xref: /linux/drivers/android/binder_alloc.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28 
29 struct list_lru binder_alloc_lru;
30 
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32 
33 enum {
34 	BINDER_DEBUG_USER_ERROR             = 1U << 0,
35 	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36 	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37 	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40 
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 		   uint, 0644);
43 
44 #define binder_alloc_debug(mask, x...) \
45 	do { \
46 		if (binder_alloc_debug_mask & mask) \
47 			pr_info_ratelimited(x); \
48 	} while (0)
49 
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 	return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54 
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59 
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 				       struct binder_buffer *buffer)
62 {
63 	if (list_is_last(&buffer->entry, &alloc->buffers))
64 		return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 	return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67 
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 				      struct binder_buffer *new_buffer)
70 {
71 	struct rb_node **p = &alloc->free_buffers.rb_node;
72 	struct rb_node *parent = NULL;
73 	struct binder_buffer *buffer;
74 	size_t buffer_size;
75 	size_t new_buffer_size;
76 
77 	BUG_ON(!new_buffer->free);
78 
79 	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80 
81 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 		     "%d: add free buffer, size %zd, at %pK\n",
83 		      alloc->pid, new_buffer_size, new_buffer);
84 
85 	while (*p) {
86 		parent = *p;
87 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 		BUG_ON(!buffer->free);
89 
90 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
91 
92 		if (new_buffer_size < buffer_size)
93 			p = &parent->rb_left;
94 		else
95 			p = &parent->rb_right;
96 	}
97 	rb_link_node(&new_buffer->rb_node, parent, p);
98 	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100 
101 static void binder_insert_allocated_buffer_locked(
102 		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 	struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 	struct rb_node *parent = NULL;
106 	struct binder_buffer *buffer;
107 
108 	BUG_ON(new_buffer->free);
109 
110 	while (*p) {
111 		parent = *p;
112 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 		BUG_ON(buffer->free);
114 
115 		if (new_buffer->user_data < buffer->user_data)
116 			p = &parent->rb_left;
117 		else if (new_buffer->user_data > buffer->user_data)
118 			p = &parent->rb_right;
119 		else
120 			BUG();
121 	}
122 	rb_link_node(&new_buffer->rb_node, parent, p);
123 	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125 
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 		struct binder_alloc *alloc,
128 		uintptr_t user_ptr)
129 {
130 	struct rb_node *n = alloc->allocated_buffers.rb_node;
131 	struct binder_buffer *buffer;
132 	void __user *uptr;
133 
134 	uptr = (void __user *)user_ptr;
135 
136 	while (n) {
137 		buffer = rb_entry(n, struct binder_buffer, rb_node);
138 		BUG_ON(buffer->free);
139 
140 		if (uptr < buffer->user_data)
141 			n = n->rb_left;
142 		else if (uptr > buffer->user_data)
143 			n = n->rb_right;
144 		else {
145 			/*
146 			 * Guard against user threads attempting to
147 			 * free the buffer when in use by kernel or
148 			 * after it's already been freed.
149 			 */
150 			if (!buffer->allow_user_free)
151 				return ERR_PTR(-EPERM);
152 			buffer->allow_user_free = 0;
153 			return buffer;
154 		}
155 	}
156 	return NULL;
157 }
158 
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:	binder_alloc for this proc
162  * @user_ptr:	User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:	Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 						   uintptr_t user_ptr)
172 {
173 	struct binder_buffer *buffer;
174 
175 	mutex_lock(&alloc->mutex);
176 	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 	mutex_unlock(&alloc->mutex);
178 	return buffer;
179 }
180 
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 				    void __user *start, void __user *end)
183 {
184 	void __user *page_addr;
185 	unsigned long user_page_addr;
186 	struct binder_lru_page *page;
187 	struct vm_area_struct *vma = NULL;
188 	struct mm_struct *mm = NULL;
189 	bool need_mm = false;
190 
191 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 		     "%d: %s pages %pK-%pK\n", alloc->pid,
193 		     allocate ? "allocate" : "free", start, end);
194 
195 	if (end <= start)
196 		return 0;
197 
198 	trace_binder_update_page_range(alloc, allocate, start, end);
199 
200 	if (allocate == 0)
