xref: /linux/drivers/acpi/sleep.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * sleep.c - ACPI sleep support.
3  *
4  * Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
5  * Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
6  * Copyright (c) 2000-2003 Patrick Mochel
7  * Copyright (c) 2003 Open Source Development Lab
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/dmi.h>
16 #include <linux/device.h>
17 #include <linux/suspend.h>
18 #include <linux/reboot.h>
19 #include <linux/acpi.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <asm/io.h>
24 
25 #include <acpi/acpi_bus.h>
26 #include <acpi/acpi_drivers.h>
27 
28 #include "internal.h"
29 #include "sleep.h"
30 
31 u8 wake_sleep_flags = ACPI_NO_OPTIONAL_METHODS;
32 static unsigned int gts, bfs;
33 static int set_param_wake_flag(const char *val, struct kernel_param *kp)
34 {
35 	int ret = param_set_int(val, kp);
36 
37 	if (ret)
38 		return ret;
39 
40 	if (kp->arg == (const char *)&gts) {
41 		if (gts)
42 			wake_sleep_flags |= ACPI_EXECUTE_GTS;
43 		else
44 			wake_sleep_flags &= ~ACPI_EXECUTE_GTS;
45 	}
46 	if (kp->arg == (const char *)&bfs) {
47 		if (bfs)
48 			wake_sleep_flags |= ACPI_EXECUTE_BFS;
49 		else
50 			wake_sleep_flags &= ~ACPI_EXECUTE_BFS;
51 	}
52 	return ret;
53 }
54 module_param_call(gts, set_param_wake_flag, param_get_int, &gts, 0644);
55 module_param_call(bfs, set_param_wake_flag, param_get_int, &bfs, 0644);
56 MODULE_PARM_DESC(gts, "Enable evaluation of _GTS on suspend.");
57 MODULE_PARM_DESC(bfs, "Enable evaluation of _BFS on resume".);
58 
59 static u8 sleep_states[ACPI_S_STATE_COUNT];
60 static bool pwr_btn_event_pending;
61 
62 static void acpi_sleep_tts_switch(u32 acpi_state)
63 {
64 	union acpi_object in_arg = { ACPI_TYPE_INTEGER };
65 	struct acpi_object_list arg_list = { 1, &in_arg };
66 	acpi_status status = AE_OK;
67 
68 	in_arg.integer.value = acpi_state;
69 	status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL);
70 	if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
71 		/*
72 		 * OS can't evaluate the _TTS object correctly. Some warning
73 		 * message will be printed. But it won't break anything.
74 		 */
75 		printk(KERN_NOTICE "Failure in evaluating _TTS object\n");
76 	}
77 }
78 
79 static int tts_notify_reboot(struct notifier_block *this,
80 			unsigned long code, void *x)
81 {
82 	acpi_sleep_tts_switch(ACPI_STATE_S5);
83 	return NOTIFY_DONE;
84 }
85 
86 static struct notifier_block tts_notifier = {
87 	.notifier_call	= tts_notify_reboot,
88 	.next		= NULL,
89 	.priority	= 0,
90 };
91 
92 static int acpi_sleep_prepare(u32 acpi_state)
93 {
94 #ifdef CONFIG_ACPI_SLEEP
95 	/* do we have a wakeup address for S2 and S3? */
96 	if (acpi_state == ACPI_STATE_S3) {
97 		if (!acpi_wakeup_address)
98 			return -EFAULT;
99 		acpi_set_firmware_waking_vector(acpi_wakeup_address);
100 
101 	}
102 	ACPI_FLUSH_CPU_CACHE();
103 #endif
104 	printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n",
105 		acpi_state);
106 	acpi_enable_wakeup_devices(acpi_state);
107 	acpi_enter_sleep_state_prep(acpi_state);
108 	return 0;
109 }
110 
111 #ifdef CONFIG_ACPI_SLEEP
112 static u32 acpi_target_sleep_state = ACPI_STATE_S0;
113 
114 /*
115  * The ACPI specification wants us to save NVS memory regions during hibernation
116  * and to restore them during the subsequent resume.  Windows does that also for
117  * suspend to RAM.  However, it is known that this mechanism does not work on
118  * all machines, so we allow the user to disable it with the help of the
119  * 'acpi_sleep=nonvs' kernel command line option.
