1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_freelist; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 struct binder_buffer *buffer; 171 172 spin_lock(&alloc->lock); 173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 174 spin_unlock(&alloc->lock); 175 return buffer; 176 } 177 178 static inline void 179 binder_set_installed_page(struct binder_lru_page *lru_page, 180 struct page *page) 181 { 182 /* Pairs with acquire in binder_get_installed_page() */ 183 smp_store_release(&lru_page->page_ptr, page); 184 } 185 186 static inline struct page * 187 binder_get_installed_page(struct binder_lru_page *lru_page) 188 { 189 /* Pairs with release in binder_set_installed_page() */ 190 return smp_load_acquire(&lru_page->page_ptr); 191 } 192 193 static void binder_lru_freelist_add(struct binder_alloc *alloc, 194 unsigned long start, unsigned long end) 195 { 196 struct binder_lru_page *page; 197 unsigned long page_addr; 198 199 trace_binder_update_page_range(alloc, false, start, end); 200 201 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 202 size_t index; 203 int ret; 204 205 index = (page_addr - alloc->buffer) / PAGE_SIZE; 206 page = &alloc->pages[index]; 207 208 if (!binder_get_installed_page(page)) 209 continue; 210 211 trace_binder_free_lru_start(alloc, index); 212 213 ret = list_lru_add_obj(&binder_freelist, &page->lru); 214 WARN_ON(!ret); 215 216 trace_binder_free_lru_end(alloc, index); 217 } 218 } 219 220 static int binder_install_single_page(struct binder_alloc *alloc, 221 struct binder_lru_page *lru_page, 222 unsigned long addr) 223 { 224 struct page *page; 225 int ret = 0; 226 227 if (!mmget_not_zero(alloc->mm)) 228 return -ESRCH; 229 230 /* 231 * Protected with mmap_sem in write mode as multiple tasks 232 * might race to install the same page. 233 */ 234 mmap_write_lock(alloc->mm); 235 if (binder_get_installed_page(lru_page)) 236 goto out; 237 238 if (!alloc->vma) { 239 pr_err("%d: %s failed, no vma\n", alloc->pid, __func__); 240 ret = -ESRCH; 241 goto out; 242 } 243 244 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 245 if (!page) { 246 pr_err("%d: failed to allocate page\n", alloc->pid); 247 ret = -ENOMEM; 248 goto out; 249 } 250 251 ret = vm_insert_page(alloc->vma, addr, page); 252 if (ret) { 253 pr_err("%d: %s failed to insert page at offset %lx with %d\n", 254 alloc->pid, __func__, addr - alloc->buffer, ret); 255 __free_page(page); 256 ret = -ENOMEM; 257 goto out; 258 } 259 260 /* Mark page installation complete and safe to use */ 261 binder_set_installed_page(lru_page, page); 262 out: 263 mmap_write_unlock(alloc->mm); 264 mmput_async(alloc->mm); 265 return ret; 266 } 267 268 static int binder_install_buffer_pages(struct binder_alloc *alloc, 269 struct binder_buffer *buffer, 270 size_t size) 271 { 272 struct binder_lru_page *page; 273 unsigned long start, final; 274 unsigned long page_addr; 275 276 start = buffer->user_data & PAGE_MASK; 277 final = PAGE_ALIGN(buffer->user_data + size); 278 279 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 280 unsigned long index; 281 int ret; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 if (binder_get_installed_page(page)) 287 continue; 288 289 trace_binder_alloc_page_start(alloc, index); 290 291 ret = binder_install_single_page(alloc, page, page_addr); 292 if (ret) 293 return ret; 294 295 trace_binder_alloc_page_end(alloc, index); 296 } 297 298 return 0; 299 } 300 301 /* The range of pages should exclude those shared with other buffers */ 302 static void binder_lru_freelist_del(struct binder_alloc *alloc, 303 unsigned long start, unsigned long end) 304 { 305 struct binder_lru_page *page; 306 unsigned long page_addr; 307 308 trace_binder_update_page_range(alloc, true, start, end); 309 310 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 311 unsigned long index; 312 bool on_lru; 313 314 index = (page_addr - alloc->buffer) / PAGE_SIZE; 315 page = &alloc->pages[index]; 316 317 if (page->page_ptr) { 318 trace_binder_alloc_lru_start(alloc, index); 319 320 on_lru = list_lru_del_obj(&binder_freelist, &page->lru); 321 WARN_ON(!on_lru); 322 323 trace_binder_alloc_lru_end(alloc, index); 324 continue; 325 } 326 327 if (index + 1 > alloc->pages_high) 328 alloc->pages_high = index + 1; 329 } 330 } 331 332 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 333 struct vm_area_struct *vma) 334 { 335 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 336 smp_store_release(&alloc->vma, vma); 337 } 338 339 static inline struct vm_area_struct *binder_alloc_get_vma( 340 struct binder_alloc *alloc) 341 { 342 /* pairs with smp_store_release in binder_alloc_set_vma() */ 343 return smp_load_acquire(&alloc->vma); 344 } 345 346 static void debug_no_space_locked(struct binder_alloc *alloc) 347 { 348 size_t largest_alloc_size = 0; 349 struct binder_buffer *buffer; 350 size_t allocated_buffers = 0; 351 size_t largest_free_size = 0; 352 size_t total_alloc_size = 0; 353 size_t total_free_size = 0; 354 size_t free_buffers = 0; 355 size_t buffer_size; 356 struct rb_node *n; 357 358 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 359 buffer = rb_entry(n, struct binder_buffer, rb_node); 360 buffer_size = binder_alloc_buffer_size(alloc, buffer); 361 allocated_buffers++; 362 total_alloc_size += buffer_size; 363 if (buffer_size > largest_alloc_size) 364 largest_alloc_size = buffer_size; 365 } 366 367 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 368 buffer = rb_entry(n, struct binder_buffer, rb_node); 369 buffer_size = binder_alloc_buffer_size(alloc, buffer); 370 free_buffers++; 371 total_free_size += buffer_size; 372 if (buffer_size > largest_free_size) 373 largest_free_size = buffer_size; 374 } 375 376 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 377 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 378 total_alloc_size, allocated_buffers, 379 largest_alloc_size, total_free_size, 380 free_buffers, largest_free_size); 381 } 382 383 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 384 { 385 /* 386 * Find the amount and size of buffers allocated by the current caller; 387 * The idea is that once we cross the threshold, whoever is responsible 388 * for the low async space is likely to try to send another async txn, 389 * and at some point we'll catch them in the act. This is more efficient 390 * than keeping a map per pid. 391 */ 392 struct binder_buffer *buffer; 393 size_t total_alloc_size = 0; 394 int pid = current->tgid; 395 size_t num_buffers = 0; 396 struct rb_node *n; 397 398 /* 399 * Only start detecting spammers once we have less than 20% of async 400 * space left (which is less than 10% of total buffer size). 401 */ 402 if (alloc->free_async_space >= alloc->buffer_size / 10) { 403 alloc->oneway_spam_detected = false; 404 return false; 405 } 406 407 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 408 n = rb_next(n)) { 409 buffer = rb_entry(n, struct binder_buffer, rb_node); 410 if (buffer->pid != pid) 411 continue; 412 if (!buffer->async_transaction) 413 continue; 414 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 415 num_buffers++; 416 } 417 418 /* 419 * Warn if this pid has more than 50 transactions, or more than 50% of 420 * async space (which is 25% of total buffer size). Oneway spam is only 421 * detected when the threshold is exceeded. 422 */ 423 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 424 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 425 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 426 alloc->pid, pid, num_buffers, total_alloc_size); 427 if (!alloc->oneway_spam_detected) { 428 alloc->oneway_spam_detected = true; 429 return true; 430 } 431 } 432 return false; 433 } 434 435 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 436 static struct binder_buffer *binder_alloc_new_buf_locked( 437 struct binder_alloc *alloc, 438 struct binder_buffer *new_buffer, 439 size_t size, 440 int is_async) 441 { 442 struct rb_node *n = alloc->free_buffers.rb_node; 443 struct rb_node *best_fit = NULL; 444 struct binder_buffer *buffer; 445 unsigned long next_used_page; 446 unsigned long curr_last_page; 447 size_t buffer_size; 448 449 if (is_async && alloc->free_async_space < size) { 450 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 451 "%d: binder_alloc_buf size %zd failed, no async space left\n", 452 alloc->pid, size); 453 buffer = ERR_PTR(-ENOSPC); 454 goto out; 455 } 456 457 