xref: /linux/drivers/ata/libata-core.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72 
73 #include "libata.h"
74 #include "libata-transport.h"
75 
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
78 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
79 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
80 
81 const struct ata_port_operations ata_base_port_ops = {
82 	.prereset		= ata_std_prereset,
83 	.postreset		= ata_std_postreset,
84 	.error_handler		= ata_std_error_handler,
85 	.sched_eh		= ata_std_sched_eh,
86 	.end_eh			= ata_std_end_eh,
87 };
88 
89 const struct ata_port_operations sata_port_ops = {
90 	.inherits		= &ata_base_port_ops,
91 
92 	.qc_defer		= ata_std_qc_defer,
93 	.hardreset		= sata_std_hardreset,
94 };
95 
96 static unsigned int ata_dev_init_params(struct ata_device *dev,
97 					u16 heads, u16 sectors);
98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99 static void ata_dev_xfermask(struct ata_device *dev);
100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101 
102 atomic_t ata_print_id = ATOMIC_INIT(0);
103 
104 struct ata_force_param {
105 	const char	*name;
106 	unsigned int	cbl;
107 	int		spd_limit;
108 	unsigned long	xfer_mask;
109 	unsigned int	horkage_on;
110 	unsigned int	horkage_off;
111 	unsigned int	lflags;
112 };
113 
114 struct ata_force_ent {
115 	int			port;
116 	int			device;
117 	struct ata_force_param	param;
118 };
119 
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122 
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172 
173 
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 	return (sstatus & 0xf) == 0x3;
177 }
178 
179 /**
180  *	ata_link_next - link iteration helper
181  *	@link: the previous link, NULL to start
182  *	@ap: ATA port containing links to iterate
183  *	@mode: iteration mode, one of ATA_LITER_*
184  *
185  *	LOCKING:
186  *	Host lock or EH context.
187  *
188  *	RETURNS:
189  *	Pointer to the next link.
190  */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 			       enum ata_link_iter_mode mode)
193 {
194 	BUG_ON(mode != ATA_LITER_EDGE &&
195 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196 
197 	/* NULL link indicates start of iteration */
198 	if (!link)
199 		switch (mode) {
200 		case ATA_LITER_EDGE:
201 		case ATA_LITER_PMP_FIRST:
202 			if (sata_pmp_attached(ap))
203 				return ap->pmp_link;
204 			/* fall through */
205 		case ATA_LITER_HOST_FIRST:
206 			return &ap->link;
207 		}
208 
209 	/* we just iterated over the host link, what's next? */
210 	if (link == &ap->link)
211 		switch (mode) {
212 		case ATA_LITER_HOST_FIRST:
213 			if (sata_pmp_attached(ap))
214 				return ap->pmp_link;
215 			/* fall through */
216 		case ATA_LITER_PMP_FIRST:
217 			if (unlikely(ap->slave_link))
218 				return ap->slave_link;
219 			/* fall through */
220 		case ATA_LITER_EDGE:
221 			return NULL;
222 		}
223 
224 	/* slave_link excludes PMP */
225 	if (unlikely(link == ap->slave_link))
226 		return NULL;
227 
228 	/* we were over a PMP link */
229 	if (++link < ap->pmp_link + ap->nr_pmp_links)
230 		return link;
231 
232 	if (mode == ATA_LITER_PMP_FIRST)
233 		return &ap->link;
234 
235 	return NULL;
236 }
237 
238 /**
239  *	ata_dev_next - device iteration helper
240  *	@dev: the previous device, NULL to start
241  *	@link: ATA link containing devices to iterate
242  *	@mode: iteration mode, one of ATA_DITER_*
243  *
244  *	LOCKING:
245  *	Host lock or EH context.
246  *
247  *	RETURNS:
248  *	Pointer to the next device.
249  */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 				enum ata_dev_iter_mode mode)
252 {
253 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255 
256 	/* NULL dev indicates start of iteration */
257 	if (!dev)
258 		switch (mode) {
259 		case ATA_DITER_ENABLED:
260 		case ATA_DITER_ALL:
261 			dev = link->device;
262 			goto check;
263 		case ATA_DITER_ENABLED_REVERSE:
264 		case ATA_DITER_ALL_REVERSE:
265 			dev = link->device + ata_link_max_devices(link) - 1;
266 			goto check;
267 		}
268 
269  next:
270 	/* move to the next one */
271 	switch (mode) {
272 	case ATA_DITER_ENABLED:
273 	case ATA_DITER_ALL:
274 		if (++dev < link->device + ata_link_max_devices(link))
275 			goto check;
276 		return NULL;
277 	case ATA_DITER_ENABLED_REVERSE:
278 	case ATA_DITER_ALL_REVERSE:
279 		if (--dev >= link->device)
280 			goto check;
281 		return NULL;
282 	}
283 
284  check:
285 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 	    !ata_dev_enabled(dev))
287 		goto next;
288 	return dev;
289 }
290 
291 /**
292  *	ata_dev_phys_link - find physical link for a device
293  *	@dev: ATA device to look up physical link for
294  *
295  *	Look up physical link which @dev is attached to.  Note that
296  *	this is different from @dev->link only when @dev is on slave
297  *	link.  For all other cases, it's the same as @dev->link.
298  *
299  *	LOCKING:
300  *	Don't care.
301  *
302  *	RETURNS:
303  *	Pointer to the found physical link.
304  */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 	struct ata_port *ap = dev->link->ap;
308 
309 	if (!ap->slave_link)
310 		return dev->link;
311 	if (!dev->devno)
312 		return &ap->link;
313 	return ap->slave_link;
314 }
315 
316 /**
317  *	ata_force_cbl - force cable type according to libata.force
318  *	@ap: ATA port of interest
319  *
320  *	Force cable type according to libata.force and whine about it.
321  *	The last entry which has matching port number is used, so it
322  *	can be specified as part of device force parameters.  For
323  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324  *	same effect.
325  *
326  *	LOCKING:
327  *	EH context.
328  */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 	int i;
332 
333 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 		const struct ata_force_ent *fe = &ata_force_tbl[i];
335 
336 		if (fe->port != -1 && fe->port != ap->print_id)
337 			continue;
338 
339 		if (fe->param.cbl == ATA_CBL_NONE)
340 			continue;
341 
342 		ap->cbl = fe->param.cbl;
343 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 		return;
345 	}
346 }
347 
348 /**
349  *	ata_force_link_limits - force link limits according to libata.force
350  *	@link: ATA link of interest
351  *
352  *	Force link flags and SATA spd limit according to libata.force
353  *	and whine about it.  When only the port part is specified
354  *	(e.g. 1:), the limit applies to all links connected to both
355  *	the host link and all fan-out ports connected via PMP.  If the
356  *	device part is specified as 0 (e.g. 1.00:), it specifies the
357  *	first fan-out link not the host link.  Device number 15 always
358  *	points to the host link whether PMP is attached or not.  If the
359  *	controller has slave link, device number 16 points to it.
360  *
361  *	LOCKING:
362  *	EH context.
363  */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 	bool did_spd = false;
367 	int linkno = link->pmp;
368 	int i;
369 
370 	if (ata_is_host_link(link))
371 		linkno += 15;
372 
373 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 		const struct ata_force_ent *fe = &ata_force_tbl[i];
375 
376 		if (fe->port != -1 && fe->port != link->ap->print_id)
377 			continue;
378 
379 		if (fe->device != -1 && fe->device != linkno)
380 			continue;
381 
382 		/* only honor the first spd limit */
383 		if (!did_spd && fe->param.spd_limit) {
384 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 					fe->param.name);
387 			did_spd = true;
388 		}
389 
390 		/* let lflags stack */
391 		if (fe->param.lflags) {
392 			link->flags |= fe->param.lflags;
393 			ata_link_notice(link,
394 					"FORCE: link flag 0x%x forced -> 0x%x\n",
395 					fe->param.lflags, link->flags);
396 		}
397 	}
398 }
399 
400 /**
401  *	ata_force_xfermask - force xfermask according to libata.force
402  *	@dev: ATA device of interest
403  *
404  *	Force xfer_mask according to libata.force and whine about it.
405  *	For consistency with link selection, device number 15 selects
406  *	the first device connected to the host link.
407  *
408  *	LOCKING:
409  *	EH context.
410  */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 	int devno = dev->link->pmp + dev->devno;
414 	int alt_devno = devno;
415 	int i;
416 
417 	/* allow n.15/16 for devices attached to host port */
418 	if (ata_is_host_link(dev->link))
419 		alt_devno += 15;
420 
421 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 		const struct ata_force_ent *fe = &ata_force_tbl[i];
423 		unsigned long pio_mask, mwdma_mask, udma_mask;
424 
425 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 			continue;
427 
428 		if (fe->device != -1 && fe->device != devno &&
429 		    fe->device != alt_devno)
430 			continue;
431 
432 		if (!fe->param.xfer_mask)
433 			continue;
434 
435 		ata_unpack_xfermask(fe->param.xfer_mask,
436 				    &pio_mask, &mwdma_mask, &udma_mask);
437 		if (udma_mask)
438 			dev->udma_mask = udma_mask;
439 		else if (mwdma_mask) {
440 			dev->udma_mask = 0;
441 			dev->mwdma_mask = mwdma_mask;
442 		} else {
443 			dev->udma_mask = 0;
444 			dev->mwdma_mask = 0;
445 			dev->pio_mask = pio_mask;
446 		}
447 
448 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 			       fe->param.name);
450 		return;
451 	}
452 }
453 
454 /**
455  *	ata_force_horkage - force horkage according to libata.force
456  *	@dev: ATA device of interest
457  *
458  *	Force horkage according to libata.force and whine about it.
459  *	For consistency with link selection, device number 15 selects
460  *	the first device connected to the host link.
461  *
462  *	LOCKING:
463  *	EH context.
464  */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 	int devno = dev->link->pmp + dev->devno;
468 	int alt_devno = devno;
469 	int i;
470 
471 	/* allow n.15/16 for devices attached to host port */
472 	if (ata_is_host_link(dev->link))
473 		alt_devno += 15;
474 
475 	for (i = 0; i < ata_force_tbl_size; i++) {
476 		const struct ata_force_ent *fe = &ata_force_tbl[i];
477 
478 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 			continue;
480 
481 		if (fe->device != -1 && fe->device != devno &&
482 		    fe->device != alt_devno)
483 			continue;
484 
485 		if (!(~dev->horkage & fe->param.horkage_on) &&
486 		    !(dev->horkage & fe->param.horkage_off))
487 			continue;
488 
489 		dev->horkage |= fe->param.horkage_on;
490 		dev->horkage &= ~fe->param.horkage_off;
491 
492 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 			       fe->param.name);
494 	}
495 }
496 
497 /**
498  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499  *	@opcode: SCSI opcode
500  *
501  *	Determine ATAPI command type from @opcode.
502  *
503  *	LOCKING:
504  *	None.
505  *
506  *	RETURNS:
507  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508  */
509 int atapi_cmd_type(u8 opcode)
510 {
511 	switch (opcode) {
512 	case GPCMD_READ_10:
513 	case GPCMD_READ_12:
514 		return ATAPI_READ;
515 
516 	case GPCMD_WRITE_10:
517 	case GPCMD_WRITE_12:
518 	case GPCMD_WRITE_AND_VERIFY_10:
519 		return ATAPI_WRITE;
520 
521 	case GPCMD_READ_CD:
522 	case GPCMD_READ_CD_MSF:
523 		return ATAPI_READ_CD;
524 
525 	case ATA_16:
526 	case ATA_12:
527 		if (atapi_passthru16)
528 			return ATAPI_PASS_THRU;
529 		/* fall thru */
530 	default:
531 		return ATAPI_MISC;
532 	}
533 }
534 
535 /**
536  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537  *	@tf: Taskfile to convert
538  *	@pmp: Port multiplier port
539  *	@is_cmd: This FIS is for command
540  *	@fis: Buffer into which data will output
541  *
542  *	Converts a standard ATA taskfile to a Serial ATA
543  *	FIS structure (Register - Host to Device).
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 	fis[0] = 0x27;			/* Register - Host to Device FIS */
551 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
552 	if (is_cmd)
553 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
554 
555 	fis[2] = tf->command;
556 	fis[3] = tf->feature;
557 
558 	fis[4] = tf->lbal;
559 	fis[5] = tf->lbam;
560 	fis[6] = tf->lbah;
561 	fis[7] = tf->device;
562 
563 	fis[8] = tf->hob_lbal;
564 	fis[9] = tf->hob_lbam;
565 	fis[10] = tf->hob_lbah;
566 	fis[11] = tf->hob_feature;
567 
568 	fis[12] = tf->nsect;
569 	fis[13] = tf->hob_nsect;
570 	fis[14] = 0;
571 	fis[15] = tf->ctl;
572 
573 	fis[16] = tf->auxiliary & 0xff;
574 	fis[17] = (tf->auxiliary >> 8) & 0xff;
575 	fis[18] = (tf->auxiliary >> 16) & 0xff;
576 	fis[19] = (tf->auxiliary >> 24) & 0xff;
577 }
578 
579 /**
580  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581  *	@fis: Buffer from which data will be input
582  *	@tf: Taskfile to output
583  *
584  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
585  *
586  *	LOCKING:
587  *	Inherited from caller.
588  */
589 
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 	tf->command	= fis[2];	/* status */
593 	tf->feature	= fis[3];	/* error */
594 
595 	tf->lbal	= fis[4];
596 	tf->lbam	= fis[5];
597 	tf->lbah	= fis[6];
598 	tf->device	= fis[7];
599 
600 	tf->hob_lbal	= fis[8];
601 	tf->hob_lbam	= fis[9];
602 	tf->hob_lbah	= fis[10];
603 
604 	tf->nsect	= fis[12];
605 	tf->hob_nsect	= fis[13];
606 }
607 
608 static const u8 ata_rw_cmds[] = {
609 	/* pio multi */
610 	ATA_CMD_READ_MULTI,
611 	ATA_CMD_WRITE_MULTI,
612 	ATA_CMD_READ_MULTI_EXT,
613 	ATA_CMD_WRITE_MULTI_EXT,
614 	0,
615 	0,
616 	0,
617 	ATA_CMD_WRITE_MULTI_FUA_EXT,
618 	/* pio */
619 	ATA_CMD_PIO_READ,
620 	ATA_CMD_PIO_WRITE,
621 	ATA_CMD_PIO_READ_EXT,
622 	ATA_CMD_PIO_WRITE_EXT,
623 	0,
624 	0,
625 	0,
626 	0,
627 	/* dma */
628 	ATA_CMD_READ,
629 	ATA_CMD_WRITE,
630 	ATA_CMD_READ_EXT,
631 	ATA_CMD_WRITE_EXT,
632 	0,
633 	0,
634 	0,
635 	ATA_CMD_WRITE_FUA_EXT
636 };
637 
638 /**
639  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
640  *	@tf: command to examine and configure
641  *	@dev: device tf belongs to
642  *
643  *	Examine the device configuration and tf->flags to calculate
644  *	the proper read/write commands and protocol to use.
645  *
646  *	LOCKING:
647  *	caller.
648  */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 	u8 cmd;
652 
653 	int index, fua, lba48, write;
654 
655 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658 
659 	if (dev->flags & ATA_DFLAG_PIO) {
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 		/* Unable to use DMA due to host limitation */
664 		tf->protocol = ATA_PROT_PIO;
665 		index = dev->multi_count ? 0 : 8;
666 	} else {
667 		tf->protocol = ATA_PROT_DMA;
668 		index = 16;
669 	}
670 
671 	cmd = ata_rw_cmds[index + fua + lba48 + write];
672 	if (cmd) {
673 		tf->command = cmd;
674 		return 0;
675 	}
676 	return -1;
677 }
678 
679 /**
680  *	ata_tf_read_block - Read block address from ATA taskfile
681  *	@tf: ATA taskfile of interest
682  *	@dev: ATA device @tf belongs to
683  *
684  *	LOCKING:
685  *	None.
686  *
687  *	Read block address from @tf.  This function can handle all
688  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
689  *	flags select the address format to use.
690  *
691  *	RETURNS:
692  *	Block address read from @tf.
693  */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 	u64 block = 0;
697 
698 	if (tf->flags & ATA_TFLAG_LBA) {
699 		if (tf->flags & ATA_TFLAG_LBA48) {
700 			block |= (u64)tf->hob_lbah << 40;
701 			block |= (u64)tf->hob_lbam << 32;
702 			block |= (u64)tf->hob_lbal << 24;
703 		} else
704 			block |= (tf->device & 0xf) << 24;
705 
706 		block |= tf->lbah << 16;
707 		block |= tf->lbam << 8;
708 		block |= tf->lbal;
709 	} else {
710 		u32 cyl, head, sect;
711 
712 		cyl = tf->lbam | (tf->lbah << 8);
713 		head = tf->device & 0xf;
714 		sect = tf->lbal;
715 
716 		if (!sect) {
717 			ata_dev_warn(dev,
718 				     "device reported invalid CHS sector 0\n");
719 			sect = 1; /* oh well */
720 		}
721 
722 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 	}
724 
725 	return block;
726 }
727 
728 /**
729  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
730  *	@tf: Target ATA taskfile
731  *	@dev: ATA device @tf belongs to
732  *	@block: Block address
733  *	@n_block: Number of blocks
734  *	@tf_flags: RW/FUA etc...
735  *	@tag: tag
736  *
737  *	LOCKING:
738  *	None.
739  *
740  *	Build ATA taskfile @tf for read/write request described by
741  *	@block, @n_block, @tf_flags and @tag on @dev.
742  *
743  *	RETURNS:
744  *
745  *	0 on success, -ERANGE if the request is too large for @dev,
746  *	-EINVAL if the request is invalid.
747  */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 		    u64 block, u32 n_block, unsigned int tf_flags,
750 		    unsigned int tag)
751 {
752 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 	tf->flags |= tf_flags;
754 
755 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 		/* yay, NCQ */
757 		if (!lba_48_ok(block, n_block))
758 			return -ERANGE;
759 
760 		tf->protocol = ATA_PROT_NCQ;
761 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762 
763 		if (tf->flags & ATA_TFLAG_WRITE)
764 			tf->command = ATA_CMD_FPDMA_WRITE;
765 		else
766 			tf->command = ATA_CMD_FPDMA_READ;
767 
768 		tf->nsect = tag << 3;
769 		tf->hob_feature = (n_block >> 8) & 0xff;
770 		tf->feature = n_block & 0xff;
771 
772 		tf->hob_lbah = (block >> 40) & 0xff;
773 		tf->hob_lbam = (block >> 32) & 0xff;
774 		tf->hob_lbal = (block >> 24) & 0xff;
775 		tf->lbah = (block >> 16) & 0xff;
776 		tf->lbam = (block >> 8) & 0xff;
777 		tf->lbal = block & 0xff;
778 
779 		tf->device = ATA_LBA;
780 		if (tf->flags & ATA_TFLAG_FUA)
781 			tf->device |= 1 << 7;
782 	} else if (dev->flags & ATA_DFLAG_LBA) {
783 		tf->flags |= ATA_TFLAG_LBA;
784 
785 		if (lba_28_ok(block, n_block)) {
786 			/* use LBA28 */
787 			tf->device |= (block >> 24) & 0xf;
788 		} else if (lba_48_ok(block, n_block)) {
789 			if (!(dev->flags & ATA_DFLAG_LBA48))
790 				return -ERANGE;
791 
792 			/* use LBA48 */
793 			tf->flags |= ATA_TFLAG_LBA48;
794 
795 			tf->hob_nsect = (n_block >> 8) & 0xff;
796 
797 			tf->hob_lbah = (block >> 40) & 0xff;
798 			tf->hob_lbam = (block >> 32) & 0xff;
799 			tf->hob_lbal = (block >> 24) & 0xff;
800 		} else
801 			/* request too large even for LBA48 */
802 			return -ERANGE;
803 
804 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 			return -EINVAL;
806 
807 		tf->nsect = n_block & 0xff;
808 
809 		tf->lbah = (block >> 16) & 0xff;
810 		tf->lbam = (block >> 8) & 0xff;
811 		tf->lbal = block & 0xff;
812 
813 		tf->device |= ATA_LBA;
814 	} else {
815 		/* CHS */
816 		u32 sect, head, cyl, track;
817 
818 		/* The request -may- be too large for CHS addressing. */
819 		if (!lba_28_ok(block, n_block))
820 			return -ERANGE;
821 
822 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 			return -EINVAL;
824 
825 		/* Convert LBA to CHS */
826 		track = (u32)block / dev->sectors;
827 		cyl   = track / dev->heads;
828 		head  = track % dev->heads;
829 		sect  = (u32)block % dev->sectors + 1;
830 
831 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 			(u32)block, track, cyl, head, sect);
833 
834 		/* Check whether the converted CHS can fit.
835 		   Cylinder: 0-65535
836 		   Head: 0-15
837 		   Sector: 1-255*/
838 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 			return -ERANGE;
840 
841 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 		tf->lbal = sect;
843 		tf->lbam = cyl;
844 		tf->lbah = cyl >> 8;
845 		tf->device |= head;
846 	}
847 
848 	return 0;
849 }
850 
851 /**
852  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853  *	@pio_mask: pio_mask
854  *	@mwdma_mask: mwdma_mask
855  *	@udma_mask: udma_mask
856  *
857  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858  *	unsigned int xfer_mask.
859  *
860  *	LOCKING:
861  *	None.
862  *
863  *	RETURNS:
864  *	Packed xfer_mask.
865  */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 				unsigned long mwdma_mask,
868 				unsigned long udma_mask)
869 {
870 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874 
875 /**
876  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877  *	@xfer_mask: xfer_mask to unpack
878  *	@pio_mask: resulting pio_mask
879  *	@mwdma_mask: resulting mwdma_mask
880  *	@udma_mask: resulting udma_mask
881  *
882  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883  *	Any NULL distination masks will be ignored.
884  */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 	if (pio_mask)
889 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 	if (mwdma_mask)
891 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 	if (udma_mask)
893 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895 
896 static const struct ata_xfer_ent {
897 	int shift, bits;
898 	u8 base;
899 } ata_xfer_tbl[] = {
900 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 	{ -1, },
904 };
905 
906 /**
907  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908  *	@xfer_mask: xfer_mask of interest
909  *
910  *	Return matching XFER_* value for @xfer_mask.  Only the highest
911  *	bit of @xfer_mask is considered.
912  *
913  *	LOCKING:
914  *	None.
915  *
916  *	RETURNS:
917  *	Matching XFER_* value, 0xff if no match found.
918  */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 	int highbit = fls(xfer_mask) - 1;
922 	const struct ata_xfer_ent *ent;
923 
924 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 			return ent->base + highbit - ent->shift;
927 	return 0xff;
928 }
929 
930 /**
931  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_mask for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_mask, 0 if no match found.
941  */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 				& ~((1 << ent->shift) - 1);
950 	return 0;
951 }
952 
953 /**
954  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955  *	@xfer_mode: XFER_* of interest
956  *
957  *	Return matching xfer_shift for @xfer_mode.
958  *
959  *	LOCKING:
960  *	None.
961  *
962  *	RETURNS:
963  *	Matching xfer_shift, -1 if no match found.
964  */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 	const struct ata_xfer_ent *ent;
968 
969 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 			return ent->shift;
972 	return -1;
973 }
974 
975 /**
976  *	ata_mode_string - convert xfer_mask to string
977  *	@xfer_mask: mask of bits supported; only highest bit counts.
978  *
979  *	Determine string which represents the highest speed
980  *	(highest bit in @modemask).
981  *
982  *	LOCKING:
983  *	None.
984  *
985  *	RETURNS:
986  *	Constant C string representing highest speed listed in
987  *	@mode_mask, or the constant C string "<n/a>".
988  */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 	static const char * const xfer_mode_str[] = {
992 		"PIO0",
993 		"PIO1",
994 		"PIO2",
995 		"PIO3",
996 		"PIO4",
997 		"PIO5",
998 		"PIO6",
999 		"MWDMA0",
1000 		"MWDMA1",
1001 		"MWDMA2",
1002 		"MWDMA3",
1003 		"MWDMA4",
1004 		"UDMA/16",
1005 		"UDMA/25",
1006 		"UDMA/33",
1007 		"UDMA/44",
1008 		"UDMA/66",
1009 		"UDMA/100",
1010 		"UDMA/133",
1011 		"UDMA7",
1012 	};
1013 	int highbit;
1014 
1015 	highbit = fls(xfer_mask) - 1;
1016 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 		return xfer_mode_str[highbit];
1018 	return "<n/a>";
1019 }
1020 
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 	static const char * const spd_str[] = {
1024 		"1.5 Gbps",
1025 		"3.0 Gbps",
1026 		"6.0 Gbps",
1027 	};
1028 
1029 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 		return "<unknown>";
1031 	return spd_str[spd - 1];
1032 }
1033 
1034 /**
1035  *	ata_dev_classify - determine device type based on ATA-spec signature
1036  *	@tf: ATA taskfile register set for device to be identified
1037  *
1038  *	Determine from taskfile register contents whether a device is
1039  *	ATA or ATAPI, as per "Signature and persistence" section
1040  *	of ATA/PI spec (volume 1, sect 5.14).
1041  *
1042  *	LOCKING:
1043  *	None.
1044  *
1045  *	RETURNS:
1046  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1048  */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 	/* Apple's open source Darwin code hints that some devices only
1052 	 * put a proper signature into the LBA mid/high registers,
1053 	 * So, we only check those.  It's sufficient for uniqueness.