120  */
121 static bool nvs_nosave;
122 
123 void __init acpi_nvs_nosave(void)
124 {
125 	nvs_nosave = true;
126 }
127 
128 /*
129  * ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
130  * user to request that behavior by using the 'acpi_old_suspend_ordering'
131  * kernel command line option that causes the following variable to be set.
132  */
133 static bool old_suspend_ordering;
134 
135 void __init acpi_old_suspend_ordering(void)
136 {
137 	old_suspend_ordering = true;
138 }
139 
140 /**
141  * acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
142  */
143 static int acpi_pm_freeze(void)
144 {
145 	acpi_disable_all_gpes();
146 	acpi_os_wait_events_complete(NULL);
147 	acpi_ec_block_transactions();
148 	return 0;
149 }
150 
151 /**
152  * acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
153  */
154 static int acpi_pm_pre_suspend(void)
155 {
156 	acpi_pm_freeze();
157 	return suspend_nvs_save();
158 }
159 
160 /**
161  *	__acpi_pm_prepare - Prepare the platform to enter the target state.
162  *
163  *	If necessary, set the firmware waking vector and do arch-specific
164  *	nastiness to get the wakeup code to the waking vector.
165  */
166 static int __acpi_pm_prepare(void)
167 {
168 	int error = acpi_sleep_prepare(acpi_target_sleep_state);
169 	if (error)
170 		acpi_target_sleep_state = ACPI_STATE_S0;
171 
172 	return error;
173 }
174 
175 /**
176  *	acpi_pm_prepare - Prepare the platform to enter the target sleep
177  *		state and disable the GPEs.
178  */
179 static int acpi_pm_prepare(void)
180 {
181 	int error = __acpi_pm_prepare();
182 	if (!error)
183 		error = acpi_pm_pre_suspend();
184 
185 	return error;
186 }
187 
188 static int find_powerf_dev(struct device *dev, void *data)
189 {
190 	struct acpi_device *device = to_acpi_device(dev);
191 	const char *hid = acpi_device_hid(device);
192 
193 	return !strcmp(hid, ACPI_BUTTON_HID_POWERF);
194 }
195 
196 /**
197  *	acpi_pm_finish - Instruct the platform to leave a sleep state.
198  *
199  *	This is called after we wake back up (or if entering the sleep state
200  *	failed).
201  */
202 static void acpi_pm_finish(void)
203 {
204 	struct device *pwr_btn_dev;
205 	u32 acpi_state = acpi_target_sleep_state;
206 
207 	acpi_ec_unblock_transactions();
208 	suspend_nvs_free();
209 
210 	if (acpi_state == ACPI_STATE_S0)
211 		return;
212 
213 	printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n",
214 		acpi_state);
215 	acpi_disable_wakeup_devices(acpi_state);
216 	acpi_leave_sleep_state(acpi_state);
217 
218 	/* reset firmware waking vector */
219 	acpi_set_firmware_waking_vector((acpi_physical_address) 0);
220 
221 	acpi_target_sleep_state = ACPI_STATE_S0;
222 
223 	/* If we were woken with the fixed power button, provide a small
224 	 * hint to userspace in the form of a wakeup event on the fixed power
225 	 * button device (if it can be found).
226 	 *
227 	 * We delay the event generation til now, as the PM layer requires
228 	 * timekeeping to be running before we generate events. */
229 	if (!pwr_btn_event_pending)
230 		return;
231 
232 	pwr_btn_event_pending = false;
233 	pwr_btn_dev = bus_find_device(&acpi_bus_type, NULL, NULL,
234 				      find_powerf_dev);
235 	if (pwr_btn_dev) {
236 		pm_wakeup_event(pwr_btn_dev, 0);
237 		put_device(pwr_btn_dev);
238 	}
239 }
240 
241 /**
242  *	acpi_pm_end - Finish up suspend sequence.
