlock_irqrestore(ap->lock, flags); 5198 5199 if (!async) 5200 ata_port_wait_eh(ap); 5201 } 5202 5203 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5204 bool async) 5205 { 5206 /* 5207 * We are about to suspend the port, so we do not care about 5208 * scsi_rescan_device() calls scheduled by previous resume operations. 5209 * The next resume will schedule the rescan again. So cancel any rescan 5210 * that is not done yet. 5211 */ 5212 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5213 5214 /* 5215 * On some hardware, device fails to respond after spun down for 5216 * suspend. As the device will not be used until being resumed, we 5217 * do not need to touch the device. Ask EH to skip the usual stuff 5218 * and proceed directly to suspend. 5219 * 5220 * http://thread.gmane.org/gmane.linux.ide/46764 5221 */ 5222 ata_port_request_pm(ap, mesg, 0, 5223 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5224 ATA_EHI_NO_RECOVERY, 5225 async); 5226 } 5227 5228 static int ata_port_pm_suspend(struct device *dev) 5229 { 5230 struct ata_port *ap = to_ata_port(dev); 5231 5232 if (pm_runtime_suspended(dev)) 5233 return 0; 5234 5235 ata_port_suspend(ap, PMSG_SUSPEND, false); 5236 return 0; 5237 } 5238 5239 static int ata_port_pm_freeze(struct device *dev) 5240 { 5241 struct ata_port *ap = to_ata_port(dev); 5242 5243 if (pm_runtime_suspended(dev)) 5244 return 0; 5245 5246 ata_port_suspend(ap, PMSG_FREEZE, false); 5247 return 0; 5248 } 5249 5250 static int ata_port_pm_poweroff(struct device *dev) 5251 { 5252 if (!pm_runtime_suspended(dev)) 5253 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5254 return 0; 5255 } 5256 5257 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5258 bool async) 5259 { 5260 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5261 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5262 async); 5263 } 5264 5265 static int ata_port_pm_resume(struct device *dev) 5266 { 5267 if (!pm_runtime_suspended(dev)) 5268 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5269 return 0; 5270 } 5271 5272 /* 5273 * For ODDs, the upper layer will poll for media change every few seconds, 5274 * which will make it enter and leave suspend state every few seconds. And 5275 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5276 * is very little and the ODD may malfunction after constantly being reset. 5277 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5278 * ODD is attached to the port. 5279 */ 5280 static int ata_port_runtime_idle(struct device *dev) 5281 { 5282 struct ata_port *ap = to_ata_port(dev); 5283 struct ata_link *link; 5284 struct ata_device *adev; 5285 5286 ata_for_each_link(link, ap, HOST_FIRST) { 5287 ata_for_each_dev(adev, link, ENABLED) 5288 if (adev->class == ATA_DEV_ATAPI && 5289 !zpodd_dev_enabled(adev)) 5290 return -EBUSY; 5291 } 5292 5293 return 0; 5294 } 5295 5296 static int ata_port_runtime_suspend(struct device *dev) 5297 { 5298 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5299 return 0; 5300 } 5301 5302 static int ata_port_runtime_resume(struct device *dev) 5303 { 5304 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5305 return 0; 5306 } 5307 5308 static const struct dev_pm_ops ata_port_pm_ops = { 5309 .suspend = ata_port_pm_suspend, 5310 .resume = ata_port_pm_resume, 5311 .freeze = ata_port_pm_freeze, 5312 .thaw = ata_port_pm_resume, 5313 .poweroff = ata_port_pm_poweroff, 5314 .restore = ata_port_pm_resume, 5315 5316 .runtime_suspend = ata_port_runtime_suspend, 5317 .runtime_resume = ata_port_runtime_resume, 5318 .runtime_idle = ata_port_runtime_idle, 5319 }; 5320 5321 /* sas ports don't participate in pm runtime management of ata_ports, 5322 * and need to resume ata devices at the domain level, not the per-port 5323 * level. sas suspend/resume is async to allow parallel port recovery 5324 * since sas has multiple ata_port instances per Scsi_Host. 5325 */ 5326 void ata_sas_port_suspend(struct ata_port *ap) 5327 { 5328 ata_port_suspend(ap, PMSG_SUSPEND, true); 5329 } 5330 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5331 5332 void ata_sas_port_resume(struct ata_port *ap) 5333 { 5334 ata_port_resume(ap, PMSG_RESUME, true); 5335 } 5336 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5337 5338 /** 5339 * ata_host_suspend - suspend host 5340 * @host: host to suspend 5341 * @mesg: PM message 5342 * 5343 * Suspend @host. Actual operation is performed by port suspend. 5344 */ 5345 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5346 { 5347 host->dev->power.power_state = mesg; 5348 } 5349 EXPORT_SYMBOL_GPL(ata_host_suspend); 5350 5351 /** 5352 * ata_host_resume - resume host 5353 * @host: host to resume 5354 * 5355 * Resume @host. Actual operation is performed by port resume. 5356 */ 5357 void ata_host_resume(struct ata_host *host) 5358 { 5359 host->dev->power.power_state = PMSG_ON; 5360 } 5361 EXPORT_SYMBOL_GPL(ata_host_resume); 5362 #endif 5363 5364 const struct device_type ata_port_type = { 5365 .name = ATA_PORT_TYPE_NAME, 5366 #ifdef CONFIG_PM 5367 .pm = &ata_port_pm_ops, 5368 #endif 5369 }; 5370 5371 /** 5372 * ata_dev_init - Initialize an ata_device structure 5373 * @dev: Device structure to initialize 5374 * 5375 * Initialize @dev in preparation for probing. 5376 * 5377 * LOCKING: 5378 * Inherited from caller. 