1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = 0; 573 fis[17] = 0; 574 fis[18] = 0; 575 fis[19] = 0; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 qc->flags |= ATA_QCFLAG_RESULT_TF; 1606 qc->dma_dir = dma_dir; 1607 if (dma_dir != DMA_NONE) { 1608 unsigned int i, buflen = 0; 1609 struct scatterlist *sg; 1610 1611 for_each_sg(sgl, sg, n_elem, i) 1612 buflen += sg->length; 1613 1614 ata_sg_init(qc, sgl, n_elem); 1615 qc->nbytes = buflen; 1616 } 1617 1618 qc->private_data = &wait; 1619 qc->complete_fn = ata_qc_complete_internal; 1620 1621 ata_qc_issue(qc); 1622 1623 spin_unlock_irqrestore(ap->lock, flags); 1624 1625 if (!timeout) { 1626 if (ata_probe_timeout) 1627 timeout = ata_probe_timeout * 1000; 1628 else { 1629 timeout = ata_internal_cmd_timeout(dev, command); 1630 auto_timeout = 1; 1631 } 1632 } 1633 1634 if (ap->ops->error_handler) 1635 ata_eh_release(ap); 1636 1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1638 1639 if (ap->ops->error_handler) 1640 ata_eh_acquire(ap); 1641 1642 ata_sff_flush_pio_task(ap); 1643 1644 if (!rc) { 1645 spin_lock_irqsave(ap->lock, flags); 1646 1647 /* We're racing with irq here. If we lose, the 1648 * following test prevents us from completing the qc 1649 * twice. If we win, the port is frozen and will be 1650 * cleaned up by ->post_internal_cmd(). 1651 */ 1652 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1653 qc->err_mask |= AC_ERR_TIMEOUT; 1654 1655 if (ap->ops->error_handler) 1656 ata_port_freeze(ap); 1657 else 1658 ata_qc_complete(qc); 1659 1660 if (ata_msg_warn(ap)) 1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1662 command); 1663 } 1664 1665 spin_unlock_irqrestore(ap->lock, flags); 1666 } 1667 1668 /* do post_internal_cmd */ 1669 if (ap->ops->post_internal_cmd) 1670 ap->ops->post_internal_cmd(qc); 1671 1672 /* perform minimal error analysis */ 1673 if (qc->flags & ATA_QCFLAG_FAILED) { 1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1675 qc->err_mask |= AC_ERR_DEV; 1676 1677 if (!qc->err_mask) 1678 qc->err_mask |= AC_ERR_OTHER; 1679 1680 if (qc->err_mask & ~AC_ERR_OTHER) 1681 qc->err_mask &= ~AC_ERR_OTHER; 1682 } 1683 1684 /* finish up */ 1685 spin_lock_irqsave(ap->lock, flags); 1686 1687 *tf = qc->result_tf; 1688 err_mask = qc->err_mask; 1689 1690 ata_qc_free(qc); 1691 link->active_tag = preempted_tag; 1692 link->sactive = preempted_sactive; 1693 ap->qc_active = preempted_qc_active; 1694 ap->nr_active_links = preempted_nr_active_links; 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1699 ata_internal_cmd_timed_out(dev, command); 1700 1701 return err_mask; 1702 } 1703 1704 /** 1705 * ata_exec_internal - execute libata internal command 1706 * @dev: Device to which the command is sent 1707 * @tf: Taskfile registers for the command and the result 1708 * @cdb: CDB for packet command 1709 * @dma_dir: Data tranfer direction of the command 1710 * @buf: Data buffer of the command 1711 * @buflen: Length of data buffer 1712 * @timeout: Timeout in msecs (0 for default) 1713 * 1714 * Wrapper around ata_exec_internal_sg() which takes simple 1715 * buffer instead of sg list. 1716 * 1717 * LOCKING: 1718 * None. Should be called with kernel context, might sleep. 1719 * 1720 * RETURNS: 1721 * Zero on success, AC_ERR_* mask on failure 1722 */ 1723 unsigned ata_exec_internal(struct ata_device *dev, 1724 struct ata_taskfile *tf, const u8 *cdb, 1725 int dma_dir, void *buf, unsigned int buflen, 1726 unsigned long timeout) 1727 { 1728 struct scatterlist *psg = NULL, sg; 1729 unsigned int n_elem = 0; 1730 1731 if (dma_dir != DMA_NONE) { 1732 WARN_ON(!buf); 1733 sg_init_one(&sg, buf, buflen); 1734 psg = &sg; 1735 n_elem++; 1736 } 1737 1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1739 timeout); 1740 } 1741 1742 /** 1743 * ata_do_simple_cmd - execute simple internal command 1744 * @dev: Device to which the command is sent 1745 * @cmd: Opcode to execute 1746 * 1747 * Execute a 'simple' command, that only consists of the opcode 1748 * 'cmd' itself, without filling any other registers 1749 * 1750 * LOCKING: 1751 * Kernel thread context (may sleep). 1752 * 1753 * RETURNS: 1754 * Zero on success, AC_ERR_* mask on failure 1755 */ 1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1757 { 1758 struct ata_taskfile tf; 1759 1760 ata_tf_init(dev, &tf); 1761 1762 tf.command = cmd; 1763 tf.flags |= ATA_TFLAG_DEVICE; 1764 tf.protocol = ATA_PROT_NODATA; 1765 1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1767 } 1768 1769 /** 1770 * ata_pio_need_iordy - check if iordy needed 1771 * @adev: ATA device 1772 * 1773 * Check if the current speed of the device requires IORDY. Used 1774 * by various controllers for chip configuration. 1775 */ 1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1777 { 1778 /* Don't set IORDY if we're preparing for reset. IORDY may 1779 * lead to controller lock up on certain controllers if the 1780 * port is not occupied. See bko#11703 for details. 1781 */ 1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1783 return 0; 1784 /* Controller doesn't support IORDY. Probably a pointless 1785 * check as the caller should know this. 1786 */ 1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1788 return 0; 1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1790 if (ata_id_is_cfa(adev->id) 1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1792 return 0; 1793 /* PIO3 and higher it is mandatory */ 1794 if (adev->pio_mode > XFER_PIO_2) 1795 return 1; 1796 /* We turn it on when possible */ 1797 if (ata_id_has_iordy(adev->id)) 1798 return 1; 1799 return 0; 1800 } 1801 1802 /** 1803 * ata_pio_mask_no_iordy - Return the non IORDY mask 1804 * @adev: ATA device 1805 * 1806 * Compute the highest mode possible if we are not using iordy. Return 1807 * -1 if no iordy mode is available. 1808 */ 1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1810 { 1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1813 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1814 /* Is the speed faster than the drive allows non IORDY ? */ 1815 if (pio) { 1816 /* This is cycle times not frequency - watch the logic! */ 1817 if (pio > 240) /* PIO2 is 240nS per cycle */ 1818 return 3 << ATA_SHIFT_PIO; 1819 return 7 << ATA_SHIFT_PIO; 1820 } 1821 } 1822 return 3 << ATA_SHIFT_PIO; 1823 } 1824 1825 /** 1826 * ata_do_dev_read_id - default ID read method 1827 * @dev: device 1828 * @tf: proposed taskfile 1829 * @id: data buffer 1830 * 1831 * Issue the identify taskfile and hand back the buffer containing 1832 * identify data. For some RAID controllers and for pre ATA devices 1833 * this function is wrapped or replaced by the driver 1834 */ 1835 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1836 struct ata_taskfile *tf, u16 *id) 1837 { 1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1840 } 1841 1842 /** 1843 * ata_dev_read_id - Read ID data from the specified device 1844 * @dev: target device 1845 * @p_class: pointer to class of the target device (may be changed) 1846 * @flags: ATA_READID_* flags 1847 * @id: buffer to read IDENTIFY data into 1848 * 1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1852 * for pre-ATA4 drives. 1853 * 1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1855 * now we abort if we hit that case. 1856 * 1857 * LOCKING: 1858 * Kernel thread context (may sleep) 1859 * 1860 * RETURNS: 1861 * 0 on success, -errno otherwise. 1862 */ 1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1864 unsigned int flags, u16 *id) 1865 { 1866 struct ata_port *ap = dev->link->ap; 1867 unsigned int class = *p_class; 1868 struct ata_taskfile tf; 1869 unsigned int err_mask = 0; 1870 const char *reason; 1871 bool is_semb = class == ATA_DEV_SEMB; 1872 int may_fallback = 1, tried_spinup = 0; 1873 int rc; 1874 1875 if (ata_msg_ctl(ap)) 1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1877 1878 retry: 1879 ata_tf_init(dev, &tf); 1880 1881 switch (class) { 1882 case ATA_DEV_SEMB: 1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1884 case ATA_DEV_ATA: 1885 tf.command = ATA_CMD_ID_ATA; 1886 break; 1887 case ATA_DEV_ATAPI: 1888 tf.command = ATA_CMD_ID_ATAPI; 1889 break; 1890 default: 1891 rc = -ENODEV; 1892 reason = "unsupported class"; 1893 goto err_out; 1894 } 1895 1896 tf.protocol = ATA_PROT_PIO; 1897 1898 /* Some devices choke if TF registers contain garbage. Make 1899 * sure those are properly initialized. 1900 */ 1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1902 1903 /* Device presence detection is unreliable on some 1904 * controllers. Always poll IDENTIFY if available. 1905 */ 1906 tf.flags |= ATA_TFLAG_POLLING; 1907 1908 if (ap->ops->read_id) 1909 err_mask = ap->ops->read_id(dev, &tf, id); 1910 else 1911 err_mask = ata_do_dev_read_id(dev, &tf, id); 1912 1913 if (err_mask) { 1914 if (err_mask & AC_ERR_NODEV_HINT) { 1915 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1916 return -ENOENT; 1917 } 1918 1919 if (is_semb) { 1920 ata_dev_info(dev, 1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1922 /* SEMB is not supported yet */ 1923 *p_class = ATA_DEV_SEMB_UNSUP; 1924 return 0; 1925 } 1926 1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1928 /* Device or controller might have reported 1929 * the wrong device class. Give a shot at the 1930 * other IDENTIFY if the current one is 1931 * aborted by the device. 1932 */ 1933 if (may_fallback) { 1934 may_fallback = 0; 1935 1936 if (class == ATA_DEV_ATA) 1937 class = ATA_DEV_ATAPI; 1938 else 1939 class = ATA_DEV_ATA; 1940 goto retry; 1941 } 1942 1943 /* Control reaches here iff the device aborted 1944 * both flavors of IDENTIFYs which happens 1945 * sometimes with phantom devices. 1946 */ 1947 ata_dev_dbg(dev, 1948 "both IDENTIFYs aborted, assuming NODEV\n"); 1949 return -ENOENT; 1950 } 1951 1952 rc = -EIO; 1953 reason = "I/O error"; 1954 goto err_out; 1955 } 1956 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1958 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1959 "class=%d may_fallback=%d tried_spinup=%d\n", 1960 class, may_fallback, tried_spinup); 1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1963 } 1964 1965 /* Falling back doesn't make sense if ID data was read 1966 * successfully at least once. 1967 */ 1968 may_fallback = 0; 1969 1970 swap_buf_le16(id, ATA_ID_WORDS); 1971 1972 /* sanity check */ 1973 rc = -EINVAL; 1974 reason = "device reports invalid type"; 1975 1976 if (class == ATA_DEV_ATA) { 1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1978 goto err_out; 1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1980 ata_id_is_ata(id)) { 1981 ata_dev_dbg(dev, 1982 "host indicates ignore ATA devices, ignored\n"); 1983 return -ENOENT; 1984 } 1985 } else { 1986 if (ata_id_is_ata(id)) 1987 goto err_out; 1988 } 1989 1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1991 tried_spinup = 1; 1992 /* 1993 * Drive powered-up in standby mode, and requires a specific 1994 * SET_FEATURES spin-up subcommand before it will accept 1995 * anything other than the original IDENTIFY command. 1996 */ 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1998 if (err_mask && id[2] != 0x738c) { 1999 rc = -EIO; 2000 reason = "SPINUP failed"; 2001 goto err_out; 2002 } 2003 /* 2004 * If the drive initially returned incomplete IDENTIFY info, 2005 * we now must reissue the IDENTIFY command. 2006 */ 2007 if (id[2] == 0x37c8) 2008 goto retry; 2009 } 2010 2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 static int ata_do_link_spd_horkage(struct ata_device *dev) 2051 { 2052 struct ata_link *plink = ata_dev_phys_link(dev); 2053 u32 target, target_limit; 2054 2055 if (!sata_scr_valid(plink)) 2056 return 0; 2057 2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2059 target = 1; 2060 else 2061 return 0; 2062 2063 target_limit = (1 << target) - 1; 2064 2065 /* if already on stricter limit, no need to push further */ 2066 if (plink->sata_spd_limit <= target_limit) 2067 return 0; 2068 2069 plink->sata_spd_limit = target_limit; 2070 2071 /* Request another EH round by returning -EAGAIN if link is 2072 * going faster than the target speed. Forward progress is 2073 * guaranteed by setting sata_spd_limit to target_limit above. 2074 */ 2075 if (plink->sata_spd > target) { 2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2077 sata_spd_string(target)); 2078 return -EAGAIN; 2079 } 2080 return 0; 2081 } 2082 2083 static inline u8 ata_dev_knobble(struct ata_device *dev) 2084 { 2085 struct ata_port *ap = dev->link->ap; 2086 2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2088 return 0; 2089 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2091 } 2092 2093 static int ata_dev_config_ncq(struct ata_device *dev, 2094 char *desc, size_t desc_sz) 2095 { 2096 struct ata_port *ap = dev->link->ap; 2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2098 unsigned int err_mask; 2099 char *aa_desc = ""; 2100 2101 if (!ata_id_has_ncq(dev->id)) { 2102 desc[0] = '\0'; 2103 return 0; 2104 } 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2106 snprintf(desc, desc_sz, "NCQ (not used)"); 2107 return 0; 2108 } 2109 if (ap->flags & ATA_FLAG_NCQ) { 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2111 dev->flags |= ATA_DFLAG_NCQ; 2112 } 2113 2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2115 (ap->flags & ATA_FLAG_FPDMA_AA) && 2116 ata_id_has_fpdma_aa(dev->id)) { 2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2118 SATA_FPDMA_AA); 2119 if (err_mask) { 2120 ata_dev_err(dev, 2121 "failed to enable AA (error_mask=0x%x)\n", 2122 err_mask); 2123 if (err_mask != AC_ERR_DEV) { 2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2125 return -EIO; 2126 } 2127 } else 2128 aa_desc = ", AA"; 2129 } 2130 2131 if (hdepth >= ddepth) 2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2133 else 2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2135 ddepth, aa_desc); 2136 return 0; 2137 } 2138 2139 /** 2140 * ata_dev_configure - Configure the specified ATA/ATAPI device 2141 * @dev: Target device to configure 2142 * 2143 * Configure @dev according to @dev->id. Generic and low-level 2144 * driver specific fixups are also applied. 2145 * 2146 * LOCKING: 2147 * Kernel thread context (may sleep) 2148 * 2149 * RETURNS: 2150 * 0 on success, -errno otherwise 2151 */ 2152 int ata_dev_configure(struct ata_device *dev) 2153 { 2154 struct ata_port *ap = dev->link->ap; 2155 struct ata_eh_context *ehc = &dev->link->eh_context; 2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2157 const u16 *id = dev->id; 2158 unsigned long xfer_mask; 2159 unsigned int err_mask; 2160 char revbuf[7]; /* XYZ-99\0 */ 2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2162 char modelbuf[ATA_ID_PROD_LEN+1]; 2163 int rc; 2164 2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2167 return 0; 2168 } 2169 2170 if (ata_msg_probe(ap)) 2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2172 2173 /* set horkage */ 2174 dev->horkage |= ata_dev_blacklisted(dev); 2175 ata_force_horkage(dev); 2176 2177 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2178 ata_dev_info(dev, "unsupported device, disabling\n"); 2179 ata_dev_disable(dev); 2180 return 0; 2181 } 2182 2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2184 dev->class == ATA_DEV_ATAPI) { 2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2186 atapi_enabled ? "not supported with this driver" 2187 : "disabled"); 2188 ata_dev_disable(dev); 2189 return 0; 2190 } 2191 2192 rc = ata_do_link_spd_horkage(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* let ACPI work its magic */ 2197 rc = ata_acpi_on_devcfg(dev); 2198 if (rc) 2199 return rc; 2200 2201 /* massage HPA, do it early as it might change IDENTIFY data */ 2202 rc = ata_hpa_resize(dev); 2203 if (rc) 2204 return rc; 2205 2206 /* print device capabilities */ 2207 if (ata_msg_probe(ap)) 2208 ata_dev_dbg(dev, 2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2210 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2211 __func__, 2212 id[49], id[82], id[83], id[84], 2213 id[85], id[86], id[87], id[88]); 2214 2215 /* initialize to-be-configured parameters */ 2216 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2217 dev->max_sectors = 0; 2218 dev->cdb_len = 0; 2219 dev->n_sectors = 0; 2220 dev->cylinders = 0; 2221 dev->heads = 0; 2222 dev->sectors = 0; 2223 dev->multi_count = 0; 2224 2225 /* 2226 * common ATA, ATAPI feature tests 2227 */ 2228 2229 /* find max transfer mode; for printk only */ 2230 xfer_mask = ata_id_xfermask(id); 2231 2232 if (ata_msg_probe(ap)) 2233 ata_dump_id(id); 2234 2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2237 sizeof(fwrevbuf)); 2238 2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2240 sizeof(modelbuf)); 2241 2242 /* ATA-specific feature tests */ 2243 if (dev->class == ATA_DEV_ATA) { 2244 if (ata_id_is_cfa(id)) { 2245 /* CPRM may make this media unusable */ 2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2247 ata_dev_warn(dev, 2248 "supports DRM functions and may not be fully accessible\n"); 2249 snprintf(revbuf, 7, "CFA"); 2250 } else { 2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2252 /* Warn the user if the device has TPM extensions */ 2253 if (ata_id_has_tpm(id)) 2254 ata_dev_warn(dev, 2255 "supports DRM functions and may not be fully accessible\n"); 2256 } 2257 2258 dev->n_sectors = ata_id_n_sectors(id); 2259 2260 /* get current R/W Multiple count setting */ 2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2262 unsigned int max = dev->id[47] & 0xff; 2263 unsigned int cnt = dev->id[59] & 0xff; 2264 /* only recognize/allow powers of two here */ 2265 if (is_power_of_2(max) && is_power_of_2(cnt)) 2266 if (cnt <= max) 2267 dev->multi_count = cnt; 2268 } 2269 2270 if (ata_id_has_lba(id)) { 2271 const char *lba_desc; 2272 char ncq_desc[24]; 2273 2274 lba_desc = "LBA"; 2275 dev->flags |= ATA_DFLAG_LBA; 2276 if (ata_id_has_lba48(id)) { 2277 dev->flags |= ATA_DFLAG_LBA48; 2278 lba_desc = "LBA48"; 2279 2280 if (dev->n_sectors >= (1UL << 28) && 2281 ata_id_has_flush_ext(id)) 2282 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2283 } 2284 2285 /* config NCQ */ 2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2287 if (rc) 2288 return rc; 2289 2290 /* print device info to dmesg */ 2291 if (ata_msg_drv(ap) && print_info) { 2292 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2293 revbuf, modelbuf, fwrevbuf, 2294 ata_mode_string(xfer_mask)); 2295 ata_dev_info(dev, 2296 "%llu sectors, multi %u: %s %s\n", 2297 (unsigned long long)dev->n_sectors, 2298 dev->multi_count, lba_desc, ncq_desc); 2299 } 2300 } else { 2301 /* CHS */ 2302 2303 /* Default translation */ 2304 dev->cylinders = id[1]; 2305 dev->heads = id[3]; 2306 dev->sectors = id[6]; 2307 2308 if (ata_id_current_chs_valid(id)) { 2309 /* Current CHS translation is valid. */ 2310 dev->cylinders = id[54]; 2311 dev->heads = id[55]; 2312 dev->sectors = id[56]; 2313 } 2314 2315 /* print device info to dmesg */ 2316 if (ata_msg_drv(ap) && print_info) { 2317 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2318 revbuf, modelbuf, fwrevbuf, 2319 ata_mode_string(xfer_mask)); 2320 ata_dev_info(dev, 2321 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2322 (unsigned long long)dev->n_sectors, 2323 dev->multi_count, dev->cylinders, 2324 dev->heads, dev->sectors); 2325 } 2326 } 2327 2328 /* check and mark DevSlp capability */ 2329 if (ata_id_has_devslp(dev->id)) 