243  */
244 static void acpi_pm_end(void)
245 {
246 	/*
247 	 * This is necessary in case acpi_pm_finish() is not called during a
248 	 * failing transition to a sleep state.
249 	 */
250 	acpi_target_sleep_state = ACPI_STATE_S0;
251 	acpi_sleep_tts_switch(acpi_target_sleep_state);
252 }
253 #else /* !CONFIG_ACPI_SLEEP */
254 #define acpi_target_sleep_state	ACPI_STATE_S0
255 #endif /* CONFIG_ACPI_SLEEP */
256 
257 #ifdef CONFIG_SUSPEND
258 static u32 acpi_suspend_states[] = {
259 	[PM_SUSPEND_ON] = ACPI_STATE_S0,
260 	[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
261 	[PM_SUSPEND_MEM] = ACPI_STATE_S3,
262 	[PM_SUSPEND_MAX] = ACPI_STATE_S5
263 };
264 
265 /**
266  *	acpi_suspend_begin - Set the target system sleep state to the state
267  *		associated with given @pm_state, if supported.
268  */
269 static int acpi_suspend_begin(suspend_state_t pm_state)
270 {
271 	u32 acpi_state = acpi_suspend_states[pm_state];
272 	int error = 0;
273 
274 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
275 	if (error)
276 		return error;
277 
278 	if (sleep_states[acpi_state]) {
279 		acpi_target_sleep_state = acpi_state;
280 		acpi_sleep_tts_switch(acpi_target_sleep_state);
281 	} else {
282 		printk(KERN_ERR "ACPI does not support this state: %d\n",
283 			pm_state);
284 		error = -ENOSYS;
285 	}
286 	return error;
287 }
288 
289 /**
290  *	acpi_suspend_enter - Actually enter a sleep state.
291  *	@pm_state: ignored
292  *
293  *	Flush caches and go to sleep. For STR we have to call arch-specific
294  *	assembly, which in turn call acpi_enter_sleep_state().
295  *	It's unfortunate, but it works. Please fix if you're feeling frisky.
296  */
297 static int acpi_suspend_enter(suspend_state_t pm_state)
298 {
299 	acpi_status status = AE_OK;
300 	u32 acpi_state = acpi_target_sleep_state;
301 	int error;
302 
303 	ACPI_FLUSH_CPU_CACHE();
304 
305 	switch (acpi_state) {
306 	case ACPI_STATE_S1:
307 		barrier();
308 		status = acpi_enter_sleep_state(acpi_state, wake_sleep_flags);
309 		break;
310 
311 	case ACPI_STATE_S3:
312 		error = acpi_suspend_lowlevel();
313 		if (error)
314 			return error;
315 		pr_info(PREFIX "Low-level resume complete\n");
316 		break;
317 	}
318 
319 	/* This violates the spec but is required for bug compatibility. */
320 	acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
321 
322 	/* Reprogram control registers and execute _BFS */
323 	acpi_leave_sleep_state_prep(acpi_state, wake_sleep_flags);
324 
325 	/* ACPI 3.0 specs (P62) says that it's the responsibility
326 	 * of the OSPM to clear the status bit [ implying that the
327 	 * POWER_BUTTON event should not reach userspace ]
328 	 *
329 	 * However, we do generate a small hint for userspace in the form of
330 	 * a wakeup event. We flag this condition for now and generate the
331 	 * event later, as we're currently too early in resume to be able to
332 	 * generate wakeup events.
333 	 */
334 	if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) {
335 		acpi_event_status pwr_btn_status;
336 
337 		acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status);
338 
339 		if (pwr_btn_status & ACPI_EVENT_FLAG_SET) {
340 			acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
341 			/* Flag for later */
342 			pwr_btn_event_pending = true;
343 		}
344 	}
345 
346 	/*
347 	 * Disable and clear GPE status before interrupt is enabled. Some GPEs
348 	 * (like wakeup GPE) haven't handler, this can avoid such GPE misfire.
