1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 acpi_hp_notify notify, acpi_hp_uevent uevent) 77 { 78 acpi_lock_hp_context(); 79 hp->notify = notify; 80 hp->uevent = uevent; 81 acpi_set_hp_context(adev, hp); 82 acpi_unlock_hp_context(); 83 } 84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 85 86 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 87 { 88 if (!handler) 89 return -EINVAL; 90 91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 92 return 0; 93 } 94 95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 96 const char *hotplug_profile_name) 97 { 98 int error; 99 100 error = acpi_scan_add_handler(handler); 101 if (error) 102 return error; 103 104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 105 return 0; 106 } 107 108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 109 { 110 struct acpi_device_physical_node *pn; 111 bool offline = true; 112 char *envp[] = { "EVENT=offline", NULL }; 113 114 /* 115 * acpi_container_offline() calls this for all of the container's 116 * children under the container's physical_node_lock lock. 117 */ 118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 119 120 list_for_each_entry(pn, &adev->physical_node_list, node) 121 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 122 if (uevent) 123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 124 125 offline = false; 126 break; 127 } 128 129 mutex_unlock(&adev->physical_node_lock); 130 return offline; 131 } 132 133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 134 void **ret_p) 135 { 136 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 137 struct acpi_device_physical_node *pn; 138 bool second_pass = (bool)data; 139 acpi_status status = AE_OK; 140 141 if (!device) 142 return AE_OK; 143 144 if (device->handler && !device->handler->hotplug.enabled) { 145 *ret_p = &device->dev; 146 return AE_SUPPORT; 147 } 148 149 mutex_lock(&device->physical_node_lock); 150 151 list_for_each_entry(pn, &device->physical_node_list, node) { 152 int ret; 153 154 if (second_pass) { 155 /* Skip devices offlined by the first pass. */ 156 if (pn->put_online) 157 continue; 158 } else { 159 pn->put_online = false; 160 } 161 ret = device_offline(pn->dev); 162 if (ret >= 0) { 163 pn->put_online = !ret; 164 } else { 165 *ret_p = pn->dev; 166 if (second_pass) { 167 status = AE_ERROR; 168 break; 169 } 170 } 171 } 172 173 mutex_unlock(&device->physical_node_lock); 174 175 return status; 176 } 177 178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 179 void **ret_p) 180 { 181 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 182 struct acpi_device_physical_node *pn; 183 184 if (!device) 185 return AE_OK; 186 187 mutex_lock(&device->physical_node_lock); 188 189 list_for_each_entry(pn, &device->physical_node_list, node) 190 if (pn->put_online) { 191 device_online(pn->dev); 192 pn->put_online = false; 193 } 194 195 mutex_unlock(&device->physical_node_lock); 196 197 return AE_OK; 198 } 199 200 static int acpi_scan_try_to_offline(struct acpi_device *device) 201 { 202 acpi_handle handle = device->handle; 203 struct device *errdev = NULL; 204 acpi_status status; 205 206 /* 207 * Carry out two passes here and ignore errors in the first pass, 208 * because if the devices in question are memory blocks and 209 * CONFIG_MEMCG is set, one of the blocks may hold data structures 210 * that the other blocks depend on, but it is not known in advance which 211 * block holds them. 212 * 213 * If the first pass is successful, the second one isn't needed, though. 214 */ 215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 216 NULL, acpi_bus_offline, (void *)false, 217 (void **)&errdev); 218 if (status == AE_SUPPORT) { 219 dev_warn(errdev, "Offline disabled.\n"); 220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 221 acpi_bus_online, NULL, NULL, NULL); 222 return -EPERM; 223 } 224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 225 if (errdev) { 226 errdev = NULL; 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 NULL, acpi_bus_offline, (void *)true, 229 (void **)&errdev); 230 if (!errdev) 231 acpi_bus_offline(handle, 0, (void *)true, 232 (void **)&errdev); 233 234 if (errdev) { 235 dev_warn(errdev, "Offline failed.\n"); 236 acpi_bus_online(handle, 0, NULL, NULL); 237 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 238 ACPI_UINT32_MAX, acpi_bus_online, 239 NULL, NULL, NULL); 240 return -EBUSY; 241 } 242 } 243 return 0; 244 } 245 246 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0) 247 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1) 248 249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p) 250 { 251 struct acpi_scan_handler *handler = adev->handler; 252 uintptr_t flags = (uintptr_t)p; 253 254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p); 255 256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) { 257 acpi_bus_get_status(adev); 258 /* 259 * Skip devices that are still there and take the enabled 260 * flag into account. 261 */ 262 if (acpi_device_is_enabled(adev)) 263 return 0; 264 265 /* Skip device that have not been enumerated. */ 266 if (!acpi_device_enumerated(adev)) { 267 dev_dbg(&adev->dev, "Still not enumerated\n"); 268 return 0; 269 } 270 } 271 272 adev->flags.match_driver = false; 273 if (handler) { 274 if (handler->detach) 275 handler->detach(adev); 276 } else { 277 device_release_driver(&adev->dev); 278 } 279 /* 280 * Most likely, the device is going away, so put it into D3cold before 281 * that. 282 */ 283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 284 adev->flags.initialized = false; 285 286 /* For eject this is deferred to acpi_bus_post_eject() */ 287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) { 288 adev->handler = NULL; 289 acpi_device_clear_enumerated(adev); 290 } 291 return 0; 292 } 293 294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used) 295 { 296 struct acpi_scan_handler *handler = adev->handler; 297 298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL); 299 300 if (handler) { 301 if (handler->post_eject) 302 handler->post_eject(adev); 303 304 adev->handler = NULL; 305 } 306 307 acpi_device_clear_enumerated(adev); 308 309 return 0; 310 } 311 312 static void acpi_scan_check_subtree(struct acpi_device *adev) 313 { 314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS; 315 316 acpi_scan_check_and_detach(adev, (void *)flags); 317 } 318 319 static int acpi_scan_hot_remove(struct acpi_device *device) 320 { 321 acpi_handle handle = device->handle; 322 unsigned long long sta; 323 acpi_status status; 324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT; 325 326 if (device->handler && device->handler->hotplug.demand_offline) { 327 if (!acpi_scan_is_offline(device, true)) 328 return -EBUSY; 329 } else { 330 int error = acpi_scan_try_to_offline(device); 331 if (error) 332 return error; 333 } 334 335 acpi_handle_debug(handle, "Ejecting\n"); 336 337 acpi_scan_check_and_detach(device, (void *)flags); 338 339 acpi_evaluate_lck(handle, 0); 340 /* 341 * TBD: _EJD support. 342 */ 343 status = acpi_evaluate_ej0(handle); 344 if (status == AE_NOT_FOUND) 345 return -ENODEV; 346 else if (ACPI_FAILURE(status)) 347 return -EIO; 348 349 /* 350 * Verify if eject was indeed successful. If not, log an error 351 * message. No need to call _OST since _EJ0 call was made OK. 352 */ 353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 354 if (ACPI_FAILURE(status)) { 355 acpi_handle_warn(handle, 356 "Status check after eject failed (0x%x)\n", status); 357 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 358 acpi_handle_warn(handle, 359 "Eject incomplete - status 0x%llx\n", sta); 360 } else { 361 acpi_bus_post_eject(device, NULL); 362 } 363 364 return 0; 365 } 366 367 static int acpi_scan_rescan_bus(struct acpi_device *adev) 368 { 369 struct acpi_scan_handler *handler = adev->handler; 370 int ret; 371 372 if (handler && handler->hotplug.scan_dependent) 373 ret = handler->hotplug.scan_dependent(adev); 374 else 375 ret = acpi_bus_scan(adev->handle); 376 377 if (ret) 378 dev_info(&adev->dev, "Namespace scan failure\n"); 379 380 return ret; 381 } 382 383 static int acpi_scan_device_check(struct acpi_device *adev) 384 { 385 struct acpi_device *parent; 386 387 acpi_scan_check_subtree(adev); 388 389 if (!acpi_device_is_present(adev)) 390 return 0; 391 392 /* 393 * This function is only called for device objects for which matching 394 * scan handlers exist. The only situation in which the scan handler 395 * is not attached to this device object yet is when the device has 396 * just appeared (either it wasn't present at all before or it was 397 * removed and then added again). 398 */ 399 if (adev->handler) { 400 dev_dbg(&adev->dev, "Already enumerated\n"); 401 return 0; 402 } 403 404 parent = acpi_dev_parent(adev); 405 if (!parent) 406 parent = adev; 407 408 return acpi_scan_rescan_bus(parent); 409 } 410 411 static int acpi_scan_bus_check(struct acpi_device *adev) 412 { 413 acpi_scan_check_subtree(adev); 414 415 return acpi_scan_rescan_bus(adev); 416 } 417 418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 419 { 420 switch (type) { 421 case ACPI_NOTIFY_BUS_CHECK: 422 return acpi_scan_bus_check(adev); 423 case ACPI_NOTIFY_DEVICE_CHECK: 424 return acpi_scan_device_check(adev); 425 case ACPI_NOTIFY_EJECT_REQUEST: 426 case ACPI_OST_EC_OSPM_EJECT: 427 if (adev->handler && !adev->handler->hotplug.enabled) { 428 dev_info(&adev->dev, "Eject disabled\n"); 429 return -EPERM; 430 } 431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 433 return acpi_scan_hot_remove(adev); 434 } 435 return -EINVAL; 436 } 437 438 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 439 { 440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 441 int error = -ENODEV; 442 443 lock_device_hotplug(); 444 mutex_lock(&acpi_scan_lock); 445 446 /* 447 * The device object's ACPI handle cannot become invalid as long as we 448 * are holding acpi_scan_lock, but it might have become invalid before 449 * that lock was acquired. 