1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <linux/glob.h> 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_host.h> 66 #include <linux/libata.h> 67 #include <asm/byteorder.h> 68 #include <linux/cdrom.h> 69 #include <linux/ratelimit.h> 70 #include <linux/pm_runtime.h> 71 #include <linux/platform_device.h> 72 73 #include "libata.h" 74 #include "libata-transport.h" 75 76 /* debounce timing parameters in msecs { interval, duration, timeout } */ 77 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 78 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 79 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 80 81 const struct ata_port_operations ata_base_port_ops = { 82 .prereset = ata_std_prereset, 83 .postreset = ata_std_postreset, 84 .error_handler = ata_std_error_handler, 85 .sched_eh = ata_std_sched_eh, 86 .end_eh = ata_std_end_eh, 87 }; 88 89 const struct ata_port_operations sata_port_ops = { 90 .inherits = &ata_base_port_ops, 91 92 .qc_defer = ata_std_qc_defer, 93 .hardreset = sata_std_hardreset, 94 }; 95 96 static unsigned int ata_dev_init_params(struct ata_device *dev, 97 u16 heads, u16 sectors); 98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 99 static void ata_dev_xfermask(struct ata_device *dev); 100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 101 102 atomic_t ata_print_id = ATOMIC_INIT(0); 103 104 struct ata_force_param { 105 const char *name; 106 unsigned int cbl; 107 int spd_limit; 108 unsigned long xfer_mask; 109 unsigned int horkage_on; 110 unsigned int horkage_off; 111 unsigned int lflags; 112 }; 113 114 struct ata_force_ent { 115 int port; 116 int device; 117 struct ata_force_param param; 118 }; 119 120 static struct ata_force_ent *ata_force_tbl; 121 static int ata_force_tbl_size; 122 123 static char ata_force_param_buf[PAGE_SIZE] __initdata; 124 /* param_buf is thrown away after initialization, disallow read */ 125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 127 128 static int atapi_enabled = 1; 129 module_param(atapi_enabled, int, 0444); 130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 131 132 static int atapi_dmadir = 0; 133 module_param(atapi_dmadir, int, 0444); 134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 135 136 int atapi_passthru16 = 1; 137 module_param(atapi_passthru16, int, 0444); 138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 139 140 int libata_fua = 0; 141 module_param_named(fua, libata_fua, int, 0444); 142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 143 144 static int ata_ignore_hpa; 145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 147 148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 149 module_param_named(dma, libata_dma_mask, int, 0444); 150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 151 152 static int ata_probe_timeout; 153 module_param(ata_probe_timeout, int, 0444); 154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 155 156 int libata_noacpi = 0; 157 module_param_named(noacpi, libata_noacpi, int, 0444); 158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 159 160 int libata_allow_tpm = 0; 161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 163 164 static int atapi_an; 165 module_param(atapi_an, int, 0444); 166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 167 168 MODULE_AUTHOR("Jeff Garzik"); 169 MODULE_DESCRIPTION("Library module for ATA devices"); 170 MODULE_LICENSE("GPL"); 171 MODULE_VERSION(DRV_VERSION); 172 173 174 static bool ata_sstatus_online(u32 sstatus) 175 { 176 return (sstatus & 0xf) == 0x3; 177 } 178 179 /** 180 * ata_link_next - link iteration helper 181 * @link: the previous link, NULL to start 182 * @ap: ATA port containing links to iterate 183 * @mode: iteration mode, one of ATA_LITER_* 184 * 185 * LOCKING: 186 * Host lock or EH context. 187 * 188 * RETURNS: 189 * Pointer to the next link. 190 */ 191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 192 enum ata_link_iter_mode mode) 193 { 194 BUG_ON(mode != ATA_LITER_EDGE && 195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 196 197 /* NULL link indicates start of iteration */ 198 if (!link) 199 switch (mode) { 200 case ATA_LITER_EDGE: 201 case ATA_LITER_PMP_FIRST: 202 if (sata_pmp_attached(ap)) 203 return ap->pmp_link; 204 /* fall through */ 205 case ATA_LITER_HOST_FIRST: 206 return &ap->link; 207 } 208 209 /* we just iterated over the host link, what's next? */ 210 if (link == &ap->link) 211 switch (mode) { 212 case ATA_LITER_HOST_FIRST: 213 if (sata_pmp_attached(ap)) 214 return ap->pmp_link; 215 /* fall through */ 216 case ATA_LITER_PMP_FIRST: 217 if (unlikely(ap->slave_link)) 218 return ap->slave_link; 219 /* fall through */ 220 case ATA_LITER_EDGE: 221 return NULL; 222 } 223 224 /* slave_link excludes PMP */ 225 if (unlikely(link == ap->slave_link)) 226 return NULL; 227 228 /* we were over a PMP link */ 229 if (++link < ap->pmp_link + ap->nr_pmp_links) 230 return link; 231 232 if (mode == ATA_LITER_PMP_FIRST) 233 return &ap->link; 234 235 return NULL; 236 } 237 238 /** 239 * ata_dev_next - device iteration helper 240 * @dev: the previous device, NULL to start 241 * @link: ATA link containing devices to iterate 242 * @mode: iteration mode, one of ATA_DITER_* 243 * 244 * LOCKING: 245 * Host lock or EH context. 246 * 247 * RETURNS: 248 * Pointer to the next device. 249 */ 250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 251 enum ata_dev_iter_mode mode) 252 { 253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 255 256 /* NULL dev indicates start of iteration */ 257 if (!dev) 258 switch (mode) { 259 case ATA_DITER_ENABLED: 260 case ATA_DITER_ALL: 261 dev = link->device; 262 goto check; 263 case ATA_DITER_ENABLED_REVERSE: 264 case ATA_DITER_ALL_REVERSE: 265 dev = link->device + ata_link_max_devices(link) - 1; 266 goto check; 267 } 268 269 next: 270 /* move to the next one */ 271 switch (mode) { 272 case ATA_DITER_ENABLED: 273 case ATA_DITER_ALL: 274 if (++dev < link->device + ata_link_max_devices(link)) 275 goto check; 276 return NULL; 277 case ATA_DITER_ENABLED_REVERSE: 278 case ATA_DITER_ALL_REVERSE: 279 if (--dev >= link->device) 280 goto check; 281 return NULL; 282 } 283 284 check: 285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 286 !ata_dev_enabled(dev)) 287 goto next; 288 return dev; 289 } 290 291 /** 292 * ata_dev_phys_link - find physical link for a device 293 * @dev: ATA device to look up physical link for 294 * 295 * Look up physical link which @dev is attached to. Note that 296 * this is different from @dev->link only when @dev is on slave 297 * link. For all other cases, it's the same as @dev->link. 298 * 299 * LOCKING: 300 * Don't care. 301 * 302 * RETURNS: 303 * Pointer to the found physical link. 304 */ 305 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 306 { 307 struct ata_port *ap = dev->link->ap; 308 309 if (!ap->slave_link) 310 return dev->link; 311 if (!dev->devno) 312 return &ap->link; 313 return ap->slave_link; 314 } 315 316 /** 317 * ata_force_cbl - force cable type according to libata.force 318 * @ap: ATA port of interest 319 * 320 * Force cable type according to libata.force and whine about it. 321 * The last entry which has matching port number is used, so it 322 * can be specified as part of device force parameters. For 323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 324 * same effect. 325 * 326 * LOCKING: 327 * EH context. 328 */ 329 void ata_force_cbl(struct ata_port *ap) 330 { 331 int i; 332 333 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 334 const struct ata_force_ent *fe = &ata_force_tbl[i]; 335 336 if (fe->port != -1 && fe->port != ap->print_id) 337 continue; 338 339 if (fe->param.cbl == ATA_CBL_NONE) 340 continue; 341 342 ap->cbl = fe->param.cbl; 343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 344 return; 345 } 346 } 347 348 /** 349 * ata_force_link_limits - force link limits according to libata.force 350 * @link: ATA link of interest 351 * 352 * Force link flags and SATA spd limit according to libata.force 353 * and whine about it. When only the port part is specified 354 * (e.g. 1:), the limit applies to all links connected to both 355 * the host link and all fan-out ports connected via PMP. If the 356 * device part is specified as 0 (e.g. 1.00:), it specifies the 357 * first fan-out link not the host link. Device number 15 always 358 * points to the host link whether PMP is attached or not. If the 359 * controller has slave link, device number 16 points to it. 360 * 361 * LOCKING: 362 * EH context. 363 */ 364 static void ata_force_link_limits(struct ata_link *link) 365 { 366 bool did_spd = false; 367 int linkno = link->pmp; 368 int i; 369 370 if (ata_is_host_link(link)) 371 linkno += 15; 372 373 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 374 const struct ata_force_ent *fe = &ata_force_tbl[i]; 375 376 if (fe->port != -1 && fe->port != link->ap->print_id) 377 continue; 378 379 if (fe->device != -1 && fe->device != linkno) 380 continue; 381 382 /* only honor the first spd limit */ 383 if (!did_spd && fe->param.spd_limit) { 384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 386 fe->param.name); 387 did_spd = true; 388 } 389 390 /* let lflags stack */ 391 if (fe->param.lflags) { 392 link->flags |= fe->param.lflags; 393 ata_link_notice(link, 394 "FORCE: link flag 0x%x forced -> 0x%x\n", 395 fe->param.lflags, link->flags); 396 } 397 } 398 } 399 400 /** 401 * ata_force_xfermask - force xfermask according to libata.force 402 * @dev: ATA device of interest 403 * 404 * Force xfer_mask according to libata.force and whine about it. 405 * For consistency with link selection, device number 15 selects 406 * the first device connected to the host link. 407 * 408 * LOCKING: 409 * EH context. 410 */ 411 static void ata_force_xfermask(struct ata_device *dev) 412 { 413 int devno = dev->link->pmp + dev->devno; 414 int alt_devno = devno; 415 int i; 416 417 /* allow n.15/16 for devices attached to host port */ 418 if (ata_is_host_link(dev->link)) 419 alt_devno += 15; 420 421 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 422 const struct ata_force_ent *fe = &ata_force_tbl[i]; 423 unsigned long pio_mask, mwdma_mask, udma_mask; 424 425 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 426 continue; 427 428 if (fe->device != -1 && fe->device != devno && 429 fe->device != alt_devno) 430 continue; 431 432 if (!fe->param.xfer_mask) 433 continue; 434 435 ata_unpack_xfermask(fe->param.xfer_mask, 436 &pio_mask, &mwdma_mask, &udma_mask); 437 if (udma_mask) 438 dev->udma_mask = udma_mask; 439 else if (mwdma_mask) { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = mwdma_mask; 442 } else { 443 dev->udma_mask = 0; 444 dev->mwdma_mask = 0; 445 dev->pio_mask = pio_mask; 446 } 447 448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 449 fe->param.name); 450 return; 451 } 452 } 453 454 /** 455 * ata_force_horkage - force horkage according to libata.force 456 * @dev: ATA device of interest 457 * 458 * Force horkage according to libata.force and whine about it. 459 * For consistency with link selection, device number 15 selects 460 * the first device connected to the host link. 461 * 462 * LOCKING: 463 * EH context. 464 */ 465 static void ata_force_horkage(struct ata_device *dev) 466 { 467 int devno = dev->link->pmp + dev->devno; 468 int alt_devno = devno; 469 int i; 470 471 /* allow n.15/16 for devices attached to host port */ 472 if (ata_is_host_link(dev->link)) 473 alt_devno += 15; 474 475 for (i = 0; i < ata_force_tbl_size; i++) { 476 const struct ata_force_ent *fe = &ata_force_tbl[i]; 477 478 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 479 continue; 480 481 if (fe->device != -1 && fe->device != devno && 482 fe->device != alt_devno) 483 continue; 484 485 if (!(~dev->horkage & fe->param.horkage_on) && 486 !(dev->horkage & fe->param.horkage_off)) 487 continue; 488 489 dev->horkage |= fe->param.horkage_on; 490 dev->horkage &= ~fe->param.horkage_off; 491 492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 493 fe->param.name); 494 } 495 } 496 497 /** 498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 499 * @opcode: SCSI opcode 500 * 501 * Determine ATAPI command type from @opcode. 502 * 503 * LOCKING: 504 * None. 505 * 506 * RETURNS: 507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 508 */ 509 int atapi_cmd_type(u8 opcode) 510 { 511 switch (opcode) { 512 case GPCMD_READ_10: 513 case GPCMD_READ_12: 514 return ATAPI_READ; 515 516 case GPCMD_WRITE_10: 517 case GPCMD_WRITE_12: 518 case GPCMD_WRITE_AND_VERIFY_10: 519 return ATAPI_WRITE; 520 521 case GPCMD_READ_CD: 522 case GPCMD_READ_CD_MSF: 523 return ATAPI_READ_CD; 524 525 case ATA_16: 526 case ATA_12: 527 if (atapi_passthru16) 528 return ATAPI_PASS_THRU; 529 /* fall thru */ 530 default: 531 return ATAPI_MISC; 532 } 533 } 534 535 /** 536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 537 * @tf: Taskfile to convert 538 * @pmp: Port multiplier port 539 * @is_cmd: This FIS is for command 540 * @fis: Buffer into which data will output 541 * 542 * Converts a standard ATA taskfile to a Serial ATA 543 * FIS structure (Register - Host to Device). 544 * 545 * LOCKING: 546 * Inherited from caller. 547 */ 548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 549 { 550 fis[0] = 0x27; /* Register - Host to Device FIS */ 551 fis[1] = pmp & 0xf; /* Port multiplier number*/ 552 if (is_cmd) 553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 554 555 fis[2] = tf->command; 556 fis[3] = tf->feature; 557 558 fis[4] = tf->lbal; 559 fis[5] = tf->lbam; 560 fis[6] = tf->lbah; 561 fis[7] = tf->device; 562 563 fis[8] = tf->hob_lbal; 564 fis[9] = tf->hob_lbam; 565 fis[10] = tf->hob_lbah; 566 fis[11] = tf->hob_feature; 567 568 fis[12] = tf->nsect; 569 fis[13] = tf->hob_nsect; 570 fis[14] = 0; 571 fis[15] = tf->ctl; 572 573 fis[16] = tf->auxiliary & 0xff; 574 fis[17] = (tf->auxiliary >> 8) & 0xff; 575 fis[18] = (tf->auxiliary >> 16) & 0xff; 576 fis[19] = (tf->auxiliary >> 24) & 0xff; 577 } 578 579 /** 580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 581 * @fis: Buffer from which data will be input 582 * @tf: Taskfile to output 583 * 584 * Converts a serial ATA FIS structure to a standard ATA taskfile. 585 * 586 * LOCKING: 587 * Inherited from caller. 588 */ 589 590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 591 { 592 tf->command = fis[2]; /* status */ 593 tf->feature = fis[3]; /* error */ 594 595 tf->lbal = fis[4]; 596 tf->lbam = fis[5]; 597 tf->lbah = fis[6]; 598 tf->device = fis[7]; 599 600 tf->hob_lbal = fis[8]; 601 tf->hob_lbam = fis[9]; 602 tf->hob_lbah = fis[10]; 603 604 tf->nsect = fis[12]; 605 tf->hob_nsect = fis[13]; 606 } 607 608 static const u8 ata_rw_cmds[] = { 609 /* pio multi */ 610 ATA_CMD_READ_MULTI, 611 ATA_CMD_WRITE_MULTI, 612 ATA_CMD_READ_MULTI_EXT, 613 ATA_CMD_WRITE_MULTI_EXT, 614 0, 615 0, 616 0, 617 ATA_CMD_WRITE_MULTI_FUA_EXT, 618 /* pio */ 619 ATA_CMD_PIO_READ, 620 ATA_CMD_PIO_WRITE, 621 ATA_CMD_PIO_READ_EXT, 622 ATA_CMD_PIO_WRITE_EXT, 623 0, 624 0, 625 0, 626 0, 627 /* dma */ 628 ATA_CMD_READ, 629 ATA_CMD_WRITE, 630 ATA_CMD_READ_EXT, 631 ATA_CMD_WRITE_EXT, 632 0, 633 0, 634 0, 635 ATA_CMD_WRITE_FUA_EXT 636 }; 637 638 /** 639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 640 * @tf: command to examine and configure 641 * @dev: device tf belongs to 642 * 643 * Examine the device configuration and tf->flags to calculate 644 * the proper read/write commands and protocol to use. 645 * 646 * LOCKING: 647 * caller. 648 */ 649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 650 { 651 u8 cmd; 652 653 int index, fua, lba48, write; 654 655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 658 659 if (dev->flags & ATA_DFLAG_PIO) { 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 663 /* Unable to use DMA due to host limitation */ 664 tf->protocol = ATA_PROT_PIO; 665 index = dev->multi_count ? 0 : 8; 666 } else { 667 tf->protocol = ATA_PROT_DMA; 668 index = 16; 669 } 670 671 cmd = ata_rw_cmds[index + fua + lba48 + write]; 672 if (cmd) { 673 tf->command = cmd; 674 return 0; 675 } 676 return -1; 677 } 678 679 /** 680 * ata_tf_read_block - Read block address from ATA taskfile 681 * @tf: ATA taskfile of interest 682 * @dev: ATA device @tf belongs to 683 * 684 * LOCKING: 685 * None. 686 * 687 * Read block address from @tf. This function can handle all 688 * three address formats - LBA, LBA48 and CHS. tf->protocol and 689 * flags select the address format to use. 690 * 691 * RETURNS: 692 * Block address read from @tf. 693 */ 694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 695 { 696 u64 block = 0; 697 698 if (tf->flags & ATA_TFLAG_LBA) { 699 if (tf->flags & ATA_TFLAG_LBA48) { 700 block |= (u64)tf->hob_lbah << 40; 701 block |= (u64)tf->hob_lbam << 32; 702 block |= (u64)tf->hob_lbal << 24; 703 } else 704 block |= (tf->device & 0xf) << 24; 705 706 block |= tf->lbah << 16; 707 block |= tf->lbam << 8; 708 block |= tf->lbal; 709 } else { 710 u32 cyl, head, sect; 711 712 cyl = tf->lbam | (tf->lbah << 8); 713 head = tf->device & 0xf; 714 sect = tf->lbal; 715 716 if (!sect) { 717 ata_dev_warn(dev, 718 "device reported invalid CHS sector 0\n"); 719 sect = 1; /* oh well */ 720 } 721 722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 723 } 724 725 return block; 726 } 727 728 /** 729 * ata_build_rw_tf - Build ATA taskfile for given read/write request 730 * @tf: Target ATA taskfile 731 * @dev: ATA device @tf belongs to 732 * @block: Block address 733 * @n_block: Number of blocks 734 * @tf_flags: RW/FUA etc... 735 * @tag: tag 736 * 737 * LOCKING: 738 * None. 739 * 740 * Build ATA taskfile @tf for read/write request described by 741 * @block, @n_block, @tf_flags and @tag on @dev. 742 * 743 * RETURNS: 744 * 745 * 0 on success, -ERANGE if the request is too large for @dev, 746 * -EINVAL if the request is invalid. 747 */ 748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 749 u64 block, u32 n_block, unsigned int tf_flags, 750 unsigned int tag) 751 { 752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 753 tf->flags |= tf_flags; 754 755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 756 /* yay, NCQ */ 757 if (!lba_48_ok(block, n_block)) 758 return -ERANGE; 759 760 tf->protocol = ATA_PROT_NCQ; 761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 762 763 if (tf->flags & ATA_TFLAG_WRITE) 764 tf->command = ATA_CMD_FPDMA_WRITE; 765 else 766 tf->command = ATA_CMD_FPDMA_READ; 767 768 tf->nsect = tag << 3; 769 tf->hob_feature = (n_block >> 8) & 0xff; 770 tf->feature = n_block & 0xff; 771 772 tf->hob_lbah = (block >> 40) & 0xff; 773 tf->hob_lbam = (block >> 32) & 0xff; 774 tf->hob_lbal = (block >> 24) & 0xff; 775 tf->lbah = (block >> 16) & 0xff; 776 tf->lbam = (block >> 8) & 0xff; 777 tf->lbal = block & 0xff; 778 779 tf->device = ATA_LBA; 780 if (tf->flags & ATA_TFLAG_FUA) 781 tf->device |= 1 << 7; 782 } else if (dev->flags & ATA_DFLAG_LBA) { 783 tf->flags |= ATA_TFLAG_LBA; 784 785 if (lba_28_ok(block, n_block)) { 786 /* use LBA28 */ 787 tf->device |= (block >> 24) & 0xf; 788 } else if (lba_48_ok(block, n_block)) { 789 if (!(dev->flags & ATA_DFLAG_LBA48)) 790 return -ERANGE; 791 792 /* use LBA48 */ 793 tf->flags |= ATA_TFLAG_LBA48; 794 795 tf->hob_nsect = (n_block >> 8) & 0xff; 796 797 tf->hob_lbah = (block >> 40) & 0xff; 798 tf->hob_lbam = (block >> 32) & 0xff; 799 tf->hob_lbal = (block >> 24) & 0xff; 800 } else 801 /* request too large even for LBA48 */ 802 return -ERANGE; 803 804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 805 return -EINVAL; 806 807 tf->nsect = n_block & 0xff; 808 809 tf->lbah = (block >> 16) & 0xff; 810 tf->lbam = (block >> 8) & 0xff; 811 tf->lbal = block & 0xff; 812 813 tf->device |= ATA_LBA; 814 } else { 815 /* CHS */ 816 u32 sect, head, cyl, track; 817 818 /* The request -may- be too large for CHS addressing. */ 819 if (!lba_28_ok(block, n_block)) 820 return -ERANGE; 821 822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 823 return -EINVAL; 824 825 /* Convert LBA to CHS */ 826 track = (u32)block / dev->sectors; 827 cyl = track / dev->heads; 828 head = track % dev->heads; 829 sect = (u32)block % dev->sectors + 1; 830 831 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 832 (u32)block, track, cyl, head, sect); 833 834 /* Check whether the converted CHS can fit. 835 Cylinder: 0-65535 836 Head: 0-15 837 Sector: 1-255*/ 838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 839 return -ERANGE; 840 841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 842 tf->lbal = sect; 843 tf->lbam = cyl; 844 tf->lbah = cyl >> 8; 845 tf->device |= head; 846 } 847 848 return 0; 849 } 850 851 /** 852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 853 * @pio_mask: pio_mask 854 * @mwdma_mask: mwdma_mask 855 * @udma_mask: udma_mask 856 * 857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 858 * unsigned int xfer_mask. 859 * 860 * LOCKING: 861 * None. 862 * 863 * RETURNS: 864 * Packed xfer_mask. 865 */ 866 unsigned long ata_pack_xfermask(unsigned long pio_mask, 867 unsigned long mwdma_mask, 868 unsigned long udma_mask) 869 { 870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 873 } 874 875 /** 876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 877 * @xfer_mask: xfer_mask to unpack 878 * @pio_mask: resulting pio_mask 879 * @mwdma_mask: resulting mwdma_mask 880 * @udma_mask: resulting udma_mask 881 * 882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 883 * Any NULL distination masks will be ignored. 884 */ 885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 886 unsigned long *mwdma_mask, unsigned long *udma_mask) 887 { 888 if (pio_mask) 889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 890 if (mwdma_mask) 891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 892 if (udma_mask) 893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 894 } 895 896 static const struct ata_xfer_ent { 897 int shift, bits; 898 u8 base; 899 } ata_xfer_tbl[] = { 900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 903 { -1, }, 904 }; 905 906 /** 907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 908 * @xfer_mask: xfer_mask of interest 909 * 910 * Return matching XFER_* value for @xfer_mask. Only the highest 911 * bit of @xfer_mask is considered. 912 * 913 * LOCKING: 914 * None. 915 * 916 * RETURNS: 917 * Matching XFER_* value, 0xff if no match found. 918 */ 919 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 920 { 921 int highbit = fls(xfer_mask) - 1; 922 const struct ata_xfer_ent *ent; 923 924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 926 return ent->base + highbit - ent->shift; 927 return 0xff; 928 } 929 930 /** 931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_mask for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_mask, 0 if no match found. 941 */ 942 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 949 & ~((1 << ent->shift) - 1); 950 return 0; 951 } 952 953 /** 954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 955 * @xfer_mode: XFER_* of interest 956 * 957 * Return matching xfer_shift for @xfer_mode. 958 * 959 * LOCKING: 960 * None. 961 * 962 * RETURNS: 963 * Matching xfer_shift, -1 if no match found. 964 */ 965 int ata_xfer_mode2shift(unsigned long xfer_mode) 966 { 967 const struct ata_xfer_ent *ent; 968 969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 971 return ent->shift; 972 return -1; 973 } 974 975 /** 976 * ata_mode_string - convert xfer_mask to string 977 * @xfer_mask: mask of bits supported; only highest bit counts. 978 * 979 * Determine string which represents the highest speed 980 * (highest bit in @modemask). 981 * 982 * LOCKING: 983 * None. 984 * 985 * RETURNS: 986 * Constant C string representing highest speed listed in 987 * @mode_mask, or the constant C string "<n/a>". 988 */ 989 const char *ata_mode_string(unsigned long xfer_mask) 990 { 991 static const char * const xfer_mode_str[] = { 992 "PIO0", 993 "PIO1", 994 "PIO2", 995 "PIO3", 996 "PIO4", 997 "PIO5", 998 "PIO6", 999 "MWDMA0", 1000 "MWDMA1", 1001 "MWDMA2", 1002 "MWDMA3", 1003 "MWDMA4", 1004 "UDMA/16", 1005 "UDMA/25", 1006 "UDMA/33", 1007 "UDMA/44", 1008 "UDMA/66", 1009 "UDMA/100", 1010 "UDMA/133", 1011 "UDMA7", 1012 }; 1013 int highbit; 1014 1015 highbit = fls(xfer_mask) - 1; 1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1017 return xfer_mode_str[highbit]; 1018 return "<n/a>"; 1019 } 1020 1021 const char *sata_spd_string(unsigned int spd) 1022 { 1023 static const char * const spd_str[] = { 1024 "1.5 Gbps", 1025 "3.0 Gbps", 1026 "6.0 Gbps", 1027 }; 1028 1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1030 return "<unknown>"; 1031 return spd_str[spd - 1]; 1032 } 1033 1034 /** 1035 * ata_dev_classify - determine device type based on ATA-spec signature 1036 * @tf: ATA taskfile register set for device to be identified 1037 * 1038 * Determine from taskfile register contents whether a device is 1039 * ATA or ATAPI, as per "Signature and persistence" section 1040 * of ATA/PI spec (volume 1, sect 5.14). 