xref: /linux/drivers/acpi/scan.c (revision f8bba143dae10f824e2b4522f31d6e78781b8667)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				acpi_hp_notify notify, acpi_hp_uevent uevent)
77 {
78 	acpi_lock_hp_context();
79 	hp->notify = notify;
80 	hp->uevent = uevent;
81 	acpi_set_hp_context(adev, hp);
82 	acpi_unlock_hp_context();
83 }
84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85 
86 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87 {
88 	if (!handler)
89 		return -EINVAL;
90 
91 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 	return 0;
93 }
94 
95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 				       const char *hotplug_profile_name)
97 {
98 	int error;
99 
100 	error = acpi_scan_add_handler(handler);
101 	if (error)
102 		return error;
103 
104 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 	return 0;
106 }
107 
108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109 {
110 	struct acpi_device_physical_node *pn;
111 	bool offline = true;
112 	char *envp[] = { "EVENT=offline", NULL };
113 
114 	/*
115 	 * acpi_container_offline() calls this for all of the container's
116 	 * children under the container's physical_node_lock lock.
117 	 */
118 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119 
120 	list_for_each_entry(pn, &adev->physical_node_list, node)
121 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 			if (uevent)
123 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124 
125 			offline = false;
126 			break;
127 		}
128 
129 	mutex_unlock(&adev->physical_node_lock);
130 	return offline;
131 }
132 
133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 				    void **ret_p)
135 {
136 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 	struct acpi_device_physical_node *pn;
138 	bool second_pass = (bool)data;
139 	acpi_status status = AE_OK;
140 
141 	if (!device)
142 		return AE_OK;
143 
144 	if (device->handler && !device->handler->hotplug.enabled) {
145 		*ret_p = &device->dev;
146 		return AE_SUPPORT;
147 	}
148 
149 	mutex_lock(&device->physical_node_lock);
150 
151 	list_for_each_entry(pn, &device->physical_node_list, node) {
152 		int ret;
153 
154 		if (second_pass) {
155 			/* Skip devices offlined by the first pass. */
156 			if (pn->put_online)
157 				continue;
158 		} else {
159 			pn->put_online = false;
160 		}
161 		ret = device_offline(pn->dev);
162 		if (ret >= 0) {
163 			pn->put_online = !ret;
164 		} else {
165 			*ret_p = pn->dev;
166 			if (second_pass) {
167 				status = AE_ERROR;
168 				break;
169 			}
170 		}
171 	}
172 
173 	mutex_unlock(&device->physical_node_lock);
174 
175 	return status;
176 }
177 
178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 				   void **ret_p)
180 {
181 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 	struct acpi_device_physical_node *pn;
183 
184 	if (!device)
185 		return AE_OK;
186 
187 	mutex_lock(&device->physical_node_lock);
188 
189 	list_for_each_entry(pn, &device->physical_node_list, node)
190 		if (pn->put_online) {
191 			device_online(pn->dev);
192 			pn->put_online = false;
193 		}
194 
195 	mutex_unlock(&device->physical_node_lock);
196 
197 	return AE_OK;
198 }
199 
200 static int acpi_scan_try_to_offline(struct acpi_device *device)
201 {
202 	acpi_handle handle = device->handle;
203 	struct device *errdev = NULL;
204 	acpi_status status;
205 
206 	/*
207 	 * Carry out two passes here and ignore errors in the first pass,
208 	 * because if the devices in question are memory blocks and
209 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 	 * that the other blocks depend on, but it is not known in advance which
211 	 * block holds them.
212 	 *
213 	 * If the first pass is successful, the second one isn't needed, though.
214 	 */
215 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 				     NULL, acpi_bus_offline, (void *)false,
217 				     (void **)&errdev);
218 	if (status == AE_SUPPORT) {
219 		dev_warn(errdev, "Offline disabled.\n");
220 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 				    acpi_bus_online, NULL, NULL, NULL);
222 		return -EPERM;
223 	}
224 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 	if (errdev) {
226 		errdev = NULL;
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    NULL, acpi_bus_offline, (void *)true,
229 				    (void **)&errdev);
230 		if (!errdev)
231 			acpi_bus_offline(handle, 0, (void *)true,
232 					 (void **)&errdev);
233 
234 		if (errdev) {
235 			dev_warn(errdev, "Offline failed.\n");
236 			acpi_bus_online(handle, 0, NULL, NULL);
237 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 					    ACPI_UINT32_MAX, acpi_bus_online,
239 					    NULL, NULL, NULL);
240 			return -EBUSY;
241 		}
242 	}
243 	return 0;
244 }
245 
246 #define ACPI_SCAN_CHECK_FLAG_STATUS	BIT(0)
247 #define ACPI_SCAN_CHECK_FLAG_EJECT	BIT(1)
248 
249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250 {
251 	struct acpi_scan_handler *handler = adev->handler;
252 	uintptr_t flags = (uintptr_t)p;
253 
254 	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255 
256 	if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 		acpi_bus_get_status(adev);
258 		/*
259 		 * Skip devices that are still there and take the enabled
260 		 * flag into account.
261 		 */
262 		if (acpi_device_is_enabled(adev))
263 			return 0;
264 
265 		/* Skip device that have not been enumerated. */
266 		if (!acpi_device_enumerated(adev)) {
267 			dev_dbg(&adev->dev, "Still not enumerated\n");
268 			return 0;
269 		}
270 	}
271 
272 	adev->flags.match_driver = false;
273 	if (handler) {
274 		if (handler->detach)
275 			handler->detach(adev);
276 	} else {
277 		device_release_driver(&adev->dev);
278 	}
279 	/*
280 	 * Most likely, the device is going away, so put it into D3cold before
281 	 * that.
282 	 */
283 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 	adev->flags.initialized = false;
285 
286 	/* For eject this is deferred to acpi_bus_post_eject() */
287 	if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 		adev->handler = NULL;
289 		acpi_device_clear_enumerated(adev);
290 	}
291 	return 0;
292 }
293 
294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295 {
296 	struct acpi_scan_handler *handler = adev->handler;
297 
298 	acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299 
300 	if (handler) {
301 		if (handler->post_eject)
302 			handler->post_eject(adev);
303 
304 		adev->handler = NULL;
305 	}
306 
307 	acpi_device_clear_enumerated(adev);
308 
309 	return 0;
310 }
311 
312 static void acpi_scan_check_subtree(struct acpi_device *adev)
313 {
314 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315 
316 	acpi_scan_check_and_detach(adev, (void *)flags);
317 }
318 
319 static int acpi_scan_hot_remove(struct acpi_device *device)
320 {
321 	acpi_handle handle = device->handle;
322 	unsigned long long sta;
323 	acpi_status status;
324 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325 
326 	if (device->handler && device->handler->hotplug.demand_offline) {
327 		if (!acpi_scan_is_offline(device, true))
328 			return -EBUSY;
329 	} else {
330 		int error = acpi_scan_try_to_offline(device);
331 		if (error)
332 			return error;
333 	}
334 
335 	acpi_handle_debug(handle, "Ejecting\n");
336 
337 	acpi_scan_check_and_detach(device, (void *)flags);
338 
339 	acpi_evaluate_lck(handle, 0);
340 	/*
341 	 * TBD: _EJD support.
342 	 */
343 	status = acpi_evaluate_ej0(handle);
344 	if (status == AE_NOT_FOUND)
345 		return -ENODEV;
346 	else if (ACPI_FAILURE(status))
347 		return -EIO;
348 
349 	/*
350 	 * Verify if eject was indeed successful.  If not, log an error
351 	 * message.  No need to call _OST since _EJ0 call was made OK.
352 	 */
353 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 	if (ACPI_FAILURE(status)) {
355 		acpi_handle_warn(handle,
356 			"Status check after eject failed (0x%x)\n", status);
357 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 		acpi_handle_warn(handle,
359 			"Eject incomplete - status 0x%llx\n", sta);
360 	} else {
361 		acpi_bus_post_eject(device, NULL);
362 	}
363 
364 	return 0;
365 }
366 
367 static int acpi_scan_rescan_bus(struct acpi_device *adev)
368 {
369 	struct acpi_scan_handler *handler = adev->handler;
370 	int ret;
371 
372 	if (handler && handler->hotplug.scan_dependent)
373 		ret = handler->hotplug.scan_dependent(adev);
374 	else
375 		ret = acpi_bus_scan(adev->handle);
376 
377 	if (ret)
378 		dev_info(&adev->dev, "Namespace scan failure\n");
379 
380 	return ret;
381 }
382 
383 static int acpi_scan_device_check(struct acpi_device *adev)
384 {
385 	struct acpi_device *parent;
386 
387 	acpi_scan_check_subtree(adev);
388 
389 	if (!acpi_device_is_present(adev))
390 		return 0;
391 
392 	/*
393 	 * This function is only called for device objects for which matching
394 	 * scan handlers exist.  The only situation in which the scan handler
395 	 * is not attached to this device object yet is when the device has
396 	 * just appeared (either it wasn't present at all before or it was
397 	 * removed and then added again).
398 	 */
399 	if (adev->handler) {
400 		dev_dbg(&adev->dev, "Already enumerated\n");
401 		return 0;
402 	}
403 
404 	parent = acpi_dev_parent(adev);
405 	if (!parent)
406 		parent = adev;
407 
408 	return acpi_scan_rescan_bus(parent);
409 }
410 
411 static int acpi_scan_bus_check(struct acpi_device *adev)
412 {
413 	acpi_scan_check_subtree(adev);
414 
415 	return acpi_scan_rescan_bus(adev);
416 }
417 
418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419 {
420 	switch (type) {
421 	case ACPI_NOTIFY_BUS_CHECK:
422 		return acpi_scan_bus_check(adev);
423 	case ACPI_NOTIFY_DEVICE_CHECK:
424 		return acpi_scan_device_check(adev);
425 	case ACPI_NOTIFY_EJECT_REQUEST:
426 	case ACPI_OST_EC_OSPM_EJECT:
427 		if (adev->handler && !adev->handler->hotplug.enabled) {
428 			dev_info(&adev->dev, "Eject disabled\n");
429 			return -EPERM;
430 		}
431 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 		return acpi_scan_hot_remove(adev);
434 	}
435 	return -EINVAL;
436 }
437 
438 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439 {
440 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 	int error = -ENODEV;
442 
443 	lock_device_hotplug();
444 	mutex_lock(&acpi_scan_lock);
445 
446 	/*
447 	 * The device object's ACPI handle cannot become invalid as long as we
448 	 * are holding acpi_scan_lock, but it might have become invalid before
449 	 * that lock was acquired.