1054 	 *
1055 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1058 	 * spec has never mentioned about using different signatures
1059 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1060 	 * Multiplier specification began to use 0x69/0x96 to identify
1061 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 	 * 0x69/0x96 shortly and described them as reserved for
1064 	 * SerialATA.
1065 	 *
1066 	 * We follow the current spec and consider that 0x69/0x96
1067 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 	 * SEMB signature.  This is worked around in
1070 	 * ata_dev_read_id().
1071 	 */
1072 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 		DPRINTK("found ATA device by sig\n");
1074 		return ATA_DEV_ATA;
1075 	}
1076 
1077 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 		DPRINTK("found ATAPI device by sig\n");
1079 		return ATA_DEV_ATAPI;
1080 	}
1081 
1082 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 		DPRINTK("found PMP device by sig\n");
1084 		return ATA_DEV_PMP;
1085 	}
1086 
1087 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 		return ATA_DEV_SEMB;
1090 	}
1091 
1092 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1093 		DPRINTK("found ZAC device by sig\n");
1094 		return ATA_DEV_ZAC;
1095 	}
1096 
1097 	DPRINTK("unknown device\n");
1098 	return ATA_DEV_UNKNOWN;
1099 }
1100 
1101 /**
1102  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1103  *	@id: IDENTIFY DEVICE results we will examine
1104  *	@s: string into which data is output
1105  *	@ofs: offset into identify device page
1106  *	@len: length of string to return. must be an even number.
1107  *
1108  *	The strings in the IDENTIFY DEVICE page are broken up into
1109  *	16-bit chunks.  Run through the string, and output each
1110  *	8-bit chunk linearly, regardless of platform.
1111  *
1112  *	LOCKING:
1113  *	caller.
1114  */
1115 
1116 void ata_id_string(const u16 *id, unsigned char *s,
1117 		   unsigned int ofs, unsigned int len)
1118 {
1119 	unsigned int c;
1120 
1121 	BUG_ON(len & 1);
1122 
1123 	while (len > 0) {
1124 		c = id[ofs] >> 8;
1125 		*s = c;
1126 		s++;
1127 
1128 		c = id[ofs] & 0xff;
1129 		*s = c;
1130 		s++;
1131 
1132 		ofs++;
1133 		len -= 2;
1134 	}
1135 }
1136 
1137 /**
1138  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139  *	@id: IDENTIFY DEVICE results we will examine
1140  *	@s: string into which data is output
1141  *	@ofs: offset into identify device page
1142  *	@len: length of string to return. must be an odd number.
1143  *
1144  *	This function is identical to ata_id_string except that it
1145  *	trims trailing spaces and terminates the resulting string with
1146  *	null.  @len must be actual maximum length (even number) + 1.
1147  *
1148  *	LOCKING:
1149  *	caller.
1150  */
1151 void ata_id_c_string(const u16 *id, unsigned char *s,
1152 		     unsigned int ofs, unsigned int len)
1153 {
1154 	unsigned char *p;
1155 
1156 	ata_id_string(id, s, ofs, len - 1);
1157 
1158 	p = s + strnlen(s, len - 1);
1159 	while (p > s && p[-1] == ' ')
1160 		p--;
1161 	*p = '\0';
1162 }
1163 
1164 static u64 ata_id_n_sectors(const u16 *id)
1165 {
1166 	if (ata_id_has_lba(id)) {
1167 		if (ata_id_has_lba48(id))
1168 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1169 		else
1170 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1171 	} else {
1172 		if (ata_id_current_chs_valid(id))
1173 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1174 			       id[ATA_ID_CUR_SECTORS];
1175 		else
1176 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1177 			       id[ATA_ID_SECTORS];
1178 	}
1179 }
1180 
1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1182 {
1183 	u64 sectors = 0;
1184 
1185 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1186 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1187 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1188 	sectors |= (tf->lbah & 0xff) << 16;
1189 	sectors |= (tf->lbam & 0xff) << 8;
1190 	sectors |= (tf->lbal & 0xff);
1191 
1192 	return sectors;
1193 }
1194 
1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1196 {
1197 	u64 sectors = 0;
1198 
1199 	sectors |= (tf->device & 0x0f) << 24;
1200 	sectors |= (tf->lbah & 0xff) << 16;
1201 	sectors |= (tf->lbam & 0xff) << 8;
1202 	sectors |= (tf->lbal & 0xff);
1203 
1204 	return sectors;
1205 }
1206 
1207 /**
1208  *	ata_read_native_max_address - Read native max address
1209  *	@dev: target device
1210  *	@max_sectors: out parameter for the result native max address
1211  *
1212  *	Perform an LBA48 or LBA28 native size query upon the device in
1213  *	question.
1214  *
1215  *	RETURNS:
1216  *	0 on success, -EACCES if command is aborted by the drive.
1217  *	-EIO on other errors.
1218  */
1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1220 {
1221 	unsigned int err_mask;
1222 	struct ata_taskfile tf;
1223 	int lba48 = ata_id_has_lba48(dev->id);
1224 
1225 	ata_tf_init(dev, &tf);
1226 
1227 	/* always clear all address registers */
1228 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1229 
1230 	if (lba48) {
1231 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1232 		tf.flags |= ATA_TFLAG_LBA48;
1233 	} else
1234 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1235 
1236 	tf.protocol |= ATA_PROT_NODATA;
1237 	tf.device |= ATA_LBA;
1238 
1239 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 	if (err_mask) {
1241 		ata_dev_warn(dev,
1242 			     "failed to read native max address (err_mask=0x%x)\n",
1243 			     err_mask);
1244 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1245 			return -EACCES;
1246 		return -EIO;
1247 	}
1248 
1249 	if (lba48)
1250 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1251 	else
1252 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1253 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1254 		(*max_sectors)--;
1255 	return 0;
1256 }
1257 
1258 /**
1259  *	ata_set_max_sectors - Set max sectors
1260  *	@dev: target device
1261  *	@new_sectors: new max sectors value to set for the device
1262  *
1263  *	Set max sectors of @dev to @new_sectors.
1264  *
1265  *	RETURNS:
1266  *	0 on success, -EACCES if command is aborted or denied (due to
1267  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1268  *	errors.
1269  */
1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1271 {
1272 	unsigned int err_mask;
1273 	struct ata_taskfile tf;
1274 	int lba48 = ata_id_has_lba48(dev->id);
1275 
1276 	new_sectors--;
1277 
1278 	ata_tf_init(dev, &tf);
1279 
1280 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1281 
1282 	if (lba48) {
1283 		tf.command = ATA_CMD_SET_MAX_EXT;
1284 		tf.flags |= ATA_TFLAG_LBA48;
1285 
1286 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1287 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1288 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1289 	} else {
1290 		tf.command = ATA_CMD_SET_MAX;
1291 
1292 		tf.device |= (new_sectors >> 24) & 0xf;
1293 	}
1294 
1295 	tf.protocol |= ATA_PROT_NODATA;
1296 	tf.device |= ATA_LBA;
1297 
1298 	tf.lbal = (new_sectors >> 0) & 0xff;
1299 	tf.lbam = (new_sectors >> 8) & 0xff;
1300 	tf.lbah = (new_sectors >> 16) & 0xff;
1301 
1302 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1303 	if (err_mask) {
1304 		ata_dev_warn(dev,
1305 			     "failed to set max address (err_mask=0x%x)\n",
1306 			     err_mask);
1307 		if (err_mask == AC_ERR_DEV &&
1308 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1309 			return -EACCES;
1310 		return -EIO;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  *	ata_hpa_resize		-	Resize a device with an HPA set
1318  *	@dev: Device to resize
1319  *
1320  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321  *	it if required to the full size of the media. The caller must check
1322  *	the drive has the HPA feature set enabled.
1323  *
1324  *	RETURNS:
1325  *	0 on success, -errno on failure.
1326  */
1327 static int ata_hpa_resize(struct ata_device *dev)
1328 {
1329 	struct ata_eh_context *ehc = &dev->link->eh_context;
1330 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1331 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1332 	u64 sectors = ata_id_n_sectors(dev->id);
1333 	u64 native_sectors;
1334 	int rc;
1335 
1336 	/* do we need to do it? */
1337 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1338 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1339 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1340 		return 0;
1341 
1342 	/* read native max address */
1343 	rc = ata_read_native_max_address(dev, &native_sectors);
1344 	if (rc) {
1345 		/* If device aborted the command or HPA isn't going to
1346 		 * be unlocked, skip HPA resizing.
1347 		 */
1348 		if (rc == -EACCES || !unlock_hpa) {
1349 			ata_dev_warn(dev,
1350 				     "HPA support seems broken, skipping HPA handling\n");
1351 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1352 
1353 			/* we can continue if device aborted the command */
1354 			if (rc == -EACCES)
1355 				rc = 0;
1356 		}
1357 
1358 		return rc;
1359 	}
1360 	dev->n_native_sectors = native_sectors;
1361 
1362 	/* nothing to do? */
1363 	if (native_sectors <= sectors || !unlock_hpa) {
1364 		if (!print_info || native_sectors == sectors)
1365 			return 0;
1366 
1367 		if (native_sectors > sectors)
1368 			ata_dev_info(dev,
1369 				"HPA detected: current %llu, native %llu\n",
1370 				(unsigned long long)sectors,
1371 				(unsigned long long)native_sectors);
1372 		else if (native_sectors < sectors)
1373 			ata_dev_warn(dev,
1374 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1375 				(unsigned long long)native_sectors,
1376 				(unsigned long long)sectors);
1377 		return 0;
1378 	}
1379 
1380 	/* let's unlock HPA */
1381 	rc = ata_set_max_sectors(dev, native_sectors);
1382 	if (rc == -EACCES) {
1383 		/* if device aborted the command, skip HPA resizing */
1384 		ata_dev_warn(dev,
1385 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 			     (unsigned long long)sectors,
1387 			     (unsigned long long)native_sectors);
1388 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1389 		return 0;
1390 	} else if (rc)
1391 		return rc;
1392 
1393 	/* re-read IDENTIFY data */
1394 	rc = ata_dev_reread_id(dev, 0);
1395 	if (rc) {
1396 		ata_dev_err(dev,
1397 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1398 		return rc;
1399 	}
1400 
1401 	if (print_info) {
1402 		u64 new_sectors = ata_id_n_sectors(dev->id);
1403 		ata_dev_info(dev,
1404 			"HPA unlocked: %llu -> %llu, native %llu\n",
1405 			(unsigned long long)sectors,
1406 			(unsigned long long)new_sectors,
1407 			(unsigned long long)native_sectors);
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1415  *	@id: IDENTIFY DEVICE page to dump
1416  *
1417  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1418  *	page.
1419  *
1420  *	LOCKING:
1421  *	caller.
1422  */
1423 
1424 static inline void ata_dump_id(const u16 *id)
1425 {
1426 	DPRINTK("49==0x%04x  "
1427 		"53==0x%04x  "
1428 		"63==0x%04x  "
1429 		"64==0x%04x  "
1430 		"75==0x%04x  \n",
1431 		id[49],
1432 		id[53],
1433 		id[63],
1434 		id[64],
1435 		id[75]);
1436 	DPRINTK("80==0x%04x  "
1437 		"81==0x%04x  "
1438 		"82==0x%04x  "
1439 		"83==0x%04x  "
1440 		"84==0x%04x  \n",
1441 		id[80],
1442 		id[81],
1443 		id[82],
1444 		id[83],
1445 		id[84]);
1446 	DPRINTK("88==0x%04x  "
1447 		"93==0x%04x\n",
1448 		id[88],
1449 		id[93]);
1450 }
1451 
1452 /**
1453  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454  *	@id: IDENTIFY data to compute xfer mask from
1455  *
1456  *	Compute the xfermask for this device. This is not as trivial
1457  *	as it seems if we must consider early devices correctly.
1458  *
1459  *	FIXME: pre IDE drive timing (do we care ?).
1460  *
1461  *	LOCKING:
1462  *	None.
1463  *
1464  *	RETURNS:
1465  *	Computed xfermask
1466  */
1467 unsigned long ata_id_xfermask(const u16 *id)
1468 {
1469 	unsigned long pio_mask, mwdma_mask, udma_mask;
1470 
1471 	/* Usual case. Word 53 indicates word 64 is valid */
1472 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 		pio_mask <<= 3;
1475 		pio_mask |= 0x7;
1476 	} else {
1477 		/* If word 64 isn't valid then Word 51 high byte holds
1478 		 * the PIO timing number for the maximum. Turn it into
1479 		 * a mask.
1480 		 */
1481 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 		if (mode < 5)	/* Valid PIO range */
1483 			pio_mask = (2 << mode) - 1;
1484 		else
1485 			pio_mask = 1;
1486 
1487 		/* But wait.. there's more. Design your standards by
1488 		 * committee and you too can get a free iordy field to
1489 		 * process. However its the speeds not the modes that
1490 		 * are supported... Note drivers using the timing API
1491 		 * will get this right anyway
1492 		 */
1493 	}
1494 
1495 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496 
1497 	if (ata_id_is_cfa(id)) {
1498 		/*
1499 		 *	Process compact flash extended modes
1500 		 */
1501 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1502 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1503 
1504 		if (pio)
1505 			pio_mask |= (1 << 5);
1506 		if (pio > 1)
1507 			pio_mask |= (1 << 6);
1508 		if (dma)
1509 			mwdma_mask |= (1 << 3);
1510 		if (dma > 1)
1511 			mwdma_mask |= (1 << 4);
1512 	}
1513 
1514 	udma_mask = 0;
1515 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517 
1518 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519 }
1520 
1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1522 {
1523 	struct completion *waiting = qc->private_data;
1524 
1525 	complete(waiting);
1526 }
1527 
1528 /**
1529  *	ata_exec_internal_sg - execute libata internal command
1530  *	@dev: Device to which the command is sent
1531  *	@tf: Taskfile registers for the command and the result
1532  *	@cdb: CDB for packet command
1533  *	@dma_dir: Data transfer direction of the command
1534  *	@sgl: sg list for the data buffer of the command
1535  *	@n_elem: Number of sg entries
1536  *	@timeout: Timeout in msecs (0 for default)
1537  *
1538  *	Executes libata internal command with timeout.  @tf contains
1539  *	command on entry and result on return.  Timeout and error
1540  *	conditions are reported via return value.  No recovery action
1541  *	is taken after a command times out.  It's caller's duty to
1542  *	clean up after timeout.
1543  *
1544  *	LOCKING:
1545  *	None.  Should be called with kernel context, might sleep.
1546  *
1547  *	RETURNS:
1548  *	Zero on success, AC_ERR_* mask on failure
1549  */
1550 unsigned ata_exec_internal_sg(struct ata_device *dev,
1551 			      struct ata_taskfile *tf, const u8 *cdb,
1552 			      int dma_dir, struct scatterlist *sgl,
1553 			      unsigned int n_elem, unsigned long timeout)
1554 {
1555 	struct ata_link *link = dev->link;
1556 	struct ata_port *ap = link->ap;
1557 	u8 command = tf->command;
1558 	int auto_timeout = 0;
1559 	struct ata_queued_cmd *qc;
1560 	unsigned int tag, preempted_tag;
1561 	u32 preempted_sactive, preempted_qc_active;
1562 	int preempted_nr_active_links;
1563 	DECLARE_COMPLETION_ONSTACK(wait);
1564 	unsigned long flags;
1565 	unsigned int err_mask;
1566 	int rc;
1567 
1568 	spin_lock_irqsave(ap->lock, flags);
1569 
1570 	/* no internal command while frozen */
1571 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1572 		spin_unlock_irqrestore(ap->lock, flags);
1573 		return AC_ERR_SYSTEM;
1574 	}
1575 
1576 	/* initialize internal qc */
1577 
1578 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1579 	 * drivers choke if any other tag is given.  This breaks
1580 	 * ata_tag_internal() test for those drivers.  Don't use new
1581 	 * EH stuff without converting to it.
1582 	 */
1583 	if (ap->ops->error_handler)
1584 		tag = ATA_TAG_INTERNAL;
1585 	else
1586 		tag = 0;
1587 
1588 	if (test_and_set_bit(tag, &ap->qc_allocated))
1589 		BUG();
1590 	qc = __ata_qc_from_tag(ap, tag);
1591 
1592 	qc->tag = tag;
1593 	qc->scsicmd = NULL;
1594 	qc->ap = ap;
1595 	qc->dev = dev;
1596 	ata_qc_reinit(qc);
1597 
1598 	preempted_tag = link->active_tag;
1599 	preempted_sactive = link->sactive;
1600 	preempted_qc_active = ap->qc_active;
1601 	preempted_nr_active_links = ap->nr_active_links;
1602 	link->active_tag = ATA_TAG_POISON;
1603 	link->sactive = 0;
1604 	ap->qc_active = 0;
1605 	ap->nr_active_links = 0;
1606 
1607 	/* prepare & issue qc */
1608 	qc->tf = *tf;
1609 	if (cdb)
1610 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1611 
1612 	/* some SATA bridges need us to indicate data xfer direction */
1613 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1614 	    dma_dir == DMA_FROM_DEVICE)
1615 		qc->tf.feature |= ATAPI_DMADIR;
1616 
1617 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1618 	qc->dma_dir = dma_dir;
1619 	if (dma_dir != DMA_NONE) {
1620 		unsigned int i, buflen = 0;
1621 		struct scatterlist *sg;
1622 
1623 		for_each_sg(sgl, sg, n_elem, i)
1624 			buflen += sg->length;
1625 
1626 		ata_sg_init(qc, sgl, n_elem);
1627 		qc->nbytes = buflen;
1628 	}
1629 
1630 	qc->private_data = &wait;
1631 	qc->complete_fn = ata_qc_complete_internal;
1632 
1633 	ata_qc_issue(qc);
1634 
1635 	spin_unlock_irqrestore(ap->lock, flags);
1636 
1637 	if (!timeout) {
1638 		if (ata_probe_timeout)
1639 			timeout = ata_probe_timeout * 1000;
1640 		else {
1641 			timeout = ata_internal_cmd_timeout(dev, command);
1642 			auto_timeout = 1;
1643 		}
1644 	}
1645 
1646 	if (ap->ops->error_handler)
1647 		ata_eh_release(ap);
1648 
1649 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1650 
1651 	if (ap->ops->error_handler)
1652 		ata_eh_acquire(ap);
1653 
1654 	ata_sff_flush_pio_task(ap);
1655 
1656 	if (!rc) {
1657 		spin_lock_irqsave(ap->lock, flags);
1658 
1659 		/* We're racing with irq here.  If we lose, the
1660 		 * following test prevents us from completing the qc
1661 		 * twice.  If we win, the port is frozen and will be
1662 		 * cleaned up by ->post_internal_cmd().
1663 		 */
1664 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1665 			qc->err_mask |= AC_ERR_TIMEOUT;
1666 
1667 			if (ap->ops->error_handler)
1668 				ata_port_freeze(ap);
1669 			else
1670 				ata_qc_complete(qc);
1671 
1672 			if (ata_msg_warn(ap))
1673 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1674 					     command);
1675 		}
1676 
1677 		spin_unlock_irqrestore(ap->lock, flags);
1678 	}
1679 
1680 	/* do post_internal_cmd */
1681 	if (ap->ops->post_internal_cmd)
1682 		ap->ops->post_internal_cmd(qc);
1683 
1684 	/* perform minimal error analysis */
1685 	if (qc->flags & ATA_QCFLAG_FAILED) {
1686 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1687 			qc->err_mask |= AC_ERR_DEV;
1688 
1689 		if (!qc->err_mask)
1690 			qc->err_mask |= AC_ERR_OTHER;
1691 
1692 		if (qc->err_mask & ~AC_ERR_OTHER)
1693 			qc->err_mask &= ~AC_ERR_OTHER;
1694 	}
1695 
1696 	/* finish up */
1697 	spin_lock_irqsave(ap->lock, flags);
1698 
1699 	*tf = qc->result_tf;
1700 	err_mask = qc->err_mask;
1701 
1702 	ata_qc_free(qc);
1703 	link->active_tag = preempted_tag;
1704 	link->sactive = preempted_sactive;
1705 	ap->qc_active = preempted_qc_active;
1706 	ap->nr_active_links = preempted_nr_active_links;
1707 
1708 	spin_unlock_irqrestore(ap->lock, flags);
1709 
1710 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1711 		ata_internal_cmd_timed_out(dev, command);
1712 
1713 	return err_mask;
1714 }
1715 
1716 /**
1717  *	ata_exec_internal - execute libata internal command
1718  *	@dev: Device to which the command is sent
1719  *	@tf: Taskfile registers for the command and the result
1720  *	@cdb: CDB for packet command
1721  *	@dma_dir: Data transfer direction of the command
1722  *	@buf: Data buffer of the command
1723  *	@buflen: Length of data buffer
1724  *	@timeout: Timeout in msecs (0 for default)
1725  *
1726  *	Wrapper around ata_exec_internal_sg() which takes simple
1727  *	buffer instead of sg list.
1728  *
1729  *	LOCKING:
1730  *	None.  Should be called with kernel context, might sleep.
1731  *
1732  *	RETURNS:
1733  *	Zero on success, AC_ERR_* mask on failure
1734  */
1735 unsigned ata_exec_internal(struct ata_device *dev,
1736 			   struct ata_taskfile *tf, const u8 *cdb,
1737 			   int dma_dir, void *buf, unsigned int buflen,
1738 			   unsigned long timeout)
1739 {
1740 	struct scatterlist *psg = NULL, sg;
1741 	unsigned int n_elem = 0;
1742 
1743 	if (dma_dir != DMA_NONE) {
1744 		WARN_ON(!buf);
1745 		sg_init_one(&sg, buf, buflen);
1746 		psg = &sg;
1747 		n_elem++;
1748 	}
1749 
1750 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1751 				    timeout);
1752 }
1753 
1754 /**
1755  *	ata_pio_need_iordy	-	check if iordy needed
1756  *	@adev: ATA device
1757  *
1758  *	Check if the current speed of the device requires IORDY. Used
1759  *	by various controllers for chip configuration.
1760  */
1761 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1762 {
1763 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1764 	 * lead to controller lock up on certain controllers if the
1765 	 * port is not occupied.  See bko#11703 for details.
1766 	 */
1767 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1768 		return 0;
1769 	/* Controller doesn't support IORDY.  Probably a pointless
1770 	 * check as the caller should know this.
1771 	 */
1772 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1773 		return 0;
1774 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1775 	if (ata_id_is_cfa(adev->id)
1776 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1777 		return 0;
1778 	/* PIO3 and higher it is mandatory */
1779 	if (adev->pio_mode > XFER_PIO_2)
1780 		return 1;
1781 	/* We turn it on when possible */
1782 	if (ata_id_has_iordy(adev->id))
1783 		return 1;
1784 	return 0;
1785 }
1786 
1787 /**
1788  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1789  *	@adev: ATA device
1790  *
1791  *	Compute the highest mode possible if we are not using iordy. Return
1792  *	-1 if no iordy mode is available.
1793  */
1794 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1795 {
1796 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1797 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1798 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1799 		/* Is the speed faster than the drive allows non IORDY ? */
1800 		if (pio) {
1801 			/* This is cycle times not frequency - watch the logic! */
1802 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1803 				return 3 << ATA_SHIFT_PIO;
1804 			return 7 << ATA_SHIFT_PIO;
1805 		}
1806 	}
1807 	return 3 << ATA_SHIFT_PIO;
1808 }
1809 
1810 /**
1811  *	ata_do_dev_read_id		-	default ID read method
1812  *	@dev: device
1813  *	@tf: proposed taskfile
1814  *	@id: data buffer
1815  *
1816  *	Issue the identify taskfile and hand back the buffer containing
1817  *	identify data. For some RAID controllers and for pre ATA devices
1818  *	this function is wrapped or replaced by the driver
1819  */
1820 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1821 					struct ata_taskfile *tf, u16 *id)
1822 {
1823 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1824 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1825 }
1826 
1827 /**
1828  *	ata_dev_read_id - Read ID data from the specified device
1829  *	@dev: target device
1830  *	@p_class: pointer to class of the target device (may be changed)
1831  *	@flags: ATA_READID_* flags
1832  *	@id: buffer to read IDENTIFY data into
1833  *
1834  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1835  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1836  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1837  *	for pre-ATA4 drives.
1838  *
1839  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1840  *	now we abort if we hit that case.
1841  *
1842  *	LOCKING:
1843  *	Kernel thread context (may sleep)
1844  *
1845  *	RETURNS:
1846  *	0 on success, -errno otherwise.
1847  */
1848 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1849 		    unsigned int flags, u16 *id)
1850 {
1851 	struct ata_port *ap = dev->link->ap;
1852 	unsigned int class = *p_class;
1853 	struct ata_taskfile tf;
1854 	unsigned int err_mask = 0;
1855 	const char *reason;
1856 	bool is_semb = class == ATA_DEV_SEMB;
1857 	int may_fallback = 1, tried_spinup = 0;
1858 	int rc;
1859 
1860 	if (ata_msg_ctl(ap))
1861 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1862 
1863 retry:
1864 	ata_tf_init(dev, &tf);
1865 
1866 	switch (class) {
1867 	case ATA_DEV_SEMB:
1868 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1869 	case ATA_DEV_ATA:
1870 	case ATA_DEV_ZAC:
1871 		tf.command = ATA_CMD_ID_ATA;
1872 		break;
1873 	case ATA_DEV_ATAPI:
1874 		tf.command = ATA_CMD_ID_ATAPI;
1875 		break;
1876 	default:
1877 		rc = -ENODEV;
1878 		reason = "unsupported class";
1879 		goto err_out;
1880 	}
1881 
1882 	tf.protocol = ATA_PROT_PIO;
1883 
1884 	/* Some devices choke if TF registers contain garbage.  Make
1885 	 * sure those are properly initialized.