1041 * 1042 * LOCKING: 1043 * None. 1044 * 1045 * RETURNS: 1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1047 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1048 */ 1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1050 { 1051 /* Apple's open source Darwin code hints that some devices only 1052 * put a proper signature into the LBA mid/high registers, 1053 * So, we only check those. It's sufficient for uniqueness. 1054 * 1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1056 * signatures for ATA and ATAPI devices attached on SerialATA, 1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1058 * spec has never mentioned about using different signatures 1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1060 * Multiplier specification began to use 0x69/0x96 to identify 1061 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1063 * 0x69/0x96 shortly and described them as reserved for 1064 * SerialATA. 1065 * 1066 * We follow the current spec and consider that 0x69/0x96 1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1069 * SEMB signature. This is worked around in 1070 * ata_dev_read_id(). 1071 */ 1072 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1073 DPRINTK("found ATA device by sig\n"); 1074 return ATA_DEV_ATA; 1075 } 1076 1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1078 DPRINTK("found ATAPI device by sig\n"); 1079 return ATA_DEV_ATAPI; 1080 } 1081 1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1083 DPRINTK("found PMP device by sig\n"); 1084 return ATA_DEV_PMP; 1085 } 1086 1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1088 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1089 return ATA_DEV_SEMB; 1090 } 1091 1092 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1093 DPRINTK("found ZAC device by sig\n"); 1094 return ATA_DEV_ZAC; 1095 } 1096 1097 DPRINTK("unknown device\n"); 1098 return ATA_DEV_UNKNOWN; 1099 } 1100 1101 /** 1102 * ata_id_string - Convert IDENTIFY DEVICE page into string 1103 * @id: IDENTIFY DEVICE results we will examine 1104 * @s: string into which data is output 1105 * @ofs: offset into identify device page 1106 * @len: length of string to return. must be an even number. 1107 * 1108 * The strings in the IDENTIFY DEVICE page are broken up into 1109 * 16-bit chunks. Run through the string, and output each 1110 * 8-bit chunk linearly, regardless of platform. 1111 * 1112 * LOCKING: 1113 * caller. 1114 */ 1115 1116 void ata_id_string(const u16 *id, unsigned char *s, 1117 unsigned int ofs, unsigned int len) 1118 { 1119 unsigned int c; 1120 1121 BUG_ON(len & 1); 1122 1123 while (len > 0) { 1124 c = id[ofs] >> 8; 1125 *s = c; 1126 s++; 1127 1128 c = id[ofs] & 0xff; 1129 *s = c; 1130 s++; 1131 1132 ofs++; 1133 len -= 2; 1134 } 1135 } 1136 1137 /** 1138 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1139 * @id: IDENTIFY DEVICE results we will examine 1140 * @s: string into which data is output 1141 * @ofs: offset into identify device page 1142 * @len: length of string to return. must be an odd number. 1143 * 1144 * This function is identical to ata_id_string except that it 1145 * trims trailing spaces and terminates the resulting string with 1146 * null. @len must be actual maximum length (even number) + 1. 1147 * 1148 * LOCKING: 1149 * caller. 1150 */ 1151 void ata_id_c_string(const u16 *id, unsigned char *s, 1152 unsigned int ofs, unsigned int len) 1153 { 1154 unsigned char *p; 1155 1156 ata_id_string(id, s, ofs, len - 1); 1157 1158 p = s + strnlen(s, len - 1); 1159 while (p > s && p[-1] == ' ') 1160 p--; 1161 *p = '\0'; 1162 } 1163 1164 static u64 ata_id_n_sectors(const u16 *id) 1165 { 1166 if (ata_id_has_lba(id)) { 1167 if (ata_id_has_lba48(id)) 1168 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1169 else 1170 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1171 } else { 1172 if (ata_id_current_chs_valid(id)) 1173 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1174 id[ATA_ID_CUR_SECTORS]; 1175 else 1176 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1177 id[ATA_ID_SECTORS]; 1178 } 1179 } 1180 1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1182 { 1183 u64 sectors = 0; 1184 1185 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1186 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1187 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1188 sectors |= (tf->lbah & 0xff) << 16; 1189 sectors |= (tf->lbam & 0xff) << 8; 1190 sectors |= (tf->lbal & 0xff); 1191 1192 return sectors; 1193 } 1194 1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1196 { 1197 u64 sectors = 0; 1198 1199 sectors |= (tf->device & 0x0f) << 24; 1200 sectors |= (tf->lbah & 0xff) << 16; 1201 sectors |= (tf->lbam & 0xff) << 8; 1202 sectors |= (tf->lbal & 0xff); 1203 1204 return sectors; 1205 } 1206 1207 /** 1208 * ata_read_native_max_address - Read native max address 1209 * @dev: target device 1210 * @max_sectors: out parameter for the result native max address 1211 * 1212 * Perform an LBA48 or LBA28 native size query upon the device in 1213 * question. 1214 * 1215 * RETURNS: 1216 * 0 on success, -EACCES if command is aborted by the drive. 1217 * -EIO on other errors. 1218 */ 1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1220 { 1221 unsigned int err_mask; 1222 struct ata_taskfile tf; 1223 int lba48 = ata_id_has_lba48(dev->id); 1224 1225 ata_tf_init(dev, &tf); 1226 1227 /* always clear all address registers */ 1228 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1229 1230 if (lba48) { 1231 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1232 tf.flags |= ATA_TFLAG_LBA48; 1233 } else 1234 tf.command = ATA_CMD_READ_NATIVE_MAX; 1235 1236 tf.protocol |= ATA_PROT_NODATA; 1237 tf.device |= ATA_LBA; 1238 1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1240 if (err_mask) { 1241 ata_dev_warn(dev, 1242 "failed to read native max address (err_mask=0x%x)\n", 1243 err_mask); 1244 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1245 return -EACCES; 1246 return -EIO; 1247 } 1248 1249 if (lba48) 1250 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1251 else 1252 *max_sectors = ata_tf_to_lba(&tf) + 1; 1253 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1254 (*max_sectors)--; 1255 return 0; 1256 } 1257 1258 /** 1259 * ata_set_max_sectors - Set max sectors 1260 * @dev: target device 1261 * @new_sectors: new max sectors value to set for the device 1262 * 1263 * Set max sectors of @dev to @new_sectors. 1264 * 1265 * RETURNS: 1266 * 0 on success, -EACCES if command is aborted or denied (due to 1267 * previous non-volatile SET_MAX) by the drive. -EIO on other 1268 * errors. 1269 */ 1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1271 { 1272 unsigned int err_mask; 1273 struct ata_taskfile tf; 1274 int lba48 = ata_id_has_lba48(dev->id); 1275 1276 new_sectors--; 1277 1278 ata_tf_init(dev, &tf); 1279 1280 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1281 1282 if (lba48) { 1283 tf.command = ATA_CMD_SET_MAX_EXT; 1284 tf.flags |= ATA_TFLAG_LBA48; 1285 1286 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1287 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1288 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1289 } else { 1290 tf.command = ATA_CMD_SET_MAX; 1291 1292 tf.device |= (new_sectors >> 24) & 0xf; 1293 } 1294 1295 tf.protocol |= ATA_PROT_NODATA; 1296 tf.device |= ATA_LBA; 1297 1298 tf.lbal = (new_sectors >> 0) & 0xff; 1299 tf.lbam = (new_sectors >> 8) & 0xff; 1300 tf.lbah = (new_sectors >> 16) & 0xff; 1301 1302 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1303 if (err_mask) { 1304 ata_dev_warn(dev, 1305 "failed to set max address (err_mask=0x%x)\n", 1306 err_mask); 1307 if (err_mask == AC_ERR_DEV && 1308 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1309 return -EACCES; 1310 return -EIO; 1311 } 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * ata_hpa_resize - Resize a device with an HPA set 1318 * @dev: Device to resize 1319 * 1320 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1321 * it if required to the full size of the media. The caller must check 1322 * the drive has the HPA feature set enabled. 1323 * 1324 * RETURNS: 1325 * 0 on success, -errno on failure. 1326 */ 1327 static int ata_hpa_resize(struct ata_device *dev) 1328 { 1329 struct ata_eh_context *ehc = &dev->link->eh_context; 1330 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1331 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1332 u64 sectors = ata_id_n_sectors(dev->id); 1333 u64 native_sectors; 1334 int rc; 1335 1336 /* do we need to do it? */ 1337 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1338 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1339 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1340 return 0; 1341 1342 /* read native max address */ 1343 rc = ata_read_native_max_address(dev, &native_sectors); 1344 if (rc) { 1345 /* If device aborted the command or HPA isn't going to 1346 * be unlocked, skip HPA resizing. 1347 */ 1348 if (rc == -EACCES || !unlock_hpa) { 1349 ata_dev_warn(dev, 1350 "HPA support seems broken, skipping HPA handling\n"); 1351 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1352 1353 /* we can continue if device aborted the command */ 1354 if (rc == -EACCES) 1355 rc = 0; 1356 } 1357 1358 return rc; 1359 } 1360 dev->n_native_sectors = native_sectors; 1361 1362 /* nothing to do? */ 1363 if (native_sectors <= sectors || !unlock_hpa) { 1364 if (!print_info || native_sectors == sectors) 1365 return 0; 1366 1367 if (native_sectors > sectors) 1368 ata_dev_info(dev, 1369 "HPA detected: current %llu, native %llu\n", 1370 (unsigned long long)sectors, 1371 (unsigned long long)native_sectors); 1372 else if (native_sectors < sectors) 1373 ata_dev_warn(dev, 1374 "native sectors (%llu) is smaller than sectors (%llu)\n", 1375 (unsigned long long)native_sectors, 1376 (unsigned long long)sectors); 1377 return 0; 1378 } 1379 1380 /* let's unlock HPA */ 1381 rc = ata_set_max_sectors(dev, native_sectors); 1382 if (rc == -EACCES) { 1383 /* if device aborted the command, skip HPA resizing */ 1384 ata_dev_warn(dev, 1385 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1386 (unsigned long long)sectors, 1387 (unsigned long long)native_sectors); 1388 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1389 return 0; 1390 } else if (rc) 1391 return rc; 1392 1393 /* re-read IDENTIFY data */ 1394 rc = ata_dev_reread_id(dev, 0); 1395 if (rc) { 1396 ata_dev_err(dev, 1397 "failed to re-read IDENTIFY data after HPA resizing\n"); 1398 return rc; 1399 } 1400 1401 if (print_info) { 1402 u64 new_sectors = ata_id_n_sectors(dev->id); 1403 ata_dev_info(dev, 1404 "HPA unlocked: %llu -> %llu, native %llu\n", 1405 (unsigned long long)sectors, 1406 (unsigned long long)new_sectors, 1407 (unsigned long long)native_sectors); 1408 } 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * ata_dump_id - IDENTIFY DEVICE info debugging output 1415 * @id: IDENTIFY DEVICE page to dump 1416 * 1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1418 * page. 1419 * 1420 * LOCKING: 1421 * caller. 1422 */ 1423 1424 static inline void ata_dump_id(const u16 *id) 1425 { 1426 DPRINTK("49==0x%04x " 1427 "53==0x%04x " 1428 "63==0x%04x " 1429 "64==0x%04x " 1430 "75==0x%04x \n", 1431 id[49], 1432 id[53], 1433 id[63], 1434 id[64], 1435 id[75]); 1436 DPRINTK("80==0x%04x " 1437 "81==0x%04x " 1438 "82==0x%04x " 1439 "83==0x%04x " 1440 "84==0x%04x \n", 1441 id[80], 1442 id[81], 1443 id[82], 1444 id[83], 1445 id[84]); 1446 DPRINTK("88==0x%04x " 1447 "93==0x%04x\n", 1448 id[88], 1449 id[93]); 1450 } 1451 1452 /** 1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1454 * @id: IDENTIFY data to compute xfer mask from 1455 * 1456 * Compute the xfermask for this device. This is not as trivial 1457 * as it seems if we must consider early devices correctly. 1458 * 1459 * FIXME: pre IDE drive timing (do we care ?). 1460 * 1461 * LOCKING: 1462 * None. 1463 * 1464 * RETURNS: 1465 * Computed xfermask 1466 */ 1467 unsigned long ata_id_xfermask(const u16 *id) 1468 { 1469 unsigned long pio_mask, mwdma_mask, udma_mask; 1470 1471 /* Usual case. Word 53 indicates word 64 is valid */ 1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1474 pio_mask <<= 3; 1475 pio_mask |= 0x7; 1476 } else { 1477 /* If word 64 isn't valid then Word 51 high byte holds 1478 * the PIO timing number for the maximum. Turn it into 1479 * a mask. 1480 */ 1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1482 if (mode < 5) /* Valid PIO range */ 1483 pio_mask = (2 << mode) - 1; 1484 else 1485 pio_mask = 1; 1486 1487 /* But wait.. there's more. Design your standards by 1488 * committee and you too can get a free iordy field to 1489 * process. However its the speeds not the modes that 1490 * are supported... Note drivers using the timing API 1491 * will get this right anyway 1492 */ 1493 } 1494 1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1496 1497 if (ata_id_is_cfa(id)) { 1498 /* 1499 * Process compact flash extended modes 1500 */ 1501 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1502 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1503 1504 if (pio) 1505 pio_mask |= (1 << 5); 1506 if (pio > 1) 1507 pio_mask |= (1 << 6); 1508 if (dma) 1509 mwdma_mask |= (1 << 3); 1510 if (dma > 1) 1511 mwdma_mask |= (1 << 4); 1512 } 1513 1514 udma_mask = 0; 1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1517 1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1519 } 1520 1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1522 { 1523 struct completion *waiting = qc->private_data; 1524 1525 complete(waiting); 1526 } 1527 1528 /** 1529 * ata_exec_internal_sg - execute libata internal command 1530 * @dev: Device to which the command is sent 1531 * @tf: Taskfile registers for the command and the result 1532 * @cdb: CDB for packet command 1533 * @dma_dir: Data transfer direction of the command 1534 * @sgl: sg list for the data buffer of the command 1535 * @n_elem: Number of sg entries 1536 * @timeout: Timeout in msecs (0 for default) 1537 * 1538 * Executes libata internal command with timeout. @tf contains 1539 * command on entry and result on return. Timeout and error 1540 * conditions are reported via return value. No recovery action 1541 * is taken after a command times out. It's caller's duty to 1542 * clean up after timeout. 1543 * 1544 * LOCKING: 1545 * None. Should be called with kernel context, might sleep. 1546 * 1547 * RETURNS: 1548 * Zero on success, AC_ERR_* mask on failure 1549 */ 1550 unsigned ata_exec_internal_sg(struct ata_device *dev, 1551 struct ata_taskfile *tf, const u8 *cdb, 1552 int dma_dir, struct scatterlist *sgl, 1553 unsigned int n_elem, unsigned long timeout) 1554 { 1555 struct ata_link *link = dev->link; 1556 struct ata_port *ap = link->ap; 1557 u8 command = tf->command; 1558 int auto_timeout = 0; 1559 struct ata_queued_cmd *qc; 1560 unsigned int tag, preempted_tag; 1561 u32 preempted_sactive, preempted_qc_active; 1562 int preempted_nr_active_links; 1563 DECLARE_COMPLETION_ONSTACK(wait); 1564 unsigned long flags; 1565 unsigned int err_mask; 1566 int rc; 1567 1568 spin_lock_irqsave(ap->lock, flags); 1569 1570 /* no internal command while frozen */ 1571 if (ap->pflags & ATA_PFLAG_FROZEN) { 1572 spin_unlock_irqrestore(ap->lock, flags); 1573 return AC_ERR_SYSTEM; 1574 } 1575 1576 /* initialize internal qc */ 1577 1578 /* XXX: Tag 0 is used for drivers with legacy EH as some 1579 * drivers choke if any other tag is given. This breaks 1580 * ata_tag_internal() test for those drivers. Don't use new 1581 * EH stuff without converting to it. 1582 */ 1583 if (ap->ops->error_handler) 1584 tag = ATA_TAG_INTERNAL; 1585 else 1586 tag = 0; 1587 1588 if (test_and_set_bit(tag, &ap->qc_allocated)) 1589 BUG(); 1590 qc = __ata_qc_from_tag(ap, tag); 1591 1592 qc->tag = tag; 1593 qc->scsicmd = NULL; 1594 qc->ap = ap; 1595 qc->dev = dev; 1596 ata_qc_reinit(qc); 1597 1598 preempted_tag = link->active_tag; 1599 preempted_sactive = link->sactive; 1600 preempted_qc_active = ap->qc_active; 1601 preempted_nr_active_links = ap->nr_active_links; 1602 link->active_tag = ATA_TAG_POISON; 1603 link->sactive = 0; 1604 ap->qc_active = 0; 1605 ap->nr_active_links = 0; 1606 1607 /* prepare & issue qc */ 1608 qc->tf = *tf; 1609 if (cdb) 1610 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1611 1612 /* some SATA bridges need us to indicate data xfer direction */ 1613 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1614 dma_dir == DMA_FROM_DEVICE) 1615 qc->tf.feature |= ATAPI_DMADIR; 1616 1617 qc->flags |= ATA_QCFLAG_RESULT_TF; 1618 qc->dma_dir = dma_dir; 1619 if (dma_dir != DMA_NONE) { 1620 unsigned int i, buflen = 0; 1621 struct scatterlist *sg; 1622 1623 for_each_sg(sgl, sg, n_elem, i) 1624 buflen += sg->length; 1625 1626 ata_sg_init(qc, sgl, n_elem); 1627 qc->nbytes = buflen; 1628 } 1629 1630 qc->private_data = &wait; 1631 qc->complete_fn = ata_qc_complete_internal; 1632 1633 ata_qc_issue(qc); 1634 1635 spin_unlock_irqrestore(ap->lock, flags); 1636 1637 if (!timeout) { 1638 if (ata_probe_timeout) 1639 timeout = ata_probe_timeout * 1000; 1640 else { 1641 timeout = ata_internal_cmd_timeout(dev, command); 1642 auto_timeout = 1; 1643 } 1644 } 1645 1646 if (ap->ops->error_handler) 1647 ata_eh_release(ap); 1648 1649 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1650 1651 if (ap->ops->error_handler) 1652 ata_eh_acquire(ap); 1653 1654 ata_sff_flush_pio_task(ap); 1655 1656 if (!rc) { 1657 spin_lock_irqsave(ap->lock, flags); 1658 1659 /* We're racing with irq here. If we lose, the 1660 * following test prevents us from completing the qc 1661 * twice. If we win, the port is frozen and will be 1662 * cleaned up by ->post_internal_cmd(). 1663 */ 1664 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1665 qc->err_mask |= AC_ERR_TIMEOUT; 1666 1667 if (ap->ops->error_handler) 1668 ata_port_freeze(ap); 1669 else 1670 ata_qc_complete(qc); 1671 1672 if (ata_msg_warn(ap)) 1673 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1674 command); 1675 } 1676 1677 spin_unlock_irqrestore(ap->lock, flags); 1678 } 1679 1680 /* do post_internal_cmd */ 1681 if (ap->ops->post_internal_cmd) 1682 ap->ops->post_internal_cmd(qc); 1683 1684 /* perform minimal error analysis */ 1685 if (qc->flags & ATA_QCFLAG_FAILED) { 1686 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1687 qc->err_mask |= AC_ERR_DEV; 1688 1689 if (!qc->err_mask) 1690 qc->err_mask |= AC_ERR_OTHER; 1691 1692 if (qc->err_mask & ~AC_ERR_OTHER) 1693 qc->err_mask &= ~AC_ERR_OTHER; 1694 } 1695 1696 /* finish up */ 1697 spin_lock_irqsave(ap->lock, flags); 1698 1699 *tf = qc->result_tf; 1700 err_mask = qc->err_mask; 1701 1702 ata_qc_free(qc); 1703 link->active_tag = preempted_tag; 1704 link->sactive = preempted_sactive; 1705 ap->qc_active = preempted_qc_active; 1706 ap->nr_active_links = preempted_nr_active_links; 1707 1708 spin_unlock_irqrestore(ap->lock, flags); 1709 1710 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1711 ata_internal_cmd_timed_out(dev, command); 1712 1713 return err_mask; 1714 } 1715 1716 /** 1717 * ata_exec_internal - execute libata internal command 1718 * @dev: Device to which the command is sent 1719 * @tf: Taskfile registers for the command and the result 1720 * @cdb: CDB for packet command 1721 * @dma_dir: Data transfer direction of the command 1722 * @buf: Data buffer of the command 1723 * @buflen: Length of data buffer 1724 * @timeout: Timeout in msecs (0 for default) 1725 * 1726 * Wrapper around ata_exec_internal_sg() which takes simple 1727 * buffer instead of sg list. 1728 * 1729 * LOCKING: 1730 * None. Should be called with kernel context, might sleep. 1731 * 1732 * RETURNS: 1733 * Zero on success, AC_ERR_* mask on failure 1734 */ 1735 unsigned ata_exec_internal(struct ata_device *dev, 1736 struct ata_taskfile *tf, const u8 *cdb, 1737 int dma_dir, void *buf, unsigned int buflen, 1738 unsigned long timeout) 1739 { 1740 struct scatterlist *psg = NULL, sg; 1741 unsigned int n_elem = 0; 1742 1743 if (dma_dir != DMA_NONE) { 1744 WARN_ON(!buf); 1745 sg_init_one(&sg, buf, buflen); 1746 psg = &sg; 1747 n_elem++; 1748 } 1749 1750 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1751 timeout); 1752 } 1753 1754 /** 1755 * ata_pio_need_iordy - check if iordy needed 1756 * @adev: ATA device 1757 * 1758 * Check if the current speed of the device requires IORDY. Used 1759 * by various controllers for chip configuration. 1760 */ 1761 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1762 { 1763 /* Don't set IORDY if we're preparing for reset. IORDY may 1764 * lead to controller lock up on certain controllers if the 1765 * port is not occupied. See bko#11703 for details. 1766 */ 1767 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1768 return 0; 1769 /* Controller doesn't support IORDY. Probably a pointless 1770 * check as the caller should know this. 1771 */ 1772 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1773 return 0; 1774 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1775 if (ata_id_is_cfa(adev->id) 1776 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1777 return 0; 1778 /* PIO3 and higher it is mandatory */ 1779 if (adev->pio_mode > XFER_PIO_2) 1780 return 1; 1781 /* We turn it on when possible */ 1782 if (ata_id_has_iordy(adev->id)) 1783 return 1; 1784 return 0; 1785 } 1786 1787 /** 1788 * ata_pio_mask_no_iordy - Return the non IORDY mask 1789 * @adev: ATA device 1790 * 1791 * Compute the highest mode possible if we are not using iordy. Return 1792 * -1 if no iordy mode is available. 1793 */ 1794 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1795 { 1796 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1797 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1798 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1799 /* Is the speed faster than the drive allows non IORDY ? */ 1800 if (pio) { 1801 /* This is cycle times not frequency - watch the logic! */ 1802 if (pio > 240) /* PIO2 is 240nS per cycle */ 1803 return 3 << ATA_SHIFT_PIO; 1804 return 7 << ATA_SHIFT_PIO; 1805 } 1806 } 1807 return 3 << ATA_SHIFT_PIO; 1808 } 1809 1810 /** 1811 * ata_do_dev_read_id - default ID read method 1812 * @dev: device 1813 * @tf: proposed taskfile 1814 * @id: data buffer 1815 * 1816 * Issue the identify taskfile and hand back the buffer containing 1817 * identify data. For some RAID controllers and for pre ATA devices 1818 * this function is wrapped or replaced by the driver 1819 */ 1820 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1821 struct ata_taskfile *tf, u16 *id) 1822 { 1823 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1824 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1825 } 1826 1827 /** 1828 * ata_dev_read_id - Read ID data from the specified device 1829 * @dev: target device 1830 * @p_class: pointer to class of the target device (may be changed) 1831 * @flags: ATA_READID_* flags 1832 * @id: buffer to read IDENTIFY data into 1833 * 1834 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1835 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1836 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1837 * for pre-ATA4 drives. 1838 * 1839 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1840 * now we abort if we hit that case. 1841 * 1842 * LOCKING: 1843 * Kernel thread context (may sleep) 1844 * 1845 * RETURNS: 1846 * 0 on success, -errno otherwise. 1847 */ 1848 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1849 unsigned int flags, u16 *id) 1850 { 1851 struct ata_port *ap = dev->link->ap; 1852 unsigned int class = *p_class; 1853 struct ata_taskfile tf; 1854 unsigned int err_mask = 0; 1855 const char *reason; 1856 bool is_semb = class == ATA_DEV_SEMB; 1857 int may_fallback = 1, tried_spinup = 0; 1858 int rc; 1859 1860 if (ata_msg_ctl(ap)) 1861 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1862 1863 retry: 1864 ata_tf_init(dev, &tf); 1865 1866 switch (class) { 1867 case ATA_DEV_SEMB: 1868 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1869 case ATA_DEV_ATA: 1870 case ATA_DEV_ZAC: 1871 tf.command = ATA_CMD_ID_ATA; 1872 break; 1873 case ATA_DEV_ATAPI: 1874 tf.command = ATA_CMD_ID_ATAPI; 1875 break; 1876 default: 1877 rc = -ENODEV; 1878 reason = "unsupported class"; 1879 goto err_out; 1880 } 1881 1882 tf.protocol = ATA_PROT_PIO; 1883 1884 /* Some devices choke if TF registers contain garbage. Make 1885 * sure those are properly initialized. 1886 */ 1887 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1888 1889 /* Device presence detection is unreliable on some 1890 * controllers. Always poll IDENTIFY if available. 1891 */ 1892 tf.flags |= ATA_TFLAG_POLLING; 1893 1894 if (ap->ops->read_id) 1895 err_mask = ap->ops->read_id(dev, &tf, id); 1896 else 1897 err_mask = ata_do_dev_read_id(dev, &tf, id); 1898 1899 if (err_mask) { 1900 if (err_mask & AC_ERR_NODEV_HINT) { 1901 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1902 return -ENOENT; 1903 } 1904 1905 if (is_semb) { 1906 ata_dev_info(dev, 1907 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1908 /* SEMB is not supported yet */ 1909 *p_class = ATA_DEV_SEMB_UNSUP; 1910 return 0; 1911 } 1912 1913 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1914 /* Device or controller might have reported 1915 * the wrong device class. Give a shot at the 1916 * other IDENTIFY if the current one is 1917 * aborted by the device. 