201 		goto free_range;
202 
203 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 		if (!page->page_ptr) {
206 			need_mm = true;
207 			break;
208 		}
209 	}
210 
211 	if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 		mm = alloc->vma_vm_mm;
213 
214 	if (mm) {
215 		mmap_read_lock(mm);
216 		vma = vma_lookup(mm, alloc->vma_addr);
217 	}
218 
219 	if (!vma && need_mm) {
220 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 				   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 				   alloc->pid);
223 		goto err_no_vma;
224 	}
225 
226 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 		int ret;
228 		bool on_lru;
229 		size_t index;
230 
231 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 		page = &alloc->pages[index];
233 
234 		if (page->page_ptr) {
235 			trace_binder_alloc_lru_start(alloc, index);
236 
237 			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 			WARN_ON(!on_lru);
239 
240 			trace_binder_alloc_lru_end(alloc, index);
241 			continue;
242 		}
243 
244 		if (WARN_ON(!vma))
245 			goto err_page_ptr_cleared;
246 
247 		trace_binder_alloc_page_start(alloc, index);
248 		page->page_ptr = alloc_page(GFP_KERNEL |
249 					    __GFP_HIGHMEM |
250 					    __GFP_ZERO);
251 		if (!page->page_ptr) {
252 			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 				alloc->pid, page_addr);
254 			goto err_alloc_page_failed;
255 		}
256 		page->alloc = alloc;
257 		INIT_LIST_HEAD(&page->lru);
258 
259 		user_page_addr = (uintptr_t)page_addr;
260 		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 		if (ret) {
262 			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 			       alloc->pid, user_page_addr);
264 			goto err_vm_insert_page_failed;
265 		}
266 
267 		if (index + 1 > alloc->pages_high)
268 			alloc->pages_high = index + 1;
269 
270 		trace_binder_alloc_page_end(alloc, index);
271 	}
272 	if (mm) {
273 		mmap_read_unlock(mm);
274 		mmput(mm);
275 	}
276 	return 0;
277 
278 free_range:
279 	for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 		bool ret;
281 		size_t index;
282 
283 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 		page = &alloc->pages[index];
285 
286 		trace_binder_free_lru_start(alloc, index);
287 
288 		ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 		WARN_ON(!ret);
290 
291 		trace_binder_free_lru_end(alloc, index);
292 		if (page_addr == start)
293 			break;
294 		continue;
295 
296 err_vm_insert_page_failed:
297 		__free_page(page->page_ptr);
298 		page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301 		if (page_addr == start)
302 			break;
303 	}
304 err_no_vma:
305 	if (mm) {
306 		mmap_read_unlock(mm);
307 		mmput(mm);
308 	}
309 	return vma ? -ENOMEM : -ESRCH;
310 }
311 
312 
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314 		struct vm_area_struct *vma)
315 {
316 	unsigned long vm_start = 0;
317 
318 	/*
319 	 * Allow clearing the vma with holding just the read lock to allow
320 	 * munmapping downgrade of the write lock before freeing and closing the
321 	 * file using binder_alloc_vma_close().
322 	 */
323 	if (vma) {
324 		vm_start = vma->vm_start;
325 		mmap_assert_write_locked(alloc->vma_vm_mm);
326 	} else {
327 		mmap_assert_locked(alloc->vma_vm_mm);
328 	}
329 
330 	alloc->vma_addr = vm_start;
331 }
332 
333 static inline struct vm_area_struct *binder_alloc_get_vma(
334 		struct binder_alloc *alloc)
335 {
336 	struct vm_area_struct *vma = NULL;
337 
338 	if (alloc->vma_addr)
339 		vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
340 
341 	return vma;
342 }
343 
344 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
345 {
346 	/*
347 	 * Find the amount and size of buffers allocated by the current caller;
348 	 * The idea is that once we cross the threshold, whoever is responsible
349 	 * for the low async space is likely to try to send another async txn,
350 	 * and at some point we'll catch them in the act. This is more efficient
351 	 * than keeping a map per pid.
352 	 */
353 	struct rb_node *n;
354 	struct binder_buffer *buffer;
355 	size_t total_alloc_size = 0;
356 	size_t num_buffers = 0;
357 
358 	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
359 		 n = rb_next(n)) {
360 		buffer = rb_entry(n, struct binder_buffer, rb_node);
361 		if (buffer->pid != pid)
362 			continue;
363 		if (!buffer->async_transaction)
364 			continue;
365 		total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
366 			+ sizeof(struct binder_buffer);
367 		num_buffers++;
368 	}
369 
370 	/*
371 	 * Warn if this pid has more than 50 transactions, or more than 50% of
372 	 * async space (which is 25% of total buffer size). Oneway spam is only
373 	 * detected when the threshold is exceeded.
