1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * copyright (c) 2013 Freescale Semiconductor, Inc. 4 * Freescale IMX AHCI SATA platform driver 5 * 6 * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/property.h> 13 #include <linux/regmap.h> 14 #include <linux/ahci_platform.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/of.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 19 #include <linux/libata.h> 20 #include <linux/hwmon.h> 21 #include <linux/hwmon-sysfs.h> 22 #include <linux/phy/phy.h> 23 #include <linux/thermal.h> 24 #include "ahci.h" 25 26 #define DRV_NAME "ahci-imx" 27 28 enum { 29 /* Timer 1-ms Register */ 30 IMX_TIMER1MS = 0x00e0, 31 /* Port0 PHY Control Register */ 32 IMX_P0PHYCR = 0x0178, 33 IMX_P0PHYCR_TEST_PDDQ = 1 << 20, 34 IMX_P0PHYCR_CR_READ = 1 << 19, 35 IMX_P0PHYCR_CR_WRITE = 1 << 18, 36 IMX_P0PHYCR_CR_CAP_DATA = 1 << 17, 37 IMX_P0PHYCR_CR_CAP_ADDR = 1 << 16, 38 /* Port0 PHY Status Register */ 39 IMX_P0PHYSR = 0x017c, 40 IMX_P0PHYSR_CR_ACK = 1 << 18, 41 IMX_P0PHYSR_CR_DATA_OUT = 0xffff << 0, 42 /* Lane0 Output Status Register */ 43 IMX_LANE0_OUT_STAT = 0x2003, 44 IMX_LANE0_OUT_STAT_RX_PLL_STATE = 1 << 1, 45 /* Clock Reset Register */ 46 IMX_CLOCK_RESET = 0x7f3f, 47 IMX_CLOCK_RESET_RESET = 1 << 0, 48 /* IMX8QM SATA specific control registers */ 49 IMX8QM_SATA_AHCI_PTC = 0xc8, 50 IMX8QM_SATA_AHCI_PTC_RXWM_MASK = GENMASK(6, 0), 51 IMX8QM_SATA_AHCI_PTC_RXWM = 0x29, 52 }; 53 54 enum ahci_imx_type { 55 AHCI_IMX53, 56 AHCI_IMX6Q, 57 AHCI_IMX6QP, 58 AHCI_IMX8QM, 59 }; 60 61 struct imx_ahci_priv { 62 struct platform_device *ahci_pdev; 63 enum ahci_imx_type type; 64 struct clk *sata_clk; 65 struct clk *sata_ref_clk; 66 struct clk *ahb_clk; 67 struct regmap *gpr; 68 struct phy *sata_phy; 69 struct phy *cali_phy0; 70 struct phy *cali_phy1; 71 bool no_device; 72 bool first_time; 73 u32 phy_params; 74 u32 imped_ratio; 75 }; 76 77 static int ahci_imx_hotplug; 78 module_param_named(hotplug, ahci_imx_hotplug, int, 0644); 79 MODULE_PARM_DESC(hotplug, "AHCI IMX hot-plug support (0=Don't support, 1=support)"); 80 81 static void ahci_imx_host_stop(struct ata_host *host); 82 83 static int imx_phy_crbit_assert(void __iomem *mmio, u32 bit, bool assert) 84 { 85 int timeout = 10; 86 u32 crval; 87 u32 srval; 88 89 /* Assert or deassert the bit */ 90 crval = readl(mmio + IMX_P0PHYCR); 91 if (assert) 92 crval |= bit; 93 else 94 crval &= ~bit; 95 writel(crval, mmio + IMX_P0PHYCR); 96 97 /* Wait for the cr_ack signal */ 98 do { 99 srval = readl(mmio + IMX_P0PHYSR); 100 if ((assert ? srval : ~srval) & IMX_P0PHYSR_CR_ACK) 101 break; 102 usleep_range(100, 200); 103 } while (--timeout); 104 105 return timeout ? 0 : -ETIMEDOUT; 106 } 107 108 static int imx_phy_reg_addressing(u16 addr, void __iomem *mmio) 109 { 110 u32 crval = addr; 111 int ret; 112 113 /* Supply the address on cr_data_in */ 114 writel(crval, mmio + IMX_P0PHYCR); 115 116 /* Assert the cr_cap_addr signal */ 117 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, true); 118 if (ret) 119 return ret; 120 121 /* Deassert cr_cap_addr */ 122 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, false); 123 if (ret) 124 return ret; 125 126 return 0; 127 } 128 129 static int imx_phy_reg_write(u16 val, void __iomem *mmio) 130 { 131 u32 crval = val; 132 int ret; 133 134 /* Supply the data on cr_data_in */ 135 writel(crval, mmio + IMX_P0PHYCR); 136 137 /* Assert the cr_cap_data signal */ 138 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, true); 139 if (ret) 140 return ret; 141 142 /* Deassert cr_cap_data */ 143 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, false); 144 if (ret) 145 return ret; 146 147 if (val & IMX_CLOCK_RESET_RESET) { 148 /* 149 * In case we're resetting the phy, it's unable to acknowledge, 150 * so we return immediately here. 151 */ 152 crval |= IMX_P0PHYCR_CR_WRITE; 153 