1918 */ 1919 if (may_fallback) { 1920 may_fallback = 0; 1921 1922 if (class == ATA_DEV_ATA) 1923 class = ATA_DEV_ATAPI; 1924 else 1925 class = ATA_DEV_ATA; 1926 goto retry; 1927 } 1928 1929 /* Control reaches here iff the device aborted 1930 * both flavors of IDENTIFYs which happens 1931 * sometimes with phantom devices. 1932 */ 1933 ata_dev_dbg(dev, 1934 "both IDENTIFYs aborted, assuming NODEV\n"); 1935 return -ENOENT; 1936 } 1937 1938 rc = -EIO; 1939 reason = "I/O error"; 1940 goto err_out; 1941 } 1942 1943 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1944 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1945 "class=%d may_fallback=%d tried_spinup=%d\n", 1946 class, may_fallback, tried_spinup); 1947 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1948 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1949 } 1950 1951 /* Falling back doesn't make sense if ID data was read 1952 * successfully at least once. 1953 */ 1954 may_fallback = 0; 1955 1956 swap_buf_le16(id, ATA_ID_WORDS); 1957 1958 /* sanity check */ 1959 rc = -EINVAL; 1960 reason = "device reports invalid type"; 1961 1962 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1963 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1964 goto err_out; 1965 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1966 ata_id_is_ata(id)) { 1967 ata_dev_dbg(dev, 1968 "host indicates ignore ATA devices, ignored\n"); 1969 return -ENOENT; 1970 } 1971 } else { 1972 if (ata_id_is_ata(id)) 1973 goto err_out; 1974 } 1975 1976 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1977 tried_spinup = 1; 1978 /* 1979 * Drive powered-up in standby mode, and requires a specific 1980 * SET_FEATURES spin-up subcommand before it will accept 1981 * anything other than the original IDENTIFY command. 1982 */ 1983 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1984 if (err_mask && id[2] != 0x738c) { 1985 rc = -EIO; 1986 reason = "SPINUP failed"; 1987 goto err_out; 1988 } 1989 /* 1990 * If the drive initially returned incomplete IDENTIFY info, 1991 * we now must reissue the IDENTIFY command. 1992 */ 1993 if (id[2] == 0x37c8) 1994 goto retry; 1995 } 1996 1997 if ((flags & ATA_READID_POSTRESET) && 1998 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1999 /* 2000 * The exact sequence expected by certain pre-ATA4 drives is: 2001 * SRST RESET 2002 * IDENTIFY (optional in early ATA) 2003 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2004 * anything else.. 2005 * Some drives were very specific about that exact sequence. 2006 * 2007 * Note that ATA4 says lba is mandatory so the second check 2008 * should never trigger. 2009 */ 2010 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2011 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2012 if (err_mask) { 2013 rc = -EIO; 2014 reason = "INIT_DEV_PARAMS failed"; 2015 goto err_out; 2016 } 2017 2018 /* current CHS translation info (id[53-58]) might be 2019 * changed. reread the identify device info. 2020 */ 2021 flags &= ~ATA_READID_POSTRESET; 2022 goto retry; 2023 } 2024 } 2025 2026 *p_class = class; 2027 2028 return 0; 2029 2030 err_out: 2031 if (ata_msg_warn(ap)) 2032 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2033 reason, err_mask); 2034 return rc; 2035 } 2036 2037 static int ata_do_link_spd_horkage(struct ata_device *dev) 2038 { 2039 struct ata_link *plink = ata_dev_phys_link(dev); 2040 u32 target, target_limit; 2041 2042 if (!sata_scr_valid(plink)) 2043 return 0; 2044 2045 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2046 target = 1; 2047 else 2048 return 0; 2049 2050 target_limit = (1 << target) - 1; 2051 2052 /* if already on stricter limit, no need to push further */ 2053 if (plink->sata_spd_limit <= target_limit) 2054 return 0; 2055 2056 plink->sata_spd_limit = target_limit; 2057 2058 /* Request another EH round by returning -EAGAIN if link is 2059 * going faster than the target speed. Forward progress is 2060 * guaranteed by setting sata_spd_limit to target_limit above. 2061 */ 2062 if (plink->sata_spd > target) { 2063 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2064 sata_spd_string(target)); 2065 return -EAGAIN; 2066 } 2067 return 0; 2068 } 2069 2070 static inline u8 ata_dev_knobble(struct ata_device *dev) 2071 { 2072 struct ata_port *ap = dev->link->ap; 2073 2074 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2075 return 0; 2076 2077 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2078 } 2079 2080 static int ata_dev_config_ncq(struct ata_device *dev, 2081 char *desc, size_t desc_sz) 2082 { 2083 struct ata_port *ap = dev->link->ap; 2084 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2085 unsigned int err_mask; 2086 char *aa_desc = ""; 2087 2088 if (!ata_id_has_ncq(dev->id)) { 2089 desc[0] = '\0'; 2090 return 0; 2091 } 2092 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2093 snprintf(desc, desc_sz, "NCQ (not used)"); 2094 return 0; 2095 } 2096 if (ap->flags & ATA_FLAG_NCQ) { 2097 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2098 dev->flags |= ATA_DFLAG_NCQ; 2099 } 2100 2101 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2102 (ap->flags & ATA_FLAG_FPDMA_AA) && 2103 ata_id_has_fpdma_aa(dev->id)) { 2104 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2105 SATA_FPDMA_AA); 2106 if (err_mask) { 2107 ata_dev_err(dev, 2108 "failed to enable AA (error_mask=0x%x)\n", 2109 err_mask); 2110 if (err_mask != AC_ERR_DEV) { 2111 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2112 return -EIO; 2113 } 2114 } else 2115 aa_desc = ", AA"; 2116 } 2117 2118 if (hdepth >= ddepth) 2119 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2120 else 2121 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2122 ddepth, aa_desc); 2123 2124 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2125 ata_id_has_ncq_send_and_recv(dev->id)) { 2126 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2127 0, ap->sector_buf, 1); 2128 if (err_mask) { 2129 ata_dev_dbg(dev, 2130 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2131 err_mask); 2132 } else { 2133 u8 *cmds = dev->ncq_send_recv_cmds; 2134 2135 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2136 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2137 2138 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2139 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2140 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2141 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2142 } 2143 } 2144 } 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * ata_dev_configure - Configure the specified ATA/ATAPI device 2151 * @dev: Target device to configure 2152 * 2153 * Configure @dev according to @dev->id. Generic and low-level 2154 * driver specific fixups are also applied. 2155 * 2156 * LOCKING: 2157 * Kernel thread context (may sleep) 2158 * 2159 * RETURNS: 2160 * 0 on success, -errno otherwise 2161 */ 2162 int ata_dev_configure(struct ata_device *dev) 2163 { 2164 struct ata_port *ap = dev->link->ap; 2165 struct ata_eh_context *ehc = &dev->link->eh_context; 2166 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2167 const u16 *id = dev->id; 2168 unsigned long xfer_mask; 2169 unsigned int err_mask; 2170 char revbuf[7]; /* XYZ-99\0 */ 2171 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2172 char modelbuf[ATA_ID_PROD_LEN+1]; 2173 int rc; 2174 2175 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2176 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2177 return 0; 2178 } 2179 2180 if (ata_msg_probe(ap)) 2181 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2182 2183 /* set horkage */ 2184 dev->horkage |= ata_dev_blacklisted(dev); 2185 ata_force_horkage(dev); 2186 2187 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2188 ata_dev_info(dev, "unsupported device, disabling\n"); 2189 ata_dev_disable(dev); 2190 return 0; 2191 } 2192 2193 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2194 dev->class == ATA_DEV_ATAPI) { 2195 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2196 atapi_enabled ? "not supported with this driver" 2197 : "disabled"); 2198 ata_dev_disable(dev); 2199 return 0; 2200 } 2201 2202 rc = ata_do_link_spd_horkage(dev); 2203 if (rc) 2204 return rc; 2205 2206 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2207 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2208 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2209 dev->horkage |= ATA_HORKAGE_NOLPM; 2210 2211 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2212 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2213 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2214 } 2215 2216 /* let ACPI work its magic */ 2217 rc = ata_acpi_on_devcfg(dev); 2218 if (rc) 2219 return rc; 2220 2221 /* massage HPA, do it early as it might change IDENTIFY data */ 2222 rc = ata_hpa_resize(dev); 2223 if (rc) 2224 return rc; 2225 2226 /* print device capabilities */ 2227 if (ata_msg_probe(ap)) 2228 ata_dev_dbg(dev, 2229 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2230 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2231 __func__, 2232 id[49], id[82], id[83], id[84], 2233 id[85], id[86], id[87], id[88]); 2234 2235 /* initialize to-be-configured parameters */ 2236 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2237 dev->max_sectors = 0; 2238 dev->cdb_len = 0; 2239 dev->n_sectors = 0; 2240 dev->cylinders = 0; 2241 dev->heads = 0; 2242 dev->sectors = 0; 2243 dev->multi_count = 0; 2244 2245 /* 2246 * common ATA, ATAPI feature tests 2247 */ 2248 2249 /* find max transfer mode; for printk only */ 2250 xfer_mask = ata_id_xfermask(id); 2251 2252 if (ata_msg_probe(ap)) 2253 ata_dump_id(id); 2254 2255 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2256 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2257 sizeof(fwrevbuf)); 2258 2259 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2260 sizeof(modelbuf)); 2261 2262 /* ATA-specific feature tests */ 2263 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2264 if (ata_id_is_cfa(id)) { 2265 /* CPRM may make this media unusable */ 2266 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2267 ata_dev_warn(dev, 2268 "supports DRM functions and may not be fully accessible\n"); 2269 snprintf(revbuf, 7, "CFA"); 2270 } else { 2271 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2272 /* Warn the user if the device has TPM extensions */ 2273 if (ata_id_has_tpm(id)) 2274 ata_dev_warn(dev, 2275 "supports DRM functions and may not be fully accessible\n"); 2276 } 2277 2278 dev->n_sectors = ata_id_n_sectors(id); 2279 2280 /* get current R/W Multiple count setting */ 2281 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2282 unsigned int max = dev->id[47] & 0xff; 2283 unsigned int cnt = dev->id[59] & 0xff; 2284 /* only recognize/allow powers of two here */ 2285 if (is_power_of_2(max) && is_power_of_2(cnt)) 2286 if (cnt <= max) 2287 dev->multi_count = cnt; 2288 } 2289 2290 if (ata_id_has_lba(id)) { 2291 const char *lba_desc; 2292 char ncq_desc[24]; 2293 2294 lba_desc = "LBA"; 2295 dev->flags |= ATA_DFLAG_LBA; 2296 if (ata_id_has_lba48(id)) { 2297 dev->flags |= ATA_DFLAG_LBA48; 2298 lba_desc = "LBA48"; 2299 2300 if (dev->n_sectors >= (1UL << 28) && 2301 ata_id_has_flush_ext(id)) 2302 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2303 } 2304 2305 /* config NCQ */ 2306 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2307 if (rc) 2308 return rc; 2309 2310 /* print device info to dmesg */ 2311 if (ata_msg_drv(ap) && print_info) { 2312 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2313 revbuf, modelbuf, fwrevbuf, 2314 ata_mode_string(xfer_mask)); 2315 ata_dev_info(dev, 2316 "%llu sectors, multi %u: %s %s\n", 2317 (unsigned long long)dev->n_sectors, 2318 dev->multi_count, lba_desc, ncq_desc); 2319 } 2320 } else { 2321 /* CHS */ 2322 2323 /* Default translation */ 2324 dev->cylinders = id[1]; 2325 dev->heads = id[3]; 2326 dev->sectors = id[6]; 2327 2328 if (ata_id_current_chs_valid(id)) { 2329 /* Current CHS translation is valid. */ 2330 dev->cylinders = id[54]; 2331 dev->heads = id[55]; 2332 dev->sectors = id[56]; 2333 } 2334 2335 /* print device info to dmesg */ 2336 if (ata_msg_drv(ap) && print_info) { 2337 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2338 revbuf, modelbuf, fwrevbuf, 2339 ata_mode_string(xfer_mask)); 2340 ata_dev_info(dev, 2341 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2342 (unsigned long long)dev->n_sectors, 2343 dev->multi_count, dev->cylinders, 2344 dev->heads, dev->sectors); 2345 } 2346 } 2347 2348 /* Check and mark DevSlp capability. Get DevSlp timing variables 2349 * from SATA Settings page of Identify Device Data Log. 2350 */ 2351 if (ata_id_has_devslp(dev->id)) { 2352 u8 *sata_setting = ap->sector_buf; 2353 int i, j; 2354 2355 dev->flags |= ATA_DFLAG_DEVSLP; 2356 err_mask = ata_read_log_page(dev, 2357 ATA_LOG_SATA_ID_DEV_DATA, 2358 ATA_LOG_SATA_SETTINGS, 2359 sata_setting, 2360 1); 2361 if (err_mask) 2362 ata_dev_dbg(dev, 2363 "failed to get Identify Device Data, Emask 0x%x\n", 2364 err_mask); 2365 else 2366 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2367 j = ATA_LOG_DEVSLP_OFFSET + i; 2368 dev->devslp_timing[i] = sata_setting[j]; 2369 } 2370 } 2371 2372 dev->cdb_len = 16; 2373 } 2374 2375 /* ATAPI-specific feature tests */ 2376 else if (dev->class == ATA_DEV_ATAPI) { 2377 const char *cdb_intr_string = ""; 2378 const char *atapi_an_string = ""; 2379 const char *dma_dir_string = ""; 2380 u32 sntf; 2381 2382 rc = atapi_cdb_len(id); 2383 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2384 if (ata_msg_warn(ap)) 2385 ata_dev_warn(dev, "unsupported CDB len\n"); 2386 rc = -EINVAL; 2387 goto err_out_nosup; 2388 } 2389 dev->cdb_len = (unsigned int) rc; 2390 2391 /* Enable ATAPI AN if both the host and device have 2392 * the support. If PMP is attached, SNTF is required 2393 * to enable ATAPI AN to discern between PHY status 2394 * changed notifications and ATAPI ANs. 2395 */ 2396 if (atapi_an && 2397 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2398 (!sata_pmp_attached(ap) || 2399 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2400 /* issue SET feature command to turn this on */ 2401 err_mask = ata_dev_set_feature(dev, 2402 SETFEATURES_SATA_ENABLE, SATA_AN); 2403 if (err_mask) 2404 ata_dev_err(dev, 2405 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2406 err_mask); 2407 else { 2408 dev->flags |= ATA_DFLAG_AN; 2409 atapi_an_string = ", ATAPI AN"; 2410 } 2411 } 2412 2413 if (ata_id_cdb_intr(dev->id)) { 2414 dev->flags |= ATA_DFLAG_CDB_INTR; 2415 cdb_intr_string = ", CDB intr"; 2416 } 2417 2418 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2419 dev->flags |= ATA_DFLAG_DMADIR; 2420 dma_dir_string = ", DMADIR"; 2421 } 2422 2423 if (ata_id_has_da(dev->id)) { 2424 dev->flags |= ATA_DFLAG_DA; 2425 zpodd_init(dev); 2426 } 2427 2428 /* print device info to dmesg */ 2429 if (ata_msg_drv(ap) && print_info) 2430 ata_dev_info(dev, 2431 "ATAPI: %s, %s, max %s%s%s%s\n", 2432 modelbuf, fwrevbuf, 2433 ata_mode_string(xfer_mask), 2434 cdb_intr_string, atapi_an_string, 2435 dma_dir_string); 2436 } 2437 2438 /* determine max_sectors */ 2439 dev->max_sectors = ATA_MAX_SECTORS; 2440 if (dev->flags & ATA_DFLAG_LBA48) 2441 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2442 2443 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2444 200 sectors */ 2445 if (ata_dev_knobble(dev)) { 2446 if (ata_msg_drv(ap) && print_info) 2447 ata_dev_info(dev, "applying bridge limits\n"); 2448 dev->udma_mask &= ATA_UDMA5; 2449 dev->max_sectors = ATA_MAX_SECTORS; 2450 } 2451 2452 if ((dev->class == ATA_DEV_ATAPI) && 2453 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2454 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2455 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2456 } 2457 2458 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2459 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2460 dev->max_sectors); 2461 2462 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2463 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2464 2465 if (ap->ops->dev_config) 2466 ap->ops->dev_config(dev); 2467 2468 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2469 /* Let the user know. We don't want to disallow opens for 2470 rescue purposes, or in case the vendor is just a blithering 2471 idiot. Do this after the dev_config call as some controllers 2472 with buggy firmware may want to avoid reporting false device 2473 bugs */ 2474 2475 if (print_info) { 2476 ata_dev_warn(dev, 2477 "Drive reports diagnostics failure. This may indicate a drive\n"); 2478 ata_dev_warn(dev, 2479 "fault or invalid emulation. Contact drive vendor for information.\n"); 2480 } 2481 } 2482 2483 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2484 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2485 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2486 } 2487 2488 return 0; 2489 2490 err_out_nosup: 2491 if (ata_msg_probe(ap)) 2492 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2493 return rc; 2494 } 2495 2496 /** 2497 * ata_cable_40wire - return 40 wire cable type 2498 * @ap: port 2499 * 2500 * Helper method for drivers which want to hardwire 40 wire cable 2501 * detection. 2502 */ 2503 2504 int ata_cable_40wire(struct ata_port *ap) 2505 { 2506 return ATA_CBL_PATA40; 2507 } 2508 2509 /** 2510 * ata_cable_80wire - return 80 wire cable type 2511 * @ap: port 2512 * 2513 * Helper method for drivers which want to hardwire 80 wire cable 2514 * detection. 2515 */ 2516 2517 int ata_cable_80wire(struct ata_port *ap) 2518 { 2519 return ATA_CBL_PATA80; 2520 } 2521 2522 /** 2523 * ata_cable_unknown - return unknown PATA cable. 2524 * @ap: port 2525 * 2526 * Helper method for drivers which have no PATA cable detection. 2527 */ 2528 2529 int ata_cable_unknown(struct ata_port *ap) 2530 { 2531 return ATA_CBL_PATA_UNK; 2532 } 2533 2534 /** 2535 * ata_cable_ignore - return ignored PATA cable. 2536 * @ap: port 2537 * 2538 * Helper method for drivers which don't use cable type to limit 2539 * transfer mode. 2540 */ 2541 int ata_cable_ignore(struct ata_port *ap) 2542 { 2543 return ATA_CBL_PATA_IGN; 2544 } 2545 2546 /** 2547 * ata_cable_sata - return SATA cable type 2548 * @ap: port 2549 * 2550 * Helper method for drivers which have SATA cables 2551 */ 2552 2553 int ata_cable_sata(struct ata_port *ap) 2554 { 2555 return ATA_CBL_SATA; 2556 } 2557 2558 /** 2559 * ata_bus_probe - Reset and probe ATA bus 2560 * @ap: Bus to probe 2561 * 2562 * Master ATA bus probing function. Initiates a hardware-dependent 2563 * bus reset, then attempts to identify any devices found on 2564 * the bus. 2565 * 2566 * LOCKING: 2567 * PCI/etc. bus probe sem. 2568 * 2569 * RETURNS: 2570 * Zero on success, negative errno otherwise. 2571 */ 2572 2573 int ata_bus_probe(struct ata_port *ap) 2574 { 2575 unsigned int classes[ATA_MAX_DEVICES]; 2576 int tries[ATA_MAX_DEVICES]; 2577 int rc; 2578 struct ata_device *dev; 2579 2580 ata_for_each_dev(dev, &ap->link, ALL) 2581 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2582 2583 retry: 2584 ata_for_each_dev(dev, &ap->link, ALL) { 2585 /* If we issue an SRST then an ATA drive (not ATAPI) 2586 * may change configuration and be in PIO0 timing. If 2587 * we do a hard reset (or are coming from power on) 2588 * this is true for ATA or ATAPI. Until we've set a 2589 * suitable controller mode we should not touch the 2590 * bus as we may be talking too fast. 2591 */ 2592 dev->pio_mode = XFER_PIO_0; 2593 dev->dma_mode = 0xff; 2594 2595 /* If the controller has a pio mode setup function 2596 * then use it to set the chipset to rights. Don't 2597 * touch the DMA setup as that will be dealt with when 2598 * configuring devices. 2599 */ 2600 if (ap->ops->set_piomode) 2601 ap->ops->set_piomode(ap, dev); 2602 } 2603 2604 /* reset and determine device classes */ 2605 ap->ops->phy_reset(ap); 2606 2607 ata_for_each_dev(dev, &ap->link, ALL) { 2608 if (dev->class != ATA_DEV_UNKNOWN) 2609 classes[dev->devno] = dev->class; 2610 else 2611 classes[dev->devno] = ATA_DEV_NONE; 2612 2613 dev->class = ATA_DEV_UNKNOWN; 2614 } 2615 2616 /* read IDENTIFY page and configure devices. We have to do the identify 2617 specific sequence bass-ackwards so that PDIAG- is released by 2618 the slave device */ 2619 2620 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2621 if (tries[dev->devno]) 2622 dev->class = classes[dev->devno]; 2623 2624 if (!ata_dev_enabled(dev)) 2625 continue; 2626 2627 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2628 dev->id); 2629 if (rc) 2630 goto fail; 2631 } 2632 2633 /* Now ask for the cable type as PDIAG- should have been released */ 2634 if (ap->ops->cable_detect) 2635 ap->cbl = ap->ops->cable_detect(ap); 2636 2637 /* We may have SATA bridge glue hiding here irrespective of 2638 * the reported cable types and sensed types. When SATA 2639 * drives indicate we have a bridge, we don't know which end 2640 * of the link the bridge is which is a problem. 2641 */ 2642 ata_for_each_dev(dev, &ap->link, ENABLED) 2643 if (ata_id_is_sata(dev->id)) 2644 ap->cbl = ATA_CBL_SATA; 2645 2646 /* After the identify sequence we can now set up the devices. We do 2647 this in the normal order so that the user doesn't get confused */ 2648 2649 ata_for_each_dev(dev, &ap->link, ENABLED) { 2650 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2651 rc = ata_dev_configure(dev); 2652 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2653 if (rc) 2654 goto fail; 2655 } 2656 2657 /* configure transfer mode */ 2658 rc = ata_set_mode(&ap->link, &dev); 2659 if (rc) 2660 goto fail; 2661 2662 ata_for_each_dev(dev, &ap->link, ENABLED) 2663 return 0; 2664 2665 return -ENODEV; 2666 2667 fail: 2668 tries[dev->devno]--; 2669 2670 switch (rc) { 2671 case -EINVAL: 2672 /* eeek, something went very wrong, give up */ 2673 tries[dev->devno] = 0; 2674 break; 2675 2676 case -ENODEV: 2677 /* give it just one more chance */ 2678 tries[dev->devno] = min(tries[dev->devno], 1); 2679 case -EIO: 2680 if (tries[dev->devno] == 1) { 2681 /* This is the last chance, better to slow 2682 * down than lose it. 2683 */ 2684 sata_down_spd_limit(&ap->link, 0); 2685 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2686 } 2687 } 2688 2689 if (!tries[dev->devno]) 2690 ata_dev_disable(dev); 2691 2692 goto retry; 2693 } 2694 2695 /** 2696 * sata_print_link_status - Print SATA link status 2697 * @link: SATA link to printk link status about 2698 * 2699 * This function prints link speed and status of a SATA link. 2700 * 2701 * LOCKING: 2702 * None. 2703 */ 2704 static void sata_print_link_status(struct ata_link *link) 2705 { 2706 u32 sstatus, scontrol, tmp; 2707 2708 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2709 return; 2710 sata_scr_read(link, SCR_CONTROL, &scontrol); 2711 2712 if (ata_phys_link_online(link)) { 2713 tmp = (sstatus >> 4) & 0xf; 2714 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2715 sata_spd_string(tmp), sstatus, scontrol); 2716 } else { 2717 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2718 sstatus, scontrol); 2719 } 2720 } 2721 2722 /** 2723 * ata_dev_pair - return other device on cable 2724 * @adev: device 2725 * 2726 * Obtain the other device on the same cable, or if none is 2727 * present NULL is returned 2728 */ 2729 2730 struct ata_device *ata_dev_pair(struct ata_device *adev) 2731 { 2732 struct ata_link *link = adev->link; 2733 struct ata_device *pair = &link->device[1 - adev->devno]; 2734 if (!ata_dev_enabled(pair)) 2735 return NULL; 2736 return pair; 2737 } 2738 2739 /** 2740 * sata_down_spd_limit - adjust SATA spd limit downward 2741 * @link: Link to adjust SATA spd limit for 2742 * @spd_limit: Additional limit 2743 * 2744 * Adjust SATA spd limit of @link downward. Note that this 2745 * function only adjusts the limit. The change must be applied 2746 * using sata_set_spd(). 2747 * 2748 * If @spd_limit is non-zero, the speed is limited to equal to or 2749 * lower than @spd_limit if such speed is supported. If 2750 * @spd_limit is slower than any supported speed, only the lowest 2751 * supported speed is allowed. 2752 * 2753 * LOCKING: 2754 * Inherited from caller. 2755 * 2756 * RETURNS: 2757 * 0 on success, negative errno on failure 2758 */ 2759 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2760 { 2761 u32 sstatus, spd, mask; 2762 int rc, bit; 2763 2764 if (!sata_scr_valid(link)) 2765 return -EOPNOTSUPP; 2766 2767 /* If SCR can be read, use it to determine the current SPD. 2768 * If not, use cached value in link->sata_spd. 2769 */ 2770 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2771 if (rc == 0 && ata_sstatus_online(sstatus)) 2772 spd = (sstatus >> 4) & 0xf; 2773 else 2774 spd = link->sata_spd; 2775 2776 mask = link->sata_spd_limit; 2777 if (mask <= 1) 2778 return -EINVAL; 2779 2780 /* unconditionally mask off the highest bit */ 2781 bit = fls(mask) - 1; 2782 mask &= ~(1 << bit); 2783 2784 /* Mask off all speeds higher than or equal to the current 2785 * one. Force 1.5Gbps if current SPD is not available. 