2330 dev->flags |= ATA_DFLAG_DEVSLP; 2331 2332 /* Obtain SATA Settings page from Identify Device Data Log, 2333 * which contains DevSlp timing variables etc. 2334 * Exclude old devices with ata_id_has_ncq() 2335 */ 2336 if (ata_id_has_ncq(dev->id)) { 2337 err_mask = ata_read_log_page(dev, 2338 ATA_LOG_SATA_ID_DEV_DATA, 2339 ATA_LOG_SATA_SETTINGS, 2340 dev->sata_settings, 2341 1); 2342 if (err_mask) 2343 ata_dev_dbg(dev, 2344 "failed to get Identify Device Data, Emask 0x%x\n", 2345 err_mask); 2346 } 2347 2348 dev->cdb_len = 16; 2349 } 2350 2351 /* ATAPI-specific feature tests */ 2352 else if (dev->class == ATA_DEV_ATAPI) { 2353 const char *cdb_intr_string = ""; 2354 const char *atapi_an_string = ""; 2355 const char *dma_dir_string = ""; 2356 u32 sntf; 2357 2358 rc = atapi_cdb_len(id); 2359 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2360 if (ata_msg_warn(ap)) 2361 ata_dev_warn(dev, "unsupported CDB len\n"); 2362 rc = -EINVAL; 2363 goto err_out_nosup; 2364 } 2365 dev->cdb_len = (unsigned int) rc; 2366 2367 /* Enable ATAPI AN if both the host and device have 2368 * the support. If PMP is attached, SNTF is required 2369 * to enable ATAPI AN to discern between PHY status 2370 * changed notifications and ATAPI ANs. 2371 */ 2372 if (atapi_an && 2373 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2374 (!sata_pmp_attached(ap) || 2375 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2376 /* issue SET feature command to turn this on */ 2377 err_mask = ata_dev_set_feature(dev, 2378 SETFEATURES_SATA_ENABLE, SATA_AN); 2379 if (err_mask) 2380 ata_dev_err(dev, 2381 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2382 err_mask); 2383 else { 2384 dev->flags |= ATA_DFLAG_AN; 2385 atapi_an_string = ", ATAPI AN"; 2386 } 2387 } 2388 2389 if (ata_id_cdb_intr(dev->id)) { 2390 dev->flags |= ATA_DFLAG_CDB_INTR; 2391 cdb_intr_string = ", CDB intr"; 2392 } 2393 2394 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2395 dev->flags |= ATA_DFLAG_DMADIR; 2396 dma_dir_string = ", DMADIR"; 2397 } 2398 2399 if (ata_id_has_da(dev->id)) 2400 dev->flags |= ATA_DFLAG_DA; 2401 2402 /* print device info to dmesg */ 2403 if (ata_msg_drv(ap) && print_info) 2404 ata_dev_info(dev, 2405 "ATAPI: %s, %s, max %s%s%s%s\n", 2406 modelbuf, fwrevbuf, 2407 ata_mode_string(xfer_mask), 2408 cdb_intr_string, atapi_an_string, 2409 dma_dir_string); 2410 } 2411 2412 /* determine max_sectors */ 2413 dev->max_sectors = ATA_MAX_SECTORS; 2414 if (dev->flags & ATA_DFLAG_LBA48) 2415 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2416 2417 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2418 200 sectors */ 2419 if (ata_dev_knobble(dev)) { 2420 if (ata_msg_drv(ap) && print_info) 2421 ata_dev_info(dev, "applying bridge limits\n"); 2422 dev->udma_mask &= ATA_UDMA5; 2423 dev->max_sectors = ATA_MAX_SECTORS; 2424 } 2425 2426 if ((dev->class == ATA_DEV_ATAPI) && 2427 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2428 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2429 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2430 } 2431 2432 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2433 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2434 dev->max_sectors); 2435 2436 if (ap->ops->dev_config) 2437 ap->ops->dev_config(dev); 2438 2439 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2440 /* Let the user know. We don't want to disallow opens for 2441 rescue purposes, or in case the vendor is just a blithering 2442 idiot. Do this after the dev_config call as some controllers 2443 with buggy firmware may want to avoid reporting false device 2444 bugs */ 2445 2446 if (print_info) { 2447 ata_dev_warn(dev, 2448 "Drive reports diagnostics failure. This may indicate a drive\n"); 2449 ata_dev_warn(dev, 2450 "fault or invalid emulation. Contact drive vendor for information.\n"); 2451 } 2452 } 2453 2454 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2455 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2456 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2457 } 2458 2459 return 0; 2460 2461 err_out_nosup: 2462 if (ata_msg_probe(ap)) 2463 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2464 return rc; 2465 } 2466 2467 /** 2468 * ata_cable_40wire - return 40 wire cable type 2469 * @ap: port 2470 * 2471 * Helper method for drivers which want to hardwire 40 wire cable 2472 * detection. 2473 */ 2474 2475 int ata_cable_40wire(struct ata_port *ap) 2476 { 2477 return ATA_CBL_PATA40; 2478 } 2479 2480 /** 2481 * ata_cable_80wire - return 80 wire cable type 2482 * @ap: port 2483 * 2484 * Helper method for drivers which want to hardwire 80 wire cable 2485 * detection. 2486 */ 2487 2488 int ata_cable_80wire(struct ata_port *ap) 2489 { 2490 return ATA_CBL_PATA80; 2491 } 2492 2493 /** 2494 * ata_cable_unknown - return unknown PATA cable. 2495 * @ap: port 2496 * 2497 * Helper method for drivers which have no PATA cable detection. 2498 */ 2499 2500 int ata_cable_unknown(struct ata_port *ap) 2501 { 2502 return ATA_CBL_PATA_UNK; 2503 } 2504 2505 /** 2506 * ata_cable_ignore - return ignored PATA cable. 2507 * @ap: port 2508 * 2509 * Helper method for drivers which don't use cable type to limit 2510 * transfer mode. 2511 */ 2512 int ata_cable_ignore(struct ata_port *ap) 2513 { 2514 return ATA_CBL_PATA_IGN; 2515 } 2516 2517 /** 2518 * ata_cable_sata - return SATA cable type 2519 * @ap: port 2520 * 2521 * Helper method for drivers which have SATA cables 2522 */ 2523 2524 int ata_cable_sata(struct ata_port *ap) 2525 { 2526 return ATA_CBL_SATA; 2527 } 2528 2529 /** 2530 * ata_bus_probe - Reset and probe ATA bus 2531 * @ap: Bus to probe 2532 * 2533 * Master ATA bus probing function. Initiates a hardware-dependent 2534 * bus reset, then attempts to identify any devices found on 2535 * the bus. 2536 * 2537 * LOCKING: 2538 * PCI/etc. bus probe sem. 2539 * 2540 * RETURNS: 2541 * Zero on success, negative errno otherwise. 2542 */ 2543 2544 int ata_bus_probe(struct ata_port *ap) 2545 { 2546 unsigned int classes[ATA_MAX_DEVICES]; 2547 int tries[ATA_MAX_DEVICES]; 2548 int rc; 2549 struct ata_device *dev; 2550 2551 ata_for_each_dev(dev, &ap->link, ALL) 2552 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2553 2554 retry: 2555 ata_for_each_dev(dev, &ap->link, ALL) { 2556 /* If we issue an SRST then an ATA drive (not ATAPI) 2557 * may change configuration and be in PIO0 timing. If 2558 * we do a hard reset (or are coming from power on) 2559 * this is true for ATA or ATAPI. Until we've set a 2560 * suitable controller mode we should not touch the 2561 * bus as we may be talking too fast. 2562 */ 2563 dev->pio_mode = XFER_PIO_0; 2564 dev->dma_mode = 0xff; 2565 2566 /* If the controller has a pio mode setup function 2567 * then use it to set the chipset to rights. Don't 2568 * touch the DMA setup as that will be dealt with when 2569 * configuring devices. 2570 */ 2571 if (ap->ops->set_piomode) 2572 ap->ops->set_piomode(ap, dev); 2573 } 2574 2575 /* reset and determine device classes */ 2576 ap->ops->phy_reset(ap); 2577 2578 ata_for_each_dev(dev, &ap->link, ALL) { 2579 if (dev->class != ATA_DEV_UNKNOWN) 2580 classes[dev->devno] = dev->class; 2581 else 2582 classes[dev->devno] = ATA_DEV_NONE; 2583 2584 dev->class = ATA_DEV_UNKNOWN; 2585 } 2586 2587 /* read IDENTIFY page and configure devices. We have to do the identify 2588 specific sequence bass-ackwards so that PDIAG- is released by 2589 the slave device */ 2590 2591 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2592 if (tries[dev->devno]) 2593 dev->class = classes[dev->devno]; 2594 2595 if (!ata_dev_enabled(dev)) 2596 continue; 2597 2598 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2599 dev->id); 2600 if (rc) 2601 goto fail; 2602 } 2603 2604 /* Now ask for the cable type as PDIAG- should have been released */ 2605 if (ap->ops->cable_detect) 2606 ap->cbl = ap->ops->cable_detect(ap); 2607 2608 /* We may have SATA bridge glue hiding here irrespective of 2609 * the reported cable types and sensed types. When SATA 2610 * drives indicate we have a bridge, we don't know which end 2611 * of the link the bridge is which is a problem. 2612 */ 2613 ata_for_each_dev(dev, &ap->link, ENABLED) 2614 if (ata_id_is_sata(dev->id)) 2615 ap->cbl = ATA_CBL_SATA; 2616 2617 /* After the identify sequence we can now set up the devices. We do 2618 this in the normal order so that the user doesn't get confused */ 2619 2620 ata_for_each_dev(dev, &ap->link, ENABLED) { 2621 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2622 rc = ata_dev_configure(dev); 2623 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2624 if (rc) 2625 goto fail; 2626 } 2627 2628 /* configure transfer mode */ 2629 rc = ata_set_mode(&ap->link, &dev); 2630 if (rc) 2631 goto fail; 2632 2633 ata_for_each_dev(dev, &ap->link, ENABLED) 2634 return 0; 2635 2636 return -ENODEV; 2637 2638 fail: 2639 tries[dev->devno]--; 2640 2641 switch (rc) { 2642 case -EINVAL: 2643 /* eeek, something went very wrong, give up */ 2644 tries[dev->devno] = 0; 2645 break; 2646 2647 case -ENODEV: 2648 /* give it just one more chance */ 2649 tries[dev->devno] = min(tries[dev->devno], 1); 2650 case -EIO: 2651 if (tries[dev->devno] == 1) { 2652 /* This is the last chance, better to slow 2653 * down than lose it. 2654 */ 2655 sata_down_spd_limit(&ap->link, 0); 2656 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2657 } 2658 } 2659 2660 if (!tries[dev->devno]) 2661 ata_dev_disable(dev); 2662 2663 goto retry; 2664 } 2665 2666 /** 2667 * sata_print_link_status - Print SATA link status 2668 * @link: SATA link to printk link status about 2669 * 2670 * This function prints link speed and status of a SATA link. 2671 * 2672 * LOCKING: 2673 * None. 2674 */ 2675 static void sata_print_link_status(struct ata_link *link) 2676 { 2677 u32 sstatus, scontrol, tmp; 2678 2679 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2680 return; 2681 sata_scr_read(link, SCR_CONTROL, &scontrol); 2682 2683 if (ata_phys_link_online(link)) { 2684 tmp = (sstatus >> 4) & 0xf; 2685 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2686 sata_spd_string(tmp), sstatus, scontrol); 2687 } else { 2688 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2689 sstatus, scontrol); 2690 } 2691 } 2692 2693 /** 2694 * ata_dev_pair - return other device on cable 2695 * @adev: device 2696 * 2697 * Obtain the other device on the same cable, or if none is 2698 * present NULL is returned 2699 */ 2700 2701 struct ata_device *ata_dev_pair(struct ata_device *adev) 2702 { 2703 struct ata_link *link = adev->link; 2704 struct ata_device *pair = &link->device[1 - adev->devno]; 2705 if (!ata_dev_enabled(pair)) 2706 return NULL; 2707 return pair; 2708 } 2709 2710 /** 2711 * sata_down_spd_limit - adjust SATA spd limit downward 2712 * @link: Link to adjust SATA spd limit for 2713 * @spd_limit: Additional limit 2714 * 2715 * Adjust SATA spd limit of @link downward. Note that this 2716 * function only adjusts the limit. The change must be applied 2717 * using sata_set_spd(). 2718 * 2719 * If @spd_limit is non-zero, the speed is limited to equal to or 2720 * lower than @spd_limit if such speed is supported. If 2721 * @spd_limit is slower than any supported speed, only the lowest 2722 * supported speed is allowed. 2723 * 2724 * LOCKING: 2725 * Inherited from caller. 2726 * 2727 * RETURNS: 2728 * 0 on success, negative errno on failure 2729 */ 2730 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2731 { 2732 u32 sstatus, spd, mask; 2733 int rc, bit; 2734 2735 if (!sata_scr_valid(link)) 2736 return -EOPNOTSUPP; 2737 2738 /* If SCR can be read, use it to determine the current SPD. 2739 * If not, use cached value in link->sata_spd. 2740 */ 2741 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2742 if (rc == 0 && ata_sstatus_online(sstatus)) 2743 spd = (sstatus >> 4) & 0xf; 2744 else 2745 spd = link->sata_spd; 2746 2747 mask = link->sata_spd_limit; 2748 if (mask <= 1) 2749 return -EINVAL; 2750 2751 /* unconditionally mask off the highest bit */ 2752 bit = fls(mask) - 1; 2753 mask &= ~(1 << bit); 2754 2755 /* Mask off all speeds higher than or equal to the current 2756 * one. Force 1.5Gbps if current SPD is not available. 2757 */ 2758 if (spd > 1) 2759 mask &= (1 << (spd - 1)) - 1; 2760 else 2761 mask &= 1; 2762 2763 /* were we already at the bottom? */ 2764 if (!mask) 2765 return -EINVAL; 2766 2767 if (spd_limit) { 2768 if (mask & ((1 << spd_limit) - 1)) 2769 mask &= (1 << spd_limit) - 1; 2770 else { 2771 bit = ffs(mask) - 1; 2772 mask = 1 << bit; 2773 } 2774 } 2775 2776 link->sata_spd_limit = mask; 2777 2778 ata_link_warn(link, "limiting SATA link speed to %s\n", 2779 sata_spd_string(fls(mask))); 2780 2781 return 0; 2782 } 2783 2784 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2785 { 2786 struct ata_link *host_link = &link->ap->link; 2787 u32 limit, target, spd; 2788 2789 limit = link->sata_spd_limit; 2790 2791 /* Don't configure downstream link faster than upstream link. 2792 * It doesn't speed up anything and some PMPs choke on such 2793 * configuration. 2794 */ 2795 if (!ata_is_host_link(link) && host_link->sata_spd) 2796 limit &= (1 << host_link->sata_spd) - 1; 2797 2798 if (limit == UINT_MAX) 2799 target = 0; 2800 else 2801 target = fls(limit); 2802 2803 spd = (*scontrol >> 4) & 0xf; 2804 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2805 2806 return spd != target; 2807 } 2808 2809 /** 2810 * sata_set_spd_needed - is SATA spd configuration needed 2811 * @link: Link in question 2812 * 2813 * Test whether the spd limit in SControl matches 2814 * @link->sata_spd_limit. This function is used to determine 2815 * whether hardreset is necessary to apply SATA spd 2816 * configuration. 2817 * 2818 * LOCKING: 2819 * Inherited from caller. 2820 * 2821 * RETURNS: 2822 * 1 if SATA spd configuration is needed, 0 otherwise. 2823 */ 2824 static int sata_set_spd_needed(struct ata_link *link) 2825 { 2826 u32 scontrol; 2827 2828 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2829 return 1; 2830 2831 return __sata_set_spd_needed(link, &scontrol); 2832 } 2833 2834 /** 2835 * sata_set_spd - set SATA spd according to spd limit 2836 * @link: Link to set SATA spd for 2837 * 2838 * Set SATA spd of @link according to sata_spd_limit. 2839 * 2840 * LOCKING: 2841 * Inherited from caller. 2842 * 2843 * RETURNS: 2844 * 0 if spd doesn't need to be changed, 1 if spd has been 2845 * changed. Negative errno if SCR registers are inaccessible. 2846 */ 2847 int sata_set_spd(struct ata_link *link) 2848 { 2849 u32 scontrol; 2850 int rc; 2851 2852 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2853 return rc; 2854 2855 if (!__sata_set_spd_needed(link, &scontrol)) 2856 return 0; 2857 2858 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2859 return rc; 2860 2861 return 1; 2862 } 2863 2864 /* 2865 * This mode timing computation functionality is ported over from 2866 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2867 */ 2868 /* 2869 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2870 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2871 * for UDMA6, which is currently supported only by Maxtor drives. 2872 * 2873 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2874 */ 2875 2876 static const struct ata_timing ata_timing[] = { 2877 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2878 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2879 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2881 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2882 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2883 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2884 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2885 2886 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2887 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2888 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2889 2890 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2891 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2892 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2893 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2894 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2895 2896 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2897 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2898 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2899 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2900 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2901 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2902 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2903 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2904 2905 { 0xFF } 2906 }; 2907 2908 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2909 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2910 2911 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2912 { 2913 q->setup = EZ(t->setup * 1000, T); 2914 q->act8b = EZ(t->act8b * 1000, T); 2915 q->rec8b = EZ(t->rec8b * 1000, T); 2916 q->cyc8b = EZ(t->cyc8b * 1000, T); 2917 q->active = EZ(t->active * 1000, T); 2918 q->recover = EZ(t->recover * 1000, T); 2919 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2920 q->cycle = EZ(t->cycle * 1000, T); 2921 q->udma = EZ(t->udma * 1000, UT); 2922 } 2923 2924 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2925 struct ata_timing *m, unsigned int what) 2926 { 2927 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2928 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2929 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2930 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2931 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2932 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2933 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2934 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2935 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2936 } 2937 2938 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2939 { 2940 const struct ata_timing *t = ata_timing; 2941 2942 while (xfer_mode > t->mode) 2943 t++; 2944 2945 if (xfer_mode == t->mode) 2946 return t; 2947 2948 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2949 __func__, xfer_mode); 2950 2951 return NULL; 2952 } 2953 2954 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2955 struct ata_timing *t, int T, int UT) 2956 { 2957 const u16 *id = adev->id; 2958 const struct ata_timing *s; 2959 struct ata_timing p; 2960 2961 /* 2962 * Find the mode. 2963 */ 2964 2965 if (!(s = ata_timing_find_mode(speed))) 2966 return -EINVAL; 2967 2968 memcpy(t, s, sizeof(*s)); 2969 2970 /* 2971 * If the drive is an EIDE drive, it can tell us it needs extended 2972 * PIO/MW_DMA cycle timing. 2973 */ 2974 2975 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2976 memset(&p, 0, sizeof(p)); 2977 2978 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2979 if (speed <= XFER_PIO_2) 2980 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2981 else if ((speed <= XFER_PIO_4) || 2982 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2983 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2984 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2985 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2986 2987 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2988 } 2989 2990 /* 2991 * Convert the timing to bus clock counts. 