writel(crval, mmio + IMX_P0PHYCR); 154 goto out; 155 } 156 157 /* Assert the cr_write signal */ 158 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, true); 159 if (ret) 160 return ret; 161 162 /* Deassert cr_write */ 163 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, false); 164 if (ret) 165 return ret; 166 167 out: 168 return 0; 169 } 170 171 static int imx_phy_reg_read(u16 *val, void __iomem *mmio) 172 { 173 int ret; 174 175 /* Assert the cr_read signal */ 176 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, true); 177 if (ret) 178 return ret; 179 180 /* Capture the data from cr_data_out[] */ 181 *val = readl(mmio + IMX_P0PHYSR) & IMX_P0PHYSR_CR_DATA_OUT; 182 183 /* Deassert cr_read */ 184 ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, false); 185 if (ret) 186 return ret; 187 188 return 0; 189 } 190 191 static int imx_sata_phy_reset(struct ahci_host_priv *hpriv) 192 { 193 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 194 void __iomem *mmio = hpriv->mmio; 195 int timeout = 10; 196 u16 val; 197 int ret; 198 199 if (imxpriv->type == AHCI_IMX6QP) { 200 /* 6qp adds the sata reset mechanism, use it for 6qp sata */ 201 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, 202 IMX6Q_GPR5_SATA_SW_PD, 0); 203 204 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, 205 IMX6Q_GPR5_SATA_SW_RST, 0); 206 udelay(50); 207 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, 208 IMX6Q_GPR5_SATA_SW_RST, 209 IMX6Q_GPR5_SATA_SW_RST); 210 return 0; 211 } 212 213 /* Reset SATA PHY by setting RESET bit of PHY register CLOCK_RESET */ 214 ret = imx_phy_reg_addressing(IMX_CLOCK_RESET, mmio); 215 if (ret) 216 return ret; 217 ret = imx_phy_reg_write(IMX_CLOCK_RESET_RESET, mmio); 218 if (ret) 219 return ret; 220 221 /* Wait for PHY RX_PLL to be stable */ 222 do { 223 usleep_range(100, 200); 224 ret = imx_phy_reg_addressing(IMX_LANE0_OUT_STAT, mmio); 225 if (ret) 226 return ret; 227 ret = imx_phy_reg_read(&val, mmio); 228 if (ret) 229 return ret; 230 if (val & IMX_LANE0_OUT_STAT_RX_PLL_STATE) 231 break; 232 } while (--timeout); 233 234 return timeout ? 0 : -ETIMEDOUT; 235 } 236 237 enum { 238 /* SATA PHY Register */ 239 SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT = 0x0001, 240 SATA_PHY_CR_CLOCK_DAC_CTL = 0x0008, 241 SATA_PHY_CR_CLOCK_RTUNE_CTL = 0x0009, 242 SATA_PHY_CR_CLOCK_ADC_OUT = 0x000A, 243 SATA_PHY_CR_CLOCK_MPLL_TST = 0x0017, 244 }; 245 246 static int read_adc_sum(void *dev, u16 rtune_ctl_reg, void __iomem * mmio) 247 { 248 u16 adc_out_reg, read_sum; 249 u32 index, read_attempt; 250 const u32 attempt_limit = 200; 251 252 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); 253 imx_phy_reg_write(rtune_ctl_reg, mmio); 254 255 /* two dummy read */ 256 index = 0; 257 read_attempt = 0; 258 adc_out_reg = 0; 259 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_ADC_OUT, mmio); 260 while (index < 2) { 261 imx_phy_reg_read(&adc_out_reg, mmio); 262 /* check if valid */ 263 if (adc_out_reg & 0x400) 264 index++; 265 266 read_attempt++; 267 if (read_attempt > attempt_limit) { 268 dev_err(dev, "Read REG more than %d times!\n", 269 attempt_limit); 270 break; 271 } 272 } 273 274 index = 0; 275 read_attempt = 0; 276 read_sum = 0; 277 while (index < 80) { 278 imx_phy_reg_read(&adc_out_reg, mmio); 279 if (adc_out_reg & 0x400) { 280 read_sum = read_sum + (adc_out_reg & 0x3FF); 281 index++; 282 } 283 read_attempt++; 284 if (read_attempt > attempt_limit) { 285 dev_err(dev, "Read REG more than %d times!