5379 */ 5380 void ata_dev_init(struct ata_device *dev) 5381 { 5382 struct ata_link *link = ata_dev_phys_link(dev); 5383 struct ata_port *ap = link->ap; 5384 unsigned long flags; 5385 5386 /* SATA spd limit is bound to the attached device, reset together */ 5387 link->sata_spd_limit = link->hw_sata_spd_limit; 5388 link->sata_spd = 0; 5389 5390 /* High bits of dev->flags are used to record warm plug 5391 * requests which occur asynchronously. Synchronize using 5392 * host lock. 5393 */ 5394 spin_lock_irqsave(ap->lock, flags); 5395 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5396 dev->horkage = 0; 5397 spin_unlock_irqrestore(ap->lock, flags); 5398 5399 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5400 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5401 dev->pio_mask = UINT_MAX; 5402 dev->mwdma_mask = UINT_MAX; 5403 dev->udma_mask = UINT_MAX; 5404 } 5405 5406 /** 5407 * ata_link_init - Initialize an ata_link structure 5408 * @ap: ATA port link is attached to 5409 * @link: Link structure to initialize 5410 * @pmp: Port multiplier port number 5411 * 5412 * Initialize @link. 5413 * 5414 * LOCKING: 5415 * Kernel thread context (may sleep) 5416 */ 5417 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5418 { 5419 int i; 5420 5421 /* clear everything except for devices */ 5422 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5423 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5424 5425 link->ap = ap; 5426 link->pmp = pmp; 5427 link->active_tag = ATA_TAG_POISON; 5428 link->hw_sata_spd_limit = UINT_MAX; 5429 5430 /* can't use iterator, ap isn't initialized yet */ 5431 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5432 struct ata_device *dev = &link->device[i]; 5433 5434 dev->link = link; 5435 dev->devno = dev - link->device; 5436 #ifdef CONFIG_ATA_ACPI 5437 dev->gtf_filter = ata_acpi_gtf_filter; 5438 #endif 5439 ata_dev_init(dev); 5440 } 5441 } 5442 5443 /** 5444 * sata_link_init_spd - Initialize link->sata_spd_limit 5445 * @link: Link to configure sata_spd_limit for 5446 * 5447 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5448 * configured value. 5449 * 5450 * LOCKING: 5451 * Kernel thread context (may sleep). 5452 * 5453 * RETURNS: 5454 * 0 on success, -errno on failure. 5455 */ 5456 int sata_link_init_spd(struct ata_link *link) 5457 { 5458 u8 spd; 5459 int rc; 5460 5461 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5462 if (rc) 5463 return rc; 5464 5465 spd = (link->saved_scontrol >> 4) & 0xf; 5466 if (spd) 5467 link->hw_sata_spd_limit &= (1 << spd) - 1; 5468 5469 ata_force_link_limits(link); 5470 5471 link->sata_spd_limit = link->hw_sata_spd_limit; 5472 5473 return 0; 5474 } 5475 5476 /** 5477 * ata_port_alloc - allocate and initialize basic ATA port resources 5478 * @host: ATA host this allocated port belongs to 5479 * 5480 * Allocate and initialize basic ATA port resources. 5481 * 5482 * RETURNS: 5483 * Allocate ATA port on success, NULL on failure. 5484 * 5485 * LOCKING: 5486 * Inherited from calling layer (may sleep). 5487 */ 5488 struct ata_port *ata_port_alloc(struct ata_host *host) 5489 { 5490 struct ata_port *ap; 5491 5492 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5493 if (!ap) 5494 return NULL; 5495 5496 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5497 ap->lock = &host->lock; 5498 ap->print_id = -1; 5499 ap->local_port_no = -1; 5500 ap->host = host; 5501 ap->dev = host->dev; 5502 5503 mutex_init(&ap->scsi_scan_mutex); 5504 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5505 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5506 INIT_LIST_HEAD(&ap->eh_done_q); 5507 init_waitqueue_head(&ap->eh_wait_q); 5508 init_completion(&ap->park_req_pending); 5509 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5510 TIMER_DEFERRABLE); 5511 5512 ap->cbl = ATA_CBL_NONE; 5513 5514 ata_link_init(ap, &ap->link, 0); 5515 5516 #ifdef ATA_IRQ_TRAP 5517 ap->stats.unhandled_irq = 1; 5518 ap->stats.idle_irq = 1; 5519 #endif 5520 ata_sff_port_init(ap); 5521 5522 return ap; 5523 } 5524 5525 static void ata_devres_release(struct device *gendev, void *res) 5526 { 5527 struct ata_host *host = dev_get_drvdata(gendev); 5528 int i; 5529 5530 for (i = 0; i < host->n_ports; i++) { 5531 struct ata_port *ap = host->ports[i]; 5532 5533 if (!ap) 5534 continue; 5535 5536 if (ap->scsi_host) 5537 scsi_host_put(ap->scsi_host); 5538 5539 } 5540 5541 dev_set_drvdata(gendev, NULL); 5542 ata_host_put(host); 5543 } 5544 5545 static void ata_host_release(struct kref *kref) 5546 { 5547 struct ata_host *host = container_of(kref, struct ata_host, kref); 5548 int i; 5549 5550 for (i = 0; i < host->n_ports; i++) { 5551 struct ata_port *ap = host->ports[i]; 5552 5553 kfree(ap->pmp_link); 5554 kfree(ap->slave_link); 5555 kfree(ap->ncq_sense_buf); 5556 kfree(ap); 5557 host->ports[i] = NULL; 5558 } 5559 kfree(host); 5560 } 5561 5562 void ata_host_get(struct ata_host *host) 5563 { 5564 kref_get(&host->kref); 5565 } 5566 5567 void ata_host_put(struct ata_host *host) 5568 { 5569 kref_put(&host->kref, ata_host_release); 5570 } 5571 EXPORT_SYMBOL_GPL(ata_host_put); 5572 5573 /** 5574 * ata_host_alloc - allocate and init basic ATA host resources 5575 * @dev: generic device this host is associated with 5576 * @max_ports: maximum number of ATA ports associated with this host 5577 * 5578 * Allocate and initialize basic ATA host resources. LLD calls 5579 * this function to allocate a host, initializes it fully and 5580 * attaches it using ata_host_register(). 