374 	 */
375 	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
376 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
377 			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
378 			      alloc->pid, pid, num_buffers, total_alloc_size);
379 		if (!alloc->oneway_spam_detected) {
380 			alloc->oneway_spam_detected = true;
381 			return true;
382 		}
383 	}
384 	return false;
385 }
386 
387 static struct binder_buffer *binder_alloc_new_buf_locked(
388 				struct binder_alloc *alloc,
389 				size_t data_size,
390 				size_t offsets_size,
391 				size_t extra_buffers_size,
392 				int is_async,
393 				int pid)
394 {
395 	struct rb_node *n = alloc->free_buffers.rb_node;
396 	struct binder_buffer *buffer;
397 	size_t buffer_size;
398 	struct rb_node *best_fit = NULL;
399 	void __user *has_page_addr;
400 	void __user *end_page_addr;
401 	size_t size, data_offsets_size;
402 	int ret;
403 
404 	mmap_read_lock(alloc->vma_vm_mm);
405 	if (!binder_alloc_get_vma(alloc)) {
406 		mmap_read_unlock(alloc->vma_vm_mm);
407 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
408 				   "%d: binder_alloc_buf, no vma\n",
409 				   alloc->pid);
410 		return ERR_PTR(-ESRCH);
411 	}
412 	mmap_read_unlock(alloc->vma_vm_mm);
413 
414 	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
415 		ALIGN(offsets_size, sizeof(void *));
416 
417 	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
418 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
419 				"%d: got transaction with invalid size %zd-%zd\n",
420 				alloc->pid, data_size, offsets_size);
421 		return ERR_PTR(-EINVAL);
422 	}
423 	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
424 	if (size < data_offsets_size || size < extra_buffers_size) {
425 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
426 				"%d: got transaction with invalid extra_buffers_size %zd\n",
427 				alloc->pid, extra_buffers_size);
428 		return ERR_PTR(-EINVAL);
429 	}
430 	if (is_async &&
431 	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
432 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
433 			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
434 			      alloc->pid, size);
435 		return ERR_PTR(-ENOSPC);
436 	}
437 
438 	/* Pad 0-size buffers so they get assigned unique addresses */
439 	size = max(size, sizeof(void *));
440 
441 	while (n) {
442 		buffer = rb_entry(n, struct binder_buffer, rb_node);
443 		BUG_ON(!buffer->free);
444 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
445 
446 		if (size < buffer_size) {
447 			best_fit = n;
448 			n = n->rb_left;
449 		} else if (size > buffer_size)
450 			n = n->rb_right;
451 		else {
452 			best_fit = n;
453 			break;
454 		}
455 	}
456 	if (best_fit == NULL) {
457 		size_t allocated_buffers = 0;
458 		size_t largest_alloc_size = 0;
459 		size_t total_alloc_size = 0;
460 		size_t free_buffers = 0;
461 		size_t largest_free_size = 0;
462 		size_t total_free_size = 0;
463 
464 		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
465 		     n = rb_next(n)) {
466 			buffer = rb_entry(n, struct binder_buffer, rb_node);
467 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
468 			allocated_buffers++;
469 			total_alloc_size += buffer_size;
470 			if (buffer_size > largest_alloc_size)
471 				largest_alloc_size = buffer_size;
472 		}
473 		for (n = rb_first(&alloc->free_buffers); n != NULL;
474 		     n = rb_next(n)) {
475 			buffer = rb_entry(n, struct binder_buffer, rb_node);
476 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
477 			free_buffers++;
478 			total_free_size += buffer_size;
479 			if (buffer_size > largest_free_size)
480 				largest_free_size = buffer_size;
481 		}
482 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
483 				   "%d: binder_alloc_buf size %zd failed, no address space\n",
484 				   alloc->pid, size);
485 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
486 				   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
487 				   total_alloc_size, allocated_buffers,
488 				   largest_alloc_size, total_free_size,
489 				   free_buffers, largest_free_size);
490 		return ERR_PTR(-ENOSPC);
491 	}
492 	if (n == NULL) {
493 		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
494 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
495 	}
496 
497 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
498 		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
499 		      alloc->pid, size, buffer, buffer_size);
500 
501 	has_page_addr = (void __user *)
502 		(((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
503 	WARN_ON(n && buffer_size != size);
504 	end_page_addr =
505 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
506 	if (end_page_addr > has_page_addr)
507 		end_page_addr = has_page_addr;
508 	ret = binder_update_page_range(alloc, 1, (void __user *)
509 		PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
510 	if (ret)
511 		return ERR_PTR(ret);
512 
513 	if (buffer_size != size) {
514 		struct binder_buffer *new_buffer;
515 
516 		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
517 		if (!new_buffer) {
518 			pr_err("%s: %d failed to alloc new buffer struct\n",
519 			       __func__, alloc->pid);
520 			goto err_alloc_buf_struct_failed;
521 		}
522 		new_buffer->user_data = (u8 __user *)buffer->user_data + size;
523 		list_add(&new_buffer->entry, &buffer->entry);
524 		new_buffer->free = 1;
525 		binder_insert_free_buffer(alloc, new_buffer);
526 	}
527 
528 	rb_erase(best_fit, &alloc->free_buffers);
529 	buffer->free = 0;
530 	buffer->allow_user_free = 0;
531 	binder_insert_allocated_buffer_locked(alloc, buffer);
532 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
533 		     "%d: binder_alloc_buf size %zd got %pK\n",
534 		      alloc->pid, size, buffer);
535 	buffer->data_size = data_size;
536 	buffer->offsets_size = offsets_size;
537 	buffer->async_transaction = is_async;
538 	buffer->extra_buffers_size = extra_buffers_size;
539 	buffer->pid = pid;
540 	buffer->oneway_spam_suspect = false;
541 	if (is_async) {
542 		alloc->free_async_space -= size + sizeof(struct binder_buffer);
543 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
544 			     "%d: binder_alloc_buf size %zd async free %zd\n",
545 			      alloc->pid, size, alloc->free_async_space);
546 		if (alloc->free_async_space < alloc->buffer_size / 10) {
547 			/*
548 			 * Start detecting spammers once we have less than 20%
549 			 * of async space left (which is less than 10% of total
550 			 * buffer size).