\n", 286 attempt_limit); 287 break; 288 } 289 } 290 291 /* Use the U32 to make 1000 precision */ 292 return (read_sum * 1000) / 80; 293 } 294 295 /* SATA AHCI temperature monitor */ 296 static int __sata_ahci_read_temperature(void *dev, int *temp) 297 { 298 u16 mpll_test_reg, rtune_ctl_reg, dac_ctl_reg, read_sum; 299 u32 str1, str2, str3, str4; 300 int m1, m2, a; 301 struct ahci_host_priv *hpriv = dev_get_drvdata(dev); 302 void __iomem *mmio = hpriv->mmio; 303 304 /* check rd-wr to reg */ 305 read_sum = 0; 306 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT, mmio); 307 imx_phy_reg_write(read_sum, mmio); 308 imx_phy_reg_read(&read_sum, mmio); 309 if ((read_sum & 0xffff) != 0) 310 dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); 311 312 imx_phy_reg_write(0x5A5A, mmio); 313 imx_phy_reg_read(&read_sum, mmio); 314 if ((read_sum & 0xffff) != 0x5A5A) 315 dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); 316 317 imx_phy_reg_write(0x1234, mmio); 318 imx_phy_reg_read(&read_sum, mmio); 319 if ((read_sum & 0xffff) != 0x1234) 320 dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum); 321 322 /* start temperature test */ 323 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); 324 imx_phy_reg_read(&mpll_test_reg, mmio); 325 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); 326 imx_phy_reg_read(&rtune_ctl_reg, mmio); 327 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); 328 imx_phy_reg_read(&dac_ctl_reg, mmio); 329 330 /* mpll_tst.meas_iv ([12:2]) */ 331 str1 = (mpll_test_reg >> 2) & 0x7FF; 332 /* rtune_ctl.mode ([1:0]) */ 333 str2 = (rtune_ctl_reg) & 0x3; 334 /* dac_ctl.dac_mode ([14:12]) */ 335 str3 = (dac_ctl_reg >> 12) & 0x7; 336 /* rtune_ctl.sel_atbp ([4]) */ 337 str4 = (rtune_ctl_reg >> 4); 338 339 /* Calculate the m1 */ 340 /* mpll_tst.meas_iv */ 341 mpll_test_reg = (mpll_test_reg & 0xE03) | (512) << 2; 342 /* rtune_ctl.mode */ 343 rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (1); 344 /* dac_ctl.dac_mode */ 345 dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (4) << 12; 346 /* rtune_ctl.sel_atbp */ 347 rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (0) << 4; 348 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); 349 imx_phy_reg_write(mpll_test_reg, mmio); 350 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); 351 imx_phy_reg_write(dac_ctl_reg, mmio); 352 m1 = read_adc_sum(dev, rtune_ctl_reg, mmio); 353 354 /* Calculate the m2 */ 355 /* rtune_ctl.sel_atbp */ 356 rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (1) << 4; 357 m2 = read_adc_sum(dev, rtune_ctl_reg, mmio); 358 359 /* restore the status */ 360 /* mpll_tst.meas_iv */ 361 mpll_test_reg = (mpll_test_reg & 0xE03) | (str1) << 2; 362 /* rtune_ctl.mode */ 363 rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (str2); 364 /* dac_ctl.dac_mode */ 365 dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (str3) << 12; 366 /* rtune_ctl.sel_atbp */ 367 rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (str4) << 4; 368 369 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio); 370 imx_phy_reg_write(mpll_test_reg, mmio); 371 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio); 372 imx_phy_reg_write(dac_ctl_reg, mmio); 373 imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio); 374 imx_phy_reg_write(rtune_ctl_reg, mmio); 375 376 /* Compute temperature */ 377 if (!(m2 / 1000)) 378 m2 = 1000; 379 a = (m2 - m1) / (m2/1000); 380 *temp = ((-559) * a * a) / 1000 + (1379) * a + (-458000); 381 382 return 0; 383 } 384 385 static int sata_ahci_read_temperature(struct thermal_zone_device *tz, int *temp) 386 { 387 return __sata_ahci_read_temperature(thermal_zone_device_priv(tz), temp); 388 } 389 390 static ssize_t sata_ahci_show_temp(struct device *dev, 391 struct device_attribute *da, 392 char *buf) 393 { 394 unsigned int temp = 0; 395 int err; 396 397 err = __sata_ahci_read_temperature(dev, &temp); 398 if (err < 0) 399 return err; 400 401 return sprintf(buf, "%u\n", temp); 402 } 403 404 static const struct thermal_zone_device_ops fsl_sata_ahci_of_thermal_ops = { 405 .get_temp = sata_ahci_read_temperature, 406 }; 407 408 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, sata_ahci_show_temp, NULL, 