5581 * 5582 * @max_ports ports are allocated and host->n_ports is 5583 * initialized to @max_ports. The caller is allowed to decrease 5584 * host->n_ports before calling ata_host_register(). The unused 5585 * ports will be automatically freed on registration. 5586 * 5587 * RETURNS: 5588 * Allocate ATA host on success, NULL on failure. 5589 * 5590 * LOCKING: 5591 * Inherited from calling layer (may sleep). 5592 */ 5593 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5594 { 5595 struct ata_host *host; 5596 size_t sz; 5597 int i; 5598 void *dr; 5599 5600 /* alloc a container for our list of ATA ports (buses) */ 5601 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5602 host = kzalloc(sz, GFP_KERNEL); 5603 if (!host) 5604 return NULL; 5605 5606 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5607 goto err_free; 5608 5609 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5610 if (!dr) 5611 goto err_out; 5612 5613 devres_add(dev, dr); 5614 dev_set_drvdata(dev, host); 5615 5616 spin_lock_init(&host->lock); 5617 mutex_init(&host->eh_mutex); 5618 host->dev = dev; 5619 host->n_ports = max_ports; 5620 kref_init(&host->kref); 5621 5622 /* allocate ports bound to this host */ 5623 for (i = 0; i < max_ports; i++) { 5624 struct ata_port *ap; 5625 5626 ap = ata_port_alloc(host); 5627 if (!ap) 5628 goto err_out; 5629 5630 ap->port_no = i; 5631 host->ports[i] = ap; 5632 } 5633 5634 devres_remove_group(dev, NULL); 5635 return host; 5636 5637 err_out: 5638 devres_release_group(dev, NULL); 5639 err_free: 5640 kfree(host); 5641 return NULL; 5642 } 5643 EXPORT_SYMBOL_GPL(ata_host_alloc); 5644 5645 /** 5646 * ata_host_alloc_pinfo - alloc host and init with port_info array 5647 * @dev: generic device this host is associated with 5648 * @ppi: array of ATA port_info to initialize host with 5649 * @n_ports: number of ATA ports attached to this host 5650 * 5651 * Allocate ATA host and initialize with info from @ppi. If NULL 5652 * terminated, @ppi may contain fewer entries than @n_ports. The 5653 * last entry will be used for the remaining ports. 5654 * 5655 * RETURNS: 5656 * Allocate ATA host on success, NULL on failure. 5657 * 5658 * LOCKING: 5659 * Inherited from calling layer (may sleep). 5660 */ 5661 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5662 const struct ata_port_info * const * ppi, 5663 int n_ports) 5664 { 5665 const struct ata_port_info *pi = &ata_dummy_port_info; 5666 struct ata_host *host; 5667 int i, j; 5668 5669 host = ata_host_alloc(dev, n_ports); 5670 if (!host) 5671 return NULL; 5672 5673 for (i = 0, j = 0; i < host->n_ports; i++) { 5674 struct ata_port *ap = host->ports[i]; 5675 5676 if (ppi[j]) 5677 pi = ppi[j++]; 5678 5679 ap->pio_mask = pi->pio_mask; 5680 ap->mwdma_mask = pi->mwdma_mask; 5681 ap->udma_mask = pi->udma_mask; 5682 ap->flags |= pi->flags; 5683 ap->link.flags |= pi->link_flags; 5684 ap->ops = pi->port_ops; 5685 5686 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5687 host->ops = pi->port_ops; 5688 } 5689 5690 return host; 5691 } 5692 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5693 5694 static void ata_host_stop(struct device *gendev, void *res) 5695 { 5696 struct ata_host *host = dev_get_drvdata(gendev); 5697 int i; 5698 5699 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5700 5701 for (i = 0; i < host->n_ports; i++) { 5702 struct ata_port *ap = host->ports[i]; 5703 5704 if (ap->ops->port_stop) 5705 ap->ops->port_stop(ap); 5706 } 5707 5708 if (host->ops->host_stop) 5709 host->ops->host_stop(host); 5710 } 5711 5712 /** 5713 * ata_finalize_port_ops - finalize ata_port_operations 5714 * @ops: ata_port_operations to finalize 5715 * 5716 * An ata_port_operations can inherit from another ops and that 5717 * ops can again inherit from another. This can go on as many 5718 * times as necessary as long as there is no loop in the 5719 * inheritance chain. 5720 * 5721 * Ops tables are finalized when the host is started. NULL or 5722 * unspecified entries are inherited from the closet ancestor 5723 * which has the method and the entry is populated with it. 5724 * After finalization, the ops table directly points to all the 5725 * methods and ->inherits is no longer necessary and cleared. 5726 * 5727 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5728 * 5729 * LOCKING: 5730 * None. 5731 */ 5732 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5733 { 5734 static DEFINE_SPINLOCK(lock); 5735 const struct ata_port_operations *cur; 5736 void **begin = (void **)ops; 5737 void **end = (void **)&ops->inherits; 5738 void **pp; 5739 5740 if (!ops || !ops->inherits) 5741 return; 5742 5743 spin_lock(&lock); 5744 5745 for (cur = ops->inherits; cur; cur = cur->inherits) { 5746 void **inherit = (void **)cur; 5747 5748 for (pp = begin; pp < end; pp++, inherit++) 5749 if (!*pp) 5750 *pp = *inherit; 5751 } 5752 5753 for (pp = begin; pp < end; pp++) 5754 if (IS_ERR(*pp)) 5755 *pp = NULL; 5756 5757 ops->inherits = NULL; 5758 5759 spin_unlock(&lock); 5760 } 5761 5762 /** 5763 * ata_host_start - start and freeze ports of an ATA host 5764 * @host: ATA host to start ports for 5765 * 5766 * Start and then freeze ports of @host. Started status is 5767 * recorded in host->flags, so this function can be called 5768 * multiple times. Ports are guaranteed to get started only 5769 * once. If host->ops is not initialized yet, it is set to the 5770 * first non-dummy port ops. 5771 * 5772 * LOCKING: 5773 * Inherited from calling layer (may sleep). 