450 */ 451 if (adev->handle == INVALID_ACPI_HANDLE) 452 goto err_out; 453 454 if (adev->flags.is_dock_station) { 455 error = dock_notify(adev, src); 456 } else if (adev->flags.hotplug_notify) { 457 error = acpi_generic_hotplug_event(adev, src); 458 } else { 459 acpi_hp_notify notify; 460 461 acpi_lock_hp_context(); 462 notify = adev->hp ? adev->hp->notify : NULL; 463 acpi_unlock_hp_context(); 464 /* 465 * There may be additional notify handlers for device objects 466 * without the .event() callback, so ignore them here. 467 */ 468 if (notify) 469 error = notify(adev, src); 470 else 471 goto out; 472 } 473 switch (error) { 474 case 0: 475 ost_code = ACPI_OST_SC_SUCCESS; 476 break; 477 case -EPERM: 478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 479 break; 480 case -EBUSY: 481 ost_code = ACPI_OST_SC_DEVICE_BUSY; 482 break; 483 default: 484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 485 break; 486 } 487 488 err_out: 489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 490 491 out: 492 acpi_put_acpi_dev(adev); 493 mutex_unlock(&acpi_scan_lock); 494 unlock_device_hotplug(); 495 } 496 497 static void acpi_free_power_resources_lists(struct acpi_device *device) 498 { 499 int i; 500 501 if (device->wakeup.flags.valid) 502 acpi_power_resources_list_free(&device->wakeup.resources); 503 504 if (!device->power.flags.power_resources) 505 return; 506 507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 508 struct acpi_device_power_state *ps = &device->power.states[i]; 509 acpi_power_resources_list_free(&ps->resources); 510 } 511 } 512 513 static void acpi_device_release(struct device *dev) 514 { 515 struct acpi_device *acpi_dev = to_acpi_device(dev); 516 517 acpi_free_properties(acpi_dev); 518 acpi_free_pnp_ids(&acpi_dev->pnp); 519 acpi_free_power_resources_lists(acpi_dev); 520 kfree(acpi_dev); 521 } 522 523 static void acpi_device_del(struct acpi_device *device) 524 { 525 struct acpi_device_bus_id *acpi_device_bus_id; 526 527 mutex_lock(&acpi_device_lock); 528 529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 530 if (!strcmp(acpi_device_bus_id->bus_id, 531 acpi_device_hid(device))) { 532 ida_free(&acpi_device_bus_id->instance_ida, 533 device->pnp.instance_no); 534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 535 list_del(&acpi_device_bus_id->node); 536 kfree_const(acpi_device_bus_id->bus_id); 537 kfree(acpi_device_bus_id); 538 } 539 break; 540 } 541 542 list_del(&device->wakeup_list); 543 544 mutex_unlock(&acpi_device_lock); 545 546 acpi_power_add_remove_device(device, false); 547 acpi_device_remove_files(device); 548 if (device->remove) 549 device->remove(device); 550 551 device_del(&device->dev); 552 } 553 554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 555 556 static LIST_HEAD(acpi_device_del_list); 557 static DEFINE_MUTEX(acpi_device_del_lock); 558 559 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 560 { 561 for (;;) { 562 struct acpi_device *adev; 563 564 mutex_lock(&acpi_device_del_lock); 565 566 if (list_empty(&acpi_device_del_list)) { 567 mutex_unlock(&acpi_device_del_lock); 568 break; 569 } 570 adev = list_first_entry(&acpi_device_del_list, 571 struct acpi_device, del_list); 572 list_del(&adev->del_list); 573 574 mutex_unlock(&acpi_device_del_lock); 575 576 blocking_notifier_call_chain(&acpi_reconfig_chain, 577 ACPI_RECONFIG_DEVICE_REMOVE, adev); 578 579 acpi_device_del(adev); 580 /* 581 * Drop references to all power resources that might have been 582 * used by the device. 583 */ 584 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 585 acpi_dev_put(adev); 586 } 587 } 588 589 /** 590 * acpi_scan_drop_device - Drop an ACPI device object. 591 * @handle: Handle of an ACPI namespace node, not used. 592 * @context: Address of the ACPI device object to drop. 593 * 594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 595 * namespace node the device object pointed to by @context is attached to. 596 * 597 * The unregistration is carried out asynchronously to avoid running 598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 599 * ensure the correct ordering (the device objects must be unregistered in the 600 * same order in which the corresponding namespace nodes are deleted). 601 */ 602 static void acpi_scan_drop_device(acpi_handle handle, void *context) 603 { 604 static DECLARE_WORK(work, acpi_device_del_work_fn); 605 struct acpi_device *adev = context; 606 607 mutex_lock(&acpi_device_del_lock); 608 609 /* 610 * Use the ACPI hotplug workqueue which is ordered, so this work item 611 * won't run after any hotplug work items submitted subsequently. That 612 * prevents attempts to register device objects identical to those being 613 * deleted from happening concurrently (such attempts result from 614 * hotplug events handled via the ACPI hotplug workqueue). It also will 615 * run after all of the work items submitted previously, which helps 616 * those work items to ensure that they are not accessing stale device 617 * objects. 618 */ 619 if (list_empty(&acpi_device_del_list)) 620 acpi_queue_hotplug_work(&work); 621 622 list_add_tail(&adev->del_list, &acpi_device_del_list); 623 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 624 adev->handle = INVALID_ACPI_HANDLE; 625 626 mutex_unlock(&acpi_device_del_lock); 627 } 628 629 static struct acpi_device *handle_to_device(acpi_handle handle, 630 void (*callback)(void *)) 631 { 632 struct acpi_device *adev = NULL; 633 acpi_status status; 634 635 status = acpi_get_data_full(handle, acpi_scan_drop_device, 636 (void **)&adev, callback); 637 if (ACPI_FAILURE(status) || !adev) { 638 acpi_handle_debug(handle, "No context!\n"); 639 return NULL; 640 } 641 return adev; 642 } 643 644 /** 645 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 646 * @handle: ACPI handle associated with the requested ACPI device object. 647 * 648 * Return a pointer to the ACPI device object associated with @handle, if 649 * present, or NULL otherwise. 650 */ 651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 652 { 653 return handle_to_device(handle, NULL); 654 } 655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 656 657 static void get_acpi_device(void *dev) 658 { 659 acpi_dev_get(dev); 660 } 661 662 /** 663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 664 * @handle: ACPI handle associated with the requested ACPI device object. 665 * 666 * Return a pointer to the ACPI device object associated with @handle and bump 667 * up that object's reference counter (under the ACPI Namespace lock), if 668 * present, or return NULL otherwise. 669 * 670 * The ACPI device object reference acquired by this function needs to be 671 * dropped via acpi_dev_put(). 672 */ 673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 674 { 675 return handle_to_device(handle, get_acpi_device); 676 } 677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 678 679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 680 { 681 struct acpi_device_bus_id *acpi_device_bus_id; 682 683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 686 return acpi_device_bus_id; 687 } 688 return NULL; 689 } 690 691 static int acpi_device_set_name(struct acpi_device *device, 692 struct acpi_device_bus_id *acpi_device_bus_id) 693 { 694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 695 int result; 696 697 result = ida_alloc(instance_ida, GFP_KERNEL); 698 if (result < 0) 699 return result; 700 701 device->pnp.instance_no = result; 702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 703 return 0; 704 } 705 706 int acpi_tie_acpi_dev(struct acpi_device *adev) 707 { 708 acpi_handle handle = adev->handle; 709 acpi_status status; 710 711 if (!handle) 712 return 0; 713 714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 715 if (ACPI_FAILURE(status)) { 716 acpi_handle_err(handle, "Unable to attach device data\n"); 717 return -ENODEV; 718 } 719 720 return 0; 721 } 722 723 static void acpi_store_pld_crc(struct acpi_device *adev) 724 { 725 struct acpi_pld_info *pld; 726 acpi_status status; 727 728 status = acpi_get_physical_device_location(adev->handle, &pld); 729 if (ACPI_FAILURE(status)) 730 return; 731 732 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 733 ACPI_FREE(pld); 734 } 735 736 int acpi_device_add(struct acpi_device *device) 737 { 738 struct acpi_device_bus_id *acpi_device_bus_id; 739 int result; 740 741 /* 742 * Linkage 743 * ------- 744 * Link this device to its parent and siblings. 