450 	 */
451 	if (adev->handle == INVALID_ACPI_HANDLE)
452 		goto err_out;
453 
454 	if (adev->flags.is_dock_station) {
455 		error = dock_notify(adev, src);
456 	} else if (adev->flags.hotplug_notify) {
457 		error = acpi_generic_hotplug_event(adev, src);
458 	} else {
459 		acpi_hp_notify notify;
460 
461 		acpi_lock_hp_context();
462 		notify = adev->hp ? adev->hp->notify : NULL;
463 		acpi_unlock_hp_context();
464 		/*
465 		 * There may be additional notify handlers for device objects
466 		 * without the .event() callback, so ignore them here.
467 		 */
468 		if (notify)
469 			error = notify(adev, src);
470 		else
471 			goto out;
472 	}
473 	switch (error) {
474 	case 0:
475 		ost_code = ACPI_OST_SC_SUCCESS;
476 		break;
477 	case -EPERM:
478 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 		break;
480 	case -EBUSY:
481 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 		break;
483 	default:
484 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 		break;
486 	}
487 
488  err_out:
489 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490 
491  out:
492 	acpi_put_acpi_dev(adev);
493 	mutex_unlock(&acpi_scan_lock);
494 	unlock_device_hotplug();
495 }
496 
497 static void acpi_free_power_resources_lists(struct acpi_device *device)
498 {
499 	int i;
500 
501 	if (device->wakeup.flags.valid)
502 		acpi_power_resources_list_free(&device->wakeup.resources);
503 
504 	if (!device->power.flags.power_resources)
505 		return;
506 
507 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 		struct acpi_device_power_state *ps = &device->power.states[i];
509 		acpi_power_resources_list_free(&ps->resources);
510 	}
511 }
512 
513 static void acpi_device_release(struct device *dev)
514 {
515 	struct acpi_device *acpi_dev = to_acpi_device(dev);
516 
517 	acpi_free_properties(acpi_dev);
518 	acpi_free_pnp_ids(&acpi_dev->pnp);
519 	acpi_free_power_resources_lists(acpi_dev);
520 	kfree(acpi_dev);
521 }
522 
523 static void acpi_device_del(struct acpi_device *device)
524 {
525 	struct acpi_device_bus_id *acpi_device_bus_id;
526 
527 	mutex_lock(&acpi_device_lock);
528 
529 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 		if (!strcmp(acpi_device_bus_id->bus_id,
531 			    acpi_device_hid(device))) {
532 			ida_free(&acpi_device_bus_id->instance_ida,
533 				 device->pnp.instance_no);
534 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 				list_del(&acpi_device_bus_id->node);
536 				kfree_const(acpi_device_bus_id->bus_id);
537 				kfree(acpi_device_bus_id);
538 			}
539 			break;
540 		}
541 
542 	list_del(&device->wakeup_list);
543 
544 	mutex_unlock(&acpi_device_lock);
545 
546 	acpi_power_add_remove_device(device, false);
547 	acpi_device_remove_files(device);
548 	if (device->remove)
549 		device->remove(device);
550 
551 	device_del(&device->dev);
552 }
553 
554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555 
556 static LIST_HEAD(acpi_device_del_list);
557 static DEFINE_MUTEX(acpi_device_del_lock);
558 
559 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560 {
561 	for (;;) {
562 		struct acpi_device *adev;
563 
564 		mutex_lock(&acpi_device_del_lock);
565 
566 		if (list_empty(&acpi_device_del_list)) {
567 			mutex_unlock(&acpi_device_del_lock);
568 			break;
569 		}
570 		adev = list_first_entry(&acpi_device_del_list,
571 					struct acpi_device, del_list);
572 		list_del(&adev->del_list);
573 
574 		mutex_unlock(&acpi_device_del_lock);
575 
576 		blocking_notifier_call_chain(&acpi_reconfig_chain,
577 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
578 
579 		acpi_device_del(adev);
580 		/*
581 		 * Drop references to all power resources that might have been
582 		 * used by the device.
583 		 */
584 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 		acpi_dev_put(adev);
586 	}
587 }
588 
589 /**
590  * acpi_scan_drop_device - Drop an ACPI device object.
591  * @handle: Handle of an ACPI namespace node, not used.
592  * @context: Address of the ACPI device object to drop.
593  *
594  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595  * namespace node the device object pointed to by @context is attached to.
596  *
597  * The unregistration is carried out asynchronously to avoid running
598  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599  * ensure the correct ordering (the device objects must be unregistered in the
600  * same order in which the corresponding namespace nodes are deleted).
601  */
602 static void acpi_scan_drop_device(acpi_handle handle, void *context)
603 {
604 	static DECLARE_WORK(work, acpi_device_del_work_fn);
605 	struct acpi_device *adev = context;
606 
607 	mutex_lock(&acpi_device_del_lock);
608 
609 	/*
610 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 	 * won't run after any hotplug work items submitted subsequently.  That
612 	 * prevents attempts to register device objects identical to those being
613 	 * deleted from happening concurrently (such attempts result from
614 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
615 	 * run after all of the work items submitted previously, which helps
616 	 * those work items to ensure that they are not accessing stale device
617 	 * objects.
618 	 */
619 	if (list_empty(&acpi_device_del_list))
620 		acpi_queue_hotplug_work(&work);
621 
622 	list_add_tail(&adev->del_list, &acpi_device_del_list);
623 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
624 	adev->handle = INVALID_ACPI_HANDLE;
625 
626 	mutex_unlock(&acpi_device_del_lock);
627 }
628 
629 static struct acpi_device *handle_to_device(acpi_handle handle,
630 					    void (*callback)(void *))
631 {
632 	struct acpi_device *adev = NULL;
633 	acpi_status status;
634 
635 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 				    (void **)&adev, callback);
637 	if (ACPI_FAILURE(status) || !adev) {
638 		acpi_handle_debug(handle, "No context!\n");
639 		return NULL;
640 	}
641 	return adev;
642 }
643 
644 /**
645  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646  * @handle: ACPI handle associated with the requested ACPI device object.
647  *
648  * Return a pointer to the ACPI device object associated with @handle, if
649  * present, or NULL otherwise.
650  */
651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652 {
653 	return handle_to_device(handle, NULL);
654 }
655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656 
657 static void get_acpi_device(void *dev)
658 {
659 	acpi_dev_get(dev);
660 }
661 
662 /**
663  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664  * @handle: ACPI handle associated with the requested ACPI device object.
665  *
666  * Return a pointer to the ACPI device object associated with @handle and bump
667  * up that object's reference counter (under the ACPI Namespace lock), if
668  * present, or return NULL otherwise.
669  *
670  * The ACPI device object reference acquired by this function needs to be
671  * dropped via acpi_dev_put().
672  */
673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674 {
675 	return handle_to_device(handle, get_acpi_device);
676 }
677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678 
679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680 {
681 	struct acpi_device_bus_id *acpi_device_bus_id;
682 
683 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 			return acpi_device_bus_id;
687 	}
688 	return NULL;
689 }
690 
691 static int acpi_device_set_name(struct acpi_device *device,
692 				struct acpi_device_bus_id *acpi_device_bus_id)
693 {
694 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 	int result;
696 
697 	result = ida_alloc(instance_ida, GFP_KERNEL);
698 	if (result < 0)
699 		return result;
700 
701 	device->pnp.instance_no = result;
702 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 	return 0;
704 }
705 
706 int acpi_tie_acpi_dev(struct acpi_device *adev)
707 {
708 	acpi_handle handle = adev->handle;
709 	acpi_status status;
710 
711 	if (!handle)
712 		return 0;
713 
714 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 	if (ACPI_FAILURE(status)) {
716 		acpi_handle_err(handle, "Unable to attach device data\n");
717 		return -ENODEV;
718 	}
719 
720 	return 0;
721 }
722 
723 static void acpi_store_pld_crc(struct acpi_device *adev)
724 {
725 	struct acpi_pld_info *pld;
726 	acpi_status status;
727 
728 	status = acpi_get_physical_device_location(adev->handle, &pld);
729 	if (ACPI_FAILURE(status))
730 		return;
731 
732 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
733 	ACPI_FREE(pld);
734 }
735 
736 int acpi_device_add(struct acpi_device *device)
737 {
738 	struct acpi_device_bus_id *acpi_device_bus_id;
739 	int result;
740 
741 	/*
742 	 * Linkage
743 	 * -------
744 	 * Link this device to its parent and siblings.