2786 */ 2787 if (spd > 1) 2788 mask &= (1 << (spd - 1)) - 1; 2789 else 2790 mask &= 1; 2791 2792 /* were we already at the bottom? */ 2793 if (!mask) 2794 return -EINVAL; 2795 2796 if (spd_limit) { 2797 if (mask & ((1 << spd_limit) - 1)) 2798 mask &= (1 << spd_limit) - 1; 2799 else { 2800 bit = ffs(mask) - 1; 2801 mask = 1 << bit; 2802 } 2803 } 2804 2805 link->sata_spd_limit = mask; 2806 2807 ata_link_warn(link, "limiting SATA link speed to %s\n", 2808 sata_spd_string(fls(mask))); 2809 2810 return 0; 2811 } 2812 2813 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2814 { 2815 struct ata_link *host_link = &link->ap->link; 2816 u32 limit, target, spd; 2817 2818 limit = link->sata_spd_limit; 2819 2820 /* Don't configure downstream link faster than upstream link. 2821 * It doesn't speed up anything and some PMPs choke on such 2822 * configuration. 2823 */ 2824 if (!ata_is_host_link(link) && host_link->sata_spd) 2825 limit &= (1 << host_link->sata_spd) - 1; 2826 2827 if (limit == UINT_MAX) 2828 target = 0; 2829 else 2830 target = fls(limit); 2831 2832 spd = (*scontrol >> 4) & 0xf; 2833 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2834 2835 return spd != target; 2836 } 2837 2838 /** 2839 * sata_set_spd_needed - is SATA spd configuration needed 2840 * @link: Link in question 2841 * 2842 * Test whether the spd limit in SControl matches 2843 * @link->sata_spd_limit. This function is used to determine 2844 * whether hardreset is necessary to apply SATA spd 2845 * configuration. 2846 * 2847 * LOCKING: 2848 * Inherited from caller. 2849 * 2850 * RETURNS: 2851 * 1 if SATA spd configuration is needed, 0 otherwise. 2852 */ 2853 static int sata_set_spd_needed(struct ata_link *link) 2854 { 2855 u32 scontrol; 2856 2857 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2858 return 1; 2859 2860 return __sata_set_spd_needed(link, &scontrol); 2861 } 2862 2863 /** 2864 * sata_set_spd - set SATA spd according to spd limit 2865 * @link: Link to set SATA spd for 2866 * 2867 * Set SATA spd of @link according to sata_spd_limit. 2868 * 2869 * LOCKING: 2870 * Inherited from caller. 2871 * 2872 * RETURNS: 2873 * 0 if spd doesn't need to be changed, 1 if spd has been 2874 * changed. Negative errno if SCR registers are inaccessible. 2875 */ 2876 int sata_set_spd(struct ata_link *link) 2877 { 2878 u32 scontrol; 2879 int rc; 2880 2881 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2882 return rc; 2883 2884 if (!__sata_set_spd_needed(link, &scontrol)) 2885 return 0; 2886 2887 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2888 return rc; 2889 2890 return 1; 2891 } 2892 2893 /* 2894 * This mode timing computation functionality is ported over from 2895 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2896 */ 2897 /* 2898 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2899 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2900 * for UDMA6, which is currently supported only by Maxtor drives. 2901 * 2902 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2903 */ 2904 2905 static const struct ata_timing ata_timing[] = { 2906 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2907 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2908 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2909 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2910 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2911 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2912 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2913 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2914 2915 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2916 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2917 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2918 2919 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2920 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2921 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2922 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2923 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2924 2925 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2926 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2927 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2928 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2929 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2930 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2931 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2932 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2933 2934 { 0xFF } 2935 }; 2936 2937 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2938 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2939 2940 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2941 { 2942 q->setup = EZ(t->setup * 1000, T); 2943 q->act8b = EZ(t->act8b * 1000, T); 2944 q->rec8b = EZ(t->rec8b * 1000, T); 2945 q->cyc8b = EZ(t->cyc8b * 1000, T); 2946 q->active = EZ(t->active * 1000, T); 2947 q->recover = EZ(t->recover * 1000, T); 2948 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2949 q->cycle = EZ(t->cycle * 1000, T); 2950 q->udma = EZ(t->udma * 1000, UT); 2951 } 2952 2953 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2954 struct ata_timing *m, unsigned int what) 2955 { 2956 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2957 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2958 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2959 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2960 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2961 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2962 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2963 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2964 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2965 } 2966 2967 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2968 { 2969 const struct ata_timing *t = ata_timing; 2970 2971 while (xfer_mode > t->mode) 2972 t++; 2973 2974 if (xfer_mode == t->mode) 2975 return t; 2976 2977 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2978 __func__, xfer_mode); 2979 2980 return NULL; 2981 } 2982 2983 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2984 struct ata_timing *t, int T, int UT) 2985 { 2986 const u16 *id = adev->id; 2987 const struct ata_timing *s; 2988 struct ata_timing p; 2989 2990 /* 2991 * Find the mode. 2992 */ 2993 2994 if (!(s = ata_timing_find_mode(speed))) 2995 return -EINVAL; 2996 2997 memcpy(t, s, sizeof(*s)); 2998 2999 /* 3000 * If the drive is an EIDE drive, it can tell us it needs extended 3001 * PIO/MW_DMA cycle timing. 3002 */ 3003 3004 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3005 memset(&p, 0, sizeof(p)); 3006 3007 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3008 if (speed <= XFER_PIO_2) 3009 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3010 else if ((speed <= XFER_PIO_4) || 3011 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3012 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3013 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3014 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3015 3016 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3017 } 3018 3019 /* 3020 * Convert the timing to bus clock counts. 3021 */ 3022 3023 ata_timing_quantize(t, t, T, UT); 3024 3025 /* 3026 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3027 * S.M.A.R.T * and some other commands. We have to ensure that the 3028 * DMA cycle timing is slower/equal than the fastest PIO timing. 3029 */ 3030 3031 if (speed > XFER_PIO_6) { 3032 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3033 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3034 } 3035 3036 /* 3037 * Lengthen active & recovery time so that cycle time is correct. 3038 */ 3039 3040 if (t->act8b + t->rec8b < t->cyc8b) { 3041 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3042 t->rec8b = t->cyc8b - t->act8b; 3043 } 3044 3045 if (t->active + t->recover < t->cycle) { 3046 t->active += (t->cycle - (t->active + t->recover)) / 2; 3047 t->recover = t->cycle - t->active; 3048 } 3049 3050 /* In a few cases quantisation may produce enough errors to 3051 leave t->cycle too low for the sum of active and recovery 3052 if so we must correct this */ 3053 if (t->active + t->recover > t->cycle) 3054 t->cycle = t->active + t->recover; 3055 3056 return 0; 3057 } 3058 3059 /** 3060 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3061 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3062 * @cycle: cycle duration in ns 3063 * 3064 * Return matching xfer mode for @cycle. The returned mode is of 3065 * the transfer type specified by @xfer_shift. If @cycle is too 3066 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3067 * than the fastest known mode, the fasted mode is returned. 3068 * 3069 * LOCKING: 3070 * None. 3071 * 3072 * RETURNS: 3073 * Matching xfer_mode, 0xff if no match found. 3074 */ 3075 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3076 { 3077 u8 base_mode = 0xff, last_mode = 0xff; 3078 const struct ata_xfer_ent *ent; 3079 const struct ata_timing *t; 3080 3081 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3082 if (ent->shift == xfer_shift) 3083 base_mode = ent->base; 3084 3085 for (t = ata_timing_find_mode(base_mode); 3086 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3087 unsigned short this_cycle; 3088 3089 switch (xfer_shift) { 3090 case ATA_SHIFT_PIO: 3091 case ATA_SHIFT_MWDMA: 3092 this_cycle = t->cycle; 3093 break; 3094 case ATA_SHIFT_UDMA: 3095 this_cycle = t->udma; 3096 break; 3097 default: 3098 return 0xff; 3099 } 3100 3101 if (cycle > this_cycle) 3102 break; 3103 3104 last_mode = t->mode; 3105 } 3106 3107 return last_mode; 3108 } 3109 3110 /** 3111 * ata_down_xfermask_limit - adjust dev xfer masks downward 3112 * @dev: Device to adjust xfer masks 3113 * @sel: ATA_DNXFER_* selector 3114 * 3115 * Adjust xfer masks of @dev downward. Note that this function 3116 * does not apply the change. Invoking ata_set_mode() afterwards 3117 * will apply the limit. 3118 * 3119 * LOCKING: 3120 * Inherited from caller. 3121 * 3122 * RETURNS: 3123 * 0 on success, negative errno on failure 3124 */ 3125 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3126 { 3127 char buf[32]; 3128 unsigned long orig_mask, xfer_mask; 3129 unsigned long pio_mask, mwdma_mask, udma_mask; 3130 int quiet, highbit; 3131 3132 quiet = !!(sel & ATA_DNXFER_QUIET); 3133 sel &= ~ATA_DNXFER_QUIET; 3134 3135 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3136 dev->mwdma_mask, 3137 dev->udma_mask); 3138 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3139 3140 switch (sel) { 3141 case ATA_DNXFER_PIO: 3142 highbit = fls(pio_mask) - 1; 3143 pio_mask &= ~(1 << highbit); 3144 break; 3145 3146 case ATA_DNXFER_DMA: 3147 if (udma_mask) { 3148 highbit = fls(udma_mask) - 1; 3149 udma_mask &= ~(1 << highbit); 3150 if (!udma_mask) 3151 return -ENOENT; 3152 } else if (mwdma_mask) { 3153 highbit = fls(mwdma_mask) - 1; 3154 mwdma_mask &= ~(1 << highbit); 3155 if (!mwdma_mask) 3156 return -ENOENT; 3157 } 3158 break; 3159 3160 case ATA_DNXFER_40C: 3161 udma_mask &= ATA_UDMA_MASK_40C; 3162 break; 3163 3164 case ATA_DNXFER_FORCE_PIO0: 3165 pio_mask &= 1; 3166 case ATA_DNXFER_FORCE_PIO: 3167 mwdma_mask = 0; 3168 udma_mask = 0; 3169 break; 3170 3171 default: 3172 BUG(); 3173 } 3174 3175 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3176 3177 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3178 return -ENOENT; 3179 3180 if (!quiet) { 3181 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3182 snprintf(buf, sizeof(buf), "%s:%s", 3183 ata_mode_string(xfer_mask), 3184 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3185 else 3186 snprintf(buf, sizeof(buf), "%s", 3187 ata_mode_string(xfer_mask)); 3188 3189 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3190 } 3191 3192 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3193 &dev->udma_mask); 3194 3195 return 0; 3196 } 3197 3198 static int ata_dev_set_mode(struct ata_device *dev) 3199 { 3200 struct ata_port *ap = dev->link->ap; 3201 struct ata_eh_context *ehc = &dev->link->eh_context; 3202 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3203 const char *dev_err_whine = ""; 3204 int ign_dev_err = 0; 3205 unsigned int err_mask = 0; 3206 int rc; 3207 3208 dev->flags &= ~ATA_DFLAG_PIO; 3209 if (dev->xfer_shift == ATA_SHIFT_PIO) 3210 dev->flags |= ATA_DFLAG_PIO; 3211 3212 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3213 dev_err_whine = " (SET_XFERMODE skipped)"; 3214 else { 3215 if (nosetxfer) 3216 ata_dev_warn(dev, 3217 "NOSETXFER but PATA detected - can't " 3218 "skip SETXFER, might malfunction\n"); 3219 err_mask = ata_dev_set_xfermode(dev); 3220 } 3221 3222 if (err_mask & ~AC_ERR_DEV) 3223 goto fail; 3224 3225 /* revalidate */ 3226 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3227 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3228 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3229 if (rc) 3230 return rc; 3231 3232 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3233 /* Old CFA may refuse this command, which is just fine */ 3234 if (ata_id_is_cfa(dev->id)) 3235 ign_dev_err = 1; 3236 /* Catch several broken garbage emulations plus some pre 3237 ATA devices */ 3238 if (ata_id_major_version(dev->id) == 0 && 3239 dev->pio_mode <= XFER_PIO_2) 3240 ign_dev_err = 1; 3241 /* Some very old devices and some bad newer ones fail 3242 any kind of SET_XFERMODE request but support PIO0-2 3243 timings and no IORDY */ 3244 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3245 ign_dev_err = 1; 3246 } 3247 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3248 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3249 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3250 dev->dma_mode == XFER_MW_DMA_0 && 3251 (dev->id[63] >> 8) & 1) 3252 ign_dev_err = 1; 3253 3254 /* if the device is actually configured correctly, ignore dev err */ 3255 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3256 ign_dev_err = 1; 3257 3258 if (err_mask & AC_ERR_DEV) { 3259 if (!ign_dev_err) 3260 goto fail; 3261 else 3262 dev_err_whine = " (device error ignored)"; 3263 } 3264 3265 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3266 dev->xfer_shift, (int)dev->xfer_mode); 3267 3268 ata_dev_info(dev, "configured for %s%s\n", 3269 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3270 dev_err_whine); 3271 3272 return 0; 3273 3274 fail: 3275 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3276 return -EIO; 3277 } 3278 3279 /** 3280 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3281 * @link: link on which timings will be programmed 3282 * @r_failed_dev: out parameter for failed device 3283 * 3284 * Standard implementation of the function used to tune and set 3285 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3286 * ata_dev_set_mode() fails, pointer to the failing device is 3287 * returned in @r_failed_dev. 3288 * 3289 * LOCKING: 3290 * PCI/etc. bus probe sem. 3291 * 3292 * RETURNS: 3293 * 0 on success, negative errno otherwise 3294 */ 3295 3296 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3297 { 3298 struct ata_port *ap = link->ap; 3299 struct ata_device *dev; 3300 int rc = 0, used_dma = 0, found = 0; 3301 3302 /* step 1: calculate xfer_mask */ 3303 ata_for_each_dev(dev, link, ENABLED) { 3304 unsigned long pio_mask, dma_mask; 3305 unsigned int mode_mask; 3306 3307 mode_mask = ATA_DMA_MASK_ATA; 3308 if (dev->class == ATA_DEV_ATAPI) 3309 mode_mask = ATA_DMA_MASK_ATAPI; 3310 else if (ata_id_is_cfa(dev->id)) 3311 mode_mask = ATA_DMA_MASK_CFA; 3312 3313 ata_dev_xfermask(dev); 3314 ata_force_xfermask(dev); 3315 3316 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3317 3318 if (libata_dma_mask & mode_mask) 3319 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3320 dev->udma_mask); 3321 else 3322 dma_mask = 0; 3323 3324 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3325 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3326 3327 found = 1; 3328 if (ata_dma_enabled(dev)) 3329 used_dma = 1; 3330 } 3331 if (!found) 3332 goto out; 3333 3334 /* step 2: always set host PIO timings */ 3335 ata_for_each_dev(dev, link, ENABLED) { 3336 if (dev->pio_mode == 0xff) { 3337 ata_dev_warn(dev, "no PIO support\n"); 3338 rc = -EINVAL; 3339 goto out; 3340 } 3341 3342 dev->xfer_mode = dev->pio_mode; 3343 dev->xfer_shift = ATA_SHIFT_PIO; 3344 if (ap->ops->set_piomode) 3345 ap->ops->set_piomode(ap, dev); 3346 } 3347 3348 /* step 3: set host DMA timings */ 3349 ata_for_each_dev(dev, link, ENABLED) { 3350 if (!ata_dma_enabled(dev)) 3351 continue; 3352 3353 dev->xfer_mode = dev->dma_mode; 3354 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3355 if (ap->ops->set_dmamode) 3356 ap->ops->set_dmamode(ap, dev); 3357 } 3358 3359 /* step 4: update devices' xfer mode */ 3360 ata_for_each_dev(dev, link, ENABLED) { 3361 rc = ata_dev_set_mode(dev); 3362 if (rc) 3363 goto out; 3364 } 3365 3366 /* Record simplex status. If we selected DMA then the other 3367 * host channels are not permitted to do so. 3368 */ 3369 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3370 ap->host->simplex_claimed = ap; 3371 3372 out: 3373 if (rc) 3374 *r_failed_dev = dev; 3375 return rc; 3376 } 3377 3378 /** 3379 * ata_wait_ready - wait for link to become ready 3380 * @link: link to be waited on 3381 * @deadline: deadline jiffies for the operation 3382 * @check_ready: callback to check link readiness 3383 * 3384 * Wait for @link to become ready. @check_ready should return 3385 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3386 * link doesn't seem to be occupied, other errno for other error 3387 * conditions. 3388 * 3389 * Transient -ENODEV conditions are allowed for 3390 * ATA_TMOUT_FF_WAIT. 3391 * 3392 * LOCKING: 3393 * EH context. 3394 * 3395 * RETURNS: 3396 * 0 if @linke is ready before @deadline; otherwise, -errno. 3397 */ 3398 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3399 int (*check_ready)(struct ata_link *link)) 3400 { 3401 unsigned long start = jiffies; 3402 unsigned long nodev_deadline; 3403 int warned = 0; 3404 3405 /* choose which 0xff timeout to use, read comment in libata.h */ 3406 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3407 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3408 else 3409 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3410 3411 /* Slave readiness can't be tested separately from master. On 3412 * M/S emulation configuration, this function should be called 3413 * only on the master and it will handle both master and slave. 3414 */ 3415 WARN_ON(link == link->ap->slave_link); 3416 3417 if (time_after(nodev_deadline, deadline)) 3418 nodev_deadline = deadline; 3419 3420 while (1) { 3421 unsigned long now = jiffies; 3422 int ready, tmp; 3423 3424 ready = tmp = check_ready(link); 3425 if (ready > 0) 3426 return 0; 3427 3428 /* 3429 * -ENODEV could be transient. Ignore -ENODEV if link 3430 * is online. Also, some SATA devices take a long 3431 * time to clear 0xff after reset. Wait for 3432 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3433 * offline. 3434 * 3435 * Note that some PATA controllers (pata_ali) explode 3436 * if status register is read more than once when 3437 * there's no device attached. 3438 */ 3439 if (ready == -ENODEV) { 3440 if (ata_link_online(link)) 3441 ready = 0; 3442 else if ((link->ap->flags & ATA_FLAG_SATA) && 3443 !ata_link_offline(link) && 3444 time_before(now, nodev_deadline)) 3445 ready = 0; 3446 } 3447 3448 if (ready) 3449 return ready; 3450 if (time_after(now, deadline)) 3451 return -EBUSY; 3452 3453 if (!warned && time_after(now, start + 5 * HZ) && 3454 (deadline - now > 3 * HZ)) { 3455 ata_link_warn(link, 3456 "link is slow to respond, please be patient " 3457 "(ready=%d)\n", tmp); 3458 warned = 1; 3459 } 3460 3461 ata_msleep(link->ap, 50); 3462 } 3463 } 3464 3465 /** 3466 * ata_wait_after_reset - wait for link to become ready after reset 3467 * @link: link to be waited on 3468 * @deadline: deadline jiffies for the operation 3469 * @check_ready: callback to check link readiness 3470 * 3471 * Wait for @link to become ready after reset. 3472 * 3473 * LOCKING: 3474 * EH context. 3475 * 3476 * RETURNS: 3477 * 0 if @linke is ready before @deadline; otherwise, -errno. 3478 */ 3479 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3480 int (*check_ready)(struct ata_link *link)) 3481 { 3482 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3483 3484 return ata_wait_ready(link, deadline, check_ready); 3485 } 3486 3487 /** 3488 * sata_link_debounce - debounce SATA phy status 3489 * @link: ATA link to debounce SATA phy status for 3490 * @params: timing parameters { interval, duratinon, timeout } in msec 3491 * @deadline: deadline jiffies for the operation 3492 * 3493 * Make sure SStatus of @link reaches stable state, determined by 3494 * holding the same value where DET is not 1 for @duration polled 3495 * every @interval, before @timeout. Timeout constraints the 3496 * beginning of the stable state. Because DET gets stuck at 1 on 3497 * some controllers after hot unplugging, this functions waits 3498 * until timeout then returns 0 if DET is stable at 1. 3499 * 3500 * @timeout is further limited by @deadline. The sooner of the 3501 * two is used. 3502 * 3503 * LOCKING: 3504 * Kernel thread context (may sleep) 3505 * 3506 * RETURNS: 3507 * 0 on success, -errno on failure. 3508 */ 3509 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3510 unsigned long deadline) 3511 { 3512 unsigned long interval = params[0]; 3513 unsigned long duration = params[1]; 3514 unsigned long last_jiffies, t; 3515 u32 last, cur; 3516 int rc; 3517 3518 t = ata_deadline(jiffies, params[2]); 3519 if (time_before(t, deadline)) 3520 deadline = t; 3521 3522 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3523 return rc; 3524 cur &= 0xf; 3525 3526 last = cur; 3527 last_jiffies = jiffies; 3528 3529 while (1) { 3530 ata_msleep(link->ap, interval); 3531 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3532 return rc; 3533 cur &= 0xf; 3534 3535 /* DET stable? */ 3536 if (cur == last) { 3537 if (cur == 1 && time_before(jiffies, deadline)) 3538 continue; 3539 if (time_after(jiffies, 3540 ata_deadline(last_jiffies, duration))) 3541 return 0; 3542 continue; 3543 } 3544 3545 /* unstable, start over */ 3546 last = cur; 3547 last_jiffies = jiffies; 3548 3549 /* Check deadline. If debouncing failed, return 3550 * -EPIPE to tell upper layer to lower link speed. 3551 */ 3552 if (time_after(jiffies, deadline)) 3553 return -EPIPE; 3554 } 3555 } 3556 3557 /** 3558 * sata_link_resume - resume SATA link 3559 * @link: ATA link to resume SATA 3560 * @params: timing parameters { interval, duratinon, timeout } in msec 3561 * @deadline: deadline jiffies for the operation 3562 * 3563 * Resume SATA phy @link and debounce it. 3564 * 3565 * LOCKING: 3566 * Kernel thread context (may sleep) 3567 * 3568 * RETURNS: 3569 * 0 on success, -errno on failure. 3570 */ 3571 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3572 unsigned long deadline) 3573 { 3574 int tries = ATA_LINK_RESUME_TRIES; 3575 u32 scontrol, serror; 3576 int rc; 3577 3578 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3579 return rc; 3580 3581 /* 3582 * Writes to SControl sometimes get ignored under certain 3583 * controllers (ata_piix SIDPR). Make sure DET actually is 3584 * cleared. 3585 */ 3586 do { 3587 scontrol = (scontrol & 0x0f0) | 0x300; 3588 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3589 return rc; 3590 /* 3591 * Some PHYs react badly if SStatus is pounded 3592 * immediately after resuming. Delay 200ms before 3593 * debouncing. 3594 */ 3595 ata_msleep(link->ap, 200); 3596 3597 /* is SControl restored correctly? */ 3598 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3599 return rc; 3600 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3601 3602 if ((scontrol & 0xf0f) != 0x300) { 3603 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3604 scontrol); 3605 return 0; 3606 } 3607 3608 if (tries < ATA_LINK_RESUME_TRIES) 3609 ata_link_warn(link, "link resume succeeded after %d retries\n", 3610 ATA_LINK_RESUME_TRIES - tries); 3611 3612 if ((rc = sata_link_debounce(link, params, deadline))) 3613 return rc; 3614 3615 /* clear SError, some PHYs require this even for SRST to work */ 3616 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3617 rc = sata_scr_write(link, SCR_ERROR, serror); 3618 3619 return rc != -EINVAL ? rc : 0; 3620 } 3621 3622 /** 3623 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3624 * @link: ATA link to manipulate SControl for 3625 * @policy: LPM policy to configure 3626 * @spm_wakeup: initiate LPM transition to active state 3627 * 3628 * Manipulate the IPM field of the SControl register of @link 3629 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3630 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3631 * the link. This function also clears PHYRDY_CHG before 3632 * returning. 3633 * 3634 * LOCKING: 3635 * EH context. 3636 * 3637 * RETURNS: 3638 * 0 on succes, -errno otherwise. 