while (n) { 458 buffer = rb_entry(n, struct binder_buffer, rb_node); 459 BUG_ON(!buffer->free); 460 buffer_size = binder_alloc_buffer_size(alloc, buffer); 461 462 if (size < buffer_size) { 463 best_fit = n; 464 n = n->rb_left; 465 } else if (size > buffer_size) { 466 n = n->rb_right; 467 } else { 468 best_fit = n; 469 break; 470 } 471 } 472 473 if (unlikely(!best_fit)) { 474 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 475 "%d: binder_alloc_buf size %zd failed, no address space\n", 476 alloc->pid, size); 477 debug_no_space_locked(alloc); 478 buffer = ERR_PTR(-ENOSPC); 479 goto out; 480 } 481 482 if (buffer_size != size) { 483 /* Found an oversized buffer and needs to be split */ 484 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 485 buffer_size = binder_alloc_buffer_size(alloc, buffer); 486 487 WARN_ON(n || buffer_size == size); 488 new_buffer->user_data = buffer->user_data + size; 489 list_add(&new_buffer->entry, &buffer->entry); 490 new_buffer->free = 1; 491 binder_insert_free_buffer(alloc, new_buffer); 492 new_buffer = NULL; 493 } 494 495 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 496 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 497 alloc->pid, size, buffer, buffer_size); 498 499 /* 500 * Now we remove the pages from the freelist. A clever calculation 501 * with buffer_size determines if the last page is shared with an 502 * adjacent in-use buffer. In such case, the page has been already 503 * removed from the freelist so we trim our range short. 504 */ 505 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK; 506 curr_last_page = PAGE_ALIGN(buffer->user_data + size); 507 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data), 508 min(next_used_page, curr_last_page)); 509 510 rb_erase(&buffer->rb_node, &alloc->free_buffers); 511 buffer->free = 0; 512 buffer->allow_user_free = 0; 513 binder_insert_allocated_buffer_locked(alloc, buffer); 514 buffer->async_transaction = is_async; 515 buffer->oneway_spam_suspect = false; 516 if (is_async) { 517 alloc->free_async_space -= size; 518 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 519 "%d: binder_alloc_buf size %zd async free %zd\n", 520 alloc->pid, size, alloc->free_async_space); 521 if (debug_low_async_space_locked(alloc)) 522 buffer->oneway_spam_suspect = true; 523 } 524 525 out: 526 /* Discard possibly unused new_buffer */ 527 kfree(new_buffer); 528 return buffer; 529 } 530 531 /* Calculate the sanitized total size, returns 0 for invalid request */ 532 static inline size_t sanitized_size(size_t data_size, 533 size_t offsets_size, 534 size_t extra_buffers_size) 535 { 536 size_t total, tmp; 537 538 /* Align to pointer size and check for overflows */ 539 tmp = ALIGN(data_size, sizeof(void *)) + 540 ALIGN(offsets_size, sizeof(void *)); 541 if (tmp < data_size || tmp < offsets_size) 542 return 0; 543 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 544 if (total < tmp || total < extra_buffers_size) 545 return 0; 546 547 /* Pad 0-sized buffers so they get a unique address */ 548 total = max(total, sizeof(void *)); 549 550 return total; 551 } 552 553 /** 554 * binder_alloc_new_buf() - Allocate a new binder buffer 555 * @alloc: binder_alloc for this proc 556 * @data_size: size of user data buffer 557 * @offsets_size: user specified buffer offset 558 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 559 * @is_async: buffer for async transaction 560 * 561 * Allocate a new buffer given the requested sizes. Returns 562 * the kernel version of the buffer pointer. The size allocated 563 * is the sum of the three given sizes (each rounded up to 564 * pointer-sized boundary) 565 * 566 * Return: The allocated buffer or %ERR_PTR(-errno) if error 567 */ 568 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 569 size_t data_size, 570 size_t offsets_size, 571 size_t extra_buffers_size, 572 int is_async) 573 { 574 struct binder_buffer *buffer, *next; 575 size_t size; 576 int ret; 577 578 /* Check binder_alloc is fully initialized */ 579 if (!binder_alloc_get_vma(alloc)) { 580 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 581 "%d: binder_alloc_buf, no vma\n", 582 alloc->pid); 583 return ERR_PTR(-ESRCH); 584 } 585 586 