349 	 * acpi_leave_sleep_state will reenable specific GPEs later
350 	 */
351 	acpi_disable_all_gpes();
352 	/* Allow EC transactions to happen. */
353 	acpi_ec_unblock_transactions_early();
354 
355 	suspend_nvs_restore();
356 
357 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
358 }
359 
360 static int acpi_suspend_state_valid(suspend_state_t pm_state)
361 {
362 	u32 acpi_state;
363 
364 	switch (pm_state) {
365 	case PM_SUSPEND_ON:
366 	case PM_SUSPEND_STANDBY:
367 	case PM_SUSPEND_MEM:
368 		acpi_state = acpi_suspend_states[pm_state];
369 
370 		return sleep_states[acpi_state];
371 	default:
372 		return 0;
373 	}
374 }
375 
376 static const struct platform_suspend_ops acpi_suspend_ops = {
377 	.valid = acpi_suspend_state_valid,
378 	.begin = acpi_suspend_begin,
379 	.prepare_late = acpi_pm_prepare,
380 	.enter = acpi_suspend_enter,
381 	.wake = acpi_pm_finish,
382 	.end = acpi_pm_end,
383 };
384 
385 /**
386  *	acpi_suspend_begin_old - Set the target system sleep state to the
387  *		state associated with given @pm_state, if supported, and
388  *		execute the _PTS control method.  This function is used if the
389  *		pre-ACPI 2.0 suspend ordering has been requested.
390  */
391 static int acpi_suspend_begin_old(suspend_state_t pm_state)
392 {
393 	int error = acpi_suspend_begin(pm_state);
394 	if (!error)
395 		error = __acpi_pm_prepare();
396 
397 	return error;
398 }
399 
400 /*
401  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
402  * been requested.
403  */
404 static const struct platform_suspend_ops acpi_suspend_ops_old = {
405 	.valid = acpi_suspend_state_valid,
406 	.begin = acpi_suspend_begin_old,
407 	.prepare_late = acpi_pm_pre_suspend,
408 	.enter = acpi_suspend_enter,
409 	.wake = acpi_pm_finish,
410 	.end = acpi_pm_end,
411 	.recover = acpi_pm_finish,
412 };
413 
414 static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
415 {
416 	old_suspend_ordering = true;
417 	return 0;
418 }
419 
420 static int __init init_nvs_nosave(const struct dmi_system_id *d)
421 {
422 	acpi_nvs_nosave();
423 	return 0;
424 }
425 
426 static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
427 	{
428 	.callback = init_old_suspend_ordering,
429 	.ident = "Abit KN9 (nForce4 variant)",
430 	.matches = {
431 		DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
432 		DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
433 		},
434 	},
435 	{
436 	.callback = init_old_suspend_ordering,
437 	.ident = "HP xw4600 Workstation",
438 	.matches = {
439 		DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
440 		DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
441 		},
442 	},
443 	{
444 	.callback = init_old_suspend_ordering,
445 	.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
446 	.matches = {
447 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
448 		DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
449 		},
450 	},
451 	{
452 	.callback = init_old_suspend_ordering,
453 	.ident = "Panasonic CF51-2L",
454 	.matches = {
455 		DMI_MATCH(DMI_BOARD_VENDOR,
456 				"Matsushita Electric Industrial Co.,Ltd."),
457 		DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
458 		},
459 	},
460 	{
461 	.callback = init_nvs_nosave,
462 	.ident = "Sony Vaio VGN-FW21E",
463 	.matches = {
464 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
465 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
466 		},
467 	},
468 	{
469 	.callback = init_nvs_nosave,
470 	.ident = "Sony Vaio VPCEB17FX",
471 	.matches = {
472 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
473 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
474 		},
475 	},
476 	{
477 	.callback = init_nvs_nosave,
478 	.ident = "Sony Vaio VGN-SR11M",
479 	.matches = {
480 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
481 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
482 		},
483 	},
484 	{
485 	.callback = init_nvs_nosave,
486 	.ident = "Everex StepNote Series",
487 	.matches = {
488 		DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
489 		DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
490 		},
491 	},
492 	{
493 	.callback = init_nvs_nosave,
494 	.ident = "Sony Vaio VPCEB1Z1E",
495 	.matches = {
496 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
497 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
498 		},
499 	},
500 	{
501 	.callback = init_nvs_nosave,
502 	.ident = "Sony Vaio VGN-NW130D",
503 	.matches = {
504 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