1886 	 */
1887 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1888 
1889 	/* Device presence detection is unreliable on some
1890 	 * controllers.  Always poll IDENTIFY if available.
1891 	 */
1892 	tf.flags |= ATA_TFLAG_POLLING;
1893 
1894 	if (ap->ops->read_id)
1895 		err_mask = ap->ops->read_id(dev, &tf, id);
1896 	else
1897 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1898 
1899 	if (err_mask) {
1900 		if (err_mask & AC_ERR_NODEV_HINT) {
1901 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1902 			return -ENOENT;
1903 		}
1904 
1905 		if (is_semb) {
1906 			ata_dev_info(dev,
1907 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1908 			/* SEMB is not supported yet */
1909 			*p_class = ATA_DEV_SEMB_UNSUP;
1910 			return 0;
1911 		}
1912 
1913 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1914 			/* Device or controller might have reported
1915 			 * the wrong device class.  Give a shot at the
1916 			 * other IDENTIFY if the current one is
1917 			 * aborted by the device.
1918 			 */
1919 			if (may_fallback) {
1920 				may_fallback = 0;
1921 
1922 				if (class == ATA_DEV_ATA)
1923 					class = ATA_DEV_ATAPI;
1924 				else
1925 					class = ATA_DEV_ATA;
1926 				goto retry;
1927 			}
1928 
1929 			/* Control reaches here iff the device aborted
1930 			 * both flavors of IDENTIFYs which happens
1931 			 * sometimes with phantom devices.
1932 			 */
1933 			ata_dev_dbg(dev,
1934 				    "both IDENTIFYs aborted, assuming NODEV\n");
1935 			return -ENOENT;
1936 		}
1937 
1938 		rc = -EIO;
1939 		reason = "I/O error";
1940 		goto err_out;
1941 	}
1942 
1943 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1944 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1945 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1946 			    class, may_fallback, tried_spinup);
1947 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1948 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1949 	}
1950 
1951 	/* Falling back doesn't make sense if ID data was read
1952 	 * successfully at least once.
1953 	 */
1954 	may_fallback = 0;
1955 
1956 	swap_buf_le16(id, ATA_ID_WORDS);
1957 
1958 	/* sanity check */
1959 	rc = -EINVAL;
1960 	reason = "device reports invalid type";
1961 
1962 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1963 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1964 			goto err_out;
1965 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1966 							ata_id_is_ata(id)) {
1967 			ata_dev_dbg(dev,
1968 				"host indicates ignore ATA devices, ignored\n");
1969 			return -ENOENT;
1970 		}
1971 	} else {
1972 		if (ata_id_is_ata(id))
1973 			goto err_out;
1974 	}
1975 
1976 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1977 		tried_spinup = 1;
1978 		/*
1979 		 * Drive powered-up in standby mode, and requires a specific
1980 		 * SET_FEATURES spin-up subcommand before it will accept
1981 		 * anything other than the original IDENTIFY command.
1982 		 */
1983 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1984 		if (err_mask && id[2] != 0x738c) {
1985 			rc = -EIO;
1986 			reason = "SPINUP failed";
1987 			goto err_out;
1988 		}
1989 		/*
1990 		 * If the drive initially returned incomplete IDENTIFY info,
1991 		 * we now must reissue the IDENTIFY command.
1992 		 */
1993 		if (id[2] == 0x37c8)
1994 			goto retry;
1995 	}
1996 
1997 	if ((flags & ATA_READID_POSTRESET) &&
1998 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1999 		/*
2000 		 * The exact sequence expected by certain pre-ATA4 drives is:
2001 		 * SRST RESET
2002 		 * IDENTIFY (optional in early ATA)
2003 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2004 		 * anything else..
2005 		 * Some drives were very specific about that exact sequence.
2006 		 *
2007 		 * Note that ATA4 says lba is mandatory so the second check
2008 		 * should never trigger.
2009 		 */
2010 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2011 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2012 			if (err_mask) {
2013 				rc = -EIO;
2014 				reason = "INIT_DEV_PARAMS failed";
2015 				goto err_out;
2016 			}
2017 
2018 			/* current CHS translation info (id[53-58]) might be
2019 			 * changed. reread the identify device info.
2020 			 */
2021 			flags &= ~ATA_READID_POSTRESET;
2022 			goto retry;
2023 		}
2024 	}
2025 
2026 	*p_class = class;
2027 
2028 	return 0;
2029 
2030  err_out:
2031 	if (ata_msg_warn(ap))
2032 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2033 			     reason, err_mask);
2034 	return rc;
2035 }
2036 
2037 static int ata_do_link_spd_horkage(struct ata_device *dev)
2038 {
2039 	struct ata_link *plink = ata_dev_phys_link(dev);
2040 	u32 target, target_limit;
2041 
2042 	if (!sata_scr_valid(plink))
2043 		return 0;
2044 
2045 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2046 		target = 1;
2047 	else
2048 		return 0;
2049 
2050 	target_limit = (1 << target) - 1;
2051 
2052 	/* if already on stricter limit, no need to push further */
2053 	if (plink->sata_spd_limit <= target_limit)
2054 		return 0;
2055 
2056 	plink->sata_spd_limit = target_limit;
2057 
2058 	/* Request another EH round by returning -EAGAIN if link is
2059 	 * going faster than the target speed.  Forward progress is
2060 	 * guaranteed by setting sata_spd_limit to target_limit above.
2061 	 */
2062 	if (plink->sata_spd > target) {
2063 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2064 			     sata_spd_string(target));
2065 		return -EAGAIN;
2066 	}
2067 	return 0;
2068 }
2069 
2070 static inline u8 ata_dev_knobble(struct ata_device *dev)
2071 {
2072 	struct ata_port *ap = dev->link->ap;
2073 
2074 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2075 		return 0;
2076 
2077 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2078 }
2079 
2080 static int ata_dev_config_ncq(struct ata_device *dev,
2081 			       char *desc, size_t desc_sz)
2082 {
2083 	struct ata_port *ap = dev->link->ap;
2084 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2085 	unsigned int err_mask;
2086 	char *aa_desc = "";
2087 
2088 	if (!ata_id_has_ncq(dev->id)) {
2089 		desc[0] = '\0';
2090 		return 0;
2091 	}
2092 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2093 		snprintf(desc, desc_sz, "NCQ (not used)");
2094 		return 0;
2095 	}
2096 	if (ap->flags & ATA_FLAG_NCQ) {
2097 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2098 		dev->flags |= ATA_DFLAG_NCQ;
2099 	}
2100 
2101 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2102 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2103 		ata_id_has_fpdma_aa(dev->id)) {
2104 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2105 			SATA_FPDMA_AA);
2106 		if (err_mask) {
2107 			ata_dev_err(dev,
2108 				    "failed to enable AA (error_mask=0x%x)\n",
2109 				    err_mask);
2110 			if (err_mask != AC_ERR_DEV) {
2111 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2112 				return -EIO;
2113 			}
2114 		} else
2115 			aa_desc = ", AA";
2116 	}
2117 
2118 	if (hdepth >= ddepth)
2119 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2120 	else
2121 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2122 			ddepth, aa_desc);
2123 
2124 	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2125 	    ata_id_has_ncq_send_and_recv(dev->id)) {
2126 		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2127 					     0, ap->sector_buf, 1);
2128 		if (err_mask) {
2129 			ata_dev_dbg(dev,
2130 				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2131 				    err_mask);
2132 		} else {
2133 			u8 *cmds = dev->ncq_send_recv_cmds;
2134 
2135 			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2136 			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2137 
2138 			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2139 				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2140 				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2141 					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2142 			}
2143 		}
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2151  *	@dev: Target device to configure
2152  *
2153  *	Configure @dev according to @dev->id.  Generic and low-level
2154  *	driver specific fixups are also applied.
2155  *
2156  *	LOCKING:
2157  *	Kernel thread context (may sleep)
2158  *
2159  *	RETURNS:
2160  *	0 on success, -errno otherwise
2161  */
2162 int ata_dev_configure(struct ata_device *dev)
2163 {
2164 	struct ata_port *ap = dev->link->ap;
2165 	struct ata_eh_context *ehc = &dev->link->eh_context;
2166 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2167 	const u16 *id = dev->id;
2168 	unsigned long xfer_mask;
2169 	unsigned int err_mask;
2170 	char revbuf[7];		/* XYZ-99\0 */
2171 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2172 	char modelbuf[ATA_ID_PROD_LEN+1];
2173 	int rc;
2174 
2175 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2176 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2177 		return 0;
2178 	}
2179 
2180 	if (ata_msg_probe(ap))
2181 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2182 
2183 	/* set horkage */
2184 	dev->horkage |= ata_dev_blacklisted(dev);
2185 	ata_force_horkage(dev);
2186 
2187 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2188 		ata_dev_info(dev, "unsupported device, disabling\n");
2189 		ata_dev_disable(dev);
2190 		return 0;
2191 	}
2192 
2193 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2194 	    dev->class == ATA_DEV_ATAPI) {
2195 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2196 			     atapi_enabled ? "not supported with this driver"
2197 			     : "disabled");
2198 		ata_dev_disable(dev);
2199 		return 0;
2200 	}
2201 
2202 	rc = ata_do_link_spd_horkage(dev);
2203 	if (rc)
2204 		return rc;
2205 
2206 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2207 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2208 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2209 		dev->horkage |= ATA_HORKAGE_NOLPM;
2210 
2211 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2212 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2213 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2214 	}
2215 
2216 	/* let ACPI work its magic */
2217 	rc = ata_acpi_on_devcfg(dev);
2218 	if (rc)
2219 		return rc;
2220 
2221 	/* massage HPA, do it early as it might change IDENTIFY data */
2222 	rc = ata_hpa_resize(dev);
2223 	if (rc)
2224 		return rc;
2225 
2226 	/* print device capabilities */
2227 	if (ata_msg_probe(ap))
2228 		ata_dev_dbg(dev,
2229 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2230 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2231 			    __func__,
2232 			    id[49], id[82], id[83], id[84],
2233 			    id[85], id[86], id[87], id[88]);
2234 
2235 	/* initialize to-be-configured parameters */
2236 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2237 	dev->max_sectors = 0;
2238 	dev->cdb_len = 0;
2239 	dev->n_sectors = 0;
2240 	dev->cylinders = 0;
2241 	dev->heads = 0;
2242 	dev->sectors = 0;
2243 	dev->multi_count = 0;
2244 
2245 	/*
2246 	 * common ATA, ATAPI feature tests
2247 	 */
2248 
2249 	/* find max transfer mode; for printk only */
2250 	xfer_mask = ata_id_xfermask(id);
2251 
2252 	if (ata_msg_probe(ap))
2253 		ata_dump_id(id);
2254 
2255 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2256 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2257 			sizeof(fwrevbuf));
2258 
2259 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2260 			sizeof(modelbuf));
2261 
2262 	/* ATA-specific feature tests */
2263 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2264 		if (ata_id_is_cfa(id)) {
2265 			/* CPRM may make this media unusable */
2266 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2267 				ata_dev_warn(dev,
2268 	"supports DRM functions and may not be fully accessible\n");
2269 			snprintf(revbuf, 7, "CFA");
2270 		} else {
2271 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2272 			/* Warn the user if the device has TPM extensions */
2273 			if (ata_id_has_tpm(id))
2274 				ata_dev_warn(dev,
2275 	"supports DRM functions and may not be fully accessible\n");
2276 		}
2277 
2278 		dev->n_sectors = ata_id_n_sectors(id);
2279 
2280 		/* get current R/W Multiple count setting */
2281 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2282 			unsigned int max = dev->id[47] & 0xff;
2283 			unsigned int cnt = dev->id[59] & 0xff;
2284 			/* only recognize/allow powers of two here */
2285 			if (is_power_of_2(max) && is_power_of_2(cnt))
2286 				if (cnt <= max)
2287 					dev->multi_count = cnt;
2288 		}
2289 
2290 		if (ata_id_has_lba(id)) {
2291 			const char *lba_desc;
2292 			char ncq_desc[24];
2293 
2294 			lba_desc = "LBA";
2295 			dev->flags |= ATA_DFLAG_LBA;
2296 			if (ata_id_has_lba48(id)) {
2297 				dev->flags |= ATA_DFLAG_LBA48;
2298 				lba_desc = "LBA48";
2299 
2300 				if (dev->n_sectors >= (1UL << 28) &&
2301 				    ata_id_has_flush_ext(id))
2302 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2303 			}
2304 
2305 			/* config NCQ */
2306 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2307 			if (rc)
2308 				return rc;
2309 
2310 			/* print device info to dmesg */
2311 			if (ata_msg_drv(ap) && print_info) {
2312 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2313 					     revbuf, modelbuf, fwrevbuf,
2314 					     ata_mode_string(xfer_mask));
2315 				ata_dev_info(dev,
2316 					     "%llu sectors, multi %u: %s %s\n",
2317 					(unsigned long long)dev->n_sectors,
2318 					dev->multi_count, lba_desc, ncq_desc);
2319 			}
2320 		} else {
2321 			/* CHS */
2322 
2323 			/* Default translation */
2324 			dev->cylinders	= id[1];
2325 			dev->heads	= id[3];
2326 			dev->sectors	= id[6];
2327 
2328 			if (ata_id_current_chs_valid(id)) {
2329 				/* Current CHS translation is valid. */
2330 				dev->cylinders = id[54];
2331 				dev->heads     = id[55];
2332 				dev->sectors   = id[56];
2333 			}
2334 
2335 			/* print device info to dmesg */
2336 			if (ata_msg_drv(ap) && print_info) {
2337 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2338 					     revbuf,	modelbuf, fwrevbuf,
2339 					     ata_mode_string(xfer_mask));
2340 				ata_dev_info(dev,
2341 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2342 					     (unsigned long long)dev->n_sectors,
2343 					     dev->multi_count, dev->cylinders,
2344 					     dev->heads, dev->sectors);
2345 			}
2346 		}
2347 
2348 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2349 		 * from SATA Settings page of Identify Device Data Log.
2350 		 */
2351 		if (ata_id_has_devslp(dev->id)) {
2352 			u8 *sata_setting = ap->sector_buf;
2353 			int i, j;
2354 
2355 			dev->flags |= ATA_DFLAG_DEVSLP;
2356 			err_mask = ata_read_log_page(dev,
2357 						     ATA_LOG_SATA_ID_DEV_DATA,
2358 						     ATA_LOG_SATA_SETTINGS,
2359 						     sata_setting,
2360 						     1);
2361 			if (err_mask)
2362 				ata_dev_dbg(dev,
2363 					    "failed to get Identify Device Data, Emask 0x%x\n",
2364 					    err_mask);
2365 			else
2366 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2367 					j = ATA_LOG_DEVSLP_OFFSET + i;
2368 					dev->devslp_timing[i] = sata_setting[j];
2369 				}
2370 		}
2371 
2372 		dev->cdb_len = 16;
2373 	}
2374 
2375 	/* ATAPI-specific feature tests */
2376 	else if (dev->class == ATA_DEV_ATAPI) {
2377 		const char *cdb_intr_string = "";
2378 		const char *atapi_an_string = "";
2379 		const char *dma_dir_string = "";
2380 		u32 sntf;
2381 
2382 		rc = atapi_cdb_len(id);
2383 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2384 			if (ata_msg_warn(ap))
2385 				ata_dev_warn(dev, "unsupported CDB len\n");
2386 			rc = -EINVAL;
2387 			goto err_out_nosup;
2388 		}
2389 		dev->cdb_len = (unsigned int) rc;
2390 
2391 		/* Enable ATAPI AN if both the host and device have
2392 		 * the support.  If PMP is attached, SNTF is required
2393 		 * to enable ATAPI AN to discern between PHY status
2394 		 * changed notifications and ATAPI ANs.
2395 		 */
2396 		if (atapi_an &&
2397 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2398 		    (!sata_pmp_attached(ap) ||
2399 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2400 			/* issue SET feature command to turn this on */
2401 			err_mask = ata_dev_set_feature(dev,
2402 					SETFEATURES_SATA_ENABLE, SATA_AN);
2403 			if (err_mask)
2404 				ata_dev_err(dev,
2405 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2406 					    err_mask);
2407 			else {
2408 				dev->flags |= ATA_DFLAG_AN;
2409 				atapi_an_string = ", ATAPI AN";
2410 			}
2411 		}
2412 
2413 		if (ata_id_cdb_intr(dev->id)) {
2414 			dev->flags |= ATA_DFLAG_CDB_INTR;
2415 			cdb_intr_string = ", CDB intr";
2416 		}
2417 
2418 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2419 			dev->flags |= ATA_DFLAG_DMADIR;
2420 			dma_dir_string = ", DMADIR";
2421 		}
2422 
2423 		if (ata_id_has_da(dev->id)) {
2424 			dev->flags |= ATA_DFLAG_DA;
2425 			zpodd_init(dev);
2426 		}
2427 
2428 		/* print device info to dmesg */
2429 		if (ata_msg_drv(ap) && print_info)
2430 			ata_dev_info(dev,
2431 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2432 				     modelbuf, fwrevbuf,
2433 				     ata_mode_string(xfer_mask),
2434 				     cdb_intr_string, atapi_an_string,
2435 				     dma_dir_string);
2436 	}
2437 
2438 	/* determine max_sectors */
2439 	dev->max_sectors = ATA_MAX_SECTORS;
2440 	if (dev->flags & ATA_DFLAG_LBA48)
2441 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2442 
2443 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2444 	   200 sectors */
2445 	if (ata_dev_knobble(dev)) {
2446 		if (ata_msg_drv(ap) && print_info)
2447 			ata_dev_info(dev, "applying bridge limits\n");
2448 		dev->udma_mask &= ATA_UDMA5;
2449 		dev->max_sectors = ATA_MAX_SECTORS;
2450 	}
2451 
2452 	if ((dev->class == ATA_DEV_ATAPI) &&
2453 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2454 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2455 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2456 	}
2457 
2458 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2459 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2460 					 dev->max_sectors);
2461 
2462 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2463 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2464 
2465 	if (ap->ops->dev_config)
2466 		ap->ops->dev_config(dev);
2467 
2468 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2469 		/* Let the user know. We don't want to disallow opens for
2470 		   rescue purposes, or in case the vendor is just a blithering
2471 		   idiot. Do this after the dev_config call as some controllers
2472 		   with buggy firmware may want to avoid reporting false device
2473 		   bugs */
2474 
2475 		if (print_info) {
2476 			ata_dev_warn(dev,
2477 "Drive reports diagnostics failure. This may indicate a drive\n");
2478 			ata_dev_warn(dev,
2479 "fault or invalid emulation. Contact drive vendor for information.\n");
2480 		}
2481 	}
2482 
2483 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2484 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2485 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2486 	}
2487 
2488 	return 0;
2489 
2490 err_out_nosup:
2491 	if (ata_msg_probe(ap))
2492 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2493 	return rc;
2494 }
2495 
2496 /**
2497  *	ata_cable_40wire	-	return 40 wire cable type
2498  *	@ap: port
2499  *
2500  *	Helper method for drivers which want to hardwire 40 wire cable
2501  *	detection.
2502  */
2503 
2504 int ata_cable_40wire(struct ata_port *ap)
2505 {
2506 	return ATA_CBL_PATA40;
2507 }
2508 
2509 /**
2510  *	ata_cable_80wire	-	return 80 wire cable type
2511  *	@ap: port
2512  *
2513  *	Helper method for drivers which want to hardwire 80 wire cable
2514  *	detection.
2515  */
2516 
2517 int ata_cable_80wire(struct ata_port *ap)
2518 {
2519 	return ATA_CBL_PATA80;
2520 }
2521 
2522 /**
2523  *	ata_cable_unknown	-	return unknown PATA cable.
2524  *	@ap: port
2525  *
2526  *	Helper method for drivers which have no PATA cable detection.
2527  */
2528 
2529 int ata_cable_unknown(struct ata_port *ap)
2530 {
2531 	return ATA_CBL_PATA_UNK;
2532 }
2533 
2534 /**
2535  *	ata_cable_ignore	-	return ignored PATA cable.
2536  *	@ap: port
2537  *
2538  *	Helper method for drivers which don't use cable type to limit
2539  *	transfer mode.
2540  */
2541 int ata_cable_ignore(struct ata_port *ap)
2542 {
2543 	return ATA_CBL_PATA_IGN;
2544 }
2545 
2546 /**
2547  *	ata_cable_sata	-	return SATA cable type
2548  *	@ap: port
2549  *
2550  *	Helper method for drivers which have SATA cables
2551  */
2552 
2553 int ata_cable_sata(struct ata_port *ap)
2554 {
2555 	return ATA_CBL_SATA;
2556 }
2557 
2558 /**
2559  *	ata_bus_probe - Reset and probe ATA bus
2560  *	@ap: Bus to probe
2561  *
2562  *	Master ATA bus probing function.  Initiates a hardware-dependent
2563  *	bus reset, then attempts to identify any devices found on
2564  *	the bus.
2565  *
2566  *	LOCKING:
2567  *	PCI/etc. bus probe sem.
2568  *
2569  *	RETURNS:
2570  *	Zero on success, negative errno otherwise.
2571  */
2572 
2573 int ata_bus_probe(struct ata_port *ap)
2574 {
2575 	unsigned int classes[ATA_MAX_DEVICES];
2576 	int tries[ATA_MAX_DEVICES];
2577 	int rc;
2578 	struct ata_device *dev;
2579 
2580 	ata_for_each_dev(dev, &ap->link, ALL)
2581 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2582 
2583  retry:
2584 	ata_for_each_dev(dev, &ap->link, ALL) {
2585 		/* If we issue an SRST then an ATA drive (not ATAPI)
2586 		 * may change configuration and be in PIO0 timing. If
2587 		 * we do a hard reset (or are coming from power on)
2588 		 * this is true for ATA or ATAPI. Until we've set a
2589 		 * suitable controller mode we should not touch the
2590 		 * bus as we may be talking too fast.
2591 		 */
2592 		dev->pio_mode = XFER_PIO_0;
2593 		dev->dma_mode = 0xff;
2594 
2595 		/* If the controller has a pio mode setup function
2596 		 * then use it to set the chipset to rights. Don't
2597 		 * touch the DMA setup as that will be dealt with when
2598 		 * configuring devices.
2599 		 */
2600 		if (ap->ops->set_piomode)
2601 			ap->ops->set_piomode(ap, dev);
2602 	}
2603 
2604 	/* reset and determine device classes */
2605 	ap->ops->phy_reset(ap);
2606 
2607 	ata_for_each_dev(dev, &ap->link, ALL) {
2608 		if (dev->class != ATA_DEV_UNKNOWN)
2609 			classes[dev->devno] = dev->class;
2610 		else
2611 			classes[dev->devno] = ATA_DEV_NONE;
2612 
2613 		dev->class = ATA_DEV_UNKNOWN;
2614 	}
2615 
2616 	/* read IDENTIFY page and configure devices. We have to do the identify
2617 	   specific sequence bass-ackwards so that PDIAG- is released by
2618 	   the slave device */
2619 
2620 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2621 		if (tries[dev->devno])
2622 			dev->class = classes[dev->devno];
2623 
2624 		if (!ata_dev_enabled(dev))
2625 			continue;
2626 
2627 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2628 				     dev->id);
2629 		if (rc)
2630 			goto fail;
2631 	}
2632 
2633 	/* Now ask for the cable type as PDIAG- should have been released */
2634 	if (ap->ops->cable_detect)
2635 		ap->cbl = ap->ops->cable_detect(ap);
2636 
2637 	/* We may have SATA bridge glue hiding here irrespective of
2638 	 * the reported cable types and sensed types.  When SATA
2639 	 * drives indicate we have a bridge, we don't know which end
2640 	 * of the link the bridge is which is a problem.
2641 	 */
2642 	ata_for_each_dev(dev, &ap->link, ENABLED)
2643 		if (ata_id_is_sata(dev->id))
2644 			ap->cbl = ATA_CBL_SATA;
2645 
2646 	/* After the identify sequence we can now set up the devices. We do
2647 	   this in the normal order so that the user doesn't get confused */
2648 
2649 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2650 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2651 		rc = ata_dev_configure(dev);
2652 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2653 		if (rc)
2654 			goto fail;
2655 	}
2656 
2657 	/* configure transfer mode */
2658 	rc = ata_set_mode(&ap->link, &dev);
2659 	if (rc)
2660 		goto fail;
2661 
2662 	ata_for_each_dev(dev, &ap->link, ENABLED)
2663 		return 0;
2664 
2665 	return -ENODEV;
2666 
2667  fail:
2668 	tries[dev->devno]--;
2669 
2670 	switch (rc) {
2671 	case -EINVAL:
2672 		/* eeek, something went very wrong, give up */
2673 		tries[dev->devno] = 0;
2674 		break;
2675 
2676 	case -ENODEV:
2677 		/* give it just one more chance */
2678 		tries[dev->devno] = min(tries[dev->devno], 1);
2679 	case -EIO:
2680 		if (tries[dev->devno] == 1) {
2681 			/* This is the last chance, better to slow
2682 			 * down than lose it.
2683 			 */
2684 			sata_down_spd_limit(&ap->link, 0);
2685 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2686 		}
2687 	}
2688 
2689 	if (!tries[dev->devno])
2690 		ata_dev_disable(dev);
2691 
2692 	goto retry;
2693 }
2694 
2695 /**
2696  *	sata_print_link_status - Print SATA link status
2697  *	@link: SATA link to printk link status about
2698  *
2699  *	This function prints link speed and status of a SATA link.