3639 */ 3640 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3641 bool spm_wakeup) 3642 { 3643 struct ata_eh_context *ehc = &link->eh_context; 3644 bool woken_up = false; 3645 u32 scontrol; 3646 int rc; 3647 3648 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3649 if (rc) 3650 return rc; 3651 3652 switch (policy) { 3653 case ATA_LPM_MAX_POWER: 3654 /* disable all LPM transitions */ 3655 scontrol |= (0x7 << 8); 3656 /* initiate transition to active state */ 3657 if (spm_wakeup) { 3658 scontrol |= (0x4 << 12); 3659 woken_up = true; 3660 } 3661 break; 3662 case ATA_LPM_MED_POWER: 3663 /* allow LPM to PARTIAL */ 3664 scontrol &= ~(0x1 << 8); 3665 scontrol |= (0x6 << 8); 3666 break; 3667 case ATA_LPM_MIN_POWER: 3668 if (ata_link_nr_enabled(link) > 0) 3669 /* no restrictions on LPM transitions */ 3670 scontrol &= ~(0x7 << 8); 3671 else { 3672 /* empty port, power off */ 3673 scontrol &= ~0xf; 3674 scontrol |= (0x1 << 2); 3675 } 3676 break; 3677 default: 3678 WARN_ON(1); 3679 } 3680 3681 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3682 if (rc) 3683 return rc; 3684 3685 /* give the link time to transit out of LPM state */ 3686 if (woken_up) 3687 msleep(10); 3688 3689 /* clear PHYRDY_CHG from SError */ 3690 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3691 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3692 } 3693 3694 /** 3695 * ata_std_prereset - prepare for reset 3696 * @link: ATA link to be reset 3697 * @deadline: deadline jiffies for the operation 3698 * 3699 * @link is about to be reset. Initialize it. Failure from 3700 * prereset makes libata abort whole reset sequence and give up 3701 * that port, so prereset should be best-effort. It does its 3702 * best to prepare for reset sequence but if things go wrong, it 3703 * should just whine, not fail. 3704 * 3705 * LOCKING: 3706 * Kernel thread context (may sleep) 3707 * 3708 * RETURNS: 3709 * 0 on success, -errno otherwise. 3710 */ 3711 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3712 { 3713 struct ata_port *ap = link->ap; 3714 struct ata_eh_context *ehc = &link->eh_context; 3715 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3716 int rc; 3717 3718 /* if we're about to do hardreset, nothing more to do */ 3719 if (ehc->i.action & ATA_EH_HARDRESET) 3720 return 0; 3721 3722 /* if SATA, resume link */ 3723 if (ap->flags & ATA_FLAG_SATA) { 3724 rc = sata_link_resume(link, timing, deadline); 3725 /* whine about phy resume failure but proceed */ 3726 if (rc && rc != -EOPNOTSUPP) 3727 ata_link_warn(link, 3728 "failed to resume link for reset (errno=%d)\n", 3729 rc); 3730 } 3731 3732 /* no point in trying softreset on offline link */ 3733 if (ata_phys_link_offline(link)) 3734 ehc->i.action &= ~ATA_EH_SOFTRESET; 3735 3736 return 0; 3737 } 3738 3739 /** 3740 * sata_link_hardreset - reset link via SATA phy reset 3741 * @link: link to reset 3742 * @timing: timing parameters { interval, duratinon, timeout } in msec 3743 * @deadline: deadline jiffies for the operation 3744 * @online: optional out parameter indicating link onlineness 3745 * @check_ready: optional callback to check link readiness 3746 * 3747 * SATA phy-reset @link using DET bits of SControl register. 3748 * After hardreset, link readiness is waited upon using 3749 * ata_wait_ready() if @check_ready is specified. LLDs are 3750 * allowed to not specify @check_ready and wait itself after this 3751 * function returns. Device classification is LLD's 3752 * responsibility. 3753 * 3754 * *@online is set to one iff reset succeeded and @link is online 3755 * after reset. 3756 * 3757 * LOCKING: 3758 * Kernel thread context (may sleep) 3759 * 3760 * RETURNS: 3761 * 0 on success, -errno otherwise. 3762 */ 3763 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3764 unsigned long deadline, 3765 bool *online, int (*check_ready)(struct ata_link *)) 3766 { 3767 u32 scontrol; 3768 int rc; 3769 3770 DPRINTK("ENTER\n"); 3771 3772 if (online) 3773 *online = false; 3774 3775 if (sata_set_spd_needed(link)) { 3776 /* SATA spec says nothing about how to reconfigure 3777 * spd. To be on the safe side, turn off phy during 3778 * reconfiguration. This works for at least ICH7 AHCI 3779 * and Sil3124. 3780 */ 3781 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3782 goto out; 3783 3784 scontrol = (scontrol & 0x0f0) | 0x304; 3785 3786 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3787 goto out; 3788 3789 sata_set_spd(link); 3790 } 3791 3792 /* issue phy wake/reset */ 3793 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3794 goto out; 3795 3796 scontrol = (scontrol & 0x0f0) | 0x301; 3797 3798 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3799 goto out; 3800 3801 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3802 * 10.4.2 says at least 1 ms. 3803 */ 3804 ata_msleep(link->ap, 1); 3805 3806 /* bring link back */ 3807 rc = sata_link_resume(link, timing, deadline); 3808 if (rc) 3809 goto out; 3810 /* if link is offline nothing more to do */ 3811 if (ata_phys_link_offline(link)) 3812 goto out; 3813 3814 /* Link is online. From this point, -ENODEV too is an error. */ 3815 if (online) 3816 *online = true; 3817 3818 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3819 /* If PMP is supported, we have to do follow-up SRST. 3820 * Some PMPs don't send D2H Reg FIS after hardreset if 3821 * the first port is empty. Wait only for 3822 * ATA_TMOUT_PMP_SRST_WAIT. 3823 */ 3824 if (check_ready) { 3825 unsigned long pmp_deadline; 3826 3827 pmp_deadline = ata_deadline(jiffies, 3828 ATA_TMOUT_PMP_SRST_WAIT); 3829 if (time_after(pmp_deadline, deadline)) 3830 pmp_deadline = deadline; 3831 ata_wait_ready(link, pmp_deadline, check_ready); 3832 } 3833 rc = -EAGAIN; 3834 goto out; 3835 } 3836 3837 rc = 0; 3838 if (check_ready) 3839 rc = ata_wait_ready(link, deadline, check_ready); 3840 out: 3841 if (rc && rc != -EAGAIN) { 3842 /* online is set iff link is online && reset succeeded */ 3843 if (online) 3844 *online = false; 3845 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3846 } 3847 DPRINTK("EXIT, rc=%d\n", rc); 3848 return rc; 3849 } 3850 3851 /** 3852 * sata_std_hardreset - COMRESET w/o waiting or classification 3853 * @link: link to reset 3854 * @class: resulting class of attached device 3855 * @deadline: deadline jiffies for the operation 3856 * 3857 * Standard SATA COMRESET w/o waiting or classification. 3858 * 3859 * LOCKING: 3860 * Kernel thread context (may sleep) 3861 * 3862 * RETURNS: 3863 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3864 */ 3865 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3866 unsigned long deadline) 3867 { 3868 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3869 bool online; 3870 int rc; 3871 3872 /* do hardreset */ 3873 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3874 return online ? -EAGAIN : rc; 3875 } 3876 3877 /** 3878 * ata_std_postreset - standard postreset callback 3879 * @link: the target ata_link 3880 * @classes: classes of attached devices 3881 * 3882 * This function is invoked after a successful reset. Note that 3883 * the device might have been reset more than once using 3884 * different reset methods before postreset is invoked. 3885 * 3886 * LOCKING: 3887 * Kernel thread context (may sleep) 3888 */ 3889 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3890 { 3891 u32 serror; 3892 3893 DPRINTK("ENTER\n"); 3894 3895 /* reset complete, clear SError */ 3896 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3897 sata_scr_write(link, SCR_ERROR, serror); 3898 3899 /* print link status */ 3900 sata_print_link_status(link); 3901 3902 DPRINTK("EXIT\n"); 3903 } 3904 3905 /** 3906 * ata_dev_same_device - Determine whether new ID matches configured device 3907 * @dev: device to compare against 3908 * @new_class: class of the new device 3909 * @new_id: IDENTIFY page of the new device 3910 * 3911 * Compare @new_class and @new_id against @dev and determine 3912 * whether @dev is the device indicated by @new_class and 3913 * @new_id. 3914 * 3915 * LOCKING: 3916 * None. 3917 * 3918 * RETURNS: 3919 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3920 */ 3921 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3922 const u16 *new_id) 3923 { 3924 const u16 *old_id = dev->id; 3925 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3926 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3927 3928 if (dev->class != new_class) { 3929 ata_dev_info(dev, "class mismatch %d != %d\n", 3930 dev->class, new_class); 3931 return 0; 3932 } 3933 3934 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3935 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3936 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3937 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3938 3939 if (strcmp(model[0], model[1])) { 3940 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3941 model[0], model[1]); 3942 return 0; 3943 } 3944 3945 if (strcmp(serial[0], serial[1])) { 3946 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3947 serial[0], serial[1]); 3948 return 0; 3949 } 3950 3951 return 1; 3952 } 3953 3954 /** 3955 * ata_dev_reread_id - Re-read IDENTIFY data 3956 * @dev: target ATA device 3957 * @readid_flags: read ID flags 3958 * 3959 * Re-read IDENTIFY page and make sure @dev is still attached to 3960 * the port. 3961 * 3962 * LOCKING: 3963 * Kernel thread context (may sleep) 3964 * 3965 * RETURNS: 3966 * 0 on success, negative errno otherwise 3967 */ 3968 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3969 { 3970 unsigned int class = dev->class; 3971 u16 *id = (void *)dev->link->ap->sector_buf; 3972 int rc; 3973 3974 /* read ID data */ 3975 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3976 if (rc) 3977 return rc; 3978 3979 /* is the device still there? */ 3980 if (!ata_dev_same_device(dev, class, id)) 3981 return -ENODEV; 3982 3983 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3984 return 0; 3985 } 3986 3987 /** 3988 * ata_dev_revalidate - Revalidate ATA device 3989 * @dev: device to revalidate 3990 * @new_class: new class code 3991 * @readid_flags: read ID flags 3992 * 3993 * Re-read IDENTIFY page, make sure @dev is still attached to the 3994 * port and reconfigure it according to the new IDENTIFY page. 3995 * 3996 * LOCKING: 3997 * Kernel thread context (may sleep) 3998 * 3999 * RETURNS: 4000 * 0 on success, negative errno otherwise 4001 */ 4002 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4003 unsigned int readid_flags) 4004 { 4005 u64 n_sectors = dev->n_sectors; 4006 u64 n_native_sectors = dev->n_native_sectors; 4007 int rc; 4008 4009 if (!ata_dev_enabled(dev)) 4010 return -ENODEV; 4011 4012 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4013 if (ata_class_enabled(new_class) && 4014 new_class != ATA_DEV_ATA && 4015 new_class != ATA_DEV_ATAPI && 4016 new_class != ATA_DEV_ZAC && 4017 new_class != ATA_DEV_SEMB) { 4018 ata_dev_info(dev, "class mismatch %u != %u\n", 4019 dev->class, new_class); 4020 rc = -ENODEV; 4021 goto fail; 4022 } 4023 4024 /* re-read ID */ 4025 rc = ata_dev_reread_id(dev, readid_flags); 4026 if (rc) 4027 goto fail; 4028 4029 /* configure device according to the new ID */ 4030 rc = ata_dev_configure(dev); 4031 if (rc) 4032 goto fail; 4033 4034 /* verify n_sectors hasn't changed */ 4035 if (dev->class != ATA_DEV_ATA || !n_sectors || 4036 dev->n_sectors == n_sectors) 4037 return 0; 4038 4039 /* n_sectors has changed */ 4040 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4041 (unsigned long long)n_sectors, 4042 (unsigned long long)dev->n_sectors); 4043 4044 /* 4045 * Something could have caused HPA to be unlocked 4046 * involuntarily. If n_native_sectors hasn't changed and the 4047 * new size matches it, keep the device. 4048 */ 4049 if (dev->n_native_sectors == n_native_sectors && 4050 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4051 ata_dev_warn(dev, 4052 "new n_sectors matches native, probably " 4053 "late HPA unlock, n_sectors updated\n"); 4054 /* use the larger n_sectors */ 4055 return 0; 4056 } 4057 4058 /* 4059 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4060 * unlocking HPA in those cases. 4061 * 4062 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4063 */ 4064 if (dev->n_native_sectors == n_native_sectors && 4065 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4066 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4067 ata_dev_warn(dev, 4068 "old n_sectors matches native, probably " 4069 "late HPA lock, will try to unlock HPA\n"); 4070 /* try unlocking HPA */ 4071 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4072 rc = -EIO; 4073 } else 4074 rc = -ENODEV; 4075 4076 /* restore original n_[native_]sectors and fail */ 4077 dev->n_native_sectors = n_native_sectors; 4078 dev->n_sectors = n_sectors; 4079 fail: 4080 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4081 return rc; 4082 } 4083 4084 struct ata_blacklist_entry { 4085 const char *model_num; 4086 const char *model_rev; 4087 unsigned long horkage; 4088 }; 4089 4090 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4091 /* Devices with DMA related problems under Linux */ 4092 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4093 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4094 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4095 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4096 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4097 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4098 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4099 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4100 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4101 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4102 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4103 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4104 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4105 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4106 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4107 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4108 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4109 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4110 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4111 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4112 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4113 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4114 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4115 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4116 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4117 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4118 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4119 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4120 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4121 /* Odd clown on sil3726/4726 PMPs */ 4122 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4123 4124 /* Weird ATAPI devices */ 4125 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4126 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4127 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4128 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4129 4130 /* Devices we expect to fail diagnostics */ 4131 4132 /* Devices where NCQ should be avoided */ 4133 /* NCQ is slow */ 4134 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4135 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4136 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4137 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4138 /* NCQ is broken */ 4139 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4140 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4141 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4142 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4143 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4144 4145 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4146 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4147 ATA_HORKAGE_FIRMWARE_WARN }, 4148 4149 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4150 ATA_HORKAGE_FIRMWARE_WARN }, 4151 4152 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4153 ATA_HORKAGE_FIRMWARE_WARN }, 4154 4155 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4156 ATA_HORKAGE_FIRMWARE_WARN }, 4157 4158 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */ 4159 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4160 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4161 4162 /* Blacklist entries taken from Silicon Image 3124/3132 4163 Windows driver .inf file - also several Linux problem reports */ 4164 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4165 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4166 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4167 4168 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4169 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4170 4171 /* devices which puke on READ_NATIVE_MAX */ 4172 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4173 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4174 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4175 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4176 4177 /* this one allows HPA unlocking but fails IOs on the area */ 4178 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4179 4180 /* Devices which report 1 sector over size HPA */ 4181 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4182 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4183 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4184 4185 /* Devices which get the IVB wrong */ 4186 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4187 /* Maybe we should just blacklist TSSTcorp... */ 4188 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4189 4190 /* Devices that do not need bridging limits applied */ 4191 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4192 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4193 4194 /* Devices which aren't very happy with higher link speeds */ 4195 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4196 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4197 4198 /* 4199 * Devices which choke on SETXFER. Applies only if both the 4200 * device and controller are SATA. 4201 */ 4202 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4203 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4204 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4205 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4206 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4207 4208 /* devices that don't properly handle queued TRIM commands */ 4209 { "Micron_M[56]*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4210 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4211 { "Crucial_CT*SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4212 4213 /* 4214 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4215 * (Return Zero After Trim) flags in the ATA Command Set are 4216 * unreliable in the sense that they only define what happens if 4217 * the device successfully executed the DSM TRIM command. TRIM 4218 * is only advisory, however, and the device is free to silently 4219 * ignore all or parts of the request. 4220 * 4221 * Whitelist drives that are known to reliably return zeroes 4222 * after TRIM. 4223 */ 4224 4225 /* 4226 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4227 * that model before whitelisting all other intel SSDs. 4228 */ 4229 { "INTEL*SSDSC2MH*", NULL, 0, }, 4230 4231 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4232 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4233 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4234 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4235 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4236 4237 /* 4238 * Some WD SATA-I drives spin up and down erratically when the link 4239 * is put into the slumber mode. We don't have full list of the 4240 * affected devices. Disable LPM if the device matches one of the 4241 * known prefixes and is SATA-1. As a side effect LPM partial is 4242 * lost too. 4243 * 4244 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4245 */ 4246 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4247 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4248 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4249 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4250 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4251 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4252 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4253 4254 /* End Marker */ 4255 { } 4256 }; 4257 4258 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4259 { 4260 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4261 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4262 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4263 4264 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4265 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4266 4267 while (ad->model_num) { 4268 if (glob_match(ad->model_num, model_num)) { 4269 if (ad->model_rev == NULL) 4270 return ad->horkage; 4271 if (glob_match(ad->model_rev, model_rev)) 4272 return ad->horkage; 4273 } 4274 ad++; 4275 } 4276 return 0; 4277 } 4278 4279 static int ata_dma_blacklisted(const struct ata_device *dev) 4280 { 4281 /* We don't support polling DMA. 4282 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4283 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4284 */ 4285 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4286 (dev->flags & ATA_DFLAG_CDB_INTR)) 4287 return 1; 4288 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4289 } 4290 4291 /** 4292 * ata_is_40wire - check drive side detection 4293 * @dev: device 4294 * 4295 * Perform drive side detection decoding, allowing for device vendors 4296 * who can't follow the documentation. 4297 */ 4298 4299 static int ata_is_40wire(struct ata_device *dev) 4300 { 4301 if (dev->horkage & ATA_HORKAGE_IVB) 4302 return ata_drive_40wire_relaxed(dev->id); 4303 return ata_drive_40wire(dev->id); 4304 } 4305 4306 /** 4307 * cable_is_40wire - 40/80/SATA decider 4308 * @ap: port to consider 4309 * 4310 * This function encapsulates the policy for speed management 4311 * in one place. At the moment we don't cache the result but 4312 * there is a good case for setting ap->cbl to the result when 4313 * we are called with unknown cables (and figuring out if it 4314 * impacts hotplug at all). 4315 * 4316 * Return 1 if the cable appears to be 40 wire. 4317 */ 4318 4319 static int cable_is_40wire(struct ata_port *ap) 4320 { 4321 struct ata_link *link; 4322 struct ata_device *dev; 4323 4324 /* If the controller thinks we are 40 wire, we are. */ 4325 if (ap->cbl == ATA_CBL_PATA40) 4326 return 1; 4327 4328 /* If the controller thinks we are 80 wire, we are. */ 4329 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4330 return 0; 4331 4332 /* If the system is known to be 40 wire short cable (eg 4333 * laptop), then we allow 80 wire modes even if the drive 4334 * isn't sure. 4335 */ 4336 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4337 return 0; 4338 4339 /* If the controller doesn't know, we scan. 4340 * 4341 * Note: We look for all 40 wire detects at this point. Any 4342 * 80 wire detect is taken to be 80 wire cable because 4343 * - in many setups only the one drive (slave if present) will 4344 * give a valid detect 4345 * - if you have a non detect capable drive you don't want it 4346 * to colour the choice 4347 */ 4348 ata_for_each_link(link, ap, EDGE) { 4349 ata_for_each_dev(dev, link, ENABLED) { 4350 if (!ata_is_40wire(dev)) 4351 return 0; 4352 } 4353 } 4354 return 1; 4355 } 4356 4357 /** 4358 * ata_dev_xfermask - Compute supported xfermask of the given device 4359 * @dev: Device to compute xfermask for 4360 * 4361 * Compute supported xfermask of @dev and store it in 4362 * dev->*_mask. This function is responsible for applying all 4363 * known limits including host controller limits, device 4364 * blacklist, etc... 4365 * 4366 * LOCKING: 4367 * None. 4368 */ 4369 static void ata_dev_xfermask(struct ata_device *dev) 4370 { 4371 struct ata_link *link = dev->link; 4372 struct ata_port *ap = link->ap; 4373 struct ata_host *host = ap->host; 4374 unsigned long xfer_mask; 4375 4376 /* controller modes available */ 4377 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4378 ap->mwdma_mask, ap->udma_mask); 4379 4380 /* drive modes available */ 4381 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4382 dev->mwdma_mask, dev->udma_mask); 4383 xfer_mask &= ata_id_xfermask(dev->id); 4384 4385 /* 4386 * CFA Advanced TrueIDE timings are not allowed on a shared 4387 * cable 4388 */ 4389 if (ata_dev_pair(dev)) { 4390 /* No PIO5 or PIO6 */ 4391 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4392 /* No MWDMA3 or MWDMA 4 */ 4393 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4394 } 4395 4396 if (ata_dma_blacklisted(dev)) { 4397 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4398 ata_dev_warn(dev, 4399 "device is on DMA blacklist, disabling DMA\n"); 4400 } 4401 4402 if ((host->flags & ATA_HOST_SIMPLEX) && 4403 host->simplex_claimed && host->simplex_claimed != ap) { 4404 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4405 ata_dev_warn(dev, 4406 "simplex DMA is claimed by other device, disabling DMA\n"); 4407 } 4408 4409 if (ap->flags & ATA_FLAG_NO_IORDY) 4410 xfer_mask &= ata_pio_mask_no_iordy(dev); 4411 4412 if (ap->ops->mode_filter) 4413 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4414 4415 /* Apply cable rule here. Don't apply it early because when 4416 * we handle hot plug the cable type can itself change. 