551 			 */
552 			buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
553 		} else {
554 			alloc->oneway_spam_detected = false;
555 		}
556 	}
557 	return buffer;
558 
559 err_alloc_buf_struct_failed:
560 	binder_update_page_range(alloc, 0, (void __user *)
561 				 PAGE_ALIGN((uintptr_t)buffer->user_data),
562 				 end_page_addr);
563 	return ERR_PTR(-ENOMEM);
564 }
565 
566 /**
567  * binder_alloc_new_buf() - Allocate a new binder buffer
568  * @alloc:              binder_alloc for this proc
569  * @data_size:          size of user data buffer
570  * @offsets_size:       user specified buffer offset
571  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
572  * @is_async:           buffer for async transaction
573  * @pid:				pid to attribute allocation to (used for debugging)
574  *
575  * Allocate a new buffer given the requested sizes. Returns
576  * the kernel version of the buffer pointer. The size allocated
577  * is the sum of the three given sizes (each rounded up to
578  * pointer-sized boundary)
579  *
580  * Return:	The allocated buffer or %NULL if error
581  */
582 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
583 					   size_t data_size,
584 					   size_t offsets_size,
585 					   size_t extra_buffers_size,
586 					   int is_async,
587 					   int pid)
588 {
589 	struct binder_buffer *buffer;
590 
591 	mutex_lock(&alloc->mutex);
592 	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
593 					     extra_buffers_size, is_async, pid);
594 	mutex_unlock(&alloc->mutex);
595 	return buffer;
596 }
597 
598 static void __user *buffer_start_page(struct binder_buffer *buffer)
599 {
600 	return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
601 }
602 
603 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
604 {
605 	return (void __user *)
606 		(((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
607 }
608 
609 static void binder_delete_free_buffer(struct binder_alloc *alloc,
610 				      struct binder_buffer *buffer)
611 {
612 	struct binder_buffer *prev, *next = NULL;
613 	bool to_free = true;
614 
615 	BUG_ON(alloc->buffers.next == &buffer->entry);
616 	prev = binder_buffer_prev(buffer);
617 	BUG_ON(!prev->free);
618 	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
619 		to_free = false;
620 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
621 				   "%d: merge free, buffer %pK share page with %pK\n",
622 				   alloc->pid, buffer->user_data,
623 				   prev->user_data);
624 	}
625 
626 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
627 		next = binder_buffer_next(buffer);
628 		if (buffer_start_page(next) == buffer_start_page(buffer)) {
629 			to_free = false;
630 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
631 					   "%d: merge free, buffer %pK share page with %pK\n",
632 					   alloc->pid,
633 					   buffer->user_data,
634 					   next->user_data);
635 		}
636 	}
637 
638 	if (PAGE_ALIGNED(buffer->user_data)) {
639 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
640 				   "%d: merge free, buffer start %pK is page aligned\n",
641 				   alloc->pid, buffer->user_data);
642 		to_free = false;
643 	}
644 
645 	if (to_free) {
646 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
647 				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
648 				   alloc->pid, buffer->user_data,
649 				   prev->user_data,
650 				   next ? next->user_data : NULL);
651 		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
652 					 buffer_start_page(buffer) + PAGE_SIZE);
653 	}
654 	list_del(&buffer->entry);
655 	kfree(buffer);
656 }
657 
658 static void binder_free_buf_locked(struct binder_alloc *alloc,
659 				   struct binder_buffer *buffer)
660 {
661 	size_t size, buffer_size;
662 
663 	buffer_size = binder_alloc_buffer_size(alloc, buffer);
664 
665 	size = ALIGN(buffer->data_size, sizeof(void *)) +
666 		ALIGN(buffer->offsets_size, sizeof(void *)) +
667 		ALIGN(buffer->extra_buffers_size, sizeof(void *));
668 
669 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
670 		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
671 		      alloc->pid, buffer, size, buffer_size);
672 
673 	BUG_ON(buffer->free);
674 	BUG_ON(size > buffer_size);
675 	BUG_ON(buffer->transaction != NULL);
676 	BUG_ON(buffer->user_data < alloc->buffer);
677 	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
678 
679 	if (buffer->async_transaction) {
680 		alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
681 
682 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
683 			     "%d: binder_free_buf size %zd async free %zd\n",
684 			      alloc->pid, size, alloc->free_async_space);
685 	}
686 
687 	binder_update_page_range(alloc, 0,
688 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
689 		(void __user *)(((uintptr_t)
690 			  buffer->user_data + buffer_size) & PAGE_MASK));
691 
692 	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
693 	buffer->free = 1;
694 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
695 		struct binder_buffer *next = binder_buffer_next(buffer);
696 
697 		if (next->free) {
698 			rb_erase(&next->rb_node, &alloc->free_buffers);
699 			binder_delete_free_buffer(alloc, next);
700 		}
701 	}
702 	if (alloc->buffers.next != &buffer->entry) {
703 		struct binder_buffer *prev = binder_buffer_prev(buffer);
704 
705 		if (prev->free) {
706 			binder_delete_free_buffer(alloc, buffer);
707 			rb_erase(&prev->rb_node, &alloc->free_buffers);
708 			buffer = prev;
709 		}
710 	}
711 	binder_insert_free_buffer(alloc, buffer);
712 }
713 
714 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
715 				   struct binder_buffer *buffer);
716 /**
717  * binder_alloc_free_buf() - free a binder buffer
718  * @alloc:	binder_alloc for this proc
719  * @buffer:	kernel pointer to buffer
720  *
721  * Free the buffer allocated via binder_alloc_new_buf()
722  */
723 void binder_alloc_free_buf(struct binder_alloc *alloc,
724 			    struct binder_buffer *buffer)
725 {
726 	/*
727 	 * We could eliminate the call to binder_alloc_clear_buf()
728 	 * from binder_alloc_deferred_release() by moving this to
729 	 * binder_alloc_free_buf_locked(). However, that could
730 	 * increase contention for the alloc mutex if clear_on_free
731 	 * is used frequently for large buffers. The mutex is not
732 	 * needed for correctness here.
