1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 static struct list_lru binder_freelist; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->vm_start + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 guard(mutex)(&alloc->mutex); 171 return binder_alloc_prepare_to_free_locked(alloc, user_ptr); 172 } 173 174 static inline void 175 binder_set_installed_page(struct binder_alloc *alloc, 176 unsigned long index, 177 struct page *page) 178 { 179 /* Pairs with acquire in binder_get_installed_page() */ 180 smp_store_release(&alloc->pages[index], page); 181 } 182 183 static inline struct page * 184 binder_get_installed_page(struct binder_alloc *alloc, unsigned long index) 185 { 186 /* Pairs with release in binder_set_installed_page() */ 187 return smp_load_acquire(&alloc->pages[index]); 188 } 189 190 static void binder_lru_freelist_add(struct binder_alloc *alloc, 191 unsigned long start, unsigned long end) 192 { 193 unsigned long page_addr; 194 struct page *page; 195 196 trace_binder_update_page_range(alloc, false, start, end); 197 198 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 199 size_t index; 200 int ret; 201 202 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 203 page = binder_get_installed_page(alloc, index); 204 if (!page) 205 continue; 206 207 trace_binder_free_lru_start(alloc, index); 208 209 ret = list_lru_add(alloc->freelist, 210 page_to_lru(page), 211 page_to_nid(page), 212 NULL); 213 WARN_ON(!ret); 214 215 trace_binder_free_lru_end(alloc, index); 216 } 217 } 218 219 static inline 220 void binder_alloc_set_mapped(struct binder_alloc *alloc, bool state) 221 { 222 /* pairs with smp_load_acquire in binder_alloc_is_mapped() */ 223 smp_store_release(&alloc->mapped, state); 224 } 225 226 static inline bool binder_alloc_is_mapped(struct binder_alloc *alloc) 227 { 228 /* pairs with smp_store_release in binder_alloc_set_mapped() */ 229 return smp_load_acquire(&alloc->mapped); 230 } 231 232 static struct page *binder_page_lookup(struct binder_alloc *alloc, 233 unsigned long addr) 234 { 235 struct mm_struct *mm = alloc->mm; 236 struct page *page; 237 long npages = 0; 238 239 /* 240 * Find an existing page in the remote mm. If missing, 241 * don't attempt to fault-in just propagate an error. 242 */ 243 mmap_read_lock(mm); 244 if (binder_alloc_is_mapped(alloc)) 245 npages = get_user_pages_remote(mm, addr, 1, FOLL_NOFAULT, 246 &page, NULL); 247 mmap_read_unlock(mm); 248 249 return npages > 0 ? page : NULL; 250 } 251 252 static int binder_page_insert(struct binder_alloc *alloc, 253 unsigned long addr, 254 struct page *page) 255 { 256 struct mm_struct *mm = alloc->mm; 257 struct vm_area_struct *vma; 258 int ret = -ESRCH; 259 260 /* attempt per-vma lock first */ 261 vma = lock_vma_under_rcu(mm, addr); 262 if (vma) { 263 if (binder_alloc_is_mapped(alloc)) 264 ret = vm_insert_page(vma, addr, page); 265 vma_end_read(vma); 266 return ret; 267 } 268 269 /* fall back to mmap_lock */ 270 mmap_read_lock(mm); 271 vma = vma_lookup(mm, addr); 272 if (vma && binder_alloc_is_mapped(alloc)) 273 ret = vm_insert_page(vma, addr, page); 274 mmap_read_unlock(mm); 275 276 return ret; 277 } 278 279 static struct page *binder_page_alloc(struct binder_alloc *alloc, 280 unsigned long index) 281 { 282 struct binder_shrinker_mdata *mdata; 283 struct page *page; 284 285 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 286 if (!page) 287 return NULL; 288 289 /* allocate and install shrinker metadata under page->private */ 290 mdata = kzalloc(sizeof(*mdata), GFP_KERNEL); 291 if (!mdata) { 292 __free_page(page); 293 return NULL; 294 } 295 296 mdata->alloc = alloc; 297 mdata->page_index = index; 298 INIT_LIST_HEAD(&mdata->lru); 299 set_page_private(page, (unsigned long)mdata); 300 301 return page; 302 } 303 304 static void binder_free_page(struct page *page) 305 { 306 kfree((struct binder_shrinker_mdata *)page_private(page)); 307 __free_page(page); 308 } 309 310 static int binder_install_single_page(struct binder_alloc *alloc, 311 unsigned long index, 312 unsigned long addr) 313 { 314 struct page *page; 315 int ret; 316 317 if (!mmget_not_zero(alloc->mm)) 318 return -ESRCH; 319 320 page = binder_page_alloc(alloc, index); 321 if (!page) { 322 ret = -ENOMEM; 323 goto out; 324 } 325 326 ret = binder_page_insert(alloc, addr, page); 327 switch (ret) { 328 case -EBUSY: 329 /* 330 * EBUSY is ok. Someone installed the pte first but the 331 * alloc->pages[index] has not been updated yet. Discard 332 * our page and look up the one already installed. 