4417 * Check this last so that we know if the transfer rate was 4418 * solely limited by the cable. 4419 * Unknown or 80 wire cables reported host side are checked 4420 * drive side as well. Cases where we know a 40wire cable 4421 * is used safely for 80 are not checked here. 4422 */ 4423 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4424 /* UDMA/44 or higher would be available */ 4425 if (cable_is_40wire(ap)) { 4426 ata_dev_warn(dev, 4427 "limited to UDMA/33 due to 40-wire cable\n"); 4428 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4429 } 4430 4431 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4432 &dev->mwdma_mask, &dev->udma_mask); 4433 } 4434 4435 /** 4436 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4437 * @dev: Device to which command will be sent 4438 * 4439 * Issue SET FEATURES - XFER MODE command to device @dev 4440 * on port @ap. 4441 * 4442 * LOCKING: 4443 * PCI/etc. bus probe sem. 4444 * 4445 * RETURNS: 4446 * 0 on success, AC_ERR_* mask otherwise. 4447 */ 4448 4449 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4450 { 4451 struct ata_taskfile tf; 4452 unsigned int err_mask; 4453 4454 /* set up set-features taskfile */ 4455 DPRINTK("set features - xfer mode\n"); 4456 4457 /* Some controllers and ATAPI devices show flaky interrupt 4458 * behavior after setting xfer mode. Use polling instead. 4459 */ 4460 ata_tf_init(dev, &tf); 4461 tf.command = ATA_CMD_SET_FEATURES; 4462 tf.feature = SETFEATURES_XFER; 4463 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4464 tf.protocol = ATA_PROT_NODATA; 4465 /* If we are using IORDY we must send the mode setting command */ 4466 if (ata_pio_need_iordy(dev)) 4467 tf.nsect = dev->xfer_mode; 4468 /* If the device has IORDY and the controller does not - turn it off */ 4469 else if (ata_id_has_iordy(dev->id)) 4470 tf.nsect = 0x01; 4471 else /* In the ancient relic department - skip all of this */ 4472 return 0; 4473 4474 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4475 4476 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4477 return err_mask; 4478 } 4479 4480 /** 4481 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4482 * @dev: Device to which command will be sent 4483 * @enable: Whether to enable or disable the feature 4484 * @feature: The sector count represents the feature to set 4485 * 4486 * Issue SET FEATURES - SATA FEATURES command to device @dev 4487 * on port @ap with sector count 4488 * 4489 * LOCKING: 4490 * PCI/etc. bus probe sem. 4491 * 4492 * RETURNS: 4493 * 0 on success, AC_ERR_* mask otherwise. 4494 */ 4495 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4496 { 4497 struct ata_taskfile tf; 4498 unsigned int err_mask; 4499 4500 /* set up set-features taskfile */ 4501 DPRINTK("set features - SATA features\n"); 4502 4503 ata_tf_init(dev, &tf); 4504 tf.command = ATA_CMD_SET_FEATURES; 4505 tf.feature = enable; 4506 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4507 tf.protocol = ATA_PROT_NODATA; 4508 tf.nsect = feature; 4509 4510 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4511 4512 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4513 return err_mask; 4514 } 4515 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4516 4517 /** 4518 * ata_dev_init_params - Issue INIT DEV PARAMS command 4519 * @dev: Device to which command will be sent 4520 * @heads: Number of heads (taskfile parameter) 4521 * @sectors: Number of sectors (taskfile parameter) 4522 * 4523 * LOCKING: 4524 * Kernel thread context (may sleep) 4525 * 4526 * RETURNS: 4527 * 0 on success, AC_ERR_* mask otherwise. 4528 */ 4529 static unsigned int ata_dev_init_params(struct ata_device *dev, 4530 u16 heads, u16 sectors) 4531 { 4532 struct ata_taskfile tf; 4533 unsigned int err_mask; 4534 4535 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4536 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4537 return AC_ERR_INVALID; 4538 4539 /* set up init dev params taskfile */ 4540 DPRINTK("init dev params \n"); 4541 4542 ata_tf_init(dev, &tf); 4543 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4544 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4545 tf.protocol = ATA_PROT_NODATA; 4546 tf.nsect = sectors; 4547 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4548 4549 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4550 /* A clean abort indicates an original or just out of spec drive 4551 and we should continue as we issue the setup based on the 4552 drive reported working geometry */ 4553 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4554 err_mask = 0; 4555 4556 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4557 return err_mask; 4558 } 4559 4560 /** 4561 * ata_sg_clean - Unmap DMA memory associated with command 4562 * @qc: Command containing DMA memory to be released 4563 * 4564 * Unmap all mapped DMA memory associated with this command. 4565 * 4566 * LOCKING: 4567 * spin_lock_irqsave(host lock) 4568 */ 4569 void ata_sg_clean(struct ata_queued_cmd *qc) 4570 { 4571 struct ata_port *ap = qc->ap; 4572 struct scatterlist *sg = qc->sg; 4573 int dir = qc->dma_dir; 4574 4575 WARN_ON_ONCE(sg == NULL); 4576 4577 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4578 4579 if (qc->n_elem) 4580 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4581 4582 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4583 qc->sg = NULL; 4584 } 4585 4586 /** 4587 * atapi_check_dma - Check whether ATAPI DMA can be supported 4588 * @qc: Metadata associated with taskfile to check 4589 * 4590 * Allow low-level driver to filter ATA PACKET commands, returning 4591 * a status indicating whether or not it is OK to use DMA for the 4592 * supplied PACKET command. 4593 * 4594 * LOCKING: 4595 * spin_lock_irqsave(host lock) 4596 * 4597 * RETURNS: 0 when ATAPI DMA can be used 4598 * nonzero otherwise 4599 */ 4600 int atapi_check_dma(struct ata_queued_cmd *qc) 4601 { 4602 struct ata_port *ap = qc->ap; 4603 4604 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4605 * few ATAPI devices choke on such DMA requests. 4606 */ 4607 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4608 unlikely(qc->nbytes & 15)) 4609 return 1; 4610 4611 if (ap->ops->check_atapi_dma) 4612 return ap->ops->check_atapi_dma(qc); 4613 4614 return 0; 4615 } 4616 4617 /** 4618 * ata_std_qc_defer - Check whether a qc needs to be deferred 4619 * @qc: ATA command in question 4620 * 4621 * Non-NCQ commands cannot run with any other command, NCQ or 4622 * not. As upper layer only knows the queue depth, we are 4623 * responsible for maintaining exclusion. This function checks 4624 * whether a new command @qc can be issued. 4625 * 4626 * LOCKING: 4627 * spin_lock_irqsave(host lock) 4628 * 4629 * RETURNS: 4630 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4631 */ 4632 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4633 { 4634 struct ata_link *link = qc->dev->link; 4635 4636 if (qc->tf.protocol == ATA_PROT_NCQ) { 4637 if (!ata_tag_valid(link->active_tag)) 4638 return 0; 4639 } else { 4640 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4641 return 0; 4642 } 4643 4644 return ATA_DEFER_LINK; 4645 } 4646 4647 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4648 4649 /** 4650 * ata_sg_init - Associate command with scatter-gather table. 4651 * @qc: Command to be associated 4652 * @sg: Scatter-gather table. 4653 * @n_elem: Number of elements in s/g table. 4654 * 4655 * Initialize the data-related elements of queued_cmd @qc 4656 * to point to a scatter-gather table @sg, containing @n_elem 4657 * elements. 4658 * 4659 * LOCKING: 4660 * spin_lock_irqsave(host lock) 4661 */ 4662 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4663 unsigned int n_elem) 4664 { 4665 qc->sg = sg; 4666 qc->n_elem = n_elem; 4667 qc->cursg = qc->sg; 4668 } 4669 4670 /** 4671 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4672 * @qc: Command with scatter-gather table to be mapped. 4673 * 4674 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4675 * 4676 * LOCKING: 4677 * spin_lock_irqsave(host lock) 4678 * 4679 * RETURNS: 4680 * Zero on success, negative on error. 4681 * 4682 */ 4683 static int ata_sg_setup(struct ata_queued_cmd *qc) 4684 { 4685 struct ata_port *ap = qc->ap; 4686 unsigned int n_elem; 4687 4688 VPRINTK("ENTER, ata%u\n", ap->print_id); 4689 4690 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4691 if (n_elem < 1) 4692 return -1; 4693 4694 DPRINTK("%d sg elements mapped\n", n_elem); 4695 qc->orig_n_elem = qc->n_elem; 4696 qc->n_elem = n_elem; 4697 qc->flags |= ATA_QCFLAG_DMAMAP; 4698 4699 return 0; 4700 } 4701 4702 /** 4703 * swap_buf_le16 - swap halves of 16-bit words in place 4704 * @buf: Buffer to swap 4705 * @buf_words: Number of 16-bit words in buffer. 4706 * 4707 * Swap halves of 16-bit words if needed to convert from 4708 * little-endian byte order to native cpu byte order, or 4709 * vice-versa. 4710 * 4711 * LOCKING: 4712 * Inherited from caller. 4713 */ 4714 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4715 { 4716 #ifdef __BIG_ENDIAN 4717 unsigned int i; 4718 4719 for (i = 0; i < buf_words; i++) 4720 buf[i] = le16_to_cpu(buf[i]); 4721 #endif /* __BIG_ENDIAN */ 4722 } 4723 4724 /** 4725 * ata_qc_new - Request an available ATA command, for queueing 4726 * @ap: target port 4727 * 4728 * Some ATA host controllers may implement a queue depth which is less 4729 * than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond 4730 * the hardware limitation. 4731 * 4732 * LOCKING: 4733 * None. 4734 */ 4735 4736 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4737 { 4738 struct ata_queued_cmd *qc = NULL; 4739 unsigned int max_queue = ap->host->n_tags; 4740 unsigned int i, tag; 4741 4742 /* no command while frozen */ 4743 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4744 return NULL; 4745 4746 for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) { 4747 if (ap->flags & ATA_FLAG_LOWTAG) 4748 tag = i; 4749 else 4750 tag = tag < max_queue ? tag : 0; 4751 4752 /* the last tag is reserved for internal command. */ 4753 if (tag == ATA_TAG_INTERNAL) 4754 continue; 4755 4756 if (!test_and_set_bit(tag, &ap->qc_allocated)) { 4757 qc = __ata_qc_from_tag(ap, tag); 4758 qc->tag = tag; 4759 ap->last_tag = tag; 4760 break; 4761 } 4762 } 4763 4764 return qc; 4765 } 4766 4767 /** 4768 * ata_qc_new_init - Request an available ATA command, and initialize it 4769 * @dev: Device from whom we request an available command structure 4770 * 4771 * LOCKING: 4772 * None. 4773 */ 4774 4775 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4776 { 4777 struct ata_port *ap = dev->link->ap; 4778 struct ata_queued_cmd *qc; 4779 4780 qc = ata_qc_new(ap); 4781 if (qc) { 4782 qc->scsicmd = NULL; 4783 qc->ap = ap; 4784 qc->dev = dev; 4785 4786 ata_qc_reinit(qc); 4787 } 4788 4789 return qc; 4790 } 4791 4792 /** 4793 * ata_qc_free - free unused ata_queued_cmd 4794 * @qc: Command to complete 4795 * 4796 * Designed to free unused ata_queued_cmd object 4797 * in case something prevents using it. 4798 * 4799 * LOCKING: 4800 * spin_lock_irqsave(host lock) 4801 */ 4802 void ata_qc_free(struct ata_queued_cmd *qc) 4803 { 4804 struct ata_port *ap; 4805 unsigned int tag; 4806 4807 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4808 ap = qc->ap; 4809 4810 qc->flags = 0; 4811 tag = qc->tag; 4812 if (likely(ata_tag_valid(tag))) { 4813 qc->tag = ATA_TAG_POISON; 4814 clear_bit(tag, &ap->qc_allocated); 4815 } 4816 } 4817 4818 void __ata_qc_complete(struct ata_queued_cmd *qc) 4819 { 4820 struct ata_port *ap; 4821 struct ata_link *link; 4822 4823 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4824 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4825 ap = qc->ap; 4826 link = qc->dev->link; 4827 4828 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4829 ata_sg_clean(qc); 4830 4831 /* command should be marked inactive atomically with qc completion */ 4832 if (qc->tf.protocol == ATA_PROT_NCQ) { 4833 link->sactive &= ~(1 << qc->tag); 4834 if (!link->sactive) 4835 ap->nr_active_links--; 4836 } else { 4837 link->active_tag = ATA_TAG_POISON; 4838 ap->nr_active_links--; 4839 } 4840 4841 /* clear exclusive status */ 4842 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4843 ap->excl_link == link)) 4844 ap->excl_link = NULL; 4845 4846 /* atapi: mark qc as inactive to prevent the interrupt handler 4847 * from completing the command twice later, before the error handler 4848 * is called. (when rc != 0 and atapi request sense is needed) 4849 */ 4850 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4851 ap->qc_active &= ~(1 << qc->tag); 4852 4853 /* call completion callback */ 4854 qc->complete_fn(qc); 4855 } 4856 4857 static void fill_result_tf(struct ata_queued_cmd *qc) 4858 { 4859 struct ata_port *ap = qc->ap; 4860 4861 qc->result_tf.flags = qc->tf.flags; 4862 ap->ops->qc_fill_rtf(qc); 4863 } 4864 4865 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4866 { 4867 struct ata_device *dev = qc->dev; 4868 4869 if (ata_is_nodata(qc->tf.protocol)) 4870 return; 4871 4872 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4873 return; 4874 4875 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4876 } 4877 4878 /** 4879 * ata_qc_complete - Complete an active ATA command 4880 * @qc: Command to complete 4881 * 4882 * Indicate to the mid and upper layers that an ATA command has 4883 * completed, with either an ok or not-ok status. 4884 * 4885 * Refrain from calling this function multiple times when 4886 * successfully completing multiple NCQ commands. 4887 * ata_qc_complete_multiple() should be used instead, which will 4888 * properly update IRQ expect state. 4889 * 4890 * LOCKING: 4891 * spin_lock_irqsave(host lock) 4892 */ 4893 void ata_qc_complete(struct ata_queued_cmd *qc) 4894 { 4895 struct ata_port *ap = qc->ap; 4896 4897 /* XXX: New EH and old EH use different mechanisms to 4898 * synchronize EH with regular execution path. 4899 * 4900 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4901 * Normal execution path is responsible for not accessing a 4902 * failed qc. libata core enforces the rule by returning NULL 4903 * from ata_qc_from_tag() for failed qcs. 4904 * 4905 * Old EH depends on ata_qc_complete() nullifying completion 4906 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4907 * not synchronize with interrupt handler. Only PIO task is 4908 * taken care of. 4909 */ 4910 if (ap->ops->error_handler) { 4911 struct ata_device *dev = qc->dev; 4912 struct ata_eh_info *ehi = &dev->link->eh_info; 4913 4914 if (unlikely(qc->err_mask)) 4915 qc->flags |= ATA_QCFLAG_FAILED; 4916 4917 /* 4918 * Finish internal commands without any further processing 4919 * and always with the result TF filled. 4920 */ 4921 if (unlikely(ata_tag_internal(qc->tag))) { 4922 fill_result_tf(qc); 4923 __ata_qc_complete(qc); 4924 return; 4925 } 4926 4927 /* 4928 * Non-internal qc has failed. Fill the result TF and 4929 * summon EH. 4930 */ 4931 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4932 fill_result_tf(qc); 4933 ata_qc_schedule_eh(qc); 4934 return; 4935 } 4936 4937 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4938 4939 /* read result TF if requested */ 4940 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4941 fill_result_tf(qc); 4942 4943 /* Some commands need post-processing after successful 4944 * completion. 4945 */ 4946 switch (qc->tf.command) { 4947 case ATA_CMD_SET_FEATURES: 4948 if (qc->tf.feature != SETFEATURES_WC_ON && 4949 qc->tf.feature != SETFEATURES_WC_OFF) 4950 break; 4951 /* fall through */ 4952 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4953 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4954 /* revalidate device */ 4955 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4956 ata_port_schedule_eh(ap); 4957 break; 4958 4959 case ATA_CMD_SLEEP: 4960 dev->flags |= ATA_DFLAG_SLEEPING; 4961 break; 4962 } 4963 4964 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4965 ata_verify_xfer(qc); 4966 4967 __ata_qc_complete(qc); 4968 } else { 4969 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4970 return; 4971 4972 /* read result TF if failed or requested */ 4973 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4974 fill_result_tf(qc); 4975 4976 __ata_qc_complete(qc); 4977 } 4978 } 4979 4980 /** 4981 * ata_qc_complete_multiple - Complete multiple qcs successfully 4982 * @ap: port in question 4983 * @qc_active: new qc_active mask 4984 * 4985 * Complete in-flight commands. This functions is meant to be 4986 * called from low-level driver's interrupt routine to complete 4987 * requests normally. ap->qc_active and @qc_active is compared 4988 * and commands are completed accordingly. 4989 * 4990 * Always use this function when completing multiple NCQ commands 4991 * from IRQ handlers instead of calling ata_qc_complete() 4992 * multiple times to keep IRQ expect status properly in sync. 4993 * 4994 * LOCKING: 4995 * spin_lock_irqsave(host lock) 4996 * 4997 * RETURNS: 4998 * Number of completed commands on success, -errno otherwise. 4999 */ 5000 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5001 { 5002 int nr_done = 0; 5003 u32 done_mask; 5004 5005 done_mask = ap->qc_active ^ qc_active; 5006 5007 if (unlikely(done_mask & qc_active)) { 5008 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5009 ap->qc_active, qc_active); 5010 return -EINVAL; 5011 } 5012 5013 while (done_mask) { 5014 struct ata_queued_cmd *qc; 5015 unsigned int tag = __ffs(done_mask); 5016 5017 qc = ata_qc_from_tag(ap, tag); 5018 if (qc) { 5019 ata_qc_complete(qc); 5020 nr_done++; 5021 } 5022 done_mask &= ~(1 << tag); 5023 } 5024 5025 return nr_done; 5026 } 5027 5028 /** 5029 * ata_qc_issue - issue taskfile to device 5030 * @qc: command to issue to device 5031 * 5032 * Prepare an ATA command to submission to device. 5033 * This includes mapping the data into a DMA-able 5034 * area, filling in the S/G table, and finally 5035 * writing the taskfile to hardware, starting the command. 5036 * 5037 * LOCKING: 5038 * spin_lock_irqsave(host lock) 5039 */ 5040 void ata_qc_issue(struct ata_queued_cmd *qc) 5041 { 5042 struct ata_port *ap = qc->ap; 5043 struct ata_link *link = qc->dev->link; 5044 u8 prot = qc->tf.protocol; 5045 5046 /* Make sure only one non-NCQ command is outstanding. The 5047 * check is skipped for old EH because it reuses active qc to 5048 * request ATAPI sense. 5049 */ 5050 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5051 5052 if (ata_is_ncq(prot)) { 5053 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5054 5055 if (!link->sactive) 5056 ap->nr_active_links++; 5057 link->sactive |= 1 << qc->tag; 5058 } else { 5059 WARN_ON_ONCE(link->sactive); 5060 5061 ap->nr_active_links++; 5062 link->active_tag = qc->tag; 5063 } 5064 5065 qc->flags |= ATA_QCFLAG_ACTIVE; 5066 ap->qc_active |= 1 << qc->tag; 5067 5068 /* 5069 * We guarantee to LLDs that they will have at least one 5070 * non-zero sg if the command is a data command. 5071 */ 5072 if (WARN_ON_ONCE(ata_is_data(prot) && 5073 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5074 goto sys_err; 5075 5076 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5077 (ap->flags & ATA_FLAG_PIO_DMA))) 5078 if (ata_sg_setup(qc)) 5079 goto sys_err; 5080 5081 /* if device is sleeping, schedule reset and abort the link */ 5082 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5083 link->eh_info.action |= ATA_EH_RESET; 5084 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5085 ata_link_abort(link); 5086 return; 5087 } 5088 5089 ap->ops->qc_prep(qc); 5090 5091 qc->err_mask |= ap->ops->qc_issue(qc); 5092 if (unlikely(qc->err_mask)) 5093 goto err; 5094 return; 5095 5096 sys_err: 5097 qc->err_mask |= AC_ERR_SYSTEM; 5098 err: 5099 ata_qc_complete(qc); 5100 } 5101 5102 /** 5103 * sata_scr_valid - test whether SCRs are accessible 5104 * @link: ATA link to test SCR accessibility for 5105 * 5106 * Test whether SCRs are accessible for @link. 5107 * 5108 * LOCKING: 5109 * None. 5110 * 5111 * RETURNS: 5112 * 1 if SCRs are accessible, 0 otherwise. 5113 */ 5114 int sata_scr_valid(struct ata_link *link) 5115 { 5116 struct ata_port *ap = link->ap; 5117 5118 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5119 } 5120 5121 /** 5122 * sata_scr_read - read SCR register of the specified port 5123 * @link: ATA link to read SCR for 5124 * @reg: SCR to read 5125 * @val: Place to store read value 5126 * 5127 * Read SCR register @reg of @link into *@val. This function is 5128 * guaranteed to succeed if @link is ap->link, the cable type of 5129 * the port is SATA and the port implements ->scr_read. 5130 * 5131 * LOCKING: 5132 * None if @link is ap->link. Kernel thread context otherwise. 5133 * 5134 * RETURNS: 5135 * 0 on success, negative errno on failure. 5136 */ 5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5138 { 5139 if (ata_is_host_link(link)) { 5140 if (sata_scr_valid(link)) 5141 return link->ap->ops->scr_read(link, reg, val); 5142 return -EOPNOTSUPP; 5143 } 5144 5145 return sata_pmp_scr_read(link, reg, val); 5146 } 5147 5148 /** 5149 * sata_scr_write - write SCR register of the specified port 5150 * @link: ATA link to write SCR for 5151 * @reg: SCR to write 5152 * @val: value to write 5153 * 5154 * Write @val to SCR register @reg of @link. This function is 5155 * guaranteed to succeed if @link is ap->link, the cable type of 5156 * the port is SATA and the port implements ->scr_read. 5157 * 5158 * LOCKING: 5159 * None if @link is ap->link. Kernel thread context otherwise. 5160 * 5161 * RETURNS: 5162 * 0 on success, negative errno on failure. 5163 */ 5164 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5165 { 5166 if (ata_is_host_link(link)) { 5167 if (sata_scr_valid(link)) 5168 return link->ap->ops->scr_write(link, reg, val); 5169 return -EOPNOTSUPP; 5170 } 5171 5172 return sata_pmp_scr_write(link, reg, val); 5173 } 5174 5175 /** 5176 * sata_scr_write_flush - write SCR register of the specified port and flush 5177 * @link: ATA link to write SCR for 5178 * @reg: SCR to write 5179 * @val: value to write 5180 * 5181 * This function is identical to sata_scr_write() except that this 5182 * function performs flush after writing to the register. 5183 * 5184 * LOCKING: 5185 * None if @link is ap->link. Kernel thread context otherwise. 5186 * 5187 * RETURNS: 5188 * 0 on success, negative errno on failure. 5189 */ 5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5191 { 5192 if (ata_is_host_link(link)) { 5193 int rc; 5194 5195 if (sata_scr_valid(link)) { 5196 rc = link->ap->ops->scr_write(link, reg, val); 5197 if (rc == 0) 5198 rc = link->ap->ops->scr_read(link, reg, &val); 5199 return rc; 5200 } 5201 return -EOPNOTSUPP; 5202 } 5203 5204 return sata_pmp_scr_write(link, reg, val); 5205 } 5206 5207 /** 5208 * ata_phys_link_online - test whether the given link is online 5209 * @link: ATA link to test 5210 * 5211 * Test whether @link is online. Note that this function returns 5212 * 0 if online status of @link cannot be obtained, so 5213 * ata_link_online(link) != !ata_link_offline(link). 5214 * 5215 * LOCKING: 5216 * None. 5217 * 5218 * RETURNS: 5219 * True if the port online status is available and online. 5220 */ 5221 bool ata_phys_link_online(struct ata_link *link) 5222 { 5223 u32 sstatus; 5224 5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5226 ata_sstatus_online(sstatus)) 5227 return true; 5228 return false; 5229 } 5230 5231 /** 5232 * ata_phys_link_offline - test whether the given link is offline 5233 * @link: ATA link to test 5234 * 5235 * Test whether @link is offline. Note that this function 5236 * returns 0 if offline status of @link cannot be obtained, so 5237 * ata_link_online(link) != !ata_link_offline(link). 5238 * 5239 * LOCKING: 5240 * None. 5241 * 5242 * RETURNS: 5243 * True if the port offline status is available and offline. 5244 */ 5245 bool ata_phys_link_offline(struct ata_link *link) 5246 { 5247 u32 sstatus; 5248 5249 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5250 !ata_sstatus_online(sstatus)) 5251 return true; 5252 return false; 5253 } 5254 5255 /** 5256 * ata_link_online - test whether the given link is online 5257 * @link: ATA link to test 5258 * 5259 * Test whether @link is online. This is identical to 5260 * ata_phys_link_online() when there's no slave link. When 5261 * there's a slave link, this function should only be called on 5262 * the master link and will return true if any of M/S links is 5263 * online. 