5774 * 5775 * RETURNS: 5776 * 0 if all ports are started successfully, -errno otherwise. 5777 */ 5778 int ata_host_start(struct ata_host *host) 5779 { 5780 int have_stop = 0; 5781 void *start_dr = NULL; 5782 int i, rc; 5783 5784 if (host->flags & ATA_HOST_STARTED) 5785 return 0; 5786 5787 ata_finalize_port_ops(host->ops); 5788 5789 for (i = 0; i < host->n_ports; i++) { 5790 struct ata_port *ap = host->ports[i]; 5791 5792 ata_finalize_port_ops(ap->ops); 5793 5794 if (!host->ops && !ata_port_is_dummy(ap)) 5795 host->ops = ap->ops; 5796 5797 if (ap->ops->port_stop) 5798 have_stop = 1; 5799 } 5800 5801 if (host->ops && host->ops->host_stop) 5802 have_stop = 1; 5803 5804 if (have_stop) { 5805 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5806 if (!start_dr) 5807 return -ENOMEM; 5808 } 5809 5810 for (i = 0; i < host->n_ports; i++) { 5811 struct ata_port *ap = host->ports[i]; 5812 5813 if (ap->ops->port_start) { 5814 rc = ap->ops->port_start(ap); 5815 if (rc) { 5816 if (rc != -ENODEV) 5817 dev_err(host->dev, 5818 "failed to start port %d (errno=%d)\n", 5819 i, rc); 5820 goto err_out; 5821 } 5822 } 5823 ata_eh_freeze_port(ap); 5824 } 5825 5826 if (start_dr) 5827 devres_add(host->dev, start_dr); 5828 host->flags |= ATA_HOST_STARTED; 5829 return 0; 5830 5831 err_out: 5832 while (--i >= 0) { 5833 struct ata_port *ap = host->ports[i]; 5834 5835 if (ap->ops->port_stop) 5836 ap->ops->port_stop(ap); 5837 } 5838 devres_free(start_dr); 5839 return rc; 5840 } 5841 EXPORT_SYMBOL_GPL(ata_host_start); 5842 5843 /** 5844 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5845 * @host: host to initialize 5846 * @dev: device host is attached to 5847 * @ops: port_ops 5848 * 5849 */ 5850 void ata_host_init(struct ata_host *host, struct device *dev, 5851 struct ata_port_operations *ops) 5852 { 5853 spin_lock_init(&host->lock); 5854 mutex_init(&host->eh_mutex); 5855 host->n_tags = ATA_MAX_QUEUE; 5856 host->dev = dev; 5857 host->ops = ops; 5858 kref_init(&host->kref); 5859 } 5860 EXPORT_SYMBOL_GPL(ata_host_init); 5861 5862 void ata_port_probe(struct ata_port *ap) 5863 { 5864 struct ata_eh_info *ehi = &ap->link.eh_info; 5865 unsigned long flags; 5866 5867 /* kick EH for boot probing */ 5868 spin_lock_irqsave(ap->lock, flags); 5869 5870 ehi->probe_mask |= ATA_ALL_DEVICES; 5871 ehi->action |= ATA_EH_RESET; 5872 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5873 5874 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5875 ap->pflags |= ATA_PFLAG_LOADING; 5876 ata_port_schedule_eh(ap); 5877 5878 spin_unlock_irqrestore(ap->lock, flags); 5879 } 5880 EXPORT_SYMBOL_GPL(ata_port_probe); 5881 5882 static void async_port_probe(void *data, async_cookie_t cookie) 5883 { 5884 struct ata_port *ap = data; 5885 5886 /* 5887 * If we're not allowed to scan this host in parallel, 5888 * we need to wait until all previous scans have completed 5889 * before going further. 5890 * Jeff Garzik says this is only within a controller, so we 5891 * don't need to wait for port 0, only for later ports. 5892 */ 5893 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5894 async_synchronize_cookie(cookie); 5895 5896 ata_port_probe(ap); 5897 ata_port_wait_eh(ap); 5898 5899 /* in order to keep device order, we need to synchronize at this point */ 5900 async_synchronize_cookie(cookie); 5901 5902 ata_scsi_scan_host(ap, 1); 5903 } 5904 5905 /** 5906 * ata_host_register - register initialized ATA host 5907 * @host: ATA host to register 5908 * @sht: template for SCSI host 5909 * 5910 * Register initialized ATA host. @host is allocated using 5911 * ata_host_alloc() and fully initialized by LLD. This function 5912 * starts ports, registers @host with ATA and SCSI layers and 5913 * probe registered devices. 5914 * 5915 * LOCKING: 5916 * Inherited from calling layer (may sleep). 5917 * 5918 * RETURNS: 5919 * 0 on success, -errno otherwise. 5920 */ 5921 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5922 { 5923 int i, rc; 5924 5925 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5926 5927 /* host must have been started */ 5928 if (!(host->flags & ATA_HOST_STARTED)) { 5929 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5930 WARN_ON(1); 5931 return -EINVAL; 5932 } 5933 5934 /* Blow away unused ports. This happens when LLD can't 5935 * determine the exact number of ports to allocate at 5936 * allocation time. 5937 */ 5938 for (i = host->n_ports; host->ports[i]; i++) 5939 kfree(host->ports[i]); 5940 5941 /* give ports names and add SCSI hosts */ 5942 for (i = 0; i < host->n_ports; i++) { 5943 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5944 host->ports[i]->local_port_no = i + 1; 5945 } 5946 5947 /* Create associated sysfs transport objects */ 5948 for (i = 0; i < host->n_ports; i++) { 5949 rc = ata_tport_add(host->dev,host->ports[i]); 5950 if (rc) { 5951 goto err_tadd; 5952 } 5953 } 5954 5955 rc = ata_scsi_add_hosts(host, sht); 5956 if (rc) 5957 goto err_tadd; 5958 5959 /* set cable, sata_spd_limit and report */ 5960 for (i = 0; i < host->n_ports; i++) { 5961 struct ata_port *ap = host->ports[i]; 5962 unsigned int xfer_mask; 5963 5964 /* set SATA cable type if still unset */ 5965 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5966 ap->cbl = ATA_CBL_SATA; 5967 5968 /* init