2992 */ 2993 2994 ata_timing_quantize(t, t, T, UT); 2995 2996 /* 2997 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2998 * S.M.A.R.T * and some other commands. We have to ensure that the 2999 * DMA cycle timing is slower/equal than the fastest PIO timing. 3000 */ 3001 3002 if (speed > XFER_PIO_6) { 3003 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3004 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3005 } 3006 3007 /* 3008 * Lengthen active & recovery time so that cycle time is correct. 3009 */ 3010 3011 if (t->act8b + t->rec8b < t->cyc8b) { 3012 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3013 t->rec8b = t->cyc8b - t->act8b; 3014 } 3015 3016 if (t->active + t->recover < t->cycle) { 3017 t->active += (t->cycle - (t->active + t->recover)) / 2; 3018 t->recover = t->cycle - t->active; 3019 } 3020 3021 /* In a few cases quantisation may produce enough errors to 3022 leave t->cycle too low for the sum of active and recovery 3023 if so we must correct this */ 3024 if (t->active + t->recover > t->cycle) 3025 t->cycle = t->active + t->recover; 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3032 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3033 * @cycle: cycle duration in ns 3034 * 3035 * Return matching xfer mode for @cycle. The returned mode is of 3036 * the transfer type specified by @xfer_shift. If @cycle is too 3037 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3038 * than the fastest known mode, the fasted mode is returned. 3039 * 3040 * LOCKING: 3041 * None. 3042 * 3043 * RETURNS: 3044 * Matching xfer_mode, 0xff if no match found. 3045 */ 3046 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3047 { 3048 u8 base_mode = 0xff, last_mode = 0xff; 3049 const struct ata_xfer_ent *ent; 3050 const struct ata_timing *t; 3051 3052 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3053 if (ent->shift == xfer_shift) 3054 base_mode = ent->base; 3055 3056 for (t = ata_timing_find_mode(base_mode); 3057 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3058 unsigned short this_cycle; 3059 3060 switch (xfer_shift) { 3061 case ATA_SHIFT_PIO: 3062 case ATA_SHIFT_MWDMA: 3063 this_cycle = t->cycle; 3064 break; 3065 case ATA_SHIFT_UDMA: 3066 this_cycle = t->udma; 3067 break; 3068 default: 3069 return 0xff; 3070 } 3071 3072 if (cycle > this_cycle) 3073 break; 3074 3075 last_mode = t->mode; 3076 } 3077 3078 return last_mode; 3079 } 3080 3081 /** 3082 * ata_down_xfermask_limit - adjust dev xfer masks downward 3083 * @dev: Device to adjust xfer masks 3084 * @sel: ATA_DNXFER_* selector 3085 * 3086 * Adjust xfer masks of @dev downward. Note that this function 3087 * does not apply the change. Invoking ata_set_mode() afterwards 3088 * will apply the limit. 3089 * 3090 * LOCKING: 3091 * Inherited from caller. 3092 * 3093 * RETURNS: 3094 * 0 on success, negative errno on failure 3095 */ 3096 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3097 { 3098 char buf[32]; 3099 unsigned long orig_mask, xfer_mask; 3100 unsigned long pio_mask, mwdma_mask, udma_mask; 3101 int quiet, highbit; 3102 3103 quiet = !!(sel & ATA_DNXFER_QUIET); 3104 sel &= ~ATA_DNXFER_QUIET; 3105 3106 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3107 dev->mwdma_mask, 3108 dev->udma_mask); 3109 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3110 3111 switch (sel) { 3112 case ATA_DNXFER_PIO: 3113 highbit = fls(pio_mask) - 1; 3114 pio_mask &= ~(1 << highbit); 3115 break; 3116 3117 case ATA_DNXFER_DMA: 3118 if (udma_mask) { 3119 highbit = fls(udma_mask) - 1; 3120 udma_mask &= ~(1 << highbit); 3121 if (!udma_mask) 3122 return -ENOENT; 3123 } else if (mwdma_mask) { 3124 highbit = fls(mwdma_mask) - 1; 3125 mwdma_mask &= ~(1 << highbit); 3126 if (!mwdma_mask) 3127 return -ENOENT; 3128 } 3129 break; 3130 3131 case ATA_DNXFER_40C: 3132 udma_mask &= ATA_UDMA_MASK_40C; 3133 break; 3134 3135 case ATA_DNXFER_FORCE_PIO0: 3136 pio_mask &= 1; 3137 case ATA_DNXFER_FORCE_PIO: 3138 mwdma_mask = 0; 3139 udma_mask = 0; 3140 break; 3141 3142 default: 3143 BUG(); 3144 } 3145 3146 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3147 3148 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3149 return -ENOENT; 3150 3151 if (!quiet) { 3152 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3153 snprintf(buf, sizeof(buf), "%s:%s", 3154 ata_mode_string(xfer_mask), 3155 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3156 else 3157 snprintf(buf, sizeof(buf), "%s", 3158 ata_mode_string(xfer_mask)); 3159 3160 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3161 } 3162 3163 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3164 &dev->udma_mask); 3165 3166 return 0; 3167 } 3168 3169 static int ata_dev_set_mode(struct ata_device *dev) 3170 { 3171 struct ata_port *ap = dev->link->ap; 3172 struct ata_eh_context *ehc = &dev->link->eh_context; 3173 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3174 const char *dev_err_whine = ""; 3175 int ign_dev_err = 0; 3176 unsigned int err_mask = 0; 3177 int rc; 3178 3179 dev->flags &= ~ATA_DFLAG_PIO; 3180 if (dev->xfer_shift == ATA_SHIFT_PIO) 3181 dev->flags |= ATA_DFLAG_PIO; 3182 3183 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3184 dev_err_whine = " (SET_XFERMODE skipped)"; 3185 else { 3186 if (nosetxfer) 3187 ata_dev_warn(dev, 3188 "NOSETXFER but PATA detected - can't " 3189 "skip SETXFER, might malfunction\n"); 3190 err_mask = ata_dev_set_xfermode(dev); 3191 } 3192 3193 if (err_mask & ~AC_ERR_DEV) 3194 goto fail; 3195 3196 /* revalidate */ 3197 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3198 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3199 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3200 if (rc) 3201 return rc; 3202 3203 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3204 /* Old CFA may refuse this command, which is just fine */ 3205 if (ata_id_is_cfa(dev->id)) 3206 ign_dev_err = 1; 3207 /* Catch several broken garbage emulations plus some pre 3208 ATA devices */ 3209 if (ata_id_major_version(dev->id) == 0 && 3210 dev->pio_mode <= XFER_PIO_2) 3211 ign_dev_err = 1; 3212 /* Some very old devices and some bad newer ones fail 3213 any kind of SET_XFERMODE request but support PIO0-2 3214 timings and no IORDY */ 3215 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3216 ign_dev_err = 1; 3217 } 3218 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3219 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3220 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3221 dev->dma_mode == XFER_MW_DMA_0 && 3222 (dev->id[63] >> 8) & 1) 3223 ign_dev_err = 1; 3224 3225 /* if the device is actually configured correctly, ignore dev err */ 3226 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3227 ign_dev_err = 1; 3228 3229 if (err_mask & AC_ERR_DEV) { 3230 if (!ign_dev_err) 3231 goto fail; 3232 else 3233 dev_err_whine = " (device error ignored)"; 3234 } 3235 3236 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3237 dev->xfer_shift, (int)dev->xfer_mode); 3238 3239 ata_dev_info(dev, "configured for %s%s\n", 3240 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3241 dev_err_whine); 3242 3243 return 0; 3244 3245 fail: 3246 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3247 return -EIO; 3248 } 3249 3250 /** 3251 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3252 * @link: link on which timings will be programmed 3253 * @r_failed_dev: out parameter for failed device 3254 * 3255 * Standard implementation of the function used to tune and set 3256 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3257 * ata_dev_set_mode() fails, pointer to the failing device is 3258 * returned in @r_failed_dev. 3259 * 3260 * LOCKING: 3261 * PCI/etc. bus probe sem. 3262 * 3263 * RETURNS: 3264 * 0 on success, negative errno otherwise 3265 */ 3266 3267 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3268 { 3269 struct ata_port *ap = link->ap; 3270 struct ata_device *dev; 3271 int rc = 0, used_dma = 0, found = 0; 3272 3273 /* step 1: calculate xfer_mask */ 3274 ata_for_each_dev(dev, link, ENABLED) { 3275 unsigned long pio_mask, dma_mask; 3276 unsigned int mode_mask; 3277 3278 mode_mask = ATA_DMA_MASK_ATA; 3279 if (dev->class == ATA_DEV_ATAPI) 3280 mode_mask = ATA_DMA_MASK_ATAPI; 3281 else if (ata_id_is_cfa(dev->id)) 3282 mode_mask = ATA_DMA_MASK_CFA; 3283 3284 ata_dev_xfermask(dev); 3285 ata_force_xfermask(dev); 3286 3287 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3288 3289 if (libata_dma_mask & mode_mask) 3290 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3291 dev->udma_mask); 3292 else 3293 dma_mask = 0; 3294 3295 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3296 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3297 3298 found = 1; 3299 if (ata_dma_enabled(dev)) 3300 used_dma = 1; 3301 } 3302 if (!found) 3303 goto out; 3304 3305 /* step 2: always set host PIO timings */ 3306 ata_for_each_dev(dev, link, ENABLED) { 3307 if (dev->pio_mode == 0xff) { 3308 ata_dev_warn(dev, "no PIO support\n"); 3309 rc = -EINVAL; 3310 goto out; 3311 } 3312 3313 dev->xfer_mode = dev->pio_mode; 3314 dev->xfer_shift = ATA_SHIFT_PIO; 3315 if (ap->ops->set_piomode) 3316 ap->ops->set_piomode(ap, dev); 3317 } 3318 3319 /* step 3: set host DMA timings */ 3320 ata_for_each_dev(dev, link, ENABLED) { 3321 if (!ata_dma_enabled(dev)) 3322 continue; 3323 3324 dev->xfer_mode = dev->dma_mode; 3325 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3326 if (ap->ops->set_dmamode) 3327 ap->ops->set_dmamode(ap, dev); 3328 } 3329 3330 /* step 4: update devices' xfer mode */ 3331 ata_for_each_dev(dev, link, ENABLED) { 3332 rc = ata_dev_set_mode(dev); 3333 if (rc) 3334 goto out; 3335 } 3336 3337 /* Record simplex status. If we selected DMA then the other 3338 * host channels are not permitted to do so. 3339 */ 3340 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3341 ap->host->simplex_claimed = ap; 3342 3343 out: 3344 if (rc) 3345 *r_failed_dev = dev; 3346 return rc; 3347 } 3348 3349 /** 3350 * ata_wait_ready - wait for link to become ready 3351 * @link: link to be waited on 3352 * @deadline: deadline jiffies for the operation 3353 * @check_ready: callback to check link readiness 3354 * 3355 * Wait for @link to become ready. @check_ready should return 3356 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3357 * link doesn't seem to be occupied, other errno for other error 3358 * conditions. 3359 * 3360 * Transient -ENODEV conditions are allowed for 3361 * ATA_TMOUT_FF_WAIT. 3362 * 3363 * LOCKING: 3364 * EH context. 3365 * 3366 * RETURNS: 3367 * 0 if @linke is ready before @deadline; otherwise, -errno. 3368 */ 3369 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3370 int (*check_ready)(struct ata_link *link)) 3371 { 3372 unsigned long start = jiffies; 3373 unsigned long nodev_deadline; 3374 int warned = 0; 3375 3376 /* choose which 0xff timeout to use, read comment in libata.h */ 3377 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3378 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3379 else 3380 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3381 3382 /* Slave readiness can't be tested separately from master. On 3383 * M/S emulation configuration, this function should be called 3384 * only on the master and it will handle both master and slave. 3385 */ 3386 WARN_ON(link == link->ap->slave_link); 3387 3388 if (time_after(nodev_deadline, deadline)) 3389 nodev_deadline = deadline; 3390 3391 while (1) { 3392 unsigned long now = jiffies; 3393 int ready, tmp; 3394 3395 ready = tmp = check_ready(link); 3396 if (ready > 0) 3397 return 0; 3398 3399 /* 3400 * -ENODEV could be transient. Ignore -ENODEV if link 3401 * is online. Also, some SATA devices take a long 3402 * time to clear 0xff after reset. Wait for 3403 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3404 * offline. 3405 * 3406 * Note that some PATA controllers (pata_ali) explode 3407 * if status register is read more than once when 3408 * there's no device attached. 3409 */ 3410 if (ready == -ENODEV) { 3411 if (ata_link_online(link)) 3412 ready = 0; 3413 else if ((link->ap->flags & ATA_FLAG_SATA) && 3414 !ata_link_offline(link) && 3415 time_before(now, nodev_deadline)) 3416 ready = 0; 3417 } 3418 3419 if (ready) 3420 return ready; 3421 if (time_after(now, deadline)) 3422 return -EBUSY; 3423 3424 if (!warned && time_after(now, start + 5 * HZ) && 3425 (deadline - now > 3 * HZ)) { 3426 ata_link_warn(link, 3427 "link is slow to respond, please be patient " 3428 "(ready=%d)\n", tmp); 3429 warned = 1; 3430 } 3431 3432 ata_msleep(link->ap, 50); 3433 } 3434 } 3435 3436 /** 3437 * ata_wait_after_reset - wait for link to become ready after reset 3438 * @link: link to be waited on 3439 * @deadline: deadline jiffies for the operation 3440 * @check_ready: callback to check link readiness 3441 * 3442 * Wait for @link to become ready after reset. 3443 * 3444 * LOCKING: 3445 * EH context. 3446 * 3447 * RETURNS: 3448 * 0 if @linke is ready before @deadline; otherwise, -errno. 3449 */ 3450 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3451 int (*check_ready)(struct ata_link *link)) 3452 { 3453 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3454 3455 return ata_wait_ready(link, deadline, check_ready); 3456 } 3457 3458 /** 3459 * sata_link_debounce - debounce SATA phy status 3460 * @link: ATA link to debounce SATA phy status for 3461 * @params: timing parameters { interval, duratinon, timeout } in msec 3462 * @deadline: deadline jiffies for the operation 3463 * 3464 * Make sure SStatus of @link reaches stable state, determined by 3465 * holding the same value where DET is not 1 for @duration polled 3466 * every @interval, before @timeout. Timeout constraints the 3467 * beginning of the stable state. Because DET gets stuck at 1 on 3468 * some controllers after hot unplugging, this functions waits 3469 * until timeout then returns 0 if DET is stable at 1. 3470 * 3471 * @timeout is further limited by @deadline. The sooner of the 3472 * two is used. 3473 * 3474 * LOCKING: 3475 * Kernel thread context (may sleep) 3476 * 3477 * RETURNS: 3478 * 0 on success, -errno on failure. 3479 */ 3480 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3481 unsigned long deadline) 3482 { 3483 unsigned long interval = params[0]; 3484 unsigned long duration = params[1]; 3485 unsigned long last_jiffies, t; 3486 u32 last, cur; 3487 int rc; 3488 3489 t = ata_deadline(jiffies, params[2]); 3490 if (time_before(t, deadline)) 3491 deadline = t; 3492 3493 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3494 return rc; 3495 cur &= 0xf; 3496 3497 last = cur; 3498 last_jiffies = jiffies; 3499 3500 while (1) { 3501 ata_msleep(link->ap, interval); 3502 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3503 return rc; 3504 cur &= 0xf; 3505 3506 /* DET stable? */ 3507 if (cur == last) { 3508 if (cur == 1 && time_before(jiffies, deadline)) 3509 continue; 3510 if (time_after(jiffies, 3511 ata_deadline(last_jiffies, duration))) 3512 return 0; 3513 continue; 3514 } 3515 3516 /* unstable, start over */ 3517 last = cur; 3518 last_jiffies = jiffies; 3519 3520 /* Check deadline. If debouncing failed, return 3521 * -EPIPE to tell upper layer to lower link speed. 3522 */ 3523 if (time_after(jiffies, deadline)) 3524 return -EPIPE; 3525 } 3526 } 3527 3528 /** 3529 * sata_link_resume - resume SATA link 3530 * @link: ATA link to resume SATA 3531 * @params: timing parameters { interval, duratinon, timeout } in msec 3532 * @deadline: deadline jiffies for the operation 3533 * 3534 * Resume SATA phy @link and debounce it. 3535 * 3536 * LOCKING: 3537 * Kernel thread context (may sleep) 3538 * 3539 * RETURNS: 3540 * 0 on success, -errno on failure. 3541 */ 3542 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3543 unsigned long deadline) 3544 { 3545 int tries = ATA_LINK_RESUME_TRIES; 3546 u32 scontrol, serror; 3547 int rc; 3548 3549 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3550 return rc; 3551 3552 /* 3553 * Writes to SControl sometimes get ignored under certain 3554 * controllers (ata_piix SIDPR). Make sure DET actually is 3555 * cleared. 3556 */ 3557 do { 3558 scontrol = (scontrol & 0x0f0) | 0x300; 3559 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3560 return rc; 3561 /* 3562 * Some PHYs react badly if SStatus is pounded 3563 * immediately after resuming. Delay 200ms before 3564 * debouncing. 3565 */ 3566 ata_msleep(link->ap, 200); 3567 3568 /* is SControl restored correctly? */ 3569 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3570 return rc; 3571 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3572 3573 if ((scontrol & 0xf0f) != 0x300) { 3574 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3575 scontrol); 3576 return 0; 3577 } 3578 3579 if (tries < ATA_LINK_RESUME_TRIES) 3580 ata_link_warn(link, "link resume succeeded after %d retries\n", 3581 ATA_LINK_RESUME_TRIES - tries); 3582 3583 if ((rc = sata_link_debounce(link, params, deadline))) 3584 return rc; 3585 3586 /* clear SError, some PHYs require this even for SRST to work */ 3587 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3588 rc = sata_scr_write(link, SCR_ERROR, serror); 3589 3590 return rc != -EINVAL ? rc : 0; 3591 } 3592 3593 /** 3594 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3595 * @link: ATA link to manipulate SControl for 3596 * @policy: LPM policy to configure 3597 * @spm_wakeup: initiate LPM transition to active state 3598 * 3599 * Manipulate the IPM field of the SControl register of @link 3600 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3601 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3602 * the link. This function also clears PHYRDY_CHG before 3603 * returning. 3604 * 3605 * LOCKING: 3606 * EH context. 3607 * 3608 * RETURNS: 3609 * 0 on succes, -errno otherwise. 3610 */ 3611 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3612 bool spm_wakeup) 3613 { 3614 struct ata_eh_context *ehc = &link->eh_context; 3615 bool woken_up = false; 3616 u32 scontrol; 3617 int rc; 3618 3619 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3620 if (rc) 3621 return rc; 3622 3623 switch (policy) { 3624 case ATA_LPM_MAX_POWER: 3625 /* disable all LPM transitions */ 3626 scontrol |= (0x7 << 8); 3627 /* initiate transition to active state */ 3628 if (spm_wakeup) { 3629 scontrol |= (0x4 << 12); 3630 woken_up = true; 3631 } 3632 break; 3633 case ATA_LPM_MED_POWER: 3634 /* allow LPM to PARTIAL */ 3635 scontrol &= ~(0x1 << 8); 3636 scontrol |= (0x6 << 8); 3637 break; 3638 case ATA_LPM_MIN_POWER: 3639 if (ata_link_nr_enabled(link) > 0) 3640 /* no restrictions on LPM transitions */ 3641 scontrol &= ~(0x7 << 8); 3642 else { 3643 /* empty port, power off */ 3644 scontrol &= ~0xf; 3645 scontrol |= (0x1 << 2); 3646 } 3647 break; 3648 default: 3649 WARN_ON(1); 3650 } 3651 3652 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3653 if (rc) 3654 return rc; 3655 3656 /* give the link time to transit out of LPM state */ 3657 if (woken_up) 3658 msleep(10); 3659 3660 /* clear PHYRDY_CHG from SError */ 3661 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3662 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3663 } 3664 3665 /** 3666 * ata_std_prereset - prepare for reset 3667 * @link: ATA link to be reset 3668 * @deadline: deadline jiffies for the operation 3669 * 3670 * @link is about to be reset. Initialize it. Failure from 3671 * prereset makes libata abort whole reset sequence and give up 3672 * that port, so prereset should be best-effort. It does its 3673 * best to prepare for reset sequence but if things go wrong, it 3674 * should just whine, not fail. 3675 * 3676 * LOCKING: 3677 * Kernel thread context (may sleep) 3678 * 3679 * RETURNS: 3680 * 0 on success, -errno otherwise. 