505 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
506 		},
507 	},
508 	{
509 	.callback = init_nvs_nosave,
510 	.ident = "Sony Vaio VPCCW29FX",
511 	.matches = {
512 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
513 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
514 		},
515 	},
516 	{
517 	.callback = init_nvs_nosave,
518 	.ident = "Averatec AV1020-ED2",
519 	.matches = {
520 		DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
521 		DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
522 		},
523 	},
524 	{
525 	.callback = init_old_suspend_ordering,
526 	.ident = "Asus A8N-SLI DELUXE",
527 	.matches = {
528 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
529 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
530 		},
531 	},
532 	{
533 	.callback = init_old_suspend_ordering,
534 	.ident = "Asus A8N-SLI Premium",
535 	.matches = {
536 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
537 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
538 		},
539 	},
540 	{
541 	.callback = init_nvs_nosave,
542 	.ident = "Sony Vaio VGN-SR26GN_P",
543 	.matches = {
544 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
545 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
546 		},
547 	},
548 	{
549 	.callback = init_nvs_nosave,
550 	.ident = "Sony Vaio VGN-FW520F",
551 	.matches = {
552 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
553 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
554 		},
555 	},
556 	{
557 	.callback = init_nvs_nosave,
558 	.ident = "Asus K54C",
559 	.matches = {
560 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
561 		DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
562 		},
563 	},
564 	{
565 	.callback = init_nvs_nosave,
566 	.ident = "Asus K54HR",
567 	.matches = {
568 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
569 		DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
570 		},
571 	},
572 	{},
573 };
574 #endif /* CONFIG_SUSPEND */
575 
576 #ifdef CONFIG_HIBERNATION
577 static unsigned long s4_hardware_signature;
578 static struct acpi_table_facs *facs;
579 static bool nosigcheck;
580 
581 void __init acpi_no_s4_hw_signature(void)
582 {
583 	nosigcheck = true;
584 }
585 
586 static int acpi_hibernation_begin(void)
587 {
588 	int error;
589 
590 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
591 	if (!error) {
592 		acpi_target_sleep_state = ACPI_STATE_S4;
593 		acpi_sleep_tts_switch(acpi_target_sleep_state);
594 	}
595 
596 	return error;
597 }
598 
599 static int acpi_hibernation_enter(void)
600 {
601 	acpi_status status = AE_OK;
602 
603 	ACPI_FLUSH_CPU_CACHE();
604 
605 	/* This shouldn't return.  If it returns, we have a problem */
606 	status = acpi_enter_sleep_state(ACPI_STATE_S4, wake_sleep_flags);
607 	/* Reprogram control registers and execute _BFS */
608 	acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags);
609 
610 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
611 }
612 
613 static void acpi_hibernation_leave(void)
614 {
615 	/*
616 	 * If ACPI is not enabled by the BIOS and the boot kernel, we need to
617 	 * enable it here.
618 	 */
619 	acpi_enable();
620 	/* Reprogram control registers and execute _BFS */
621 	acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags);
622 	/* Check the hardware signature */
623 	if (facs && s4_hardware_signature != facs->hardware_signature) {
624 		printk(KERN_EMERG "ACPI: Hardware changed while hibernated, "
625 			"cannot resume!\n");
626 		panic("ACPI S4 hardware signature mismatch");
627 	}
628 	/* Restore the NVS memory area */
629 	suspend_nvs_restore();
630 	/* Allow EC transactions to happen. */
631 	acpi_ec_unblock_transactions_early();
632 }
633 
634 static void acpi_pm_thaw(void)
635 {
636 	acpi_ec_unblock_transactions();
637 	acpi_enable_all_runtime_gpes();
638 }
639 
640 static const struct platform_hibernation_ops acpi_hibernation_ops = {
641 	.begin = acpi_hibernation_begin,
642 	.end = acpi_pm_end,
643 	.pre_snapshot = acpi_pm_prepare,
644 	.finish = acpi_pm_finish,
645 	.prepare = acpi_pm_prepare,
646 	.enter = acpi_hibernation_enter,
647 	.leave = acpi_hibernation_leave,
648 	.pre_restore = acpi_pm_freeze,
649 	.restore_cleanup = acpi_pm_thaw,
650 };
651 
652 /**
653  *	acpi_hibernation_begin_old - Set the target system sleep state to
654  *		ACPI_STATE_S4 and execute the _PTS control method.  This
655  *		function is used if the pre-ACPI 2.0 suspend ordering has been
656  *		requested.