sata_spd_limit to the current value */ 5969 sata_link_init_spd(&ap->link); 5970 if (ap->slave_link) 5971 sata_link_init_spd(ap->slave_link); 5972 5973 /* print per-port info to dmesg */ 5974 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5975 ap->udma_mask); 5976 5977 if (!ata_port_is_dummy(ap)) { 5978 ata_port_info(ap, "%cATA max %s %s\n", 5979 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5980 ata_mode_string(xfer_mask), 5981 ap->link.eh_info.desc); 5982 ata_ehi_clear_desc(&ap->link.eh_info); 5983 } else 5984 ata_port_info(ap, "DUMMY\n"); 5985 } 5986 5987 /* perform each probe asynchronously */ 5988 for (i = 0; i < host->n_ports; i++) { 5989 struct ata_port *ap = host->ports[i]; 5990 ap->cookie = async_schedule(async_port_probe, ap); 5991 } 5992 5993 return 0; 5994 5995 err_tadd: 5996 while (--i >= 0) { 5997 ata_tport_delete(host->ports[i]); 5998 } 5999 return rc; 6000 6001 } 6002 EXPORT_SYMBOL_GPL(ata_host_register); 6003 6004 /** 6005 * ata_host_activate - start host, request IRQ and register it 6006 * @host: target ATA host 6007 * @irq: IRQ to request 6008 * @irq_handler: irq_handler used when requesting IRQ 6009 * @irq_flags: irq_flags used when requesting IRQ 6010 * @sht: scsi_host_template to use when registering the host 6011 * 6012 * After allocating an ATA host and initializing it, most libata 6013 * LLDs perform three steps to activate the host - start host, 6014 * request IRQ and register it. This helper takes necessary 6015 * arguments and performs the three steps in one go. 6016 * 6017 * An invalid IRQ skips the IRQ registration and expects the host to 6018 * have set polling mode on the port. In this case, @irq_handler 6019 * should be NULL. 6020 * 6021 * LOCKING: 6022 * Inherited from calling layer (may sleep). 6023 * 6024 * RETURNS: 6025 * 0 on success, -errno otherwise. 6026 */ 6027 int ata_host_activate(struct ata_host *host, int irq, 6028 irq_handler_t irq_handler, unsigned long irq_flags, 6029 const struct scsi_host_template *sht) 6030 { 6031 int i, rc; 6032 char *irq_desc; 6033 6034 rc = ata_host_start(host); 6035 if (rc) 6036 return rc; 6037 6038 /* Special case for polling mode */ 6039 if (!irq) { 6040 WARN_ON(irq_handler); 6041 return ata_host_register(host, sht); 6042 } 6043 6044 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6045 dev_driver_string(host->dev), 6046 dev_name(host->dev)); 6047 if (!irq_desc) 6048 return -ENOMEM; 6049 6050 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6051 irq_desc, host); 6052 if (rc) 6053 return rc; 6054 6055 for (i = 0; i < host->n_ports; i++) 6056 ata_port_desc_misc(host->ports[i], irq); 6057 6058 rc = ata_host_register(host, sht); 6059 /* if failed, just free the IRQ and leave ports alone */ 6060 if (rc) 6061 devm_free_irq(host->dev, irq, host); 6062 6063 return rc; 6064 } 6065 EXPORT_SYMBOL_GPL(ata_host_activate); 6066 6067 /** 6068 * ata_port_detach - Detach ATA port in preparation of device removal 6069 * @ap: ATA port to be detached 6070 * 6071 * Detach all ATA devices and the associated SCSI devices of @ap; 6072 * then, remove the associated SCSI host. @ap is guaranteed to 6073 * be quiescent on return from this function. 6074 * 6075 * LOCKING: 6076 * Kernel thread context (may sleep). 6077 */ 6078 static void ata_port_detach(struct ata_port *ap) 6079 { 6080 unsigned long flags; 6081 struct ata_link *link; 6082 struct ata_device *dev; 6083 6084 /* Ensure ata_port probe has completed */ 6085 async_synchronize_cookie(ap->cookie + 1); 6086 6087 /* Wait for any ongoing EH */ 6088 ata_port_wait_eh(ap); 6089 6090 mutex_lock(&ap->scsi_scan_mutex); 6091 spin_lock_irqsave(ap->lock, flags); 6092 6093 /* Remove scsi devices */ 6094 ata_for_each_link(link, ap, HOST_FIRST) { 6095 ata_for_each_dev(dev, link, ALL) { 6096 if (dev->sdev) { 6097 spin_unlock_irqrestore(ap->lock, flags); 6098 scsi_remove_device(dev->sdev); 6099 spin_lock_irqsave(ap->lock, flags); 6100 dev->sdev = NULL; 6101 } 6102 } 6103 } 6104 6105 /* Tell EH to disable all devices */ 6106 ap->pflags |= ATA_PFLAG_UNLOADING; 6107 ata_port_schedule_eh(ap); 6108 6109 spin_unlock_irqrestore(ap->lock, flags); 6110 mutex_unlock(&ap->scsi_scan_mutex); 6111 6112 /* wait till EH commits suicide */ 6113 ata_port_wait_eh(ap); 6114 6115 /* it better be dead now */ 6116 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6117 6118 cancel_delayed_work_sync(&ap->hotplug_task); 6119 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6120 6121 /* clean up zpodd on port removal */ 6122 ata_for_each_link(link, ap, HOST_FIRST) { 6123 ata_for_each_dev(dev, link, ALL) { 6124 if (zpodd_dev_enabled(dev)) 6125 zpodd_exit(dev); 6126 } 6127 } 6128 if (ap->pmp_link) { 6129 int i; 6130 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6131 ata_tlink_delete(&ap->pmp_link[i]); 6132 } 6133 /* remove the associated SCSI host */ 6134 scsi_remove_host(ap->scsi_host); 6135 ata_tport_delete(ap); 6136 } 6137 6138 /** 6139 * ata_host_detach - Detach all ports of an ATA host 6140 * @host: Host to detach 6141 * 6142 * Detach all ports of @host. 6143 * 6144 * LOCKING: 6145 * Kernel thread context (may sleep). 