745 */ 746 INIT_LIST_HEAD(&device->wakeup_list); 747 INIT_LIST_HEAD(&device->physical_node_list); 748 INIT_LIST_HEAD(&device->del_list); 749 mutex_init(&device->physical_node_lock); 750 751 mutex_lock(&acpi_device_lock); 752 753 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 754 if (acpi_device_bus_id) { 755 result = acpi_device_set_name(device, acpi_device_bus_id); 756 if (result) 757 goto err_unlock; 758 } else { 759 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 760 GFP_KERNEL); 761 if (!acpi_device_bus_id) { 762 result = -ENOMEM; 763 goto err_unlock; 764 } 765 acpi_device_bus_id->bus_id = 766 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 767 if (!acpi_device_bus_id->bus_id) { 768 kfree(acpi_device_bus_id); 769 result = -ENOMEM; 770 goto err_unlock; 771 } 772 773 ida_init(&acpi_device_bus_id->instance_ida); 774 775 result = acpi_device_set_name(device, acpi_device_bus_id); 776 if (result) { 777 kfree_const(acpi_device_bus_id->bus_id); 778 kfree(acpi_device_bus_id); 779 goto err_unlock; 780 } 781 782 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 783 } 784 785 if (device->wakeup.flags.valid) 786 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 787 788 acpi_store_pld_crc(device); 789 790 mutex_unlock(&acpi_device_lock); 791 792 result = device_add(&device->dev); 793 if (result) { 794 dev_err(&device->dev, "Error registering device\n"); 795 goto err; 796 } 797 798 result = acpi_device_setup_files(device); 799 if (result) 800 pr_err("Error creating sysfs interface for device %s\n", 801 dev_name(&device->dev)); 802 803 return 0; 804 805 err: 806 mutex_lock(&acpi_device_lock); 807 808 list_del(&device->wakeup_list); 809 810 err_unlock: 811 mutex_unlock(&acpi_device_lock); 812 813 acpi_detach_data(device->handle, acpi_scan_drop_device); 814 815 return result; 816 } 817 818 /* -------------------------------------------------------------------------- 819 Device Enumeration 820 -------------------------------------------------------------------------- */ 821 static bool acpi_info_matches_ids(struct acpi_device_info *info, 822 const char * const ids[]) 823 { 824 struct acpi_pnp_device_id_list *cid_list = NULL; 825 int i, index; 826 827 if (!(info->valid & ACPI_VALID_HID)) 828 return false; 829 830 index = match_string(ids, -1, info->hardware_id.string); 831 if (index >= 0) 832 return true; 833 834 if (info->valid & ACPI_VALID_CID) 835 cid_list = &info->compatible_id_list; 836 837 if (!cid_list) 838 return false; 839 840 for (i = 0; i < cid_list->count; i++) { 841 index = match_string(ids, -1, cid_list->ids[i].string); 842 if (index >= 0) 843 return true; 844 } 845 846 return false; 847 } 848 849 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 850 static const char * const acpi_ignore_dep_ids[] = { 851 "PNP0D80", /* Windows-compatible System Power Management Controller */ 852 "INT33BD", /* Intel Baytrail Mailbox Device */ 853 "LATT2021", /* Lattice FW Update Client Driver */ 854 NULL 855 }; 856 857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 858 static const char * const acpi_honor_dep_ids[] = { 859 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 860 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 861 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 862 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 863 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */ 864 "RSCV0001", /* RISC-V PLIC */ 865 "RSCV0002", /* RISC-V APLIC */ 866 "PNP0C0F", /* PCI Link Device */ 867 NULL 868 }; 869 870 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 871 { 872 struct acpi_device *adev; 873 874 /* 875 * Fixed hardware devices do not appear in the namespace and do not 876 * have handles, but we fabricate acpi_devices for them, so we have 877 * to deal with them specially. 878 */ 879 if (!handle) 880 return acpi_root; 881 882 do { 883 acpi_status status; 884 885 status = acpi_get_parent(handle, &handle); 886 if (ACPI_FAILURE(status)) { 887 if (status != AE_NULL_ENTRY) 888 return acpi_root; 889 890 return NULL; 891 } 892 adev = acpi_fetch_acpi_dev(handle); 893 } while (!adev); 894 return adev; 895 } 896 897 acpi_status 898 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 899 { 900 acpi_status status; 901 acpi_handle tmp; 902 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 903 union acpi_object *obj; 904 905 status = acpi_get_handle(handle, "_EJD", &tmp); 906 if (ACPI_FAILURE(status)) 907 return status; 908 909 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 910 if (ACPI_SUCCESS(status)) { 911 obj = buffer.pointer; 912 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 913 ejd); 914 kfree(buffer.pointer); 915 } 916 return status; 917 } 918 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 919 920 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 921 { 922 acpi_handle handle = dev->handle; 923 struct acpi_device_wakeup *wakeup = &dev->wakeup; 924 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 925 union acpi_object *package = NULL; 926 union acpi_object *element = NULL; 927 acpi_status status; 928 int err = -ENODATA; 929 930 INIT_LIST_HEAD(&wakeup->resources); 931 932 /* _PRW */ 933 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 934 if (ACPI_FAILURE(status)) { 935 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 936 acpi_format_exception(status)); 937 return err; 938 } 939 940 package = (union acpi_object *)buffer.pointer; 941 942 if (!package || package->package.count < 2) 943 goto out; 944 945 element = &(package->package.elements[0]); 946 if (!element) 947 goto out; 948 949 if (element->type == ACPI_TYPE_PACKAGE) { 950 if ((element->package.count < 2) || 951 (element->package.elements[0].type != 952 ACPI_TYPE_LOCAL_REFERENCE) 953 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 954 goto out; 955 956 wakeup->gpe_device = 957 element->package.elements[0].reference.handle; 958 wakeup->gpe_number = 959 (u32) element->package.elements[1].integer.value; 960 } else if (element->type == ACPI_TYPE_INTEGER) { 961 wakeup->gpe_device = NULL; 962 wakeup->gpe_number = element->integer.value; 963 } else { 964 goto out; 965 } 966 967 element = &(package->package.elements[1]); 968 if (element->type != ACPI_TYPE_INTEGER) 969 goto out; 970 971 wakeup->sleep_state = element->integer.value; 972 973 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 974 if (err) 975 goto out; 976 977 if (!list_empty(&wakeup->resources)) { 978 int sleep_state; 979 980 err = acpi_power_wakeup_list_init(&wakeup->resources, 981 &sleep_state); 982 if (err) { 983 acpi_handle_warn(handle, "Retrieving current states " 984 "of wakeup power resources failed\n"); 985 acpi_power_resources_list_free(&wakeup->resources); 986 goto out; 987 } 988 if (sleep_state < wakeup->sleep_state) { 989 acpi_handle_warn(handle, "Overriding _PRW sleep state " 990 "(S%d) by S%d from power resources\n", 991 (int)wakeup->sleep_state, sleep_state); 992 wakeup->sleep_state = sleep_state; 993 } 994 } 995 996 out: 997 kfree(buffer.pointer); 998 return err; 999 } 1000 1001 /* Do not use a button for S5 wakeup */ 1002 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 1003 1004 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 1005 { 1006 static const struct acpi_device_id button_device_ids[] = { 1007 {"PNP0C0C", 0}, /* Power button */ 1008 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 1009 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 1010 {"", 0}, 1011 }; 1012 struct acpi_device_wakeup *wakeup = &device->wakeup; 1013 const struct acpi_device_id *match; 1014 acpi_status status; 1015 1016 wakeup->flags.notifier_present = 0; 1017 1018 /* Power button, Lid switch always enable wakeup */ 1019 match = acpi_match_acpi_device(button_device_ids, device); 1020 if (match) { 1021 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 1022 wakeup->sleep_state == ACPI_STATE_S5) 1023 wakeup->sleep_state = ACPI_STATE_S4; 1024 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 1025 device_set_wakeup_capable(&device->dev, true); 1026 return true; 1027 } 1028 1029 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 1030 wakeup->gpe_number); 1031 return ACPI_SUCCESS(status); 1032 } 1033 1034 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 1035 { 1036 int err; 1037 1038 /* Presence of _PRW indicates wake capable */ 1039 if (!acpi_has_method(device->handle, "_PRW")) 1040 return; 1041 1042 err = acpi_bus_extract_wakeup_device_power_package(device); 1043 if (err) { 1044 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1045 return; 1046 } 1047 1048 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1049 device->wakeup.prepare_count = 0; 1050 /* 1051 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1052 * system for the ACPI device with the _PRW object. 1053 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1054 * So it is necessary to call _DSW object first. Only when it is not 1055 * present will the _PSW object used. 1056 */ 1057 err = acpi_device_sleep_wake(device, 0, 0, 0); 1058 if (err) 1059 pr_debug("error in _DSW or _PSW evaluation\n"); 1060 } 1061 1062 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1063 { 1064 struct acpi_device_power_state *ps = &device->power.states[state]; 1065 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1066 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1067 acpi_status status; 1068 1069 INIT_LIST_HEAD(&ps->resources); 1070 1071 /* Evaluate "_PRx" to get referenced power resources */ 1072 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1073 if (ACPI_SUCCESS(status)) { 1074 union acpi_object *package = buffer.pointer; 1075 1076 if (buffer.length && package 1077 && package->type == ACPI_TYPE_PACKAGE 1078 && package->package.count) 1079 acpi_extract_power_resources(package, 0, &ps->resources); 1080 1081 ACPI_FREE(buffer.pointer); 1082 } 1083 1084 /* Evaluate "_PSx" to see if we can do explicit sets */ 1085 pathname[2] = 'S'; 1086 if (acpi_has_method(device->handle, pathname)) 1087 ps->flags.explicit_set = 1; 1088 1089 /* State is valid if there are means to put the device into it. */ 1090 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1091 ps->flags.valid = 1; 1092 1093 ps->power = -1; /* Unknown - driver assigned */ 1094 ps->latency = -1; /* Unknown - driver assigned */ 1095 } 1096 1097 static void acpi_bus_get_power_flags(struct acpi_device *device) 1098 { 1099 unsigned long long dsc = ACPI_STATE_D0; 1100 u32 i; 1101 1102 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1103 if (!acpi_has_method(device->handle, "_PS0") && 1104 !acpi_has_method(device->handle, "_PR0")) 1105 return; 1106 1107 device->flags.power_manageable = 1; 1108 1109 /* 1110 * Power Management Flags 1111 */ 1112 if (acpi_has_method(device->handle, "_PSC")) 1113 device->power.flags.explicit_get = 1; 1114 1115 if (acpi_has_method(device->handle, "_IRC")) 1116 device->power.flags.inrush_current = 1; 1117 1118 if (acpi_has_method(device->handle, "_DSW")) 1119 device->power.flags.dsw_present = 1; 1120 1121 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1122 device->power.state_for_enumeration = dsc; 1123 1124 /* 1125 * Enumerate supported power management states 1126 */ 1127 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1128 acpi_bus_init_power_state(device, i); 1129 1130 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1131 1132 /* Set the defaults for D0 and D3hot (always supported). */ 1133 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1134 device->power.states[ACPI_STATE_D0].power = 100; 1135 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1136 1137 /* 1138 * Use power resources only if the D0 list of them is populated, because 1139 * some platforms may provide _PR3 only to indicate D3cold support and 1140 * in those cases the power resources list returned by it may be bogus. 