745 	 */
746 	INIT_LIST_HEAD(&device->wakeup_list);
747 	INIT_LIST_HEAD(&device->physical_node_list);
748 	INIT_LIST_HEAD(&device->del_list);
749 	mutex_init(&device->physical_node_lock);
750 
751 	mutex_lock(&acpi_device_lock);
752 
753 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
754 	if (acpi_device_bus_id) {
755 		result = acpi_device_set_name(device, acpi_device_bus_id);
756 		if (result)
757 			goto err_unlock;
758 	} else {
759 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
760 					     GFP_KERNEL);
761 		if (!acpi_device_bus_id) {
762 			result = -ENOMEM;
763 			goto err_unlock;
764 		}
765 		acpi_device_bus_id->bus_id =
766 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
767 		if (!acpi_device_bus_id->bus_id) {
768 			kfree(acpi_device_bus_id);
769 			result = -ENOMEM;
770 			goto err_unlock;
771 		}
772 
773 		ida_init(&acpi_device_bus_id->instance_ida);
774 
775 		result = acpi_device_set_name(device, acpi_device_bus_id);
776 		if (result) {
777 			kfree_const(acpi_device_bus_id->bus_id);
778 			kfree(acpi_device_bus_id);
779 			goto err_unlock;
780 		}
781 
782 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
783 	}
784 
785 	if (device->wakeup.flags.valid)
786 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
787 
788 	acpi_store_pld_crc(device);
789 
790 	mutex_unlock(&acpi_device_lock);
791 
792 	result = device_add(&device->dev);
793 	if (result) {
794 		dev_err(&device->dev, "Error registering device\n");
795 		goto err;
796 	}
797 
798 	result = acpi_device_setup_files(device);
799 	if (result)
800 		pr_err("Error creating sysfs interface for device %s\n",
801 		       dev_name(&device->dev));
802 
803 	return 0;
804 
805 err:
806 	mutex_lock(&acpi_device_lock);
807 
808 	list_del(&device->wakeup_list);
809 
810 err_unlock:
811 	mutex_unlock(&acpi_device_lock);
812 
813 	acpi_detach_data(device->handle, acpi_scan_drop_device);
814 
815 	return result;
816 }
817 
818 /* --------------------------------------------------------------------------
819                                  Device Enumeration
820    -------------------------------------------------------------------------- */
821 static bool acpi_info_matches_ids(struct acpi_device_info *info,
822 				  const char * const ids[])
823 {
824 	struct acpi_pnp_device_id_list *cid_list = NULL;
825 	int i, index;
826 
827 	if (!(info->valid & ACPI_VALID_HID))
828 		return false;
829 
830 	index = match_string(ids, -1, info->hardware_id.string);
831 	if (index >= 0)
832 		return true;
833 
834 	if (info->valid & ACPI_VALID_CID)
835 		cid_list = &info->compatible_id_list;
836 
837 	if (!cid_list)
838 		return false;
839 
840 	for (i = 0; i < cid_list->count; i++) {
841 		index = match_string(ids, -1, cid_list->ids[i].string);
842 		if (index >= 0)
843 			return true;
844 	}
845 
846 	return false;
847 }
848 
849 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
850 static const char * const acpi_ignore_dep_ids[] = {
851 	"PNP0D80", /* Windows-compatible System Power Management Controller */
852 	"INT33BD", /* Intel Baytrail Mailbox Device */
853 	"LATT2021", /* Lattice FW Update Client Driver */
854 	NULL
855 };
856 
857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
858 static const char * const acpi_honor_dep_ids[] = {
859 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
860 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
861 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
862 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
863 	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
864 	"RSCV0001", /* RISC-V PLIC */
865 	"RSCV0002", /* RISC-V APLIC */
866 	"PNP0C0F",  /* PCI Link Device */
867 	NULL
868 };
869 
870 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
871 {
872 	struct acpi_device *adev;
873 
874 	/*
875 	 * Fixed hardware devices do not appear in the namespace and do not
876 	 * have handles, but we fabricate acpi_devices for them, so we have
877 	 * to deal with them specially.
878 	 */
879 	if (!handle)
880 		return acpi_root;
881 
882 	do {
883 		acpi_status status;
884 
885 		status = acpi_get_parent(handle, &handle);
886 		if (ACPI_FAILURE(status)) {
887 			if (status != AE_NULL_ENTRY)
888 				return acpi_root;
889 
890 			return NULL;
891 		}
892 		adev = acpi_fetch_acpi_dev(handle);
893 	} while (!adev);
894 	return adev;
895 }
896 
897 acpi_status
898 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
899 {
900 	acpi_status status;
901 	acpi_handle tmp;
902 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
903 	union acpi_object *obj;
904 
905 	status = acpi_get_handle(handle, "_EJD", &tmp);
906 	if (ACPI_FAILURE(status))
907 		return status;
908 
909 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
910 	if (ACPI_SUCCESS(status)) {
911 		obj = buffer.pointer;
912 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
913 					 ejd);
914 		kfree(buffer.pointer);
915 	}
916 	return status;
917 }
918 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
919 
920 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
921 {
922 	acpi_handle handle = dev->handle;
923 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
924 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
925 	union acpi_object *package = NULL;
926 	union acpi_object *element = NULL;
927 	acpi_status status;
928 	int err = -ENODATA;
929 
930 	INIT_LIST_HEAD(&wakeup->resources);
931 
932 	/* _PRW */
933 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
934 	if (ACPI_FAILURE(status)) {
935 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
936 				 acpi_format_exception(status));
937 		return err;
938 	}
939 
940 	package = (union acpi_object *)buffer.pointer;
941 
942 	if (!package || package->package.count < 2)
943 		goto out;
944 
945 	element = &(package->package.elements[0]);
946 	if (!element)
947 		goto out;
948 
949 	if (element->type == ACPI_TYPE_PACKAGE) {
950 		if ((element->package.count < 2) ||
951 		    (element->package.elements[0].type !=
952 		     ACPI_TYPE_LOCAL_REFERENCE)
953 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
954 			goto out;
955 
956 		wakeup->gpe_device =
957 		    element->package.elements[0].reference.handle;
958 		wakeup->gpe_number =
959 		    (u32) element->package.elements[1].integer.value;
960 	} else if (element->type == ACPI_TYPE_INTEGER) {
961 		wakeup->gpe_device = NULL;
962 		wakeup->gpe_number = element->integer.value;
963 	} else {
964 		goto out;
965 	}
966 
967 	element = &(package->package.elements[1]);
968 	if (element->type != ACPI_TYPE_INTEGER)
969 		goto out;
970 
971 	wakeup->sleep_state = element->integer.value;
972 
973 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
974 	if (err)
975 		goto out;
976 
977 	if (!list_empty(&wakeup->resources)) {
978 		int sleep_state;
979 
980 		err = acpi_power_wakeup_list_init(&wakeup->resources,
981 						  &sleep_state);
982 		if (err) {
983 			acpi_handle_warn(handle, "Retrieving current states "
984 					 "of wakeup power resources failed\n");
985 			acpi_power_resources_list_free(&wakeup->resources);
986 			goto out;
987 		}
988 		if (sleep_state < wakeup->sleep_state) {
989 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
990 					 "(S%d) by S%d from power resources\n",
991 					 (int)wakeup->sleep_state, sleep_state);
992 			wakeup->sleep_state = sleep_state;
993 		}
994 	}
995 
996  out:
997 	kfree(buffer.pointer);
998 	return err;
999 }
1000 
1001 /* Do not use a button for S5 wakeup */
1002 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
1003 
1004 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1005 {
1006 	static const struct acpi_device_id button_device_ids[] = {
1007 		{"PNP0C0C", 0},				/* Power button */
1008 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
1009 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
1010 		{"", 0},
1011 	};
1012 	struct acpi_device_wakeup *wakeup = &device->wakeup;
1013 	const struct acpi_device_id *match;
1014 	acpi_status status;
1015 
1016 	wakeup->flags.notifier_present = 0;
1017 
1018 	/* Power button, Lid switch always enable wakeup */
1019 	match = acpi_match_acpi_device(button_device_ids, device);
1020 	if (match) {
1021 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1022 		    wakeup->sleep_state == ACPI_STATE_S5)
1023 			wakeup->sleep_state = ACPI_STATE_S4;
1024 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1025 		device_set_wakeup_capable(&device->dev, true);
1026 		return true;
1027 	}
1028 
1029 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1030 					 wakeup->gpe_number);
1031 	return ACPI_SUCCESS(status);
1032 }
1033 
1034 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1035 {
1036 	int err;
1037 
1038 	/* Presence of _PRW indicates wake capable */
1039 	if (!acpi_has_method(device->handle, "_PRW"))
1040 		return;
1041 
1042 	err = acpi_bus_extract_wakeup_device_power_package(device);
1043 	if (err) {
1044 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1045 		return;
1046 	}
1047 
1048 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1049 	device->wakeup.prepare_count = 0;
1050 	/*
1051 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1052 	 * system for the ACPI device with the _PRW object.
1053 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1054 	 * So it is necessary to call _DSW object first. Only when it is not
1055 	 * present will the _PSW object used.
1056 	 */
1057 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1058 	if (err)
1059 		pr_debug("error in _DSW or _PSW evaluation\n");
1060 }
1061 
1062 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1063 {
1064 	struct acpi_device_power_state *ps = &device->power.states[state];
1065 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1066 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1067 	acpi_status status;
1068 
1069 	INIT_LIST_HEAD(&ps->resources);
1070 
1071 	/* Evaluate "_PRx" to get referenced power resources */
1072 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1073 	if (ACPI_SUCCESS(status)) {
1074 		union acpi_object *package = buffer.pointer;
1075 
1076 		if (buffer.length && package
1077 		    && package->type == ACPI_TYPE_PACKAGE
1078 		    && package->package.count)
1079 			acpi_extract_power_resources(package, 0, &ps->resources);
1080 
1081 		ACPI_FREE(buffer.pointer);
1082 	}
1083 
1084 	/* Evaluate "_PSx" to see if we can do explicit sets */
1085 	pathname[2] = 'S';
1086 	if (acpi_has_method(device->handle, pathname))
1087 		ps->flags.explicit_set = 1;
1088 
1089 	/* State is valid if there are means to put the device into it. */
1090 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1091 		ps->flags.valid = 1;
1092 
1093 	ps->power = -1;		/* Unknown - driver assigned */
1094 	ps->latency = -1;	/* Unknown - driver assigned */
1095 }
1096 
1097 static void acpi_bus_get_power_flags(struct acpi_device *device)
1098 {
1099 	unsigned long long dsc = ACPI_STATE_D0;
1100 	u32 i;
1101 
1102 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1103 	if (!acpi_has_method(device->handle, "_PS0") &&
1104 	    !acpi_has_method(device->handle, "_PR0"))
1105 		return;
1106 
1107 	device->flags.power_manageable = 1;
1108 
1109 	/*
1110 	 * Power Management Flags
1111 	 */
1112 	if (acpi_has_method(device->handle, "_PSC"))
1113 		device->power.flags.explicit_get = 1;
1114 
1115 	if (acpi_has_method(device->handle, "_IRC"))
1116 		device->power.flags.inrush_current = 1;
1117 
1118 	if (acpi_has_method(device->handle, "_DSW"))
1119 		device->power.flags.dsw_present = 1;
1120 
1121 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1122 	device->power.state_for_enumeration = dsc;
1123 
1124 	/*
1125 	 * Enumerate supported power management states
1126 	 */
1127 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1128 		acpi_bus_init_power_state(device, i);
1129 
1130 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1131 
1132 	/* Set the defaults for D0 and D3hot (always supported). */
1133 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1134 	device->power.states[ACPI_STATE_D0].power = 100;
1135 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1136 
1137 	/*
1138 	 * Use power resources only if the D0 list of them is populated, because
1139 	 * some platforms may provide _PR3 only to indicate D3cold support and
1140 	 * in those cases the power resources list returned by it may be bogus.