6146 */ 6147 void ata_host_detach(struct ata_host *host) 6148 { 6149 int i; 6150 6151 for (i = 0; i < host->n_ports; i++) 6152 ata_port_detach(host->ports[i]); 6153 6154 /* the host is dead now, dissociate ACPI */ 6155 ata_acpi_dissociate(host); 6156 } 6157 EXPORT_SYMBOL_GPL(ata_host_detach); 6158 6159 #ifdef CONFIG_PCI 6160 6161 /** 6162 * ata_pci_remove_one - PCI layer callback for device removal 6163 * @pdev: PCI device that was removed 6164 * 6165 * PCI layer indicates to libata via this hook that hot-unplug or 6166 * module unload event has occurred. Detach all ports. Resource 6167 * release is handled via devres. 6168 * 6169 * LOCKING: 6170 * Inherited from PCI layer (may sleep). 6171 */ 6172 void ata_pci_remove_one(struct pci_dev *pdev) 6173 { 6174 struct ata_host *host = pci_get_drvdata(pdev); 6175 6176 ata_host_detach(host); 6177 } 6178 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6179 6180 void ata_pci_shutdown_one(struct pci_dev *pdev) 6181 { 6182 struct ata_host *host = pci_get_drvdata(pdev); 6183 int i; 6184 6185 for (i = 0; i < host->n_ports; i++) { 6186 struct ata_port *ap = host->ports[i]; 6187 6188 ap->pflags |= ATA_PFLAG_FROZEN; 6189 6190 /* Disable port interrupts */ 6191 if (ap->ops->freeze) 6192 ap->ops->freeze(ap); 6193 6194 /* Stop the port DMA engines */ 6195 if (ap->ops->port_stop) 6196 ap->ops->port_stop(ap); 6197 } 6198 } 6199 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6200 6201 /* move to PCI subsystem */ 6202 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6203 { 6204 unsigned long tmp = 0; 6205 6206 switch (bits->width) { 6207 case 1: { 6208 u8 tmp8 = 0; 6209 pci_read_config_byte(pdev, bits->reg, &tmp8); 6210 tmp = tmp8; 6211 break; 6212 } 6213 case 2: { 6214 u16 tmp16 = 0; 6215 pci_read_config_word(pdev, bits->reg, &tmp16); 6216 tmp = tmp16; 6217 break; 6218 } 6219 case 4: { 6220 u32 tmp32 = 0; 6221 pci_read_config_dword(pdev, bits->reg, &tmp32); 6222 tmp = tmp32; 6223 break; 6224 } 6225 6226 default: 6227 return -EINVAL; 6228 } 6229 6230 tmp &= bits->mask; 6231 6232 return (tmp == bits->val) ? 1 : 0; 6233 } 6234 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6235 6236 #ifdef CONFIG_PM 6237 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6238 { 6239 pci_save_state(pdev); 6240 pci_disable_device(pdev); 6241 6242 if (mesg.event & PM_EVENT_SLEEP) 6243 pci_set_power_state(pdev, PCI_D3hot); 6244 } 6245 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6246 6247 int ata_pci_device_do_resume(struct pci_dev *pdev) 6248 { 6249 int rc; 6250 6251 pci_set_power_state(pdev, PCI_D0); 6252 pci_restore_state(pdev); 6253 6254 rc = pcim_enable_device(pdev); 6255 if (rc) { 6256 dev_err(&pdev->dev, 6257 "failed to enable device after resume (%d)\n", rc); 6258 return rc; 6259 } 6260 6261 pci_set_master(pdev); 6262 return 0; 6263 } 6264 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6265 6266 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6267 { 6268 struct ata_host *host = pci_get_drvdata(pdev); 6269 6270 ata_host_suspend(host, mesg); 6271 6272 ata_pci_device_do_suspend(pdev, mesg); 6273 6274 return 0; 6275 } 6276 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6277 6278 int ata_pci_device_resume(struct pci_dev *pdev) 6279 { 6280 struct ata_host *host = pci_get_drvdata(pdev); 6281 int rc; 6282 6283 rc = ata_pci_device_do_resume(pdev); 6284 if (rc == 0) 6285 ata_host_resume(host); 6286 return rc; 6287 } 6288 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6289 #endif /* CONFIG_PM */ 6290 #endif /* CONFIG_PCI */ 6291 6292 /** 6293 * ata_platform_remove_one - Platform layer callback for device removal 6294 * @pdev: Platform device that was removed 6295 * 6296 * Platform layer indicates to libata via this hook that hot-unplug or 6297 * module unload event has occurred. Detach all ports. Resource 6298 * release is handled via devres. 6299 * 6300 * LOCKING: 6301 * Inherited from platform layer (may sleep). 6302 */ 6303 void ata_platform_remove_one(struct platform_device *pdev) 6304 { 6305 struct ata_host *host = platform_get_drvdata(pdev); 6306 6307 ata_host_detach(host); 6308 } 6309 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6310 6311 #ifdef CONFIG_ATA_FORCE 6312 6313 #define force_cbl(name, flag) \ 6314 { #name, .cbl = (flag) } 6315 6316 #define force_spd_limit(spd, val) \ 6317 { #spd, .spd_limit = (val) } 6318 6319 #define force_xfer(mode, shift) \ 6320 { #mode, .xfer_mask = (1UL << (shift)) } 6321 6322 #define force_lflag_on(name, flags) \ 6323 { #name, .lflags_on = (flags) } 6324 6325 #define force_lflag_onoff(name, flags) \ 6326 { "no" #name, .lflags_on = (flags) }, \ 6327 { #name, .lflags_off = (flags) } 6328 6329 #define force_horkage_on(name, flag) \ 6330 { #name, .horkage_on = (flag) } 6331 6332 #define force_horkage_onoff(name, flag) \ 6333 { "no" #name, .horkage_on = (flag) }, \ 6334 { #name, .horkage_off = (flag) } 6335 6336 static const struct ata_force_param force_tbl[] __initconst = { 6337 force_cbl(40c, ATA_CBL_PATA40), 6338 force_cbl(80c, ATA_CBL_PATA80), 6339 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6340 force_cbl(unk, ATA_CBL_PATA_UNK), 6341 force_cbl(ign, ATA_CBL_PATA_IGN), 6342 force_cbl(sata, ATA_CBL_SATA), 6343 6344 force_spd_limit(1.5Gbps, 1), 6345 force_spd_limit(3.0Gbps, 2), 6346 6347 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6348 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6349 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6350 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6351 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6352 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6353 