0); 409 410 static struct attribute *fsl_sata_ahci_attrs[] = { 411 &sensor_dev_attr_temp1_input.dev_attr.attr, 412 NULL 413 }; 414 ATTRIBUTE_GROUPS(fsl_sata_ahci); 415 416 static int imx8_sata_enable(struct ahci_host_priv *hpriv) 417 { 418 u32 val; 419 int ret; 420 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 421 struct device *dev = &imxpriv->ahci_pdev->dev; 422 423 /* 424 * Since "REXT" pin is only present for first lane of i.MX8QM 425 * PHY, its calibration results will be stored, passed through 426 * to the second lane PHY, and shared with all three lane PHYs. 427 * 428 * Initialize the first two lane PHYs here, although only the 429 * third lane PHY is used by SATA. 430 */ 431 ret = phy_init(imxpriv->cali_phy0); 432 if (ret) { 433 dev_err(dev, "cali PHY init failed\n"); 434 return ret; 435 } 436 ret = phy_power_on(imxpriv->cali_phy0); 437 if (ret) { 438 dev_err(dev, "cali PHY power on failed\n"); 439 goto err_cali_phy0_exit; 440 } 441 ret = phy_init(imxpriv->cali_phy1); 442 if (ret) { 443 dev_err(dev, "cali PHY1 init failed\n"); 444 goto err_cali_phy0_off; 445 } 446 ret = phy_power_on(imxpriv->cali_phy1); 447 if (ret) { 448 dev_err(dev, "cali PHY1 power on failed\n"); 449 goto err_cali_phy1_exit; 450 } 451 ret = phy_init(imxpriv->sata_phy); 452 if (ret) { 453 dev_err(dev, "sata PHY init failed\n"); 454 goto err_cali_phy1_off; 455 } 456 ret = phy_set_mode(imxpriv->sata_phy, PHY_MODE_SATA); 457 if (ret) { 458 dev_err(dev, "unable to set SATA PHY mode\n"); 459 goto err_sata_phy_exit; 460 } 461 ret = phy_power_on(imxpriv->sata_phy); 462 if (ret) { 463 dev_err(dev, "sata PHY power up failed\n"); 464 goto err_sata_phy_exit; 465 } 466 467 /* The cali_phy# can be turned off after SATA PHY is initialized. */ 468 phy_power_off(imxpriv->cali_phy1); 469 phy_exit(imxpriv->cali_phy1); 470 phy_power_off(imxpriv->cali_phy0); 471 phy_exit(imxpriv->cali_phy0); 472 473 /* RxWaterMark setting */ 474 val = readl(hpriv->mmio + IMX8QM_SATA_AHCI_PTC); 475 val &= ~IMX8QM_SATA_AHCI_PTC_RXWM_MASK; 476 val |= IMX8QM_SATA_AHCI_PTC_RXWM; 477 writel(val, hpriv->mmio + IMX8QM_SATA_AHCI_PTC); 478 479 return 0; 480 481 err_sata_phy_exit: 482 phy_exit(imxpriv->sata_phy); 483 err_cali_phy1_off: 484 phy_power_off(imxpriv->cali_phy1); 485 err_cali_phy1_exit: 486 phy_exit(imxpriv->cali_phy1); 487 err_cali_phy0_off: 488 phy_power_off(imxpriv->cali_phy0); 489 err_cali_phy0_exit: 490 phy_exit(imxpriv->cali_phy0); 491 492 return ret; 493 } 494 495 static int imx_sata_enable(struct ahci_host_priv *hpriv) 496 { 497 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 498 struct device *dev = &imxpriv->ahci_pdev->dev; 499 int ret; 500 501 if (imxpriv->no_device) 502 return 0; 503 504 ret = ahci_platform_enable_regulators(hpriv); 505 if (ret) 506 return ret; 507 508 ret = clk_prepare_enable(imxpriv->sata_ref_clk); 509 if (ret < 0) 510 goto disable_regulator; 511 512 if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) { 513 /* 514 * set PHY Parameters, two steps to configure the GPR13, 515 * one write for rest of parameters, mask of first write 516 * is 0x07ffffff, and the other one write for setting 517 * the mpll_clk_en. 518 */ 519 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, 520 IMX6Q_GPR13_SATA_RX_EQ_VAL_MASK | 521 IMX6Q_GPR13_SATA_RX_LOS_LVL_MASK | 522 IMX6Q_GPR13_SATA_RX_DPLL_MODE_MASK | 523 IMX6Q_GPR13_SATA_SPD_MODE_MASK | 524 IMX6Q_GPR13_SATA_MPLL_SS_EN | 525 IMX6Q_GPR13_SATA_TX_ATTEN_MASK | 526 IMX6Q_GPR13_SATA_TX_BOOST_MASK | 527 IMX6Q_GPR13_SATA_TX_LVL_MASK | 528 IMX6Q_GPR13_SATA_MPLL_CLK_EN | 529 IMX6Q_GPR13_SATA_TX_EDGE_RATE, 530 imxpriv->phy_params); 531 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, 532 IMX6Q_GPR13_SATA_MPLL_CLK_EN, 533 IMX6Q_GPR13_SATA_MPLL_CLK_EN); 534 535 usleep_range(100, 200); 536 537 ret = imx_sata_phy_reset(hpriv); 538 if (ret) { 539 dev_err(dev, "failed to reset phy: %d\n", ret); 540 goto disable_clk; 541 } 542 } else if (imxpriv->type == AHCI_IMX8QM) { 543 ret = imx8_sata_enable(hpriv); 544 if (ret) 545 goto disable_clk; 546 547 } 548 549 usleep_range(1000, 2000); 550 551 return 0; 552 553 disable_clk: 554 clk_disable_unprepare(imxpriv->sata_ref_clk); 555 disable_regulator: 556 ahci_platform_disable_regulators(hpriv); 557 558 return ret; 559 } 560 561 static void imx_sata_disable(struct ahci_host_priv *hpriv) 562 { 563 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 564 565 if (imxpriv->no_device) 566 return; 567 568 switch (imxpriv->type) { 569 case AHCI_IMX6QP: 570 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5, 571 IMX6Q_GPR5_SATA_SW_PD, 572 IMX6Q_GPR5_SATA_SW_PD); 573 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, 574 IMX6Q_GPR13_SATA_MPLL_CLK_EN, 575 !IMX6Q_GPR13_SATA_MPLL_CLK_EN); 576 break; 577 578 case AHCI_IMX6Q: 579 regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13, 580 IMX6Q_GPR13_SATA_MPLL_CLK_EN, 581 !IMX6Q_GPR13_SATA_MPLL_CLK_EN); 582 break; 583 584 case AHCI_IMX8QM: 585 if (imxpriv->sata_phy) { 586 phy_power_off(imxpriv->sata_phy); 587 phy_exit(imxpriv->sata_phy); 588 } 589 break; 590 591 default: 592 break; 593 } 594 595 clk_disable_unprepare(imxpriv->sata_ref_clk); 596 597 ahci_platform_disable_regulators(hpriv); 598 } 599 600 static void ahci_imx_error_handler(struct ata_port *ap) 601 { 602 u32 reg_val; 603 struct ata_device *dev; 604 struct ata_host *host = dev_get_drvdata(ap->dev); 605 struct ahci_host_priv *hpriv = host->private_data; 606 void __iomem *mmio = hpriv->mmio; 607 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 608 609 ahci_error_handler(ap); 610 611 if (imxpriv->type == AHCI_IMX8QM) 612 return; 613 614 if (!(imxpriv->first_time) || ahci_imx_hotplug) 615 return; 616 617 imxpriv->first_time = false; 618 619 ata_for_each_dev(dev, &ap->link, ENABLED) 620 return; 621 /* 622 * Disable link to save power. An imx ahci port can't be recovered 623 * without full reset once the pddq mode is enabled making it 624 * impossible to use as part of libata LPM. 625 */ 626 reg_val = readl(mmio + IMX_P0PHYCR); 627 writel(reg_val | IMX_P0PHYCR_TEST_PDDQ, mmio + IMX_P0PHYCR); 628 imx_sata_disable(hpriv); 629 imxpriv->no_device = true; 630 631 dev_info(ap->dev, "no device found, disabling link.\n"); 632 dev_info(ap->dev, "pass " MODULE_PARAM_PREFIX ".hotplug=1 to enable hotplug\n"); 633 } 634 635 static int ahci_imx_softreset(struct ata_link *link, unsigned int *class, 636 unsigned long deadline) 637 { 638 struct ata_port *ap = link->ap; 639 struct ata_host *host = dev_get_drvdata(ap->dev); 640 struct ahci_host_priv *hpriv = host->private_data; 641 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 642 int ret; 643 644 if (imxpriv->type == AHCI_IMX53) 645 ret = ahci_pmp_retry_srst_ops.reset.softreset(link, class, 646 deadline); 647 else 648 ret = ahci_ops.reset.softreset(link, class, deadline); 649 650 return ret; 651 } 652 653 static struct ata_port_operations ahci_imx_ops = { 654 .inherits = &ahci_ops, 655 .host_stop = ahci_imx_host_stop, 656 .error_handler = ahci_imx_error_handler, 657 .reset.softreset = ahci_imx_softreset, 658 }; 659 660 static const struct ata_port_info ahci_imx_port_info = { 661 .flags = AHCI_FLAG_COMMON, 662 .pio_mask = ATA_PIO4, 663 .udma_mask = ATA_UDMA6, 664 .port_ops = &ahci_imx_ops, 665 }; 666 667 static const struct of_device_id imx_ahci_of_match[] = { 668 { .compatible = "fsl,imx53-ahci", .data = (void *)AHCI_IMX53 }, 669 { .compatible = "fsl,imx6q-ahci", .data = (void *)AHCI_IMX6Q }, 670 { .compatible = "fsl,imx6qp-ahci", .data = (void *)AHCI_IMX6QP }, 671 { .compatible = "fsl,imx8qm-ahci", .data = (void *)AHCI_IMX8QM }, 672 { /* sentinel */ } 673 }; 674 MODULE_DEVICE_TABLE(of, imx_ahci_of_match); 675 