657  */
658 static int acpi_hibernation_begin_old(void)
659 {
660 	int error;
661 	/*
662 	 * The _TTS object should always be evaluated before the _PTS object.
663 	 * When the old_suspended_ordering is true, the _PTS object is
664 	 * evaluated in the acpi_sleep_prepare.
665 	 */
666 	acpi_sleep_tts_switch(ACPI_STATE_S4);
667 
668 	error = acpi_sleep_prepare(ACPI_STATE_S4);
669 
670 	if (!error) {
671 		if (!nvs_nosave)
672 			error = suspend_nvs_alloc();
673 		if (!error)
674 			acpi_target_sleep_state = ACPI_STATE_S4;
675 	}
676 	return error;
677 }
678 
679 /*
680  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
681  * been requested.
682  */
683 static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
684 	.begin = acpi_hibernation_begin_old,
685 	.end = acpi_pm_end,
686 	.pre_snapshot = acpi_pm_pre_suspend,
687 	.prepare = acpi_pm_freeze,
688 	.finish = acpi_pm_finish,
689 	.enter = acpi_hibernation_enter,
690 	.leave = acpi_hibernation_leave,
691 	.pre_restore = acpi_pm_freeze,
692 	.restore_cleanup = acpi_pm_thaw,
693 	.recover = acpi_pm_finish,
694 };
695 #endif /* CONFIG_HIBERNATION */
696 
697 int acpi_suspend(u32 acpi_state)
698 {
699 	suspend_state_t states[] = {
700 		[1] = PM_SUSPEND_STANDBY,
701 		[3] = PM_SUSPEND_MEM,
702 		[5] = PM_SUSPEND_MAX
703 	};
704 
705 	if (acpi_state < 6 && states[acpi_state])
706 		return pm_suspend(states[acpi_state]);
707 	if (acpi_state == 4)
708 		return hibernate();
709 	return -EINVAL;
710 }
711 
712 #ifdef CONFIG_PM
713 /**
714  *	acpi_pm_device_sleep_state - return preferred power state of ACPI device
715  *		in the system sleep state given by %acpi_target_sleep_state
716  *	@dev: device to examine; its driver model wakeup flags control
717  *		whether it should be able to wake up the system
718  *	@d_min_p: used to store the upper limit of allowed states range
719  *	Return value: preferred power state of the device on success, -ENODEV on
720  *		failure (ie. if there's no 'struct acpi_device' for @dev)
721  *
722  *	Find the lowest power (highest number) ACPI device power state that
723  *	device @dev can be in while the system is in the sleep state represented
724  *	by %acpi_target_sleep_state.  If @wake is nonzero, the device should be
725  *	able to wake up the system from this sleep state.  If @d_min_p is set,
726  *	the highest power (lowest number) device power state of @dev allowed
727  *	in this system sleep state is stored at the location pointed to by it.
728  *
729  *	The caller must ensure that @dev is valid before using this function.
730  *	The caller is also responsible for figuring out if the device is
731  *	supposed to be able to wake up the system and passing this information
732  *	via @wake.