333 */ 334 ret = 0; 335 binder_free_page(page); 336 page = binder_page_lookup(alloc, addr); 337 if (!page) { 338 pr_err("%d: failed to find page at offset %lx\n", 339 alloc->pid, addr - alloc->vm_start); 340 ret = -ESRCH; 341 break; 342 } 343 fallthrough; 344 case 0: 345 /* Mark page installation complete and safe to use */ 346 binder_set_installed_page(alloc, index, page); 347 break; 348 default: 349 binder_free_page(page); 350 pr_err("%d: %s failed to insert page at offset %lx with %d\n", 351 alloc->pid, __func__, addr - alloc->vm_start, ret); 352 break; 353 } 354 out: 355 mmput_async(alloc->mm); 356 return ret; 357 } 358 359 static int binder_install_buffer_pages(struct binder_alloc *alloc, 360 struct binder_buffer *buffer, 361 size_t size) 362 { 363 unsigned long start, final; 364 unsigned long page_addr; 365 366 start = buffer->user_data & PAGE_MASK; 367 final = PAGE_ALIGN(buffer->user_data + size); 368 369 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 370 unsigned long index; 371 int ret; 372 373 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 374 if (binder_get_installed_page(alloc, index)) 375 continue; 376 377 trace_binder_alloc_page_start(alloc, index); 378 379 ret = binder_install_single_page(alloc, index, page_addr); 380 if (ret) 381 return ret; 382 383 trace_binder_alloc_page_end(alloc, index); 384 } 385 386 return 0; 387 } 388 389 /* The range of pages should exclude those shared with other buffers */ 390 static void binder_lru_freelist_del(struct binder_alloc *alloc, 391 unsigned long start, unsigned long end) 392 { 393 unsigned long page_addr; 394 struct page *page; 395 396 trace_binder_update_page_range(alloc, true, start, end); 397 398 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 399 unsigned long index; 400 bool on_lru; 401 402 index = (page_addr - alloc->vm_start) / PAGE_SIZE; 403 page = binder_get_installed_page(alloc, index); 404 405 if (page) { 406 trace_binder_alloc_lru_start(alloc, index); 407 408 on_lru = list_lru_del(alloc->freelist, 409 page_to_lru(page), 410 page_to_nid(page), 411 NULL); 412 WARN_ON(!on_lru); 413 414 trace_binder_alloc_lru_end(alloc, index); 415 continue; 416 } 417 418 if (index + 1 > alloc->pages_high) 419 alloc->pages_high = index + 1; 420 } 421 } 422 423 static void debug_no_space_locked(struct binder_alloc *alloc) 424 { 425 size_t largest_alloc_size = 0; 426 struct binder_buffer *buffer; 427 size_t allocated_buffers = 0; 428 size_t largest_free_size = 0; 429 size_t total_alloc_size = 0; 430 size_t total_free_size = 0; 431 size_t free_buffers = 0; 432 size_t buffer_size; 433 struct rb_node *n; 434 435 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 436 buffer = rb_entry(n, struct binder_buffer, rb_node); 437 buffer_size = binder_alloc_buffer_size(alloc, buffer); 438 allocated_buffers++; 439 total_alloc_size += buffer_size; 440 if (buffer_size > largest_alloc_size) 441 largest_alloc_size = buffer_size; 442 } 443 444 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 445 buffer = rb_entry(n, struct binder_buffer, rb_node); 446 buffer_size = binder_alloc_buffer_size(alloc, buffer); 447 free_buffers++; 448 total_free_size += buffer_size; 449 if (buffer_size > largest_free_size) 450 largest_free_size = buffer_size; 451 } 452 453 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 454 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 455 total_alloc_size, allocated_buffers, 456 largest_alloc_size, total_free_size, 457 free_buffers, largest_free_size); 458 } 459 460 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 461 { 462 /* 463 * Find the amount and size of buffers allocated by the current caller; 464 * The idea is that once we cross the threshold, whoever is responsible 465 * for the low async space is likely to try to send another async txn, 466 * and at some point we'll catch them in the act. This is more efficient 467 * than keeping a map per pid. 468 */ 469 struct binder_buffer *buffer; 470 size_t total_alloc_size = 0; 471 int pid = current->tgid; 472 size_t num_buffers = 0; 473 struct rb_node *n; 474 475 /* 476 * Only start detecting spammers once we have less than 20% of async 477 * space left (which is less than 10% of total buffer size). 