1141 */ 1142 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1143 device->power.flags.power_resources = 1; 1144 /* 1145 * D3cold is supported if the D3hot list of power resources is 1146 * not empty. 1147 */ 1148 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1149 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1150 } 1151 1152 if (acpi_bus_init_power(device)) 1153 device->flags.power_manageable = 0; 1154 } 1155 1156 static void acpi_bus_get_flags(struct acpi_device *device) 1157 { 1158 /* Presence of _STA indicates 'dynamic_status' */ 1159 if (acpi_has_method(device->handle, "_STA")) 1160 device->flags.dynamic_status = 1; 1161 1162 /* Presence of _RMV indicates 'removable' */ 1163 if (acpi_has_method(device->handle, "_RMV")) 1164 device->flags.removable = 1; 1165 1166 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1167 if (acpi_has_method(device->handle, "_EJD") || 1168 acpi_has_method(device->handle, "_EJ0")) 1169 device->flags.ejectable = 1; 1170 } 1171 1172 static void acpi_device_get_busid(struct acpi_device *device) 1173 { 1174 char bus_id[5] = { '?', 0 }; 1175 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1176 int i = 0; 1177 1178 /* 1179 * Bus ID 1180 * ------ 1181 * The device's Bus ID is simply the object name. 1182 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1183 */ 1184 if (!acpi_dev_parent(device)) { 1185 strcpy(device->pnp.bus_id, "ACPI"); 1186 return; 1187 } 1188 1189 switch (device->device_type) { 1190 case ACPI_BUS_TYPE_POWER_BUTTON: 1191 strcpy(device->pnp.bus_id, "PWRF"); 1192 break; 1193 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1194 strcpy(device->pnp.bus_id, "SLPF"); 1195 break; 1196 case ACPI_BUS_TYPE_ECDT_EC: 1197 strcpy(device->pnp.bus_id, "ECDT"); 1198 break; 1199 default: 1200 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1201 /* Clean up trailing underscores (if any) */ 1202 for (i = 3; i > 1; i--) { 1203 if (bus_id[i] == '_') 1204 bus_id[i] = '\0'; 1205 else 1206 break; 1207 } 1208 strcpy(device->pnp.bus_id, bus_id); 1209 break; 1210 } 1211 } 1212 1213 /* 1214 * acpi_ata_match - see if an acpi object is an ATA device 1215 * 1216 * If an acpi object has one of the ACPI ATA methods defined, 1217 * then we can safely call it an ATA device. 1218 */ 1219 bool acpi_ata_match(acpi_handle handle) 1220 { 1221 return acpi_has_method(handle, "_GTF") || 1222 acpi_has_method(handle, "_GTM") || 1223 acpi_has_method(handle, "_STM") || 1224 acpi_has_method(handle, "_SDD"); 1225 } 1226 1227 /* 1228 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1229 * 1230 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1231 * then we can safely call it an ejectable drive bay 1232 */ 1233 bool acpi_bay_match(acpi_handle handle) 1234 { 1235 acpi_handle phandle; 1236 1237 if (!acpi_has_method(handle, "_EJ0")) 1238 return false; 1239 if (acpi_ata_match(handle)) 1240 return true; 1241 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1242 return false; 1243 1244 return acpi_ata_match(phandle); 1245 } 1246 1247 bool acpi_device_is_battery(struct acpi_device *adev) 1248 { 1249 struct acpi_hardware_id *hwid; 1250 1251 list_for_each_entry(hwid, &adev->pnp.ids, list) 1252 if (!strcmp("PNP0C0A", hwid->id)) 1253 return true; 1254 1255 return false; 1256 } 1257 1258 static bool is_ejectable_bay(struct acpi_device *adev) 1259 { 1260 acpi_handle handle = adev->handle; 1261 1262 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1263 return true; 1264 1265 return acpi_bay_match(handle); 1266 } 1267 1268 /* 1269 * acpi_dock_match - see if an acpi object has a _DCK method 1270 */ 1271 bool acpi_dock_match(acpi_handle handle) 1272 { 1273 return acpi_has_method(handle, "_DCK"); 1274 } 1275 1276 static acpi_status 1277 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1278 void **return_value) 1279 { 1280 long *cap = context; 1281 1282 if (acpi_has_method(handle, "_BCM") && 1283 acpi_has_method(handle, "_BCL")) { 1284 acpi_handle_debug(handle, "Found generic backlight support\n"); 1285 *cap |= ACPI_VIDEO_BACKLIGHT; 1286 /* We have backlight support, no need to scan further */ 1287 return AE_CTRL_TERMINATE; 1288 } 1289 return 0; 1290 } 1291 1292 /* Returns true if the ACPI object is a video device which can be 1293 * handled by video.ko. 1294 * The device will get a Linux specific CID added in scan.c to 1295 * identify the device as an ACPI graphics device 1296 * Be aware that the graphics device may not be physically present 1297 * Use acpi_video_get_capabilities() to detect general ACPI video 1298 * capabilities of present cards 1299 */ 1300 long acpi_is_video_device(acpi_handle handle) 1301 { 1302 long video_caps = 0; 1303 1304 /* Is this device able to support video switching ? */ 1305 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1306 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1307 1308 /* Is this device able to retrieve a video ROM ? */ 1309 if (acpi_has_method(handle, "_ROM")) 1310 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1311 1312 /* Is this device able to configure which video head to be POSTed ? */ 1313 if (acpi_has_method(handle, "_VPO") && 1314 acpi_has_method(handle, "_GPD") && 1315 acpi_has_method(handle, "_SPD")) 1316 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1317 1318 /* Only check for backlight functionality if one of the above hit. */ 1319 if (video_caps) 1320 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1321 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1322 &video_caps, NULL); 1323 1324 return video_caps; 1325 } 1326 EXPORT_SYMBOL(acpi_is_video_device); 1327 1328 const char *acpi_device_hid(struct acpi_device *device) 1329 { 1330 struct acpi_hardware_id *hid; 1331 1332 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list); 1333 if (!hid) 1334 return dummy_hid; 1335 1336 return hid->id; 1337 } 1338 EXPORT_SYMBOL(acpi_device_hid); 1339 1340 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1341 { 1342 struct acpi_hardware_id *id; 1343 1344 id = kmalloc(sizeof(*id), GFP_KERNEL); 1345 if (!id) 1346 return; 1347 1348 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1349 if (!id->id) { 1350 kfree(id); 1351 return; 1352 } 1353 1354 list_add_tail(&id->list, &pnp->ids); 1355 pnp->type.hardware_id = 1; 1356 } 1357 1358 /* 1359 * Old IBM workstations have a DSDT bug wherein the SMBus object 1360 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1361 * prefix. Work around this. 1362 */ 1363 static bool acpi_ibm_smbus_match(acpi_handle handle) 1364 { 1365 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1366 struct acpi_buffer path = { sizeof(node_name), node_name }; 1367 1368 if (!dmi_name_in_vendors("IBM")) 1369 return false; 1370 1371 /* Look for SMBS object */ 1372 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1373 strcmp("SMBS", path.pointer)) 1374 return false; 1375 1376 /* Does it have the necessary (but misnamed) methods? */ 1377 if (acpi_has_method(handle, "SBI") && 1378 acpi_has_method(handle, "SBR") && 1379 acpi_has_method(handle, "SBW")) 1380 return true; 1381 1382 return false; 1383 } 1384 1385 static bool acpi_object_is_system_bus(acpi_handle handle) 1386 { 1387 acpi_handle tmp; 1388 1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1390 tmp == handle) 1391 return true; 1392 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1393 tmp == handle) 1394 return true; 1395 1396 return false; 1397 } 1398 1399 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1400 int device_type) 1401 { 1402 struct acpi_device_info *info = NULL; 1403 struct acpi_pnp_device_id_list *cid_list; 1404 int i; 1405 1406 switch (device_type) { 1407 case ACPI_BUS_TYPE_DEVICE: 1408 if (handle == ACPI_ROOT_OBJECT) { 1409 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1410 break; 1411 } 1412 1413 acpi_get_object_info(handle, &info); 1414 if (!info) { 1415 pr_err("%s: Error reading device info\n", __func__); 1416 return; 1417 } 1418 1419 if (info->valid & ACPI_VALID_HID) { 1420 acpi_add_id(pnp, info->hardware_id.string); 1421 pnp->type.platform_id = 1; 1422 } 1423 if (info->valid & ACPI_VALID_CID) { 1424 cid_list = &info->compatible_id_list; 1425 for (i = 0; i < cid_list->count; i++) 1426 acpi_add_id(pnp, cid_list->ids[i].string); 1427 } 1428 if (info->valid & ACPI_VALID_ADR) { 1429 pnp->bus_address = info->address; 1430 pnp->type.bus_address = 1; 1431 } 1432 if (info->valid & ACPI_VALID_UID) 1433 pnp->unique_id = kstrdup(info->unique_id.string, 1434 GFP_KERNEL); 1435 if (info->valid & ACPI_VALID_CLS) 1436 acpi_add_id(pnp, info->class_code.string); 1437 1438 kfree(info); 1439 1440 /* 1441 * Some devices don't reliably have _HIDs & _CIDs, so add 1442 * synthetic HIDs to make sure