1141 	 */
1142 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1143 		device->power.flags.power_resources = 1;
1144 		/*
1145 		 * D3cold is supported if the D3hot list of power resources is
1146 		 * not empty.
1147 		 */
1148 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1149 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1150 	}
1151 
1152 	if (acpi_bus_init_power(device))
1153 		device->flags.power_manageable = 0;
1154 }
1155 
1156 static void acpi_bus_get_flags(struct acpi_device *device)
1157 {
1158 	/* Presence of _STA indicates 'dynamic_status' */
1159 	if (acpi_has_method(device->handle, "_STA"))
1160 		device->flags.dynamic_status = 1;
1161 
1162 	/* Presence of _RMV indicates 'removable' */
1163 	if (acpi_has_method(device->handle, "_RMV"))
1164 		device->flags.removable = 1;
1165 
1166 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1167 	if (acpi_has_method(device->handle, "_EJD") ||
1168 	    acpi_has_method(device->handle, "_EJ0"))
1169 		device->flags.ejectable = 1;
1170 }
1171 
1172 static void acpi_device_get_busid(struct acpi_device *device)
1173 {
1174 	char bus_id[5] = { '?', 0 };
1175 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1176 	int i = 0;
1177 
1178 	/*
1179 	 * Bus ID
1180 	 * ------
1181 	 * The device's Bus ID is simply the object name.
1182 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1183 	 */
1184 	if (!acpi_dev_parent(device)) {
1185 		strcpy(device->pnp.bus_id, "ACPI");
1186 		return;
1187 	}
1188 
1189 	switch (device->device_type) {
1190 	case ACPI_BUS_TYPE_POWER_BUTTON:
1191 		strcpy(device->pnp.bus_id, "PWRF");
1192 		break;
1193 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1194 		strcpy(device->pnp.bus_id, "SLPF");
1195 		break;
1196 	case ACPI_BUS_TYPE_ECDT_EC:
1197 		strcpy(device->pnp.bus_id, "ECDT");
1198 		break;
1199 	default:
1200 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1201 		/* Clean up trailing underscores (if any) */
1202 		for (i = 3; i > 1; i--) {
1203 			if (bus_id[i] == '_')
1204 				bus_id[i] = '\0';
1205 			else
1206 				break;
1207 		}
1208 		strcpy(device->pnp.bus_id, bus_id);
1209 		break;
1210 	}
1211 }
1212 
1213 /*
1214  * acpi_ata_match - see if an acpi object is an ATA device
1215  *
1216  * If an acpi object has one of the ACPI ATA methods defined,
1217  * then we can safely call it an ATA device.
1218  */
1219 bool acpi_ata_match(acpi_handle handle)
1220 {
1221 	return acpi_has_method(handle, "_GTF") ||
1222 	       acpi_has_method(handle, "_GTM") ||
1223 	       acpi_has_method(handle, "_STM") ||
1224 	       acpi_has_method(handle, "_SDD");
1225 }
1226 
1227 /*
1228  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1229  *
1230  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1231  * then we can safely call it an ejectable drive bay
1232  */
1233 bool acpi_bay_match(acpi_handle handle)
1234 {
1235 	acpi_handle phandle;
1236 
1237 	if (!acpi_has_method(handle, "_EJ0"))
1238 		return false;
1239 	if (acpi_ata_match(handle))
1240 		return true;
1241 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1242 		return false;
1243 
1244 	return acpi_ata_match(phandle);
1245 }
1246 
1247 bool acpi_device_is_battery(struct acpi_device *adev)
1248 {
1249 	struct acpi_hardware_id *hwid;
1250 
1251 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1252 		if (!strcmp("PNP0C0A", hwid->id))
1253 			return true;
1254 
1255 	return false;
1256 }
1257 
1258 static bool is_ejectable_bay(struct acpi_device *adev)
1259 {
1260 	acpi_handle handle = adev->handle;
1261 
1262 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1263 		return true;
1264 
1265 	return acpi_bay_match(handle);
1266 }
1267 
1268 /*
1269  * acpi_dock_match - see if an acpi object has a _DCK method
1270  */
1271 bool acpi_dock_match(acpi_handle handle)
1272 {
1273 	return acpi_has_method(handle, "_DCK");
1274 }
1275 
1276 static acpi_status
1277 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1278 			  void **return_value)
1279 {
1280 	long *cap = context;
1281 
1282 	if (acpi_has_method(handle, "_BCM") &&
1283 	    acpi_has_method(handle, "_BCL")) {
1284 		acpi_handle_debug(handle, "Found generic backlight support\n");
1285 		*cap |= ACPI_VIDEO_BACKLIGHT;
1286 		/* We have backlight support, no need to scan further */
1287 		return AE_CTRL_TERMINATE;
1288 	}
1289 	return 0;
1290 }
1291 
1292 /* Returns true if the ACPI object is a video device which can be
1293  * handled by video.ko.
1294  * The device will get a Linux specific CID added in scan.c to
1295  * identify the device as an ACPI graphics device
1296  * Be aware that the graphics device may not be physically present
1297  * Use acpi_video_get_capabilities() to detect general ACPI video
1298  * capabilities of present cards
1299  */
1300 long acpi_is_video_device(acpi_handle handle)
1301 {
1302 	long video_caps = 0;
1303 
1304 	/* Is this device able to support video switching ? */
1305 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1306 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1307 
1308 	/* Is this device able to retrieve a video ROM ? */
1309 	if (acpi_has_method(handle, "_ROM"))
1310 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1311 
1312 	/* Is this device able to configure which video head to be POSTed ? */
1313 	if (acpi_has_method(handle, "_VPO") &&
1314 	    acpi_has_method(handle, "_GPD") &&
1315 	    acpi_has_method(handle, "_SPD"))
1316 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1317 
1318 	/* Only check for backlight functionality if one of the above hit. */
1319 	if (video_caps)
1320 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1321 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1322 				    &video_caps, NULL);
1323 
1324 	return video_caps;
1325 }
1326 EXPORT_SYMBOL(acpi_is_video_device);
1327 
1328 const char *acpi_device_hid(struct acpi_device *device)
1329 {
1330 	struct acpi_hardware_id *hid;
1331 
1332 	hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1333 	if (!hid)
1334 		return dummy_hid;
1335 
1336 	return hid->id;
1337 }
1338 EXPORT_SYMBOL(acpi_device_hid);
1339 
1340 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1341 {
1342 	struct acpi_hardware_id *id;
1343 
1344 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1345 	if (!id)
1346 		return;
1347 
1348 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1349 	if (!id->id) {
1350 		kfree(id);
1351 		return;
1352 	}
1353 
1354 	list_add_tail(&id->list, &pnp->ids);
1355 	pnp->type.hardware_id = 1;
1356 }
1357 
1358 /*
1359  * Old IBM workstations have a DSDT bug wherein the SMBus object
1360  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1361  * prefix.  Work around this.
1362  */
1363 static bool acpi_ibm_smbus_match(acpi_handle handle)
1364 {
1365 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1366 	struct acpi_buffer path = { sizeof(node_name), node_name };
1367 
1368 	if (!dmi_name_in_vendors("IBM"))
1369 		return false;
1370 
1371 	/* Look for SMBS object */
1372 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1373 	    strcmp("SMBS", path.pointer))
1374 		return false;
1375 
1376 	/* Does it have the necessary (but misnamed) methods? */
1377 	if (acpi_has_method(handle, "SBI") &&
1378 	    acpi_has_method(handle, "SBR") &&
1379 	    acpi_has_method(handle, "SBW"))
1380 		return true;
1381 
1382 	return false;
1383 }
1384 
1385 static bool acpi_object_is_system_bus(acpi_handle handle)
1386 {
1387 	acpi_handle tmp;
1388 
1389 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1390 	    tmp == handle)
1391 		return true;
1392 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1393 	    tmp == handle)
1394 		return true;
1395 
1396 	return false;
1397 }
1398 
1399 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1400 			     int device_type)
1401 {
1402 	struct acpi_device_info *info = NULL;
1403 	struct acpi_pnp_device_id_list *cid_list;
1404 	int i;
1405 
1406 	switch (device_type) {
1407 	case ACPI_BUS_TYPE_DEVICE:
1408 		if (handle == ACPI_ROOT_OBJECT) {
1409 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1410 			break;
1411 		}
1412 
1413 		acpi_get_object_info(handle, &info);
1414 		if (!info) {
1415 			pr_err("%s: Error reading device info\n", __func__);
1416 			return;
1417 		}
1418 
1419 		if (info->valid & ACPI_VALID_HID) {
1420 			acpi_add_id(pnp, info->hardware_id.string);
1421 			pnp->type.platform_id = 1;
1422 		}
1423 		if (info->valid & ACPI_VALID_CID) {
1424 			cid_list = &info->compatible_id_list;
1425 			for (i = 0; i < cid_list->count; i++)
1426 				acpi_add_id(pnp, cid_list->ids[i].string);
1427 		}
1428 		if (info->valid & ACPI_VALID_ADR) {
1429 			pnp->bus_address = info->address;
1430 			pnp->type.bus_address = 1;
1431 		}
1432 		if (info->valid & ACPI_VALID_UID)
1433 			pnp->unique_id = kstrdup(info->unique_id.string,
1434 							GFP_KERNEL);
1435 		if (info->valid & ACPI_VALID_CLS)
1436 			acpi_add_id(pnp, info->class_code.string);
1437 
1438 		kfree(info);
1439 
1440 		/*
1441 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1442 		 * synthetic HIDs to make sure drivers can find them.