3681 */ 3682 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3683 { 3684 struct ata_port *ap = link->ap; 3685 struct ata_eh_context *ehc = &link->eh_context; 3686 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3687 int rc; 3688 3689 /* if we're about to do hardreset, nothing more to do */ 3690 if (ehc->i.action & ATA_EH_HARDRESET) 3691 return 0; 3692 3693 /* if SATA, resume link */ 3694 if (ap->flags & ATA_FLAG_SATA) { 3695 rc = sata_link_resume(link, timing, deadline); 3696 /* whine about phy resume failure but proceed */ 3697 if (rc && rc != -EOPNOTSUPP) 3698 ata_link_warn(link, 3699 "failed to resume link for reset (errno=%d)\n", 3700 rc); 3701 } 3702 3703 /* no point in trying softreset on offline link */ 3704 if (ata_phys_link_offline(link)) 3705 ehc->i.action &= ~ATA_EH_SOFTRESET; 3706 3707 return 0; 3708 } 3709 3710 /** 3711 * sata_link_hardreset - reset link via SATA phy reset 3712 * @link: link to reset 3713 * @timing: timing parameters { interval, duratinon, timeout } in msec 3714 * @deadline: deadline jiffies for the operation 3715 * @online: optional out parameter indicating link onlineness 3716 * @check_ready: optional callback to check link readiness 3717 * 3718 * SATA phy-reset @link using DET bits of SControl register. 3719 * After hardreset, link readiness is waited upon using 3720 * ata_wait_ready() if @check_ready is specified. LLDs are 3721 * allowed to not specify @check_ready and wait itself after this 3722 * function returns. Device classification is LLD's 3723 * responsibility. 3724 * 3725 * *@online is set to one iff reset succeeded and @link is online 3726 * after reset. 3727 * 3728 * LOCKING: 3729 * Kernel thread context (may sleep) 3730 * 3731 * RETURNS: 3732 * 0 on success, -errno otherwise. 3733 */ 3734 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3735 unsigned long deadline, 3736 bool *online, int (*check_ready)(struct ata_link *)) 3737 { 3738 u32 scontrol; 3739 int rc; 3740 3741 DPRINTK("ENTER\n"); 3742 3743 if (online) 3744 *online = false; 3745 3746 if (sata_set_spd_needed(link)) { 3747 /* SATA spec says nothing about how to reconfigure 3748 * spd. To be on the safe side, turn off phy during 3749 * reconfiguration. This works for at least ICH7 AHCI 3750 * and Sil3124. 3751 */ 3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3753 goto out; 3754 3755 scontrol = (scontrol & 0x0f0) | 0x304; 3756 3757 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3758 goto out; 3759 3760 sata_set_spd(link); 3761 } 3762 3763 /* issue phy wake/reset */ 3764 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3765 goto out; 3766 3767 scontrol = (scontrol & 0x0f0) | 0x301; 3768 3769 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3770 goto out; 3771 3772 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3773 * 10.4.2 says at least 1 ms. 3774 */ 3775 ata_msleep(link->ap, 1); 3776 3777 /* bring link back */ 3778 rc = sata_link_resume(link, timing, deadline); 3779 if (rc) 3780 goto out; 3781 /* if link is offline nothing more to do */ 3782 if (ata_phys_link_offline(link)) 3783 goto out; 3784 3785 /* Link is online. From this point, -ENODEV too is an error. */ 3786 if (online) 3787 *online = true; 3788 3789 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3790 /* If PMP is supported, we have to do follow-up SRST. 3791 * Some PMPs don't send D2H Reg FIS after hardreset if 3792 * the first port is empty. Wait only for 3793 * ATA_TMOUT_PMP_SRST_WAIT. 3794 */ 3795 if (check_ready) { 3796 unsigned long pmp_deadline; 3797 3798 pmp_deadline = ata_deadline(jiffies, 3799 ATA_TMOUT_PMP_SRST_WAIT); 3800 if (time_after(pmp_deadline, deadline)) 3801 pmp_deadline = deadline; 3802 ata_wait_ready(link, pmp_deadline, check_ready); 3803 } 3804 rc = -EAGAIN; 3805 goto out; 3806 } 3807 3808 rc = 0; 3809 if (check_ready) 3810 rc = ata_wait_ready(link, deadline, check_ready); 3811 out: 3812 if (rc && rc != -EAGAIN) { 3813 /* online is set iff link is online && reset succeeded */ 3814 if (online) 3815 *online = false; 3816 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3817 } 3818 DPRINTK("EXIT, rc=%d\n", rc); 3819 return rc; 3820 } 3821 3822 /** 3823 * sata_std_hardreset - COMRESET w/o waiting or classification 3824 * @link: link to reset 3825 * @class: resulting class of attached device 3826 * @deadline: deadline jiffies for the operation 3827 * 3828 * Standard SATA COMRESET w/o waiting or classification. 3829 * 3830 * LOCKING: 3831 * Kernel thread context (may sleep) 3832 * 3833 * RETURNS: 3834 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3835 */ 3836 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3837 unsigned long deadline) 3838 { 3839 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3840 bool online; 3841 int rc; 3842 3843 /* do hardreset */ 3844 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3845 return online ? -EAGAIN : rc; 3846 } 3847 3848 /** 3849 * ata_std_postreset - standard postreset callback 3850 * @link: the target ata_link 3851 * @classes: classes of attached devices 3852 * 3853 * This function is invoked after a successful reset. Note that 3854 * the device might have been reset more than once using 3855 * different reset methods before postreset is invoked. 3856 * 3857 * LOCKING: 3858 * Kernel thread context (may sleep) 3859 */ 3860 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3861 { 3862 u32 serror; 3863 3864 DPRINTK("ENTER\n"); 3865 3866 /* reset complete, clear SError */ 3867 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3868 sata_scr_write(link, SCR_ERROR, serror); 3869 3870 /* print link status */ 3871 sata_print_link_status(link); 3872 3873 DPRINTK("EXIT\n"); 3874 } 3875 3876 /** 3877 * ata_dev_same_device - Determine whether new ID matches configured device 3878 * @dev: device to compare against 3879 * @new_class: class of the new device 3880 * @new_id: IDENTIFY page of the new device 3881 * 3882 * Compare @new_class and @new_id against @dev and determine 3883 * whether @dev is the device indicated by @new_class and 3884 * @new_id. 3885 * 3886 * LOCKING: 3887 * None. 3888 * 3889 * RETURNS: 3890 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3891 */ 3892 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3893 const u16 *new_id) 3894 { 3895 const u16 *old_id = dev->id; 3896 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3897 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3898 3899 if (dev->class != new_class) { 3900 ata_dev_info(dev, "class mismatch %d != %d\n", 3901 dev->class, new_class); 3902 return 0; 3903 } 3904 3905 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3906 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3907 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3908 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3909 3910 if (strcmp(model[0], model[1])) { 3911 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3912 model[0], model[1]); 3913 return 0; 3914 } 3915 3916 if (strcmp(serial[0], serial[1])) { 3917 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3918 serial[0], serial[1]); 3919 return 0; 3920 } 3921 3922 return 1; 3923 } 3924 3925 /** 3926 * ata_dev_reread_id - Re-read IDENTIFY data 3927 * @dev: target ATA device 3928 * @readid_flags: read ID flags 3929 * 3930 * Re-read IDENTIFY page and make sure @dev is still attached to 3931 * the port. 3932 * 3933 * LOCKING: 3934 * Kernel thread context (may sleep) 3935 * 3936 * RETURNS: 3937 * 0 on success, negative errno otherwise 3938 */ 3939 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3940 { 3941 unsigned int class = dev->class; 3942 u16 *id = (void *)dev->link->ap->sector_buf; 3943 int rc; 3944 3945 /* read ID data */ 3946 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3947 if (rc) 3948 return rc; 3949 3950 /* is the device still there? */ 3951 if (!ata_dev_same_device(dev, class, id)) 3952 return -ENODEV; 3953 3954 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3955 return 0; 3956 } 3957 3958 /** 3959 * ata_dev_revalidate - Revalidate ATA device 3960 * @dev: device to revalidate 3961 * @new_class: new class code 3962 * @readid_flags: read ID flags 3963 * 3964 * Re-read IDENTIFY page, make sure @dev is still attached to the 3965 * port and reconfigure it according to the new IDENTIFY page. 3966 * 3967 * LOCKING: 3968 * Kernel thread context (may sleep) 3969 * 3970 * RETURNS: 3971 * 0 on success, negative errno otherwise 3972 */ 3973 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3974 unsigned int readid_flags) 3975 { 3976 u64 n_sectors = dev->n_sectors; 3977 u64 n_native_sectors = dev->n_native_sectors; 3978 int rc; 3979 3980 if (!ata_dev_enabled(dev)) 3981 return -ENODEV; 3982 3983 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3984 if (ata_class_enabled(new_class) && 3985 new_class != ATA_DEV_ATA && 3986 new_class != ATA_DEV_ATAPI && 3987 new_class != ATA_DEV_SEMB) { 3988 ata_dev_info(dev, "class mismatch %u != %u\n", 3989 dev->class, new_class); 3990 rc = -ENODEV; 3991 goto fail; 3992 } 3993 3994 /* re-read ID */ 3995 rc = ata_dev_reread_id(dev, readid_flags); 3996 if (rc) 3997 goto fail; 3998 3999 /* configure device according to the new ID */ 4000 rc = ata_dev_configure(dev); 4001 if (rc) 4002 goto fail; 4003 4004 /* verify n_sectors hasn't changed */ 4005 if (dev->class != ATA_DEV_ATA || !n_sectors || 4006 dev->n_sectors == n_sectors) 4007 return 0; 4008 4009 /* n_sectors has changed */ 4010 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4011 (unsigned long long)n_sectors, 4012 (unsigned long long)dev->n_sectors); 4013 4014 /* 4015 * Something could have caused HPA to be unlocked 4016 * involuntarily. If n_native_sectors hasn't changed and the 4017 * new size matches it, keep the device. 4018 */ 4019 if (dev->n_native_sectors == n_native_sectors && 4020 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4021 ata_dev_warn(dev, 4022 "new n_sectors matches native, probably " 4023 "late HPA unlock, n_sectors updated\n"); 4024 /* use the larger n_sectors */ 4025 return 0; 4026 } 4027 4028 /* 4029 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4030 * unlocking HPA in those cases. 4031 * 4032 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4033 */ 4034 if (dev->n_native_sectors == n_native_sectors && 4035 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4036 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4037 ata_dev_warn(dev, 4038 "old n_sectors matches native, probably " 4039 "late HPA lock, will try to unlock HPA\n"); 4040 /* try unlocking HPA */ 4041 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4042 rc = -EIO; 4043 } else 4044 rc = -ENODEV; 4045 4046 /* restore original n_[native_]sectors and fail */ 4047 dev->n_native_sectors = n_native_sectors; 4048 dev->n_sectors = n_sectors; 4049 fail: 4050 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4051 return rc; 4052 } 4053 4054 struct ata_blacklist_entry { 4055 const char *model_num; 4056 const char *model_rev; 4057 unsigned long horkage; 4058 }; 4059 4060 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4061 /* Devices with DMA related problems under Linux */ 4062 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4063 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4064 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4065 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4066 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4067 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4068 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4069 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4070 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4071 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4077 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4078 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4079 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4080 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4081 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4082 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4083 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4084 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4085 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4086 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4087 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4088 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4089 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4090 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4091 /* Odd clown on sil3726/4726 PMPs */ 4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4093 4094 /* Weird ATAPI devices */ 4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4097 4098 /* Devices we expect to fail diagnostics */ 4099 4100 /* Devices where NCQ should be avoided */ 4101 /* NCQ is slow */ 4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4106 /* NCQ is broken */ 4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4112 4113 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4114 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4115 ATA_HORKAGE_FIRMWARE_WARN }, 4116 4117 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4118 ATA_HORKAGE_FIRMWARE_WARN }, 4119 4120 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4121 ATA_HORKAGE_FIRMWARE_WARN }, 4122 4123 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4124 ATA_HORKAGE_FIRMWARE_WARN }, 4125 4126 /* Blacklist entries taken from Silicon Image 3124/3132 4127 Windows driver .inf file - also several Linux problem reports */ 4128 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4129 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4130 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4131 4132 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4133 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4134 4135 /* devices which puke on READ_NATIVE_MAX */ 4136 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4137 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4138 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4139 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4140 4141 /* this one allows HPA unlocking but fails IOs on the area */ 4142 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4143 4144 /* Devices which report 1 sector over size HPA */ 4145 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4146 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4147 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4148 4149 /* Devices which get the IVB wrong */ 4150 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4151 /* Maybe we should just blacklist TSSTcorp... */ 4152 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4153 4154 /* Devices that do not need bridging limits applied */ 4155 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4156 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4157 4158 /* Devices which aren't very happy with higher link speeds */ 4159 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4160 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4161 4162 /* 4163 * Devices which choke on SETXFER. Applies only if both the 4164 * device and controller are SATA. 4165 */ 4166 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4167 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4168 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4169 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4170 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4171 4172 /* End Marker */ 4173 { } 4174 }; 4175 4176 /** 4177 * glob_match - match a text string against a glob-style pattern 4178 * @text: the string to be examined 4179 * @pattern: the glob-style pattern to be matched against 4180 * 4181 * Either/both of text and pattern can be empty strings. 4182 * 4183 * Match text against a glob-style pattern, with wildcards and simple sets: 4184 * 4185 * ? matches any single character. 4186 * * matches any run of characters. 4187 * [xyz] matches a single character from the set: x, y, or z. 4188 * [a-d] matches a single character from the range: a, b, c, or d. 4189 * [a-d0-9] matches a single character from either range. 4190 * 4191 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4192 * Behaviour with malformed patterns is undefined, though generally reasonable. 4193 * 4194 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4195 * 4196 * This function uses one level of recursion per '*' in pattern. 4197 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4198 * this will not cause stack problems for any reasonable use here. 4199 * 4200 * RETURNS: 4201 * 0 on match, 1 otherwise. 4202 */ 4203 static int glob_match (const char *text, const char *pattern) 4204 { 4205 do { 4206 /* Match single character or a '?' wildcard */ 4207 if (*text == *pattern || *pattern == '?') { 4208 if (!*pattern++) 4209 return 0; /* End of both strings: match */ 4210 } else { 4211 /* Match single char against a '[' bracketed ']' pattern set */ 4212 if (!*text || *pattern != '[') 4213 break; /* Not a pattern set */ 4214 while (*++pattern && *pattern != ']' && *text != *pattern) { 4215 if (*pattern == '-' && *(pattern - 1) != '[') 4216 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4217 ++pattern; 4218 break; 4219 } 4220 } 4221 if (!*pattern || *pattern == ']') 4222 return 1; /* No match */ 4223 while (*pattern && *pattern++ != ']'); 4224 } 4225 } while (*++text && *pattern); 4226 4227 /* Match any run of chars against a '*' wildcard */ 4228 if (*pattern == '*') { 4229 if (!*++pattern) 4230 return 0; /* Match: avoid recursion at end of pattern */ 4231 /* Loop to handle additional pattern chars after the wildcard */ 4232 while (*text) { 4233 if (glob_match(text, pattern) == 0) 4234 return 0; /* Remainder matched */ 4235 ++text; /* Absorb (match) this char and try again */ 4236 } 4237 } 4238 if (!*text && !*pattern) 4239 return 0; /* End of both strings: match */ 4240 return 1; /* No match */ 4241 } 4242 4243 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4244 { 4245 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4246 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4247 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4248 4249 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4250 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4251 4252 while (ad->model_num) { 4253 if (!glob_match(model_num, ad->model_num)) { 4254 if (ad->model_rev == NULL) 4255 return ad->horkage; 4256 if (!glob_match(model_rev, ad->model_rev)) 4257 return ad->horkage; 4258 } 4259 ad++; 4260 } 4261 return 0; 4262 } 4263 4264 static int ata_dma_blacklisted(const struct ata_device *dev) 4265 { 4266 /* We don't support polling DMA. 4267 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4268 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4269 */ 4270 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4271 (dev->flags & ATA_DFLAG_CDB_INTR)) 4272 return 1; 4273 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4274 } 4275 4276 /** 4277 * ata_is_40wire - check drive side detection 4278 * @dev: device 4279 * 4280 * Perform drive side detection decoding, allowing for device vendors 4281 * who can't follow the documentation. 