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6354 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6355 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6356 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6357 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6358 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6359 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6360 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6361 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6362 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6363 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6364 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6365 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6366 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6367 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6368 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6369 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6370 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6371 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6372 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6373 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6374 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6375 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6376 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6377 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6378 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6379 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6380 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6381 6382 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6383 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6384 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6385 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6386 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6387 6388 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6389 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6390 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6391 6392 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6393 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6394 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6395 6396 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6397 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6398 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6399 6400 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6401 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6402 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6403 6404 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6405 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6406 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6407 6408 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6409 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6410 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6411 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6412 6413 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6414 }; 6415 6416 static int __init ata_parse_force_one(char **cur, 6417 struct ata_force_ent *force_ent, 6418 const char **reason) 6419 { 6420 char *start = *cur, *p = *cur; 6421 char *id, *val, *endp; 6422 const struct ata_force_param *match_fp = NULL; 6423 int nr_matches = 0, i; 6424 6425 /* find where this param ends and update *cur */ 6426 while (*p != '\0' && *p != ',') 6427 p++; 6428 6429 if (*p == '\0') 6430 *cur = p; 6431 else 6432 *cur = p + 1; 6433 6434 *p = '\0'; 6435 6436 /* parse */ 6437 p = strchr(start, ':'); 6438 if (!p) { 6439 val = strstrip(start); 6440 goto parse_val; 6441 } 6442 *p = '\0'; 6443 6444 id = strstrip(start); 6445 val = strstrip(p + 1); 6446 6447 /* parse id */ 6448 p = strchr(id, '.'); 6449 if (p) { 6450 *p++ = '\0'; 6451 force_ent->device = simple_strtoul(p, &endp, 10); 6452 if (p == endp || *endp != '\0') { 6453 *reason = "invalid device"; 6454 return -EINVAL; 6455 } 6456 } 6457 6458 force_ent->port = simple_strtoul(id, &endp, 10); 6459 if (id == endp || *endp != '\0') { 6460 *reason = "invalid port/link"; 6461 return -EINVAL; 6462 } 6463 6464 parse_val: 6465 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6466 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6467 const struct ata_force_param *fp = &force_tbl[i]; 6468 6469 if (strncasecmp(val, fp->name, strlen(val))) 6470 continue; 6471 6472 nr_matches++; 6473 match_fp = fp; 6474 6475 if (strcasecmp(val, fp->name) == 0) { 6476 nr_matches = 1; 6477 break; 6478 } 6479 } 6480 6481 if (!nr_matches) { 6482 *reason = "unknown value"; 6483 return -EINVAL; 6484 } 6485 if (nr_matches > 1) { 6486 *reason = "ambiguous value"; 6487 return -EINVAL; 6488 } 6489 6490 force_ent->param = *match_fp; 6491 6492 return 0; 6493 } 6494 6495 static void __init ata_parse_force_param(void) 6496 { 6497 int idx = 0, size = 1; 6498 int last_port = -1, last_device = -1; 6499 char *p, *cur, *next; 6500 6501 /* Calculate maximum number of params and allocate ata_force_tbl */ 6502 for (p = ata_force_param_buf; *p; p++) 6503 if (*p == ',') 6504 size++; 6505 6506 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6507 if (!ata_force_tbl) { 6508 printk(KERN_WARNING "ata: failed to extend force table, " 6509 "libata.force ignored\n"); 6510 return; 6511 } 6512 