1443 		 */
1444 		if (acpi_is_video_device(handle)) {
1445 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1446 			pnp->type.backlight = 1;
1447 			break;
1448 		}
1449 		if (acpi_bay_match(handle))
1450 			acpi_add_id(pnp, ACPI_BAY_HID);
1451 		else if (acpi_dock_match(handle))
1452 			acpi_add_id(pnp, ACPI_DOCK_HID);
1453 		else if (acpi_ibm_smbus_match(handle))
1454 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1455 		else if (list_empty(&pnp->ids) &&
1456 			 acpi_object_is_system_bus(handle)) {
1457 			/* \_SB, \_TZ, LNXSYBUS */
1458 			acpi_add_id(pnp, ACPI_BUS_HID);
1459 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1460 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1461 		}
1462 
1463 		break;
1464 	case ACPI_BUS_TYPE_POWER:
1465 		acpi_add_id(pnp, ACPI_POWER_HID);
1466 		break;
1467 	case ACPI_BUS_TYPE_PROCESSOR:
1468 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1469 		break;
1470 	case ACPI_BUS_TYPE_THERMAL:
1471 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1472 		break;
1473 	case ACPI_BUS_TYPE_POWER_BUTTON:
1474 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1475 		break;
1476 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1477 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1478 		break;
1479 	case ACPI_BUS_TYPE_ECDT_EC:
1480 		acpi_add_id(pnp, ACPI_ECDT_HID);
1481 		break;
1482 	}
1483 }
1484 
1485 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1486 {
1487 	struct acpi_hardware_id *id, *tmp;
1488 
1489 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1490 		kfree_const(id->id);
1491 		kfree(id);
1492 	}
1493 	kfree(pnp->unique_id);
1494 }
1495 
1496 /**
1497  * acpi_dma_supported - Check DMA support for the specified device.
1498  * @adev: The pointer to acpi device
1499  *
1500  * Return false if DMA is not supported. Otherwise, return true
1501  */
1502 bool acpi_dma_supported(const struct acpi_device *adev)
1503 {
1504 	if (!adev)
1505 		return false;
1506 
1507 	if (adev->flags.cca_seen)
1508 		return true;
1509 
1510 	/*
1511 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1512 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1513 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1514 	*/
1515 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1516 		return true;
1517 
1518 	return false;
1519 }
1520 
1521 /**
1522  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1523  * @adev: The pointer to acpi device
1524  *
1525  * Return enum dev_dma_attr.
1526  */
1527 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1528 {
1529 	if (!acpi_dma_supported(adev))
1530 		return DEV_DMA_NOT_SUPPORTED;
1531 
1532 	if (adev->flags.coherent_dma)
1533 		return DEV_DMA_COHERENT;
1534 	else
1535 		return DEV_DMA_NON_COHERENT;
1536 }
1537 
1538 /**
1539  * acpi_dma_get_range() - Get device DMA parameters.
1540  *
1541  * @dev: device to configure
1542  * @map: pointer to DMA ranges result
1543  *
1544  * Evaluate DMA regions and return pointer to DMA regions on
1545  * parsing success; it does not update the passed in values on failure.
1546  *
1547  * Return 0 on success, < 0 on failure.
1548  */
1549 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1550 {
1551 	struct acpi_device *adev;
1552 	LIST_HEAD(list);
1553 	struct resource_entry *rentry;
1554 	int ret;
1555 	struct device *dma_dev = dev;
1556 	struct bus_dma_region *r;
1557 
1558 	/*
1559 	 * Walk the device tree chasing an ACPI companion with a _DMA
1560 	 * object while we go. Stop if we find a device with an ACPI
1561 	 * companion containing a _DMA method.
1562 	 */
1563 	do {
1564 		adev = ACPI_COMPANION(dma_dev);
1565 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1566 			break;
1567 
1568 		dma_dev = dma_dev->parent;
1569 	} while (dma_dev);
1570 
1571 	if (!dma_dev)
1572 		return -ENODEV;
1573 
1574 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1575 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1576 		return -EINVAL;
1577 	}
1578 
1579 	ret = acpi_dev_get_dma_resources(adev, &list);
1580 	if (ret > 0) {
1581 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1582 		if (!r) {
1583 			ret = -ENOMEM;
1584 			goto out;
1585 		}
1586 
1587 		*map = r;
1588 
1589 		list_for_each_entry(rentry, &list, node) {
1590 			if (rentry->res->start >= rentry->res->end) {
1591 				kfree(*map);
1592 				*map = NULL;
1593 				ret = -EINVAL;
1594 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1595 				goto out;
1596 			}
1597 
1598 			r->cpu_start = rentry->res->start;
1599 			r->dma_start = rentry->res->start - rentry->offset;
1600 			r->size = resource_size(rentry->res);
1601 			r++;
1602 		}
1603 	}
1604  out:
1605 	acpi_dev_free_resource_list(&list);
1606 
1607 	return ret >= 0 ? 0 : ret;
1608 }
1609 
1610 #ifdef CONFIG_IOMMU_API
1611 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1612 			   struct fwnode_handle *fwnode)
1613 {
1614 	int ret;
1615 
1616 	ret = iommu_fwspec_init(dev, fwnode);
1617 	if (ret)
1618 		return ret;
1619 
1620 	return iommu_fwspec_add_ids(dev, &id, 1);
1621 }
1622 
1623 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1624 {
1625 	int err;
1626 
1627 	/* Serialise to make dev->iommu stable under our potential fwspec */
1628 	mutex_lock(&iommu_probe_device_lock);
1629 	/* If we already translated the fwspec there is nothing left to do */
1630 	if (dev_iommu_fwspec_get(dev)) {
1631 		mutex_unlock(&iommu_probe_device_lock);
1632 		return 0;
1633 	}
1634 
1635 	err = iort_iommu_configure_id(dev, id_in);
1636 	if (err && err != -EPROBE_DEFER)
1637 		err = viot_iommu_configure(dev);
1638 	mutex_unlock(&iommu_probe_device_lock);
1639 
1640 	/*
1641 	 * If we have reason to believe the IOMMU driver missed the initial
1642 	 * iommu_probe_device() call for dev, replay it to get things in order.
1643 	 */
1644 	if (!err && dev->bus)
1645 		err = iommu_probe_device(dev);
1646 
1647 	return err;
1648 }
1649 
1650 #else /* !CONFIG_IOMMU_API */
1651 
1652 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1653 			   struct fwnode_handle *fwnode)
1654 {
1655 	return -ENODEV;
1656 }
1657 
1658 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1659 {
1660 	return -ENODEV;
1661 }
1662 
1663 #endif /* !CONFIG_IOMMU_API */
1664 
1665 /**
1666  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1667  * @dev: The pointer to the device
1668  * @attr: device dma attributes
1669  * @input_id: input device id const value pointer
1670  */
1671 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1672 			  const u32 *input_id)
1673 {
1674 	int ret;
1675 
1676 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1677 		set_dma_ops(dev, &dma_dummy_ops);
1678 		return 0;
1679 	}
1680 
1681 	acpi_arch_dma_setup(dev);
1682 
1683 	/* Ignore all other errors apart from EPROBE_DEFER */
1684 	ret = acpi_iommu_configure_id(dev, input_id);
1685 	if (ret == -EPROBE_DEFER)
1686 		return -EPROBE_DEFER;
1687 	if (ret)
1688 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1689 
1690 	arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1695 
1696 static void acpi_init_coherency(struct acpi_device *adev)
1697 {
1698 	unsigned long long cca = 0;
1699 	acpi_status status;
1700 	struct acpi_device *parent = acpi_dev_parent(adev);
1701 
1702 	if (parent && parent->flags.cca_seen) {
1703 		/*
1704 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1705 		 * already saw one.
1706 		 */
1707 		adev->flags.cca_seen = 1;
1708 		cca = parent->flags.coherent_dma;
1709 	} else {
1710 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1711 					       NULL, &cca);
1712 		if (ACPI_SUCCESS(status))
1713 			adev->flags.cca_seen = 1;
1714 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1715 			/*
1716 			 * If architecture does not specify that _CCA is
1717 			 * required for DMA-able devices (e.g. x86),
1718 			 * we default to _CCA=1.
1719 			 */
1720 			cca = 1;
1721 		else
1722 			acpi_handle_debug(adev->handle,
1723 					  "ACPI device is missing _CCA.\n");
1724 	}
1725 
1726 	adev->flags.coherent_dma = cca;
1727 }
1728 
1729 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1730 {
1731 	bool *is_serial_bus_slave_p = data;
1732 
1733 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1734 		return 1;
1735 
1736 	*is_serial_bus_slave_p = true;
1737 
1738 	 /* no need to do more checking */
1739 	return -1;
1740 }
1741 
1742 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1743 {
1744 	struct acpi_device *parent = acpi_dev_parent(device);
1745 	static const struct acpi_device_id indirect_io_hosts[] = {
1746 		{"HISI0191", 0},
1747 		{}
1748 	};
1749 
1750 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1751 }
1752 
1753 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1754 {
1755 	struct list_head resource_list;
1756 	bool is_serial_bus_slave = false;
1757 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1758 	/*
1759 	 * These devices have multiple SerialBus resources and a client
1760 	 * device must be instantiated for each of them, each with
1761 	 * its own device id.
1762 	 * Normally we only instantiate one client device for the first
1763 	 * resource, using the ACPI HID as id. These special cases are handled
1764 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1765 	 * knows which client device id to use for each resource.
1766 	 */
1767 		{"BSG1160", },
1768 		{"BSG2150", },
1769 		{"CSC3551", },
1770 		{"CSC3554", },
1771 		{"CSC3556", },
1772 		{"CSC3557", },
1773 		{"INT33FE", },
1774 		{"INT3515", },
1775 		/* Non-conforming _HID for Cirrus Logic already released */
1776 		{"CLSA0100", },
1777 		{"CLSA0101", },
1778 	/*
1779 	 * Some ACPI devs contain SerialBus resources even though they are not
1780 	 * attached to a serial bus at all.
1781 	 */
1782 		{ACPI_VIDEO_HID, },
1783 		{"MSHW0028", },
1784 	/*
1785 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1786 	 * expects a regular tty cdev to be created (instead of the in kernel
1787 	 * serdev) and which have a kernel driver which expects a platform_dev
1788 	 * such as the rfkill-gpio driver.