676 struct reg_value { 677 u32 of_value; 678 u32 reg_value; 679 }; 680 681 struct reg_property { 682 const char *name; 683 const struct reg_value *values; 684 size_t num_values; 685 u32 def_value; 686 u32 set_value; 687 }; 688 689 static const struct reg_value gpr13_tx_level[] = { 690 { 937, IMX6Q_GPR13_SATA_TX_LVL_0_937_V }, 691 { 947, IMX6Q_GPR13_SATA_TX_LVL_0_947_V }, 692 { 957, IMX6Q_GPR13_SATA_TX_LVL_0_957_V }, 693 { 966, IMX6Q_GPR13_SATA_TX_LVL_0_966_V }, 694 { 976, IMX6Q_GPR13_SATA_TX_LVL_0_976_V }, 695 { 986, IMX6Q_GPR13_SATA_TX_LVL_0_986_V }, 696 { 996, IMX6Q_GPR13_SATA_TX_LVL_0_996_V }, 697 { 1005, IMX6Q_GPR13_SATA_TX_LVL_1_005_V }, 698 { 1015, IMX6Q_GPR13_SATA_TX_LVL_1_015_V }, 699 { 1025, IMX6Q_GPR13_SATA_TX_LVL_1_025_V }, 700 { 1035, IMX6Q_GPR13_SATA_TX_LVL_1_035_V }, 701 { 1045, IMX6Q_GPR13_SATA_TX_LVL_1_045_V }, 702 { 1054, IMX6Q_GPR13_SATA_TX_LVL_1_054_V }, 703 { 1064, IMX6Q_GPR13_SATA_TX_LVL_1_064_V }, 704 { 1074, IMX6Q_GPR13_SATA_TX_LVL_1_074_V }, 705 { 1084, IMX6Q_GPR13_SATA_TX_LVL_1_084_V }, 706 { 1094, IMX6Q_GPR13_SATA_TX_LVL_1_094_V }, 707 { 1104, IMX6Q_GPR13_SATA_TX_LVL_1_104_V }, 708 { 1113, IMX6Q_GPR13_SATA_TX_LVL_1_113_V }, 709 { 1123, IMX6Q_GPR13_SATA_TX_LVL_1_123_V }, 710 { 1133, IMX6Q_GPR13_SATA_TX_LVL_1_133_V }, 711 { 1143, IMX6Q_GPR13_SATA_TX_LVL_1_143_V }, 712 { 1152, IMX6Q_GPR13_SATA_TX_LVL_1_152_V }, 713 { 1162, IMX6Q_GPR13_SATA_TX_LVL_1_162_V }, 714 { 1172, IMX6Q_GPR13_SATA_TX_LVL_1_172_V }, 715 { 1182, IMX6Q_GPR13_SATA_TX_LVL_1_182_V }, 716 { 1191, IMX6Q_GPR13_SATA_TX_LVL_1_191_V }, 717 { 1201, IMX6Q_GPR13_SATA_TX_LVL_1_201_V }, 718 { 1211, IMX6Q_GPR13_SATA_TX_LVL_1_211_V }, 719 { 1221, IMX6Q_GPR13_SATA_TX_LVL_1_221_V }, 720 { 1230, IMX6Q_GPR13_SATA_TX_LVL_1_230_V }, 721 { 1240, IMX6Q_GPR13_SATA_TX_LVL_1_240_V } 722 }; 723 724 static const struct reg_value gpr13_tx_boost[] = { 725 { 0, IMX6Q_GPR13_SATA_TX_BOOST_0_00_DB }, 726 { 370, IMX6Q_GPR13_SATA_TX_BOOST_0_37_DB }, 727 { 740, IMX6Q_GPR13_SATA_TX_BOOST_0_74_DB }, 728 { 1110, IMX6Q_GPR13_SATA_TX_BOOST_1_11_DB }, 729 { 1480, IMX6Q_GPR13_SATA_TX_BOOST_1_48_DB }, 730 { 1850, IMX6Q_GPR13_SATA_TX_BOOST_1_85_DB }, 731 { 2220, IMX6Q_GPR13_SATA_TX_BOOST_2_22_DB }, 732 { 2590, IMX6Q_GPR13_SATA_TX_BOOST_2_59_DB }, 733 { 2960, IMX6Q_GPR13_SATA_TX_BOOST_2_96_DB }, 734 { 3330, IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB }, 735 { 3700, IMX6Q_GPR13_SATA_TX_BOOST_3_70_DB }, 736 { 4070, IMX6Q_GPR13_SATA_TX_BOOST_4_07_DB }, 737 { 4440, IMX6Q_GPR13_SATA_TX_BOOST_4_44_DB }, 738 { 4810, IMX6Q_GPR13_SATA_TX_BOOST_4_81_DB }, 739 { 5280, IMX6Q_GPR13_SATA_TX_BOOST_5_28_DB }, 740 { 5750, IMX6Q_GPR13_SATA_TX_BOOST_5_75_DB } 741 }; 742 743 static const struct reg_value gpr13_tx_atten[] = { 744 { 8, IMX6Q_GPR13_SATA_TX_ATTEN_8_16 }, 745 { 9, IMX6Q_GPR13_SATA_TX_ATTEN_9_16 }, 746 { 10, IMX6Q_GPR13_SATA_TX_ATTEN_10_16 }, 747 { 12, IMX6Q_GPR13_SATA_TX_ATTEN_12_16 }, 748 { 14, IMX6Q_GPR13_SATA_TX_ATTEN_14_16 }, 749 { 16, IMX6Q_GPR13_SATA_TX_ATTEN_16_16 }, 750 }; 751 752 static const struct reg_value gpr13_rx_eq[] = { 753 { 500, IMX6Q_GPR13_SATA_RX_EQ_VAL_0_5_DB }, 754 { 1000, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_0_DB }, 755 { 1500, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_5_DB }, 756 { 2000, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_0_DB }, 757 { 2500, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_5_DB }, 758 { 3000, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB }, 759 { 3500, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_5_DB }, 760 { 4000, IMX6Q_GPR13_SATA_RX_EQ_VAL_4_0_DB }, 761 }; 762 763 static const struct reg_property gpr13_props[] = { 764 { 765 .name = "fsl,transmit-level-mV", 766 .values = gpr13_tx_level, 767 .num_values = ARRAY_SIZE(gpr13_tx_level), 768 .def_value = IMX6Q_GPR13_SATA_TX_LVL_1_025_V, 769 }, { 770 .name = "fsl,transmit-boost-mdB", 771 .values = gpr13_tx_boost, 772 .num_values = ARRAY_SIZE(gpr13_tx_boost), 773 .def_value = IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB, 774 }, { 775 .name = "fsl,transmit-atten-16ths", 776 .values = gpr13_tx_atten, 777 .num_values = ARRAY_SIZE(gpr13_tx_atten), 778 .def_value = IMX6Q_GPR13_SATA_TX_ATTEN_9_16, 779 }, { 780 .name = "fsl,receive-eq-mdB", 781 .values = gpr13_rx_eq, 782 .num_values = ARRAY_SIZE(gpr13_rx_eq), 783 .def_value = IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB, 784 }, { 785 .name = "fsl,no-spread-spectrum", 786 .def_value = IMX6Q_GPR13_SATA_MPLL_SS_EN, 787 .set_value = 0, 788 }, 789 }; 790 791 static u32 imx_ahci_parse_props(struct device *dev, 792 const struct reg_property *prop, size_t num) 793 { 794 struct device_node *np = dev->of_node; 795 u32 reg_value = 0; 796 int i, j; 797 798 for (i = 0; i < num; i++, prop++) { 799 u32 of_val; 800 801 if (prop->num_values == 0) { 802 if (of_property_read_bool(np, prop->name)) 803 reg_value |= prop->set_value; 804 else 805 reg_value |= prop->def_value; 806 continue; 807 } 808 809 if (of_property_read_u32(np, prop->name, &of_val)) { 810 dev_info(dev, "%s not specified, using %08x\n", 811 prop->name, prop->def_value); 812 reg_value |= prop->def_value; 813 continue; 814 } 815 816 for (j = 0; j < prop->num_values; j++) { 817 if (prop->values[j].of_value == of_val) { 818 dev_info(dev, "%s value %u, using %08x\n", 819 prop->name, of_val, prop->values[j].reg_value); 820 reg_value |= prop->values[j].reg_value; 821 break; 822 } 823 } 824 825 if (j == prop->num_values) { 826 dev_err(dev, "DT property %s is not a valid value\n", 827 prop->name); 828 reg_value |= prop->def_value; 829 } 830 } 831 832 return reg_value; 833 } 834 835 static const struct scsi_host_template ahci_platform_sht = { 836 AHCI_SHT(DRV_NAME), 837 }; 838 839 static int imx8_sata_probe(struct device *dev, struct imx_ahci_priv *imxpriv) 840 { 841 imxpriv->sata_phy = devm_phy_get(dev, "sata-phy"); 842 if (IS_ERR(imxpriv->sata_phy)) 843 return dev_err_probe(dev, PTR_ERR(imxpriv->sata_phy), 844 "Failed to get sata_phy\n"); 845 846 imxpriv->cali_phy0 = devm_phy_get(dev, "cali-phy0"); 847 if (IS_ERR(imxpriv->cali_phy0)) 848 return dev_err_probe(dev, PTR_ERR(imxpriv->cali_phy0), 849 "Failed to get cali_phy0\n"); 850 imxpriv->cali_phy1 = devm_phy_get(dev, "cali-phy1"); 851 if (IS_ERR(imxpriv->cali_phy1)) 852 return dev_err_probe(dev, PTR_ERR(imxpriv->cali_phy1), 853 "Failed to get cali_phy1\n"); 854 return 0; 855 } 856 857 static int imx_ahci_probe(struct platform_device *pdev) 858 { 859 struct device *dev = &pdev->dev; 860 struct ahci_host_priv *hpriv; 861 struct imx_ahci_priv *imxpriv; 862 unsigned int reg_val; 863 int ret; 864 865 imxpriv = devm_kzalloc(dev, sizeof(*imxpriv), GFP_KERNEL); 866 if (!imxpriv) 867 return -ENOMEM; 868 869 imxpriv->ahci_pdev = pdev; 870 imxpriv->no_device = false; 871 imxpriv->first_time = true; 872 imxpriv->type = (enum ahci_imx_type)device_get_match_data(dev); 873 874 imxpriv->sata_clk = devm_clk_get(dev, "sata"); 875 if (IS_ERR(imxpriv->sata_clk)) { 876 dev_err(dev, "can't get sata clock.\n"); 877 return PTR_ERR(imxpriv->sata_clk); 878 } 879 880 imxpriv->sata_ref_clk = devm_clk_get(dev, "sata_ref"); 881 if (IS_ERR(imxpriv->sata_ref_clk)) { 882 dev_err(dev, "can't get sata_ref clock.