733 	 */
734 	if (buffer->clear_on_free) {
735 		binder_alloc_clear_buf(alloc, buffer);
736 		buffer->clear_on_free = false;
737 	}
738 	mutex_lock(&alloc->mutex);
739 	binder_free_buf_locked(alloc, buffer);
740 	mutex_unlock(&alloc->mutex);
741 }
742 
743 /**
744  * binder_alloc_mmap_handler() - map virtual address space for proc
745  * @alloc:	alloc structure for this proc
746  * @vma:	vma passed to mmap()
747  *
748  * Called by binder_mmap() to initialize the space specified in
749  * vma for allocating binder buffers
750  *
751  * Return:
752  *      0 = success
753  *      -EBUSY = address space already mapped
754  *      -ENOMEM = failed to map memory to given address space
755  */
756 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
757 			      struct vm_area_struct *vma)
758 {
759 	int ret;
760 	const char *failure_string;
761 	struct binder_buffer *buffer;
762 
763 	mutex_lock(&binder_alloc_mmap_lock);
764 	if (alloc->buffer_size) {
765 		ret = -EBUSY;
766 		failure_string = "already mapped";
767 		goto err_already_mapped;
768 	}
769 	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
770 				   SZ_4M);
771 	mutex_unlock(&binder_alloc_mmap_lock);
772 
773 	alloc->buffer = (void __user *)vma->vm_start;
774 
775 	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
776 			       sizeof(alloc->pages[0]),
777 			       GFP_KERNEL);
778 	if (alloc->pages == NULL) {
779 		ret = -ENOMEM;
780 		failure_string = "alloc page array";
781 		goto err_alloc_pages_failed;
782 	}
783 
784 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
785 	if (!buffer) {
786 		ret = -ENOMEM;
787 		failure_string = "alloc buffer struct";
788 		goto err_alloc_buf_struct_failed;
789 	}
790 
791 	buffer->user_data = alloc->buffer;
792 	list_add(&buffer->entry, &alloc->buffers);
793 	buffer->free = 1;
794 	binder_insert_free_buffer(alloc, buffer);
795 	alloc->free_async_space = alloc->buffer_size / 2;
796 	binder_alloc_set_vma(alloc, vma);
797 
798 	return 0;
799 
800 err_alloc_buf_struct_failed:
801 	kfree(alloc->pages);
802 	alloc->pages = NULL;
803 err_alloc_pages_failed:
804 	alloc->buffer = NULL;
805 	mutex_lock(&binder_alloc_mmap_lock);
806 	alloc->buffer_size = 0;
807 err_already_mapped:
808 	mutex_unlock(&binder_alloc_mmap_lock);
809 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
810 			   "%s: %d %lx-%lx %s failed %d\n", __func__,
811 			   alloc->pid, vma->vm_start, vma->vm_end,
812 			   failure_string, ret);
813 	return ret;
814 }
815 
816 
817 void binder_alloc_deferred_release(struct binder_alloc *alloc)
818 {
819 	struct rb_node *n;
820 	int buffers, page_count;
821 	struct binder_buffer *buffer;
822 
823 	buffers = 0;
824 	mutex_lock(&alloc->mutex);
825 	BUG_ON(alloc->vma_addr &&
826 	       vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
827 
828 	while ((n = rb_first(&alloc->allocated_buffers))) {
829 		buffer = rb_entry(n, struct binder_buffer, rb_node);
830 
831 		/* Transaction should already have been freed */
832 		BUG_ON(buffer->transaction);
833 
834 		if (buffer->clear_on_free) {
835 			binder_alloc_clear_buf(alloc, buffer);
836 			buffer->clear_on_free = false;
837 		}
838 		binder_free_buf_locked(alloc, buffer);
839 		buffers++;
840 	}
841 
842 	while (!list_empty(&alloc->buffers)) {
843 		buffer = list_first_entry(&alloc->buffers,
844 					  struct binder_buffer, entry);
845 		WARN_ON(!buffer->free);
846 
847 		list_del(&buffer->entry);
848 		WARN_ON_ONCE(!list_empty(&alloc->buffers));
849 		kfree(buffer);
850 	}
851 
852 	page_count = 0;
853 	if (alloc->pages) {
854 		int i;
855 
856 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
857 			void __user *page_addr;
858 			bool on_lru;
859 
860 			if (!alloc->pages[i].page_ptr)
861 				continue;
862 
863 			on_lru = list_lru_del(&binder_alloc_lru,
864 					      &alloc->pages[i].lru);
865 			page_addr = alloc->buffer + i * PAGE_SIZE;