1789 	 */
1790 		{"BCM4752", },
1791 		{"LNV4752", },
1792 		{}
1793 	};
1794 
1795 	if (acpi_is_indirect_io_slave(device))
1796 		return true;
1797 
1798 	/* Macs use device properties in lieu of _CRS resources */
1799 	if (x86_apple_machine &&
1800 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1801 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1802 	     fwnode_property_present(&device->fwnode, "baud")))
1803 		return true;
1804 
1805 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1806 		return false;
1807 
1808 	INIT_LIST_HEAD(&resource_list);
1809 	acpi_dev_get_resources(device, &resource_list,
1810 			       acpi_check_serial_bus_slave,
1811 			       &is_serial_bus_slave);
1812 	acpi_dev_free_resource_list(&resource_list);
1813 
1814 	return is_serial_bus_slave;
1815 }
1816 
1817 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1818 			     int type, void (*release)(struct device *))
1819 {
1820 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1821 
1822 	INIT_LIST_HEAD(&device->pnp.ids);
1823 	device->device_type = type;
1824 	device->handle = handle;
1825 	device->dev.parent = parent ? &parent->dev : NULL;
1826 	device->dev.release = release;
1827 	device->dev.bus = &acpi_bus_type;
1828 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1829 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1830 	acpi_device_get_busid(device);
1831 	acpi_set_pnp_ids(handle, &device->pnp, type);
1832 	acpi_init_properties(device);
1833 	acpi_bus_get_flags(device);
1834 	device->flags.match_driver = false;
1835 	device->flags.initialized = true;
1836 	device->flags.enumeration_by_parent =
1837 		acpi_device_enumeration_by_parent(device);
1838 	acpi_device_clear_enumerated(device);
1839 	device_initialize(&device->dev);
1840 	dev_set_uevent_suppress(&device->dev, true);
1841 	acpi_init_coherency(device);
1842 }
1843 
1844 static void acpi_scan_dep_init(struct acpi_device *adev)
1845 {
1846 	struct acpi_dep_data *dep;
1847 
1848 	list_for_each_entry(dep, &acpi_dep_list, node) {
1849 		if (dep->consumer == adev->handle) {
1850 			if (dep->honor_dep)
1851 				adev->flags.honor_deps = 1;
1852 
1853 			if (!dep->met)
1854 				adev->dep_unmet++;
1855 		}
1856 	}
1857 }
1858 
1859 void acpi_device_add_finalize(struct acpi_device *device)
1860 {
1861 	dev_set_uevent_suppress(&device->dev, false);
1862 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1863 }
1864 
1865 static void acpi_scan_init_status(struct acpi_device *adev)
1866 {
1867 	if (acpi_bus_get_status(adev))
1868 		acpi_set_device_status(adev, 0);
1869 }
1870 
1871 static int acpi_add_single_object(struct acpi_device **child,
1872 				  acpi_handle handle, int type, bool dep_init)
1873 {
1874 	struct acpi_device *device;
1875 	bool release_dep_lock = false;
1876 	int result;
1877 
1878 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1879 	if (!device)
1880 		return -ENOMEM;
1881 
1882 	acpi_init_device_object(device, handle, type, acpi_device_release);
1883 	/*
1884 	 * Getting the status is delayed till here so that we can call
1885 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1886 	 * this must be done before the get power-/wakeup_dev-flags calls.
1887 	 */
1888 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1889 		if (dep_init) {
1890 			mutex_lock(&acpi_dep_list_lock);
1891 			/*
1892 			 * Hold the lock until the acpi_tie_acpi_dev() call
1893 			 * below to prevent concurrent acpi_scan_clear_dep()
1894 			 * from deleting a dependency list entry without
1895 			 * updating dep_unmet for the device.
1896 			 */
1897 			release_dep_lock = true;
1898 			acpi_scan_dep_init(device);
1899 		}
1900 		acpi_scan_init_status(device);
1901 	}
1902 
1903 	acpi_bus_get_power_flags(device);
1904 	acpi_bus_get_wakeup_device_flags(device);
1905 
1906 	result = acpi_tie_acpi_dev(device);
1907 
1908 	if (release_dep_lock)
1909 		mutex_unlock(&acpi_dep_list_lock);
1910 
1911 	if (!result)
1912 		result = acpi_device_add(device);
1913 
1914 	if (result) {
1915 		acpi_device_release(&device->dev);
1916 		return result;
1917 	}
1918 
1919 	acpi_power_add_remove_device(device, true);
1920 	acpi_device_add_finalize(device);
1921 
1922 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1923 			  dev_name(&device->dev), device->dev.parent ?
1924 				dev_name(device->dev.parent) : "(null)");
1925 
1926 	*child = device;
1927 	return 0;
1928 }
1929 
1930 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1931 					    void *context)
1932 {
1933 	struct resource *res = context;
1934 
1935 	if (acpi_dev_resource_memory(ares, res))
1936 		return AE_CTRL_TERMINATE;
1937 
1938 	return AE_OK;
1939 }
1940 
1941 static bool acpi_device_should_be_hidden(acpi_handle handle)
1942 {
1943 	acpi_status status;
1944 	struct resource res;
1945 
1946 	/* Check if it should ignore the UART device */
1947 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1948 		return false;
1949 
1950 	/*
1951 	 * The UART device described in SPCR table is assumed to have only one
1952 	 * memory resource present. So we only look for the first one here.
1953 	 */
1954 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1955 				     acpi_get_resource_memory, &res);
1956 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1957 		return false;
1958 
1959 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1960 			 &res.start);
1961 
1962 	return true;
1963 }
1964 
1965 bool acpi_device_is_present(const struct acpi_device *adev)
1966 {
1967 	return adev->status.present || adev->status.functional;
1968 }
1969 
1970 bool acpi_device_is_enabled(const struct acpi_device *adev)
1971 {
1972 	return adev->status.enabled;
1973 }
1974 
1975 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1976 				       const char *idstr,
1977 				       const struct acpi_device_id **matchid)
1978 {
1979 	const struct acpi_device_id *devid;
1980 
1981 	if (handler->match)
1982 		return handler->match(idstr, matchid);
1983 
1984 	for (devid = handler->ids; devid->id[0]; devid++)
1985 		if (!strcmp((char *)devid->id, idstr)) {
1986 			if (matchid)
1987 				*matchid = devid;
1988 
1989 			return true;
1990 		}
1991 
1992 	return false;
1993 }
1994 
1995 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1996 					const struct acpi_device_id **matchid)
1997 {
1998 	struct acpi_scan_handler *handler;
1999 
2000 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
2001 		if (acpi_scan_handler_matching(handler, idstr, matchid))
2002 			return handler;
2003 
2004 	return NULL;
2005 }
2006 
2007 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2008 {
2009 	if (!!hotplug->enabled == !!val)
2010 		return;
2011 
2012 	mutex_lock(&acpi_scan_lock);
2013 
2014 	hotplug->enabled = val;
2015 
2016 	mutex_unlock(&acpi_scan_lock);
2017 }
2018 
2019 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2020 {
2021 	u32 count;
2022 	int i;
2023 
2024 	for (count = 0, i = 0; i < dep_devices->count; i++) {
2025 		struct acpi_device_info *info;
2026 		struct acpi_dep_data *dep;
2027 		bool skip, honor_dep;
2028 		acpi_status status;
2029 
2030 		status = acpi_get_object_info(dep_devices->handles[i], &info);
2031 		if (ACPI_FAILURE(status)) {
2032 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2033 			continue;
2034 		}
2035 
2036 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2037 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2038 		kfree(info);
2039 
2040 		if (skip)
2041 			continue;
2042 
2043 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2044 		if (!dep)
2045 			continue;
2046 
2047 		count++;
2048 
2049 		dep->supplier = dep_devices->handles[i];
2050 		dep->consumer = handle;
2051 		dep->honor_dep = honor_dep;
2052 
2053 		mutex_lock(&acpi_dep_list_lock);
2054 		list_add_tail(&dep->node, &acpi_dep_list);
2055 		mutex_unlock(&acpi_dep_list_lock);
2056 	}
2057 
2058 	acpi_handle_list_free(dep_devices);
2059 	return count;
2060 }
2061 
2062 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2063 {
2064 	struct acpi_hardware_id *hwid;
2065 
2066 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2067 		acpi_dock_add(adev);
2068 		return;
2069 	}
2070 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2071 		struct acpi_scan_handler *handler;
2072 
2073 		handler = acpi_scan_match_handler(hwid->id, NULL);
2074 		if (handler) {
2075 			adev->flags.hotplug_notify = true;
2076 			break;
2077 		}
2078 	}
2079 }
2080 
2081 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2082 
2083 static u32 acpi_scan_check_dep(acpi_handle handle)
2084 {
2085 	struct acpi_handle_list dep_devices;
2086 	u32 count = 0;
2087 
2088 	/*
2089 	 * Some architectures like RISC-V need to add dependencies for
2090 	 * all devices which use GSI to the interrupt controller so that
2091 	 * interrupt controller is probed before any of those devices.
2092 	 * Instead of mandating _DEP on all the devices, detect the
2093 	 * dependency and add automatically.
2094 	 */
2095 	count += arch_acpi_add_auto_dep(handle);
2096 
2097 	/*
2098 	 * Check for _HID here to avoid deferring the enumeration of:
2099 	 * 1. PCI devices.
2100 	 * 2. ACPI nodes describing USB ports.
2101 	 * Still, checking for _HID catches more then just these cases ...
2102 	 */
2103 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2104 		return count;
2105 
2106 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2107 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2108 		return count;
2109 	}
2110 
2111 	count += acpi_scan_add_dep(handle, &dep_devices);
2112 	return count;
2113 }
2114 
2115 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2116 {
2117 	acpi_mipi_check_crs_csi2(handle);
2118 	return AE_OK;
2119 }
2120 
2121 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2122 				      struct acpi_device **adev_p)
2123 {
2124 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2125 	acpi_object_type acpi_type;
2126 	int type;
2127 
2128 	if (device)
2129 		goto out;
2130 
2131 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2132 		return AE_OK;
2133 
2134 	switch (acpi_type) {
2135 	case ACPI_TYPE_DEVICE:
2136 		if (acpi_device_should_be_hidden(handle))
2137 			return AE_OK;
2138 
2139 		if (first_pass) {
2140 			acpi_mipi_check_crs_csi2(handle);
2141 
2142 			/* Bail out if there are dependencies. */
2143 			if (acpi_scan_check_dep(handle) > 0) {
2144 				/*
2145 				 * The entire CSI-2 connection graph needs to be
2146 				 * extracted before any drivers or scan handlers
2147 				 * are bound to struct device objects, so scan
2148 				 * _CRS CSI-2 resource descriptors for all
2149 				 * devices below the current handle.