478 */ 479 if (alloc->free_async_space >= alloc->buffer_size / 10) { 480 alloc->oneway_spam_detected = false; 481 return false; 482 } 483 484 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 485 n = rb_next(n)) { 486 buffer = rb_entry(n, struct binder_buffer, rb_node); 487 if (buffer->pid != pid) 488 continue; 489 if (!buffer->async_transaction) 490 continue; 491 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 492 num_buffers++; 493 } 494 495 /* 496 * Warn if this pid has more than 50 transactions, or more than 50% of 497 * async space (which is 25% of total buffer size). Oneway spam is only 498 * detected when the threshold is exceeded. 499 */ 500 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 501 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 502 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 503 alloc->pid, pid, num_buffers, total_alloc_size); 504 if (!alloc->oneway_spam_detected) { 505 alloc->oneway_spam_detected = true; 506 return true; 507 } 508 } 509 return false; 510 } 511 512 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 513 static struct binder_buffer *binder_alloc_new_buf_locked( 514 struct binder_alloc *alloc, 515 struct binder_buffer *new_buffer, 516 size_t size, 517 int is_async) 518 { 519 struct rb_node *n = alloc->free_buffers.rb_node; 520 struct rb_node *best_fit = NULL; 521 struct binder_buffer *buffer; 522 unsigned long next_used_page; 523 unsigned long curr_last_page; 524 size_t buffer_size; 525 526 if (is_async && alloc->free_async_space < size) { 527 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 528 "%d: binder_alloc_buf size %zd failed, no async space left\n", 529 alloc->pid, size); 530 buffer = ERR_PTR(-ENOSPC); 531 goto out; 532 } 533 534 while (n) { 535 buffer = rb_entry(n, struct binder_buffer, rb_node); 536 BUG_ON(!buffer->free); 537 buffer_size = binder_alloc_buffer_size(alloc, buffer); 538 539 if (size < buffer_size) { 540 best_fit = n; 541 n = n->rb_left; 542 } else if (size > buffer_size) { 543 n = n->rb_right; 544 } else { 545 best_fit = n; 546 break; 547 } 548 } 549 550 if (unlikely(!best_fit)) { 551 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 552 "%d: binder_alloc_buf size %zd failed, no address space\n", 553 alloc->pid, size); 554 debug_no_space_locked(alloc); 555 buffer = ERR_PTR(-ENOSPC); 556 goto out; 557 } 558 559 if (buffer_size != size) { 560 /* Found an oversized buffer and needs to be split */ 561 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 562 buffer_size = binder_alloc_buffer_size(alloc, buffer); 563 564 WARN_ON(n || buffer_size == size); 565 new_buffer->user_data = buffer->user_data + size; 566 list_add(&new_buffer->entry, &buffer->entry); 567 new_buffer->free = 1; 568 binder_insert_free_buffer(alloc, new_buffer); 569 new_buffer = NULL; 570 } 571 572 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 573 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 574 alloc->pid, size, buffer, buffer_size); 575 576 /* 577 * Now we remove the pages from the freelist. A clever calculation 578 * with buffer_size determines if the last page is shared with an 579 * adjacent in-use buffer. In such case, the page has been already 580 * removed from the freelist so we trim our range short. 581 */ 582 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK; 583 curr_last_page = PAGE_ALIGN(buffer->user_data + size); 584 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data), 585 min(next_used_page, curr_last_page)); 586 587 rb_erase(&buffer->rb_node, &alloc->free_buffers); 588 buffer->free = 0; 589 buffer->allow_user_free = 0; 590 binder_insert_allocated_buffer_locked(alloc, buffer); 591 buffer->async_transaction = is_async; 592 buffer->oneway_spam_suspect = false; 593 if (is_async) { 594 alloc->free_async_space -= size; 595 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 596 "%d: binder_alloc_buf size %zd async free %zd\n", 597 alloc->pid, size, alloc->free_async_space); 598 if (debug_low_async_space_locked(alloc)) 599 buffer->oneway_spam_suspect = true; 600 } 601 602 out: 603 /* Discard possibly unused new_buffer */ 604 kfree(new_buffer); 605 return buffer; 606 } 607 608 /* Calculate the sanitized total size, returns 0 for invalid request */ 609 static inline size_t sanitized_size(size_t data_size, 610 size_t offsets_size, 611 size_t extra_buffers_size) 612 { 613 size_t total, tmp; 614 615 /* Align to pointer size and check for overflows */ 616 tmp = ALIGN(data_size, sizeof(void *)) + 617 ALIGN(offsets_size, sizeof(void *)); 618 if (tmp < data_size || tmp < offsets_size) 619 return 0; 620 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 621 if (total < tmp || total < extra_buffers_size) 622 return 0; 623 624 /* Pad 0-sized buffers so they get a unique address */ 625 total = max(total, sizeof(void *)); 626 627 return total; 628 } 629 630 /** 631 * binder_alloc_new_buf() - Allocate a new binder buffer 632 * @alloc: binder_alloc for this proc 633 * @data_size: size of user data buffer 634 * @offsets_size: user specified buffer offset 635 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 636 * @is_async: buffer for async transaction 637 * 638 * Allocate a new buffer given the requested sizes. Returns 639 * the kernel version of the buffer pointer. The size allocated 640 * is the sum of the three given sizes (each rounded up to 641 * pointer-sized boundary) 642 * 643 * Return: The allocated buffer or %ERR_PTR(-errno) if error 644 */ 645 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 646 size_t data_size, 647 size_t offsets_size, 648 size_t extra_buffers_size, 649 int is_async) 650 { 651 struct binder_buffer *buffer, *next; 652 size_t size; 653 int ret; 654 655 /* Check binder_alloc is fully initialized */ 656 if (!binder_alloc_is_mapped(alloc)) { 657 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 658 "%d: binder_alloc_buf, no vma\n", 659 alloc->pid); 660 return ERR_PTR(-ESRCH); 661 } 662 663 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 664 if (unlikely(!size)) { 665 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 666 "%d: got transaction with invalid size %zd-%zd-%zd\n", 667 alloc->pid, data_size, offsets_size, 668 extra_buffers_size); 669 return ERR_PTR(-EINVAL); 670 } 671 672 /* Preallocate the next buffer */ 673 next = kzalloc(sizeof(*next), GFP_KERNEL); 674 if (!next) 675 return ERR_PTR(-ENOMEM); 676 677 mutex_lock(&alloc->mutex); 678 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 679 if (IS_ERR(buffer)) { 680 mutex_unlock(&alloc->mutex); 681 goto out; 682 } 683 684 buffer->data_size = data_size; 685 buffer->offsets_size = offsets_size; 686 buffer->extra_buffers_size = extra_buffers_size; 687 buffer->pid = current->tgid; 688 mutex_unlock(&alloc->mutex); 689 690 ret = binder_install_buffer_pages(alloc, buffer, size); 691 if (ret) { 692 binder_alloc_free_buf(alloc, buffer); 693 buffer = ERR_PTR(ret); 694 } 695 out: 696 return buffer; 697 } 698 699 static unsigned long buffer_start_page(struct binder_buffer *buffer) 700 { 701 return buffer->user_data & PAGE_MASK; 702 } 703 704 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 705 { 706 return (buffer->user_data - 1) & PAGE_MASK; 707 } 708 709 static void binder_delete_free_buffer(struct binder_alloc *alloc, 710 struct binder_buffer *buffer) 711 { 712 struct binder_buffer *prev, *next; 713 714 if (PAGE_ALIGNED(buffer->user_data)) 715 goto skip_freelist; 716 717 BUG_ON(alloc->buffers.next == &buffer->entry); 718 prev = binder_buffer_prev(buffer); 719 BUG_ON(!prev->free); 720 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) 721 goto skip_freelist; 722 723 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 724 next = binder_buffer_next(buffer); 725 if (buffer_start_page(next) == buffer_start_page(buffer)) 726 goto skip_freelist; 727 } 728 729 binder_lru_freelist_add(alloc, buffer_start_page(buffer), 730 buffer_start_page(buffer) + PAGE_SIZE); 731 skip_freelist: 732 list_del(&buffer->entry); 733 kfree(buffer); 734 } 735 736 static void binder_free_buf_locked(struct binder_alloc *alloc, 737 struct binder_buffer *buffer) 738 { 739 size_t size, buffer_size; 740 741 buffer_size = binder_alloc_buffer_size(alloc, buffer); 742 743 size = ALIGN(buffer->data_size, sizeof(void *)) + 744 ALIGN(buffer->offsets_size, sizeof(void *)) + 745 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 746 747 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 748 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 749 alloc->pid, buffer, size, buffer_size); 750 751 BUG_ON(buffer->free); 752 BUG_ON(size > buffer_size); 753 BUG_ON(buffer->transaction != NULL); 754 BUG_ON(buffer->user_data < alloc->vm_start); 755 BUG_ON(buffer->user_data > alloc->vm_start + alloc->buffer_size); 756 757 if (buffer->async_transaction) { 758 alloc->free_async_space += buffer_size; 759 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 760 "%d: binder_free_buf size %zd async free %zd\n", 761 alloc->pid, size, alloc->free_async_space); 762 } 763 764 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data), 765 (buffer->user_data + buffer_size) & PAGE_MASK); 766 767 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 768 buffer->free = 1; 769 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 770 struct binder_buffer *next = binder_buffer_next(buffer); 