2700  *
2701  *	LOCKING:
2702  *	None.
2703  */
2704 static void sata_print_link_status(struct ata_link *link)
2705 {
2706 	u32 sstatus, scontrol, tmp;
2707 
2708 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2709 		return;
2710 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2711 
2712 	if (ata_phys_link_online(link)) {
2713 		tmp = (sstatus >> 4) & 0xf;
2714 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2715 			      sata_spd_string(tmp), sstatus, scontrol);
2716 	} else {
2717 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2718 			      sstatus, scontrol);
2719 	}
2720 }
2721 
2722 /**
2723  *	ata_dev_pair		-	return other device on cable
2724  *	@adev: device
2725  *
2726  *	Obtain the other device on the same cable, or if none is
2727  *	present NULL is returned
2728  */
2729 
2730 struct ata_device *ata_dev_pair(struct ata_device *adev)
2731 {
2732 	struct ata_link *link = adev->link;
2733 	struct ata_device *pair = &link->device[1 - adev->devno];
2734 	if (!ata_dev_enabled(pair))
2735 		return NULL;
2736 	return pair;
2737 }
2738 
2739 /**
2740  *	sata_down_spd_limit - adjust SATA spd limit downward
2741  *	@link: Link to adjust SATA spd limit for
2742  *	@spd_limit: Additional limit
2743  *
2744  *	Adjust SATA spd limit of @link downward.  Note that this
2745  *	function only adjusts the limit.  The change must be applied
2746  *	using sata_set_spd().
2747  *
2748  *	If @spd_limit is non-zero, the speed is limited to equal to or
2749  *	lower than @spd_limit if such speed is supported.  If
2750  *	@spd_limit is slower than any supported speed, only the lowest
2751  *	supported speed is allowed.
2752  *
2753  *	LOCKING:
2754  *	Inherited from caller.
2755  *
2756  *	RETURNS:
2757  *	0 on success, negative errno on failure
2758  */
2759 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2760 {
2761 	u32 sstatus, spd, mask;
2762 	int rc, bit;
2763 
2764 	if (!sata_scr_valid(link))
2765 		return -EOPNOTSUPP;
2766 
2767 	/* If SCR can be read, use it to determine the current SPD.
2768 	 * If not, use cached value in link->sata_spd.
2769 	 */
2770 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2771 	if (rc == 0 && ata_sstatus_online(sstatus))
2772 		spd = (sstatus >> 4) & 0xf;
2773 	else
2774 		spd = link->sata_spd;
2775 
2776 	mask = link->sata_spd_limit;
2777 	if (mask <= 1)
2778 		return -EINVAL;
2779 
2780 	/* unconditionally mask off the highest bit */
2781 	bit = fls(mask) - 1;
2782 	mask &= ~(1 << bit);
2783 
2784 	/* Mask off all speeds higher than or equal to the current
2785 	 * one.  Force 1.5Gbps if current SPD is not available.
2786 	 */
2787 	if (spd > 1)
2788 		mask &= (1 << (spd - 1)) - 1;
2789 	else
2790 		mask &= 1;
2791 
2792 	/* were we already at the bottom? */
2793 	if (!mask)
2794 		return -EINVAL;
2795 
2796 	if (spd_limit) {
2797 		if (mask & ((1 << spd_limit) - 1))
2798 			mask &= (1 << spd_limit) - 1;
2799 		else {
2800 			bit = ffs(mask) - 1;
2801 			mask = 1 << bit;
2802 		}
2803 	}
2804 
2805 	link->sata_spd_limit = mask;
2806 
2807 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2808 		      sata_spd_string(fls(mask)));
2809 
2810 	return 0;
2811 }
2812 
2813 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2814 {
2815 	struct ata_link *host_link = &link->ap->link;
2816 	u32 limit, target, spd;
2817 
2818 	limit = link->sata_spd_limit;
2819 
2820 	/* Don't configure downstream link faster than upstream link.
2821 	 * It doesn't speed up anything and some PMPs choke on such
2822 	 * configuration.
2823 	 */
2824 	if (!ata_is_host_link(link) && host_link->sata_spd)
2825 		limit &= (1 << host_link->sata_spd) - 1;
2826 
2827 	if (limit == UINT_MAX)
2828 		target = 0;
2829 	else
2830 		target = fls(limit);
2831 
2832 	spd = (*scontrol >> 4) & 0xf;
2833 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2834 
2835 	return spd != target;
2836 }
2837 
2838 /**
2839  *	sata_set_spd_needed - is SATA spd configuration needed
2840  *	@link: Link in question
2841  *
2842  *	Test whether the spd limit in SControl matches
2843  *	@link->sata_spd_limit.  This function is used to determine
2844  *	whether hardreset is necessary to apply SATA spd
2845  *	configuration.
2846  *
2847  *	LOCKING:
2848  *	Inherited from caller.
2849  *
2850  *	RETURNS:
2851  *	1 if SATA spd configuration is needed, 0 otherwise.
2852  */
2853 static int sata_set_spd_needed(struct ata_link *link)
2854 {
2855 	u32 scontrol;
2856 
2857 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2858 		return 1;
2859 
2860 	return __sata_set_spd_needed(link, &scontrol);
2861 }
2862 
2863 /**
2864  *	sata_set_spd - set SATA spd according to spd limit
2865  *	@link: Link to set SATA spd for
2866  *
2867  *	Set SATA spd of @link according to sata_spd_limit.
2868  *
2869  *	LOCKING:
2870  *	Inherited from caller.
2871  *
2872  *	RETURNS:
2873  *	0 if spd doesn't need to be changed, 1 if spd has been
2874  *	changed.  Negative errno if SCR registers are inaccessible.
2875  */
2876 int sata_set_spd(struct ata_link *link)
2877 {
2878 	u32 scontrol;
2879 	int rc;
2880 
2881 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2882 		return rc;
2883 
2884 	if (!__sata_set_spd_needed(link, &scontrol))
2885 		return 0;
2886 
2887 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2888 		return rc;
2889 
2890 	return 1;
2891 }
2892 
2893 /*
2894  * This mode timing computation functionality is ported over from
2895  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2896  */
2897 /*
2898  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2899  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2900  * for UDMA6, which is currently supported only by Maxtor drives.
2901  *
2902  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2903  */
2904 
2905 static const struct ata_timing ata_timing[] = {
2906 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2907 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2908 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2909 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2910 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2911 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2912 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2913 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2914 
2915 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2916 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2917 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2918 
2919 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2920 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2921 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2922 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2923 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2924 
2925 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2926 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2927 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2928 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2929 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2930 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2931 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2932 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2933 
2934 	{ 0xFF }
2935 };
2936 
2937 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2938 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2939 
2940 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2941 {
2942 	q->setup	= EZ(t->setup      * 1000,  T);
2943 	q->act8b	= EZ(t->act8b      * 1000,  T);
2944 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2945 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2946 	q->active	= EZ(t->active     * 1000,  T);
2947 	q->recover	= EZ(t->recover    * 1000,  T);
2948 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2949 	q->cycle	= EZ(t->cycle      * 1000,  T);
2950 	q->udma		= EZ(t->udma       * 1000, UT);
2951 }
2952 
2953 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2954 		      struct ata_timing *m, unsigned int what)
2955 {
2956 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2957 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2958 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2959 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2960 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2961 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2962 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2963 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2964 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2965 }
2966 
2967 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2968 {
2969 	const struct ata_timing *t = ata_timing;
2970 
2971 	while (xfer_mode > t->mode)
2972 		t++;
2973 
2974 	if (xfer_mode == t->mode)
2975 		return t;
2976 
2977 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2978 			__func__, xfer_mode);
2979 
2980 	return NULL;
2981 }
2982 
2983 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2984 		       struct ata_timing *t, int T, int UT)
2985 {
2986 	const u16 *id = adev->id;
2987 	const struct ata_timing *s;
2988 	struct ata_timing p;
2989 
2990 	/*
2991 	 * Find the mode.
2992 	 */
2993 
2994 	if (!(s = ata_timing_find_mode(speed)))
2995 		return -EINVAL;
2996 
2997 	memcpy(t, s, sizeof(*s));
2998 
2999 	/*
3000 	 * If the drive is an EIDE drive, it can tell us it needs extended
3001 	 * PIO/MW_DMA cycle timing.
3002 	 */
3003 
3004 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3005 		memset(&p, 0, sizeof(p));
3006 
3007 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3008 			if (speed <= XFER_PIO_2)
3009 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3010 			else if ((speed <= XFER_PIO_4) ||
3011 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3012 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3013 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3014 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3015 
3016 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3017 	}
3018 
3019 	/*
3020 	 * Convert the timing to bus clock counts.
3021 	 */
3022 
3023 	ata_timing_quantize(t, t, T, UT);
3024 
3025 	/*
3026 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3027 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3028 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3029 	 */
3030 
3031 	if (speed > XFER_PIO_6) {
3032 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3033 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3034 	}
3035 
3036 	/*
3037 	 * Lengthen active & recovery time so that cycle time is correct.
3038 	 */
3039 
3040 	if (t->act8b + t->rec8b < t->cyc8b) {
3041 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3042 		t->rec8b = t->cyc8b - t->act8b;
3043 	}
3044 
3045 	if (t->active + t->recover < t->cycle) {
3046 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3047 		t->recover = t->cycle - t->active;
3048 	}
3049 
3050 	/* In a few cases quantisation may produce enough errors to
3051 	   leave t->cycle too low for the sum of active and recovery
3052 	   if so we must correct this */
3053 	if (t->active + t->recover > t->cycle)
3054 		t->cycle = t->active + t->recover;
3055 
3056 	return 0;
3057 }
3058 
3059 /**
3060  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3061  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3062  *	@cycle: cycle duration in ns
3063  *
3064  *	Return matching xfer mode for @cycle.  The returned mode is of
3065  *	the transfer type specified by @xfer_shift.  If @cycle is too
3066  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3067  *	than the fastest known mode, the fasted mode is returned.
3068  *
3069  *	LOCKING:
3070  *	None.
3071  *
3072  *	RETURNS:
3073  *	Matching xfer_mode, 0xff if no match found.
3074  */
3075 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3076 {
3077 	u8 base_mode = 0xff, last_mode = 0xff;
3078 	const struct ata_xfer_ent *ent;
3079 	const struct ata_timing *t;
3080 
3081 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3082 		if (ent->shift == xfer_shift)
3083 			base_mode = ent->base;
3084 
3085 	for (t = ata_timing_find_mode(base_mode);
3086 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3087 		unsigned short this_cycle;
3088 
3089 		switch (xfer_shift) {
3090 		case ATA_SHIFT_PIO:
3091 		case ATA_SHIFT_MWDMA:
3092 			this_cycle = t->cycle;
3093 			break;
3094 		case ATA_SHIFT_UDMA:
3095 			this_cycle = t->udma;
3096 			break;
3097 		default:
3098 			return 0xff;
3099 		}
3100 
3101 		if (cycle > this_cycle)
3102 			break;
3103 
3104 		last_mode = t->mode;
3105 	}
3106 
3107 	return last_mode;
3108 }
3109 
3110 /**
3111  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3112  *	@dev: Device to adjust xfer masks
3113  *	@sel: ATA_DNXFER_* selector
3114  *
3115  *	Adjust xfer masks of @dev downward.  Note that this function
3116  *	does not apply the change.  Invoking ata_set_mode() afterwards
3117  *	will apply the limit.
3118  *
3119  *	LOCKING:
3120  *	Inherited from caller.
3121  *
3122  *	RETURNS:
3123  *	0 on success, negative errno on failure
3124  */
3125 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3126 {
3127 	char buf[32];
3128 	unsigned long orig_mask, xfer_mask;
3129 	unsigned long pio_mask, mwdma_mask, udma_mask;
3130 	int quiet, highbit;
3131 
3132 	quiet = !!(sel & ATA_DNXFER_QUIET);
3133 	sel &= ~ATA_DNXFER_QUIET;
3134 
3135 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3136 						  dev->mwdma_mask,
3137 						  dev->udma_mask);
3138 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3139 
3140 	switch (sel) {
3141 	case ATA_DNXFER_PIO:
3142 		highbit = fls(pio_mask) - 1;
3143 		pio_mask &= ~(1 << highbit);
3144 		break;
3145 
3146 	case ATA_DNXFER_DMA:
3147 		if (udma_mask) {
3148 			highbit = fls(udma_mask) - 1;
3149 			udma_mask &= ~(1 << highbit);
3150 			if (!udma_mask)
3151 				return -ENOENT;
3152 		} else if (mwdma_mask) {
3153 			highbit = fls(mwdma_mask) - 1;
3154 			mwdma_mask &= ~(1 << highbit);
3155 			if (!mwdma_mask)
3156 				return -ENOENT;
3157 		}
3158 		break;
3159 
3160 	case ATA_DNXFER_40C:
3161 		udma_mask &= ATA_UDMA_MASK_40C;
3162 		break;
3163 
3164 	case ATA_DNXFER_FORCE_PIO0:
3165 		pio_mask &= 1;
3166 	case ATA_DNXFER_FORCE_PIO:
3167 		mwdma_mask = 0;
3168 		udma_mask = 0;
3169 		break;
3170 
3171 	default:
3172 		BUG();
3173 	}
3174 
3175 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3176 
3177 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3178 		return -ENOENT;
3179 
3180 	if (!quiet) {
3181 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3182 			snprintf(buf, sizeof(buf), "%s:%s",
3183 				 ata_mode_string(xfer_mask),
3184 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3185 		else
3186 			snprintf(buf, sizeof(buf), "%s",
3187 				 ata_mode_string(xfer_mask));
3188 
3189 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3190 	}
3191 
3192 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3193 			    &dev->udma_mask);
3194 
3195 	return 0;
3196 }
3197 
3198 static int ata_dev_set_mode(struct ata_device *dev)
3199 {
3200 	struct ata_port *ap = dev->link->ap;
3201 	struct ata_eh_context *ehc = &dev->link->eh_context;
3202 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3203 	const char *dev_err_whine = "";
3204 	int ign_dev_err = 0;
3205 	unsigned int err_mask = 0;
3206 	int rc;
3207 
3208 	dev->flags &= ~ATA_DFLAG_PIO;
3209 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3210 		dev->flags |= ATA_DFLAG_PIO;
3211 
3212 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3213 		dev_err_whine = " (SET_XFERMODE skipped)";
3214 	else {
3215 		if (nosetxfer)
3216 			ata_dev_warn(dev,
3217 				     "NOSETXFER but PATA detected - can't "
3218 				     "skip SETXFER, might malfunction\n");
3219 		err_mask = ata_dev_set_xfermode(dev);
3220 	}
3221 
3222 	if (err_mask & ~AC_ERR_DEV)
3223 		goto fail;
3224 
3225 	/* revalidate */
3226 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3227 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3228 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3229 	if (rc)
3230 		return rc;
3231 
3232 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3233 		/* Old CFA may refuse this command, which is just fine */
3234 		if (ata_id_is_cfa(dev->id))
3235 			ign_dev_err = 1;
3236 		/* Catch several broken garbage emulations plus some pre
3237 		   ATA devices */
3238 		if (ata_id_major_version(dev->id) == 0 &&
3239 					dev->pio_mode <= XFER_PIO_2)
3240 			ign_dev_err = 1;
3241 		/* Some very old devices and some bad newer ones fail
3242 		   any kind of SET_XFERMODE request but support PIO0-2
3243 		   timings and no IORDY */
3244 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3245 			ign_dev_err = 1;
3246 	}
3247 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3248 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3249 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3250 	    dev->dma_mode == XFER_MW_DMA_0 &&
3251 	    (dev->id[63] >> 8) & 1)
3252 		ign_dev_err = 1;
3253 
3254 	/* if the device is actually configured correctly, ignore dev err */
3255 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3256 		ign_dev_err = 1;
3257 
3258 	if (err_mask & AC_ERR_DEV) {
3259 		if (!ign_dev_err)
3260 			goto fail;
3261 		else
3262 			dev_err_whine = " (device error ignored)";
3263 	}
3264 
3265 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3266 		dev->xfer_shift, (int)dev->xfer_mode);
3267 
3268 	ata_dev_info(dev, "configured for %s%s\n",
3269 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3270 		     dev_err_whine);
3271 
3272 	return 0;
3273 
3274  fail:
3275 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3276 	return -EIO;
3277 }
3278 
3279 /**
3280  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3281  *	@link: link on which timings will be programmed
3282  *	@r_failed_dev: out parameter for failed device
3283  *
3284  *	Standard implementation of the function used to tune and set
3285  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3286  *	ata_dev_set_mode() fails, pointer to the failing device is
3287  *	returned in @r_failed_dev.
3288  *
3289  *	LOCKING:
3290  *	PCI/etc. bus probe sem.
3291  *
3292  *	RETURNS:
3293  *	0 on success, negative errno otherwise
3294  */
3295 
3296 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3297 {
3298 	struct ata_port *ap = link->ap;
3299 	struct ata_device *dev;
3300 	int rc = 0, used_dma = 0, found = 0;
3301 
3302 	/* step 1: calculate xfer_mask */
3303 	ata_for_each_dev(dev, link, ENABLED) {
3304 		unsigned long pio_mask, dma_mask;
3305 		unsigned int mode_mask;
3306 
3307 		mode_mask = ATA_DMA_MASK_ATA;
3308 		if (dev->class == ATA_DEV_ATAPI)
3309 			mode_mask = ATA_DMA_MASK_ATAPI;
3310 		else if (ata_id_is_cfa(dev->id))
3311 			mode_mask = ATA_DMA_MASK_CFA;
3312 
3313 		ata_dev_xfermask(dev);
3314 		ata_force_xfermask(dev);
3315 
3316 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3317 
3318 		if (libata_dma_mask & mode_mask)
3319 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3320 						     dev->udma_mask);
3321 		else
3322 			dma_mask = 0;
3323 
3324 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3325 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3326 
3327 		found = 1;
3328 		if (ata_dma_enabled(dev))
3329 			used_dma = 1;
3330 	}
3331 	if (!found)
3332 		goto out;
3333 
3334 	/* step 2: always set host PIO timings */
3335 	ata_for_each_dev(dev, link, ENABLED) {
3336 		if (dev->pio_mode == 0xff) {
3337 			ata_dev_warn(dev, "no PIO support\n");
3338 			rc = -EINVAL;
3339 			goto out;
3340 		}
3341 
3342 		dev->xfer_mode = dev->pio_mode;
3343 		dev->xfer_shift = ATA_SHIFT_PIO;
3344 		if (ap->ops->set_piomode)
3345 			ap->ops->set_piomode(ap, dev);
3346 	}
3347 
3348 	/* step 3: set host DMA timings */
3349 	ata_for_each_dev(dev, link, ENABLED) {
3350 		if (!ata_dma_enabled(dev))
3351 			continue;
3352 
3353 		dev->xfer_mode = dev->dma_mode;
3354 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3355 		if (ap->ops->set_dmamode)
3356 			ap->ops->set_dmamode(ap, dev);
3357 	}
3358 
3359 	/* step 4: update devices' xfer mode */
3360 	ata_for_each_dev(dev, link, ENABLED) {
3361 		rc = ata_dev_set_mode(dev);
3362 		if (rc)
3363 			goto out;
3364 	}
3365 
3366 	/* Record simplex status. If we selected DMA then the other
3367 	 * host channels are not permitted to do so.
3368 	 */
3369 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3370 		ap->host->simplex_claimed = ap;
3371 
3372  out:
3373 	if (rc)
3374 		*r_failed_dev = dev;
3375 	return rc;
3376 }
3377 
3378 /**
3379  *	ata_wait_ready - wait for link to become ready
3380  *	@link: link to be waited on
3381  *	@deadline: deadline jiffies for the operation
3382  *	@check_ready: callback to check link readiness
3383  *
3384  *	Wait for @link to become ready.  @check_ready should return
3385  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3386  *	link doesn't seem to be occupied, other errno for other error
3387  *	conditions.
3388  *
3389  *	Transient -ENODEV conditions are allowed for
3390  *	ATA_TMOUT_FF_WAIT.
3391  *
3392  *	LOCKING:
3393  *	EH context.
3394  *
3395  *	RETURNS:
3396  *	0 if @linke is ready before @deadline; otherwise, -errno.
3397  */
3398 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3399 		   int (*check_ready)(struct ata_link *link))
3400 {
3401 	unsigned long start = jiffies;
3402 	unsigned long nodev_deadline;
3403 	int warned = 0;
3404 
3405 	/* choose which 0xff timeout to use, read comment in libata.h */
3406 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3407 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3408 	else
3409 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3410 
3411 	/* Slave readiness can't be tested separately from master.  On
3412 	 * M/S emulation configuration, this function should be called
3413 	 * only on the master and it will handle both master and slave.
3414 	 */
3415 	WARN_ON(link == link->ap->slave_link);
3416 
3417 	if (time_after(nodev_deadline, deadline))
3418 		nodev_deadline = deadline;
3419 
3420 	while (1) {
3421 		unsigned long now = jiffies;
3422 		int ready, tmp;
3423 
3424 		ready = tmp = check_ready(link);
3425 		if (ready > 0)
3426 			return 0;
3427 
3428 		/*
3429 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3430 		 * is online.  Also, some SATA devices take a long
3431 		 * time to clear 0xff after reset.  Wait for
3432 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3433 		 * offline.
3434 		 *
3435 		 * Note that some PATA controllers (pata_ali) explode
3436 		 * if status register is read more than once when
3437 		 * there's no device attached.
3438 		 */
3439 		if (ready == -ENODEV) {
3440 			if (ata_link_online(link))
3441 				ready = 0;
3442 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3443 				 !ata_link_offline(link) &&
3444 				 time_before(now, nodev_deadline))
3445 				ready = 0;
3446 		}
3447 
3448 		if (ready)
3449 			return ready;
3450 		if (time_after(now, deadline))
3451 			return -EBUSY;
3452 
3453 		if (!warned && time_after(now, start + 5 * HZ) &&
3454 		    (deadline - now > 3 * HZ)) {
3455 			ata_link_warn(link,
3456 				"link is slow to respond, please be patient "
3457 				"(ready=%d)\n", tmp);
3458 			warned = 1;
3459 		}
3460 
3461 		ata_msleep(link->ap, 50);
3462 	}
3463 }
3464 
3465 /**
3466  *	ata_wait_after_reset - wait for link to become ready after reset
3467  *	@link: link to be waited on
3468  *	@deadline: deadline jiffies for the operation
3469  *	@check_ready: callback to check link readiness
3470  *
3471  *	Wait for @link to become ready after reset.
3472  *
3473  *	LOCKING:
3474  *	EH context.
3475  *
3476  *	RETURNS:
3477  *	0 if @linke is ready before @deadline; otherwise, -errno.
3478  */
3479 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3480 				int (*check_ready)(struct ata_link *link))
3481 {
3482 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3483 
3484 	return ata_wait_ready(link, deadline, check_ready);
3485 }
3486 
3487 /**
3488  *	sata_link_debounce - debounce SATA phy status
3489  *	@link: ATA link to debounce SATA phy status for
3490  *	@params: timing parameters { interval, duratinon, timeout } in msec
3491  *	@deadline: deadline jiffies for the operation
3492  *
3493  *	Make sure SStatus of @link reaches stable state, determined by
3494  *	holding the same value where DET is not 1 for @duration polled
3495  *	every @interval, before @timeout.  Timeout constraints the
3496  *	beginning of the stable state.  Because DET gets stuck at 1 on
3497  *	some controllers after hot unplugging, this functions waits
3498  *	until timeout then returns 0 if DET is stable at 1.
3499  *
3500  *	@timeout is further limited by @deadline.  The sooner of the
3501  *	two is used.
3502  *
3503  *	LOCKING:
3504  *	Kernel thread context (may sleep)
3505  *
3506  *	RETURNS:
3507  *	0 on success, -errno on failure.
3508  */
3509 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3510 		       unsigned long deadline)
3511 {
3512 	unsigned long interval = params[0];
3513 	unsigned long duration = params[1];
3514 	unsigned long last_jiffies, t;
3515 	u32 last, cur;
3516 	int rc;
3517 
3518 	t = ata_deadline(jiffies, params[2]);
3519 	if (time_before(t, deadline))
3520 		deadline = t;
3521 
3522 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3523 		return rc;
3524 	cur &= 0xf;
3525 
3526 	last = cur;
3527 	last_jiffies = jiffies;
3528 
3529 	while (1) {
3530 		ata_msleep(link->ap, interval);
3531 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3532 			return rc;
3533 		cur &= 0xf;
3534 
3535 		/* DET stable? */
3536 		if (cur == last) {
3537 			if (cur == 1 && time_before(jiffies, deadline))
3538 				continue;
3539 			if (time_after(jiffies,
3540 				       ata_deadline(last_jiffies, duration)))
3541 				return 0;
3542 			continue;
3543 		}
3544 
3545 		/* unstable, start over */
3546 		last = cur;
3547 		last_jiffies = jiffies;
3548 
3549 		/* Check deadline.  If debouncing failed, return
3550 		 * -EPIPE to tell upper layer to lower link speed.
3551 		 */
3552 		if (time_after(jiffies, deadline))
3553 			return -EPIPE;
3554 	}
3555 }
3556 
3557 /**
3558  *	sata_link_resume - resume SATA link
3559  *	@link: ATA link to resume SATA
3560  *	@params: timing parameters { interval, duratinon, timeout } in msec
3561  *	@deadline: deadline jiffies for the operation
3562  *
3563  *	Resume SATA phy @link and debounce it.
3564  *
3565  *	LOCKING:
3566  *	Kernel thread context (may sleep)
3567  *
3568  *	RETURNS:
3569  *	0 on success, -errno on failure.