4282 */ 4283 4284 static int ata_is_40wire(struct ata_device *dev) 4285 { 4286 if (dev->horkage & ATA_HORKAGE_IVB) 4287 return ata_drive_40wire_relaxed(dev->id); 4288 return ata_drive_40wire(dev->id); 4289 } 4290 4291 /** 4292 * cable_is_40wire - 40/80/SATA decider 4293 * @ap: port to consider 4294 * 4295 * This function encapsulates the policy for speed management 4296 * in one place. At the moment we don't cache the result but 4297 * there is a good case for setting ap->cbl to the result when 4298 * we are called with unknown cables (and figuring out if it 4299 * impacts hotplug at all). 4300 * 4301 * Return 1 if the cable appears to be 40 wire. 4302 */ 4303 4304 static int cable_is_40wire(struct ata_port *ap) 4305 { 4306 struct ata_link *link; 4307 struct ata_device *dev; 4308 4309 /* If the controller thinks we are 40 wire, we are. */ 4310 if (ap->cbl == ATA_CBL_PATA40) 4311 return 1; 4312 4313 /* If the controller thinks we are 80 wire, we are. */ 4314 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4315 return 0; 4316 4317 /* If the system is known to be 40 wire short cable (eg 4318 * laptop), then we allow 80 wire modes even if the drive 4319 * isn't sure. 4320 */ 4321 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4322 return 0; 4323 4324 /* If the controller doesn't know, we scan. 4325 * 4326 * Note: We look for all 40 wire detects at this point. Any 4327 * 80 wire detect is taken to be 80 wire cable because 4328 * - in many setups only the one drive (slave if present) will 4329 * give a valid detect 4330 * - if you have a non detect capable drive you don't want it 4331 * to colour the choice 4332 */ 4333 ata_for_each_link(link, ap, EDGE) { 4334 ata_for_each_dev(dev, link, ENABLED) { 4335 if (!ata_is_40wire(dev)) 4336 return 0; 4337 } 4338 } 4339 return 1; 4340 } 4341 4342 /** 4343 * ata_dev_xfermask - Compute supported xfermask of the given device 4344 * @dev: Device to compute xfermask for 4345 * 4346 * Compute supported xfermask of @dev and store it in 4347 * dev->*_mask. This function is responsible for applying all 4348 * known limits including host controller limits, device 4349 * blacklist, etc... 4350 * 4351 * LOCKING: 4352 * None. 4353 */ 4354 static void ata_dev_xfermask(struct ata_device *dev) 4355 { 4356 struct ata_link *link = dev->link; 4357 struct ata_port *ap = link->ap; 4358 struct ata_host *host = ap->host; 4359 unsigned long xfer_mask; 4360 4361 /* controller modes available */ 4362 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4363 ap->mwdma_mask, ap->udma_mask); 4364 4365 /* drive modes available */ 4366 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4367 dev->mwdma_mask, dev->udma_mask); 4368 xfer_mask &= ata_id_xfermask(dev->id); 4369 4370 /* 4371 * CFA Advanced TrueIDE timings are not allowed on a shared 4372 * cable 4373 */ 4374 if (ata_dev_pair(dev)) { 4375 /* No PIO5 or PIO6 */ 4376 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4377 /* No MWDMA3 or MWDMA 4 */ 4378 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4379 } 4380 4381 if (ata_dma_blacklisted(dev)) { 4382 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4383 ata_dev_warn(dev, 4384 "device is on DMA blacklist, disabling DMA\n"); 4385 } 4386 4387 if ((host->flags & ATA_HOST_SIMPLEX) && 4388 host->simplex_claimed && host->simplex_claimed != ap) { 4389 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4390 ata_dev_warn(dev, 4391 "simplex DMA is claimed by other device, disabling DMA\n"); 4392 } 4393 4394 if (ap->flags & ATA_FLAG_NO_IORDY) 4395 xfer_mask &= ata_pio_mask_no_iordy(dev); 4396 4397 if (ap->ops->mode_filter) 4398 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4399 4400 /* Apply cable rule here. Don't apply it early because when 4401 * we handle hot plug the cable type can itself change. 4402 * Check this last so that we know if the transfer rate was 4403 * solely limited by the cable. 4404 * Unknown or 80 wire cables reported host side are checked 4405 * drive side as well. Cases where we know a 40wire cable 4406 * is used safely for 80 are not checked here. 4407 */ 4408 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4409 /* UDMA/44 or higher would be available */ 4410 if (cable_is_40wire(ap)) { 4411 ata_dev_warn(dev, 4412 "limited to UDMA/33 due to 40-wire cable\n"); 4413 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4414 } 4415 4416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4417 &dev->mwdma_mask, &dev->udma_mask); 4418 } 4419 4420 /** 4421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4422 * @dev: Device to which command will be sent 4423 * 4424 * Issue SET FEATURES - XFER MODE command to device @dev 4425 * on port @ap. 4426 * 4427 * LOCKING: 4428 * PCI/etc. bus probe sem. 4429 * 4430 * RETURNS: 4431 * 0 on success, AC_ERR_* mask otherwise. 4432 */ 4433 4434 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4435 { 4436 struct ata_taskfile tf; 4437 unsigned int err_mask; 4438 4439 /* set up set-features taskfile */ 4440 DPRINTK("set features - xfer mode\n"); 4441 4442 /* Some controllers and ATAPI devices show flaky interrupt 4443 * behavior after setting xfer mode. Use polling instead. 4444 */ 4445 ata_tf_init(dev, &tf); 4446 tf.command = ATA_CMD_SET_FEATURES; 4447 tf.feature = SETFEATURES_XFER; 4448 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4449 tf.protocol = ATA_PROT_NODATA; 4450 /* If we are using IORDY we must send the mode setting command */ 4451 if (ata_pio_need_iordy(dev)) 4452 tf.nsect = dev->xfer_mode; 4453 /* If the device has IORDY and the controller does not - turn it off */ 4454 else if (ata_id_has_iordy(dev->id)) 4455 tf.nsect = 0x01; 4456 else /* In the ancient relic department - skip all of this */ 4457 return 0; 4458 4459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4460 4461 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4462 return err_mask; 4463 } 4464 4465 /** 4466 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4467 * @dev: Device to which command will be sent 4468 * @enable: Whether to enable or disable the feature 4469 * @feature: The sector count represents the feature to set 4470 * 4471 * Issue SET FEATURES - SATA FEATURES command to device @dev 4472 * on port @ap with sector count 4473 * 4474 * LOCKING: 4475 * PCI/etc. bus probe sem. 4476 * 4477 * RETURNS: 4478 * 0 on success, AC_ERR_* mask otherwise. 4479 */ 4480 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4481 { 4482 struct ata_taskfile tf; 4483 unsigned int err_mask; 4484 4485 /* set up set-features taskfile */ 4486 DPRINTK("set features - SATA features\n"); 4487 4488 ata_tf_init(dev, &tf); 4489 tf.command = ATA_CMD_SET_FEATURES; 4490 tf.feature = enable; 4491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4492 tf.protocol = ATA_PROT_NODATA; 4493 tf.nsect = feature; 4494 4495 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4496 4497 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4498 return err_mask; 4499 } 4500 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4501 4502 /** 4503 * ata_dev_init_params - Issue INIT DEV PARAMS command 4504 * @dev: Device to which command will be sent 4505 * @heads: Number of heads (taskfile parameter) 4506 * @sectors: Number of sectors (taskfile parameter) 4507 * 4508 * LOCKING: 4509 * Kernel thread context (may sleep) 4510 * 4511 * RETURNS: 4512 * 0 on success, AC_ERR_* mask otherwise. 4513 */ 4514 static unsigned int ata_dev_init_params(struct ata_device *dev, 4515 u16 heads, u16 sectors) 4516 { 4517 struct ata_taskfile tf; 4518 unsigned int err_mask; 4519 4520 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4521 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4522 return AC_ERR_INVALID; 4523 4524 /* set up init dev params taskfile */ 4525 DPRINTK("init dev params \n"); 4526 4527 ata_tf_init(dev, &tf); 4528 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4529 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4530 tf.protocol = ATA_PROT_NODATA; 4531 tf.nsect = sectors; 4532 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4533 4534 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4535 /* A clean abort indicates an original or just out of spec drive 4536 and we should continue as we issue the setup based on the 4537 drive reported working geometry */ 4538 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4539 err_mask = 0; 4540 4541 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4542 return err_mask; 4543 } 4544 4545 /** 4546 * ata_sg_clean - Unmap DMA memory associated with command 4547 * @qc: Command containing DMA memory to be released 4548 * 4549 * Unmap all mapped DMA memory associated with this command. 4550 * 4551 * LOCKING: 4552 * spin_lock_irqsave(host lock) 4553 */ 4554 void ata_sg_clean(struct ata_queued_cmd *qc) 4555 { 4556 struct ata_port *ap = qc->ap; 4557 struct scatterlist *sg = qc->sg; 4558 int dir = qc->dma_dir; 4559 4560 WARN_ON_ONCE(sg == NULL); 4561 4562 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4563 4564 if (qc->n_elem) 4565 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4566 4567 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4568 qc->sg = NULL; 4569 } 4570 4571 /** 4572 * atapi_check_dma - Check whether ATAPI DMA can be supported 4573 * @qc: Metadata associated with taskfile to check 4574 * 4575 * Allow low-level driver to filter ATA PACKET commands, returning 4576 * a status indicating whether or not it is OK to use DMA for the 4577 * supplied PACKET command. 4578 * 4579 * LOCKING: 4580 * spin_lock_irqsave(host lock) 4581 * 4582 * RETURNS: 0 when ATAPI DMA can be used 4583 * nonzero otherwise 4584 */ 4585 int atapi_check_dma(struct ata_queued_cmd *qc) 4586 { 4587 struct ata_port *ap = qc->ap; 4588 4589 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4590 * few ATAPI devices choke on such DMA requests. 4591 */ 4592 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4593 unlikely(qc->nbytes & 15)) 4594 return 1; 4595 4596 if (ap->ops->check_atapi_dma) 4597 return ap->ops->check_atapi_dma(qc); 4598 4599 return 0; 4600 } 4601 4602 /** 4603 * ata_std_qc_defer - Check whether a qc needs to be deferred 4604 * @qc: ATA command in question 4605 * 4606 * Non-NCQ commands cannot run with any other command, NCQ or 4607 * not. As upper layer only knows the queue depth, we are 4608 * responsible for maintaining exclusion. This function checks 4609 * whether a new command @qc can be issued. 4610 * 4611 * LOCKING: 4612 * spin_lock_irqsave(host lock) 4613 * 4614 * RETURNS: 4615 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4616 */ 4617 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4618 { 4619 struct ata_link *link = qc->dev->link; 4620 4621 if (qc->tf.protocol == ATA_PROT_NCQ) { 4622 if (!ata_tag_valid(link->active_tag)) 4623 return 0; 4624 } else { 4625 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4626 return 0; 4627 } 4628 4629 return ATA_DEFER_LINK; 4630 } 4631 4632 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4633 4634 /** 4635 * ata_sg_init - Associate command with scatter-gather table. 4636 * @qc: Command to be associated 4637 * @sg: Scatter-gather table. 4638 * @n_elem: Number of elements in s/g table. 4639 * 4640 * Initialize the data-related elements of queued_cmd @qc 4641 * to point to a scatter-gather table @sg, containing @n_elem 4642 * elements. 4643 * 4644 * LOCKING: 4645 * spin_lock_irqsave(host lock) 4646 */ 4647 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4648 unsigned int n_elem) 4649 { 4650 qc->sg = sg; 4651 qc->n_elem = n_elem; 4652 qc->cursg = qc->sg; 4653 } 4654 4655 /** 4656 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4657 * @qc: Command with scatter-gather table to be mapped. 4658 * 4659 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4660 * 4661 * LOCKING: 4662 * spin_lock_irqsave(host lock) 4663 * 4664 * RETURNS: 4665 * Zero on success, negative on error. 4666 * 4667 */ 4668 static int ata_sg_setup(struct ata_queued_cmd *qc) 4669 { 4670 struct ata_port *ap = qc->ap; 4671 unsigned int n_elem; 4672 4673 VPRINTK("ENTER, ata%u\n", ap->print_id); 4674 4675 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4676 if (n_elem < 1) 4677 return -1; 4678 4679 DPRINTK("%d sg elements mapped\n", n_elem); 4680 qc->orig_n_elem = qc->n_elem; 4681 qc->n_elem = n_elem; 4682 qc->flags |= ATA_QCFLAG_DMAMAP; 4683 4684 return 0; 4685 } 4686 4687 /** 4688 * swap_buf_le16 - swap halves of 16-bit words in place 4689 * @buf: Buffer to swap 4690 * @buf_words: Number of 16-bit words in buffer. 4691 * 4692 * Swap halves of 16-bit words if needed to convert from 4693 * little-endian byte order to native cpu byte order, or 4694 * vice-versa. 4695 * 4696 * LOCKING: 4697 * Inherited from caller. 4698 */ 4699 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4700 { 4701 #ifdef __BIG_ENDIAN 4702 unsigned int i; 4703 4704 for (i = 0; i < buf_words; i++) 4705 buf[i] = le16_to_cpu(buf[i]); 4706 #endif /* __BIG_ENDIAN */ 4707 } 4708 4709 /** 4710 * ata_qc_new - Request an available ATA command, for queueing 4711 * @ap: target port 4712 * 4713 * LOCKING: 4714 * None. 4715 */ 4716 4717 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4718 { 4719 struct ata_queued_cmd *qc = NULL; 4720 unsigned int i; 4721 4722 /* no command while frozen */ 4723 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4724 return NULL; 4725 4726 /* the last tag is reserved for internal command. */ 4727 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4728 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4729 qc = __ata_qc_from_tag(ap, i); 4730 break; 4731 } 4732 4733 if (qc) 4734 qc->tag = i; 4735 4736 return qc; 4737 } 4738 4739 /** 4740 * ata_qc_new_init - Request an available ATA command, and initialize it 4741 * @dev: Device from whom we request an available command structure 4742 * 4743 * LOCKING: 4744 * None. 4745 */ 4746 4747 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4748 { 4749 struct ata_port *ap = dev->link->ap; 4750 struct ata_queued_cmd *qc; 4751 4752 qc = ata_qc_new(ap); 4753 if (qc) { 4754 qc->scsicmd = NULL; 4755 qc->ap = ap; 4756 qc->dev = dev; 4757 4758 ata_qc_reinit(qc); 4759 } 4760 4761 return qc; 4762 } 4763 4764 /** 4765 * ata_qc_free - free unused ata_queued_cmd 4766 * @qc: Command to complete 4767 * 4768 * Designed to free unused ata_queued_cmd object 4769 * in case something prevents using it. 4770 * 4771 * LOCKING: 4772 * spin_lock_irqsave(host lock) 4773 */ 4774 void ata_qc_free(struct ata_queued_cmd *qc) 4775 { 4776 struct ata_port *ap; 4777 unsigned int tag; 4778 4779 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4780 ap = qc->ap; 4781 4782 qc->flags = 0; 4783 tag = qc->tag; 4784 if (likely(ata_tag_valid(tag))) { 4785 qc->tag = ATA_TAG_POISON; 4786 clear_bit(tag, &ap->qc_allocated); 4787 } 4788 } 4789 4790 void __ata_qc_complete(struct ata_queued_cmd *qc) 4791 { 4792 struct ata_port *ap; 4793 struct ata_link *link; 4794 4795 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4796 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4797 ap = qc->ap; 4798 link = qc->dev->link; 4799 4800 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4801 ata_sg_clean(qc); 4802 4803 /* command should be marked inactive atomically with qc completion */ 4804 if (qc->tf.protocol == ATA_PROT_NCQ) { 4805 link->sactive &= ~(1 << qc->tag); 4806 if (!link->sactive) 4807 ap->nr_active_links--; 4808 } else { 4809 link->active_tag = ATA_TAG_POISON; 4810 ap->nr_active_links--; 4811 } 4812 4813 /* clear exclusive status */ 4814 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4815 ap->excl_link == link)) 4816 ap->excl_link = NULL; 4817 4818 /* atapi: mark qc as inactive to prevent the interrupt handler 4819 * from completing the command twice later, before the error handler 4820 * is called. (when rc != 0 and atapi request sense is needed) 4821 */ 4822 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4823 ap->qc_active &= ~(1 << qc->tag); 4824 4825 /* call completion callback */ 4826 qc->complete_fn(qc); 4827 } 4828 4829 static void fill_result_tf(struct ata_queued_cmd *qc) 4830 { 4831 struct ata_port *ap = qc->ap; 4832 4833 qc->result_tf.flags = qc->tf.flags; 4834 ap->ops->qc_fill_rtf(qc); 4835 } 4836 4837 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4838 { 4839 struct ata_device *dev = qc->dev; 4840 4841 if (ata_is_nodata(qc->tf.protocol)) 4842 return; 4843 4844 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4845 return; 4846 4847 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4848 } 4849 4850 /** 4851 * ata_qc_complete - Complete an active ATA command 4852 * @qc: Command to complete 4853 * 4854 * Indicate to the mid and upper layers that an ATA command has 4855 * completed, with either an ok or not-ok status. 4856 * 4857 * Refrain from calling this function multiple times when 4858 * successfully completing multiple NCQ commands. 4859 * ata_qc_complete_multiple() should be used instead, which will 4860 * properly update IRQ expect state. 4861 * 4862 * LOCKING: 4863 * spin_lock_irqsave(host lock) 4864 */ 4865 void ata_qc_complete(struct ata_queued_cmd *qc) 4866 { 4867 struct ata_port *ap = qc->ap; 4868 4869 /* XXX: New EH and old EH use different mechanisms to 4870 * synchronize EH with regular execution path. 4871 * 4872 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4873 * Normal execution path is responsible for not accessing a 4874 * failed qc. libata core enforces the rule by returning NULL 4875 * from ata_qc_from_tag() for failed qcs. 4876 * 4877 * Old EH depends on ata_qc_complete() nullifying completion 4878 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4879 * not synchronize with interrupt handler. Only PIO task is 4880 * taken care of. 4881 */ 4882 if (ap->ops->error_handler) { 4883 struct ata_device *dev = qc->dev; 4884 struct ata_eh_info *ehi = &dev->link->eh_info; 4885 4886 if (unlikely(qc->err_mask)) 4887 qc->flags |= ATA_QCFLAG_FAILED; 4888 4889 /* 4890 * Finish internal commands without any further processing 4891 * and always with the result TF filled. 4892 */ 4893 if (unlikely(ata_tag_internal(qc->tag))) { 4894 fill_result_tf(qc); 4895 __ata_qc_complete(qc); 4896 return; 4897 } 4898 4899 /* 4900 * Non-internal qc has failed. Fill the result TF and 4901 * summon EH. 4902 */ 4903 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4904 fill_result_tf(qc); 4905 ata_qc_schedule_eh(qc); 4906 return; 4907 } 4908 4909 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4910 4911 /* read result TF if requested */ 4912 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4913 fill_result_tf(qc); 4914 4915 /* Some commands need post-processing after successful 4916 * completion. 