771 772 if (next->free) { 773 rb_erase(&next->rb_node, &alloc->free_buffers); 774 binder_delete_free_buffer(alloc, next); 775 } 776 } 777 if (alloc->buffers.next != &buffer->entry) { 778 struct binder_buffer *prev = binder_buffer_prev(buffer); 779 780 if (prev->free) { 781 binder_delete_free_buffer(alloc, buffer); 782 rb_erase(&prev->rb_node, &alloc->free_buffers); 783 buffer = prev; 784 } 785 } 786 binder_insert_free_buffer(alloc, buffer); 787 } 788 789 /** 790 * binder_alloc_get_page() - get kernel pointer for given buffer offset 791 * @alloc: binder_alloc for this proc 792 * @buffer: binder buffer to be accessed 793 * @buffer_offset: offset into @buffer data 794 * @pgoffp: address to copy final page offset to 795 * 796 * Lookup the struct page corresponding to the address 797 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 798 * NULL, the byte-offset into the page is written there. 799 * 800 * The caller is responsible to ensure that the offset points 801 * to a valid address within the @buffer and that @buffer is 802 * not freeable by the user. Since it can't be freed, we are 803 * guaranteed that the corresponding elements of @alloc->pages[] 804 * cannot change. 805 * 806 * Return: struct page 807 */ 808 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 809 struct binder_buffer *buffer, 810 binder_size_t buffer_offset, 811 pgoff_t *pgoffp) 812 { 813 binder_size_t buffer_space_offset = buffer_offset + 814 (buffer->user_data - alloc->vm_start); 815 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 816 size_t index = buffer_space_offset >> PAGE_SHIFT; 817 818 *pgoffp = pgoff; 819 820 return alloc->pages[index]; 821 } 822 823 /** 824 * binder_alloc_clear_buf() - zero out buffer 825 * @alloc: binder_alloc for this proc 826 * @buffer: binder buffer to be cleared 827 * 828 * memset the given buffer to 0 829 */ 830 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 831 struct binder_buffer *buffer) 832 { 833 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 834 binder_size_t buffer_offset = 0; 835 836 while (bytes) { 837 unsigned long size; 838 struct page *page; 839 pgoff_t pgoff; 840 841 page = binder_alloc_get_page(alloc, buffer, 842 buffer_offset, &pgoff); 843 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 844 memset_page(page, pgoff, 0, size); 845 bytes -= size; 846 buffer_offset += size; 847 } 848 } 849 850 /** 851 * binder_alloc_free_buf() - free a binder buffer 852 * @alloc: binder_alloc for this proc 853 * @buffer: kernel pointer to buffer 854 * 855 * Free the buffer allocated via binder_alloc_new_buf() 856 */ 857 void binder_alloc_free_buf(struct binder_alloc *alloc, 858 struct binder_buffer *buffer) 859 { 860 /* 861 * We could eliminate the call to binder_alloc_clear_buf() 862 * from binder_alloc_deferred_release() by moving this to 863 * binder_free_buf_locked(). However, that could 864 * increase contention for the alloc mutex if clear_on_free 865 * is used frequently for large buffers. The mutex is not 866 * needed for correctness here. 867 */ 868 if (buffer->clear_on_free) { 869 binder_alloc_clear_buf(alloc, buffer); 870 buffer->clear_on_free = false; 871 } 872 mutex_lock(&alloc->mutex); 873 binder_free_buf_locked(alloc, buffer); 874 mutex_unlock(&alloc->mutex); 875 } 876 877 /** 878 * binder_alloc_mmap_handler() - map virtual address space for proc 879 * @alloc: alloc structure for this proc 880 * @vma: vma passed to mmap() 881 * 882 * Called by binder_mmap() to initialize the space specified in 883 * vma for allocating binder buffers 884 * 885 * Return: 886 * 0 = success 887 * -EBUSY = address space already mapped 888 * -ENOMEM = failed to map memory to given address space 889 */ 890 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 891 struct vm_area_struct *vma) 892 { 893 struct binder_buffer *buffer; 894 const char *failure_string; 895 int ret; 896 897 if (unlikely(vma->vm_mm != alloc->mm)) { 898 ret = -EINVAL; 899 failure_string = "invalid vma->vm_mm"; 900 goto err_invalid_mm; 901 } 902 903 mutex_lock(&binder_alloc_mmap_lock); 904 if (alloc->buffer_size) { 905 ret = -EBUSY; 906 failure_string = "already mapped"; 907 goto err_already_mapped; 908 } 909 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 910 SZ_4M); 911 mutex_unlock(&binder_alloc_mmap_lock); 912 913 alloc->vm_start = vma->vm_start; 914 915 alloc->pages = kvcalloc(alloc->buffer_size / PAGE_SIZE, 916 sizeof(alloc->pages[0]), 917 GFP_KERNEL); 918 if (!alloc->pages) { 919 ret = -ENOMEM; 920 