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 587 if (unlikely(!size)) { 588 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 589 "%d: got transaction with invalid size %zd-%zd-%zd\n", 590 alloc->pid, data_size, offsets_size, 591 extra_buffers_size); 592 return ERR_PTR(-EINVAL); 593 } 594 595 /* Preallocate the next buffer */ 596 next = kzalloc(sizeof(*next), GFP_KERNEL); 597 if (!next) 598 return ERR_PTR(-ENOMEM); 599 600 spin_lock(&alloc->lock); 601 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 602 if (IS_ERR(buffer)) { 603 spin_unlock(&alloc->lock); 604 goto out; 605 } 606 607 buffer->data_size = data_size; 608 buffer->offsets_size = offsets_size; 609 buffer->extra_buffers_size = extra_buffers_size; 610 buffer->pid = current->tgid; 611 spin_unlock(&alloc->lock); 612 613 ret = binder_install_buffer_pages(alloc, buffer, size); 614 if (ret) { 615 binder_alloc_free_buf(alloc, buffer); 616 buffer = ERR_PTR(ret); 617 } 618 out: 619 return buffer; 620 } 621 622 static unsigned long buffer_start_page(struct binder_buffer *buffer) 623 { 624 return buffer->user_data & PAGE_MASK; 625 } 626 627 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 628 { 629 return (buffer->user_data - 1) & PAGE_MASK; 630 } 631 632 static void binder_delete_free_buffer(struct binder_alloc *alloc, 633 struct binder_buffer *buffer) 634 { 635 struct binder_buffer *prev, *next; 636 637 if (PAGE_ALIGNED(buffer->user_data)) 638 goto skip_freelist; 639 640 BUG_ON(alloc->buffers.next == &buffer->entry); 641 prev = binder_buffer_prev(buffer); 642 BUG_ON(!prev->free); 643 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) 644 goto skip_freelist; 645 646 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 647 next = binder_buffer_next(buffer); 648 if (buffer_start_page(next) == buffer_start_page(buffer)) 649 goto skip_freelist; 650 } 651 652 binder_lru_freelist_add(alloc, buffer_start_page(buffer), 653 buffer_start_page(buffer) + PAGE_SIZE); 654 skip_freelist: 655 list_del(&buffer->entry); 656 kfree(buffer); 657 } 658 659 static void binder_free_buf_locked(struct binder_alloc *alloc, 660 struct binder_buffer *buffer) 661 { 662 size_t size, buffer_size; 663 664 buffer_size = binder_alloc_buffer_size(alloc, buffer); 665 666 size = ALIGN(buffer->data_size, sizeof(void *)) + 667 ALIGN(buffer->offsets_size, sizeof(void *)) + 668 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 669 670 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 671 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 672 alloc->pid, buffer, size, buffer_size); 673 674 BUG_ON(buffer->free); 675 BUG_ON(size > buffer_size); 676 BUG_ON(buffer->transaction != NULL); 677 BUG_ON(buffer->user_data < alloc->buffer); 678 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 679 680 if (buffer->async_transaction) { 681 alloc->free_async_space += buffer_size; 682 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 683 "%d: binder_free_buf size %zd async free %zd\n", 684 alloc->pid, size, alloc->free_async_space); 685 } 686 687 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data), 688 (buffer->user_data + buffer_size) & PAGE_MASK); 689 690 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 691 buffer->free = 1; 692 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 693 struct binder_buffer *next = binder_buffer_next(buffer); 694 695 if (next->free) { 696 rb_erase(&next->rb_node, &alloc->free_buffers); 697 binder_delete_free_buffer(alloc, next); 698 } 699 } 700 if (alloc->buffers.next != &buffer->entry) { 701 struct binder_buffer *prev = binder_buffer_prev(buffer); 702 703 if (prev->free) { 704 binder_delete_free_buffer(alloc, buffer); 705 rb_erase(&prev->rb_node, &alloc->free_buffers); 706 buffer = prev; 707 } 708 } 709 binder_insert_free_buffer(alloc, buffer); 710 } 711 712 /** 713 * binder_alloc_get_page() - get kernel pointer for given buffer offset 714 * @alloc: binder_alloc for this proc 715 * @buffer: binder buffer to be accessed 716 * @buffer_offset: offset into @buffer data 717 * @pgoffp: address to copy final page offset to 718 * 719 * Lookup the struct page corresponding to the address 720 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 721 * NULL, the byte-offset into the page is written there. 