4917 */ 4918 switch (qc->tf.command) { 4919 case ATA_CMD_SET_FEATURES: 4920 if (qc->tf.feature != SETFEATURES_WC_ON && 4921 qc->tf.feature != SETFEATURES_WC_OFF) 4922 break; 4923 /* fall through */ 4924 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4925 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4926 /* revalidate device */ 4927 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4928 ata_port_schedule_eh(ap); 4929 break; 4930 4931 case ATA_CMD_SLEEP: 4932 dev->flags |= ATA_DFLAG_SLEEPING; 4933 break; 4934 } 4935 4936 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4937 ata_verify_xfer(qc); 4938 4939 __ata_qc_complete(qc); 4940 } else { 4941 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4942 return; 4943 4944 /* read result TF if failed or requested */ 4945 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4946 fill_result_tf(qc); 4947 4948 __ata_qc_complete(qc); 4949 } 4950 } 4951 4952 /** 4953 * ata_qc_complete_multiple - Complete multiple qcs successfully 4954 * @ap: port in question 4955 * @qc_active: new qc_active mask 4956 * 4957 * Complete in-flight commands. This functions is meant to be 4958 * called from low-level driver's interrupt routine to complete 4959 * requests normally. ap->qc_active and @qc_active is compared 4960 * and commands are completed accordingly. 4961 * 4962 * Always use this function when completing multiple NCQ commands 4963 * from IRQ handlers instead of calling ata_qc_complete() 4964 * multiple times to keep IRQ expect status properly in sync. 4965 * 4966 * LOCKING: 4967 * spin_lock_irqsave(host lock) 4968 * 4969 * RETURNS: 4970 * Number of completed commands on success, -errno otherwise. 4971 */ 4972 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4973 { 4974 int nr_done = 0; 4975 u32 done_mask; 4976 4977 done_mask = ap->qc_active ^ qc_active; 4978 4979 if (unlikely(done_mask & qc_active)) { 4980 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4981 ap->qc_active, qc_active); 4982 return -EINVAL; 4983 } 4984 4985 while (done_mask) { 4986 struct ata_queued_cmd *qc; 4987 unsigned int tag = __ffs(done_mask); 4988 4989 qc = ata_qc_from_tag(ap, tag); 4990 if (qc) { 4991 ata_qc_complete(qc); 4992 nr_done++; 4993 } 4994 done_mask &= ~(1 << tag); 4995 } 4996 4997 return nr_done; 4998 } 4999 5000 /** 5001 * ata_qc_issue - issue taskfile to device 5002 * @qc: command to issue to device 5003 * 5004 * Prepare an ATA command to submission to device. 5005 * This includes mapping the data into a DMA-able 5006 * area, filling in the S/G table, and finally 5007 * writing the taskfile to hardware, starting the command. 5008 * 5009 * LOCKING: 5010 * spin_lock_irqsave(host lock) 5011 */ 5012 void ata_qc_issue(struct ata_queued_cmd *qc) 5013 { 5014 struct ata_port *ap = qc->ap; 5015 struct ata_link *link = qc->dev->link; 5016 u8 prot = qc->tf.protocol; 5017 5018 /* Make sure only one non-NCQ command is outstanding. The 5019 * check is skipped for old EH because it reuses active qc to 5020 * request ATAPI sense. 5021 */ 5022 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5023 5024 if (ata_is_ncq(prot)) { 5025 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5026 5027 if (!link->sactive) 5028 ap->nr_active_links++; 5029 link->sactive |= 1 << qc->tag; 5030 } else { 5031 WARN_ON_ONCE(link->sactive); 5032 5033 ap->nr_active_links++; 5034 link->active_tag = qc->tag; 5035 } 5036 5037 qc->flags |= ATA_QCFLAG_ACTIVE; 5038 ap->qc_active |= 1 << qc->tag; 5039 5040 /* 5041 * We guarantee to LLDs that they will have at least one 5042 * non-zero sg if the command is a data command. 5043 */ 5044 if (WARN_ON_ONCE(ata_is_data(prot) && 5045 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5046 goto sys_err; 5047 5048 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5049 (ap->flags & ATA_FLAG_PIO_DMA))) 5050 if (ata_sg_setup(qc)) 5051 goto sys_err; 5052 5053 /* if device is sleeping, schedule reset and abort the link */ 5054 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5055 link->eh_info.action |= ATA_EH_RESET; 5056 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5057 ata_link_abort(link); 5058 return; 5059 } 5060 5061 ap->ops->qc_prep(qc); 5062 5063 qc->err_mask |= ap->ops->qc_issue(qc); 5064 if (unlikely(qc->err_mask)) 5065 goto err; 5066 return; 5067 5068 sys_err: 5069 qc->err_mask |= AC_ERR_SYSTEM; 5070 err: 5071 ata_qc_complete(qc); 5072 } 5073 5074 /** 5075 * sata_scr_valid - test whether SCRs are accessible 5076 * @link: ATA link to test SCR accessibility for 5077 * 5078 * Test whether SCRs are accessible for @link. 5079 * 5080 * LOCKING: 5081 * None. 5082 * 5083 * RETURNS: 5084 * 1 if SCRs are accessible, 0 otherwise. 5085 */ 5086 int sata_scr_valid(struct ata_link *link) 5087 { 5088 struct ata_port *ap = link->ap; 5089 5090 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5091 } 5092 5093 /** 5094 * sata_scr_read - read SCR register of the specified port 5095 * @link: ATA link to read SCR for 5096 * @reg: SCR to read 5097 * @val: Place to store read value 5098 * 5099 * Read SCR register @reg of @link into *@val. This function is 5100 * guaranteed to succeed if @link is ap->link, the cable type of 5101 * the port is SATA and the port implements ->scr_read. 5102 * 5103 * LOCKING: 5104 * None if @link is ap->link. Kernel thread context otherwise. 5105 * 5106 * RETURNS: 5107 * 0 on success, negative errno on failure. 5108 */ 5109 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5110 { 5111 if (ata_is_host_link(link)) { 5112 if (sata_scr_valid(link)) 5113 return link->ap->ops->scr_read(link, reg, val); 5114 return -EOPNOTSUPP; 5115 } 5116 5117 return sata_pmp_scr_read(link, reg, val); 5118 } 5119 5120 /** 5121 * sata_scr_write - write SCR register of the specified port 5122 * @link: ATA link to write SCR for 5123 * @reg: SCR to write 5124 * @val: value to write 5125 * 5126 * Write @val to SCR register @reg of @link. This function is 5127 * guaranteed to succeed if @link is ap->link, the cable type of 5128 * the port is SATA and the port implements ->scr_read. 5129 * 5130 * LOCKING: 5131 * None if @link is ap->link. Kernel thread context otherwise. 5132 * 5133 * RETURNS: 5134 * 0 on success, negative errno on failure. 5135 */ 5136 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5137 { 5138 if (ata_is_host_link(link)) { 5139 if (sata_scr_valid(link)) 5140 return link->ap->ops->scr_write(link, reg, val); 5141 return -EOPNOTSUPP; 5142 } 5143 5144 return sata_pmp_scr_write(link, reg, val); 5145 } 5146 5147 /** 5148 * sata_scr_write_flush - write SCR register of the specified port and flush 5149 * @link: ATA link to write SCR for 5150 * @reg: SCR to write 5151 * @val: value to write 5152 * 5153 * This function is identical to sata_scr_write() except that this 5154 * function performs flush after writing to the register. 5155 * 5156 * LOCKING: 5157 * None if @link is ap->link. Kernel thread context otherwise. 5158 * 5159 * RETURNS: 5160 * 0 on success, negative errno on failure. 5161 */ 5162 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5163 { 5164 if (ata_is_host_link(link)) { 5165 int rc; 5166 5167 if (sata_scr_valid(link)) { 5168 rc = link->ap->ops->scr_write(link, reg, val); 5169 if (rc == 0) 5170 rc = link->ap->ops->scr_read(link, reg, &val); 5171 return rc; 5172 } 5173 return -EOPNOTSUPP; 5174 } 5175 5176 return sata_pmp_scr_write(link, reg, val); 5177 } 5178 5179 /** 5180 * ata_phys_link_online - test whether the given link is online 5181 * @link: ATA link to test 5182 * 5183 * Test whether @link is online. Note that this function returns 5184 * 0 if online status of @link cannot be obtained, so 5185 * ata_link_online(link) != !ata_link_offline(link). 5186 * 5187 * LOCKING: 5188 * None. 5189 * 5190 * RETURNS: 5191 * True if the port online status is available and online. 5192 */ 5193 bool ata_phys_link_online(struct ata_link *link) 5194 { 5195 u32 sstatus; 5196 5197 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5198 ata_sstatus_online(sstatus)) 5199 return true; 5200 return false; 5201 } 5202 5203 /** 5204 * ata_phys_link_offline - test whether the given link is offline 5205 * @link: ATA link to test 5206 * 5207 * Test whether @link is offline. Note that this function 5208 * returns 0 if offline status of @link cannot be obtained, so 5209 * ata_link_online(link) != !ata_link_offline(link). 5210 * 5211 * LOCKING: 5212 * None. 5213 * 5214 * RETURNS: 5215 * True if the port offline status is available and offline. 5216 */ 5217 bool ata_phys_link_offline(struct ata_link *link) 5218 { 5219 u32 sstatus; 5220 5221 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5222 !ata_sstatus_online(sstatus)) 5223 return true; 5224 return false; 5225 } 5226 5227 /** 5228 * ata_link_online - test whether the given link is online 5229 * @link: ATA link to test 5230 * 5231 * Test whether @link is online. This is identical to 5232 * ata_phys_link_online() when there's no slave link. When 5233 * there's a slave link, this function should only be called on 5234 * the master link and will return true if any of M/S links is 5235 * online. 5236 * 5237 * LOCKING: 5238 * None. 5239 * 5240 * RETURNS: 5241 * True if the port online status is available and online. 5242 */ 5243 bool ata_link_online(struct ata_link *link) 5244 { 5245 struct ata_link *slave = link->ap->slave_link; 5246 5247 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5248 5249 return ata_phys_link_online(link) || 5250 (slave && ata_phys_link_online(slave)); 5251 } 5252 5253 /** 5254 * ata_link_offline - test whether the given link is offline 5255 * @link: ATA link to test 5256 * 5257 * Test whether @link is offline. This is identical to 5258 * ata_phys_link_offline() when there's no slave link. When 5259 * there's a slave link, this function should only be called on 5260 * the master link and will return true if both M/S links are 5261 * offline. 5262 * 5263 * LOCKING: 5264 * None. 5265 * 5266 * RETURNS: 5267 * True if the port offline status is available and offline. 5268 */ 5269 bool ata_link_offline(struct ata_link *link) 5270 { 5271 struct ata_link *slave = link->ap->slave_link; 5272 5273 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5274 5275 return ata_phys_link_offline(link) && 5276 (!slave || ata_phys_link_offline(slave)); 5277 } 5278 5279 #ifdef CONFIG_PM 5280 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5281 unsigned int action, unsigned int ehi_flags, 5282 int *async) 5283 { 5284 struct ata_link *link; 5285 unsigned long flags; 5286 int rc = 0; 5287 5288 /* Previous resume operation might still be in 5289 * progress. Wait for PM_PENDING to clear. 5290 */ 5291 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5292 if (async) { 5293 *async = -EAGAIN; 5294 return 0; 5295 } 5296 ata_port_wait_eh(ap); 5297 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5298 } 5299 5300 /* request PM ops to EH */ 5301 spin_lock_irqsave(ap->lock, flags); 5302 5303 ap->pm_mesg = mesg; 5304 if (async) 5305 ap->pm_result = async; 5306 else 5307 ap->pm_result = &rc; 5308 5309 ap->pflags |= ATA_PFLAG_PM_PENDING; 5310 ata_for_each_link(link, ap, HOST_FIRST) { 5311 link->eh_info.action |= action; 5312 link->eh_info.flags |= ehi_flags; 5313 } 5314 5315 ata_port_schedule_eh(ap); 5316 5317 spin_unlock_irqrestore(ap->lock, flags); 5318 5319 /* wait and check result */ 5320 if (!async) { 5321 ata_port_wait_eh(ap); 5322 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5323 } 5324 5325 return rc; 5326 } 5327 5328 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5329 { 5330 unsigned int ehi_flags = ATA_EHI_QUIET; 5331 int rc; 5332 5333 /* 5334 * On some hardware, device fails to respond after spun down 5335 * for suspend. As the device won't be used before being 5336 * resumed, we don't need to touch the device. Ask EH to skip 5337 * the usual stuff and proceed directly to suspend. 5338 * 5339 * http://thread.gmane.org/gmane.linux.ide/46764 5340 */ 5341 if (mesg.event == PM_EVENT_SUSPEND) 5342 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5343 5344 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5345 return rc; 5346 } 5347 5348 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5349 { 5350 struct ata_port *ap = to_ata_port(dev); 5351 5352 return __ata_port_suspend_common(ap, mesg, NULL); 5353 } 5354 5355 static int ata_port_suspend(struct device *dev) 5356 { 5357 if (pm_runtime_suspended(dev)) 5358 return 0; 5359 5360 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5361 } 5362 5363 static int ata_port_do_freeze(struct device *dev) 5364 { 5365 if (pm_runtime_suspended(dev)) 5366 pm_runtime_resume(dev); 5367 5368 return ata_port_suspend_common(dev, PMSG_FREEZE); 5369 } 5370 5371 static int ata_port_poweroff(struct device *dev) 5372 { 5373 if (pm_runtime_suspended(dev)) 5374 return 0; 5375 5376 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5377 } 5378 5379 static int __ata_port_resume_common(struct ata_port *ap, int *async) 5380 { 5381 int rc; 5382 5383 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5384 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5385 return rc; 5386 } 5387 5388 static int ata_port_resume_common(struct device *dev) 5389 { 5390 struct ata_port *ap = to_ata_port(dev); 5391 5392 return __ata_port_resume_common(ap, NULL); 5393 } 5394 5395 static int ata_port_resume(struct device *dev) 5396 { 5397 int rc; 5398 5399 rc = ata_port_resume_common(dev); 5400 if (!rc) { 5401 pm_runtime_disable(dev); 5402 pm_runtime_set_active(dev); 5403 pm_runtime_enable(dev); 5404 } 5405 5406 return rc; 5407 } 5408 5409 static int ata_port_runtime_idle(struct device *dev) 5410 { 5411 return pm_runtime_suspend(dev); 5412 } 5413 5414 static const struct dev_pm_ops ata_port_pm_ops = { 5415 .suspend = ata_port_suspend, 5416 .resume = ata_port_resume, 5417 .freeze = ata_port_do_freeze, 5418 .thaw = ata_port_resume, 5419 .poweroff = ata_port_poweroff, 5420 .restore = ata_port_resume, 5421 5422 .runtime_suspend = ata_port_suspend, 5423 .runtime_resume = ata_port_resume_common, 5424 .runtime_idle = ata_port_runtime_idle, 5425 }; 5426 5427 /* sas ports don't participate in pm runtime management of ata_ports, 5428 * and need to resume ata devices at the domain level, not the per-port 5429 * level. sas suspend/resume is async to allow parallel port recovery 5430 * since sas has multiple ata_port instances per Scsi_Host. 5431 */ 5432 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5433 { 5434 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5435 } 5436 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5437 5438 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5439 { 5440 return __ata_port_resume_common(ap, async); 5441 } 5442 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5443 5444 5445 /** 5446 * ata_host_suspend - suspend host 5447 * @host: host to suspend 5448 * @mesg: PM message 5449 * 5450 * Suspend @host. Actual operation is performed by port suspend. 5451 */ 5452 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5453 { 5454 host->dev->power.power_state = mesg; 5455 return 0; 5456 } 5457 5458 /** 5459 * ata_host_resume - resume host 5460 * @host: host to resume 5461 * 5462 * Resume @host. Actual operation is performed by port resume. 5463 */ 5464 void ata_host_resume(struct ata_host *host) 5465 { 5466 host->dev->power.power_state = PMSG_ON; 5467 } 5468 #endif 5469 5470 struct device_type ata_port_type = { 5471 .name = "ata_port", 5472 #ifdef CONFIG_PM 5473 .pm = &ata_port_pm_ops, 5474 #endif 5475 }; 5476 5477 /** 5478 * ata_dev_init - Initialize an ata_device structure 5479 * @dev: Device structure to initialize 5480 * 5481 * Initialize @dev in preparation for probing. 5482 * 5483 * LOCKING: 5484 * Inherited from caller. 5485 */ 5486 void ata_dev_init(struct ata_device *dev) 5487 { 5488 struct ata_link *link = ata_dev_phys_link(dev); 5489 struct ata_port *ap = link->ap; 5490 unsigned long flags; 5491 5492 /* SATA spd limit is bound to the attached device, reset together */ 5493 link->sata_spd_limit = link->hw_sata_spd_limit; 5494 link->sata_spd = 0; 5495 5496 /* High bits of dev->flags are used to record warm plug 5497 * requests which occur asynchronously. Synchronize using 5498 * host lock. 5499 */ 5500 spin_lock_irqsave(ap->lock, flags); 5501 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5502 dev->horkage = 0; 5503 spin_unlock_irqrestore(ap->lock, flags); 5504 5505 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5506 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5507 dev->pio_mask = UINT_MAX; 5508 dev->mwdma_mask = UINT_MAX; 5509 dev->udma_mask = UINT_MAX; 5510 } 5511 5512 /** 5513 * ata_link_init - Initialize an ata_link structure 5514 * @ap: ATA port link is attached to 5515 * @link: Link structure to initialize 5516 * @pmp: Port multiplier port number 5517 * 5518 * Initialize @link. 5519 * 5520 * LOCKING: 5521 * Kernel thread context (may sleep) 5522 */ 5523 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5524 { 5525 int i; 5526 5527 /* clear everything except for devices */ 5528 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5529 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5530 5531 link->ap = ap; 5532 link->pmp = pmp; 5533 link->active_tag = ATA_TAG_POISON; 5534 link->hw_sata_spd_limit = UINT_MAX; 5535 5536 /* can't use iterator, ap isn't initialized yet */ 5537 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5538 struct ata_device *dev = &link->device[i]; 5539 5540 dev->link = link; 5541 dev->devno = dev - link->device; 5542 #ifdef CONFIG_ATA_ACPI 5543 dev->gtf_filter = ata_acpi_gtf_filter; 5544 #endif 5545 ata_dev_init(dev); 5546 } 5547 } 5548 5549 /** 5550 * sata_link_init_spd - Initialize link->sata_spd_limit 5551 * @link: Link to configure sata_spd_limit for 5552 * 5553 * Initialize @link->[hw_]sata_spd_limit to the currently 5554 * configured value. 5555 * 5556 * LOCKING: 5557 * Kernel thread context (may sleep). 5558 * 5559 * RETURNS: 5560 * 0 on success, -errno on failure. 5561 */ 5562 int sata_link_init_spd(struct ata_link *link) 5563 { 5564 u8 spd; 5565 int rc; 5566 5567 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5568 if (rc) 5569 return rc; 5570 5571 spd = (link->saved_scontrol >> 4) & 0xf; 5572 if (spd) 5573 link->hw_sata_spd_limit &= (1 << spd) - 1; 5574 5575 ata_force_link_limits(link); 5576 5577 link->sata_spd_limit = link->hw_sata_spd_limit; 5578 5579 return 0; 5580 } 5581 5582 /** 5583 * ata_port_alloc - allocate and initialize basic ATA port resources 5584 * @host: ATA host this allocated port belongs to 5585 * 5586 * Allocate and initialize basic ATA port resources. 5587 * 5588 * RETURNS: 5589 * Allocate ATA port on success, NULL on failure. 5590 * 5591 * LOCKING: 5592 * Inherited from calling layer (may sleep). 