failure_string = "alloc page array"; 921 goto err_alloc_pages_failed; 922 } 923 924 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 925 if (!buffer) { 926 ret = -ENOMEM; 927 failure_string = "alloc buffer struct"; 928 goto err_alloc_buf_struct_failed; 929 } 930 931 buffer->user_data = alloc->vm_start; 932 list_add(&buffer->entry, &alloc->buffers); 933 buffer->free = 1; 934 binder_insert_free_buffer(alloc, buffer); 935 alloc->free_async_space = alloc->buffer_size / 2; 936 937 /* Signal binder_alloc is fully initialized */ 938 binder_alloc_set_mapped(alloc, true); 939 940 return 0; 941 942 err_alloc_buf_struct_failed: 943 kvfree(alloc->pages); 944 alloc->pages = NULL; 945 err_alloc_pages_failed: 946 alloc->vm_start = 0; 947 mutex_lock(&binder_alloc_mmap_lock); 948 alloc->buffer_size = 0; 949 err_already_mapped: 950 mutex_unlock(&binder_alloc_mmap_lock); 951 err_invalid_mm: 952 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 953 "%s: %d %lx-%lx %s failed %d\n", __func__, 954 alloc->pid, vma->vm_start, vma->vm_end, 955 failure_string, ret); 956 return ret; 957 } 958 959 960 void binder_alloc_deferred_release(struct binder_alloc *alloc) 961 { 962 struct rb_node *n; 963 int buffers, page_count; 964 struct binder_buffer *buffer; 965 966 buffers = 0; 967 mutex_lock(&alloc->mutex); 968 BUG_ON(alloc->mapped); 969 970 while ((n = rb_first(&alloc->allocated_buffers))) { 971 buffer = rb_entry(n, struct binder_buffer, rb_node); 972 973 /* Transaction should already have been freed */ 974 BUG_ON(buffer->transaction); 975 976 if (buffer->clear_on_free) { 977 binder_alloc_clear_buf(alloc, buffer); 978 buffer->clear_on_free = false; 979 } 980 binder_free_buf_locked(alloc, buffer); 981 buffers++; 982 } 983 984 while (!list_empty(&alloc->buffers)) { 985 buffer = list_first_entry(&alloc->buffers, 986 struct binder_buffer, entry); 987 WARN_ON(!buffer->free); 988 989 list_del(&buffer->entry); 990 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 991 kfree(buffer); 992 } 993 994 page_count = 0; 995 if (alloc->pages) { 996 int i; 997 998 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 999 struct page *page; 1000 bool on_lru; 1001 1002 page = binder_get_installed_page(alloc, i); 1003 if (!page) 1004 continue; 1005 1006 on_lru = list_lru_del(alloc->freelist, 1007 page_to_lru(page), 1008 page_to_nid(page), 1009 NULL); 1010 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 1011 "%s: %d: page %d %s\n", 1012 __func__, alloc->pid, i, 1013 on_lru ? "on lru" : "active"); 1014 binder_free_page(page); 1015 page_count++; 1016 } 1017 } 1018 mutex_unlock(&alloc->mutex); 1019 kvfree(alloc->pages); 1020 if (alloc->mm) 1021 mmdrop(alloc->mm); 1022 1023 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 1024 "%s: %d buffers %d, pages %d\n", 1025 __func__, alloc->pid, buffers, page_count); 1026 } 1027 1028 /** 1029 * binder_alloc_print_allocated() - print buffer info 1030 * @m: seq_file for output via seq_printf() 1031 * @alloc: binder_alloc for this proc 1032 * 1033 * Prints information about every buffer associated with 1034 * the binder_alloc state to the given seq_file 1035 */ 1036 void binder_alloc_print_allocated(struct seq_file *m, 1037 struct binder_alloc *alloc) 1038 { 1039 struct binder_buffer *buffer; 1040 struct rb_node *n; 1041 1042 guard(mutex)(&alloc->mutex); 1043 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 1044 buffer = rb_entry(n, struct binder_buffer, rb_node); 1045 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n", 1046 buffer->debug_id, 1047 buffer->user_data - alloc->vm_start, 1048 buffer->data_size, buffer->offsets_size, 1049 buffer->extra_buffers_size, 1050 buffer->transaction ? "active" : "delivered"); 1051 } 1052 } 1053 1054 /** 1055 * binder_alloc_print_pages() - print page usage 1056 * @m: seq_file for output via seq_printf() 1057 * @alloc: binder_alloc for this proc 1058 */ 1059 void binder_alloc_print_pages(struct seq_file *m, 1060 struct binder_alloc *alloc) 1061 { 1062 struct page *page; 1063 int i; 1064 int active = 0; 1065 int lru = 0; 1066 int free = 0; 1067 1068 mutex_lock(&alloc->mutex); 1069 /* 1070 * Make sure the binder_alloc is fully initialized, otherwise we might 1071 * read inconsistent state. 