3570  */
3571 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3572 		     unsigned long deadline)
3573 {
3574 	int tries = ATA_LINK_RESUME_TRIES;
3575 	u32 scontrol, serror;
3576 	int rc;
3577 
3578 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3579 		return rc;
3580 
3581 	/*
3582 	 * Writes to SControl sometimes get ignored under certain
3583 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3584 	 * cleared.
3585 	 */
3586 	do {
3587 		scontrol = (scontrol & 0x0f0) | 0x300;
3588 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3589 			return rc;
3590 		/*
3591 		 * Some PHYs react badly if SStatus is pounded
3592 		 * immediately after resuming.  Delay 200ms before
3593 		 * debouncing.
3594 		 */
3595 		ata_msleep(link->ap, 200);
3596 
3597 		/* is SControl restored correctly? */
3598 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3599 			return rc;
3600 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3601 
3602 	if ((scontrol & 0xf0f) != 0x300) {
3603 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3604 			     scontrol);
3605 		return 0;
3606 	}
3607 
3608 	if (tries < ATA_LINK_RESUME_TRIES)
3609 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3610 			      ATA_LINK_RESUME_TRIES - tries);
3611 
3612 	if ((rc = sata_link_debounce(link, params, deadline)))
3613 		return rc;
3614 
3615 	/* clear SError, some PHYs require this even for SRST to work */
3616 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3617 		rc = sata_scr_write(link, SCR_ERROR, serror);
3618 
3619 	return rc != -EINVAL ? rc : 0;
3620 }
3621 
3622 /**
3623  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3624  *	@link: ATA link to manipulate SControl for
3625  *	@policy: LPM policy to configure
3626  *	@spm_wakeup: initiate LPM transition to active state
3627  *
3628  *	Manipulate the IPM field of the SControl register of @link
3629  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3630  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3631  *	the link.  This function also clears PHYRDY_CHG before
3632  *	returning.
3633  *
3634  *	LOCKING:
3635  *	EH context.
3636  *
3637  *	RETURNS:
3638  *	0 on succes, -errno otherwise.
3639  */
3640 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3641 		      bool spm_wakeup)
3642 {
3643 	struct ata_eh_context *ehc = &link->eh_context;
3644 	bool woken_up = false;
3645 	u32 scontrol;
3646 	int rc;
3647 
3648 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3649 	if (rc)
3650 		return rc;
3651 
3652 	switch (policy) {
3653 	case ATA_LPM_MAX_POWER:
3654 		/* disable all LPM transitions */
3655 		scontrol |= (0x7 << 8);
3656 		/* initiate transition to active state */
3657 		if (spm_wakeup) {
3658 			scontrol |= (0x4 << 12);
3659 			woken_up = true;
3660 		}
3661 		break;
3662 	case ATA_LPM_MED_POWER:
3663 		/* allow LPM to PARTIAL */
3664 		scontrol &= ~(0x1 << 8);
3665 		scontrol |= (0x6 << 8);
3666 		break;
3667 	case ATA_LPM_MIN_POWER:
3668 		if (ata_link_nr_enabled(link) > 0)
3669 			/* no restrictions on LPM transitions */
3670 			scontrol &= ~(0x7 << 8);
3671 		else {
3672 			/* empty port, power off */
3673 			scontrol &= ~0xf;
3674 			scontrol |= (0x1 << 2);
3675 		}
3676 		break;
3677 	default:
3678 		WARN_ON(1);
3679 	}
3680 
3681 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3682 	if (rc)
3683 		return rc;
3684 
3685 	/* give the link time to transit out of LPM state */
3686 	if (woken_up)
3687 		msleep(10);
3688 
3689 	/* clear PHYRDY_CHG from SError */
3690 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3691 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3692 }
3693 
3694 /**
3695  *	ata_std_prereset - prepare for reset
3696  *	@link: ATA link to be reset
3697  *	@deadline: deadline jiffies for the operation
3698  *
3699  *	@link is about to be reset.  Initialize it.  Failure from
3700  *	prereset makes libata abort whole reset sequence and give up
3701  *	that port, so prereset should be best-effort.  It does its
3702  *	best to prepare for reset sequence but if things go wrong, it
3703  *	should just whine, not fail.
3704  *
3705  *	LOCKING:
3706  *	Kernel thread context (may sleep)
3707  *
3708  *	RETURNS:
3709  *	0 on success, -errno otherwise.
3710  */
3711 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3712 {
3713 	struct ata_port *ap = link->ap;
3714 	struct ata_eh_context *ehc = &link->eh_context;
3715 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3716 	int rc;
3717 
3718 	/* if we're about to do hardreset, nothing more to do */
3719 	if (ehc->i.action & ATA_EH_HARDRESET)
3720 		return 0;
3721 
3722 	/* if SATA, resume link */
3723 	if (ap->flags & ATA_FLAG_SATA) {
3724 		rc = sata_link_resume(link, timing, deadline);
3725 		/* whine about phy resume failure but proceed */
3726 		if (rc && rc != -EOPNOTSUPP)
3727 			ata_link_warn(link,
3728 				      "failed to resume link for reset (errno=%d)\n",
3729 				      rc);
3730 	}
3731 
3732 	/* no point in trying softreset on offline link */
3733 	if (ata_phys_link_offline(link))
3734 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3735 
3736 	return 0;
3737 }
3738 
3739 /**
3740  *	sata_link_hardreset - reset link via SATA phy reset
3741  *	@link: link to reset
3742  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3743  *	@deadline: deadline jiffies for the operation
3744  *	@online: optional out parameter indicating link onlineness
3745  *	@check_ready: optional callback to check link readiness
3746  *
3747  *	SATA phy-reset @link using DET bits of SControl register.
3748  *	After hardreset, link readiness is waited upon using
3749  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3750  *	allowed to not specify @check_ready and wait itself after this
3751  *	function returns.  Device classification is LLD's
3752  *	responsibility.
3753  *
3754  *	*@online is set to one iff reset succeeded and @link is online
3755  *	after reset.
3756  *
3757  *	LOCKING:
3758  *	Kernel thread context (may sleep)
3759  *
3760  *	RETURNS:
3761  *	0 on success, -errno otherwise.
3762  */
3763 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3764 			unsigned long deadline,
3765 			bool *online, int (*check_ready)(struct ata_link *))
3766 {
3767 	u32 scontrol;
3768 	int rc;
3769 
3770 	DPRINTK("ENTER\n");
3771 
3772 	if (online)
3773 		*online = false;
3774 
3775 	if (sata_set_spd_needed(link)) {
3776 		/* SATA spec says nothing about how to reconfigure
3777 		 * spd.  To be on the safe side, turn off phy during
3778 		 * reconfiguration.  This works for at least ICH7 AHCI
3779 		 * and Sil3124.
3780 		 */
3781 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3782 			goto out;
3783 
3784 		scontrol = (scontrol & 0x0f0) | 0x304;
3785 
3786 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3787 			goto out;
3788 
3789 		sata_set_spd(link);
3790 	}
3791 
3792 	/* issue phy wake/reset */
3793 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3794 		goto out;
3795 
3796 	scontrol = (scontrol & 0x0f0) | 0x301;
3797 
3798 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3799 		goto out;
3800 
3801 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3802 	 * 10.4.2 says at least 1 ms.
3803 	 */
3804 	ata_msleep(link->ap, 1);
3805 
3806 	/* bring link back */
3807 	rc = sata_link_resume(link, timing, deadline);
3808 	if (rc)
3809 		goto out;
3810 	/* if link is offline nothing more to do */
3811 	if (ata_phys_link_offline(link))
3812 		goto out;
3813 
3814 	/* Link is online.  From this point, -ENODEV too is an error. */
3815 	if (online)
3816 		*online = true;
3817 
3818 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3819 		/* If PMP is supported, we have to do follow-up SRST.
3820 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3821 		 * the first port is empty.  Wait only for
3822 		 * ATA_TMOUT_PMP_SRST_WAIT.
3823 		 */
3824 		if (check_ready) {
3825 			unsigned long pmp_deadline;
3826 
3827 			pmp_deadline = ata_deadline(jiffies,
3828 						    ATA_TMOUT_PMP_SRST_WAIT);
3829 			if (time_after(pmp_deadline, deadline))
3830 				pmp_deadline = deadline;
3831 			ata_wait_ready(link, pmp_deadline, check_ready);
3832 		}
3833 		rc = -EAGAIN;
3834 		goto out;
3835 	}
3836 
3837 	rc = 0;
3838 	if (check_ready)
3839 		rc = ata_wait_ready(link, deadline, check_ready);
3840  out:
3841 	if (rc && rc != -EAGAIN) {
3842 		/* online is set iff link is online && reset succeeded */
3843 		if (online)
3844 			*online = false;
3845 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3846 	}
3847 	DPRINTK("EXIT, rc=%d\n", rc);
3848 	return rc;
3849 }
3850 
3851 /**
3852  *	sata_std_hardreset - COMRESET w/o waiting or classification
3853  *	@link: link to reset
3854  *	@class: resulting class of attached device
3855  *	@deadline: deadline jiffies for the operation
3856  *
3857  *	Standard SATA COMRESET w/o waiting or classification.
3858  *
3859  *	LOCKING:
3860  *	Kernel thread context (may sleep)
3861  *
3862  *	RETURNS:
3863  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3864  */
3865 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3866 		       unsigned long deadline)
3867 {
3868 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3869 	bool online;
3870 	int rc;
3871 
3872 	/* do hardreset */
3873 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3874 	return online ? -EAGAIN : rc;
3875 }
3876 
3877 /**
3878  *	ata_std_postreset - standard postreset callback
3879  *	@link: the target ata_link
3880  *	@classes: classes of attached devices
3881  *
3882  *	This function is invoked after a successful reset.  Note that
3883  *	the device might have been reset more than once using
3884  *	different reset methods before postreset is invoked.
3885  *
3886  *	LOCKING:
3887  *	Kernel thread context (may sleep)
3888  */
3889 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3890 {
3891 	u32 serror;
3892 
3893 	DPRINTK("ENTER\n");
3894 
3895 	/* reset complete, clear SError */
3896 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3897 		sata_scr_write(link, SCR_ERROR, serror);
3898 
3899 	/* print link status */
3900 	sata_print_link_status(link);
3901 
3902 	DPRINTK("EXIT\n");
3903 }
3904 
3905 /**
3906  *	ata_dev_same_device - Determine whether new ID matches configured device
3907  *	@dev: device to compare against
3908  *	@new_class: class of the new device
3909  *	@new_id: IDENTIFY page of the new device
3910  *
3911  *	Compare @new_class and @new_id against @dev and determine
3912  *	whether @dev is the device indicated by @new_class and
3913  *	@new_id.
3914  *
3915  *	LOCKING:
3916  *	None.
3917  *
3918  *	RETURNS:
3919  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3920  */
3921 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3922 			       const u16 *new_id)
3923 {
3924 	const u16 *old_id = dev->id;
3925 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3926 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3927 
3928 	if (dev->class != new_class) {
3929 		ata_dev_info(dev, "class mismatch %d != %d\n",
3930 			     dev->class, new_class);
3931 		return 0;
3932 	}
3933 
3934 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3935 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3936 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3937 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3938 
3939 	if (strcmp(model[0], model[1])) {
3940 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3941 			     model[0], model[1]);
3942 		return 0;
3943 	}
3944 
3945 	if (strcmp(serial[0], serial[1])) {
3946 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3947 			     serial[0], serial[1]);
3948 		return 0;
3949 	}
3950 
3951 	return 1;
3952 }
3953 
3954 /**
3955  *	ata_dev_reread_id - Re-read IDENTIFY data
3956  *	@dev: target ATA device
3957  *	@readid_flags: read ID flags
3958  *
3959  *	Re-read IDENTIFY page and make sure @dev is still attached to
3960  *	the port.
3961  *
3962  *	LOCKING:
3963  *	Kernel thread context (may sleep)
3964  *
3965  *	RETURNS:
3966  *	0 on success, negative errno otherwise
3967  */
3968 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3969 {
3970 	unsigned int class = dev->class;
3971 	u16 *id = (void *)dev->link->ap->sector_buf;
3972 	int rc;
3973 
3974 	/* read ID data */
3975 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3976 	if (rc)
3977 		return rc;
3978 
3979 	/* is the device still there? */
3980 	if (!ata_dev_same_device(dev, class, id))
3981 		return -ENODEV;
3982 
3983 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3984 	return 0;
3985 }
3986 
3987 /**
3988  *	ata_dev_revalidate - Revalidate ATA device
3989  *	@dev: device to revalidate
3990  *	@new_class: new class code
3991  *	@readid_flags: read ID flags
3992  *
3993  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3994  *	port and reconfigure it according to the new IDENTIFY page.
3995  *
3996  *	LOCKING:
3997  *	Kernel thread context (may sleep)
3998  *
3999  *	RETURNS:
4000  *	0 on success, negative errno otherwise
4001  */
4002 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4003 		       unsigned int readid_flags)
4004 {
4005 	u64 n_sectors = dev->n_sectors;
4006 	u64 n_native_sectors = dev->n_native_sectors;
4007 	int rc;
4008 
4009 	if (!ata_dev_enabled(dev))
4010 		return -ENODEV;
4011 
4012 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4013 	if (ata_class_enabled(new_class) &&
4014 	    new_class != ATA_DEV_ATA &&
4015 	    new_class != ATA_DEV_ATAPI &&
4016 	    new_class != ATA_DEV_ZAC &&
4017 	    new_class != ATA_DEV_SEMB) {
4018 		ata_dev_info(dev, "class mismatch %u != %u\n",
4019 			     dev->class, new_class);
4020 		rc = -ENODEV;
4021 		goto fail;
4022 	}
4023 
4024 	/* re-read ID */
4025 	rc = ata_dev_reread_id(dev, readid_flags);
4026 	if (rc)
4027 		goto fail;
4028 
4029 	/* configure device according to the new ID */
4030 	rc = ata_dev_configure(dev);
4031 	if (rc)
4032 		goto fail;
4033 
4034 	/* verify n_sectors hasn't changed */
4035 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4036 	    dev->n_sectors == n_sectors)
4037 		return 0;
4038 
4039 	/* n_sectors has changed */
4040 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4041 		     (unsigned long long)n_sectors,
4042 		     (unsigned long long)dev->n_sectors);
4043 
4044 	/*
4045 	 * Something could have caused HPA to be unlocked
4046 	 * involuntarily.  If n_native_sectors hasn't changed and the
4047 	 * new size matches it, keep the device.
4048 	 */
4049 	if (dev->n_native_sectors == n_native_sectors &&
4050 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4051 		ata_dev_warn(dev,
4052 			     "new n_sectors matches native, probably "
4053 			     "late HPA unlock, n_sectors updated\n");
4054 		/* use the larger n_sectors */
4055 		return 0;
4056 	}
4057 
4058 	/*
4059 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4060 	 * unlocking HPA in those cases.
4061 	 *
4062 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4063 	 */
4064 	if (dev->n_native_sectors == n_native_sectors &&
4065 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4066 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4067 		ata_dev_warn(dev,
4068 			     "old n_sectors matches native, probably "
4069 			     "late HPA lock, will try to unlock HPA\n");
4070 		/* try unlocking HPA */
4071 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4072 		rc = -EIO;
4073 	} else
4074 		rc = -ENODEV;
4075 
4076 	/* restore original n_[native_]sectors and fail */
4077 	dev->n_native_sectors = n_native_sectors;
4078 	dev->n_sectors = n_sectors;
4079  fail:
4080 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4081 	return rc;
4082 }
4083 
4084 struct ata_blacklist_entry {
4085 	const char *model_num;
4086 	const char *model_rev;
4087 	unsigned long horkage;
4088 };
4089 
4090 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4091 	/* Devices with DMA related problems under Linux */
4092 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4093 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4094 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4095 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4096 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4097 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4098 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4099 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4100 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4101 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4102 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4103 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4104 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4105 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4106 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4107 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4108 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4109 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4110 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4111 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4112 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4113 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4114 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4115 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4116 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4117 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4118 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4119 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4120 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4121 	/* Odd clown on sil3726/4726 PMPs */
4122 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4123 
4124 	/* Weird ATAPI devices */
4125 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4126 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4127 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4128 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4129 
4130 	/* Devices we expect to fail diagnostics */
4131 
4132 	/* Devices where NCQ should be avoided */
4133 	/* NCQ is slow */
4134 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4135 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4136 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4137 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4138 	/* NCQ is broken */
4139 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4140 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4141 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4142 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4143 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4144 
4145 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4146 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4147 						ATA_HORKAGE_FIRMWARE_WARN },
4148 
4149 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4150 						ATA_HORKAGE_FIRMWARE_WARN },
4151 
4152 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4153 						ATA_HORKAGE_FIRMWARE_WARN },
4154 
4155 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4156 						ATA_HORKAGE_FIRMWARE_WARN },
4157 
4158 	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4159 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4160 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4161 
4162 	/* Blacklist entries taken from Silicon Image 3124/3132
4163 	   Windows driver .inf file - also several Linux problem reports */
4164 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4165 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4166 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4167 
4168 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4169 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4170 
4171 	/* devices which puke on READ_NATIVE_MAX */
4172 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4173 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4174 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4175 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4176 
4177 	/* this one allows HPA unlocking but fails IOs on the area */
4178 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4179 
4180 	/* Devices which report 1 sector over size HPA */
4181 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4182 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4183 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4184 
4185 	/* Devices which get the IVB wrong */
4186 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4187 	/* Maybe we should just blacklist TSSTcorp... */
4188 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4189 
4190 	/* Devices that do not need bridging limits applied */
4191 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4192 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4193 
4194 	/* Devices which aren't very happy with higher link speeds */
4195 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4196 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4197 
4198 	/*
4199 	 * Devices which choke on SETXFER.  Applies only if both the
4200 	 * device and controller are SATA.
4201 	 */
4202 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4203 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4204 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4205 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4206 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4207 
4208 	/* devices that don't properly handle queued TRIM commands */
4209 	{ "Micron_M[56]*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4210 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4211 	{ "Crucial_CT*SSD*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4212 
4213 	/*
4214 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4215 	 * (Return Zero After Trim) flags in the ATA Command Set are
4216 	 * unreliable in the sense that they only define what happens if
4217 	 * the device successfully executed the DSM TRIM command. TRIM
4218 	 * is only advisory, however, and the device is free to silently
4219 	 * ignore all or parts of the request.
4220 	 *
4221 	 * Whitelist drives that are known to reliably return zeroes
4222 	 * after TRIM.
4223 	 */
4224 
4225 	/*
4226 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4227 	 * that model before whitelisting all other intel SSDs.
4228 	 */
4229 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4230 
4231 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4233 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4235 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4236 
4237 	/*
4238 	 * Some WD SATA-I drives spin up and down erratically when the link
4239 	 * is put into the slumber mode.  We don't have full list of the
4240 	 * affected devices.  Disable LPM if the device matches one of the
4241 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4242 	 * lost too.
4243 	 *
4244 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4245 	 */
4246 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4247 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4248 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4249 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4250 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4251 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4252 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4253 
4254 	/* End Marker */
4255 	{ }
4256 };
4257 
4258 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4259 {
4260 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4261 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4262 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4263 
4264 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4265 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4266 
4267 	while (ad->model_num) {
4268 		if (glob_match(ad->model_num, model_num)) {
4269 			if (ad->model_rev == NULL)
4270 				return ad->horkage;
4271 			if (glob_match(ad->model_rev, model_rev))
4272 				return ad->horkage;
4273 		}
4274 		ad++;
4275 	}
4276 	return 0;
4277 }
4278 
4279 static int ata_dma_blacklisted(const struct ata_device *dev)
4280 {
4281 	/* We don't support polling DMA.
4282 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4283 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4284 	 */
4285 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4286 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4287 		return 1;
4288 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4289 }
4290 
4291 /**
4292  *	ata_is_40wire		-	check drive side detection
4293  *	@dev: device
4294  *
4295  *	Perform drive side detection decoding, allowing for device vendors
4296  *	who can't follow the documentation.
4297  */
4298 
4299 static int ata_is_40wire(struct ata_device *dev)
4300 {
4301 	if (dev->horkage & ATA_HORKAGE_IVB)
4302 		return ata_drive_40wire_relaxed(dev->id);
4303 	return ata_drive_40wire(dev->id);
4304 }
4305 
4306 /**
4307  *	cable_is_40wire		-	40/80/SATA decider
4308  *	@ap: port to consider
4309  *
4310  *	This function encapsulates the policy for speed management
4311  *	in one place. At the moment we don't cache the result but
4312  *	there is a good case for setting ap->cbl to the result when
4313  *	we are called with unknown cables (and figuring out if it
4314  *	impacts hotplug at all).
4315  *
4316  *	Return 1 if the cable appears to be 40 wire.
4317  */
4318 
4319 static int cable_is_40wire(struct ata_port *ap)
4320 {
4321 	struct ata_link *link;
4322 	struct ata_device *dev;
4323 
4324 	/* If the controller thinks we are 40 wire, we are. */
4325 	if (ap->cbl == ATA_CBL_PATA40)
4326 		return 1;
4327 
4328 	/* If the controller thinks we are 80 wire, we are. */
4329 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4330 		return 0;
4331 
4332 	/* If the system is known to be 40 wire short cable (eg
4333 	 * laptop), then we allow 80 wire modes even if the drive
4334 	 * isn't sure.
4335 	 */
4336 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4337 		return 0;
4338 
4339 	/* If the controller doesn't know, we scan.
4340 	 *
4341 	 * Note: We look for all 40 wire detects at this point.  Any
4342 	 *       80 wire detect is taken to be 80 wire cable because
4343 	 * - in many setups only the one drive (slave if present) will
4344 	 *   give a valid detect
4345 	 * - if you have a non detect capable drive you don't want it
4346 	 *   to colour the choice
4347 	 */
4348 	ata_for_each_link(link, ap, EDGE) {
4349 		ata_for_each_dev(dev, link, ENABLED) {
4350 			if (!ata_is_40wire(dev))
4351 				return 0;
4352 		}
4353 	}
4354 	return 1;
4355 }
4356 
4357 /**
4358  *	ata_dev_xfermask - Compute supported xfermask of the given device
4359  *	@dev: Device to compute xfermask for
4360  *
4361  *	Compute supported xfermask of @dev and store it in
4362  *	dev->*_mask.  This function is responsible for applying all
4363  *	known limits including host controller limits, device
4364  *	blacklist, etc...
4365  *
4366  *	LOCKING:
4367  *	None.
4368  */
4369 static void ata_dev_xfermask(struct ata_device *dev)
4370 {
4371 	struct ata_link *link = dev->link;
4372 	struct ata_port *ap = link->ap;
4373 	struct ata_host *host = ap->host;
4374 	unsigned long xfer_mask;
4375 
4376 	/* controller modes available */
4377 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4378 				      ap->mwdma_mask, ap->udma_mask);
4379 
4380 	/* drive modes available */
4381 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4382 				       dev->mwdma_mask, dev->udma_mask);
4383 	xfer_mask &= ata_id_xfermask(dev->id);
4384 
4385 	/*
4386 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4387 	 *	cable
4388 	 */
4389 	if (ata_dev_pair(dev)) {
4390 		/* No PIO5 or PIO6 */
4391 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4392 		/* No MWDMA3 or MWDMA 4 */
4393 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4394 	}
4395 
4396 	if (ata_dma_blacklisted(dev)) {
4397 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4398 		ata_dev_warn(dev,
4399 			     "device is on DMA blacklist, disabling DMA\n");
4400 	}
4401 
4402 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4403 	    host->simplex_claimed && host->simplex_claimed != ap) {
4404 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4405 		ata_dev_warn(dev,
4406 			     "simplex DMA is claimed by other device, disabling DMA\n");
4407 	}
4408 
4409 	if (ap->flags & ATA_FLAG_NO_IORDY)
4410 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4411 
4412 	if (ap->ops->mode_filter)
4413 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4414 
4415 	/* Apply cable rule here.  Don't apply it early because when
4416 	 * we handle hot plug the cable type can itself change.
4417 	 * Check this last so that we know if the transfer rate was
4418 	 * solely limited by the cable.
4419 	 * Unknown or 80 wire cables reported host side are checked
4420 	 * drive side as well. Cases where we know a 40wire cable
4421 	 * is used safely for 80 are not checked here.
4422 	 */
4423 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4424 		/* UDMA/44 or higher would be available */
4425 		if (cable_is_40wire(ap)) {
4426 			ata_dev_warn(dev,
4427 				     "limited to UDMA/33 due to 40-wire cable\n");
4428 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4429 		}
4430 
4431 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4432 			    &dev->mwdma_mask, &dev->udma_mask);
4433 }
4434 
4435 /**
4436  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4437  *	@dev: Device to which command will be sent
4438  *
4439  *	Issue SET FEATURES - XFER MODE command to device @dev
4440  *	on port @ap.
4441  *
4442  *	LOCKING:
4443  *	PCI/etc. bus probe sem.
4444  *
4445  *	RETURNS:
4446  *	0 on success, AC_ERR_* mask otherwise.
4447  */
4448 
4449 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4450 {
4451 	struct ata_taskfile tf;
4452 	unsigned int err_mask;
4453 
4454 	/* set up set-features taskfile */
4455 	DPRINTK("set features - xfer mode\n");
4456 
4457 	/* Some controllers and ATAPI devices show flaky interrupt
4458 	 * behavior after setting xfer mode.  Use polling instead.