866 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
867 				     "%s: %d: page %d at %pK %s\n",
868 				     __func__, alloc->pid, i, page_addr,
869 				     on_lru ? "on lru" : "active");
870 			__free_page(alloc->pages[i].page_ptr);
871 			page_count++;
872 		}
873 		kfree(alloc->pages);
874 	}
875 	mutex_unlock(&alloc->mutex);
876 	if (alloc->vma_vm_mm)
877 		mmdrop(alloc->vma_vm_mm);
878 
879 	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
880 		     "%s: %d buffers %d, pages %d\n",
881 		     __func__, alloc->pid, buffers, page_count);
882 }
883 
884 static void print_binder_buffer(struct seq_file *m, const char *prefix,
885 				struct binder_buffer *buffer)
886 {
887 	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
888 		   prefix, buffer->debug_id, buffer->user_data,
889 		   buffer->data_size, buffer->offsets_size,
890 		   buffer->extra_buffers_size,
891 		   buffer->transaction ? "active" : "delivered");
892 }
893 
894 /**
895  * binder_alloc_print_allocated() - print buffer info
896  * @m:     seq_file for output via seq_printf()
897  * @alloc: binder_alloc for this proc
898  *
899  * Prints information about every buffer associated with
900  * the binder_alloc state to the given seq_file
901  */
902 void binder_alloc_print_allocated(struct seq_file *m,
903 				  struct binder_alloc *alloc)
904 {
905 	struct rb_node *n;
906 
907 	mutex_lock(&alloc->mutex);
908 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
909 		print_binder_buffer(m, "  buffer",
910 				    rb_entry(n, struct binder_buffer, rb_node));
911 	mutex_unlock(&alloc->mutex);
912 }
913 
914 /**
915  * binder_alloc_print_pages() - print page usage
916  * @m:     seq_file for output via seq_printf()
917  * @alloc: binder_alloc for this proc
918  */
919 void binder_alloc_print_pages(struct seq_file *m,
920 			      struct binder_alloc *alloc)
921 {
922 	struct binder_lru_page *page;
923 	int i;
924 	int active = 0;
925 	int lru = 0;
926 	int free = 0;
927 
928 	mutex_lock(&alloc->mutex);
929 	/*
930 	 * Make sure the binder_alloc is fully initialized, otherwise we might
931 	 * read inconsistent state.
932 	 */
933 
934 	mmap_read_lock(alloc->vma_vm_mm);
935 	if (binder_alloc_get_vma(alloc) == NULL) {
936 		mmap_read_unlock(alloc->vma_vm_mm);
937 		goto uninitialized;
938 	}
939 
940 	mmap_read_unlock(alloc->vma_vm_mm);
941 	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
942 		page = &alloc->pages[i];
943 		if (!page->page_ptr)
944 			free++;
945 		else if (list_empty(&page->lru))
946 			active++;
947 		else
948 			lru++;
949 	}
950 
951 uninitialized:
952 	mutex_unlock(&alloc->mutex);
953 	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
954 	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
955 }
956 
957 /**
958  * binder_alloc_get_allocated_count() - return count of buffers
959  * @alloc: binder_alloc for this proc
960  *
961  * Return: count of allocated buffers
962  */
963 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
964 {
965 	struct rb_node *n;
966 	int count = 0;
967 
968 	mutex_lock(&alloc->mutex);
969 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
970 		count++;
971 	mutex_unlock(&alloc->mutex);
972 	return count;
973 }
974 
975 
976 /**
977  * binder_alloc_vma_close() - invalidate address space
978  * @alloc: binder_alloc for this proc
979  *
980  * Called from binder_vma_close() when releasing address space.
981  * Clears alloc->vma to prevent new incoming transactions from
982  * allocating more buffers.
983  */
984 void binder_alloc_vma_close(struct binder_alloc *alloc)
985 {
986 	binder_alloc_set_vma(alloc, NULL);
987 }
988 
989 /**
990  * binder_alloc_free_page() - shrinker callback to free pages
991  * @item:   item to free
992  * @lock:   lock protecting the item
993  * @cb_arg: callback argument
994  *
995  * Called from list_lru_walk() in binder_shrink_scan() to free
996  * up pages when the system is under memory pressure.