1072 */ 1073 if (binder_alloc_is_mapped(alloc)) { 1074 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1075 page = binder_get_installed_page(alloc, i); 1076 if (!page) 1077 free++; 1078 else if (list_empty(page_to_lru(page))) 1079 active++; 1080 else 1081 lru++; 1082 } 1083 } 1084 mutex_unlock(&alloc->mutex); 1085 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1086 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1087 } 1088 1089 /** 1090 * binder_alloc_get_allocated_count() - return count of buffers 1091 * @alloc: binder_alloc for this proc 1092 * 1093 * Return: count of allocated buffers 1094 */ 1095 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1096 { 1097 struct rb_node *n; 1098 int count = 0; 1099 1100 guard(mutex)(&alloc->mutex); 1101 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1102 count++; 1103 return count; 1104 } 1105 1106 1107 /** 1108 * binder_alloc_vma_close() - invalidate address space 1109 * @alloc: binder_alloc for this proc 1110 * 1111 * Called from binder_vma_close() when releasing address space. 1112 * Clears alloc->mapped to prevent new incoming transactions from 1113 * allocating more buffers. 1114 */ 1115 void binder_alloc_vma_close(struct binder_alloc *alloc) 1116 { 1117 binder_alloc_set_mapped(alloc, false); 1118 } 1119 1120 /** 1121 * binder_alloc_free_page() - shrinker callback to free pages 1122 * @item: item to free 1123 * @lru: list_lru instance of the item 1124 * @cb_arg: callback argument 1125 * 1126 * Called from list_lru_walk() in binder_shrink_scan() to free 1127 * up pages when the system is under memory pressure. 1128 */ 1129 enum lru_status binder_alloc_free_page(struct list_head *item, 1130 struct list_lru_one *lru, 1131 void *cb_arg) 1132 __must_hold(&lru->lock) 1133 { 1134 struct binder_shrinker_mdata *mdata = container_of(item, typeof(*mdata), lru); 1135 struct binder_alloc *alloc = mdata->alloc; 1136 struct mm_struct *mm = alloc->mm; 1137 struct vm_area_struct *vma; 1138 struct page *page_to_free; 1139 unsigned long page_addr; 1140 int mm_locked = 0; 1141 size_t index; 1142 1143 if (!mmget_not_zero(mm)) 1144 goto err_mmget; 1145 1146 index = mdata->page_index; 1147 page_addr = alloc->vm_start + index * PAGE_SIZE; 1148 1149 /* attempt per-vma lock first */ 1150 vma = lock_vma_under_rcu(mm, page_addr); 1151 if (!vma) { 1152 /* fall back to mmap_lock */ 1153 if (!mmap_read_trylock(mm)) 1154 goto err_mmap_read_lock_failed; 1155 mm_locked = 1; 1156 vma = vma_lookup(mm, page_addr); 1157 } 1158 1159 if (!mutex_trylock(&alloc->mutex)) 1160 goto err_get_alloc_mutex_failed; 1161 1162 /* 1163 * Since a binder_alloc can only be mapped once, we ensure 1164 * the vma corresponds to this mapping by checking whether 1165 * the binder_alloc is still mapped. 1166 */ 1167 if (vma && !binder_alloc_is_mapped(alloc)) 1168 goto err_invalid_vma; 1169 1170 trace_binder_unmap_kernel_start(alloc, index); 1171 1172 page_to_free = alloc->pages[index]; 1173 binder_set_installed_page(alloc, index, NULL); 1174 1175 trace_binder_unmap_kernel_end(alloc, index); 1176 1177 list_lru_isolate(lru, item); 1178 spin_unlock(&lru->lock); 1179 1180 if (vma) { 1181 trace_binder_unmap_user_start(alloc, index); 1182 1183 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1184 1185 trace_binder_unmap_user_end(alloc, index); 1186 } 1187 1188 mutex_unlock(&alloc->mutex); 1189 if (mm_locked) 1190 mmap_read_unlock(mm); 1191 else 1192 vma_end_read(vma); 1193 mmput_async(mm); 1194 binder_free_page(page_to_free); 1195 1196 return LRU_REMOVED_RETRY; 1197 1198 err_invalid_vma: 1199 mutex_unlock(&alloc->mutex); 1200 err_get_alloc_mutex_failed: 1201 if (mm_locked) 1202 mmap_read_unlock(mm); 1203 else 1204 vma_end_read(vma); 1205 err_mmap_read_lock_failed: 1206 mmput_async(mm); 1207 err_mmget: 1208 return LRU_SKIP; 1209 } 1210 1211 static unsigned long 1212 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1213 { 1214 return list_lru_count(&binder_freelist); 1215 } 1216 1217 static unsigned long 1218 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1219 { 1220 return list_lru_walk(&binder_freelist, binder_alloc_free_page, 1221 NULL, sc->nr_to_scan); 1222 } 1223 1224 static struct shrinker *binder_shrinker; 1225 1226 static void __binder_alloc_init(struct binder_alloc *alloc, 1227 struct list_lru *freelist) 1228 { 1229 alloc->pid = current->group_leader->pid; 1230 alloc->mm = current->mm; 1231 mmgrab(alloc->mm); 1232 mutex_init(&alloc->mutex); 1233 INIT_LIST_HEAD(&alloc->buffers); 1234 alloc->freelist = freelist; 1235 } 1236 1237 /** 1238 * binder_alloc_init() - called by binder_open() for per-proc initialization 1239 * @alloc: binder_alloc for this proc 1240 * 1241 * Called from binder_open() to initialize binder_alloc fields for 1242 * new binder proc 1243 */ 1244 void binder_alloc_init(struct