4459 	 */
4460 	ata_tf_init(dev, &tf);
4461 	tf.command = ATA_CMD_SET_FEATURES;
4462 	tf.feature = SETFEATURES_XFER;
4463 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4464 	tf.protocol = ATA_PROT_NODATA;
4465 	/* If we are using IORDY we must send the mode setting command */
4466 	if (ata_pio_need_iordy(dev))
4467 		tf.nsect = dev->xfer_mode;
4468 	/* If the device has IORDY and the controller does not - turn it off */
4469  	else if (ata_id_has_iordy(dev->id))
4470 		tf.nsect = 0x01;
4471 	else /* In the ancient relic department - skip all of this */
4472 		return 0;
4473 
4474 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4475 
4476 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4477 	return err_mask;
4478 }
4479 
4480 /**
4481  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4482  *	@dev: Device to which command will be sent
4483  *	@enable: Whether to enable or disable the feature
4484  *	@feature: The sector count represents the feature to set
4485  *
4486  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4487  *	on port @ap with sector count
4488  *
4489  *	LOCKING:
4490  *	PCI/etc. bus probe sem.
4491  *
4492  *	RETURNS:
4493  *	0 on success, AC_ERR_* mask otherwise.
4494  */
4495 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4496 {
4497 	struct ata_taskfile tf;
4498 	unsigned int err_mask;
4499 
4500 	/* set up set-features taskfile */
4501 	DPRINTK("set features - SATA features\n");
4502 
4503 	ata_tf_init(dev, &tf);
4504 	tf.command = ATA_CMD_SET_FEATURES;
4505 	tf.feature = enable;
4506 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4507 	tf.protocol = ATA_PROT_NODATA;
4508 	tf.nsect = feature;
4509 
4510 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4511 
4512 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4513 	return err_mask;
4514 }
4515 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4516 
4517 /**
4518  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4519  *	@dev: Device to which command will be sent
4520  *	@heads: Number of heads (taskfile parameter)
4521  *	@sectors: Number of sectors (taskfile parameter)
4522  *
4523  *	LOCKING:
4524  *	Kernel thread context (may sleep)
4525  *
4526  *	RETURNS:
4527  *	0 on success, AC_ERR_* mask otherwise.
4528  */
4529 static unsigned int ata_dev_init_params(struct ata_device *dev,
4530 					u16 heads, u16 sectors)
4531 {
4532 	struct ata_taskfile tf;
4533 	unsigned int err_mask;
4534 
4535 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4536 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4537 		return AC_ERR_INVALID;
4538 
4539 	/* set up init dev params taskfile */
4540 	DPRINTK("init dev params \n");
4541 
4542 	ata_tf_init(dev, &tf);
4543 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4544 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4545 	tf.protocol = ATA_PROT_NODATA;
4546 	tf.nsect = sectors;
4547 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4548 
4549 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4550 	/* A clean abort indicates an original or just out of spec drive
4551 	   and we should continue as we issue the setup based on the
4552 	   drive reported working geometry */
4553 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4554 		err_mask = 0;
4555 
4556 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4557 	return err_mask;
4558 }
4559 
4560 /**
4561  *	ata_sg_clean - Unmap DMA memory associated with command
4562  *	@qc: Command containing DMA memory to be released
4563  *
4564  *	Unmap all mapped DMA memory associated with this command.
4565  *
4566  *	LOCKING:
4567  *	spin_lock_irqsave(host lock)
4568  */
4569 void ata_sg_clean(struct ata_queued_cmd *qc)
4570 {
4571 	struct ata_port *ap = qc->ap;
4572 	struct scatterlist *sg = qc->sg;
4573 	int dir = qc->dma_dir;
4574 
4575 	WARN_ON_ONCE(sg == NULL);
4576 
4577 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4578 
4579 	if (qc->n_elem)
4580 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4581 
4582 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4583 	qc->sg = NULL;
4584 }
4585 
4586 /**
4587  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4588  *	@qc: Metadata associated with taskfile to check
4589  *
4590  *	Allow low-level driver to filter ATA PACKET commands, returning
4591  *	a status indicating whether or not it is OK to use DMA for the
4592  *	supplied PACKET command.
4593  *
4594  *	LOCKING:
4595  *	spin_lock_irqsave(host lock)
4596  *
4597  *	RETURNS: 0 when ATAPI DMA can be used
4598  *               nonzero otherwise
4599  */
4600 int atapi_check_dma(struct ata_queued_cmd *qc)
4601 {
4602 	struct ata_port *ap = qc->ap;
4603 
4604 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4605 	 * few ATAPI devices choke on such DMA requests.
4606 	 */
4607 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4608 	    unlikely(qc->nbytes & 15))
4609 		return 1;
4610 
4611 	if (ap->ops->check_atapi_dma)
4612 		return ap->ops->check_atapi_dma(qc);
4613 
4614 	return 0;
4615 }
4616 
4617 /**
4618  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4619  *	@qc: ATA command in question
4620  *
4621  *	Non-NCQ commands cannot run with any other command, NCQ or
4622  *	not.  As upper layer only knows the queue depth, we are
4623  *	responsible for maintaining exclusion.  This function checks
4624  *	whether a new command @qc can be issued.
4625  *
4626  *	LOCKING:
4627  *	spin_lock_irqsave(host lock)
4628  *
4629  *	RETURNS:
4630  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4631  */
4632 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_link *link = qc->dev->link;
4635 
4636 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4637 		if (!ata_tag_valid(link->active_tag))
4638 			return 0;
4639 	} else {
4640 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4641 			return 0;
4642 	}
4643 
4644 	return ATA_DEFER_LINK;
4645 }
4646 
4647 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4648 
4649 /**
4650  *	ata_sg_init - Associate command with scatter-gather table.
4651  *	@qc: Command to be associated
4652  *	@sg: Scatter-gather table.
4653  *	@n_elem: Number of elements in s/g table.
4654  *
4655  *	Initialize the data-related elements of queued_cmd @qc
4656  *	to point to a scatter-gather table @sg, containing @n_elem
4657  *	elements.
4658  *
4659  *	LOCKING:
4660  *	spin_lock_irqsave(host lock)
4661  */
4662 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4663 		 unsigned int n_elem)
4664 {
4665 	qc->sg = sg;
4666 	qc->n_elem = n_elem;
4667 	qc->cursg = qc->sg;
4668 }
4669 
4670 /**
4671  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4672  *	@qc: Command with scatter-gather table to be mapped.
4673  *
4674  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4675  *
4676  *	LOCKING:
4677  *	spin_lock_irqsave(host lock)
4678  *
4679  *	RETURNS:
4680  *	Zero on success, negative on error.
4681  *
4682  */
4683 static int ata_sg_setup(struct ata_queued_cmd *qc)
4684 {
4685 	struct ata_port *ap = qc->ap;
4686 	unsigned int n_elem;
4687 
4688 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4689 
4690 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4691 	if (n_elem < 1)
4692 		return -1;
4693 
4694 	DPRINTK("%d sg elements mapped\n", n_elem);
4695 	qc->orig_n_elem = qc->n_elem;
4696 	qc->n_elem = n_elem;
4697 	qc->flags |= ATA_QCFLAG_DMAMAP;
4698 
4699 	return 0;
4700 }
4701 
4702 /**
4703  *	swap_buf_le16 - swap halves of 16-bit words in place
4704  *	@buf:  Buffer to swap
4705  *	@buf_words:  Number of 16-bit words in buffer.
4706  *
4707  *	Swap halves of 16-bit words if needed to convert from
4708  *	little-endian byte order to native cpu byte order, or
4709  *	vice-versa.
4710  *
4711  *	LOCKING:
4712  *	Inherited from caller.
4713  */
4714 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4715 {
4716 #ifdef __BIG_ENDIAN
4717 	unsigned int i;
4718 
4719 	for (i = 0; i < buf_words; i++)
4720 		buf[i] = le16_to_cpu(buf[i]);
4721 #endif /* __BIG_ENDIAN */
4722 }
4723 
4724 /**
4725  *	ata_qc_new - Request an available ATA command, for queueing
4726  *	@ap: target port
4727  *
4728  *	Some ATA host controllers may implement a queue depth which is less
4729  *	than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond
4730  *	the hardware limitation.
4731  *
4732  *	LOCKING:
4733  *	None.
4734  */
4735 
4736 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4737 {
4738 	struct ata_queued_cmd *qc = NULL;
4739 	unsigned int max_queue = ap->host->n_tags;
4740 	unsigned int i, tag;
4741 
4742 	/* no command while frozen */
4743 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4744 		return NULL;
4745 
4746 	for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) {
4747 		if (ap->flags & ATA_FLAG_LOWTAG)
4748 			tag = i;
4749 		else
4750 			tag = tag < max_queue ? tag : 0;
4751 
4752 		/* the last tag is reserved for internal command. */
4753 		if (tag == ATA_TAG_INTERNAL)
4754 			continue;
4755 
4756 		if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4757 			qc = __ata_qc_from_tag(ap, tag);
4758 			qc->tag = tag;
4759 			ap->last_tag = tag;
4760 			break;
4761 		}
4762 	}
4763 
4764 	return qc;
4765 }
4766 
4767 /**
4768  *	ata_qc_new_init - Request an available ATA command, and initialize it
4769  *	@dev: Device from whom we request an available command structure
4770  *
4771  *	LOCKING:
4772  *	None.
4773  */
4774 
4775 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4776 {
4777 	struct ata_port *ap = dev->link->ap;
4778 	struct ata_queued_cmd *qc;
4779 
4780 	qc = ata_qc_new(ap);
4781 	if (qc) {
4782 		qc->scsicmd = NULL;
4783 		qc->ap = ap;
4784 		qc->dev = dev;
4785 
4786 		ata_qc_reinit(qc);
4787 	}
4788 
4789 	return qc;
4790 }
4791 
4792 /**
4793  *	ata_qc_free - free unused ata_queued_cmd
4794  *	@qc: Command to complete
4795  *
4796  *	Designed to free unused ata_queued_cmd object
4797  *	in case something prevents using it.
4798  *
4799  *	LOCKING:
4800  *	spin_lock_irqsave(host lock)
4801  */
4802 void ata_qc_free(struct ata_queued_cmd *qc)
4803 {
4804 	struct ata_port *ap;
4805 	unsigned int tag;
4806 
4807 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4808 	ap = qc->ap;
4809 
4810 	qc->flags = 0;
4811 	tag = qc->tag;
4812 	if (likely(ata_tag_valid(tag))) {
4813 		qc->tag = ATA_TAG_POISON;
4814 		clear_bit(tag, &ap->qc_allocated);
4815 	}
4816 }
4817 
4818 void __ata_qc_complete(struct ata_queued_cmd *qc)
4819 {
4820 	struct ata_port *ap;
4821 	struct ata_link *link;
4822 
4823 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4824 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4825 	ap = qc->ap;
4826 	link = qc->dev->link;
4827 
4828 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4829 		ata_sg_clean(qc);
4830 
4831 	/* command should be marked inactive atomically with qc completion */
4832 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4833 		link->sactive &= ~(1 << qc->tag);
4834 		if (!link->sactive)
4835 			ap->nr_active_links--;
4836 	} else {
4837 		link->active_tag = ATA_TAG_POISON;
4838 		ap->nr_active_links--;
4839 	}
4840 
4841 	/* clear exclusive status */
4842 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4843 		     ap->excl_link == link))
4844 		ap->excl_link = NULL;
4845 
4846 	/* atapi: mark qc as inactive to prevent the interrupt handler
4847 	 * from completing the command twice later, before the error handler
4848 	 * is called. (when rc != 0 and atapi request sense is needed)
4849 	 */
4850 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4851 	ap->qc_active &= ~(1 << qc->tag);
4852 
4853 	/* call completion callback */
4854 	qc->complete_fn(qc);
4855 }
4856 
4857 static void fill_result_tf(struct ata_queued_cmd *qc)
4858 {
4859 	struct ata_port *ap = qc->ap;
4860 
4861 	qc->result_tf.flags = qc->tf.flags;
4862 	ap->ops->qc_fill_rtf(qc);
4863 }
4864 
4865 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4866 {
4867 	struct ata_device *dev = qc->dev;
4868 
4869 	if (ata_is_nodata(qc->tf.protocol))
4870 		return;
4871 
4872 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4873 		return;
4874 
4875 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4876 }
4877 
4878 /**
4879  *	ata_qc_complete - Complete an active ATA command
4880  *	@qc: Command to complete
4881  *
4882  *	Indicate to the mid and upper layers that an ATA command has
4883  *	completed, with either an ok or not-ok status.
4884  *
4885  *	Refrain from calling this function multiple times when
4886  *	successfully completing multiple NCQ commands.
4887  *	ata_qc_complete_multiple() should be used instead, which will
4888  *	properly update IRQ expect state.
4889  *
4890  *	LOCKING:
4891  *	spin_lock_irqsave(host lock)
4892  */
4893 void ata_qc_complete(struct ata_queued_cmd *qc)
4894 {
4895 	struct ata_port *ap = qc->ap;
4896 
4897 	/* XXX: New EH and old EH use different mechanisms to
4898 	 * synchronize EH with regular execution path.
4899 	 *
4900 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4901 	 * Normal execution path is responsible for not accessing a
4902 	 * failed qc.  libata core enforces the rule by returning NULL
4903 	 * from ata_qc_from_tag() for failed qcs.
4904 	 *
4905 	 * Old EH depends on ata_qc_complete() nullifying completion
4906 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4907 	 * not synchronize with interrupt handler.  Only PIO task is
4908 	 * taken care of.
4909 	 */
4910 	if (ap->ops->error_handler) {
4911 		struct ata_device *dev = qc->dev;
4912 		struct ata_eh_info *ehi = &dev->link->eh_info;
4913 
4914 		if (unlikely(qc->err_mask))
4915 			qc->flags |= ATA_QCFLAG_FAILED;
4916 
4917 		/*
4918 		 * Finish internal commands without any further processing
4919 		 * and always with the result TF filled.
4920 		 */
4921 		if (unlikely(ata_tag_internal(qc->tag))) {
4922 			fill_result_tf(qc);
4923 			__ata_qc_complete(qc);
4924 			return;
4925 		}
4926 
4927 		/*
4928 		 * Non-internal qc has failed.  Fill the result TF and
4929 		 * summon EH.
4930 		 */
4931 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4932 			fill_result_tf(qc);
4933 			ata_qc_schedule_eh(qc);
4934 			return;
4935 		}
4936 
4937 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4938 
4939 		/* read result TF if requested */
4940 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4941 			fill_result_tf(qc);
4942 
4943 		/* Some commands need post-processing after successful
4944 		 * completion.
4945 		 */
4946 		switch (qc->tf.command) {
4947 		case ATA_CMD_SET_FEATURES:
4948 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4949 			    qc->tf.feature != SETFEATURES_WC_OFF)
4950 				break;
4951 			/* fall through */
4952 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4953 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4954 			/* revalidate device */
4955 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4956 			ata_port_schedule_eh(ap);
4957 			break;
4958 
4959 		case ATA_CMD_SLEEP:
4960 			dev->flags |= ATA_DFLAG_SLEEPING;
4961 			break;
4962 		}
4963 
4964 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4965 			ata_verify_xfer(qc);
4966 
4967 		__ata_qc_complete(qc);
4968 	} else {
4969 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4970 			return;
4971 
4972 		/* read result TF if failed or requested */
4973 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4974 			fill_result_tf(qc);
4975 
4976 		__ata_qc_complete(qc);
4977 	}
4978 }
4979 
4980 /**
4981  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4982  *	@ap: port in question
4983  *	@qc_active: new qc_active mask
4984  *
4985  *	Complete in-flight commands.  This functions is meant to be
4986  *	called from low-level driver's interrupt routine to complete
4987  *	requests normally.  ap->qc_active and @qc_active is compared
4988  *	and commands are completed accordingly.
4989  *
4990  *	Always use this function when completing multiple NCQ commands
4991  *	from IRQ handlers instead of calling ata_qc_complete()
4992  *	multiple times to keep IRQ expect status properly in sync.
4993  *
4994  *	LOCKING:
4995  *	spin_lock_irqsave(host lock)
4996  *
4997  *	RETURNS:
4998  *	Number of completed commands on success, -errno otherwise.
4999  */
5000 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5001 {
5002 	int nr_done = 0;
5003 	u32 done_mask;
5004 
5005 	done_mask = ap->qc_active ^ qc_active;
5006 
5007 	if (unlikely(done_mask & qc_active)) {
5008 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5009 			     ap->qc_active, qc_active);
5010 		return -EINVAL;
5011 	}
5012 
5013 	while (done_mask) {
5014 		struct ata_queued_cmd *qc;
5015 		unsigned int tag = __ffs(done_mask);
5016 
5017 		qc = ata_qc_from_tag(ap, tag);
5018 		if (qc) {
5019 			ata_qc_complete(qc);
5020 			nr_done++;
5021 		}
5022 		done_mask &= ~(1 << tag);
5023 	}
5024 
5025 	return nr_done;
5026 }
5027 
5028 /**
5029  *	ata_qc_issue - issue taskfile to device
5030  *	@qc: command to issue to device
5031  *
5032  *	Prepare an ATA command to submission to device.
5033  *	This includes mapping the data into a DMA-able
5034  *	area, filling in the S/G table, and finally
5035  *	writing the taskfile to hardware, starting the command.
5036  *
5037  *	LOCKING:
5038  *	spin_lock_irqsave(host lock)
5039  */
5040 void ata_qc_issue(struct ata_queued_cmd *qc)
5041 {
5042 	struct ata_port *ap = qc->ap;
5043 	struct ata_link *link = qc->dev->link;
5044 	u8 prot = qc->tf.protocol;
5045 
5046 	/* Make sure only one non-NCQ command is outstanding.  The
5047 	 * check is skipped for old EH because it reuses active qc to
5048 	 * request ATAPI sense.
5049 	 */
5050 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5051 
5052 	if (ata_is_ncq(prot)) {
5053 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5054 
5055 		if (!link->sactive)
5056 			ap->nr_active_links++;
5057 		link->sactive |= 1 << qc->tag;
5058 	} else {
5059 		WARN_ON_ONCE(link->sactive);
5060 
5061 		ap->nr_active_links++;
5062 		link->active_tag = qc->tag;
5063 	}
5064 
5065 	qc->flags |= ATA_QCFLAG_ACTIVE;
5066 	ap->qc_active |= 1 << qc->tag;
5067 
5068 	/*
5069 	 * We guarantee to LLDs that they will have at least one
5070 	 * non-zero sg if the command is a data command.
5071 	 */
5072 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5073 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5074 		goto sys_err;
5075 
5076 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5077 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5078 		if (ata_sg_setup(qc))
5079 			goto sys_err;
5080 
5081 	/* if device is sleeping, schedule reset and abort the link */
5082 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5083 		link->eh_info.action |= ATA_EH_RESET;
5084 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5085 		ata_link_abort(link);
5086 		return;
5087 	}
5088 
5089 	ap->ops->qc_prep(qc);
5090 
5091 	qc->err_mask |= ap->ops->qc_issue(qc);
5092 	if (unlikely(qc->err_mask))
5093 		goto err;
5094 	return;
5095 
5096 sys_err:
5097 	qc->err_mask |= AC_ERR_SYSTEM;
5098 err:
5099 	ata_qc_complete(qc);
5100 }
5101 
5102 /**
5103  *	sata_scr_valid - test whether SCRs are accessible
5104  *	@link: ATA link to test SCR accessibility for
5105  *
5106  *	Test whether SCRs are accessible for @link.
5107  *
5108  *	LOCKING:
5109  *	None.
5110  *
5111  *	RETURNS:
5112  *	1 if SCRs are accessible, 0 otherwise.
5113  */
5114 int sata_scr_valid(struct ata_link *link)
5115 {
5116 	struct ata_port *ap = link->ap;
5117 
5118 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5119 }
5120 
5121 /**
5122  *	sata_scr_read - read SCR register of the specified port
5123  *	@link: ATA link to read SCR for
5124  *	@reg: SCR to read
5125  *	@val: Place to store read value
5126  *
5127  *	Read SCR register @reg of @link into *@val.  This function is
5128  *	guaranteed to succeed if @link is ap->link, the cable type of
5129  *	the port is SATA and the port implements ->scr_read.
5130  *
5131  *	LOCKING:
5132  *	None if @link is ap->link.  Kernel thread context otherwise.
5133  *
5134  *	RETURNS:
5135  *	0 on success, negative errno on failure.
5136  */
5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5138 {
5139 	if (ata_is_host_link(link)) {
5140 		if (sata_scr_valid(link))
5141 			return link->ap->ops->scr_read(link, reg, val);
5142 		return -EOPNOTSUPP;
5143 	}
5144 
5145 	return sata_pmp_scr_read(link, reg, val);
5146 }
5147 
5148 /**
5149  *	sata_scr_write - write SCR register of the specified port
5150  *	@link: ATA link to write SCR for
5151  *	@reg: SCR to write
5152  *	@val: value to write
5153  *
5154  *	Write @val to SCR register @reg of @link.  This function is
5155  *	guaranteed to succeed if @link is ap->link, the cable type of
5156  *	the port is SATA and the port implements ->scr_read.
5157  *
5158  *	LOCKING:
5159  *	None if @link is ap->link.  Kernel thread context otherwise.
5160  *
5161  *	RETURNS:
5162  *	0 on success, negative errno on failure.
5163  */
5164 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5165 {
5166 	if (ata_is_host_link(link)) {
5167 		if (sata_scr_valid(link))
5168 			return link->ap->ops->scr_write(link, reg, val);
5169 		return -EOPNOTSUPP;
5170 	}
5171 
5172 	return sata_pmp_scr_write(link, reg, val);
5173 }
5174 
5175 /**
5176  *	sata_scr_write_flush - write SCR register of the specified port and flush
5177  *	@link: ATA link to write SCR for
5178  *	@reg: SCR to write
5179  *	@val: value to write
5180  *
5181  *	This function is identical to sata_scr_write() except that this
5182  *	function performs flush after writing to the register.
5183  *
5184  *	LOCKING:
5185  *	None if @link is ap->link.  Kernel thread context otherwise.
5186  *
5187  *	RETURNS:
5188  *	0 on success, negative errno on failure.
5189  */
5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5191 {
5192 	if (ata_is_host_link(link)) {
5193 		int rc;
5194 
5195 		if (sata_scr_valid(link)) {
5196 			rc = link->ap->ops->scr_write(link, reg, val);
5197 			if (rc == 0)
5198 				rc = link->ap->ops->scr_read(link, reg, &val);
5199 			return rc;
5200 		}
5201 		return -EOPNOTSUPP;
5202 	}
5203 
5204 	return sata_pmp_scr_write(link, reg, val);
5205 }
5206 
5207 /**
5208  *	ata_phys_link_online - test whether the given link is online
5209  *	@link: ATA link to test
5210  *
5211  *	Test whether @link is online.  Note that this function returns
5212  *	0 if online status of @link cannot be obtained, so
5213  *	ata_link_online(link) != !ata_link_offline(link).
5214  *
5215  *	LOCKING:
5216  *	None.
5217  *
5218  *	RETURNS:
5219  *	True if the port online status is available and online.
5220  */
5221 bool ata_phys_link_online(struct ata_link *link)
5222 {
5223 	u32 sstatus;
5224 
5225 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5226 	    ata_sstatus_online(sstatus))
5227 		return true;
5228 	return false;
5229 }
5230 
5231 /**
5232  *	ata_phys_link_offline - test whether the given link is offline
5233  *	@link: ATA link to test
5234  *
5235  *	Test whether @link is offline.  Note that this function
5236  *	returns 0 if offline status of @link cannot be obtained, so
5237  *	ata_link_online(link) != !ata_link_offline(link).
5238  *
5239  *	LOCKING:
5240  *	None.
5241  *
5242  *	RETURNS:
5243  *	True if the port offline status is available and offline.
5244  */
5245 bool ata_phys_link_offline(struct ata_link *link)
5246 {
5247 	u32 sstatus;
5248 
5249 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5250 	    !ata_sstatus_online(sstatus))
5251 		return true;
5252 	return false;
5253 }
5254 
5255 /**
5256  *	ata_link_online - test whether the given link is online
5257  *	@link: ATA link to test
5258  *
5259  *	Test whether @link is online.  This is identical to
5260  *	ata_phys_link_online() when there's no slave link.  When
5261  *	there's a slave link, this function should only be called on
5262  *	the master link and will return true if any of M/S links is
5263  *	online.
5264  *
5265  *	LOCKING:
5266  *	None.
5267  *
5268  *	RETURNS:
5269  *	True if the port online status is available and online.
5270  */
5271 bool ata_link_online(struct ata_link *link)
5272 {
5273 	struct ata_link *slave = link->ap->slave_link;
5274 
5275 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5276 
5277 	return ata_phys_link_online(link) ||
5278 		(slave && ata_phys_link_online(slave));
5279 }
5280 
5281 /**
5282  *	ata_link_offline - test whether the given link is offline
5283  *	@link: ATA link to test
5284  *
5285  *	Test whether @link is offline.  This is identical to
5286  *	ata_phys_link_offline() when there's no slave link.  When
5287  *	there's a slave link, this function should only be called on
5288  *	the master link and will return true if both M/S links are
5289  *	offline.
5290  *
5291  *	LOCKING:
5292  *	None.
5293  *
5294  *	RETURNS:
5295  *	True if the port offline status is available and offline.