\n"); 883 return PTR_ERR(imxpriv->sata_ref_clk); 884 } 885 886 if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) { 887 u32 reg_value; 888 889 imxpriv->gpr = syscon_regmap_lookup_by_compatible( 890 "fsl,imx6q-iomuxc-gpr"); 891 if (IS_ERR(imxpriv->gpr)) { 892 dev_err(dev, 893 "failed to find fsl,imx6q-iomux-gpr regmap\n"); 894 return PTR_ERR(imxpriv->gpr); 895 } 896 897 reg_value = imx_ahci_parse_props(dev, gpr13_props, 898 ARRAY_SIZE(gpr13_props)); 899 900 imxpriv->phy_params = 901 IMX6Q_GPR13_SATA_RX_LOS_LVL_SATA2M | 902 IMX6Q_GPR13_SATA_RX_DPLL_MODE_2P_4F | 903 IMX6Q_GPR13_SATA_SPD_MODE_3P0G | 904 reg_value; 905 } else if (imxpriv->type == AHCI_IMX8QM) { 906 ret = imx8_sata_probe(dev, imxpriv); 907 if (ret) 908 return ret; 909 } 910 911 hpriv = ahci_platform_get_resources(pdev, 0); 912 if (IS_ERR(hpriv)) 913 return PTR_ERR(hpriv); 914 915 hpriv->plat_data = imxpriv; 916 917 ret = clk_prepare_enable(imxpriv->sata_clk); 918 if (ret) 919 return ret; 920 921 if (imxpriv->type == AHCI_IMX53 && 922 IS_ENABLED(CONFIG_HWMON)) { 923 /* Add the temperature monitor */ 924 struct device *hwmon_dev; 925 926 hwmon_dev = 927 devm_hwmon_device_register_with_groups(dev, 928 "sata_ahci", 929 hpriv, 930 fsl_sata_ahci_groups); 931 if (IS_ERR(hwmon_dev)) { 932 ret = PTR_ERR(hwmon_dev); 933 goto disable_clk; 934 } 935 devm_thermal_of_zone_register(hwmon_dev, 0, hwmon_dev, 936 &fsl_sata_ahci_of_thermal_ops); 937 dev_info(dev, "%s: sensor 'sata_ahci'\n", dev_name(hwmon_dev)); 938 } 939 940 ret = imx_sata_enable(hpriv); 941 if (ret) 942 goto disable_clk; 943 944 /* 945 * Configure the HWINIT bits of the HOST_CAP and HOST_PORTS_IMPL. 946 * Set CAP_SSS (support stagered spin up) and Implement the port0. 947 */ 948 reg_val = readl(hpriv->mmio + HOST_CAP); 949 if (!(reg_val & HOST_CAP_SSS)) { 950 reg_val |= HOST_CAP_SSS; 951 writel(reg_val, hpriv->mmio + HOST_CAP); 952 } 953 reg_val = readl(hpriv->mmio + HOST_PORTS_IMPL); 954 if (!(reg_val & 0x1)) { 955 reg_val |= 0x1; 956 writel(reg_val, hpriv->mmio + HOST_PORTS_IMPL); 957 } 958 959 if (imxpriv->type != AHCI_IMX8QM) { 960 /* 961 * Get AHB clock rate and configure the vendor specified 962 * TIMER1MS register on i.MX53, i.MX6Q and i.MX6QP only. 963 */ 964 imxpriv->ahb_clk = devm_clk_get(dev, "ahb"); 965 if (IS_ERR(imxpriv->ahb_clk)) { 966 dev_err(dev, "Failed to get ahb clock\n"); 967 ret = PTR_ERR(imxpriv->ahb_clk); 968 goto disable_sata; 969 } 970 reg_val = clk_get_rate(imxpriv->ahb_clk) / 1000; 971 writel(reg_val, hpriv->mmio + IMX_TIMER1MS); 972 } 973 974 ret = ahci_platform_init_host(pdev, hpriv, &ahci_imx_port_info, 975 &ahci_platform_sht); 976 if (ret) 977 goto disable_sata; 978 979 return 0; 980 981 disable_sata: 982 imx_sata_disable(hpriv); 983 disable_clk: 984 clk_disable_unprepare(imxpriv->sata_clk); 985 return ret; 986 } 987 988 static void ahci_imx_host_stop(struct ata_host *host) 989 { 990 struct ahci_host_priv *hpriv = host->private_data; 991 struct imx_ahci_priv *imxpriv = hpriv->plat_data; 992 993 imx_sata_disable(hpriv); 994 clk_disable_unprepare(imxpriv->sata_clk); 995 } 996 997 #ifdef CONFIG_PM_SLEEP 998 static int imx_ahci_suspend(struct device *dev) 999 { 1000 struct ata_host *host = dev_get_drvdata(dev); 1001 struct ahci_host_priv *hpriv = host->private_data; 1002 int ret; 1003 1004 ret = ahci_platform_suspend_host(dev); 1005 if (ret) 1006 return ret; 1007 1008 imx_sata_disable(hpriv); 1009 1010 return 0; 1011 } 1012 1013 static int imx_ahci_resume(struct device *dev) 1014 { 1015 struct ata_host *host = dev_get_drvdata(dev); 1016 struct ahci_host_priv *hpriv = host->private_data; 1017 int ret; 1018 1019 ret = imx_sata_enable(hpriv); 1020 if (ret) 1021 return ret; 1022 1023 return ahci_platform_resume_host(dev); 1024 } 1025 #endif 1026 1027 static SIMPLE_DEV_PM_OPS(ahci_imx_pm_ops, imx_ahci_suspend, imx_ahci_resume); 1028 1029 static struct platform_driver imx_ahci_driver = { 1030 .probe = imx_ahci_probe, 1031 .remove = ata_platform_remove_one, 1032 .driver = { 1033 .name = DRV_NAME, 1034 .of_match_table = imx_ahci_of_match, 1035 .pm = &ahci_imx_pm_ops, 1036 }, 1037 }; 1038 module_platform_driver(imx_ahci_driver); 1039 1040 MODULE_DESCRIPTION("Freescale i.MX AHCI SATA platform driver"); 1041 MODULE_AUTHOR("Richard Zhu <hongxing.zhu@nxp.com>"); 1042 MODULE_LICENSE("GPL"); 1043 MODULE_ALIAS("platform:" DRV_NAME); 1044