722 * 723 * The caller is responsible to ensure that the offset points 724 * to a valid address within the @buffer and that @buffer is 725 * not freeable by the user. Since it can't be freed, we are 726 * guaranteed that the corresponding elements of @alloc->pages[] 727 * cannot change. 728 * 729 * Return: struct page 730 */ 731 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 732 struct binder_buffer *buffer, 733 binder_size_t buffer_offset, 734 pgoff_t *pgoffp) 735 { 736 binder_size_t buffer_space_offset = buffer_offset + 737 (buffer->user_data - alloc->buffer); 738 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 739 size_t index = buffer_space_offset >> PAGE_SHIFT; 740 struct binder_lru_page *lru_page; 741 742 lru_page = &alloc->pages[index]; 743 *pgoffp = pgoff; 744 return lru_page->page_ptr; 745 } 746 747 /** 748 * binder_alloc_clear_buf() - zero out buffer 749 * @alloc: binder_alloc for this proc 750 * @buffer: binder buffer to be cleared 751 * 752 * memset the given buffer to 0 753 */ 754 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 755 struct binder_buffer *buffer) 756 { 757 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 758 binder_size_t buffer_offset = 0; 759 760 while (bytes) { 761 unsigned long size; 762 struct page *page; 763 pgoff_t pgoff; 764 765 page = binder_alloc_get_page(alloc, buffer, 766 buffer_offset, &pgoff); 767 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 768 memset_page(page, pgoff, 0, size); 769 bytes -= size; 770 buffer_offset += size; 771 } 772 } 773 774 /** 775 * binder_alloc_free_buf() - free a binder buffer 776 * @alloc: binder_alloc for this proc 777 * @buffer: kernel pointer to buffer 778 * 779 * Free the buffer allocated via binder_alloc_new_buf() 780 */ 781 void binder_alloc_free_buf(struct binder_alloc *alloc, 782 struct binder_buffer *buffer) 783 { 784 /* 785 * We could eliminate the call to binder_alloc_clear_buf() 786 * from binder_alloc_deferred_release() by moving this to 787 * binder_free_buf_locked(). However, that could 788 * increase contention for the alloc->lock if clear_on_free 789 * is used frequently for large buffers. This lock is not 790 * needed for correctness here. 791 */ 792 if (buffer->clear_on_free) { 793 binder_alloc_clear_buf(alloc, buffer); 794 buffer->clear_on_free = false; 795 } 796 spin_lock(&alloc->lock); 797 binder_free_buf_locked(alloc, buffer); 798 spin_unlock(&alloc->lock); 799 } 800 801 /** 802 * binder_alloc_mmap_handler() - map virtual address space for proc 803 * @alloc: alloc structure for this proc 804 * @vma: vma passed to mmap() 805 * 806 * Called by binder_mmap() to initialize the space specified in 807 * vma for allocating binder buffers 808 * 809 * Return: 810 * 0 = success 811 * -EBUSY = address space already mapped 812 * -ENOMEM = failed to map memory to given address space 813 */ 814 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 815 struct vm_area_struct *vma) 816 { 817 struct binder_buffer *buffer; 818 const char *failure_string; 819 int ret, i; 820 821 if (unlikely(vma->vm_mm != alloc->mm)) { 822 ret = -EINVAL; 823 failure_string = "invalid vma->vm_mm"; 824 goto err_invalid_mm; 825 } 826 827 mutex_lock(&binder_alloc_mmap_lock); 828 if (alloc->buffer_size) { 829 ret = -EBUSY; 830 failure_string = "already mapped"; 831 goto err_already_mapped; 832 } 833 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 834 SZ_4M); 835 mutex_unlock(&binder_alloc_mmap_lock); 836 837 alloc->buffer = vma->vm_start; 838 839 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 840 sizeof(alloc->pages[0]), 841 GFP_KERNEL); 842 if (alloc->pages == NULL) { 843 ret = -ENOMEM; 844 failure_string = "alloc page array"; 845 goto err_alloc_pages_failed; 846 } 847 848 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 849 alloc->pages[i].alloc = alloc; 850 INIT_LIST_HEAD(&alloc->pages[i].lru); 851 } 852 853 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 854 if (!buffer) { 855 ret = -ENOMEM; 856 failure_string = "alloc buffer struct"; 857 goto err_alloc_buf_struct_failed; 858 } 859 860 buffer->user_data = alloc->buffer; 861 