997  */
998 enum lru_status binder_alloc_free_page(struct list_head *item,
999 				       struct list_lru_one *lru,
1000 				       spinlock_t *lock,
1001 				       void *cb_arg)
1002 	__must_hold(lock)
1003 {
1004 	struct mm_struct *mm = NULL;
1005 	struct binder_lru_page *page = container_of(item,
1006 						    struct binder_lru_page,
1007 						    lru);
1008 	struct binder_alloc *alloc;
1009 	uintptr_t page_addr;
1010 	size_t index;
1011 	struct vm_area_struct *vma;
1012 
1013 	alloc = page->alloc;
1014 	if (!mutex_trylock(&alloc->mutex))
1015 		goto err_get_alloc_mutex_failed;
1016 
1017 	if (!page->page_ptr)
1018 		goto err_page_already_freed;
1019 
1020 	index = page - alloc->pages;
1021 	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1022 
1023 	mm = alloc->vma_vm_mm;
1024 	if (!mmget_not_zero(mm))
1025 		goto err_mmget;
1026 	if (!mmap_read_trylock(mm))
1027 		goto err_mmap_read_lock_failed;
1028 	vma = binder_alloc_get_vma(alloc);
1029 
1030 	list_lru_isolate(lru, item);
1031 	spin_unlock(lock);
1032 
1033 	if (vma) {
1034 		trace_binder_unmap_user_start(alloc, index);
1035 
1036 		zap_page_range(vma, page_addr, PAGE_SIZE);
1037 
1038 		trace_binder_unmap_user_end(alloc, index);
1039 	}
1040 	mmap_read_unlock(mm);
1041 	mmput_async(mm);
1042 
1043 	trace_binder_unmap_kernel_start(alloc, index);
1044 
1045 	__free_page(page->page_ptr);
1046 	page->page_ptr = NULL;
1047 
1048 	trace_binder_unmap_kernel_end(alloc, index);
1049 
1050 	spin_lock(lock);
1051 	mutex_unlock(&alloc->mutex);
1052 	return LRU_REMOVED_RETRY;
1053 
1054 err_mmap_read_lock_failed:
1055 	mmput_async(mm);
1056 err_mmget:
1057 err_page_already_freed:
1058 	mutex_unlock(&alloc->mutex);
1059 err_get_alloc_mutex_failed:
1060 	return LRU_SKIP;
1061 }
1062 
1063 static unsigned long
1064 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1065 {
1066 	return list_lru_count(&binder_alloc_lru);
1067 }
1068 
1069 static unsigned long
1070 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1071 {
1072 	return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1073 			    NULL, sc->nr_to_scan);
1074 }
1075 
1076 static struct shrinker binder_shrinker = {
1077 	.count_objects = binder_shrink_count,
1078 	.scan_objects = binder_shrink_scan,
1079 	.seeks = DEFAULT_SEEKS,
1080 };
1081 
1082 /**
1083  * binder_alloc_init() - called by binder_open() for per-proc initialization
1084  * @alloc: binder_alloc for this proc
1085  *
1086  * Called from binder_open() to initialize binder_alloc fields for
1087  * new binder proc
1088  */
1089 void binder_alloc_init(struct binder_alloc *alloc)
1090 {
1091 	alloc->pid = current->group_leader->pid;
1092 	alloc->vma_vm_mm = current->mm;
1093 	mmgrab(alloc->vma_vm_mm);
1094 	mutex_init(&alloc->mutex);
1095 	INIT_LIST_HEAD(&alloc->buffers);
1096 }
1097 
1098 int binder_alloc_shrinker_init(void)
1099 {
1100 	int ret = list_lru_init(&binder_alloc_lru);
1101 
1102 	if (ret == 0) {
1103 		ret = register_shrinker(&binder_shrinker, "android-binder");
1104 		if (ret)
1105 			list_lru_destroy(&binder_alloc_lru);
1106 	}
1107 	return ret;
1108 }
1109 
1110 /**
1111  * check_buffer() - verify that buffer/offset is safe to access
1112  * @alloc: binder_alloc for this proc
1113  * @buffer: binder buffer to be accessed
1114  * @offset: offset into @buffer data
1115  * @bytes: bytes to access from offset
1116  *
1117  * Check that the @offset/@bytes are within the size of the given
1118  * @buffer and that the buffer is currently active and not freeable.
1119  * Offsets must also be multiples of sizeof(u32). The kernel is
1120  * allowed to touch the buffer in two cases:
1121  *
1122  * 1) when the buffer is being created:
1123  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1124  * 2) when the buffer is being torn down:
1125  *     (buffer->free == 0 && buffer->transaction == NULL).