5264 * 5265 * LOCKING: 5266 * None. 5267 * 5268 * RETURNS: 5269 * True if the port online status is available and online. 5270 */ 5271 bool ata_link_online(struct ata_link *link) 5272 { 5273 struct ata_link *slave = link->ap->slave_link; 5274 5275 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5276 5277 return ata_phys_link_online(link) || 5278 (slave && ata_phys_link_online(slave)); 5279 } 5280 5281 /** 5282 * ata_link_offline - test whether the given link is offline 5283 * @link: ATA link to test 5284 * 5285 * Test whether @link is offline. This is identical to 5286 * ata_phys_link_offline() when there's no slave link. When 5287 * there's a slave link, this function should only be called on 5288 * the master link and will return true if both M/S links are 5289 * offline. 5290 * 5291 * LOCKING: 5292 * None. 5293 * 5294 * RETURNS: 5295 * True if the port offline status is available and offline. 5296 */ 5297 bool ata_link_offline(struct ata_link *link) 5298 { 5299 struct ata_link *slave = link->ap->slave_link; 5300 5301 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5302 5303 return ata_phys_link_offline(link) && 5304 (!slave || ata_phys_link_offline(slave)); 5305 } 5306 5307 #ifdef CONFIG_PM 5308 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5309 unsigned int action, unsigned int ehi_flags, 5310 bool async) 5311 { 5312 struct ata_link *link; 5313 unsigned long flags; 5314 5315 /* Previous resume operation might still be in 5316 * progress. Wait for PM_PENDING to clear. 5317 */ 5318 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5319 ata_port_wait_eh(ap); 5320 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5321 } 5322 5323 /* request PM ops to EH */ 5324 spin_lock_irqsave(ap->lock, flags); 5325 5326 ap->pm_mesg = mesg; 5327 ap->pflags |= ATA_PFLAG_PM_PENDING; 5328 ata_for_each_link(link, ap, HOST_FIRST) { 5329 link->eh_info.action |= action; 5330 link->eh_info.flags |= ehi_flags; 5331 } 5332 5333 ata_port_schedule_eh(ap); 5334 5335 spin_unlock_irqrestore(ap->lock, flags); 5336 5337 if (!async) { 5338 ata_port_wait_eh(ap); 5339 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5340 } 5341 } 5342 5343 /* 5344 * On some hardware, device fails to respond after spun down for suspend. As 5345 * the device won't be used before being resumed, we don't need to touch the 5346 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5347 * 5348 * http://thread.gmane.org/gmane.linux.ide/46764 5349 */ 5350 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5351 | ATA_EHI_NO_AUTOPSY 5352 | ATA_EHI_NO_RECOVERY; 5353 5354 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5355 { 5356 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5357 } 5358 5359 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5360 { 5361 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5362 } 5363 5364 static int ata_port_pm_suspend(struct device *dev) 5365 { 5366 struct ata_port *ap = to_ata_port(dev); 5367 5368 if (pm_runtime_suspended(dev)) 5369 return 0; 5370 5371 ata_port_suspend(ap, PMSG_SUSPEND); 5372 return 0; 5373 } 5374 5375 static int ata_port_pm_freeze(struct device *dev) 5376 { 5377 struct ata_port *ap = to_ata_port(dev); 5378 5379 if (pm_runtime_suspended(dev)) 5380 return 0; 5381 5382 ata_port_suspend(ap, PMSG_FREEZE); 5383 return 0; 5384 } 5385 5386 static int ata_port_pm_poweroff(struct device *dev) 5387 { 5388 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5389 return 0; 5390 } 5391 5392 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5393 | ATA_EHI_QUIET; 5394 5395 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5396 { 5397 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5398 } 5399 5400 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5401 { 5402 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5403 } 5404 5405 static int ata_port_pm_resume(struct device *dev) 5406 { 5407 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5408 pm_runtime_disable(dev); 5409 pm_runtime_set_active(dev); 5410 pm_runtime_enable(dev); 5411 return 0; 5412 } 5413 5414 /* 5415 * For ODDs, the upper layer will poll for media change every few seconds, 5416 * which will make it enter and leave suspend state every few seconds. And 5417 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5418 * is very little and the ODD may malfunction after constantly being reset. 5419 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5420 * ODD is attached to the port. 5421 */ 5422 static int ata_port_runtime_idle(struct device *dev) 5423 { 5424 struct ata_port *ap = to_ata_port(dev); 5425 struct ata_link *link; 5426 struct ata_device *adev; 5427 5428 ata_for_each_link(link, ap, HOST_FIRST) { 5429 ata_for_each_dev(adev, link, ENABLED) 5430 if (adev->class == ATA_DEV_ATAPI && 5431 !zpodd_dev_enabled(adev)) 5432 return -EBUSY; 5433 } 5434 5435 return 0; 5436 } 5437 5438 static int ata_port_runtime_suspend(struct device *dev) 5439 { 5440 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5441 return 0; 5442 } 5443 5444 static int ata_port_runtime_resume(struct device *dev) 5445 { 5446 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5447 return 0; 5448 } 5449 5450 static const struct dev_pm_ops ata_port_pm_ops = { 5451 .suspend = ata_port_pm_suspend, 5452 .resume = ata_port_pm_resume, 5453 .freeze = ata_port_pm_freeze, 5454 .thaw = ata_port_pm_resume, 5455 .poweroff = ata_port_pm_poweroff, 5456 .restore = ata_port_pm_resume, 5457 5458 .runtime_suspend = ata_port_runtime_suspend, 5459 .runtime_resume = ata_port_runtime_resume, 5460 .runtime_idle = ata_port_runtime_idle, 5461 }; 5462 5463 /* sas ports don't participate in pm runtime management of ata_ports, 5464 * and need to resume ata devices at the domain level, not the per-port 5465 * level. sas suspend/resume is async to allow parallel port recovery 5466 * since sas has multiple ata_port instances per Scsi_Host. 5467 */ 5468 void ata_sas_port_suspend(struct ata_port *ap) 5469 { 5470 ata_port_suspend_async(ap, PMSG_SUSPEND); 5471 } 5472 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5473 5474 void ata_sas_port_resume(struct ata_port *ap) 5475 { 5476 ata_port_resume_async(ap, PMSG_RESUME); 5477 } 5478 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5479 5480 /** 5481 * ata_host_suspend - suspend host 5482 * @host: host to suspend 5483 * @mesg: PM message 5484 * 5485 * Suspend @host. Actual operation is performed by port suspend. 5486 */ 5487 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5488 { 5489 host->dev->power.power_state = mesg; 5490 return 0; 5491 } 5492 5493 /** 5494 * ata_host_resume - resume host 5495 * @host: host to resume 5496 * 5497 * Resume @host. Actual operation is performed by port resume. 5498 */ 5499 void ata_host_resume(struct ata_host *host) 5500 { 5501 host->dev->power.power_state = PMSG_ON; 5502 } 5503 #endif 5504 5505 struct device_type ata_port_type = { 5506 .name = "ata_port", 5507 #ifdef CONFIG_PM 5508 .pm = &ata_port_pm_ops, 5509 #endif 5510 }; 5511 5512 /** 5513 * ata_dev_init - Initialize an ata_device structure 5514 * @dev: Device structure to initialize 5515 * 5516 * Initialize @dev in preparation for probing. 5517 * 5518 * LOCKING: 5519 * Inherited from caller. 5520 */ 5521 void ata_dev_init(struct ata_device *dev) 5522 { 5523 struct ata_link *link = ata_dev_phys_link(dev); 5524 struct ata_port *ap = link->ap; 5525 unsigned long flags; 5526 5527 /* SATA spd limit is bound to the attached device, reset together */ 5528 link->sata_spd_limit = link->hw_sata_spd_limit; 5529 link->sata_spd = 0; 5530 5531 /* High bits of dev->flags are used to record warm plug 5532 * requests which occur asynchronously. Synchronize using 5533 * host lock. 5534 */ 5535 spin_lock_irqsave(ap->lock, flags); 5536 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5537 dev->horkage = 0; 5538 spin_unlock_irqrestore(ap->lock, flags); 5539 5540 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5541 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5542 dev->pio_mask = UINT_MAX; 5543 dev->mwdma_mask = UINT_MAX; 5544 dev->udma_mask = UINT_MAX; 5545 } 5546 5547 /** 5548 * ata_link_init - Initialize an ata_link structure 5549 * @ap: ATA port link is attached to 5550 * @link: Link structure to initialize 5551 * @pmp: Port multiplier port number 5552 * 5553 * Initialize @link. 5554 * 5555 * LOCKING: 5556 * Kernel thread context (may sleep) 5557 */ 5558 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5559 { 5560 int i; 5561 5562 /* clear everything except for devices */ 5563 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5564 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5565 5566 link->ap = ap; 5567 link->pmp = pmp; 5568 link->active_tag = ATA_TAG_POISON; 5569 link->hw_sata_spd_limit = UINT_MAX; 5570 5571 /* can't use iterator, ap isn't initialized yet */ 5572 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5573 struct ata_device *dev = &link->device[i]; 5574 5575 dev->link = link; 5576 dev->devno = dev - link->device; 5577 #ifdef CONFIG_ATA_ACPI 5578 dev->gtf_filter = ata_acpi_gtf_filter; 5579 #endif 5580 ata_dev_init(dev); 5581 } 5582 } 5583 5584 /** 5585 * sata_link_init_spd - Initialize link->sata_spd_limit 5586 * @link: Link to configure sata_spd_limit for 5587 * 5588 * Initialize @link->[hw_]sata_spd_limit to the currently 5589 * configured value. 5590 * 5591 * LOCKING: 5592 * Kernel thread context (may sleep). 5593 * 5594 * RETURNS: 5595 * 0 on success, -errno on failure. 5596 */ 5597 int sata_link_init_spd(struct ata_link *link) 5598 { 5599 u8 spd; 5600 int rc; 5601 5602 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5603 if (rc) 5604 return rc; 5605 5606 spd = (link->saved_scontrol >> 4) & 0xf; 5607 if (spd) 5608 link->hw_sata_spd_limit &= (1 << spd) - 1; 5609 5610 ata_force_link_limits(link); 5611 5612 link->sata_spd_limit = link->hw_sata_spd_limit; 5613 5614 return 0; 5615 } 5616 5617 /** 5618 * ata_port_alloc - allocate and initialize basic ATA port resources 5619 * @host: ATA host this allocated port belongs to 5620 * 5621 * Allocate and initialize basic ATA port resources. 5622 * 5623 * RETURNS: 5624 * Allocate ATA port on success, NULL on failure. 5625 * 5626 * LOCKING: 5627 * Inherited from calling layer (may sleep). 5628 */ 5629 struct ata_port *ata_port_alloc(struct ata_host *host) 5630 { 5631 struct ata_port *ap; 5632 5633 DPRINTK("ENTER\n"); 5634 5635 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5636 if (!ap) 5637 return NULL; 5638 5639 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5640 ap->lock = &host->lock; 5641 ap->print_id = -1; 5642 ap->local_port_no = -1; 5643 ap->host = host; 5644 ap->dev = host->dev; 5645 5646 #if defined(ATA_VERBOSE_DEBUG) 5647 /* turn on all debugging levels */ 5648 ap->msg_enable = 0x00FF; 5649 #elif defined(ATA_DEBUG) 5650 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5651 #else 5652 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5653 #endif 5654 5655 mutex_init(&ap->scsi_scan_mutex); 5656 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5657 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5658 INIT_LIST_HEAD(&ap->eh_done_q); 5659 init_waitqueue_head(&ap->eh_wait_q); 5660 init_completion(&ap->park_req_pending); 5661 init_timer_deferrable(&ap->fastdrain_timer); 5662 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5663 ap->fastdrain_timer.data = (unsigned long)ap; 5664 5665 ap->cbl = ATA_CBL_NONE; 5666 5667 ata_link_init(ap, &ap->link, 0); 5668 5669 #ifdef ATA_IRQ_TRAP 5670 ap->stats.unhandled_irq = 1; 5671 ap->stats.idle_irq = 1; 5672 #endif 5673 ata_sff_port_init(ap); 5674 5675 return ap; 5676 } 5677 5678 static void ata_host_release(struct device *gendev, void *res) 5679 { 5680 struct ata_host *host = dev_get_drvdata(gendev); 5681 int i; 5682 5683 for (i = 0; i < host->n_ports; i++) { 5684 struct ata_port *ap = host->ports[i]; 5685 5686 if (!ap) 5687 continue; 5688 5689 if (ap->scsi_host) 5690 scsi_host_put(ap->scsi_host); 5691 5692 kfree(ap->pmp_link); 5693 kfree(ap->slave_link); 5694 kfree(ap); 5695 host->ports[i] = NULL; 5696 } 5697 5698 dev_set_drvdata(gendev, NULL); 5699 } 5700 5701 /** 5702 * ata_host_alloc - allocate and init basic ATA host resources 5703 * @dev: generic device this host is associated with 5704 * @max_ports: maximum number of ATA ports associated with this host 5705 * 5706 * Allocate and initialize basic ATA host resources. LLD calls 5707 * this function to allocate a host, initializes it fully and 5708 * attaches it using ata_host_register(). 5709 * 5710 * @max_ports ports are allocated and host->n_ports is 5711 * initialized to @max_ports. The caller is allowed to decrease 5712 * host->n_ports before calling ata_host_register(). The unused 5713 * ports will be automatically freed on registration. 5714 * 5715 * RETURNS: 5716 * Allocate ATA host on success, NULL on failure. 5717 * 5718 * LOCKING: 5719 * Inherited from calling layer (may sleep). 5720 */ 5721 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5722 { 5723 struct ata_host *host; 5724 size_t sz; 5725 int i; 5726 5727 DPRINTK("ENTER\n"); 5728 5729 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5730 return NULL; 5731 5732 /* alloc a container for our list of ATA ports (buses) */ 5733 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5734 /* alloc a container for our list of ATA ports (buses) */ 5735 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5736 if (!host) 5737 goto err_out; 5738 5739 devres_add(dev, host); 5740 dev_set_drvdata(dev, host); 5741 5742 spin_lock_init(&host->lock); 5743 mutex_init(&host->eh_mutex); 5744 host->dev = dev; 5745 host->n_ports = max_ports; 5746 5747 /* allocate ports bound to this host */ 5748 for (i = 0; i < max_ports; i++) { 5749 struct ata_port *ap; 5750 5751 ap = ata_port_alloc(host); 5752 if (!ap) 5753 goto err_out; 5754 5755 ap->port_no = i; 5756 host->ports[i] = ap; 5757 } 5758 5759 devres_remove_group(dev, NULL); 5760 return host; 5761 5762 err_out: 5763 devres_release_group(dev, NULL); 5764 return NULL; 5765 } 5766 5767 /** 5768 * ata_host_alloc_pinfo - alloc host and init with port_info array 5769 * @dev: generic device this host is associated with 5770 * @ppi: array of ATA port_info to initialize host with 5771 * @n_ports: number of ATA ports attached to this host 5772 * 5773 * Allocate ATA host and initialize with info from @ppi. If NULL 5774 * terminated, @ppi may contain fewer entries than @n_ports. The 5775 * last entry will be used for the remaining ports. 5776 * 5777 * RETURNS: 5778 * Allocate ATA host on success, NULL on failure. 5779 * 5780 * LOCKING: 5781 * Inherited from calling layer (may sleep). 5782 */ 5783 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5784 const struct ata_port_info * const * ppi, 5785 int n_ports) 5786 { 5787 const struct ata_port_info *pi; 5788 struct ata_host *host; 5789 int i, j; 5790 5791 host = ata_host_alloc(dev, n_ports); 5792 if (!host) 5793 return NULL; 5794 5795 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5796 struct ata_port *ap = host->ports[i]; 5797 5798 if (ppi[j]) 5799 pi = ppi[j++]; 5800 5801 ap->pio_mask = pi->pio_mask; 5802 ap->mwdma_mask = pi->mwdma_mask; 5803 ap->udma_mask = pi->udma_mask; 5804 ap->flags |= pi->flags; 5805 ap->link.flags |= pi->link_flags; 5806 ap->ops = pi->port_ops; 5807 5808 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5809 host->ops = pi->port_ops; 5810 } 5811 5812 return host; 5813 } 5814 5815 /** 5816 * ata_slave_link_init - initialize slave link 5817 * @ap: port to initialize slave link for 5818 * 5819 * Create and initialize slave link for @ap. This enables slave 5820 * link handling on the port. 5821 * 5822 * In libata, a port contains links and a link contains devices. 5823 * There is single host link but if a PMP is attached to it, 5824 * there can be multiple fan-out links. On SATA, there's usually 5825 * a single device connected to a link but PATA and SATA 5826 * controllers emulating TF based interface can have two - master 5827 * and slave. 5828 * 5829 * However, there are a few controllers which don't fit into this 5830 * abstraction too well - SATA controllers which emulate TF 5831 * interface with both master and slave devices but also have 5832 * separate SCR register sets for each device. These controllers 5833 * need separate links for physical link handling 5834 * (e.g. onlineness, link speed) but should be treated like a 5835 * traditional M/S controller for everything else (e.g. command 5836 * issue, softreset). 5837 * 5838 * slave_link is libata's way of handling this class of 5839 * controllers without impacting core layer too much. For 5840 * anything other than physical link handling, the default host 5841 * link is used for both master and slave. For physical link 5842 * handling, separate @ap->slave_link is used. All dirty details 5843 * are implemented inside libata core layer. From LLD's POV, the 5844 * only difference is that prereset, hardreset and postreset are 5845 * called once more for the slave link, so the reset sequence 5846 * looks like the following. 5847 * 5848 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5849 * softreset(M) -> postreset(M) -> postreset(S) 5850 * 5851 * Note that softreset is called only for the master. Softreset 5852 * resets both M/S by definition, so SRST on master should handle 5853 * both (the standard method will work just fine). 5854 * 5855 * LOCKING: 5856 * Should be called before host is registered. 5857 * 5858 * RETURNS: 5859 * 0 on success, -errno on failure. 5860 */ 5861 int ata_slave_link_init(struct ata_port *ap) 5862 { 5863 struct ata_link *link; 5864 5865 WARN_ON(ap->slave_link); 5866 WARN_ON(ap->flags & ATA_FLAG_PMP); 5867 5868 link = kzalloc(sizeof(*link), GFP_KERNEL); 5869 if (!link) 5870 return -ENOMEM; 5871 5872 ata_link_init(ap, link, 1); 5873 ap->slave_link = link; 5874 return 0; 5875 } 5876 5877 static void ata_host_stop(struct device *gendev, void *res) 5878 { 5879 struct ata_host *host = dev_get_drvdata(gendev); 5880 int i; 5881 5882 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5883 5884 for (i = 0; i < host->n_ports; i++) { 5885 struct ata_port *ap = host->ports[i]; 5886 5887 if (ap->ops->port_stop) 5888 ap->ops->port_stop(ap); 5889 } 5890 5891 if (host->ops->host_stop) 5892 host->ops->host_stop(host); 5893 } 5894 5895 /** 5896 * ata_finalize_port_ops - finalize ata_port_operations 5897 * @ops: ata_port_operations to finalize 5898 * 5899 * An ata_port_operations can inherit from another ops and that 5900 * ops can again inherit from another. This can go on as many 5901 * times as necessary as long as there is no loop in the 5902 * inheritance chain. 5903 * 5904 * Ops tables are finalized when the host is started. NULL or 5905 * unspecified entries are inherited from the closet ancestor 5906 * which has the method and the entry is populated with it. 5907 * After finalization, the ops table directly points to all the 5908 * methods and ->inherits is no longer necessary and cleared. 5909 * 5910 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5911 * 5912 * LOCKING: 5913 * None. 5914 */ 5915 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5916 { 5917 static DEFINE_SPINLOCK(lock); 5918 const struct ata_port_operations *cur; 5919 void **begin = (void **)ops; 5920 void **end = (void **)&ops->inherits; 5921 void **pp; 5922 5923 if (!ops || !ops->inherits) 5924 return; 5925 5926 spin_lock(&lock); 5927 5928 for (cur = ops->inherits; cur; cur = cur->inherits) { 5929 void **inherit = (void **)cur; 5930 5931 for (pp = begin; pp < end; pp++, inherit++) 5932 if (!*pp) 5933 *pp = *inherit; 5934 } 5935 5936 for (pp = begin; pp < end; pp++) 5937 if (IS_ERR(*pp)) 5938 *pp = NULL; 5939 5940 ops->inherits = NULL; 5941 5942 spin_unlock(&lock); 5943 } 5944 5945 /** 5946 * ata_host_start - start and freeze ports of an ATA host 5947 * @host: ATA host to start ports for 5948 * 5949 * Start and then freeze ports of @host. Started status is 5950 * recorded in host->flags, so this function can be called 5951 * multiple times. Ports are guaranteed to get started only 5952 * once. If host->ops isn't initialized yet, its set to the 5953 * first non-dummy port ops. 5954 * 5955 * LOCKING: 5956 * Inherited from calling layer (may sleep). 5957 * 5958 * RETURNS: 5959 * 0 if all ports are started successfully, -errno otherwise. 5960 */ 5961 int ata_host_start(struct ata_host *host) 5962 { 5963 int have_stop = 0; 5964 void *start_dr = NULL; 5965 int i, rc; 5966 5967 if (host->flags & ATA_HOST_STARTED) 5968 return 0; 5969 5970 ata_finalize_port_ops(host->ops); 5971 5972 for (i = 0; i < host->n_ports; i++) { 5973 struct ata_port *ap = host->ports[i]; 5974 5975 ata_finalize_port_ops(ap->ops); 5976 5977 if (!host->ops && !ata_port_is_dummy(ap)) 5978 host->ops = ap->ops; 5979 5980 if (ap->ops->port_stop) 5981 have_stop = 1; 5982 } 5983 5984 if (host->ops->host_stop) 5985 have_stop = 1; 5986 5987 if (have_stop) { 5988 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5989 if (!start_dr) 5990 return -ENOMEM; 5991 } 5992 5993 for (i = 0; i < host->n_ports; i++) { 5994 struct ata_port *ap = host->ports[i]; 5995 5996 if (ap->ops->port_start) { 5997 rc = ap->ops->port_start(ap); 5998 if (rc) { 5999 if (rc != -ENODEV) 6000 dev_err(host->dev, 6001 "failed to start port %d (errno=%d)\n", 6002 i, rc); 6003 goto err_out; 6004 } 6005 } 6006 ata_eh_freeze_port(ap); 6007 } 6008 6009 if (start_dr) 6010 devres_add(host->dev, start_dr); 6011 host->flags |= ATA_HOST_STARTED; 6012 return 0; 6013 6014 err_out: 6015 while (--i >= 0) { 6016 struct ata_port *ap = host->ports[i]; 6017 6018 if (ap->ops->port_stop) 6019 ap->ops->port_stop(ap); 6020 } 6021 devres_free(start_dr); 6022 return rc; 6023 } 6024 6025 /** 6026 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6027 * @host: host to initialize 6028 * @dev: device host is attached to 6029 * @ops: port_ops 6030 * 6031 */ 6032 void ata_host_init(struct ata_host *host, struct device *dev, 6033 struct ata_port_operations *ops) 6034 { 6035 spin_lock_init(&host->lock); 6036 mutex_init(&host->eh_mutex); 6037 host->n_tags = ATA_MAX_QUEUE - 1; 6038 host->dev = dev; 6039 host->ops = ops; 6040 } 6041 6042 void __ata_port_probe(struct ata_port *ap) 6043 { 6044 struct ata_eh_info *ehi = &ap->link.eh_info; 6045 unsigned long flags; 6046 6047 /* kick EH for boot probing */ 6048 spin_lock_irqsave(ap->lock, flags); 6049 6050 ehi->probe_mask |= ATA_ALL_DEVICES; 6051 ehi->action |= ATA_EH_RESET; 6052 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6053 6054 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6055 ap->pflags |= ATA_PFLAG_LOADING; 6056 ata_port_schedule_eh(ap); 6057 6058 spin_unlock_irqrestore(ap->lock, flags); 6059 } 6060 6061 int ata_port_probe(struct ata_port *ap) 6062 { 6063 int rc = 0; 6064 6065 if (ap->ops->error_handler) { 6066 __ata_port_probe(ap); 6067 ata_port_wait_eh(ap); 6068 } else { 6069 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6070 rc = ata_bus_probe(ap); 6071 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6072 } 6073 return rc; 6074 } 6075 6076 6077 static void async_port_probe(void *data, async_cookie_t cookie) 6078 { 6079 struct ata_port *ap = data; 6080 6081 /* 6082 * If we're not allowed to scan this host in parallel, 6083 * we need to wait until all previous scans have completed 6084 * before going further. 6085 * Jeff Garzik says this is only within a controller, so we 6086 * don't need to wait for port 0, only for later ports. 6087 */ 6088 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6089 async_synchronize_cookie(cookie); 6090 6091 (void)ata_port_probe(ap); 6092 6093 /* in order to keep device order, we need to synchronize at this point */ 6094 async_synchronize_cookie(cookie); 6095 6096 ata_scsi_scan_host(ap, 1); 6097 } 6098 6099 /** 6100 * ata_host_register - register initialized ATA host 6101 * @host: ATA host to register 6102 * @sht: template for SCSI host 6103 * 6104 * Register initialized ATA host. @host is allocated using 6105 * ata_host_alloc() and fully initialized by LLD. This function 6106 * starts ports, registers @host with ATA and SCSI layers and 6107 * probe registered devices. 6108 * 6109 * LOCKING: 6110 * Inherited from calling layer (may sleep). 6111 * 6112 * RETURNS: 6113 * 0 on success, -errno otherwise. 6114 */ 6115 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6116 { 6117 int i, rc; 6118 6119 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6120 6121 /* host must have been started */ 6122 if (!