2150 				 */
2151 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2152 						    ACPI_UINT32_MAX,
2153 						    acpi_scan_check_crs_csi2_cb,
2154 						    NULL, NULL, NULL);
2155 				return AE_CTRL_DEPTH;
2156 			}
2157 		}
2158 
2159 		fallthrough;
2160 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2161 		type = ACPI_BUS_TYPE_DEVICE;
2162 		break;
2163 
2164 	case ACPI_TYPE_PROCESSOR:
2165 		type = ACPI_BUS_TYPE_PROCESSOR;
2166 		break;
2167 
2168 	case ACPI_TYPE_THERMAL:
2169 		type = ACPI_BUS_TYPE_THERMAL;
2170 		break;
2171 
2172 	case ACPI_TYPE_POWER:
2173 		acpi_add_power_resource(handle);
2174 		fallthrough;
2175 	default:
2176 		return AE_OK;
2177 	}
2178 
2179 	/*
2180 	 * If first_pass is true at this point, the device has no dependencies,
2181 	 * or the creation of the device object would have been postponed above.
2182 	 */
2183 	acpi_add_single_object(&device, handle, type, !first_pass);
2184 	if (!device)
2185 		return AE_CTRL_DEPTH;
2186 
2187 	acpi_scan_init_hotplug(device);
2188 
2189 out:
2190 	if (!*adev_p)
2191 		*adev_p = device;
2192 
2193 	return AE_OK;
2194 }
2195 
2196 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2197 					void *not_used, void **ret_p)
2198 {
2199 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2200 }
2201 
2202 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2203 					void *not_used, void **ret_p)
2204 {
2205 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2206 }
2207 
2208 static void acpi_default_enumeration(struct acpi_device *device)
2209 {
2210 	/*
2211 	 * Do not enumerate devices with enumeration_by_parent flag set as
2212 	 * they will be enumerated by their respective parents.
2213 	 */
2214 	if (!device->flags.enumeration_by_parent) {
2215 		acpi_create_platform_device(device, NULL);
2216 		acpi_device_set_enumerated(device);
2217 	} else {
2218 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2219 					     ACPI_RECONFIG_DEVICE_ADD, device);
2220 	}
2221 }
2222 
2223 static const struct acpi_device_id generic_device_ids[] = {
2224 	{ACPI_DT_NAMESPACE_HID, },
2225 	{"", },
2226 };
2227 
2228 static int acpi_generic_device_attach(struct acpi_device *adev,
2229 				      const struct acpi_device_id *not_used)
2230 {
2231 	/*
2232 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2233 	 * below can be unconditional.
2234 	 */
2235 	if (adev->data.of_compatible)
2236 		acpi_default_enumeration(adev);
2237 
2238 	return 1;
2239 }
2240 
2241 static struct acpi_scan_handler generic_device_handler = {
2242 	.ids = generic_device_ids,
2243 	.attach = acpi_generic_device_attach,
2244 };
2245 
2246 static int acpi_scan_attach_handler(struct acpi_device *device)
2247 {
2248 	struct acpi_hardware_id *hwid;
2249 	int ret = 0;
2250 
2251 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2252 		const struct acpi_device_id *devid;
2253 		struct acpi_scan_handler *handler;
2254 
2255 		handler = acpi_scan_match_handler(hwid->id, &devid);
2256 		if (handler) {
2257 			if (!handler->attach) {
2258 				device->pnp.type.platform_id = 0;
2259 				continue;
2260 			}
2261 			device->handler = handler;
2262 			ret = handler->attach(device, devid);
2263 			if (ret > 0)
2264 				break;
2265 
2266 			device->handler = NULL;
2267 			if (ret < 0)
2268 				break;
2269 		}
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2276 {
2277 	bool skip = !first_pass && device->flags.visited;
2278 	acpi_handle ejd;
2279 	int ret;
2280 
2281 	if (skip)
2282 		goto ok;
2283 
2284 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2285 		register_dock_dependent_device(device, ejd);
2286 
2287 	acpi_bus_get_status(device);
2288 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2289 	if (!acpi_dev_ready_for_enumeration(device)) {
2290 		device->flags.initialized = false;
2291 		acpi_device_clear_enumerated(device);
2292 		device->flags.power_manageable = 0;
2293 		return 0;
2294 	}
2295 	if (device->handler)
2296 		goto ok;
2297 
2298 	acpi_ec_register_opregions(device);
2299 
2300 	if (!device->flags.initialized) {
2301 		device->flags.power_manageable =
2302 			device->power.states[ACPI_STATE_D0].flags.valid;
2303 		if (acpi_bus_init_power(device))
2304 			device->flags.power_manageable = 0;
2305 
2306 		device->flags.initialized = true;
2307 	} else if (device->flags.visited) {
2308 		goto ok;
2309 	}
2310 
2311 	ret = acpi_scan_attach_handler(device);
2312 	if (ret < 0)
2313 		return 0;
2314 
2315 	device->flags.match_driver = true;
2316 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2317 		acpi_device_set_enumerated(device);
2318 		goto ok;
2319 	}
2320 
2321 	ret = device_attach(&device->dev);
2322 	if (ret < 0)
2323 		return 0;
2324 
2325 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2326 		acpi_default_enumeration(device);
2327 	else
2328 		acpi_device_set_enumerated(device);
2329 
2330 ok:
2331 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2332 
2333 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2334 		device->handler->hotplug.notify_online(device);
2335 
2336 	return 0;
2337 }
2338 
2339 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2340 {
2341 	struct acpi_device **adev_p = data;
2342 	struct acpi_device *adev = *adev_p;
2343 
2344 	/*
2345 	 * If we're passed a 'previous' consumer device then we need to skip
2346 	 * any consumers until we meet the previous one, and then NULL @data
2347 	 * so the next one can be returned.
2348 	 */
2349 	if (adev) {
2350 		if (dep->consumer == adev->handle)
2351 			*adev_p = NULL;
2352 
2353 		return 0;
2354 	}
2355 
2356 	adev = acpi_get_acpi_dev(dep->consumer);
2357 	if (adev) {
2358 		*(struct acpi_device **)data = adev;
2359 		return 1;
2360 	}
2361 	/* Continue parsing if the device object is not present. */
2362 	return 0;
2363 }
2364 
2365 struct acpi_scan_clear_dep_work {
2366 	struct work_struct work;
2367 	struct acpi_device *adev;
2368 };
2369 
2370 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2371 {
2372 	struct acpi_scan_clear_dep_work *cdw;
2373 
2374 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2375 
2376 	acpi_scan_lock_acquire();
2377 	acpi_bus_attach(cdw->adev, (void *)true);
2378 	acpi_scan_lock_release();
2379 
2380 	acpi_dev_put(cdw->adev);
2381 	kfree(cdw);
2382 }
2383 
2384 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2385 {
2386 	struct acpi_scan_clear_dep_work *cdw;
2387 
2388 	if (adev->dep_unmet)
2389 		return false;
2390 
2391 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2392 	if (!cdw)
2393 		return false;
2394 
2395 	cdw->adev = adev;
2396 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2397 	/*
2398 	 * Since the work function may block on the lock until the entire
2399 	 * initial enumeration of devices is complete, put it into the unbound
2400 	 * workqueue.
2401 	 */
2402 	queue_work(system_unbound_wq, &cdw->work);
2403 
2404 	return true;
2405 }
2406 
2407 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2408 {
2409 	list_del(&dep->node);
2410 	kfree(dep);
2411 }
2412 
2413 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2414 {
2415 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2416 
2417 	if (adev) {
2418 		adev->dep_unmet--;
2419 		if (!acpi_scan_clear_dep_queue(adev))
2420 			acpi_dev_put(adev);
2421 	}
2422 
2423 	if (dep->free_when_met)
2424 		acpi_scan_delete_dep_data(dep);
2425 	else
2426 		dep->met = true;
2427 
2428 	return 0;
2429 }
2430 
2431 /**
2432  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2433  * @handle:	The ACPI handle of the supplier device
2434  * @callback:	Pointer to the callback function to apply
2435  * @data:	Pointer to some data to pass to the callback
2436  *
2437  * The return value of the callback determines this function's behaviour. If 0
2438  * is returned we continue to iterate over acpi_dep_list. If a positive value
2439  * is returned then the loop is broken but this function returns 0. If a
2440  * negative value is returned by the callback then the loop is broken and that
2441  * value is returned as the final error.
2442  */
2443 static int acpi_walk_dep_device_list(acpi_handle handle,
2444 				int (*callback)(struct acpi_dep_data *, void *),
2445 				void *data)
2446 {
2447 	struct acpi_dep_data *dep, *tmp;
2448 	int ret = 0;
2449 
2450 	mutex_lock(&acpi_dep_list_lock);
2451 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2452 		if (dep->supplier == handle) {
2453 			ret = callback(dep, data);
2454 			if (ret)
2455 				break;
2456 		}
2457 	}
2458 	mutex_unlock(&acpi_dep_list_lock);
2459 
2460 	return ret > 0 ? 0 : ret;
2461 }
2462 
2463 /**
2464  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2465  * @supplier: Pointer to the supplier &struct acpi_device
2466  *
2467  * Clear dependencies on the given device.
2468  */
2469 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2470 {
2471 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2472 }
2473 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2474 
2475 /**
2476  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2477  * @device: Pointer to the &struct acpi_device to check
2478  *
2479  * Check if the device is present and has no unmet dependencies.
2480  *
2481  * Return true if the device is ready for enumeratino. Otherwise, return false.