6513 /* parse and populate the table */ 6514 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6515 const char *reason = ""; 6516 struct ata_force_ent te = { .port = -1, .device = -1 }; 6517 6518 next = cur; 6519 if (ata_parse_force_one(&next, &te, &reason)) { 6520 printk(KERN_WARNING "ata: failed to parse force " 6521 "parameter \"%s\" (%s)\n", 6522 cur, reason); 6523 continue; 6524 } 6525 6526 if (te.port == -1) { 6527 te.port = last_port; 6528 te.device = last_device; 6529 } 6530 6531 ata_force_tbl[idx++] = te; 6532 6533 last_port = te.port; 6534 last_device = te.device; 6535 } 6536 6537 ata_force_tbl_size = idx; 6538 } 6539 6540 static void ata_free_force_param(void) 6541 { 6542 kfree(ata_force_tbl); 6543 } 6544 #else 6545 static inline void ata_parse_force_param(void) { } 6546 static inline void ata_free_force_param(void) { } 6547 #endif 6548 6549 static int __init ata_init(void) 6550 { 6551 int rc; 6552 6553 ata_parse_force_param(); 6554 6555 rc = ata_sff_init(); 6556 if (rc) { 6557 ata_free_force_param(); 6558 return rc; 6559 } 6560 6561 libata_transport_init(); 6562 ata_scsi_transport_template = ata_attach_transport(); 6563 if (!ata_scsi_transport_template) { 6564 ata_sff_exit(); 6565 rc = -ENOMEM; 6566 goto err_out; 6567 } 6568 6569 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6570 return 0; 6571 6572 err_out: 6573 return rc; 6574 } 6575 6576 static void __exit ata_exit(void) 6577 { 6578 ata_release_transport(ata_scsi_transport_template); 6579 libata_transport_exit(); 6580 ata_sff_exit(); 6581 ata_free_force_param(); 6582 } 6583 6584 subsys_initcall(ata_init); 6585 module_exit(ata_exit); 6586 6587 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6588 6589 int ata_ratelimit(void) 6590 { 6591 return __ratelimit(&ratelimit); 6592 } 6593 EXPORT_SYMBOL_GPL(ata_ratelimit); 6594 6595 /** 6596 * ata_msleep - ATA EH owner aware msleep 6597 * @ap: ATA port to attribute the sleep to 6598 * @msecs: duration to sleep in milliseconds 6599 * 6600 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6601 * ownership is released before going to sleep and reacquired 6602 * after the sleep is complete. IOW, other ports sharing the 6603 * @ap->host will be allowed to own the EH while this task is 6604 * sleeping. 6605 * 6606 * LOCKING: 6607 * Might sleep. 6608 */ 6609 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6610 { 6611 bool owns_eh = ap && ap->host->eh_owner == current; 6612 6613 if (owns_eh) 6614 ata_eh_release(ap); 6615 6616 if (msecs < 20) { 6617 unsigned long usecs = msecs * USEC_PER_MSEC; 6618 usleep_range(usecs, usecs + 50); 6619 } else { 6620 msleep(msecs); 6621 } 6622 6623 if (owns_eh) 6624 ata_eh_acquire(ap); 6625 } 6626 EXPORT_SYMBOL_GPL(ata_msleep); 6627 6628 /** 6629 * ata_wait_register - wait until register value changes 6630 * @ap: ATA port to wait register for, can be NULL 6631 * @reg: IO-mapped register 6632 * @mask: Mask to apply to read register value 6633 * @val: Wait condition 6634 * @interval: polling interval in milliseconds 6635 * @timeout: timeout in milliseconds 6636 * 6637 * Waiting for some bits of register to change is a common 6638 * operation for ATA controllers. This function reads 32bit LE 6639 * IO-mapped register @reg and tests for the following condition. 6640 * 6641 * (*@reg & mask) != val 6642 * 6643 * If the condition is met, it returns; otherwise, the process is 6644 * repeated after @interval_msec until timeout. 6645 * 6646 * LOCKING: 6647 * Kernel thread context (may sleep) 6648 * 6649 * RETURNS: 6650 * The final register value. 6651 */ 6652 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6653 unsigned int interval, unsigned int timeout) 6654 { 6655 unsigned long deadline; 6656 u32 tmp; 6657 6658 tmp = ioread32(reg); 6659 6660 /* Calculate timeout _after_ the first read to make sure 6661 * preceding writes reach the controller before starting to 6662 * eat away the timeout. 6663 */ 6664 deadline = ata_deadline(jiffies, timeout); 6665 6666 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6667 ata_msleep(ap, interval); 6668 tmp = ioread32(reg); 6669 } 6670 6671 return tmp; 6672 } 6673 EXPORT_SYMBOL_GPL(ata_wait_register); 6674 6675 /* 6676 * Dummy port_ops 6677 */ 6678 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6679 { 6680 return AC_ERR_SYSTEM; 6681 } 6682 6683 static void ata_dummy_error_handler(struct ata_port *ap) 6684 { 6685 /* truly dummy */ 6686 } 6687 6688 struct ata_port_operations ata_dummy_port_ops = { 6689 .qc_prep = ata_noop_qc_prep, 6690 .qc_issue = ata_dummy_qc_issue, 6691 .error_handler = ata_dummy_error_handler, 6692 .sched_eh = ata_std_sched_eh, 6693 .end_eh = ata_std_end_eh, 6694 }; 6695 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6696 6697 const struct ata_port_info ata_dummy_port_info = { 6698 .port_ops = &ata_dummy_port_ops, 6699 }; 6700 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6701 6702 void ata_print_version(const struct device *dev, const char *version) 6703 { 6704 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6705 } 6706 EXPORT_SYMBOL(ata_print_version); 6707 6708 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6709 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6710 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6711 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6712 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6713