5593 */ 5594 struct ata_port *ata_port_alloc(struct ata_host *host) 5595 { 5596 struct ata_port *ap; 5597 5598 DPRINTK("ENTER\n"); 5599 5600 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5601 if (!ap) 5602 return NULL; 5603 5604 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5605 ap->lock = &host->lock; 5606 ap->print_id = -1; 5607 ap->host = host; 5608 ap->dev = host->dev; 5609 5610 #if defined(ATA_VERBOSE_DEBUG) 5611 /* turn on all debugging levels */ 5612 ap->msg_enable = 0x00FF; 5613 #elif defined(ATA_DEBUG) 5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5615 #else 5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5617 #endif 5618 5619 mutex_init(&ap->scsi_scan_mutex); 5620 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5621 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5622 INIT_LIST_HEAD(&ap->eh_done_q); 5623 init_waitqueue_head(&ap->eh_wait_q); 5624 init_completion(&ap->park_req_pending); 5625 init_timer_deferrable(&ap->fastdrain_timer); 5626 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5627 ap->fastdrain_timer.data = (unsigned long)ap; 5628 5629 ap->cbl = ATA_CBL_NONE; 5630 5631 ata_link_init(ap, &ap->link, 0); 5632 5633 #ifdef ATA_IRQ_TRAP 5634 ap->stats.unhandled_irq = 1; 5635 ap->stats.idle_irq = 1; 5636 #endif 5637 ata_sff_port_init(ap); 5638 5639 return ap; 5640 } 5641 5642 static void ata_host_release(struct device *gendev, void *res) 5643 { 5644 struct ata_host *host = dev_get_drvdata(gendev); 5645 int i; 5646 5647 for (i = 0; i < host->n_ports; i++) { 5648 struct ata_port *ap = host->ports[i]; 5649 5650 if (!ap) 5651 continue; 5652 5653 if (ap->scsi_host) 5654 scsi_host_put(ap->scsi_host); 5655 5656 kfree(ap->pmp_link); 5657 kfree(ap->slave_link); 5658 kfree(ap); 5659 host->ports[i] = NULL; 5660 } 5661 5662 dev_set_drvdata(gendev, NULL); 5663 } 5664 5665 /** 5666 * ata_host_alloc - allocate and init basic ATA host resources 5667 * @dev: generic device this host is associated with 5668 * @max_ports: maximum number of ATA ports associated with this host 5669 * 5670 * Allocate and initialize basic ATA host resources. LLD calls 5671 * this function to allocate a host, initializes it fully and 5672 * attaches it using ata_host_register(). 5673 * 5674 * @max_ports ports are allocated and host->n_ports is 5675 * initialized to @max_ports. The caller is allowed to decrease 5676 * host->n_ports before calling ata_host_register(). The unused 5677 * ports will be automatically freed on registration. 5678 * 5679 * RETURNS: 5680 * Allocate ATA host on success, NULL on failure. 5681 * 5682 * LOCKING: 5683 * Inherited from calling layer (may sleep). 5684 */ 5685 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5686 { 5687 struct ata_host *host; 5688 size_t sz; 5689 int i; 5690 5691 DPRINTK("ENTER\n"); 5692 5693 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5694 return NULL; 5695 5696 /* alloc a container for our list of ATA ports (buses) */ 5697 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5698 /* alloc a container for our list of ATA ports (buses) */ 5699 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5700 if (!host) 5701 goto err_out; 5702 5703 devres_add(dev, host); 5704 dev_set_drvdata(dev, host); 5705 5706 spin_lock_init(&host->lock); 5707 mutex_init(&host->eh_mutex); 5708 host->dev = dev; 5709 host->n_ports = max_ports; 5710 5711 /* allocate ports bound to this host */ 5712 for (i = 0; i < max_ports; i++) { 5713 struct ata_port *ap; 5714 5715 ap = ata_port_alloc(host); 5716 if (!ap) 5717 goto err_out; 5718 5719 ap->port_no = i; 5720 host->ports[i] = ap; 5721 } 5722 5723 devres_remove_group(dev, NULL); 5724 return host; 5725 5726 err_out: 5727 devres_release_group(dev, NULL); 5728 return NULL; 5729 } 5730 5731 /** 5732 * ata_host_alloc_pinfo - alloc host and init with port_info array 5733 * @dev: generic device this host is associated with 5734 * @ppi: array of ATA port_info to initialize host with 5735 * @n_ports: number of ATA ports attached to this host 5736 * 5737 * Allocate ATA host and initialize with info from @ppi. If NULL 5738 * terminated, @ppi may contain fewer entries than @n_ports. The 5739 * last entry will be used for the remaining ports. 5740 * 5741 * RETURNS: 5742 * Allocate ATA host on success, NULL on failure. 5743 * 5744 * LOCKING: 5745 * Inherited from calling layer (may sleep). 5746 */ 5747 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5748 const struct ata_port_info * const * ppi, 5749 int n_ports) 5750 { 5751 const struct ata_port_info *pi; 5752 struct ata_host *host; 5753 int i, j; 5754 5755 host = ata_host_alloc(dev, n_ports); 5756 if (!host) 5757 return NULL; 5758 5759 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5760 struct ata_port *ap = host->ports[i]; 5761 5762 if (ppi[j]) 5763 pi = ppi[j++]; 5764 5765 ap->pio_mask = pi->pio_mask; 5766 ap->mwdma_mask = pi->mwdma_mask; 5767 ap->udma_mask = pi->udma_mask; 5768 ap->flags |= pi->flags; 5769 ap->link.flags |= pi->link_flags; 5770 ap->ops = pi->port_ops; 5771 5772 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5773 host->ops = pi->port_ops; 5774 } 5775 5776 return host; 5777 } 5778 5779 /** 5780 * ata_slave_link_init - initialize slave link 5781 * @ap: port to initialize slave link for 5782 * 5783 * Create and initialize slave link for @ap. This enables slave 5784 * link handling on the port. 5785 * 5786 * In libata, a port contains links and a link contains devices. 5787 * There is single host link but if a PMP is attached to it, 5788 * there can be multiple fan-out links. On SATA, there's usually 5789 * a single device connected to a link but PATA and SATA 5790 * controllers emulating TF based interface can have two - master 5791 * and slave. 5792 * 5793 * However, there are a few controllers which don't fit into this 5794 * abstraction too well - SATA controllers which emulate TF 5795 * interface with both master and slave devices but also have 5796 * separate SCR register sets for each device. These controllers 5797 * need separate links for physical link handling 5798 * (e.g. onlineness, link speed) but should be treated like a 5799 * traditional M/S controller for everything else (e.g. command 5800 * issue, softreset). 5801 * 5802 * slave_link is libata's way of handling this class of 5803 * controllers without impacting core layer too much. For 5804 * anything other than physical link handling, the default host 5805 * link is used for both master and slave. For physical link 5806 * handling, separate @ap->slave_link is used. All dirty details 5807 * are implemented inside libata core layer. From LLD's POV, the 5808 * only difference is that prereset, hardreset and postreset are 5809 * called once more for the slave link, so the reset sequence 5810 * looks like the following. 5811 * 5812 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5813 * softreset(M) -> postreset(M) -> postreset(S) 5814 * 5815 * Note that softreset is called only for the master. Softreset 5816 * resets both M/S by definition, so SRST on master should handle 5817 * both (the standard method will work just fine). 5818 * 5819 * LOCKING: 5820 * Should be called before host is registered. 5821 * 5822 * RETURNS: 5823 * 0 on success, -errno on failure. 5824 */ 5825 int ata_slave_link_init(struct ata_port *ap) 5826 { 5827 struct ata_link *link; 5828 5829 WARN_ON(ap->slave_link); 5830 WARN_ON(ap->flags & ATA_FLAG_PMP); 5831 5832 link = kzalloc(sizeof(*link), GFP_KERNEL); 5833 if (!link) 5834 return -ENOMEM; 5835 5836 ata_link_init(ap, link, 1); 5837 ap->slave_link = link; 5838 return 0; 5839 } 5840 5841 static void ata_host_stop(struct device *gendev, void *res) 5842 { 5843 struct ata_host *host = dev_get_drvdata(gendev); 5844 int i; 5845 5846 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5847 5848 for (i = 0; i < host->n_ports; i++) { 5849 struct ata_port *ap = host->ports[i]; 5850 5851 if (ap->ops->port_stop) 5852 ap->ops->port_stop(ap); 5853 } 5854 5855 if (host->ops->host_stop) 5856 host->ops->host_stop(host); 5857 } 5858 5859 /** 5860 * ata_finalize_port_ops - finalize ata_port_operations 5861 * @ops: ata_port_operations to finalize 5862 * 5863 * An ata_port_operations can inherit from another ops and that 5864 * ops can again inherit from another. This can go on as many 5865 * times as necessary as long as there is no loop in the 5866 * inheritance chain. 5867 * 5868 * Ops tables are finalized when the host is started. NULL or 5869 * unspecified entries are inherited from the closet ancestor 5870 * which has the method and the entry is populated with it. 5871 * After finalization, the ops table directly points to all the 5872 * methods and ->inherits is no longer necessary and cleared. 5873 * 5874 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5875 * 5876 * LOCKING: 5877 * None. 5878 */ 5879 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5880 { 5881 static DEFINE_SPINLOCK(lock); 5882 const struct ata_port_operations *cur; 5883 void **begin = (void **)ops; 5884 void **end = (void **)&ops->inherits; 5885 void **pp; 5886 5887 if (!ops || !ops->inherits) 5888 return; 5889 5890 spin_lock(&lock); 5891 5892 for (cur = ops->inherits; cur; cur = cur->inherits) { 5893 void **inherit = (void **)cur; 5894 5895 for (pp = begin; pp < end; pp++, inherit++) 5896 if (!*pp) 5897 *pp = *inherit; 5898 } 5899 5900 for (pp = begin; pp < end; pp++) 5901 if (IS_ERR(*pp)) 5902 *pp = NULL; 5903 5904 ops->inherits = NULL; 5905 5906 spin_unlock(&lock); 5907 } 5908 5909 /** 5910 * ata_host_start - start and freeze ports of an ATA host 5911 * @host: ATA host to start ports for 5912 * 5913 * Start and then freeze ports of @host. Started status is 5914 * recorded in host->flags, so this function can be called 5915 * multiple times. Ports are guaranteed to get started only 5916 * once. If host->ops isn't initialized yet, its set to the 5917 * first non-dummy port ops. 5918 * 5919 * LOCKING: 5920 * Inherited from calling layer (may sleep). 5921 * 5922 * RETURNS: 5923 * 0 if all ports are started successfully, -errno otherwise. 5924 */ 5925 int ata_host_start(struct ata_host *host) 5926 { 5927 int have_stop = 0; 5928 void *start_dr = NULL; 5929 int i, rc; 5930 5931 if (host->flags & ATA_HOST_STARTED) 5932 return 0; 5933 5934 ata_finalize_port_ops(host->ops); 5935 5936 for (i = 0; i < host->n_ports; i++) { 5937 struct ata_port *ap = host->ports[i]; 5938 5939 ata_finalize_port_ops(ap->ops); 5940 5941 if (!host->ops && !ata_port_is_dummy(ap)) 5942 host->ops = ap->ops; 5943 5944 if (ap->ops->port_stop) 5945 have_stop = 1; 5946 } 5947 5948 if (host->ops->host_stop) 5949 have_stop = 1; 5950 5951 if (have_stop) { 5952 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5953 if (!start_dr) 5954 return -ENOMEM; 5955 } 5956 5957 for (i = 0; i < host->n_ports; i++) { 5958 struct ata_port *ap = host->ports[i]; 5959 5960 if (ap->ops->port_start) { 5961 rc = ap->ops->port_start(ap); 5962 if (rc) { 5963 if (rc != -ENODEV) 5964 dev_err(host->dev, 5965 "failed to start port %d (errno=%d)\n", 5966 i, rc); 5967 goto err_out; 5968 } 5969 } 5970 ata_eh_freeze_port(ap); 5971 } 5972 5973 if (start_dr) 5974 devres_add(host->dev, start_dr); 5975 host->flags |= ATA_HOST_STARTED; 5976 return 0; 5977 5978 err_out: 5979 while (--i >= 0) { 5980 struct ata_port *ap = host->ports[i]; 5981 5982 if (ap->ops->port_stop) 5983 ap->ops->port_stop(ap); 5984 } 5985 devres_free(start_dr); 5986 return rc; 5987 } 5988 5989 /** 5990 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5991 * @host: host to initialize 5992 * @dev: device host is attached to 5993 * @ops: port_ops 5994 * 5995 */ 5996 void ata_host_init(struct ata_host *host, struct device *dev, 5997 struct ata_port_operations *ops) 5998 { 5999 spin_lock_init(&host->lock); 6000 mutex_init(&host->eh_mutex); 6001 host->dev = dev; 6002 host->ops = ops; 6003 } 6004 6005 void __ata_port_probe(struct ata_port *ap) 6006 { 6007 struct ata_eh_info *ehi = &ap->link.eh_info; 6008 unsigned long flags; 6009 6010 /* kick EH for boot probing */ 6011 spin_lock_irqsave(ap->lock, flags); 6012 6013 ehi->probe_mask |= ATA_ALL_DEVICES; 6014 ehi->action |= ATA_EH_RESET; 6015 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6016 6017 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6018 ap->pflags |= ATA_PFLAG_LOADING; 6019 ata_port_schedule_eh(ap); 6020 6021 spin_unlock_irqrestore(ap->lock, flags); 6022 } 6023 6024 int ata_port_probe(struct ata_port *ap) 6025 { 6026 int rc = 0; 6027 6028 if (ap->ops->error_handler) { 6029 __ata_port_probe(ap); 6030 ata_port_wait_eh(ap); 6031 } else { 6032 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6033 rc = ata_bus_probe(ap); 6034 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6035 } 6036 return rc; 6037 } 6038 6039 6040 static void async_port_probe(void *data, async_cookie_t cookie) 6041 { 6042 struct ata_port *ap = data; 6043 6044 /* 6045 * If we're not allowed to scan this host in parallel, 6046 * we need to wait until all previous scans have completed 6047 * before going further. 6048 * Jeff Garzik says this is only within a controller, so we 6049 * don't need to wait for port 0, only for later ports. 6050 */ 6051 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6052 async_synchronize_cookie(cookie); 6053 6054 (void)ata_port_probe(ap); 6055 6056 /* in order to keep device order, we need to synchronize at this point */ 6057 async_synchronize_cookie(cookie); 6058 6059 ata_scsi_scan_host(ap, 1); 6060 } 6061 6062 /** 6063 * ata_host_register - register initialized ATA host 6064 * @host: ATA host to register 6065 * @sht: template for SCSI host 6066 * 6067 * Register initialized ATA host. @host is allocated using 6068 * ata_host_alloc() and fully initialized by LLD. This function 6069 * starts ports, registers @host with ATA and SCSI layers and 6070 * probe registered devices. 6071 * 6072 * LOCKING: 6073 * Inherited from calling layer (may sleep). 6074 * 6075 * RETURNS: 6076 * 0 on success, -errno otherwise. 6077 */ 6078 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6079 { 6080 int i, rc; 6081 6082 /* host must have been started */ 6083 if (!(host->flags & ATA_HOST_STARTED)) { 6084 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6085 WARN_ON(1); 6086 return -EINVAL; 6087 } 6088 6089 /* Blow away unused ports. This happens when LLD can't 6090 * determine the exact number of ports to allocate at 6091 * allocation time. 6092 */ 6093 for (i = host->n_ports; host->ports[i]; i++) 6094 kfree(host->ports[i]); 6095 6096 /* give ports names and add SCSI hosts */ 6097 for (i = 0; i < host->n_ports; i++) 6098 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6099 6100 6101 /* Create associated sysfs transport objects */ 6102 for (i = 0; i < host->n_ports; i++) { 6103 rc = ata_tport_add(host->dev,host->ports[i]); 6104 if (rc) { 6105 goto err_tadd; 6106 } 6107 } 6108 6109 rc = ata_scsi_add_hosts(host, sht); 6110 if (rc) 6111 goto err_tadd; 6112 6113 /* set cable, sata_spd_limit and report */ 6114 for (i = 0; i < host->n_ports; i++) { 6115 struct ata_port *ap = host->ports[i]; 6116 unsigned long xfer_mask; 6117 6118 /* set SATA cable type if still unset */ 6119 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6120 ap->cbl = ATA_CBL_SATA; 6121 6122 /* init sata_spd_limit to the current value */ 6123 sata_link_init_spd(&ap->link); 6124 if (ap->slave_link) 6125 sata_link_init_spd(ap->slave_link); 6126 6127 /* print per-port info to dmesg */ 6128 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6129 ap->udma_mask); 6130 6131 if (!ata_port_is_dummy(ap)) { 6132 ata_port_info(ap, "%cATA max %s %s\n", 6133 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6134 ata_mode_string(xfer_mask), 6135 ap->link.eh_info.desc); 6136 ata_ehi_clear_desc(&ap->link.eh_info); 6137 } else 6138 ata_port_info(ap, "DUMMY\n"); 6139 } 6140 6141 /* perform each probe asynchronously */ 6142 for (i = 0; i < host->n_ports; i++) { 6143 struct ata_port *ap = host->ports[i]; 6144 async_schedule(async_port_probe, ap); 6145 } 6146 6147 return 0; 6148 6149 err_tadd: 6150 while (--i >= 0) { 6151 ata_tport_delete(host->ports[i]); 6152 } 6153 return rc; 6154 6155 } 6156 6157 /** 6158 * ata_host_activate - start host, request IRQ and register it 6159 * @host: target ATA host 6160 * @irq: IRQ to request 6161 * @irq_handler: irq_handler used when requesting IRQ 6162 * @irq_flags: irq_flags used when requesting IRQ 6163 * @sht: scsi_host_template to use when registering the host 6164 * 6165 * After allocating an ATA host and initializing it, most libata 6166 * LLDs perform three steps to activate the host - start host, 6167 * request IRQ and register it. This helper takes necessasry 6168 * arguments and performs the three steps in one go. 6169 * 6170 * An invalid IRQ skips the IRQ registration and expects the host to 6171 * have set polling mode on the port. In this case, @irq_handler 6172 * should be NULL. 6173 * 6174 * LOCKING: 6175 * Inherited from calling layer (may sleep). 6176 * 6177 * RETURNS: 6178 * 0 on success, -errno otherwise. 6179 */ 6180 int ata_host_activate(struct ata_host *host, int irq, 6181 irq_handler_t irq_handler, unsigned long irq_flags, 6182 struct scsi_host_template *sht) 6183 { 6184 int i, rc; 6185 6186 rc = ata_host_start(host); 6187 if (rc) 6188 return rc; 6189 6190 /* Special case for polling mode */ 6191 if (!irq) { 6192 WARN_ON(irq_handler); 6193 return ata_host_register(host, sht); 6194 } 6195 6196 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6197 dev_driver_string(host->dev), host); 6198 if (rc) 6199 return rc; 6200 6201 for (i = 0; i < host->n_ports; i++) 6202 ata_port_desc(host->ports[i], "irq %d", irq); 6203 6204 rc = ata_host_register(host, sht); 6205 /* if failed, just free the IRQ and leave ports alone */ 6206 if (rc) 6207 devm_free_irq(host->dev, irq, host); 6208 6209 return rc; 6210 } 6211 6212 /** 6213 * ata_port_detach - Detach ATA port in prepration of device removal 6214 * @ap: ATA port to be detached 6215 * 6216 * Detach all ATA devices and the associated SCSI devices of @ap; 6217 * then, remove the associated SCSI host. @ap is guaranteed to 6218 * be quiescent on return from this function. 6219 * 6220 * LOCKING: 6221 * Kernel thread context (may sleep). 6222 */ 6223 static void ata_port_detach(struct ata_port *ap) 6224 { 6225 unsigned long flags; 6226 6227 if (!ap->ops->error_handler) 6228 goto skip_eh; 6229 6230 /* tell EH we're leaving & flush EH */ 6231 spin_lock_irqsave(ap->lock, flags); 6232 ap->pflags |= ATA_PFLAG_UNLOADING; 6233 ata_port_schedule_eh(ap); 6234 spin_unlock_irqrestore(ap->lock, flags); 6235 6236 /* wait till EH commits suicide */ 6237 ata_port_wait_eh(ap); 6238 6239 /* it better be dead now */ 6240 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6241 6242 cancel_delayed_work_sync(&ap->hotplug_task); 6243 6244 skip_eh: 6245 if (ap->pmp_link) { 6246 int i; 6247 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6248 ata_tlink_delete(&ap->pmp_link[i]); 6249 } 6250 ata_tport_delete(ap); 6251 6252 /* remove the associated SCSI host */ 6253 scsi_remove_host(ap->scsi_host); 6254 } 6255 6256 /** 6257 * ata_host_detach - Detach all ports of an ATA host 6258 * @host: Host to detach 6259 * 6260 * Detach all ports of @host. 6261 * 6262 * LOCKING: 6263 * Kernel thread context (may sleep). 6264 */ 6265 void ata_host_detach(struct ata_host *host) 6266 { 6267 int i; 6268 6269 for (i = 0; i < host->n_ports; i++) 6270 ata_port_detach(host->ports[i]); 6271 6272 /* the host is dead now, dissociate ACPI */ 6273 ata_acpi_dissociate(host); 6274 } 6275 6276 #ifdef CONFIG_PCI 6277 6278 /** 6279 * ata_pci_remove_one - PCI layer callback for device removal 6280 * @pdev: PCI device that was removed 6281 * 6282 * PCI layer indicates to libata via this hook that hot-unplug or 6283 * module unload event has occurred. Detach all ports. Resource 6284 * release is handled via devres. 6285 * 6286 * LOCKING: 6287 * Inherited from PCI layer (may sleep). 