drivers can find them. 1443 */ 1444 if (acpi_is_video_device(handle)) { 1445 acpi_add_id(pnp, ACPI_VIDEO_HID); 1446 pnp->type.backlight = 1; 1447 break; 1448 } 1449 if (acpi_bay_match(handle)) 1450 acpi_add_id(pnp, ACPI_BAY_HID); 1451 else if (acpi_dock_match(handle)) 1452 acpi_add_id(pnp, ACPI_DOCK_HID); 1453 else if (acpi_ibm_smbus_match(handle)) 1454 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1455 else if (list_empty(&pnp->ids) && 1456 acpi_object_is_system_bus(handle)) { 1457 /* \_SB, \_TZ, LNXSYBUS */ 1458 acpi_add_id(pnp, ACPI_BUS_HID); 1459 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1460 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1461 } 1462 1463 break; 1464 case ACPI_BUS_TYPE_POWER: 1465 acpi_add_id(pnp, ACPI_POWER_HID); 1466 break; 1467 case ACPI_BUS_TYPE_PROCESSOR: 1468 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1469 break; 1470 case ACPI_BUS_TYPE_THERMAL: 1471 acpi_add_id(pnp, ACPI_THERMAL_HID); 1472 break; 1473 case ACPI_BUS_TYPE_POWER_BUTTON: 1474 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1475 break; 1476 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1477 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1478 break; 1479 case ACPI_BUS_TYPE_ECDT_EC: 1480 acpi_add_id(pnp, ACPI_ECDT_HID); 1481 break; 1482 } 1483 } 1484 1485 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1486 { 1487 struct acpi_hardware_id *id, *tmp; 1488 1489 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1490 kfree_const(id->id); 1491 kfree(id); 1492 } 1493 kfree(pnp->unique_id); 1494 } 1495 1496 /** 1497 * acpi_dma_supported - Check DMA support for the specified device. 1498 * @adev: The pointer to acpi device 1499 * 1500 * Return false if DMA is not supported. Otherwise, return true 1501 */ 1502 bool acpi_dma_supported(const struct acpi_device *adev) 1503 { 1504 if (!adev) 1505 return false; 1506 1507 if (adev->flags.cca_seen) 1508 return true; 1509 1510 /* 1511 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1512 * DMA on "Intel platforms". Presumably that includes all x86 and 1513 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1514 */ 1515 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1516 return true; 1517 1518 return false; 1519 } 1520 1521 /** 1522 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1523 * @adev: The pointer to acpi device 1524 * 1525 * Return enum dev_dma_attr. 1526 */ 1527 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1528 { 1529 if (!acpi_dma_supported(adev)) 1530 return DEV_DMA_NOT_SUPPORTED; 1531 1532 if (adev->flags.coherent_dma) 1533 return DEV_DMA_COHERENT; 1534 else 1535 return DEV_DMA_NON_COHERENT; 1536 } 1537 1538 /** 1539 * acpi_dma_get_range() - Get device DMA parameters. 1540 * 1541 * @dev: device to configure 1542 * @map: pointer to DMA ranges result 1543 * 1544 * Evaluate DMA regions and return pointer to DMA regions on 1545 * parsing success; it does not update the passed in values on failure. 1546 * 1547 * Return 0 on success, < 0 on failure. 1548 */ 1549 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1550 { 1551 struct acpi_device *adev; 1552 LIST_HEAD(list); 1553 struct resource_entry *rentry; 1554 int ret; 1555 struct device *dma_dev = dev; 1556 struct bus_dma_region *r; 1557 1558 /* 1559 * Walk the device tree chasing an ACPI companion with a _DMA 1560 * object while we go. Stop if we find a device with an ACPI 1561 * companion containing a _DMA method. 1562 */ 1563 do { 1564 adev = ACPI_COMPANION(dma_dev); 1565 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1566 break; 1567 1568 dma_dev = dma_dev->parent; 1569 } while (dma_dev); 1570 1571 if (!dma_dev) 1572 return -ENODEV; 1573 1574 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1575 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1576 return -EINVAL; 1577 } 1578 1579 ret = acpi_dev_get_dma_resources(adev, &list); 1580 if (ret > 0) { 1581 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1582 if (!r) { 1583 ret = -ENOMEM; 1584 goto out; 1585 } 1586 1587 *map = r; 1588 1589 list_for_each_entry(rentry, &list, node) { 1590 if (rentry->res->start >= rentry->res->end) { 1591 kfree(*map); 1592 *map = NULL; 1593 ret = -EINVAL; 1594 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1595 goto out; 1596 } 1597 1598 r->cpu_start = rentry->res->start; 1599 r->dma_start = rentry->res->start - rentry->offset; 1600 r->size = resource_size(rentry->res); 1601 r++; 1602 } 1603 } 1604 out: 1605 acpi_dev_free_resource_list(&list); 1606 1607 return ret >= 0 ? 0 : ret; 1608 } 1609 1610 #ifdef CONFIG_IOMMU_API 1611 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1612 struct fwnode_handle *fwnode) 1613 { 1614 int ret; 1615 1616 ret = iommu_fwspec_init(dev, fwnode); 1617 if (ret) 1618 return ret; 1619 1620 return iommu_fwspec_add_ids(dev, &id, 1); 1621 } 1622 1623 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1624 { 1625 int err; 1626 1627 /* Serialise to make dev->iommu stable under our potential fwspec */ 1628 mutex_lock(&iommu_probe_device_lock); 1629 /* If we already translated the fwspec there is nothing left to do */ 1630 if (dev_iommu_fwspec_get(dev)) { 1631 mutex_unlock(&iommu_probe_device_lock); 1632 return 0; 1633 } 1634 1635 err = iort_iommu_configure_id(dev, id_in); 1636 if (err && err != -EPROBE_DEFER) 1637 err = viot_iommu_configure(dev); 1638 mutex_unlock(&iommu_probe_device_lock); 1639 1640 /* 1641 * If we have reason to believe the IOMMU driver missed the initial 1642 * iommu_probe_device() call for dev, replay it to get things in order. 1643 */ 1644 if (!err && dev->bus) 1645 err = iommu_probe_device(dev); 1646 1647 return err; 1648 } 1649 1650 #else /* !CONFIG_IOMMU_API */ 1651 1652 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1653 struct fwnode_handle *fwnode) 1654 { 1655 return -ENODEV; 1656 } 1657 1658 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1659 { 1660 return -ENODEV; 1661 } 1662 1663 #endif /* !CONFIG_IOMMU_API */ 1664 1665 /** 1666 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1667 * @dev: The pointer to the device 1668 * @attr: device dma attributes 1669 * @input_id: input device id const value pointer 1670 */ 1671 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1672 const u32 *input_id) 1673 { 1674 int ret; 1675 1676 if (attr == DEV_DMA_NOT_SUPPORTED) { 1677 set_dma_ops(dev, &dma_dummy_ops); 1678 return 0; 1679 } 1680 1681 acpi_arch_dma_setup(dev); 1682 1683 /* Ignore all other errors apart from EPROBE_DEFER */ 1684 ret = acpi_iommu_configure_id(dev, input_id); 1685 if (ret == -EPROBE_DEFER) 1686 return -EPROBE_DEFER; 1687 if (ret) 1688 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret); 1689 1690 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT); 1691 1692 return 0; 1693 } 1694 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1695 1696 static void acpi_init_coherency(struct acpi_device *adev) 1697 { 1698 unsigned long long cca = 0; 1699 acpi_status status; 1700 struct acpi_device *parent = acpi_dev_parent(adev); 1701 1702 if (parent && parent->flags.cca_seen) { 1703 /* 1704 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1705 * already saw one. 1706 */ 1707 adev->flags.cca_seen = 1; 1708 cca = parent->flags.coherent_dma; 1709 } else { 1710 status = acpi_evaluate_integer(adev->handle, "_CCA", 1711 NULL, &cca); 1712 if (ACPI_SUCCESS(status)) 1713 adev->flags.cca_seen = 1; 1714 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1715 /* 1716 * If architecture does not specify that _CCA is 1717 * required for DMA-able devices (e.g. x86), 1718 * we default to _CCA=1. 1719 */ 1720 cca = 1; 1721 else 1722 acpi_handle_debug(adev->handle, 1723 "ACPI device is missing _CCA.\n"); 1724 } 1725 1726 adev->flags.coherent_dma = cca; 1727 } 1728 1729 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1730 { 1731 bool *is_serial_bus_slave_p = data; 1732 1733 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1734 return 1; 1735 1736 *is_serial_bus_slave_p = true; 1737 1738 /* no need to do more checking */ 1739 return -1; 1740 } 1741 1742 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1743 { 1744 struct acpi_device *parent = acpi_dev_parent(device); 1745 static const struct acpi_device_id indirect_io_hosts[] = { 1746 {"HISI0191", 0}, 1747 {} 1748 }; 1749 1750 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1751 } 1752 1753 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1754 { 1755 struct list_head resource_list; 1756 bool is_serial_bus_slave = false; 1757 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1758 /* 1759 * These devices have multiple SerialBus resources and a client 1760 * device must be instantiated for each of them, each with 1761 * its own device id. 1762 * Normally we only instantiate one client device for the first 1763 * resource, using the ACPI HID as id. These special cases are handled 1764 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1765 * knows which client device id to use for each resource. 1766 */ 1767 {"BSG1160", }, 1768 {"BSG2150", }, 1769 {"CSC3551", }, 1770 {"CSC3554", }, 1771 {"CSC3556", }, 1772 {"CSC3557", }, 1773 {"INT33FE", }, 1774 {"INT3515", }, 1775 /* Non-conforming _HID for Cirrus Logic already released */ 1776 {"CLSA0100", }, 1777 {"CLSA0101", }, 1778 /* 1779 * Some ACPI devs contain SerialBus resources even though they are not 1780 * attached to a serial bus at all. 1781 */ 1782 {ACPI_VIDEO_HID, }, 1783 {"MSHW0028", }, 1784 /* 1785 * HIDs of device with an UartSerialBusV2 resource for which userspace 1786 * expects a regular tty cdev to be created (instead of the in kernel 1787 * serdev) and which have a kernel driver which expects a platform_dev 1788 * such as the rfkill-gpio driver. 