733  */
734 
735 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p)
736 {
737 	acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
738 	struct acpi_device *adev;
739 	char acpi_method[] = "_SxD";
740 	unsigned long long d_min, d_max;
741 
742 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
743 		printk(KERN_DEBUG "ACPI handle has no context!\n");
744 		return -ENODEV;
745 	}
746 
747 	acpi_method[2] = '0' + acpi_target_sleep_state;
748 	/*
749 	 * If the sleep state is S0, we will return D3, but if the device has
750 	 * _S0W, we will use the value from _S0W
751 	 */
752 	d_min = ACPI_STATE_D0;
753 	d_max = ACPI_STATE_D3;
754 
755 	/*
756 	 * If present, _SxD methods return the minimum D-state (highest power
757 	 * state) we can use for the corresponding S-states.  Otherwise, the
758 	 * minimum D-state is D0 (ACPI 3.x).
759 	 *
760 	 * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer
761 	 * provided -- that's our fault recovery, we ignore retval.
762 	 */
763 	if (acpi_target_sleep_state > ACPI_STATE_S0)
764 		acpi_evaluate_integer(handle, acpi_method, NULL, &d_min);
765 
766 	/*
767 	 * If _PRW says we can wake up the system from the target sleep state,
768 	 * the D-state returned by _SxD is sufficient for that (we assume a
769 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
770 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
771 	 * can wake the system.  _S0W may be valid, too.
772 	 */
773 	if (acpi_target_sleep_state == ACPI_STATE_S0 ||
774 	    (device_may_wakeup(dev) && adev->wakeup.flags.valid &&
775 	     adev->wakeup.sleep_state >= acpi_target_sleep_state)) {
776 		acpi_status status;
777 
778 		acpi_method[3] = 'W';
779 		status = acpi_evaluate_integer(handle, acpi_method, NULL,
780 						&d_max);
781 		if (ACPI_FAILURE(status)) {
782 			if (acpi_target_sleep_state != ACPI_STATE_S0 ||
783 			    status != AE_NOT_FOUND)
784 				d_max = d_min;
785 		} else if (d_max < d_min) {
786 			/* Warn the user of the broken DSDT */
787 			printk(KERN_WARNING "ACPI: Wrong value from %s\n",
788 				acpi_method);
789 			/* Sanitize it */
790 			d_min = d_max;
791 		}
792 	}
793 
794 	if (d_min_p)
795 		*d_min_p = d_min;
796 	return d_max;
797 }
798 #endif /* CONFIG_PM */
799 
800 #ifdef CONFIG_PM_SLEEP
801 /**
802  * acpi_pm_device_run_wake - Enable/disable wake-up for given device.
803  * @phys_dev: Device to enable/disable the platform to wake-up the system for.
804  * @enable: Whether enable or disable the wake-up functionality.
805  *
806  * Find the ACPI device object corresponding to @pci_dev and try to
807  * enable/disable the GPE associated with it.
808  */
809 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
810 {
811 	struct acpi_device *dev;
812 	acpi_handle handle;
813 
814 	if (!device_run_wake(phys_dev))
815 		return -EINVAL;
816 
817 	handle = DEVICE_ACPI_HANDLE(phys_dev);
818 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &dev))) {
819 		dev_dbg(phys_dev, "ACPI handle has no context in %s!\n",
820 			__func__);
821 		return -ENODEV;
822 	}
823 
824 	if (enable) {
825 		acpi_enable_wakeup_device_power(dev, ACPI_STATE_S0);
826 		acpi_enable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
827 	} else {
828 		acpi_disable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
829 		acpi_disable_wakeup_device_power(dev);
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  *	acpi_pm_device_sleep_wake - enable or disable the system wake-up
837  *                                  capability of given device
838  *	@dev: device to handle
839  *	@enable: 'true' - enable, 'false' - disable the wake-up capability
840  */
841 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
842 {
843 	acpi_handle handle;
844 	struct acpi_device *adev;
845 	int error;
846 
847 	if (!device_can_wakeup(dev))
848 		return -EINVAL;
849 
850 	handle = DEVICE_ACPI_HANDLE(dev);
851 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
852 		dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__);
853 		return -ENODEV;
854 	}
855 
856 	error = enable ?