list_add(&buffer->entry, &alloc->buffers); 862 buffer->free = 1; 863 binder_insert_free_buffer(alloc, buffer); 864 alloc->free_async_space = alloc->buffer_size / 2; 865 866 /* Signal binder_alloc is fully initialized */ 867 binder_alloc_set_vma(alloc, vma); 868 869 return 0; 870 871 err_alloc_buf_struct_failed: 872 kfree(alloc->pages); 873 alloc->pages = NULL; 874 err_alloc_pages_failed: 875 alloc->buffer = 0; 876 mutex_lock(&binder_alloc_mmap_lock); 877 alloc->buffer_size = 0; 878 err_already_mapped: 879 mutex_unlock(&binder_alloc_mmap_lock); 880 err_invalid_mm: 881 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 882 "%s: %d %lx-%lx %s failed %d\n", __func__, 883 alloc->pid, vma->vm_start, vma->vm_end, 884 failure_string, ret); 885 return ret; 886 } 887 888 889 void binder_alloc_deferred_release(struct binder_alloc *alloc) 890 { 891 struct rb_node *n; 892 int buffers, page_count; 893 struct binder_buffer *buffer; 894 895 buffers = 0; 896 spin_lock(&alloc->lock); 897 BUG_ON(alloc->vma); 898 899 while ((n = rb_first(&alloc->allocated_buffers))) { 900 buffer = rb_entry(n, struct binder_buffer, rb_node); 901 902 /* Transaction should already have been freed */ 903 BUG_ON(buffer->transaction); 904 905 if (buffer->clear_on_free) { 906 binder_alloc_clear_buf(alloc, buffer); 907 buffer->clear_on_free = false; 908 } 909 binder_free_buf_locked(alloc, buffer); 910 buffers++; 911 } 912 913 while (!list_empty(&alloc->buffers)) { 914 buffer = list_first_entry(&alloc->buffers, 915 struct binder_buffer, entry); 916 WARN_ON(!buffer->free); 917 918 list_del(&buffer->entry); 919 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 920 kfree(buffer); 921 } 922 923 page_count = 0; 924 if (alloc->pages) { 925 int i; 926 927 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 928 unsigned long page_addr; 929 bool on_lru; 930 931 if (!alloc->pages[i].page_ptr) 932 continue; 933 934 on_lru = list_lru_del_obj(&binder_freelist, 935 &alloc->pages[i].lru); 936 page_addr = alloc->buffer + i * PAGE_SIZE; 937 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 938 "%s: %d: page %d %s\n", 939 __func__, alloc->pid, i, 940 on_lru ? "on lru" : "active"); 941 __free_page(alloc->pages[i].page_ptr); 942 page_count++; 943 } 944 kfree(alloc->pages); 945 } 946 spin_unlock(&alloc->lock); 947 if (alloc->mm) 948 mmdrop(alloc->mm); 949 950 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 951 "%s: %d buffers %d, pages %d\n", 952 __func__, alloc->pid, buffers, page_count); 953 } 954 955 /** 956 * binder_alloc_print_allocated() - print buffer info 957 * @m: seq_file for output via seq_printf() 958 * @alloc: binder_alloc for this proc 959 * 960 * Prints information about every buffer associated with 961 * the binder_alloc state to the given seq_file 962 */ 963 void binder_alloc_print_allocated(struct seq_file *m, 964 struct binder_alloc *alloc) 965 { 966 struct binder_buffer *buffer; 967 struct rb_node *n; 968 969 spin_lock(&alloc->lock); 970 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 971 buffer = rb_entry(n, struct binder_buffer, rb_node); 972 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n", 973 buffer->debug_id, 974 buffer->user_data - alloc->buffer, 975 buffer->data_size, buffer->offsets_size, 976 buffer->extra_buffers_size, 977 buffer->transaction ? "active" : "delivered"); 978 } 979 spin_unlock(&alloc->lock); 980 } 981 982 /** 983 * binder_alloc_print_pages() - print page usage 984 * @m: seq_file for output via seq_printf() 985 * @alloc: binder_alloc for this proc 986 */ 987 void binder_alloc_print_pages(struct seq_file *m, 988 struct binder_alloc *alloc) 989 { 990 struct binder_lru_page *page; 991 int i; 992 int active = 0; 993 int lru = 0; 994 int free = 0; 995 996 spin_lock(&alloc->lock); 997 /* 998 * Make sure the binder_alloc is fully initialized, otherwise we might 999 * read inconsistent state. 