1789 */ 1790 {"BCM4752", }, 1791 {"LNV4752", }, 1792 {} 1793 }; 1794 1795 if (acpi_is_indirect_io_slave(device)) 1796 return true; 1797 1798 /* Macs use device properties in lieu of _CRS resources */ 1799 if (x86_apple_machine && 1800 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1801 fwnode_property_present(&device->fwnode, "i2cAddress") || 1802 fwnode_property_present(&device->fwnode, "baud"))) 1803 return true; 1804 1805 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1806 return false; 1807 1808 INIT_LIST_HEAD(&resource_list); 1809 acpi_dev_get_resources(device, &resource_list, 1810 acpi_check_serial_bus_slave, 1811 &is_serial_bus_slave); 1812 acpi_dev_free_resource_list(&resource_list); 1813 1814 return is_serial_bus_slave; 1815 } 1816 1817 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1818 int type, void (*release)(struct device *)) 1819 { 1820 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1821 1822 INIT_LIST_HEAD(&device->pnp.ids); 1823 device->device_type = type; 1824 device->handle = handle; 1825 device->dev.parent = parent ? &parent->dev : NULL; 1826 device->dev.release = release; 1827 device->dev.bus = &acpi_bus_type; 1828 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1829 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1830 acpi_device_get_busid(device); 1831 acpi_set_pnp_ids(handle, &device->pnp, type); 1832 acpi_init_properties(device); 1833 acpi_bus_get_flags(device); 1834 device->flags.match_driver = false; 1835 device->flags.initialized = true; 1836 device->flags.enumeration_by_parent = 1837 acpi_device_enumeration_by_parent(device); 1838 acpi_device_clear_enumerated(device); 1839 device_initialize(&device->dev); 1840 dev_set_uevent_suppress(&device->dev, true); 1841 acpi_init_coherency(device); 1842 } 1843 1844 static void acpi_scan_dep_init(struct acpi_device *adev) 1845 { 1846 struct acpi_dep_data *dep; 1847 1848 list_for_each_entry(dep, &acpi_dep_list, node) { 1849 if (dep->consumer == adev->handle) { 1850 if (dep->honor_dep) 1851 adev->flags.honor_deps = 1; 1852 1853 if (!dep->met) 1854 adev->dep_unmet++; 1855 } 1856 } 1857 } 1858 1859 void acpi_device_add_finalize(struct acpi_device *device) 1860 { 1861 dev_set_uevent_suppress(&device->dev, false); 1862 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1863 } 1864 1865 static void acpi_scan_init_status(struct acpi_device *adev) 1866 { 1867 if (acpi_bus_get_status(adev)) 1868 acpi_set_device_status(adev, 0); 1869 } 1870 1871 static int acpi_add_single_object(struct acpi_device **child, 1872 acpi_handle handle, int type, bool dep_init) 1873 { 1874 struct acpi_device *device; 1875 bool release_dep_lock = false; 1876 int result; 1877 1878 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1879 if (!device) 1880 return -ENOMEM; 1881 1882 acpi_init_device_object(device, handle, type, acpi_device_release); 1883 /* 1884 * Getting the status is delayed till here so that we can call 1885 * acpi_bus_get_status() and use its quirk handling. Note that 1886 * this must be done before the get power-/wakeup_dev-flags calls. 1887 */ 1888 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1889 if (dep_init) { 1890 mutex_lock(&acpi_dep_list_lock); 1891 /* 1892 * Hold the lock until the acpi_tie_acpi_dev() call 1893 * below to prevent concurrent acpi_scan_clear_dep() 1894 * from deleting a dependency list entry without 1895 * updating dep_unmet for the device. 1896 */ 1897 release_dep_lock = true; 1898 acpi_scan_dep_init(device); 1899 } 1900 acpi_scan_init_status(device); 1901 } 1902 1903 acpi_bus_get_power_flags(device); 1904 acpi_bus_get_wakeup_device_flags(device); 1905 1906 result = acpi_tie_acpi_dev(device); 1907 1908 if (release_dep_lock) 1909 mutex_unlock(&acpi_dep_list_lock); 1910 1911 if (!result) 1912 result = acpi_device_add(device); 1913 1914 if (result) { 1915 acpi_device_release(&device->dev); 1916 return result; 1917 } 1918 1919 acpi_power_add_remove_device(device, true); 1920 acpi_device_add_finalize(device); 1921 1922 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1923 dev_name(&device->dev), device->dev.parent ? 1924 dev_name(device->dev.parent) : "(null)"); 1925 1926 *child = device; 1927 return 0; 1928 } 1929 1930 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1931 void *context) 1932 { 1933 struct resource *res = context; 1934 1935 if (acpi_dev_resource_memory(ares, res)) 1936 return AE_CTRL_TERMINATE; 1937 1938 return AE_OK; 1939 } 1940 1941 static bool acpi_device_should_be_hidden(acpi_handle handle) 1942 { 1943 acpi_status status; 1944 struct resource res; 1945 1946 /* Check if it should ignore the UART device */ 1947 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1948 return false; 1949 1950 /* 1951 * The UART device described in SPCR table is assumed to have only one 1952 * memory resource present. So we only look for the first one here. 1953 */ 1954 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1955 acpi_get_resource_memory, &res); 1956 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1957 return false; 1958 1959 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1960 &res.start); 1961 1962 return true; 1963 } 1964 1965 bool acpi_device_is_present(const struct acpi_device *adev) 1966 { 1967 return adev->status.present || adev->status.functional; 1968 } 1969 1970 bool acpi_device_is_enabled(const struct acpi_device *adev) 1971 { 1972 return adev->status.enabled; 1973 } 1974 1975 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1976 const char *idstr, 1977 const struct acpi_device_id **matchid) 1978 { 1979 const struct acpi_device_id *devid; 1980 1981 if (handler->match) 1982 return handler->match(idstr, matchid); 1983 1984 for (devid = handler->ids; devid->id[0]; devid++) 1985 if (!strcmp((char *)devid->id, idstr)) { 1986 if (matchid) 1987 *matchid = devid; 1988 1989 return true; 1990 } 1991 1992 return false; 1993 } 1994 1995 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1996 const struct acpi_device_id **matchid) 1997 { 1998 struct acpi_scan_handler *handler; 1999 2000 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 2001 if (acpi_scan_handler_matching(handler, idstr, matchid)) 2002 return handler; 2003 2004 return NULL; 2005 } 2006 2007 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 2008 { 2009 if (!!hotplug->enabled == !!val) 2010 return; 2011 2012 mutex_lock(&acpi_scan_lock); 2013 2014 hotplug->enabled = val; 2015 2016 mutex_unlock(&acpi_scan_lock); 2017 } 2018 2019 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices) 2020 { 2021 u32 count; 2022 int i; 2023 2024 for (count = 0, i = 0; i < dep_devices->count; i++) { 2025 struct acpi_device_info *info; 2026 struct acpi_dep_data *dep; 2027 bool skip, honor_dep; 2028 acpi_status status; 2029 2030 status = acpi_get_object_info(dep_devices->handles[i], &info); 2031 if (ACPI_FAILURE(status)) { 2032 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2033 continue; 2034 } 2035 2036 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2037 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2038 kfree(info); 2039 2040 if (skip) 2041 continue; 2042 2043 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2044 if (!dep) 2045 continue; 2046 2047 count++; 2048 2049 dep->supplier = dep_devices->handles[i]; 2050 dep->consumer = handle; 2051 dep->honor_dep = honor_dep; 2052 2053 mutex_lock(&acpi_dep_list_lock); 2054 list_add_tail(&dep->node, &acpi_dep_list); 2055 mutex_unlock(&acpi_dep_list_lock); 2056 } 2057 2058 acpi_handle_list_free(dep_devices); 2059 return count; 2060 } 2061 2062 static void acpi_scan_init_hotplug(struct acpi_device *adev) 2063 { 2064 struct acpi_hardware_id *hwid; 2065 2066 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 2067 acpi_dock_add(adev); 2068 return; 2069 } 2070 list_for_each_entry(hwid, &adev->pnp.ids, list) { 2071 struct acpi_scan_handler *handler; 2072 2073 handler = acpi_scan_match_handler(hwid->id, NULL); 2074 if (handler) { 2075 adev->flags.hotplug_notify = true; 2076 break; 2077 } 2078 } 2079 } 2080 2081 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; } 2082 2083 static u32 acpi_scan_check_dep(acpi_handle handle) 2084 { 2085 struct acpi_handle_list dep_devices; 2086 u32 count = 0; 2087 2088 /* 2089 * Some architectures like RISC-V need to add dependencies for 2090 * all devices which use GSI to the interrupt controller so that 2091 * interrupt controller is probed before any of those devices. 2092 * Instead of mandating _DEP on all the devices, detect the 2093 * dependency and add automatically. 2094 */ 2095 count += arch_acpi_add_auto_dep(handle); 2096 2097 /* 2098 * Check for _HID here to avoid deferring the enumeration of: 2099 * 1. PCI devices. 2100 * 2. ACPI nodes describing USB ports. 2101 * Still, checking for _HID catches more then just these cases ... 2102 */ 2103 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 2104 return count; 2105 2106 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) { 2107 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2108 return count; 2109 } 2110 2111 count += acpi_scan_add_dep(handle, &dep_devices); 2112 return count; 2113 } 2114 2115 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c) 2116 { 2117 acpi_mipi_check_crs_csi2(handle); 2118 return AE_OK; 2119 } 2120 2121 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass, 2122 struct acpi_device **adev_p) 2123 { 2124 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2125 acpi_object_type acpi_type; 2126 int type; 2127 2128 if (device) 2129 goto out; 2130 2131 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2132 return AE_OK; 2133 2134 switch (acpi_type) { 2135 case ACPI_TYPE_DEVICE: 2136 if (acpi_device_should_be_hidden(handle)) 2137 return AE_OK; 2138 2139 if (first_pass) { 2140 acpi_mipi_check_crs_csi2(handle); 2141 2142 /* Bail out if there are dependencies. */ 2143 if (acpi_scan_check_dep(handle) > 0) { 2144 /* 2145 * The entire CSI-2 connection graph needs to be 2146 * extracted before any drivers or scan handlers 2147 * are bound to struct device objects, so scan 2148 * _CRS CSI-2 resource descriptors for all 2149 * devices below the current handle. 