binder_alloc *alloc) 1245 { 1246 __binder_alloc_init(alloc, &binder_freelist); 1247 } 1248 1249 int binder_alloc_shrinker_init(void) 1250 { 1251 int ret; 1252 1253 ret = list_lru_init(&binder_freelist); 1254 if (ret) 1255 return ret; 1256 1257 binder_shrinker = shrinker_alloc(0, "android-binder"); 1258 if (!binder_shrinker) { 1259 list_lru_destroy(&binder_freelist); 1260 return -ENOMEM; 1261 } 1262 1263 binder_shrinker->count_objects = binder_shrink_count; 1264 binder_shrinker->scan_objects = binder_shrink_scan; 1265 1266 shrinker_register(binder_shrinker); 1267 1268 return 0; 1269 } 1270 1271 void binder_alloc_shrinker_exit(void) 1272 { 1273 shrinker_free(binder_shrinker); 1274 list_lru_destroy(&binder_freelist); 1275 } 1276 1277 /** 1278 * check_buffer() - verify that buffer/offset is safe to access 1279 * @alloc: binder_alloc for this proc 1280 * @buffer: binder buffer to be accessed 1281 * @offset: offset into @buffer data 1282 * @bytes: bytes to access from offset 1283 * 1284 * Check that the @offset/@bytes are within the size of the given 1285 * @buffer and that the buffer is currently active and not freeable. 1286 * Offsets must also be multiples of sizeof(u32). The kernel is 1287 * allowed to touch the buffer in two cases: 1288 * 1289 * 1) when the buffer is being created: 1290 * (buffer->free == 0 && buffer->allow_user_free == 0) 1291 * 2) when the buffer is being torn down: 1292 * (buffer->free == 0 && buffer->transaction == NULL). 1293 * 1294 * Return: true if the buffer is safe to access 1295 */ 1296 static inline bool check_buffer(struct binder_alloc *alloc, 1297 struct binder_buffer *buffer, 1298 binder_size_t offset, size_t bytes) 1299 { 1300 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1301 1302 return buffer_size >= bytes && 1303 offset <= buffer_size - bytes && 1304 IS_ALIGNED(offset, sizeof(u32)) && 1305 !buffer->free && 1306 (!buffer->allow_user_free || !buffer->transaction); 1307 } 1308 1309 /** 1310 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1311 * @alloc: binder_alloc for this proc 1312 * @buffer: binder buffer to be accessed 1313 * @buffer_offset: offset into @buffer data 1314 * @from: userspace pointer to source buffer 1315 * @bytes: bytes to copy 1316 * 1317 * Copy bytes from source userspace to target buffer. 1318 * 1319 * Return: bytes remaining to be copied 1320 */ 1321 unsigned long 1322 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1323 struct binder_buffer *buffer, 1324 binder_size_t buffer_offset, 1325 const void __user *from, 1326 size_t bytes) 1327 { 1328 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1329 return bytes; 1330 1331 while (bytes) { 1332 unsigned long size; 1333 unsigned long ret; 1334 struct page *page; 1335 pgoff_t pgoff; 1336 void *kptr; 1337 1338 page = binder_alloc_get_page(alloc, buffer, 1339 buffer_offset, &pgoff); 1340 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1341 kptr = kmap_local_page(page) + pgoff; 1342 ret = copy_from_user(kptr, from, size); 1343 kunmap_local(kptr); 1344 if (ret) 1345 return bytes - size + ret; 1346 bytes -= size; 1347 from += size; 1348 buffer_offset += size; 1349 } 1350 return 0; 1351 } 1352 1353 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1354 bool to_buffer, 1355 struct binder_buffer *buffer, 1356 binder_size_t buffer_offset, 1357 void *ptr, 1358 size_t bytes) 1359 { 1360 /* All copies must be 32-bit aligned and 32-bit size */ 1361 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1362 return -EINVAL; 1363 1364 while (bytes) { 1365 unsigned long size; 1366 struct page *page; 1367 pgoff_t pgoff; 1368 1369 page = binder_alloc_get_page(alloc, buffer, 1370 buffer_offset, &pgoff); 1371 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1372 if (to_buffer) 1373 memcpy_to_page(page, pgoff, ptr, size); 1374 else 1375 memcpy_from_page(ptr, page, pgoff, size); 1376 bytes -= size; 1377 pgoff = 0; 1378 ptr = ptr + size; 1379 buffer_offset += size; 1380 } 1381 return 0; 1382 } 1383 1384 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1385 struct binder_buffer *buffer, 1386 binder_size_t buffer_offset, 1387 void *src, 1388 size_t bytes) 1389 { 1390 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1391 src, bytes); 1392 } 1393 1394 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1395 void *dest, 1396 struct binder_buffer *buffer, 1397 binder_size_t buffer_offset, 1398 size_t bytes) 1399 { 1400 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1401 dest, bytes); 1402 } 1403