5296  */
5297 bool ata_link_offline(struct ata_link *link)
5298 {
5299 	struct ata_link *slave = link->ap->slave_link;
5300 
5301 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5302 
5303 	return ata_phys_link_offline(link) &&
5304 		(!slave || ata_phys_link_offline(slave));
5305 }
5306 
5307 #ifdef CONFIG_PM
5308 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5309 				unsigned int action, unsigned int ehi_flags,
5310 				bool async)
5311 {
5312 	struct ata_link *link;
5313 	unsigned long flags;
5314 
5315 	/* Previous resume operation might still be in
5316 	 * progress.  Wait for PM_PENDING to clear.
5317 	 */
5318 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5319 		ata_port_wait_eh(ap);
5320 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5321 	}
5322 
5323 	/* request PM ops to EH */
5324 	spin_lock_irqsave(ap->lock, flags);
5325 
5326 	ap->pm_mesg = mesg;
5327 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5328 	ata_for_each_link(link, ap, HOST_FIRST) {
5329 		link->eh_info.action |= action;
5330 		link->eh_info.flags |= ehi_flags;
5331 	}
5332 
5333 	ata_port_schedule_eh(ap);
5334 
5335 	spin_unlock_irqrestore(ap->lock, flags);
5336 
5337 	if (!async) {
5338 		ata_port_wait_eh(ap);
5339 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5340 	}
5341 }
5342 
5343 /*
5344  * On some hardware, device fails to respond after spun down for suspend.  As
5345  * the device won't be used before being resumed, we don't need to touch the
5346  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5347  *
5348  * http://thread.gmane.org/gmane.linux.ide/46764
5349  */
5350 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5351 						 | ATA_EHI_NO_AUTOPSY
5352 						 | ATA_EHI_NO_RECOVERY;
5353 
5354 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5355 {
5356 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5357 }
5358 
5359 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5360 {
5361 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5362 }
5363 
5364 static int ata_port_pm_suspend(struct device *dev)
5365 {
5366 	struct ata_port *ap = to_ata_port(dev);
5367 
5368 	if (pm_runtime_suspended(dev))
5369 		return 0;
5370 
5371 	ata_port_suspend(ap, PMSG_SUSPEND);
5372 	return 0;
5373 }
5374 
5375 static int ata_port_pm_freeze(struct device *dev)
5376 {
5377 	struct ata_port *ap = to_ata_port(dev);
5378 
5379 	if (pm_runtime_suspended(dev))
5380 		return 0;
5381 
5382 	ata_port_suspend(ap, PMSG_FREEZE);
5383 	return 0;
5384 }
5385 
5386 static int ata_port_pm_poweroff(struct device *dev)
5387 {
5388 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5389 	return 0;
5390 }
5391 
5392 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5393 						| ATA_EHI_QUIET;
5394 
5395 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5396 {
5397 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5398 }
5399 
5400 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5401 {
5402 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5403 }
5404 
5405 static int ata_port_pm_resume(struct device *dev)
5406 {
5407 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5408 	pm_runtime_disable(dev);
5409 	pm_runtime_set_active(dev);
5410 	pm_runtime_enable(dev);
5411 	return 0;
5412 }
5413 
5414 /*
5415  * For ODDs, the upper layer will poll for media change every few seconds,
5416  * which will make it enter and leave suspend state every few seconds. And
5417  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5418  * is very little and the ODD may malfunction after constantly being reset.
5419  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5420  * ODD is attached to the port.
5421  */
5422 static int ata_port_runtime_idle(struct device *dev)
5423 {
5424 	struct ata_port *ap = to_ata_port(dev);
5425 	struct ata_link *link;
5426 	struct ata_device *adev;
5427 
5428 	ata_for_each_link(link, ap, HOST_FIRST) {
5429 		ata_for_each_dev(adev, link, ENABLED)
5430 			if (adev->class == ATA_DEV_ATAPI &&
5431 			    !zpodd_dev_enabled(adev))
5432 				return -EBUSY;
5433 	}
5434 
5435 	return 0;
5436 }
5437 
5438 static int ata_port_runtime_suspend(struct device *dev)
5439 {
5440 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5441 	return 0;
5442 }
5443 
5444 static int ata_port_runtime_resume(struct device *dev)
5445 {
5446 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5447 	return 0;
5448 }
5449 
5450 static const struct dev_pm_ops ata_port_pm_ops = {
5451 	.suspend = ata_port_pm_suspend,
5452 	.resume = ata_port_pm_resume,
5453 	.freeze = ata_port_pm_freeze,
5454 	.thaw = ata_port_pm_resume,
5455 	.poweroff = ata_port_pm_poweroff,
5456 	.restore = ata_port_pm_resume,
5457 
5458 	.runtime_suspend = ata_port_runtime_suspend,
5459 	.runtime_resume = ata_port_runtime_resume,
5460 	.runtime_idle = ata_port_runtime_idle,
5461 };
5462 
5463 /* sas ports don't participate in pm runtime management of ata_ports,
5464  * and need to resume ata devices at the domain level, not the per-port
5465  * level. sas suspend/resume is async to allow parallel port recovery
5466  * since sas has multiple ata_port instances per Scsi_Host.
5467  */
5468 void ata_sas_port_suspend(struct ata_port *ap)
5469 {
5470 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5471 }
5472 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5473 
5474 void ata_sas_port_resume(struct ata_port *ap)
5475 {
5476 	ata_port_resume_async(ap, PMSG_RESUME);
5477 }
5478 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5479 
5480 /**
5481  *	ata_host_suspend - suspend host
5482  *	@host: host to suspend
5483  *	@mesg: PM message
5484  *
5485  *	Suspend @host.  Actual operation is performed by port suspend.
5486  */
5487 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5488 {
5489 	host->dev->power.power_state = mesg;
5490 	return 0;
5491 }
5492 
5493 /**
5494  *	ata_host_resume - resume host
5495  *	@host: host to resume
5496  *
5497  *	Resume @host.  Actual operation is performed by port resume.
5498  */
5499 void ata_host_resume(struct ata_host *host)
5500 {
5501 	host->dev->power.power_state = PMSG_ON;
5502 }
5503 #endif
5504 
5505 struct device_type ata_port_type = {
5506 	.name = "ata_port",
5507 #ifdef CONFIG_PM
5508 	.pm = &ata_port_pm_ops,
5509 #endif
5510 };
5511 
5512 /**
5513  *	ata_dev_init - Initialize an ata_device structure
5514  *	@dev: Device structure to initialize
5515  *
5516  *	Initialize @dev in preparation for probing.
5517  *
5518  *	LOCKING:
5519  *	Inherited from caller.
5520  */
5521 void ata_dev_init(struct ata_device *dev)
5522 {
5523 	struct ata_link *link = ata_dev_phys_link(dev);
5524 	struct ata_port *ap = link->ap;
5525 	unsigned long flags;
5526 
5527 	/* SATA spd limit is bound to the attached device, reset together */
5528 	link->sata_spd_limit = link->hw_sata_spd_limit;
5529 	link->sata_spd = 0;
5530 
5531 	/* High bits of dev->flags are used to record warm plug
5532 	 * requests which occur asynchronously.  Synchronize using
5533 	 * host lock.
5534 	 */
5535 	spin_lock_irqsave(ap->lock, flags);
5536 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5537 	dev->horkage = 0;
5538 	spin_unlock_irqrestore(ap->lock, flags);
5539 
5540 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5541 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5542 	dev->pio_mask = UINT_MAX;
5543 	dev->mwdma_mask = UINT_MAX;
5544 	dev->udma_mask = UINT_MAX;
5545 }
5546 
5547 /**
5548  *	ata_link_init - Initialize an ata_link structure
5549  *	@ap: ATA port link is attached to
5550  *	@link: Link structure to initialize
5551  *	@pmp: Port multiplier port number
5552  *
5553  *	Initialize @link.
5554  *
5555  *	LOCKING:
5556  *	Kernel thread context (may sleep)
5557  */
5558 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5559 {
5560 	int i;
5561 
5562 	/* clear everything except for devices */
5563 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5564 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5565 
5566 	link->ap = ap;
5567 	link->pmp = pmp;
5568 	link->active_tag = ATA_TAG_POISON;
5569 	link->hw_sata_spd_limit = UINT_MAX;
5570 
5571 	/* can't use iterator, ap isn't initialized yet */
5572 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5573 		struct ata_device *dev = &link->device[i];
5574 
5575 		dev->link = link;
5576 		dev->devno = dev - link->device;
5577 #ifdef CONFIG_ATA_ACPI
5578 		dev->gtf_filter = ata_acpi_gtf_filter;
5579 #endif
5580 		ata_dev_init(dev);
5581 	}
5582 }
5583 
5584 /**
5585  *	sata_link_init_spd - Initialize link->sata_spd_limit
5586  *	@link: Link to configure sata_spd_limit for
5587  *
5588  *	Initialize @link->[hw_]sata_spd_limit to the currently
5589  *	configured value.
5590  *
5591  *	LOCKING:
5592  *	Kernel thread context (may sleep).
5593  *
5594  *	RETURNS:
5595  *	0 on success, -errno on failure.
5596  */
5597 int sata_link_init_spd(struct ata_link *link)
5598 {
5599 	u8 spd;
5600 	int rc;
5601 
5602 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5603 	if (rc)
5604 		return rc;
5605 
5606 	spd = (link->saved_scontrol >> 4) & 0xf;
5607 	if (spd)
5608 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5609 
5610 	ata_force_link_limits(link);
5611 
5612 	link->sata_spd_limit = link->hw_sata_spd_limit;
5613 
5614 	return 0;
5615 }
5616 
5617 /**
5618  *	ata_port_alloc - allocate and initialize basic ATA port resources
5619  *	@host: ATA host this allocated port belongs to
5620  *
5621  *	Allocate and initialize basic ATA port resources.
5622  *
5623  *	RETURNS:
5624  *	Allocate ATA port on success, NULL on failure.
5625  *
5626  *	LOCKING:
5627  *	Inherited from calling layer (may sleep).
5628  */
5629 struct ata_port *ata_port_alloc(struct ata_host *host)
5630 {
5631 	struct ata_port *ap;
5632 
5633 	DPRINTK("ENTER\n");
5634 
5635 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5636 	if (!ap)
5637 		return NULL;
5638 
5639 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5640 	ap->lock = &host->lock;
5641 	ap->print_id = -1;
5642 	ap->local_port_no = -1;
5643 	ap->host = host;
5644 	ap->dev = host->dev;
5645 
5646 #if defined(ATA_VERBOSE_DEBUG)
5647 	/* turn on all debugging levels */
5648 	ap->msg_enable = 0x00FF;
5649 #elif defined(ATA_DEBUG)
5650 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5651 #else
5652 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5653 #endif
5654 
5655 	mutex_init(&ap->scsi_scan_mutex);
5656 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5657 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5658 	INIT_LIST_HEAD(&ap->eh_done_q);
5659 	init_waitqueue_head(&ap->eh_wait_q);
5660 	init_completion(&ap->park_req_pending);
5661 	init_timer_deferrable(&ap->fastdrain_timer);
5662 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5663 	ap->fastdrain_timer.data = (unsigned long)ap;
5664 
5665 	ap->cbl = ATA_CBL_NONE;
5666 
5667 	ata_link_init(ap, &ap->link, 0);
5668 
5669 #ifdef ATA_IRQ_TRAP
5670 	ap->stats.unhandled_irq = 1;
5671 	ap->stats.idle_irq = 1;
5672 #endif
5673 	ata_sff_port_init(ap);
5674 
5675 	return ap;
5676 }
5677 
5678 static void ata_host_release(struct device *gendev, void *res)
5679 {
5680 	struct ata_host *host = dev_get_drvdata(gendev);
5681 	int i;
5682 
5683 	for (i = 0; i < host->n_ports; i++) {
5684 		struct ata_port *ap = host->ports[i];
5685 
5686 		if (!ap)
5687 			continue;
5688 
5689 		if (ap->scsi_host)
5690 			scsi_host_put(ap->scsi_host);
5691 
5692 		kfree(ap->pmp_link);
5693 		kfree(ap->slave_link);
5694 		kfree(ap);
5695 		host->ports[i] = NULL;
5696 	}
5697 
5698 	dev_set_drvdata(gendev, NULL);
5699 }
5700 
5701 /**
5702  *	ata_host_alloc - allocate and init basic ATA host resources
5703  *	@dev: generic device this host is associated with
5704  *	@max_ports: maximum number of ATA ports associated with this host
5705  *
5706  *	Allocate and initialize basic ATA host resources.  LLD calls
5707  *	this function to allocate a host, initializes it fully and
5708  *	attaches it using ata_host_register().
5709  *
5710  *	@max_ports ports are allocated and host->n_ports is
5711  *	initialized to @max_ports.  The caller is allowed to decrease
5712  *	host->n_ports before calling ata_host_register().  The unused
5713  *	ports will be automatically freed on registration.
5714  *
5715  *	RETURNS:
5716  *	Allocate ATA host on success, NULL on failure.
5717  *
5718  *	LOCKING:
5719  *	Inherited from calling layer (may sleep).
5720  */
5721 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5722 {
5723 	struct ata_host *host;
5724 	size_t sz;
5725 	int i;
5726 
5727 	DPRINTK("ENTER\n");
5728 
5729 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5730 		return NULL;
5731 
5732 	/* alloc a container for our list of ATA ports (buses) */
5733 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5734 	/* alloc a container for our list of ATA ports (buses) */
5735 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5736 	if (!host)
5737 		goto err_out;
5738 
5739 	devres_add(dev, host);
5740 	dev_set_drvdata(dev, host);
5741 
5742 	spin_lock_init(&host->lock);
5743 	mutex_init(&host->eh_mutex);
5744 	host->dev = dev;
5745 	host->n_ports = max_ports;
5746 
5747 	/* allocate ports bound to this host */
5748 	for (i = 0; i < max_ports; i++) {
5749 		struct ata_port *ap;
5750 
5751 		ap = ata_port_alloc(host);
5752 		if (!ap)
5753 			goto err_out;
5754 
5755 		ap->port_no = i;
5756 		host->ports[i] = ap;
5757 	}
5758 
5759 	devres_remove_group(dev, NULL);
5760 	return host;
5761 
5762  err_out:
5763 	devres_release_group(dev, NULL);
5764 	return NULL;
5765 }
5766 
5767 /**
5768  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5769  *	@dev: generic device this host is associated with
5770  *	@ppi: array of ATA port_info to initialize host with
5771  *	@n_ports: number of ATA ports attached to this host
5772  *
5773  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5774  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5775  *	last entry will be used for the remaining ports.
5776  *
5777  *	RETURNS:
5778  *	Allocate ATA host on success, NULL on failure.
5779  *
5780  *	LOCKING:
5781  *	Inherited from calling layer (may sleep).
5782  */
5783 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5784 				      const struct ata_port_info * const * ppi,
5785 				      int n_ports)
5786 {
5787 	const struct ata_port_info *pi;
5788 	struct ata_host *host;
5789 	int i, j;
5790 
5791 	host = ata_host_alloc(dev, n_ports);
5792 	if (!host)
5793 		return NULL;
5794 
5795 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5796 		struct ata_port *ap = host->ports[i];
5797 
5798 		if (ppi[j])
5799 			pi = ppi[j++];
5800 
5801 		ap->pio_mask = pi->pio_mask;
5802 		ap->mwdma_mask = pi->mwdma_mask;
5803 		ap->udma_mask = pi->udma_mask;
5804 		ap->flags |= pi->flags;
5805 		ap->link.flags |= pi->link_flags;
5806 		ap->ops = pi->port_ops;
5807 
5808 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5809 			host->ops = pi->port_ops;
5810 	}
5811 
5812 	return host;
5813 }
5814 
5815 /**
5816  *	ata_slave_link_init - initialize slave link
5817  *	@ap: port to initialize slave link for
5818  *
5819  *	Create and initialize slave link for @ap.  This enables slave
5820  *	link handling on the port.
5821  *
5822  *	In libata, a port contains links and a link contains devices.
5823  *	There is single host link but if a PMP is attached to it,
5824  *	there can be multiple fan-out links.  On SATA, there's usually
5825  *	a single device connected to a link but PATA and SATA
5826  *	controllers emulating TF based interface can have two - master
5827  *	and slave.
5828  *
5829  *	However, there are a few controllers which don't fit into this
5830  *	abstraction too well - SATA controllers which emulate TF
5831  *	interface with both master and slave devices but also have
5832  *	separate SCR register sets for each device.  These controllers
5833  *	need separate links for physical link handling
5834  *	(e.g. onlineness, link speed) but should be treated like a
5835  *	traditional M/S controller for everything else (e.g. command
5836  *	issue, softreset).
5837  *
5838  *	slave_link is libata's way of handling this class of
5839  *	controllers without impacting core layer too much.  For
5840  *	anything other than physical link handling, the default host
5841  *	link is used for both master and slave.  For physical link
5842  *	handling, separate @ap->slave_link is used.  All dirty details
5843  *	are implemented inside libata core layer.  From LLD's POV, the
5844  *	only difference is that prereset, hardreset and postreset are
5845  *	called once more for the slave link, so the reset sequence
5846  *	looks like the following.
5847  *
5848  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5849  *	softreset(M) -> postreset(M) -> postreset(S)
5850  *
5851  *	Note that softreset is called only for the master.  Softreset
5852  *	resets both M/S by definition, so SRST on master should handle
5853  *	both (the standard method will work just fine).
5854  *
5855  *	LOCKING:
5856  *	Should be called before host is registered.
5857  *
5858  *	RETURNS:
5859  *	0 on success, -errno on failure.
5860  */
5861 int ata_slave_link_init(struct ata_port *ap)
5862 {
5863 	struct ata_link *link;
5864 
5865 	WARN_ON(ap->slave_link);
5866 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5867 
5868 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5869 	if (!link)
5870 		return -ENOMEM;
5871 
5872 	ata_link_init(ap, link, 1);
5873 	ap->slave_link = link;
5874 	return 0;
5875 }
5876 
5877 static void ata_host_stop(struct device *gendev, void *res)
5878 {
5879 	struct ata_host *host = dev_get_drvdata(gendev);
5880 	int i;
5881 
5882 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5883 
5884 	for (i = 0; i < host->n_ports; i++) {
5885 		struct ata_port *ap = host->ports[i];
5886 
5887 		if (ap->ops->port_stop)
5888 			ap->ops->port_stop(ap);
5889 	}
5890 
5891 	if (host->ops->host_stop)
5892 		host->ops->host_stop(host);
5893 }
5894 
5895 /**
5896  *	ata_finalize_port_ops - finalize ata_port_operations
5897  *	@ops: ata_port_operations to finalize
5898  *
5899  *	An ata_port_operations can inherit from another ops and that
5900  *	ops can again inherit from another.  This can go on as many
5901  *	times as necessary as long as there is no loop in the
5902  *	inheritance chain.
5903  *
5904  *	Ops tables are finalized when the host is started.  NULL or
5905  *	unspecified entries are inherited from the closet ancestor
5906  *	which has the method and the entry is populated with it.
5907  *	After finalization, the ops table directly points to all the
5908  *	methods and ->inherits is no longer necessary and cleared.
5909  *
5910  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5911  *
5912  *	LOCKING:
5913  *	None.
5914  */
5915 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5916 {
5917 	static DEFINE_SPINLOCK(lock);
5918 	const struct ata_port_operations *cur;
5919 	void **begin = (void **)ops;
5920 	void **end = (void **)&ops->inherits;
5921 	void **pp;
5922 
5923 	if (!ops || !ops->inherits)
5924 		return;
5925 
5926 	spin_lock(&lock);
5927 
5928 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5929 		void **inherit = (void **)cur;
5930 
5931 		for (pp = begin; pp < end; pp++, inherit++)
5932 			if (!*pp)
5933 				*pp = *inherit;
5934 	}
5935 
5936 	for (pp = begin; pp < end; pp++)
5937 		if (IS_ERR(*pp))
5938 			*pp = NULL;
5939 
5940 	ops->inherits = NULL;
5941 
5942 	spin_unlock(&lock);
5943 }
5944 
5945 /**
5946  *	ata_host_start - start and freeze ports of an ATA host
5947  *	@host: ATA host to start ports for
5948  *
5949  *	Start and then freeze ports of @host.  Started status is
5950  *	recorded in host->flags, so this function can be called
5951  *	multiple times.  Ports are guaranteed to get started only
5952  *	once.  If host->ops isn't initialized yet, its set to the
5953  *	first non-dummy port ops.
5954  *
5955  *	LOCKING:
5956  *	Inherited from calling layer (may sleep).
5957  *
5958  *	RETURNS:
5959  *	0 if all ports are started successfully, -errno otherwise.
5960  */
5961 int ata_host_start(struct ata_host *host)
5962 {
5963 	int have_stop = 0;
5964 	void *start_dr = NULL;
5965 	int i, rc;
5966 
5967 	if (host->flags & ATA_HOST_STARTED)
5968 		return 0;
5969 
5970 	ata_finalize_port_ops(host->ops);
5971 
5972 	for (i = 0; i < host->n_ports; i++) {
5973 		struct ata_port *ap = host->ports[i];
5974 
5975 		ata_finalize_port_ops(ap->ops);
5976 
5977 		if (!host->ops && !ata_port_is_dummy(ap))
5978 			host->ops = ap->ops;
5979 
5980 		if (ap->ops->port_stop)
5981 			have_stop = 1;
5982 	}
5983 
5984 	if (host->ops->host_stop)
5985 		have_stop = 1;
5986 
5987 	if (have_stop) {
5988 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5989 		if (!start_dr)
5990 			return -ENOMEM;
5991 	}
5992 
5993 	for (i = 0; i < host->n_ports; i++) {
5994 		struct ata_port *ap = host->ports[i];
5995 
5996 		if (ap->ops->port_start) {
5997 			rc = ap->ops->port_start(ap);
5998 			if (rc) {
5999 				if (rc != -ENODEV)
6000 					dev_err(host->dev,
6001 						"failed to start port %d (errno=%d)\n",
6002 						i, rc);
6003 				goto err_out;
6004 			}
6005 		}
6006 		ata_eh_freeze_port(ap);
6007 	}
6008 
6009 	if (start_dr)
6010 		devres_add(host->dev, start_dr);
6011 	host->flags |= ATA_HOST_STARTED;
6012 	return 0;
6013 
6014  err_out:
6015 	while (--i >= 0) {
6016 		struct ata_port *ap = host->ports[i];
6017 
6018 		if (ap->ops->port_stop)
6019 			ap->ops->port_stop(ap);
6020 	}
6021 	devres_free(start_dr);
6022 	return rc;
6023 }
6024 
6025 /**
6026  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6027  *	@host:	host to initialize
6028  *	@dev:	device host is attached to
6029  *	@ops:	port_ops
6030  *
6031  */
6032 void ata_host_init(struct ata_host *host, struct device *dev,
6033 		   struct ata_port_operations *ops)
6034 {
6035 	spin_lock_init(&host->lock);
6036 	mutex_init(&host->eh_mutex);
6037 	host->n_tags = ATA_MAX_QUEUE - 1;
6038 	host->dev = dev;
6039 	host->ops = ops;
6040 }
6041 
6042 void __ata_port_probe(struct ata_port *ap)
6043 {
6044 	struct ata_eh_info *ehi = &ap->link.eh_info;
6045 	unsigned long flags;
6046 
6047 	/* kick EH for boot probing */
6048 	spin_lock_irqsave(ap->lock, flags);
6049 
6050 	ehi->probe_mask |= ATA_ALL_DEVICES;
6051 	ehi->action |= ATA_EH_RESET;
6052 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6053 
6054 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6055 	ap->pflags |= ATA_PFLAG_LOADING;
6056 	ata_port_schedule_eh(ap);
6057 
6058 	spin_unlock_irqrestore(ap->lock, flags);
6059 }
6060 
6061 int ata_port_probe(struct ata_port *ap)
6062 {
6063 	int rc = 0;
6064 
6065 	if (ap->ops->error_handler) {
6066 		__ata_port_probe(ap);
6067 		ata_port_wait_eh(ap);
6068 	} else {
6069 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6070 		rc = ata_bus_probe(ap);
6071 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6072 	}
6073 	return rc;
6074 }
6075 
6076 
6077 static void async_port_probe(void *data, async_cookie_t cookie)
6078 {
6079 	struct ata_port *ap = data;
6080 
6081 	/*
6082 	 * If we're not allowed to scan this host in parallel,
6083 	 * we need to wait until all previous scans have completed
6084 	 * before going further.
6085 	 * Jeff Garzik says this is only within a controller, so we
6086 	 * don't need to wait for port 0, only for later ports.
6087 	 */
6088 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6089 		async_synchronize_cookie(cookie);
6090 
6091 	(void)ata_port_probe(ap);
6092 
6093 	/* in order to keep device order, we need to synchronize at this point */
6094 	async_synchronize_cookie(cookie);
6095 
6096 	ata_scsi_scan_host(ap, 1);
6097 }
6098 
6099 /**
6100  *	ata_host_register - register initialized ATA host
6101  *	@host: ATA host to register
6102  *	@sht: template for SCSI host
6103  *
6104  *	Register initialized ATA host.  @host is allocated using
6105  *	ata_host_alloc() and fully initialized by LLD.  This function
6106  *	starts ports, registers @host with ATA and SCSI layers and
6107  *	probe registered devices.
6108  *
6109  *	LOCKING:
6110  *	Inherited from calling layer (may sleep).
6111  *
6112  *	RETURNS:
6113  *	0 on success, -errno otherwise.
6114  */
6115 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6116 {
6117 	int i, rc;
6118 
6119 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6120 
6121 	/* host must have been started */
6122 	if (!(host->flags & ATA_HOST_STARTED)) {
6123 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6124 		WARN_ON(1);
6125 		return -EINVAL;
6126 	}
6127 
6128 	/* Blow away unused ports.  This happens when LLD can't
6129 	 * determine the exact number of ports to allocate at
6130 	 * allocation time.