2150 */ 2151 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2152 ACPI_UINT32_MAX, 2153 acpi_scan_check_crs_csi2_cb, 2154 NULL, NULL, NULL); 2155 return AE_CTRL_DEPTH; 2156 } 2157 } 2158 2159 fallthrough; 2160 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2161 type = ACPI_BUS_TYPE_DEVICE; 2162 break; 2163 2164 case ACPI_TYPE_PROCESSOR: 2165 type = ACPI_BUS_TYPE_PROCESSOR; 2166 break; 2167 2168 case ACPI_TYPE_THERMAL: 2169 type = ACPI_BUS_TYPE_THERMAL; 2170 break; 2171 2172 case ACPI_TYPE_POWER: 2173 acpi_add_power_resource(handle); 2174 fallthrough; 2175 default: 2176 return AE_OK; 2177 } 2178 2179 /* 2180 * If first_pass is true at this point, the device has no dependencies, 2181 * or the creation of the device object would have been postponed above. 2182 */ 2183 acpi_add_single_object(&device, handle, type, !first_pass); 2184 if (!device) 2185 return AE_CTRL_DEPTH; 2186 2187 acpi_scan_init_hotplug(device); 2188 2189 out: 2190 if (!*adev_p) 2191 *adev_p = device; 2192 2193 return AE_OK; 2194 } 2195 2196 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2197 void *not_used, void **ret_p) 2198 { 2199 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2200 } 2201 2202 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2203 void *not_used, void **ret_p) 2204 { 2205 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2206 } 2207 2208 static void acpi_default_enumeration(struct acpi_device *device) 2209 { 2210 /* 2211 * Do not enumerate devices with enumeration_by_parent flag set as 2212 * they will be enumerated by their respective parents. 2213 */ 2214 if (!device->flags.enumeration_by_parent) { 2215 acpi_create_platform_device(device, NULL); 2216 acpi_device_set_enumerated(device); 2217 } else { 2218 blocking_notifier_call_chain(&acpi_reconfig_chain, 2219 ACPI_RECONFIG_DEVICE_ADD, device); 2220 } 2221 } 2222 2223 static const struct acpi_device_id generic_device_ids[] = { 2224 {ACPI_DT_NAMESPACE_HID, }, 2225 {"", }, 2226 }; 2227 2228 static int acpi_generic_device_attach(struct acpi_device *adev, 2229 const struct acpi_device_id *not_used) 2230 { 2231 /* 2232 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2233 * below can be unconditional. 2234 */ 2235 if (adev->data.of_compatible) 2236 acpi_default_enumeration(adev); 2237 2238 return 1; 2239 } 2240 2241 static struct acpi_scan_handler generic_device_handler = { 2242 .ids = generic_device_ids, 2243 .attach = acpi_generic_device_attach, 2244 }; 2245 2246 static int acpi_scan_attach_handler(struct acpi_device *device) 2247 { 2248 struct acpi_hardware_id *hwid; 2249 int ret = 0; 2250 2251 list_for_each_entry(hwid, &device->pnp.ids, list) { 2252 const struct acpi_device_id *devid; 2253 struct acpi_scan_handler *handler; 2254 2255 handler = acpi_scan_match_handler(hwid->id, &devid); 2256 if (handler) { 2257 if (!handler->attach) { 2258 device->pnp.type.platform_id = 0; 2259 continue; 2260 } 2261 device->handler = handler; 2262 ret = handler->attach(device, devid); 2263 if (ret > 0) 2264 break; 2265 2266 device->handler = NULL; 2267 if (ret < 0) 2268 break; 2269 } 2270 } 2271 2272 return ret; 2273 } 2274 2275 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2276 { 2277 bool skip = !first_pass && device->flags.visited; 2278 acpi_handle ejd; 2279 int ret; 2280 2281 if (skip) 2282 goto ok; 2283 2284 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2285 register_dock_dependent_device(device, ejd); 2286 2287 acpi_bus_get_status(device); 2288 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2289 if (!acpi_dev_ready_for_enumeration(device)) { 2290 device->flags.initialized = false; 2291 acpi_device_clear_enumerated(device); 2292 device->flags.power_manageable = 0; 2293 return 0; 2294 } 2295 if (device->handler) 2296 goto ok; 2297 2298 acpi_ec_register_opregions(device); 2299 2300 if (!device->flags.initialized) { 2301 device->flags.power_manageable = 2302 device->power.states[ACPI_STATE_D0].flags.valid; 2303 if (acpi_bus_init_power(device)) 2304 device->flags.power_manageable = 0; 2305 2306 device->flags.initialized = true; 2307 } else if (device->flags.visited) { 2308 goto ok; 2309 } 2310 2311 ret = acpi_scan_attach_handler(device); 2312 if (ret < 0) 2313 return 0; 2314 2315 device->flags.match_driver = true; 2316 if (ret > 0 && !device->flags.enumeration_by_parent) { 2317 acpi_device_set_enumerated(device); 2318 goto ok; 2319 } 2320 2321 ret = device_attach(&device->dev); 2322 if (ret < 0) 2323 return 0; 2324 2325 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2326 acpi_default_enumeration(device); 2327 else 2328 acpi_device_set_enumerated(device); 2329 2330 ok: 2331 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2332 2333 if (!skip && device->handler && device->handler->hotplug.notify_online) 2334 device->handler->hotplug.notify_online(device); 2335 2336 return 0; 2337 } 2338 2339 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2340 { 2341 struct acpi_device **adev_p = data; 2342 struct acpi_device *adev = *adev_p; 2343 2344 /* 2345 * If we're passed a 'previous' consumer device then we need to skip 2346 * any consumers until we meet the previous one, and then NULL @data 2347 * so the next one can be returned. 2348 */ 2349 if (adev) { 2350 if (dep->consumer == adev->handle) 2351 *adev_p = NULL; 2352 2353 return 0; 2354 } 2355 2356 adev = acpi_get_acpi_dev(dep->consumer); 2357 if (adev) { 2358 *(struct acpi_device **)data = adev; 2359 return 1; 2360 } 2361 /* Continue parsing if the device object is not present. */ 2362 return 0; 2363 } 2364 2365 struct acpi_scan_clear_dep_work { 2366 struct work_struct work; 2367 struct acpi_device *adev; 2368 }; 2369 2370 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2371 { 2372 struct acpi_scan_clear_dep_work *cdw; 2373 2374 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2375 2376 acpi_scan_lock_acquire(); 2377 acpi_bus_attach(cdw->adev, (void *)true); 2378 acpi_scan_lock_release(); 2379 2380 acpi_dev_put(cdw->adev); 2381 kfree(cdw); 2382 } 2383 2384 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2385 { 2386 struct acpi_scan_clear_dep_work *cdw; 2387 2388 if (adev->dep_unmet) 2389 return false; 2390 2391 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2392 if (!cdw) 2393 return false; 2394 2395 cdw->adev = adev; 2396 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2397 /* 2398 * Since the work function may block on the lock until the entire 2399 * initial enumeration of devices is complete, put it into the unbound 2400 * workqueue. 2401 */ 2402 queue_work(system_unbound_wq, &cdw->work); 2403 2404 return true; 2405 } 2406 2407 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2408 { 2409 list_del(&dep->node); 2410 kfree(dep); 2411 } 2412 2413 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2414 { 2415 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2416 2417 if (adev) { 2418 adev->dep_unmet--; 2419 if (!acpi_scan_clear_dep_queue(adev)) 2420 acpi_dev_put(adev); 2421 } 2422 2423 if (dep->free_when_met) 2424 acpi_scan_delete_dep_data(dep); 2425 else 2426 dep->met = true; 2427 2428 return 0; 2429 } 2430 2431 /** 2432 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2433 * @handle: The ACPI handle of the supplier device 2434 * @callback: Pointer to the callback function to apply 2435 * @data: Pointer to some data to pass to the callback 2436 * 2437 * The return value of the callback determines this function's behaviour. If 0 2438 * is returned we continue to iterate over acpi_dep_list. If a positive value 2439 * is returned then the loop is broken but this function returns 0. If a 2440 * negative value is returned by the callback then the loop is broken and that 2441 * value is returned as the final error. 2442 */ 2443 static int acpi_walk_dep_device_list(acpi_handle handle, 2444 int (*callback)(struct acpi_dep_data *, void *), 2445 void *data) 2446 { 2447 struct acpi_dep_data *dep, *tmp; 2448 int ret = 0; 2449 2450 mutex_lock(&acpi_dep_list_lock); 2451 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2452 if (dep->supplier == handle) { 2453 ret = callback(dep, data); 2454 if (ret) 2455 break; 2456 } 2457 } 2458 mutex_unlock(&acpi_dep_list_lock); 2459 2460 return ret > 0 ? 0 : ret; 2461 } 2462 2463 /** 2464 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2465 * @supplier: Pointer to the supplier &struct acpi_device 2466 * 2467 * Clear dependencies on the given device. 2468 */ 2469 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2470 { 2471 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2472 } 2473 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2474 2475 /** 2476 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2477 * @device: Pointer to the &struct acpi_device to check 2478 * 2479 * Check if the device is present and has no unmet dependencies. 2480 * 2481 * Return true if the device is ready for enumeratino. Otherwise, return false. 2482 */ 2483 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2484 { 2485 if (device->flags.honor_deps && device->dep_unmet) 2486 return false; 2487 2488 return acpi_device_is_present(device); 2489 } 2490 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2491 2492 /** 2493 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2494 * @supplier: Pointer to the dependee device 2495 * @start: Pointer to the current dependent device 2496 * 2497 * Returns the next &struct acpi_device which declares itself dependent on 2498 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2499 * 2500 * If the returned adev is not passed as @start to this function, the caller is 2501 * responsible for putting the reference to adev when it is no longer needed. 