1000 */ 1001 if (binder_alloc_get_vma(alloc) != NULL) { 1002 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1003 page = &alloc->pages[i]; 1004 if (!page->page_ptr) 1005 free++; 1006 else if (list_empty(&page->lru)) 1007 active++; 1008 else 1009 lru++; 1010 } 1011 } 1012 spin_unlock(&alloc->lock); 1013 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1014 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1015 } 1016 1017 /** 1018 * binder_alloc_get_allocated_count() - return count of buffers 1019 * @alloc: binder_alloc for this proc 1020 * 1021 * Return: count of allocated buffers 1022 */ 1023 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1024 { 1025 struct rb_node *n; 1026 int count = 0; 1027 1028 spin_lock(&alloc->lock); 1029 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1030 count++; 1031 spin_unlock(&alloc->lock); 1032 return count; 1033 } 1034 1035 1036 /** 1037 * binder_alloc_vma_close() - invalidate address space 1038 * @alloc: binder_alloc for this proc 1039 * 1040 * Called from binder_vma_close() when releasing address space. 1041 * Clears alloc->vma to prevent new incoming transactions from 1042 * allocating more buffers. 1043 */ 1044 void binder_alloc_vma_close(struct binder_alloc *alloc) 1045 { 1046 binder_alloc_set_vma(alloc, NULL); 1047 } 1048 1049 /** 1050 * binder_alloc_free_page() - shrinker callback to free pages 1051 * @item: item to free 1052 * @lock: lock protecting the item 1053 * @cb_arg: callback argument 1054 * 1055 * Called from list_lru_walk() in binder_shrink_scan() to free 1056 * up pages when the system is under memory pressure. 1057 */ 1058 enum lru_status binder_alloc_free_page(struct list_head *item, 1059 struct list_lru_one *lru, 1060 spinlock_t *lock, 1061 void *cb_arg) 1062 __must_hold(lock) 1063 { 1064 struct binder_lru_page *page = container_of(item, typeof(*page), lru); 1065 struct binder_alloc *alloc = page->alloc; 1066 struct mm_struct *mm = alloc->mm; 1067 struct vm_area_struct *vma; 1068 struct page *page_to_free; 1069 unsigned long page_addr; 1070 size_t index; 1071 1072 if (!mmget_not_zero(mm)) 1073 goto err_mmget; 1074 if (!mmap_read_trylock(mm)) 1075 goto err_mmap_read_lock_failed; 1076 if (!spin_trylock(&alloc->lock)) 1077 goto err_get_alloc_lock_failed; 1078 if (!page->page_ptr) 1079 goto err_page_already_freed; 1080 1081 index = page - alloc->pages; 1082 page_addr = alloc->buffer + index * PAGE_SIZE; 1083 1084 vma = vma_lookup(mm, page_addr); 1085 if (vma && vma != binder_alloc_get_vma(alloc)) 1086 goto err_invalid_vma; 1087 1088 trace_binder_unmap_kernel_start(alloc, index); 1089 1090 page_to_free = page->page_ptr; 1091 page->page_ptr = NULL; 1092 1093 trace_binder_unmap_kernel_end(alloc, index); 1094 1095 list_lru_isolate(lru, item); 1096 spin_unlock(&alloc->lock); 1097 spin_unlock(lock); 1098 1099 if (vma) { 1100 trace_binder_unmap_user_start(alloc, index); 1101 1102 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1103 1104 trace_binder_unmap_user_end(alloc, index); 1105 } 1106 1107 mmap_read_unlock(mm); 1108 mmput_async(mm); 1109 __free_page(page_to_free); 1110 1111 spin_lock(lock); 1112 return LRU_REMOVED_RETRY; 1113 1114 err_invalid_vma: 1115 err_page_already_freed: 1116 spin_unlock(&alloc->lock); 1117 err_get_alloc_lock_failed: 1118 mmap_read_unlock(mm); 1119 err_mmap_read_lock_failed: 1120 mmput_async(mm); 1121 err_mmget: 1122 return LRU_SKIP; 1123 } 1124 1125 static unsigned long 1126 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1127 { 1128 return list_lru_count(&binder_freelist); 1129 } 1130 1131 static unsigned long 1132 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1133 { 1134 return list_lru_walk(&binder_freelist, binder_alloc_free_page, 1135 NULL, sc->nr_to_scan); 1136 } 1137 1138 static struct shrinker *binder_shrinker; 1139 1140 /** 1141 * binder_alloc_init() - called by binder_open() for per-proc initialization 1142 * @alloc: binder_alloc for this proc 1143 * 1144 * Called from binder_open() to initialize binder_alloc fields for 1145 * new binder proc 1146 */ 1147 void binder_alloc_init(struct binder_alloc *alloc) 1148 { 1149 alloc->pid = current->group_leader->pid; 1150 alloc->mm = current->mm; 1151 mmgrab(alloc->mm); 1152 spin_lock_init(&alloc->lock); 1153 INIT_LIST_HEAD(&alloc->buffers); 1154 } 1155 1156 int binder_alloc_shrinker_init(void) 1157 { 1158 int ret; 1159 1160 ret = list_lru_init(&binder_freelist); 1161 if (ret) 1162 return ret; 1163 1164 binder_shrinker = shrinker_alloc(0, "android-binder"); 1165 if (!binder_shrinker) { 1166 list_lru_destroy(&binder_freelist); 1167 return -ENOMEM; 1168 } 1169 1170 binder_shrinker->count_objects = binder_shrink_count; 1171 binder_shrinker->scan_objects = binder_shrink_scan; 1172 1173 shrinker_register(binder_shrinker); 1174 1175 return 0; 1176 } 1177 1178 void binder_alloc_shrinker_exit(void) 1179 { 1180 shrinker_free(binder_shrinker); 1181 list_lru_destroy(&binder_freelist); 1182 } 1183 1184 /** 1185 * check_buffer() - verify that buffer/offset is safe to access 1186 * @alloc: binder_alloc for this proc 1187 * @buffer: binder buffer to be accessed 1188 * @offset: offset into @buffer data 1189 * @bytes: bytes to access from offset 1190 * 1191 * Check that the @offset/@bytes are within the size of the given 1192 * @buffer and that the buffer is currently active and not freeable. 1193 * Offsets must also be multiples of sizeof(u32). The kernel is 1194 * allowed to touch the buffer in two cases: 1195 * 1196 * 1) when the buffer is being created: 1197 * (buffer->free == 0 && buffer->allow_user_free == 0) 1198 * 2) when the buffer is being torn down: 1199 * (buffer->free == 0 && buffer->transaction == NULL). 1200 * 1201 * Return: true if the buffer is safe to access 1202 */ 1203 static inline bool check_buffer(struct binder_alloc *alloc, 1204 struct binder_buffer *buffer, 1205 binder_size_t offset, size_t bytes) 1206 { 1207 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1208 1209 return buffer_size >= bytes && 1210 offset <= buffer_size - bytes && 1211 IS_ALIGNED(offset, sizeof(u32)) && 1212 !buffer->free && 1213 (!buffer->allow_user_free || !buffer->transaction); 1214 } 1215 1216 /** 1217 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1218 * @alloc: binder_alloc for this proc 1219 * @buffer: binder buffer to be accessed 1220 * @buffer_offset: offset into @buffer data 1221 * @from: userspace pointer to source buffer 1222 * @bytes: bytes to copy 1223 * 1224 * Copy bytes from source userspace to target buffer. 1225 * 1226 * Return: bytes remaining to be copied 1227 */ 1228 unsigned long 1229 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1230 struct binder_buffer *buffer, 1231 binder_size_t buffer_offset, 1232 const void __user *from, 1233 size_t bytes) 1234 { 1235 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1236 return bytes; 1237 1238 while (bytes) { 1239 unsigned long size; 1240 unsigned long ret; 1241 struct page *page; 1242 pgoff_t pgoff; 1243 void *kptr; 1244 1245 page = binder_alloc_get_page(alloc, buffer, 1246 buffer_offset, &pgoff); 1247 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1248 kptr = kmap_local_page(page) + pgoff; 1249 ret = copy_from_user(kptr, from, size); 1250 kunmap_local(kptr); 1251 if (ret) 1252 return bytes - size + ret; 1253 bytes -= size; 1254 from += size; 1255 buffer_offset += size; 1256 } 1257 return 0; 1258 } 1259 1260 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1261 bool to_buffer, 1262 struct binder_buffer *buffer, 1263 binder_size_t buffer_offset, 1264 void *ptr, 1265 size_t bytes) 1266 { 1267 /* All copies must be 32-bit aligned and 32-bit size */ 1268 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1269 return -EINVAL; 1270 1271 while (bytes) { 1272 unsigned long size; 1273 struct page *page; 1274 pgoff_t pgoff; 1275 1276 page = binder_alloc_get_page(alloc, buffer, 1277 buffer_offset, &pgoff); 1278 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1279 if (to_buffer) 1280 memcpy_to_page(page, pgoff, ptr, size); 1281 else 1282 memcpy_from_page(ptr, page, pgoff, size); 1283 bytes -= size; 1284 pgoff = 0; 1285 ptr = ptr + size; 1286 buffer_offset += size; 1287 } 1288 return 0; 1289 } 1290 1291 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1292 struct binder_buffer *buffer, 1293 binder_size_t buffer_offset, 1294 void *src, 1295 size_t bytes) 1296 { 1297 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1298 src, bytes); 1299 } 1300 1301 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1302 void *dest, 1303 struct binder_buffer *buffer, 1304 binder_size_t buffer_offset, 1305 size_t bytes) 1306 { 1307 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1308 dest, bytes); 1309 } 1310