6288 */ 6289 void ata_pci_remove_one(struct pci_dev *pdev) 6290 { 6291 struct ata_host *host = pci_get_drvdata(pdev); 6292 6293 ata_host_detach(host); 6294 } 6295 6296 /* move to PCI subsystem */ 6297 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6298 { 6299 unsigned long tmp = 0; 6300 6301 switch (bits->width) { 6302 case 1: { 6303 u8 tmp8 = 0; 6304 pci_read_config_byte(pdev, bits->reg, &tmp8); 6305 tmp = tmp8; 6306 break; 6307 } 6308 case 2: { 6309 u16 tmp16 = 0; 6310 pci_read_config_word(pdev, bits->reg, &tmp16); 6311 tmp = tmp16; 6312 break; 6313 } 6314 case 4: { 6315 u32 tmp32 = 0; 6316 pci_read_config_dword(pdev, bits->reg, &tmp32); 6317 tmp = tmp32; 6318 break; 6319 } 6320 6321 default: 6322 return -EINVAL; 6323 } 6324 6325 tmp &= bits->mask; 6326 6327 return (tmp == bits->val) ? 1 : 0; 6328 } 6329 6330 #ifdef CONFIG_PM 6331 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6332 { 6333 pci_save_state(pdev); 6334 pci_disable_device(pdev); 6335 6336 if (mesg.event & PM_EVENT_SLEEP) 6337 pci_set_power_state(pdev, PCI_D3hot); 6338 } 6339 6340 int ata_pci_device_do_resume(struct pci_dev *pdev) 6341 { 6342 int rc; 6343 6344 pci_set_power_state(pdev, PCI_D0); 6345 pci_restore_state(pdev); 6346 6347 rc = pcim_enable_device(pdev); 6348 if (rc) { 6349 dev_err(&pdev->dev, 6350 "failed to enable device after resume (%d)\n", rc); 6351 return rc; 6352 } 6353 6354 pci_set_master(pdev); 6355 return 0; 6356 } 6357 6358 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6359 { 6360 struct ata_host *host = pci_get_drvdata(pdev); 6361 int rc = 0; 6362 6363 rc = ata_host_suspend(host, mesg); 6364 if (rc) 6365 return rc; 6366 6367 ata_pci_device_do_suspend(pdev, mesg); 6368 6369 return 0; 6370 } 6371 6372 int ata_pci_device_resume(struct pci_dev *pdev) 6373 { 6374 struct ata_host *host = pci_get_drvdata(pdev); 6375 int rc; 6376 6377 rc = ata_pci_device_do_resume(pdev); 6378 if (rc == 0) 6379 ata_host_resume(host); 6380 return rc; 6381 } 6382 #endif /* CONFIG_PM */ 6383 6384 #endif /* CONFIG_PCI */ 6385 6386 /** 6387 * ata_platform_remove_one - Platform layer callback for device removal 6388 * @pdev: Platform device that was removed 6389 * 6390 * Platform layer indicates to libata via this hook that hot-unplug or 6391 * module unload event has occurred. Detach all ports. Resource 6392 * release is handled via devres. 6393 * 6394 * LOCKING: 6395 * Inherited from platform layer (may sleep). 6396 */ 6397 int ata_platform_remove_one(struct platform_device *pdev) 6398 { 6399 struct ata_host *host = platform_get_drvdata(pdev); 6400 6401 ata_host_detach(host); 6402 6403 return 0; 6404 } 6405 6406 static int __init ata_parse_force_one(char **cur, 6407 struct ata_force_ent *force_ent, 6408 const char **reason) 6409 { 6410 /* FIXME: Currently, there's no way to tag init const data and 6411 * using __initdata causes build failure on some versions of 6412 * gcc. Once __initdataconst is implemented, add const to the 6413 * following structure. 6414 */ 6415 static struct ata_force_param force_tbl[] __initdata = { 6416 { "40c", .cbl = ATA_CBL_PATA40 }, 6417 { "80c", .cbl = ATA_CBL_PATA80 }, 6418 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6419 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6420 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6421 { "sata", .cbl = ATA_CBL_SATA }, 6422 { "1.5Gbps", .spd_limit = 1 }, 6423 { "3.0Gbps", .spd_limit = 2 }, 6424 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6425 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6426 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6427 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6428 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6429 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6430 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6431 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6432 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6433 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6434 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6435 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6436 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6437 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6438 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6439 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6440 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6441 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6442 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6443 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6444 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6445 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6446 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6447 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6448 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6449 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6450 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6451 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6452 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6453 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6454 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6455 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6456 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6457 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6458 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6459 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6460 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6461 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6462 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6463 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6464 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6465 }; 6466 char *start = *cur, *p = *cur; 6467 char *id, *val, *endp; 6468 const struct ata_force_param *match_fp = NULL; 6469 int nr_matches = 0, i; 6470 6471 /* find where this param ends and update *cur */ 6472 while (*p != '\0' && *p != ',') 6473 p++; 6474 6475 if (*p == '\0') 6476 *cur = p; 6477 else 6478 *cur = p + 1; 6479 6480 *p = '\0'; 6481 6482 /* parse */ 6483 p = strchr(start, ':'); 6484 if (!p) { 6485 val = strstrip(start); 6486 goto parse_val; 6487 } 6488 *p = '\0'; 6489 6490 id = strstrip(start); 6491 val = strstrip(p + 1); 6492 6493 /* parse id */ 6494 p = strchr(id, '.'); 6495 if (p) { 6496 *p++ = '\0'; 6497 force_ent->device = simple_strtoul(p, &endp, 10); 6498 if (p == endp || *endp != '\0') { 6499 *reason = "invalid device"; 6500 return -EINVAL; 6501 } 6502 } 6503 6504 force_ent->port = simple_strtoul(id, &endp, 10); 6505 if (p == endp || *endp != '\0') { 6506 *reason = "invalid port/link"; 6507 return -EINVAL; 6508 } 6509 6510 parse_val: 6511 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6512 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6513 const struct ata_force_param *fp = &force_tbl[i]; 6514 6515 if (strncasecmp(val, fp->name, strlen(val))) 6516 continue; 6517 6518 nr_matches++; 6519 match_fp = fp; 6520 6521 if (strcasecmp(val, fp->name) == 0) { 6522 nr_matches = 1; 6523 break; 6524 } 6525 } 6526 6527 if (!nr_matches) { 6528 *reason = "unknown value"; 6529 return -EINVAL; 6530 } 6531 if (nr_matches > 1) { 6532 *reason = "ambigious value"; 6533 return -EINVAL; 6534 } 6535 6536 force_ent->param = *match_fp; 6537 6538 return 0; 6539 } 6540 6541 static void __init ata_parse_force_param(void) 6542 { 6543 int idx = 0, size = 1; 6544 int last_port = -1, last_device = -1; 6545 char *p, *cur, *next; 6546 6547 /* calculate maximum number of params and allocate force_tbl */ 6548 for (p = ata_force_param_buf; *p; p++) 6549 if (*p == ',') 6550 size++; 6551 6552 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6553 if (!ata_force_tbl) { 6554 printk(KERN_WARNING "ata: failed to extend force table, " 6555 "libata.force ignored\n"); 6556 return; 6557 } 6558 6559 /* parse and populate the table */ 6560 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6561 const char *reason = ""; 6562 struct ata_force_ent te = { .port = -1, .device = -1 }; 6563 6564 next = cur; 6565 if (ata_parse_force_one(&next, &te, &reason)) { 6566 printk(KERN_WARNING "ata: failed to parse force " 6567 "parameter \"%s\" (%s)\n", 6568 cur, reason); 6569 continue; 6570 } 6571 6572 if (te.port == -1) { 6573 te.port = last_port; 6574 te.device = last_device; 6575 } 6576 6577 ata_force_tbl[idx++] = te; 6578 6579 last_port = te.port; 6580 last_device = te.device; 6581 } 6582 6583 ata_force_tbl_size = idx; 6584 } 6585 6586 static int __init ata_init(void) 6587 { 6588 int rc; 6589 6590 ata_parse_force_param(); 6591 6592 ata_acpi_register(); 6593 6594 rc = ata_sff_init(); 6595 if (rc) { 6596 kfree(ata_force_tbl); 6597 return rc; 6598 } 6599 6600 libata_transport_init(); 6601 ata_scsi_transport_template = ata_attach_transport(); 6602 if (!ata_scsi_transport_template) { 6603 ata_sff_exit(); 6604 rc = -ENOMEM; 6605 goto err_out; 6606 } 6607 6608 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6609 return 0; 6610 6611 err_out: 6612 return rc; 6613 } 6614 6615 static void __exit ata_exit(void) 6616 { 6617 ata_release_transport(ata_scsi_transport_template); 6618 libata_transport_exit(); 6619 ata_sff_exit(); 6620 ata_acpi_unregister(); 6621 kfree(ata_force_tbl); 6622 } 6623 6624 subsys_initcall(ata_init); 6625 module_exit(ata_exit); 6626 6627 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6628 6629 int ata_ratelimit(void) 6630 { 6631 return __ratelimit(&ratelimit); 6632 } 6633 6634 /** 6635 * ata_msleep - ATA EH owner aware msleep 6636 * @ap: ATA port to attribute the sleep to 6637 * @msecs: duration to sleep in milliseconds 6638 * 6639 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6640 * ownership is released before going to sleep and reacquired 6641 * after the sleep is complete. IOW, other ports sharing the 6642 * @ap->host will be allowed to own the EH while this task is 6643 * sleeping. 6644 * 6645 * LOCKING: 6646 * Might sleep. 6647 */ 6648 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6649 { 6650 bool owns_eh = ap && ap->host->eh_owner == current; 6651 6652 if (owns_eh) 6653 ata_eh_release(ap); 6654 6655 msleep(msecs); 6656 6657 if (owns_eh) 6658 ata_eh_acquire(ap); 6659 } 6660 6661 /** 6662 * ata_wait_register - wait until register value changes 6663 * @ap: ATA port to wait register for, can be NULL 6664 * @reg: IO-mapped register 6665 * @mask: Mask to apply to read register value 6666 * @val: Wait condition 6667 * @interval: polling interval in milliseconds 6668 * @timeout: timeout in milliseconds 6669 * 6670 * Waiting for some bits of register to change is a common 6671 * operation for ATA controllers. This function reads 32bit LE 6672 * IO-mapped register @reg and tests for the following condition. 6673 * 6674 * (*@reg & mask) != val 6675 * 6676 * If the condition is met, it returns; otherwise, the process is 6677 * repeated after @interval_msec until timeout. 6678 * 6679 * LOCKING: 6680 * Kernel thread context (may sleep) 6681 * 6682 * RETURNS: 6683 * The final register value. 6684 */ 6685 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6686 unsigned long interval, unsigned long timeout) 6687 { 6688 unsigned long deadline; 6689 u32 tmp; 6690 6691 tmp = ioread32(reg); 6692 6693 /* Calculate timeout _after_ the first read to make sure 6694 * preceding writes reach the controller before starting to 6695 * eat away the timeout. 6696 */ 6697 deadline = ata_deadline(jiffies, timeout); 6698 6699 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6700 ata_msleep(ap, interval); 6701 tmp = ioread32(reg); 6702 } 6703 6704 return tmp; 6705 } 6706 6707 /* 6708 * Dummy port_ops 6709 */ 6710 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6711 { 6712 return AC_ERR_SYSTEM; 6713 } 6714 6715 static void ata_dummy_error_handler(struct ata_port *ap) 6716 { 6717 /* truly dummy */ 6718 } 6719 6720 struct ata_port_operations ata_dummy_port_ops = { 6721 .qc_prep = ata_noop_qc_prep, 6722 .qc_issue = ata_dummy_qc_issue, 6723 .error_handler = ata_dummy_error_handler, 6724 .sched_eh = ata_std_sched_eh, 6725 .end_eh = ata_std_end_eh, 6726 }; 6727 6728 const struct ata_port_info ata_dummy_port_info = { 6729 .port_ops = &ata_dummy_port_ops, 6730 }; 6731 6732 /* 6733 * Utility print functions 6734 */ 6735 int ata_port_printk(const struct ata_port *ap, const char *level, 6736 const char *fmt, ...) 6737 { 6738 struct va_format vaf; 6739 va_list args; 6740 int r; 6741 6742 va_start(args, fmt); 6743 6744 vaf.fmt = fmt; 6745 vaf.va = &args; 6746 6747 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6748 6749 va_end(args); 6750 6751 return r; 6752 } 6753 EXPORT_SYMBOL(ata_port_printk); 6754 6755 int ata_link_printk(const struct ata_link *link, const char *level, 6756 const char *fmt, ...) 6757 { 6758 struct va_format vaf; 6759 va_list args; 6760 int r; 6761 6762 va_start(args, fmt); 6763 6764 vaf.fmt = fmt; 6765 vaf.va = &args; 6766 6767 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6768 r = printk("%sata%u.%02u: %pV", 6769 level, link->ap->print_id, link->pmp, &vaf); 6770 else 6771 r = printk("%sata%u: %pV", 6772 level, link->ap->print_id, &vaf); 6773 6774 va_end(args); 6775 6776 return r; 6777 } 6778 EXPORT_SYMBOL(ata_link_printk); 6779 6780 int ata_dev_printk(const struct ata_device *dev, const char *level, 6781 const char *fmt, ...) 6782 { 6783 struct va_format vaf; 6784 va_list args; 6785 int r; 6786 6787 va_start(args, fmt); 6788 6789 vaf.fmt = fmt; 6790 vaf.va = &args; 6791 6792 r = printk("%sata%u.%02u: %pV", 6793 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6794 &vaf); 6795 6796 va_end(args); 6797 6798 return r; 6799 } 6800 EXPORT_SYMBOL(ata_dev_printk); 6801 6802 void ata_print_version(const struct device *dev, const char *version) 6803 { 6804 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6805 } 6806 EXPORT_SYMBOL(ata_print_version); 6807 6808 /* 6809 * libata is essentially a library of internal helper functions for 6810 * low-level ATA host controller drivers. As such, the API/ABI is 6811 * likely to change as new drivers are added and updated. 6812 * Do not depend on ABI/API stability. 6813 */ 6814 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6815 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6816 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6817 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6818 EXPORT_SYMBOL_GPL(sata_port_ops); 6819 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6820 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6821 EXPORT_SYMBOL_GPL(ata_link_next); 6822 EXPORT_SYMBOL_GPL(ata_dev_next); 6823 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6824 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6825 EXPORT_SYMBOL_GPL(ata_host_init); 6826 EXPORT_SYMBOL_GPL(ata_host_alloc); 6827 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6828 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6829 EXPORT_SYMBOL_GPL(ata_host_start); 6830 EXPORT_SYMBOL_GPL(ata_host_register); 6831 EXPORT_SYMBOL_GPL(ata_host_activate); 6832 EXPORT_SYMBOL_GPL(ata_host_detach); 6833 EXPORT_SYMBOL_GPL(ata_sg_init); 6834 EXPORT_SYMBOL_GPL(ata_qc_complete); 6835 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6836 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6837 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6838 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6839 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6840 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6841 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6842 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6843 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6844 EXPORT_SYMBOL_GPL(ata_mode_string); 6845 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6846 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6847 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6848 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6849 EXPORT_SYMBOL_GPL(ata_dev_disable); 6850 EXPORT_SYMBOL_GPL(sata_set_spd); 6851 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6852 EXPORT_SYMBOL_GPL(sata_link_debounce); 6853 EXPORT_SYMBOL_GPL(sata_link_resume); 6854 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6855 EXPORT_SYMBOL_GPL(ata_std_prereset); 6856 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6857 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6858 EXPORT_SYMBOL_GPL(ata_std_postreset); 6859 EXPORT_SYMBOL_GPL(ata_dev_classify); 6860 EXPORT_SYMBOL_GPL(ata_dev_pair); 6861 EXPORT_SYMBOL_GPL(ata_ratelimit); 6862 EXPORT_SYMBOL_GPL(ata_msleep); 6863 EXPORT_SYMBOL_GPL(ata_wait_register); 6864 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6866 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6867 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6868 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6869 EXPORT_SYMBOL_GPL(sata_scr_valid); 6870 EXPORT_SYMBOL_GPL(sata_scr_read); 6871 EXPORT_SYMBOL_GPL(sata_scr_write); 6872 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6873 EXPORT_SYMBOL_GPL(ata_link_online); 6874 EXPORT_SYMBOL_GPL(ata_link_offline); 6875 #ifdef CONFIG_PM 6876 EXPORT_SYMBOL_GPL(ata_host_suspend); 6877 EXPORT_SYMBOL_GPL(ata_host_resume); 6878 #endif /* CONFIG_PM */ 6879 EXPORT_SYMBOL_GPL(ata_id_string); 6880 EXPORT_SYMBOL_GPL(ata_id_c_string); 6881 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6882 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6883 6884 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6885 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6886 EXPORT_SYMBOL_GPL(ata_timing_compute); 6887 EXPORT_SYMBOL_GPL(ata_timing_merge); 6888 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6889 6890 #ifdef CONFIG_PCI 6891 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6892 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6893 #ifdef CONFIG_PM 6894 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6895 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6896 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6897 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6898 #endif /* CONFIG_PM */ 6899 #endif /* CONFIG_PCI */ 6900 6901 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6902 6903 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6904 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6905 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6906 EXPORT_SYMBOL_GPL(ata_port_desc); 6907 #ifdef CONFIG_PCI 6908 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6909 #endif /* CONFIG_PCI */ 6910 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6911 EXPORT_SYMBOL_GPL(ata_link_abort); 6912 EXPORT_SYMBOL_GPL(ata_port_abort); 6913 EXPORT_SYMBOL_GPL(ata_port_freeze); 6914 EXPORT_SYMBOL_GPL(sata_async_notification); 6915 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6916 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6917 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6918 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6919 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6920 EXPORT_SYMBOL_GPL(ata_do_eh); 6921 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6922 6923 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6924 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6925 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6926 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6927 EXPORT_SYMBOL_GPL(ata_cable_sata); 6928