2502 */ 2503 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2504 struct acpi_device *start) 2505 { 2506 struct acpi_device *adev = start; 2507 2508 acpi_walk_dep_device_list(supplier->handle, 2509 acpi_dev_get_next_consumer_dev_cb, &adev); 2510 2511 acpi_dev_put(start); 2512 2513 if (adev == start) 2514 return NULL; 2515 2516 return adev; 2517 } 2518 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2519 2520 static void acpi_scan_postponed_branch(acpi_handle handle) 2521 { 2522 struct acpi_device *adev = NULL; 2523 2524 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2525 return; 2526 2527 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2528 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2529 2530 /* 2531 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that 2532 * have been added above. 2533 */ 2534 acpi_mipi_init_crs_csi2_swnodes(); 2535 2536 acpi_bus_attach(adev, NULL); 2537 } 2538 2539 static void acpi_scan_postponed(void) 2540 { 2541 struct acpi_dep_data *dep, *tmp; 2542 2543 mutex_lock(&acpi_dep_list_lock); 2544 2545 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2546 acpi_handle handle = dep->consumer; 2547 2548 /* 2549 * In case there are multiple acpi_dep_list entries with the 2550 * same consumer, skip the current entry if the consumer device 2551 * object corresponding to it is present already. 2552 */ 2553 if (!acpi_fetch_acpi_dev(handle)) { 2554 /* 2555 * Even though the lock is released here, tmp is 2556 * guaranteed to be valid, because none of the list 2557 * entries following dep is marked as "free when met" 2558 * and so they cannot be deleted. 2559 */ 2560 mutex_unlock(&acpi_dep_list_lock); 2561 2562 acpi_scan_postponed_branch(handle); 2563 2564 mutex_lock(&acpi_dep_list_lock); 2565 } 2566 2567 if (dep->met) 2568 acpi_scan_delete_dep_data(dep); 2569 else 2570 dep->free_when_met = true; 2571 } 2572 2573 mutex_unlock(&acpi_dep_list_lock); 2574 } 2575 2576 /** 2577 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2578 * @handle: Root of the namespace scope to scan. 2579 * 2580 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2581 * found devices. 2582 * 2583 * If no devices were found, -ENODEV is returned, but it does not mean that 2584 * there has been a real error. There just have been no suitable ACPI objects 2585 * in the table trunk from which the kernel could create a device and add an 2586 * appropriate driver. 2587 * 2588 * Must be called under acpi_scan_lock. 2589 */ 2590 int acpi_bus_scan(acpi_handle handle) 2591 { 2592 struct acpi_device *device = NULL; 2593 2594 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2595 2596 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2597 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2598 acpi_bus_check_add_1, NULL, NULL, 2599 (void **)&device); 2600 2601 if (!device) 2602 return -ENODEV; 2603 2604 /* 2605 * Set up ACPI _CRS CSI-2 software nodes using information extracted 2606 * from the _CRS CSI-2 resource descriptors during the ACPI namespace 2607 * walk above and MIPI DisCo for Imaging device properties. 2608 */ 2609 acpi_mipi_scan_crs_csi2(); 2610 acpi_mipi_init_crs_csi2_swnodes(); 2611 2612 acpi_bus_attach(device, (void *)true); 2613 2614 /* Pass 2: Enumerate all of the remaining devices. */ 2615 2616 acpi_scan_postponed(); 2617 2618 acpi_mipi_crs_csi2_cleanup(); 2619 2620 return 0; 2621 } 2622 EXPORT_SYMBOL(acpi_bus_scan); 2623 2624 /** 2625 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2626 * @adev: Root of the ACPI namespace scope to walk. 2627 * 2628 * Must be called under acpi_scan_lock. 2629 */ 2630 void acpi_bus_trim(struct acpi_device *adev) 2631 { 2632 uintptr_t flags = 0; 2633 2634 acpi_scan_check_and_detach(adev, (void *)flags); 2635 } 2636 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2637 2638 int acpi_bus_register_early_device(int type) 2639 { 2640 struct acpi_device *device = NULL; 2641 int result; 2642 2643 result = acpi_add_single_object(&device, NULL, type, false); 2644 if (result) 2645 return result; 2646 2647 device->flags.match_driver = true; 2648 return device_attach(&device->dev); 2649 } 2650 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2651 2652 static void acpi_bus_scan_fixed(void) 2653 { 2654 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2655 struct acpi_device *adev = NULL; 2656 2657 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2658 false); 2659 if (adev) { 2660 adev->flags.match_driver = true; 2661 if (device_attach(&adev->dev) >= 0) 2662 device_init_wakeup(&adev->dev, true); 2663 else 2664 dev_dbg(&adev->dev, "No driver\n"); 2665 } 2666 } 2667 2668 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2669 struct acpi_device *adev = NULL; 2670 2671 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2672 false); 2673 if (adev) { 2674 adev->flags.match_driver = true; 2675 if (device_attach(&adev->dev) < 0) 2676 dev_dbg(&adev->dev, "No driver\n"); 2677 } 2678 } 2679 } 2680 2681 static void __init acpi_get_spcr_uart_addr(void) 2682 { 2683 acpi_status status; 2684 struct acpi_table_spcr *spcr_ptr; 2685 2686 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2687 (struct acpi_table_header **)&spcr_ptr); 2688 if (ACPI_FAILURE(status)) { 2689 pr_warn("STAO table present, but SPCR is missing\n"); 2690 return; 2691 } 2692 2693 spcr_uart_addr = spcr_ptr->serial_port.address; 2694 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2695 } 2696 2697 static bool acpi_scan_initialized; 2698 2699 void __init acpi_scan_init(void) 2700 { 2701 acpi_status status; 2702 struct acpi_table_stao *stao_ptr; 2703 2704 acpi_pci_root_init(); 2705 acpi_pci_link_init(); 2706 acpi_processor_init(); 2707 acpi_platform_init(); 2708 acpi_lpss_init(); 2709 acpi_apd_init(); 2710 acpi_cmos_rtc_init(); 2711 acpi_container_init(); 2712 acpi_memory_hotplug_init(); 2713 acpi_watchdog_init(); 2714 acpi_pnp_init(); 2715 acpi_int340x_thermal_init(); 2716 acpi_init_lpit(); 2717 2718 acpi_scan_add_handler(&generic_device_handler); 2719 2720 /* 2721 * If there is STAO table, check whether it needs to ignore the UART 2722 * device in SPCR table. 2723 */ 2724 status = acpi_get_table(ACPI_SIG_STAO, 0, 2725 (struct acpi_table_header **)&stao_ptr); 2726 if (ACPI_SUCCESS(status)) { 2727 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2728 pr_info("STAO Name List not yet supported.\n"); 2729 2730 if (stao_ptr->ignore_uart) 2731 acpi_get_spcr_uart_addr(); 2732 2733 acpi_put_table((struct acpi_table_header *)stao_ptr); 2734 } 2735 2736 acpi_gpe_apply_masked_gpes(); 2737 acpi_update_all_gpes(); 2738 2739 /* 2740 * Although we call __add_memory() that is documented to require the 2741 * device_hotplug_lock, it is not necessary here because this is an 2742 * early code when userspace or any other code path cannot trigger 2743 * hotplug/hotunplug operations. 2744 */ 2745 mutex_lock(&acpi_scan_lock); 2746 /* 2747 * Enumerate devices in the ACPI namespace. 2748 */ 2749 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2750 goto unlock; 2751 2752 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2753 if (!acpi_root) 2754 goto unlock; 2755 2756 /* Fixed feature devices do not exist on HW-reduced platform */ 2757 if (!acpi_gbl_reduced_hardware) 2758 acpi_bus_scan_fixed(); 2759 2760 acpi_turn_off_unused_power_resources(); 2761 2762 acpi_scan_initialized = true; 2763 2764 unlock: 2765 mutex_unlock(&acpi_scan_lock); 2766 } 2767 2768 static struct acpi_probe_entry *ape; 2769 static int acpi_probe_count; 2770 static DEFINE_MUTEX(acpi_probe_mutex); 2771 2772 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2773 const unsigned long end) 2774 { 2775 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2776 if (!ape->probe_subtbl(header, end)) 2777 acpi_probe_count++; 2778 2779 return 0; 2780 } 2781 2782 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { } 2783 2784 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2785 { 2786 int count = 0; 2787 2788 if (acpi_disabled) 2789 return 0; 2790 2791 mutex_lock(&acpi_probe_mutex); 2792 arch_sort_irqchip_probe(ap_head, nr); 2793 for (ape = ap_head; nr; ape++, nr--) { 2794 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2795 acpi_probe_count = 0; 2796 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2797 count += acpi_probe_count; 2798 } else { 2799 int res; 2800 res = acpi_table_parse(ape->id, ape->probe_table); 2801 if (!res) 2802 count++; 2803 } 2804 } 2805 mutex_unlock(&acpi_probe_mutex); 2806 2807 return count; 2808 } 2809 2810 static void acpi_table_events_fn(struct work_struct *work) 2811 { 2812 acpi_scan_lock_acquire(); 2813 acpi_bus_scan(ACPI_ROOT_OBJECT); 2814 acpi_scan_lock_release(); 2815 2816 kfree(work); 2817 } 2818 2819 void acpi_scan_table_notify(void) 2820 { 2821 struct work_struct *work; 2822 2823 if (!acpi_scan_initialized) 2824 return; 2825 2826 work = kmalloc(sizeof(*work), GFP_KERNEL); 2827 if (!work) 2828 return; 2829 2830 INIT_WORK(work, acpi_table_events_fn); 2831 schedule_work(work); 2832 } 2833 2834 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2835 { 2836 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2837 } 2838 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2839 2840 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2841 { 2842 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2843 } 2844 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2845