2482  */
2483 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2484 {
2485 	if (device->flags.honor_deps && device->dep_unmet)
2486 		return false;
2487 
2488 	return acpi_device_is_present(device);
2489 }
2490 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2491 
2492 /**
2493  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2494  * @supplier: Pointer to the dependee device
2495  * @start: Pointer to the current dependent device
2496  *
2497  * Returns the next &struct acpi_device which declares itself dependent on
2498  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2499  *
2500  * If the returned adev is not passed as @start to this function, the caller is
2501  * responsible for putting the reference to adev when it is no longer needed.
2502  */
2503 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2504 						   struct acpi_device *start)
2505 {
2506 	struct acpi_device *adev = start;
2507 
2508 	acpi_walk_dep_device_list(supplier->handle,
2509 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2510 
2511 	acpi_dev_put(start);
2512 
2513 	if (adev == start)
2514 		return NULL;
2515 
2516 	return adev;
2517 }
2518 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2519 
2520 static void acpi_scan_postponed_branch(acpi_handle handle)
2521 {
2522 	struct acpi_device *adev = NULL;
2523 
2524 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2525 		return;
2526 
2527 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2528 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2529 
2530 	/*
2531 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2532 	 * have been added above.
2533 	 */
2534 	acpi_mipi_init_crs_csi2_swnodes();
2535 
2536 	acpi_bus_attach(adev, NULL);
2537 }
2538 
2539 static void acpi_scan_postponed(void)
2540 {
2541 	struct acpi_dep_data *dep, *tmp;
2542 
2543 	mutex_lock(&acpi_dep_list_lock);
2544 
2545 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2546 		acpi_handle handle = dep->consumer;
2547 
2548 		/*
2549 		 * In case there are multiple acpi_dep_list entries with the
2550 		 * same consumer, skip the current entry if the consumer device
2551 		 * object corresponding to it is present already.
2552 		 */
2553 		if (!acpi_fetch_acpi_dev(handle)) {
2554 			/*
2555 			 * Even though the lock is released here, tmp is
2556 			 * guaranteed to be valid, because none of the list
2557 			 * entries following dep is marked as "free when met"
2558 			 * and so they cannot be deleted.
2559 			 */
2560 			mutex_unlock(&acpi_dep_list_lock);
2561 
2562 			acpi_scan_postponed_branch(handle);
2563 
2564 			mutex_lock(&acpi_dep_list_lock);
2565 		}
2566 
2567 		if (dep->met)
2568 			acpi_scan_delete_dep_data(dep);
2569 		else
2570 			dep->free_when_met = true;
2571 	}
2572 
2573 	mutex_unlock(&acpi_dep_list_lock);
2574 }
2575 
2576 /**
2577  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2578  * @handle: Root of the namespace scope to scan.
2579  *
2580  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2581  * found devices.
2582  *
2583  * If no devices were found, -ENODEV is returned, but it does not mean that
2584  * there has been a real error.  There just have been no suitable ACPI objects
2585  * in the table trunk from which the kernel could create a device and add an
2586  * appropriate driver.
2587  *
2588  * Must be called under acpi_scan_lock.
2589  */
2590 int acpi_bus_scan(acpi_handle handle)
2591 {
2592 	struct acpi_device *device = NULL;
2593 
2594 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2595 
2596 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2597 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2598 				    acpi_bus_check_add_1, NULL, NULL,
2599 				    (void **)&device);
2600 
2601 	if (!device)
2602 		return -ENODEV;
2603 
2604 	/*
2605 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2606 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2607 	 * walk above and MIPI DisCo for Imaging device properties.
2608 	 */
2609 	acpi_mipi_scan_crs_csi2();
2610 	acpi_mipi_init_crs_csi2_swnodes();
2611 
2612 	acpi_bus_attach(device, (void *)true);
2613 
2614 	/* Pass 2: Enumerate all of the remaining devices. */
2615 
2616 	acpi_scan_postponed();
2617 
2618 	acpi_mipi_crs_csi2_cleanup();
2619 
2620 	return 0;
2621 }
2622 EXPORT_SYMBOL(acpi_bus_scan);
2623 
2624 /**
2625  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2626  * @adev: Root of the ACPI namespace scope to walk.
2627  *
2628  * Must be called under acpi_scan_lock.
2629  */
2630 void acpi_bus_trim(struct acpi_device *adev)
2631 {
2632 	uintptr_t flags = 0;
2633 
2634 	acpi_scan_check_and_detach(adev, (void *)flags);
2635 }
2636 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2637 
2638 int acpi_bus_register_early_device(int type)
2639 {
2640 	struct acpi_device *device = NULL;
2641 	int result;
2642 
2643 	result = acpi_add_single_object(&device, NULL, type, false);
2644 	if (result)
2645 		return result;
2646 
2647 	device->flags.match_driver = true;
2648 	return device_attach(&device->dev);
2649 }
2650 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2651 
2652 static void acpi_bus_scan_fixed(void)
2653 {
2654 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2655 		struct acpi_device *adev = NULL;
2656 
2657 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2658 				       false);
2659 		if (adev) {
2660 			adev->flags.match_driver = true;
2661 			if (device_attach(&adev->dev) >= 0)
2662 				device_init_wakeup(&adev->dev, true);
2663 			else
2664 				dev_dbg(&adev->dev, "No driver\n");
2665 		}
2666 	}
2667 
2668 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2669 		struct acpi_device *adev = NULL;
2670 
2671 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2672 				       false);
2673 		if (adev) {
2674 			adev->flags.match_driver = true;
2675 			if (device_attach(&adev->dev) < 0)
2676 				dev_dbg(&adev->dev, "No driver\n");
2677 		}
2678 	}
2679 }
2680 
2681 static void __init acpi_get_spcr_uart_addr(void)
2682 {
2683 	acpi_status status;
2684 	struct acpi_table_spcr *spcr_ptr;
2685 
2686 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2687 				(struct acpi_table_header **)&spcr_ptr);
2688 	if (ACPI_FAILURE(status)) {
2689 		pr_warn("STAO table present, but SPCR is missing\n");
2690 		return;
2691 	}
2692 
2693 	spcr_uart_addr = spcr_ptr->serial_port.address;
2694 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2695 }
2696 
2697 static bool acpi_scan_initialized;
2698 
2699 void __init acpi_scan_init(void)
2700 {
2701 	acpi_status status;
2702 	struct acpi_table_stao *stao_ptr;
2703 
2704 	acpi_pci_root_init();
2705 	acpi_pci_link_init();
2706 	acpi_processor_init();
2707 	acpi_platform_init();
2708 	acpi_lpss_init();
2709 	acpi_apd_init();
2710 	acpi_cmos_rtc_init();
2711 	acpi_container_init();
2712 	acpi_memory_hotplug_init();
2713 	acpi_watchdog_init();
2714 	acpi_pnp_init();
2715 	acpi_int340x_thermal_init();
2716 	acpi_init_lpit();
2717 
2718 	acpi_scan_add_handler(&generic_device_handler);
2719 
2720 	/*
2721 	 * If there is STAO table, check whether it needs to ignore the UART
2722 	 * device in SPCR table.
2723 	 */
2724 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2725 				(struct acpi_table_header **)&stao_ptr);
2726 	if (ACPI_SUCCESS(status)) {
2727 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2728 			pr_info("STAO Name List not yet supported.\n");
2729 
2730 		if (stao_ptr->ignore_uart)
2731 			acpi_get_spcr_uart_addr();
2732 
2733 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2734 	}
2735 
2736 	acpi_gpe_apply_masked_gpes();
2737 	acpi_update_all_gpes();
2738 
2739 	/*
2740 	 * Although we call __add_memory() that is documented to require the
2741 	 * device_hotplug_lock, it is not necessary here because this is an
2742 	 * early code when userspace or any other code path cannot trigger
2743 	 * hotplug/hotunplug operations.
2744 	 */
2745 	mutex_lock(&acpi_scan_lock);
2746 	/*
2747 	 * Enumerate devices in the ACPI namespace.
2748 	 */
2749 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2750 		goto unlock;
2751 
2752 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2753 	if (!acpi_root)
2754 		goto unlock;
2755 
2756 	/* Fixed feature devices do not exist on HW-reduced platform */
2757 	if (!acpi_gbl_reduced_hardware)
2758 		acpi_bus_scan_fixed();
2759 
2760 	acpi_turn_off_unused_power_resources();
2761 
2762 	acpi_scan_initialized = true;
2763 
2764 unlock:
2765 	mutex_unlock(&acpi_scan_lock);
2766 }
2767 
2768 static struct acpi_probe_entry *ape;
2769 static int acpi_probe_count;
2770 static DEFINE_MUTEX(acpi_probe_mutex);
2771 
2772 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2773 				  const unsigned long end)
2774 {
2775 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2776 		if (!ape->probe_subtbl(header, end))
2777 			acpi_probe_count++;
2778 
2779 	return 0;
2780 }
2781 
2782 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2783 
2784 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2785 {
2786 	int count = 0;
2787 
2788 	if (acpi_disabled)
2789 		return 0;
2790 
2791 	mutex_lock(&acpi_probe_mutex);
2792 	arch_sort_irqchip_probe(ap_head, nr);
2793 	for (ape = ap_head; nr; ape++, nr--) {
2794 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2795 			acpi_probe_count = 0;
2796 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2797 			count += acpi_probe_count;
2798 		} else {
2799 			int res;
2800 			res = acpi_table_parse(ape->id, ape->probe_table);
2801 			if (!res)
2802 				count++;
2803 		}
2804 	}
2805 	mutex_unlock(&acpi_probe_mutex);
2806 
2807 	return count;
2808 }
2809 
2810 static void acpi_table_events_fn(struct work_struct *work)
2811 {
2812 	acpi_scan_lock_acquire();
2813 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2814 	acpi_scan_lock_release();
2815 
2816 	kfree(work);
2817 }
2818 
2819 void acpi_scan_table_notify(void)
2820 {
2821 	struct work_struct *work;
2822 
2823 	if (!acpi_scan_initialized)
2824 		return;
2825 
2826 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2827 	if (!work)
2828 		return;
2829 
2830 	INIT_WORK(work, acpi_table_events_fn);
2831 	schedule_work(work);
2832 }
2833 
2834 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2835 {
2836 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2837 }
2838 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2839 
2840 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2841 {
2842 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2843 }
2844 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2845