857 		acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) :
858 		acpi_disable_wakeup_device_power(adev);
859 	if (!error)
860 		dev_info(dev, "wake-up capability %s by ACPI\n",
861 				enable ? "enabled" : "disabled");
862 
863 	return error;
864 }
865 #endif  /* CONFIG_PM_SLEEP */
866 
867 static void acpi_power_off_prepare(void)
868 {
869 	/* Prepare to power off the system */
870 	acpi_sleep_prepare(ACPI_STATE_S5);
871 	acpi_disable_all_gpes();
872 }
873 
874 static void acpi_power_off(void)
875 {
876 	/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
877 	printk(KERN_DEBUG "%s called\n", __func__);
878 	local_irq_disable();
879 	acpi_enter_sleep_state(ACPI_STATE_S5, wake_sleep_flags);
880 }
881 
882 /*
883  * ACPI 2.0 created the optional _GTS and _BFS,
884  * but industry adoption has been neither rapid nor broad.
885  *
886  * Linux gets into trouble when it executes poorly validated
887  * paths through the BIOS, so disable _GTS and _BFS by default,
888  * but do speak up and offer the option to enable them.
889  */
890 static void __init acpi_gts_bfs_check(void)
891 {
892 	acpi_handle dummy;
893 
894 	if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__GTS, &dummy)))
895 	{
896 		printk(KERN_NOTICE PREFIX "BIOS offers _GTS\n");
897 		printk(KERN_NOTICE PREFIX "If \"acpi.gts=1\" improves suspend, "
898 			"please notify linux-acpi@vger.kernel.org\n");
899 	}
900 	if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__BFS, &dummy)))
901 	{
902 		printk(KERN_NOTICE PREFIX "BIOS offers _BFS\n");
903 		printk(KERN_NOTICE PREFIX "If \"acpi.bfs=1\" improves resume, "
904 			"please notify linux-acpi@vger.kernel.org\n");
905 	}
906 }
907 
908 int __init acpi_sleep_init(void)
909 {
910 	acpi_status status;
911 	u8 type_a, type_b;
912 #ifdef CONFIG_SUSPEND
913 	int i = 0;
914 
915 	dmi_check_system(acpisleep_dmi_table);
916 #endif
917 
918 	if (acpi_disabled)
919 		return 0;
920 
921 	sleep_states[ACPI_STATE_S0] = 1;
922 	printk(KERN_INFO PREFIX "(supports S0");
923 
924 #ifdef CONFIG_SUSPEND
925 	for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) {
926 		status = acpi_get_sleep_type_data(i, &type_a, &type_b);
927 		if (ACPI_SUCCESS(status)) {
928 			sleep_states[i] = 1;
929 			printk(KERN_CONT " S%d", i);
930 		}
931 	}
932 
933 	suspend_set_ops(old_suspend_ordering ?
934 		&acpi_suspend_ops_old : &acpi_suspend_ops);
935 #endif
936 
937 #ifdef CONFIG_HIBERNATION
938 	status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b);
939 	if (ACPI_SUCCESS(status)) {
940 		hibernation_set_ops(old_suspend_ordering ?
941 			&acpi_hibernation_ops_old : &acpi_hibernation_ops);
942 		sleep_states[ACPI_STATE_S4] = 1;
943 		printk(KERN_CONT " S4");
944 		if (!nosigcheck) {
945 			acpi_get_table(ACPI_SIG_FACS, 1,
946 				(struct acpi_table_header **)&facs);
947 			if (facs)
948 				s4_hardware_signature =
949 					facs->hardware_signature;
950 		}
951 	}
952 #endif
953 	status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b);
954 	if (ACPI_SUCCESS(status)) {
955 		sleep_states[ACPI_STATE_S5] = 1;
956 		printk(KERN_CONT " S5");
957 		pm_power_off_prepare = acpi_power_off_prepare;
958 		pm_power_off = acpi_power_off;
959 	}
960 	printk(KERN_CONT ")\n");
961 	/*
962 	 * Register the tts_notifier to reboot notifier list so that the _TTS
963 	 * object can also be evaluated when the system enters S5.
964 	 */
965 	register_reboot_notifier(&tts_notifier);
966 	acpi_gts_bfs_check();
967 	return 0;
968 }
969