1126  *
1127  * Return: true if the buffer is safe to access
1128  */
1129 static inline bool check_buffer(struct binder_alloc *alloc,
1130 				struct binder_buffer *buffer,
1131 				binder_size_t offset, size_t bytes)
1132 {
1133 	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1134 
1135 	return buffer_size >= bytes &&
1136 		offset <= buffer_size - bytes &&
1137 		IS_ALIGNED(offset, sizeof(u32)) &&
1138 		!buffer->free &&
1139 		(!buffer->allow_user_free || !buffer->transaction);
1140 }
1141 
1142 /**
1143  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1144  * @alloc: binder_alloc for this proc
1145  * @buffer: binder buffer to be accessed
1146  * @buffer_offset: offset into @buffer data
1147  * @pgoffp: address to copy final page offset to
1148  *
1149  * Lookup the struct page corresponding to the address
1150  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1151  * NULL, the byte-offset into the page is written there.
1152  *
1153  * The caller is responsible to ensure that the offset points
1154  * to a valid address within the @buffer and that @buffer is
1155  * not freeable by the user. Since it can't be freed, we are
1156  * guaranteed that the corresponding elements of @alloc->pages[]
1157  * cannot change.
1158  *
1159  * Return: struct page
1160  */
1161 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1162 					  struct binder_buffer *buffer,
1163 					  binder_size_t buffer_offset,
1164 					  pgoff_t *pgoffp)
1165 {
1166 	binder_size_t buffer_space_offset = buffer_offset +
1167 		(buffer->user_data - alloc->buffer);
1168 	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1169 	size_t index = buffer_space_offset >> PAGE_SHIFT;
1170 	struct binder_lru_page *lru_page;
1171 
1172 	lru_page = &alloc->pages[index];
1173 	*pgoffp = pgoff;
1174 	return lru_page->page_ptr;
1175 }
1176 
1177 /**
1178  * binder_alloc_clear_buf() - zero out buffer
1179  * @alloc: binder_alloc for this proc
1180  * @buffer: binder buffer to be cleared
1181  *
1182  * memset the given buffer to 0
1183  */
1184 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1185 				   struct binder_buffer *buffer)
1186 {
1187 	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1188 	binder_size_t buffer_offset = 0;
1189 
1190 	while (bytes) {
1191 		unsigned long size;
1192 		struct page *page;
1193 		pgoff_t pgoff;
1194 
1195 		page = binder_alloc_get_page(alloc, buffer,
1196 					     buffer_offset, &pgoff);
1197 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1198 		memset_page(page, pgoff, 0, size);
1199 		bytes -= size;
1200 		buffer_offset += size;
1201 	}
1202 }
1203 
1204 /**
1205  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1206  * @alloc: binder_alloc for this proc
1207  * @buffer: binder buffer to be accessed
1208  * @buffer_offset: offset into @buffer data
1209  * @from: userspace pointer to source buffer
1210  * @bytes: bytes to copy
1211  *
1212  * Copy bytes from source userspace to target buffer.
1213  *
1214  * Return: bytes remaining to be copied
1215  */
1216 unsigned long
1217 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1218 				 struct binder_buffer *buffer,
1219 				 binder_size_t buffer_offset,
1220 				 const void __user *from,
1221 				 size_t bytes)
1222 {
1223 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1224 		return bytes;
1225 
1226 	while (bytes) {
1227 		unsigned long size;
1228 		unsigned long ret;
1229 		struct page *page;
1230 		pgoff_t pgoff;
1231 		void *kptr;
1232 
1233 		page = binder_alloc_get_page(alloc, buffer,
1234 					     buffer_offset, &pgoff);
1235 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1236 		kptr = kmap_local_page(page) + pgoff;
1237 		ret = copy_from_user(kptr, from, size);
1238 		kunmap_local(kptr);
1239 		if (ret)
1240 			return bytes - size + ret;
1241 		bytes -= size;
1242 		from += size;
1243 		buffer_offset += size;
1244 	}
1245 	return 0;
1246 }
1247 
1248 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1249 				       bool to_buffer,
1250 				       struct binder_buffer *buffer,
1251 				       binder_size_t buffer_offset,
1252 				       void *ptr,
1253 				       size_t bytes)
1254 {
1255 	/* All copies must be 32-bit aligned and 32-bit size */
1256 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1257 		return -EINVAL;
1258 
1259 	while (bytes) {
1260 		unsigned long size;
1261 		struct page *page;
1262 		pgoff_t pgoff;
1263 
1264 		page = binder_alloc_get_page(alloc, buffer,
1265 					     buffer_offset, &pgoff);
1266 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1267 		if (to_buffer)
1268 			memcpy_to_page(page, pgoff, ptr, size);
1269 		else
1270 			memcpy_from_page(ptr, page, pgoff, size);
1271 		bytes -= size;
1272 		pgoff = 0;
1273 		ptr = ptr + size;
1274 		buffer_offset += size;
1275 	}
1276 	return 0;
1277 }
1278 
1279 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1280 				struct binder_buffer *buffer,
1281 				binder_size_t buffer_offset,
1282 				void *src,
1283 				size_t bytes)
1284 {
1285 	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1286 					   src, bytes);
1287 }
1288 
1289 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1290 				  void *dest,
1291 				  struct binder_buffer *buffer,
1292 				  binder_size_t buffer_offset,
1293 				  size_t bytes)
1294 {
1295 	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1296 					   dest, bytes);
1297 }
1298 
1299