(host->flags & ATA_HOST_STARTED)) { 6123 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6124 WARN_ON(1); 6125 return -EINVAL; 6126 } 6127 6128 /* Blow away unused ports. This happens when LLD can't 6129 * determine the exact number of ports to allocate at 6130 * allocation time. 6131 */ 6132 for (i = host->n_ports; host->ports[i]; i++) 6133 kfree(host->ports[i]); 6134 6135 /* give ports names and add SCSI hosts */ 6136 for (i = 0; i < host->n_ports; i++) { 6137 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6138 host->ports[i]->local_port_no = i + 1; 6139 } 6140 6141 /* Create associated sysfs transport objects */ 6142 for (i = 0; i < host->n_ports; i++) { 6143 rc = ata_tport_add(host->dev,host->ports[i]); 6144 if (rc) { 6145 goto err_tadd; 6146 } 6147 } 6148 6149 rc = ata_scsi_add_hosts(host, sht); 6150 if (rc) 6151 goto err_tadd; 6152 6153 /* set cable, sata_spd_limit and report */ 6154 for (i = 0; i < host->n_ports; i++) { 6155 struct ata_port *ap = host->ports[i]; 6156 unsigned long xfer_mask; 6157 6158 /* set SATA cable type if still unset */ 6159 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6160 ap->cbl = ATA_CBL_SATA; 6161 6162 /* init sata_spd_limit to the current value */ 6163 sata_link_init_spd(&ap->link); 6164 if (ap->slave_link) 6165 sata_link_init_spd(ap->slave_link); 6166 6167 /* print per-port info to dmesg */ 6168 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6169 ap->udma_mask); 6170 6171 if (!ata_port_is_dummy(ap)) { 6172 ata_port_info(ap, "%cATA max %s %s\n", 6173 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6174 ata_mode_string(xfer_mask), 6175 ap->link.eh_info.desc); 6176 ata_ehi_clear_desc(&ap->link.eh_info); 6177 } else 6178 ata_port_info(ap, "DUMMY\n"); 6179 } 6180 6181 /* perform each probe asynchronously */ 6182 for (i = 0; i < host->n_ports; i++) { 6183 struct ata_port *ap = host->ports[i]; 6184 async_schedule(async_port_probe, ap); 6185 } 6186 6187 return 0; 6188 6189 err_tadd: 6190 while (--i >= 0) { 6191 ata_tport_delete(host->ports[i]); 6192 } 6193 return rc; 6194 6195 } 6196 6197 /** 6198 * ata_host_activate - start host, request IRQ and register it 6199 * @host: target ATA host 6200 * @irq: IRQ to request 6201 * @irq_handler: irq_handler used when requesting IRQ 6202 * @irq_flags: irq_flags used when requesting IRQ 6203 * @sht: scsi_host_template to use when registering the host 6204 * 6205 * After allocating an ATA host and initializing it, most libata 6206 * LLDs perform three steps to activate the host - start host, 6207 * request IRQ and register it. This helper takes necessasry 6208 * arguments and performs the three steps in one go. 6209 * 6210 * An invalid IRQ skips the IRQ registration and expects the host to 6211 * have set polling mode on the port. In this case, @irq_handler 6212 * should be NULL. 6213 * 6214 * LOCKING: 6215 * Inherited from calling layer (may sleep). 6216 * 6217 * RETURNS: 6218 * 0 on success, -errno otherwise. 6219 */ 6220 int ata_host_activate(struct ata_host *host, int irq, 6221 irq_handler_t irq_handler, unsigned long irq_flags, 6222 struct scsi_host_template *sht) 6223 { 6224 int i, rc; 6225 6226 rc = ata_host_start(host); 6227 if (rc) 6228 return rc; 6229 6230 /* Special case for polling mode */ 6231 if (!irq) { 6232 WARN_ON(irq_handler); 6233 return ata_host_register(host, sht); 6234 } 6235 6236 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6237 dev_name(host->dev), host); 6238 if (rc) 6239 return rc; 6240 6241 for (i = 0; i < host->n_ports; i++) 6242 ata_port_desc(host->ports[i], "irq %d", irq); 6243 6244 rc = ata_host_register(host, sht); 6245 /* if failed, just free the IRQ and leave ports alone */ 6246 if (rc) 6247 devm_free_irq(host->dev, irq, host); 6248 6249 return rc; 6250 } 6251 6252 /** 6253 * ata_port_detach - Detach ATA port in prepration of device removal 6254 * @ap: ATA port to be detached 6255 * 6256 * Detach all ATA devices and the associated SCSI devices of @ap; 6257 * then, remove the associated SCSI host. @ap is guaranteed to 6258 * be quiescent on return from this function. 6259 * 6260 * LOCKING: 6261 * Kernel thread context (may sleep). 6262 */ 6263 static void ata_port_detach(struct ata_port *ap) 6264 { 6265 unsigned long flags; 6266 struct ata_link *link; 6267 struct ata_device *dev; 6268 6269 if (!ap->ops->error_handler) 6270 goto skip_eh; 6271 6272 /* tell EH we're leaving & flush EH */ 6273 spin_lock_irqsave(ap->lock, flags); 6274 ap->pflags |= ATA_PFLAG_UNLOADING; 6275 ata_port_schedule_eh(ap); 6276 spin_unlock_irqrestore(ap->lock, flags); 6277 6278 /* wait till EH commits suicide */ 6279 ata_port_wait_eh(ap); 6280 6281 /* it better be dead now */ 6282 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6283 6284 cancel_delayed_work_sync(&ap->hotplug_task); 6285 6286 skip_eh: 6287 /* clean up zpodd on port removal */ 6288 ata_for_each_link(link, ap, HOST_FIRST) { 6289 ata_for_each_dev(dev, link, ALL) { 6290 if (zpodd_dev_enabled(dev)) 6291 zpodd_exit(dev); 6292 } 6293 } 6294 if (ap->pmp_link) { 6295 int i; 6296 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6297 ata_tlink_delete(&ap->pmp_link[i]); 6298 } 6299 /* remove the associated SCSI host */ 6300 scsi_remove_host(ap->scsi_host); 6301 ata_tport_delete(ap); 6302 } 6303 6304 /** 6305 * ata_host_detach - Detach all ports of an ATA host 6306 * @host: Host to detach 6307 * 6308 * Detach all ports of @host. 6309 * 6310 * LOCKING: 6311 * Kernel thread context (may sleep). 6312 */ 6313 void ata_host_detach(struct ata_host *host) 6314 { 6315 int i; 6316 6317 for (i = 0; i < host->n_ports; i++) 6318 ata_port_detach(host->ports[i]); 6319 6320 /* the host is dead now, dissociate ACPI */ 6321 ata_acpi_dissociate(host); 6322 } 6323 6324 #ifdef CONFIG_PCI 6325 6326 /** 6327 * ata_pci_remove_one - PCI layer callback for device removal 6328 * @pdev: PCI device that was removed 6329 * 6330 * PCI layer indicates to libata via this hook that hot-unplug or 6331 * module unload event has occurred. Detach all ports. Resource 6332 * release is handled via devres. 6333 * 6334 * LOCKING: 6335 * Inherited from PCI layer (may sleep). 6336 */ 6337 void ata_pci_remove_one(struct pci_dev *pdev) 6338 { 6339 struct ata_host *host = pci_get_drvdata(pdev); 6340 6341 ata_host_detach(host); 6342 } 6343 6344 /* move to PCI subsystem */ 6345 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6346 { 6347 unsigned long tmp = 0; 6348 6349 switch (bits->width) { 6350 case 1: { 6351 u8 tmp8 = 0; 6352 pci_read_config_byte(pdev, bits->reg, &tmp8); 6353 tmp = tmp8; 6354 break; 6355 } 6356 case 2: { 6357 u16 tmp16 = 0; 6358 pci_read_config_word(pdev, bits->reg, &tmp16); 6359 tmp = tmp16; 6360 break; 6361 } 6362 case 4: { 6363 u32 tmp32 = 0; 6364 pci_read_config_dword(pdev, bits->reg, &tmp32); 6365 tmp = tmp32; 6366 break; 6367 } 6368 6369 default: 6370 return -EINVAL; 6371 } 6372 6373 tmp &= bits->mask; 6374 6375 return (tmp == bits->val) ? 1 : 0; 6376 } 6377 6378 #ifdef CONFIG_PM 6379 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6380 { 6381 pci_save_state(pdev); 6382 pci_disable_device(pdev); 6383 6384 if (mesg.event & PM_EVENT_SLEEP) 6385 pci_set_power_state(pdev, PCI_D3hot); 6386 } 6387 6388 int ata_pci_device_do_resume(struct pci_dev *pdev) 6389 { 6390 int rc; 6391 6392 pci_set_power_state(pdev, PCI_D0); 6393 pci_restore_state(pdev); 6394 6395 rc = pcim_enable_device(pdev); 6396 if (rc) { 6397 dev_err(&pdev->dev, 6398 "failed to enable device after resume (%d)\n", rc); 6399 return rc; 6400 } 6401 6402 pci_set_master(pdev); 6403 return 0; 6404 } 6405 6406 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6407 { 6408 struct ata_host *host = pci_get_drvdata(pdev); 6409 int rc = 0; 6410 6411 rc = ata_host_suspend(host, mesg); 6412 if (rc) 6413 return rc; 6414 6415 ata_pci_device_do_suspend(pdev, mesg); 6416 6417 return 0; 6418 } 6419 6420 int ata_pci_device_resume(struct pci_dev *pdev) 6421 { 6422 struct ata_host *host = pci_get_drvdata(pdev); 6423 int rc; 6424 6425 rc = ata_pci_device_do_resume(pdev); 6426 if (rc == 0) 6427 ata_host_resume(host); 6428 return rc; 6429 } 6430 #endif /* CONFIG_PM */ 6431 6432 #endif /* CONFIG_PCI */ 6433 6434 /** 6435 * ata_platform_remove_one - Platform layer callback for device removal 6436 * @pdev: Platform device that was removed 6437 * 6438 * Platform layer indicates to libata via this hook that hot-unplug or 6439 * module unload event has occurred. Detach all ports. Resource 6440 * release is handled via devres. 6441 * 6442 * LOCKING: 6443 * Inherited from platform layer (may sleep). 6444 */ 6445 int ata_platform_remove_one(struct platform_device *pdev) 6446 { 6447 struct ata_host *host = platform_get_drvdata(pdev); 6448 6449 ata_host_detach(host); 6450 6451 return 0; 6452 } 6453 6454 static int __init ata_parse_force_one(char **cur, 6455 struct ata_force_ent *force_ent, 6456 const char **reason) 6457 { 6458 /* FIXME: Currently, there's no way to tag init const data and 6459 * using __initdata causes build failure on some versions of 6460 * gcc. Once __initdataconst is implemented, add const to the 6461 * following structure. 6462 */ 6463 static struct ata_force_param force_tbl[] __initdata = { 6464 { "40c", .cbl = ATA_CBL_PATA40 }, 6465 { "80c", .cbl = ATA_CBL_PATA80 }, 6466 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6467 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6468 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6469 { "sata", .cbl = ATA_CBL_SATA }, 6470 { "1.5Gbps", .spd_limit = 1 }, 6471 { "3.0Gbps", .spd_limit = 2 }, 6472 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6473 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6474 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6475 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6476 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6477 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6478 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6479 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6480 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6481 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6482 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6483 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6484 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6485 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6486 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6487 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6488 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6489 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6490 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6491 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6492 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6493 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6494 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6495 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6496 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6497 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6498 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6499 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6500 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6501 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6502 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6503 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6504 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6505 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6506 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6507 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6508 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6509 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6510 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6511 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6512 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6513 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6514 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6515 }; 6516 char *start = *cur, *p = *cur; 6517 char *id, *val, *endp; 6518 const struct ata_force_param *match_fp = NULL; 6519 int nr_matches = 0, i; 6520 6521 /* find where this param ends and update *cur */ 6522 while (*p != '\0' && *p != ',') 6523 p++; 6524 6525 if (*p == '\0') 6526 *cur = p; 6527 else 6528 *cur = p + 1; 6529 6530 *p = '\0'; 6531 6532 /* parse */ 6533 p = strchr(start, ':'); 6534 if (!p) { 6535 val = strstrip(start); 6536 goto parse_val; 6537 } 6538 *p = '\0'; 6539 6540 id = strstrip(start); 6541 val = strstrip(p + 1); 6542 6543 /* parse id */ 6544 p = strchr(id, '.'); 6545 if (p) { 6546 *p++ = '\0'; 6547 force_ent->device = simple_strtoul(p, &endp, 10); 6548 if (p == endp || *endp != '\0') { 6549 *reason = "invalid device"; 6550 return -EINVAL; 6551 } 6552 } 6553 6554 force_ent->port = simple_strtoul(id, &endp, 10); 6555 if (p == endp || *endp != '\0') { 6556 *reason = "invalid port/link"; 6557 return -EINVAL; 6558 } 6559 6560 parse_val: 6561 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6562 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6563 const struct ata_force_param *fp = &force_tbl[i]; 6564 6565 if (strncasecmp(val, fp->name, strlen(val))) 6566 continue; 6567 6568 nr_matches++; 6569 match_fp = fp; 6570 6571 if (strcasecmp(val, fp->name) == 0) { 6572 nr_matches = 1; 6573 break; 6574 } 6575 } 6576 6577 if (!nr_matches) { 6578 *reason = "unknown value"; 6579 return -EINVAL; 6580 } 6581 if (nr_matches > 1) { 6582 *reason = "ambigious value"; 6583 return -EINVAL; 6584 } 6585 6586 force_ent->param = *match_fp; 6587 6588 return 0; 6589 } 6590 6591 static void __init ata_parse_force_param(void) 6592 { 6593 int idx = 0, size = 1; 6594 int last_port = -1, last_device = -1; 6595 char *p, *cur, *next; 6596 6597 /* calculate maximum number of params and allocate force_tbl */ 6598 for (p = ata_force_param_buf; *p; p++) 6599 if (*p == ',') 6600 size++; 6601 6602 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6603 if (!ata_force_tbl) { 6604 printk(KERN_WARNING "ata: failed to extend force table, " 6605 "libata.force ignored\n"); 6606 return; 6607 } 6608 6609 /* parse and populate the table */ 6610 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6611 const char *reason = ""; 6612 struct ata_force_ent te = { .port = -1, .device = -1 }; 6613 6614 next = cur; 6615 if (ata_parse_force_one(&next, &te, &reason)) { 6616 printk(KERN_WARNING "ata: failed to parse force " 6617 "parameter \"%s\" (%s)\n", 6618 cur, reason); 6619 continue; 6620 } 6621 6622 if (te.port == -1) { 6623 te.port = last_port; 6624 te.device = last_device; 6625 } 6626 6627 ata_force_tbl[idx++] = te; 6628 6629 last_port = te.port; 6630 last_device = te.device; 6631 } 6632 6633 ata_force_tbl_size = idx; 6634 } 6635 6636 static int __init ata_init(void) 6637 { 6638 int rc; 6639 6640 ata_parse_force_param(); 6641 6642 rc = ata_sff_init(); 6643 if (rc) { 6644 kfree(ata_force_tbl); 6645 return rc; 6646 } 6647 6648 libata_transport_init(); 6649 ata_scsi_transport_template = ata_attach_transport(); 6650 if (!ata_scsi_transport_template) { 6651 ata_sff_exit(); 6652 rc = -ENOMEM; 6653 goto err_out; 6654 } 6655 6656 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6657 return 0; 6658 6659 err_out: 6660 return rc; 6661 } 6662 6663 static void __exit ata_exit(void) 6664 { 6665 ata_release_transport(ata_scsi_transport_template); 6666 libata_transport_exit(); 6667 ata_sff_exit(); 6668 kfree(ata_force_tbl); 6669 } 6670 6671 subsys_initcall(ata_init); 6672 module_exit(ata_exit); 6673 6674 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6675 6676 int ata_ratelimit(void) 6677 { 6678 return __ratelimit(&ratelimit); 6679 } 6680 6681 /** 6682 * ata_msleep - ATA EH owner aware msleep 6683 * @ap: ATA port to attribute the sleep to 6684 * @msecs: duration to sleep in milliseconds 6685 * 6686 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6687 * ownership is released before going to sleep and reacquired 6688 * after the sleep is complete. IOW, other ports sharing the 6689 * @ap->host will be allowed to own the EH while this task is 6690 * sleeping. 6691 * 6692 * LOCKING: 6693 * Might sleep. 6694 */ 6695 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6696 { 6697 bool owns_eh = ap && ap->host->eh_owner == current; 6698 6699 if (owns_eh) 6700 ata_eh_release(ap); 6701 6702 msleep(msecs); 6703 6704 if (owns_eh) 6705 ata_eh_acquire(ap); 6706 } 6707 6708 /** 6709 * ata_wait_register - wait until register value changes 6710 * @ap: ATA port to wait register for, can be NULL 6711 * @reg: IO-mapped register 6712 * @mask: Mask to apply to read register value 6713 * @val: Wait condition 6714 * @interval: polling interval in milliseconds 6715 * @timeout: timeout in milliseconds 6716 * 6717 * Waiting for some bits of register to change is a common 6718 * operation for ATA controllers. This function reads 32bit LE 6719 * IO-mapped register @reg and tests for the following condition. 6720 * 6721 * (*@reg & mask) != val 6722 * 6723 * If the condition is met, it returns; otherwise, the process is 6724 * repeated after @interval_msec until timeout. 6725 * 6726 * LOCKING: 6727 * Kernel thread context (may sleep) 6728 * 6729 * RETURNS: 6730 * The final register value. 6731 */ 6732 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6733 unsigned long interval, unsigned long timeout) 6734 { 6735 unsigned long deadline; 6736 u32 tmp; 6737 6738 tmp = ioread32(reg); 6739 6740 /* Calculate timeout _after_ the first read to make sure 6741 * preceding writes reach the controller before starting to 6742 * eat away the timeout. 6743 */ 6744 deadline = ata_deadline(jiffies, timeout); 6745 6746 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6747 ata_msleep(ap, interval); 6748 tmp = ioread32(reg); 6749 } 6750 6751 return tmp; 6752 } 6753 6754 /* 6755 * Dummy port_ops 6756 */ 6757 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6758 { 6759 return AC_ERR_SYSTEM; 6760 } 6761 6762 static void ata_dummy_error_handler(struct ata_port *ap) 6763 { 6764 /* truly dummy */ 6765 } 6766 6767 struct ata_port_operations ata_dummy_port_ops = { 6768 .qc_prep = ata_noop_qc_prep, 6769 .qc_issue = ata_dummy_qc_issue, 6770 .error_handler = ata_dummy_error_handler, 6771 .sched_eh = ata_std_sched_eh, 6772 .end_eh = ata_std_end_eh, 6773 }; 6774 6775 const struct ata_port_info ata_dummy_port_info = { 6776 .port_ops = &ata_dummy_port_ops, 6777 }; 6778 6779 /* 6780 * Utility print functions 6781 */ 6782 void ata_port_printk(const struct ata_port *ap, const char *level, 6783 const char *fmt, ...) 6784 { 6785 struct va_format vaf; 6786 va_list args; 6787 6788 va_start(args, fmt); 6789 6790 vaf.fmt = fmt; 6791 vaf.va = &args; 6792 6793 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6794 6795 va_end(args); 6796 } 6797 EXPORT_SYMBOL(ata_port_printk); 6798 6799 void ata_link_printk(const struct ata_link *link, const char *level, 6800 const char *fmt, ...) 6801 { 6802 struct va_format vaf; 6803 va_list args; 6804 6805 va_start(args, fmt); 6806 6807 vaf.fmt = fmt; 6808 vaf.va = &args; 6809 6810 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6811 printk("%sata%u.%02u: %pV", 6812 level, link->ap->print_id, link->pmp, &vaf); 6813 else 6814 printk("%sata%u: %pV", 6815 level, link->ap->print_id, &vaf); 6816 6817 va_end(args); 6818 } 6819 EXPORT_SYMBOL(ata_link_printk); 6820 6821 void ata_dev_printk(const struct ata_device *dev, const char *level, 6822 const char *fmt, ...) 6823 { 6824 struct va_format vaf; 6825 va_list args; 6826 6827 va_start(args, fmt); 6828 6829 vaf.fmt = fmt; 6830 vaf.va = &args; 6831 6832 printk("%sata%u.%02u: %pV", 6833 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6834 &vaf); 6835 6836 va_end(args); 6837 } 6838 EXPORT_SYMBOL(ata_dev_printk); 6839 6840 void ata_print_version(const struct device *dev, const char *version) 6841 { 6842 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6843 } 6844 EXPORT_SYMBOL(ata_print_version); 6845 6846 /* 6847 * libata is essentially a library of internal helper functions for 6848 * low-level ATA host controller drivers. As such, the API/ABI is 6849 * likely to change as new drivers are added and updated. 6850 * Do not depend on ABI/API stability. 6851 */ 6852 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6853 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6854 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6855 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6856 EXPORT_SYMBOL_GPL(sata_port_ops); 6857 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6858 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6859 EXPORT_SYMBOL_GPL(ata_link_next); 6860 EXPORT_SYMBOL_GPL(ata_dev_next); 6861 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6862 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6863 EXPORT_SYMBOL_GPL(ata_host_init); 6864 EXPORT_SYMBOL_GPL(ata_host_alloc); 6865 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6866 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6867 EXPORT_SYMBOL_GPL(ata_host_start); 6868 EXPORT_SYMBOL_GPL(ata_host_register); 6869 EXPORT_SYMBOL_GPL(ata_host_activate); 6870 EXPORT_SYMBOL_GPL(ata_host_detach); 6871 EXPORT_SYMBOL_GPL(ata_sg_init); 6872 EXPORT_SYMBOL_GPL(ata_qc_complete); 6873 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6874 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6875 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6876 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6877 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6878 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6879 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6880 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6881 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6882 EXPORT_SYMBOL_GPL(ata_mode_string); 6883 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6884 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6885 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6886 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6887 EXPORT_SYMBOL_GPL(ata_dev_disable); 6888 EXPORT_SYMBOL_GPL(sata_set_spd); 6889 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6890 EXPORT_SYMBOL_GPL(sata_link_debounce); 6891 EXPORT_SYMBOL_GPL(sata_link_resume); 6892 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6893 EXPORT_SYMBOL_GPL(ata_std_prereset); 6894 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6895 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6896 EXPORT_SYMBOL_GPL(ata_std_postreset); 6897 EXPORT_SYMBOL_GPL(ata_dev_classify); 6898 EXPORT_SYMBOL_GPL(ata_dev_pair); 6899 EXPORT_SYMBOL_GPL(ata_ratelimit); 6900 EXPORT_SYMBOL_GPL(ata_msleep); 6901 EXPORT_SYMBOL_GPL(ata_wait_register); 6902 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6903 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6904 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6905 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6906 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6907 EXPORT_SYMBOL_GPL(sata_scr_valid); 6908 EXPORT_SYMBOL_GPL(sata_scr_read); 6909 EXPORT_SYMBOL_GPL(sata_scr_write); 6910 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6911 EXPORT_SYMBOL_GPL(ata_link_online); 6912 EXPORT_SYMBOL_GPL(ata_link_offline); 6913 #ifdef CONFIG_PM 6914 EXPORT_SYMBOL_GPL(ata_host_suspend); 6915 EXPORT_SYMBOL_GPL(ata_host_resume); 6916 #endif /* CONFIG_PM */ 6917 EXPORT_SYMBOL_GPL(ata_id_string); 6918 EXPORT_SYMBOL_GPL(ata_id_c_string); 6919 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6920 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6921 6922 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6923 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6924 EXPORT_SYMBOL_GPL(ata_timing_compute); 6925 EXPORT_SYMBOL_GPL(ata_timing_merge); 6926 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6927 6928 #ifdef CONFIG_PCI 6929 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6930 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6931 #ifdef CONFIG_PM 6932 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6933 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6934 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6935 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6936 #endif /* CONFIG_PM */ 6937 #endif /* CONFIG_PCI */ 6938 6939 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6940 6941 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6942 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6943 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6944 EXPORT_SYMBOL_GPL(ata_port_desc); 6945 #ifdef CONFIG_PCI 6946 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6947 #endif /* CONFIG_PCI */ 6948 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6949 EXPORT_SYMBOL_GPL(ata_link_abort); 6950 EXPORT_SYMBOL_GPL(ata_port_abort); 6951 EXPORT_SYMBOL_GPL(ata_port_freeze); 6952 EXPORT_SYMBOL_GPL(sata_async_notification); 6953 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6954 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6955 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6956 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6957 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6958 EXPORT_SYMBOL_GPL(ata_do_eh); 6959 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6960 6961 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6962 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6963 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6964 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6965 EXPORT_SYMBOL_GPL(ata_cable_sata); 6966