6131 	 */
6132 	for (i = host->n_ports; host->ports[i]; i++)
6133 		kfree(host->ports[i]);
6134 
6135 	/* give ports names and add SCSI hosts */
6136 	for (i = 0; i < host->n_ports; i++) {
6137 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6138 		host->ports[i]->local_port_no = i + 1;
6139 	}
6140 
6141 	/* Create associated sysfs transport objects  */
6142 	for (i = 0; i < host->n_ports; i++) {
6143 		rc = ata_tport_add(host->dev,host->ports[i]);
6144 		if (rc) {
6145 			goto err_tadd;
6146 		}
6147 	}
6148 
6149 	rc = ata_scsi_add_hosts(host, sht);
6150 	if (rc)
6151 		goto err_tadd;
6152 
6153 	/* set cable, sata_spd_limit and report */
6154 	for (i = 0; i < host->n_ports; i++) {
6155 		struct ata_port *ap = host->ports[i];
6156 		unsigned long xfer_mask;
6157 
6158 		/* set SATA cable type if still unset */
6159 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6160 			ap->cbl = ATA_CBL_SATA;
6161 
6162 		/* init sata_spd_limit to the current value */
6163 		sata_link_init_spd(&ap->link);
6164 		if (ap->slave_link)
6165 			sata_link_init_spd(ap->slave_link);
6166 
6167 		/* print per-port info to dmesg */
6168 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6169 					      ap->udma_mask);
6170 
6171 		if (!ata_port_is_dummy(ap)) {
6172 			ata_port_info(ap, "%cATA max %s %s\n",
6173 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6174 				      ata_mode_string(xfer_mask),
6175 				      ap->link.eh_info.desc);
6176 			ata_ehi_clear_desc(&ap->link.eh_info);
6177 		} else
6178 			ata_port_info(ap, "DUMMY\n");
6179 	}
6180 
6181 	/* perform each probe asynchronously */
6182 	for (i = 0; i < host->n_ports; i++) {
6183 		struct ata_port *ap = host->ports[i];
6184 		async_schedule(async_port_probe, ap);
6185 	}
6186 
6187 	return 0;
6188 
6189  err_tadd:
6190 	while (--i >= 0) {
6191 		ata_tport_delete(host->ports[i]);
6192 	}
6193 	return rc;
6194 
6195 }
6196 
6197 /**
6198  *	ata_host_activate - start host, request IRQ and register it
6199  *	@host: target ATA host
6200  *	@irq: IRQ to request
6201  *	@irq_handler: irq_handler used when requesting IRQ
6202  *	@irq_flags: irq_flags used when requesting IRQ
6203  *	@sht: scsi_host_template to use when registering the host
6204  *
6205  *	After allocating an ATA host and initializing it, most libata
6206  *	LLDs perform three steps to activate the host - start host,
6207  *	request IRQ and register it.  This helper takes necessasry
6208  *	arguments and performs the three steps in one go.
6209  *
6210  *	An invalid IRQ skips the IRQ registration and expects the host to
6211  *	have set polling mode on the port. In this case, @irq_handler
6212  *	should be NULL.
6213  *
6214  *	LOCKING:
6215  *	Inherited from calling layer (may sleep).
6216  *
6217  *	RETURNS:
6218  *	0 on success, -errno otherwise.
6219  */
6220 int ata_host_activate(struct ata_host *host, int irq,
6221 		      irq_handler_t irq_handler, unsigned long irq_flags,
6222 		      struct scsi_host_template *sht)
6223 {
6224 	int i, rc;
6225 
6226 	rc = ata_host_start(host);
6227 	if (rc)
6228 		return rc;
6229 
6230 	/* Special case for polling mode */
6231 	if (!irq) {
6232 		WARN_ON(irq_handler);
6233 		return ata_host_register(host, sht);
6234 	}
6235 
6236 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6237 			      dev_name(host->dev), host);
6238 	if (rc)
6239 		return rc;
6240 
6241 	for (i = 0; i < host->n_ports; i++)
6242 		ata_port_desc(host->ports[i], "irq %d", irq);
6243 
6244 	rc = ata_host_register(host, sht);
6245 	/* if failed, just free the IRQ and leave ports alone */
6246 	if (rc)
6247 		devm_free_irq(host->dev, irq, host);
6248 
6249 	return rc;
6250 }
6251 
6252 /**
6253  *	ata_port_detach - Detach ATA port in prepration of device removal
6254  *	@ap: ATA port to be detached
6255  *
6256  *	Detach all ATA devices and the associated SCSI devices of @ap;
6257  *	then, remove the associated SCSI host.  @ap is guaranteed to
6258  *	be quiescent on return from this function.
6259  *
6260  *	LOCKING:
6261  *	Kernel thread context (may sleep).
6262  */
6263 static void ata_port_detach(struct ata_port *ap)
6264 {
6265 	unsigned long flags;
6266 	struct ata_link *link;
6267 	struct ata_device *dev;
6268 
6269 	if (!ap->ops->error_handler)
6270 		goto skip_eh;
6271 
6272 	/* tell EH we're leaving & flush EH */
6273 	spin_lock_irqsave(ap->lock, flags);
6274 	ap->pflags |= ATA_PFLAG_UNLOADING;
6275 	ata_port_schedule_eh(ap);
6276 	spin_unlock_irqrestore(ap->lock, flags);
6277 
6278 	/* wait till EH commits suicide */
6279 	ata_port_wait_eh(ap);
6280 
6281 	/* it better be dead now */
6282 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6283 
6284 	cancel_delayed_work_sync(&ap->hotplug_task);
6285 
6286  skip_eh:
6287 	/* clean up zpodd on port removal */
6288 	ata_for_each_link(link, ap, HOST_FIRST) {
6289 		ata_for_each_dev(dev, link, ALL) {
6290 			if (zpodd_dev_enabled(dev))
6291 				zpodd_exit(dev);
6292 		}
6293 	}
6294 	if (ap->pmp_link) {
6295 		int i;
6296 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6297 			ata_tlink_delete(&ap->pmp_link[i]);
6298 	}
6299 	/* remove the associated SCSI host */
6300 	scsi_remove_host(ap->scsi_host);
6301 	ata_tport_delete(ap);
6302 }
6303 
6304 /**
6305  *	ata_host_detach - Detach all ports of an ATA host
6306  *	@host: Host to detach
6307  *
6308  *	Detach all ports of @host.
6309  *
6310  *	LOCKING:
6311  *	Kernel thread context (may sleep).
6312  */
6313 void ata_host_detach(struct ata_host *host)
6314 {
6315 	int i;
6316 
6317 	for (i = 0; i < host->n_ports; i++)
6318 		ata_port_detach(host->ports[i]);
6319 
6320 	/* the host is dead now, dissociate ACPI */
6321 	ata_acpi_dissociate(host);
6322 }
6323 
6324 #ifdef CONFIG_PCI
6325 
6326 /**
6327  *	ata_pci_remove_one - PCI layer callback for device removal
6328  *	@pdev: PCI device that was removed
6329  *
6330  *	PCI layer indicates to libata via this hook that hot-unplug or
6331  *	module unload event has occurred.  Detach all ports.  Resource
6332  *	release is handled via devres.
6333  *
6334  *	LOCKING:
6335  *	Inherited from PCI layer (may sleep).
6336  */
6337 void ata_pci_remove_one(struct pci_dev *pdev)
6338 {
6339 	struct ata_host *host = pci_get_drvdata(pdev);
6340 
6341 	ata_host_detach(host);
6342 }
6343 
6344 /* move to PCI subsystem */
6345 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6346 {
6347 	unsigned long tmp = 0;
6348 
6349 	switch (bits->width) {
6350 	case 1: {
6351 		u8 tmp8 = 0;
6352 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6353 		tmp = tmp8;
6354 		break;
6355 	}
6356 	case 2: {
6357 		u16 tmp16 = 0;
6358 		pci_read_config_word(pdev, bits->reg, &tmp16);
6359 		tmp = tmp16;
6360 		break;
6361 	}
6362 	case 4: {
6363 		u32 tmp32 = 0;
6364 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6365 		tmp = tmp32;
6366 		break;
6367 	}
6368 
6369 	default:
6370 		return -EINVAL;
6371 	}
6372 
6373 	tmp &= bits->mask;
6374 
6375 	return (tmp == bits->val) ? 1 : 0;
6376 }
6377 
6378 #ifdef CONFIG_PM
6379 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6380 {
6381 	pci_save_state(pdev);
6382 	pci_disable_device(pdev);
6383 
6384 	if (mesg.event & PM_EVENT_SLEEP)
6385 		pci_set_power_state(pdev, PCI_D3hot);
6386 }
6387 
6388 int ata_pci_device_do_resume(struct pci_dev *pdev)
6389 {
6390 	int rc;
6391 
6392 	pci_set_power_state(pdev, PCI_D0);
6393 	pci_restore_state(pdev);
6394 
6395 	rc = pcim_enable_device(pdev);
6396 	if (rc) {
6397 		dev_err(&pdev->dev,
6398 			"failed to enable device after resume (%d)\n", rc);
6399 		return rc;
6400 	}
6401 
6402 	pci_set_master(pdev);
6403 	return 0;
6404 }
6405 
6406 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6407 {
6408 	struct ata_host *host = pci_get_drvdata(pdev);
6409 	int rc = 0;
6410 
6411 	rc = ata_host_suspend(host, mesg);
6412 	if (rc)
6413 		return rc;
6414 
6415 	ata_pci_device_do_suspend(pdev, mesg);
6416 
6417 	return 0;
6418 }
6419 
6420 int ata_pci_device_resume(struct pci_dev *pdev)
6421 {
6422 	struct ata_host *host = pci_get_drvdata(pdev);
6423 	int rc;
6424 
6425 	rc = ata_pci_device_do_resume(pdev);
6426 	if (rc == 0)
6427 		ata_host_resume(host);
6428 	return rc;
6429 }
6430 #endif /* CONFIG_PM */
6431 
6432 #endif /* CONFIG_PCI */
6433 
6434 /**
6435  *	ata_platform_remove_one - Platform layer callback for device removal
6436  *	@pdev: Platform device that was removed
6437  *
6438  *	Platform layer indicates to libata via this hook that hot-unplug or
6439  *	module unload event has occurred.  Detach all ports.  Resource
6440  *	release is handled via devres.
6441  *
6442  *	LOCKING:
6443  *	Inherited from platform layer (may sleep).
6444  */
6445 int ata_platform_remove_one(struct platform_device *pdev)
6446 {
6447 	struct ata_host *host = platform_get_drvdata(pdev);
6448 
6449 	ata_host_detach(host);
6450 
6451 	return 0;
6452 }
6453 
6454 static int __init ata_parse_force_one(char **cur,
6455 				      struct ata_force_ent *force_ent,
6456 				      const char **reason)
6457 {
6458 	/* FIXME: Currently, there's no way to tag init const data and
6459 	 * using __initdata causes build failure on some versions of
6460 	 * gcc.  Once __initdataconst is implemented, add const to the
6461 	 * following structure.
6462 	 */
6463 	static struct ata_force_param force_tbl[] __initdata = {
6464 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6465 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6466 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6467 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6468 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6469 		{ "sata",	.cbl		= ATA_CBL_SATA },
6470 		{ "1.5Gbps",	.spd_limit	= 1 },
6471 		{ "3.0Gbps",	.spd_limit	= 2 },
6472 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6473 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6474 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6475 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6476 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6477 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6478 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6479 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6480 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6481 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6482 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6483 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6484 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6485 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6486 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6487 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6488 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6489 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6490 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6491 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6492 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6493 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6494 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6495 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6496 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6497 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6498 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6499 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6500 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6501 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6502 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6503 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6504 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6505 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6506 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6507 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6508 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6509 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6510 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6511 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6512 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6513 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6514 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6515 	};
6516 	char *start = *cur, *p = *cur;
6517 	char *id, *val, *endp;
6518 	const struct ata_force_param *match_fp = NULL;
6519 	int nr_matches = 0, i;
6520 
6521 	/* find where this param ends and update *cur */
6522 	while (*p != '\0' && *p != ',')
6523 		p++;
6524 
6525 	if (*p == '\0')
6526 		*cur = p;
6527 	else
6528 		*cur = p + 1;
6529 
6530 	*p = '\0';
6531 
6532 	/* parse */
6533 	p = strchr(start, ':');
6534 	if (!p) {
6535 		val = strstrip(start);
6536 		goto parse_val;
6537 	}
6538 	*p = '\0';
6539 
6540 	id = strstrip(start);
6541 	val = strstrip(p + 1);
6542 
6543 	/* parse id */
6544 	p = strchr(id, '.');
6545 	if (p) {
6546 		*p++ = '\0';
6547 		force_ent->device = simple_strtoul(p, &endp, 10);
6548 		if (p == endp || *endp != '\0') {
6549 			*reason = "invalid device";
6550 			return -EINVAL;
6551 		}
6552 	}
6553 
6554 	force_ent->port = simple_strtoul(id, &endp, 10);
6555 	if (p == endp || *endp != '\0') {
6556 		*reason = "invalid port/link";
6557 		return -EINVAL;
6558 	}
6559 
6560  parse_val:
6561 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6562 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6563 		const struct ata_force_param *fp = &force_tbl[i];
6564 
6565 		if (strncasecmp(val, fp->name, strlen(val)))
6566 			continue;
6567 
6568 		nr_matches++;
6569 		match_fp = fp;
6570 
6571 		if (strcasecmp(val, fp->name) == 0) {
6572 			nr_matches = 1;
6573 			break;
6574 		}
6575 	}
6576 
6577 	if (!nr_matches) {
6578 		*reason = "unknown value";
6579 		return -EINVAL;
6580 	}
6581 	if (nr_matches > 1) {
6582 		*reason = "ambigious value";
6583 		return -EINVAL;
6584 	}
6585 
6586 	force_ent->param = *match_fp;
6587 
6588 	return 0;
6589 }
6590 
6591 static void __init ata_parse_force_param(void)
6592 {
6593 	int idx = 0, size = 1;
6594 	int last_port = -1, last_device = -1;
6595 	char *p, *cur, *next;
6596 
6597 	/* calculate maximum number of params and allocate force_tbl */
6598 	for (p = ata_force_param_buf; *p; p++)
6599 		if (*p == ',')
6600 			size++;
6601 
6602 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6603 	if (!ata_force_tbl) {
6604 		printk(KERN_WARNING "ata: failed to extend force table, "
6605 		       "libata.force ignored\n");
6606 		return;
6607 	}
6608 
6609 	/* parse and populate the table */
6610 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6611 		const char *reason = "";
6612 		struct ata_force_ent te = { .port = -1, .device = -1 };
6613 
6614 		next = cur;
6615 		if (ata_parse_force_one(&next, &te, &reason)) {
6616 			printk(KERN_WARNING "ata: failed to parse force "
6617 			       "parameter \"%s\" (%s)\n",
6618 			       cur, reason);
6619 			continue;
6620 		}
6621 
6622 		if (te.port == -1) {
6623 			te.port = last_port;
6624 			te.device = last_device;
6625 		}
6626 
6627 		ata_force_tbl[idx++] = te;
6628 
6629 		last_port = te.port;
6630 		last_device = te.device;
6631 	}
6632 
6633 	ata_force_tbl_size = idx;
6634 }
6635 
6636 static int __init ata_init(void)
6637 {
6638 	int rc;
6639 
6640 	ata_parse_force_param();
6641 
6642 	rc = ata_sff_init();
6643 	if (rc) {
6644 		kfree(ata_force_tbl);
6645 		return rc;
6646 	}
6647 
6648 	libata_transport_init();
6649 	ata_scsi_transport_template = ata_attach_transport();
6650 	if (!ata_scsi_transport_template) {
6651 		ata_sff_exit();
6652 		rc = -ENOMEM;
6653 		goto err_out;
6654 	}
6655 
6656 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6657 	return 0;
6658 
6659 err_out:
6660 	return rc;
6661 }
6662 
6663 static void __exit ata_exit(void)
6664 {
6665 	ata_release_transport(ata_scsi_transport_template);
6666 	libata_transport_exit();
6667 	ata_sff_exit();
6668 	kfree(ata_force_tbl);
6669 }
6670 
6671 subsys_initcall(ata_init);
6672 module_exit(ata_exit);
6673 
6674 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6675 
6676 int ata_ratelimit(void)
6677 {
6678 	return __ratelimit(&ratelimit);
6679 }
6680 
6681 /**
6682  *	ata_msleep - ATA EH owner aware msleep
6683  *	@ap: ATA port to attribute the sleep to
6684  *	@msecs: duration to sleep in milliseconds
6685  *
6686  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6687  *	ownership is released before going to sleep and reacquired
6688  *	after the sleep is complete.  IOW, other ports sharing the
6689  *	@ap->host will be allowed to own the EH while this task is
6690  *	sleeping.
6691  *
6692  *	LOCKING:
6693  *	Might sleep.
6694  */
6695 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6696 {
6697 	bool owns_eh = ap && ap->host->eh_owner == current;
6698 
6699 	if (owns_eh)
6700 		ata_eh_release(ap);
6701 
6702 	msleep(msecs);
6703 
6704 	if (owns_eh)
6705 		ata_eh_acquire(ap);
6706 }
6707 
6708 /**
6709  *	ata_wait_register - wait until register value changes
6710  *	@ap: ATA port to wait register for, can be NULL
6711  *	@reg: IO-mapped register
6712  *	@mask: Mask to apply to read register value
6713  *	@val: Wait condition
6714  *	@interval: polling interval in milliseconds
6715  *	@timeout: timeout in milliseconds
6716  *
6717  *	Waiting for some bits of register to change is a common
6718  *	operation for ATA controllers.  This function reads 32bit LE
6719  *	IO-mapped register @reg and tests for the following condition.
6720  *
6721  *	(*@reg & mask) != val
6722  *
6723  *	If the condition is met, it returns; otherwise, the process is
6724  *	repeated after @interval_msec until timeout.
6725  *
6726  *	LOCKING:
6727  *	Kernel thread context (may sleep)
6728  *
6729  *	RETURNS:
6730  *	The final register value.
6731  */
6732 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6733 		      unsigned long interval, unsigned long timeout)
6734 {
6735 	unsigned long deadline;
6736 	u32 tmp;
6737 
6738 	tmp = ioread32(reg);
6739 
6740 	/* Calculate timeout _after_ the first read to make sure
6741 	 * preceding writes reach the controller before starting to
6742 	 * eat away the timeout.
6743 	 */
6744 	deadline = ata_deadline(jiffies, timeout);
6745 
6746 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6747 		ata_msleep(ap, interval);
6748 		tmp = ioread32(reg);
6749 	}
6750 
6751 	return tmp;
6752 }
6753 
6754 /*
6755  * Dummy port_ops
6756  */
6757 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6758 {
6759 	return AC_ERR_SYSTEM;
6760 }
6761 
6762 static void ata_dummy_error_handler(struct ata_port *ap)
6763 {
6764 	/* truly dummy */
6765 }
6766 
6767 struct ata_port_operations ata_dummy_port_ops = {
6768 	.qc_prep		= ata_noop_qc_prep,
6769 	.qc_issue		= ata_dummy_qc_issue,
6770 	.error_handler		= ata_dummy_error_handler,
6771 	.sched_eh		= ata_std_sched_eh,
6772 	.end_eh			= ata_std_end_eh,
6773 };
6774 
6775 const struct ata_port_info ata_dummy_port_info = {
6776 	.port_ops		= &ata_dummy_port_ops,
6777 };
6778 
6779 /*
6780  * Utility print functions
6781  */
6782 void ata_port_printk(const struct ata_port *ap, const char *level,
6783 		     const char *fmt, ...)
6784 {
6785 	struct va_format vaf;
6786 	va_list args;
6787 
6788 	va_start(args, fmt);
6789 
6790 	vaf.fmt = fmt;
6791 	vaf.va = &args;
6792 
6793 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6794 
6795 	va_end(args);
6796 }
6797 EXPORT_SYMBOL(ata_port_printk);
6798 
6799 void ata_link_printk(const struct ata_link *link, const char *level,
6800 		     const char *fmt, ...)
6801 {
6802 	struct va_format vaf;
6803 	va_list args;
6804 
6805 	va_start(args, fmt);
6806 
6807 	vaf.fmt = fmt;
6808 	vaf.va = &args;
6809 
6810 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6811 		printk("%sata%u.%02u: %pV",
6812 		       level, link->ap->print_id, link->pmp, &vaf);
6813 	else
6814 		printk("%sata%u: %pV",
6815 		       level, link->ap->print_id, &vaf);
6816 
6817 	va_end(args);
6818 }
6819 EXPORT_SYMBOL(ata_link_printk);
6820 
6821 void ata_dev_printk(const struct ata_device *dev, const char *level,
6822 		    const char *fmt, ...)
6823 {
6824 	struct va_format vaf;
6825 	va_list args;
6826 
6827 	va_start(args, fmt);
6828 
6829 	vaf.fmt = fmt;
6830 	vaf.va = &args;
6831 
6832 	printk("%sata%u.%02u: %pV",
6833 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6834 	       &vaf);
6835 
6836 	va_end(args);
6837 }
6838 EXPORT_SYMBOL(ata_dev_printk);
6839 
6840 void ata_print_version(const struct device *dev, const char *version)
6841 {
6842 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6843 }
6844 EXPORT_SYMBOL(ata_print_version);
6845 
6846 /*
6847  * libata is essentially a library of internal helper functions for
6848  * low-level ATA host controller drivers.  As such, the API/ABI is
6849  * likely to change as new drivers are added and updated.
6850  * Do not depend on ABI/API stability.
6851  */
6852 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6853 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6854 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6855 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6856 EXPORT_SYMBOL_GPL(sata_port_ops);
6857 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6858 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6859 EXPORT_SYMBOL_GPL(ata_link_next);
6860 EXPORT_SYMBOL_GPL(ata_dev_next);
6861 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6862 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6863 EXPORT_SYMBOL_GPL(ata_host_init);
6864 EXPORT_SYMBOL_GPL(ata_host_alloc);
6865 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6866 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6867 EXPORT_SYMBOL_GPL(ata_host_start);
6868 EXPORT_SYMBOL_GPL(ata_host_register);
6869 EXPORT_SYMBOL_GPL(ata_host_activate);
6870 EXPORT_SYMBOL_GPL(ata_host_detach);
6871 EXPORT_SYMBOL_GPL(ata_sg_init);
6872 EXPORT_SYMBOL_GPL(ata_qc_complete);
6873 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6874 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6875 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6876 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6877 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6878 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6879 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6880 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6881 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6882 EXPORT_SYMBOL_GPL(ata_mode_string);
6883 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6884 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6885 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6886 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6887 EXPORT_SYMBOL_GPL(ata_dev_disable);
6888 EXPORT_SYMBOL_GPL(sata_set_spd);
6889 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6890 EXPORT_SYMBOL_GPL(sata_link_debounce);
6891 EXPORT_SYMBOL_GPL(sata_link_resume);
6892 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6893 EXPORT_SYMBOL_GPL(ata_std_prereset);
6894 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6895 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6896 EXPORT_SYMBOL_GPL(ata_std_postreset);
6897 EXPORT_SYMBOL_GPL(ata_dev_classify);
6898 EXPORT_SYMBOL_GPL(ata_dev_pair);
6899 EXPORT_SYMBOL_GPL(ata_ratelimit);
6900 EXPORT_SYMBOL_GPL(ata_msleep);
6901 EXPORT_SYMBOL_GPL(ata_wait_register);
6902 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6903 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6904 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6905 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6906 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6907 EXPORT_SYMBOL_GPL(sata_scr_valid);
6908 EXPORT_SYMBOL_GPL(sata_scr_read);
6909 EXPORT_SYMBOL_GPL(sata_scr_write);
6910 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6911 EXPORT_SYMBOL_GPL(ata_link_online);
6912 EXPORT_SYMBOL_GPL(ata_link_offline);
6913 #ifdef CONFIG_PM
6914 EXPORT_SYMBOL_GPL(ata_host_suspend);
6915 EXPORT_SYMBOL_GPL(ata_host_resume);
6916 #endif /* CONFIG_PM */
6917 EXPORT_SYMBOL_GPL(ata_id_string);
6918 EXPORT_SYMBOL_GPL(ata_id_c_string);
6919 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6920 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6921 
6922 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6923 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6924 EXPORT_SYMBOL_GPL(ata_timing_compute);
6925 EXPORT_SYMBOL_GPL(ata_timing_merge);
6926 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6927 
6928 #ifdef CONFIG_PCI
6929 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6930 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6931 #ifdef CONFIG_PM
6932 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6933 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6934 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6935 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6936 #endif /* CONFIG_PM */
6937 #endif /* CONFIG_PCI */
6938 
6939 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6940 
6941 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6942 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6943 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6944 EXPORT_SYMBOL_GPL(ata_port_desc);
6945 #ifdef CONFIG_PCI
6946 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6947 #endif /* CONFIG_PCI */
6948 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6949 EXPORT_SYMBOL_GPL(ata_link_abort);
6950 EXPORT_SYMBOL_GPL(ata_port_abort);
6951 EXPORT_SYMBOL_GPL(ata_port_freeze);
6952 EXPORT_SYMBOL_GPL(sata_async_notification);
6953 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6954 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6955 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6956 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6957 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6958 EXPORT_SYMBOL_GPL(ata_do_eh);
6959 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6960 
6961 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6962 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6963 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6964 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6965 EXPORT_SYMBOL_GPL(ata_cable_sata);
6966