xref: /linux/drivers/acpi/scan.c (revision f728c17fc97aea7a33151d9ba64106291c62bb02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				int (*notify)(struct acpi_device *, u32),
77 				void (*uevent)(struct acpi_device *, u32))
78 {
79 	acpi_lock_hp_context();
80 	hp->notify = notify;
81 	hp->uevent = uevent;
82 	acpi_set_hp_context(adev, hp);
83 	acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86 
87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 	if (!handler)
90 		return -EINVAL;
91 
92 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 	return 0;
94 }
95 
96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 				       const char *hotplug_profile_name)
98 {
99 	int error;
100 
101 	error = acpi_scan_add_handler(handler);
102 	if (error)
103 		return error;
104 
105 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 	return 0;
107 }
108 
109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 	struct acpi_device_physical_node *pn;
112 	bool offline = true;
113 	char *envp[] = { "EVENT=offline", NULL };
114 
115 	/*
116 	 * acpi_container_offline() calls this for all of the container's
117 	 * children under the container's physical_node_lock lock.
118 	 */
119 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120 
121 	list_for_each_entry(pn, &adev->physical_node_list, node)
122 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 			if (uevent)
124 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125 
126 			offline = false;
127 			break;
128 		}
129 
130 	mutex_unlock(&adev->physical_node_lock);
131 	return offline;
132 }
133 
134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 				    void **ret_p)
136 {
137 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 	struct acpi_device_physical_node *pn;
139 	bool second_pass = (bool)data;
140 	acpi_status status = AE_OK;
141 
142 	if (!device)
143 		return AE_OK;
144 
145 	if (device->handler && !device->handler->hotplug.enabled) {
146 		*ret_p = &device->dev;
147 		return AE_SUPPORT;
148 	}
149 
150 	mutex_lock(&device->physical_node_lock);
151 
152 	list_for_each_entry(pn, &device->physical_node_list, node) {
153 		int ret;
154 
155 		if (second_pass) {
156 			/* Skip devices offlined by the first pass. */
157 			if (pn->put_online)
158 				continue;
159 		} else {
160 			pn->put_online = false;
161 		}
162 		ret = device_offline(pn->dev);
163 		if (ret >= 0) {
164 			pn->put_online = !ret;
165 		} else {
166 			*ret_p = pn->dev;
167 			if (second_pass) {
168 				status = AE_ERROR;
169 				break;
170 			}
171 		}
172 	}
173 
174 	mutex_unlock(&device->physical_node_lock);
175 
176 	return status;
177 }
178 
179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 				   void **ret_p)
181 {
182 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 	struct acpi_device_physical_node *pn;
184 
185 	if (!device)
186 		return AE_OK;
187 
188 	mutex_lock(&device->physical_node_lock);
189 
190 	list_for_each_entry(pn, &device->physical_node_list, node)
191 		if (pn->put_online) {
192 			device_online(pn->dev);
193 			pn->put_online = false;
194 		}
195 
196 	mutex_unlock(&device->physical_node_lock);
197 
198 	return AE_OK;
199 }
200 
201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 	acpi_handle handle = device->handle;
204 	struct device *errdev = NULL;
205 	acpi_status status;
206 
207 	/*
208 	 * Carry out two passes here and ignore errors in the first pass,
209 	 * because if the devices in question are memory blocks and
210 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 	 * that the other blocks depend on, but it is not known in advance which
212 	 * block holds them.
213 	 *
214 	 * If the first pass is successful, the second one isn't needed, though.
215 	 */
216 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 				     NULL, acpi_bus_offline, (void *)false,
218 				     (void **)&errdev);
219 	if (status == AE_SUPPORT) {
220 		dev_warn(errdev, "Offline disabled.\n");
221 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 				    acpi_bus_online, NULL, NULL, NULL);
223 		return -EPERM;
224 	}
225 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 	if (errdev) {
227 		errdev = NULL;
228 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 				    NULL, acpi_bus_offline, (void *)true,
230 				    (void **)&errdev);
231 		if (!errdev)
232 			acpi_bus_offline(handle, 0, (void *)true,
233 					 (void **)&errdev);
234 
235 		if (errdev) {
236 			dev_warn(errdev, "Offline failed.\n");
237 			acpi_bus_online(handle, 0, NULL, NULL);
238 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 					    ACPI_UINT32_MAX, acpi_bus_online,
240 					    NULL, NULL, NULL);
241 			return -EBUSY;
242 		}
243 	}
244 	return 0;
245 }
246 
247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 	acpi_handle handle = device->handle;
250 	unsigned long long sta;
251 	acpi_status status;
252 
253 	if (device->handler && device->handler->hotplug.demand_offline) {
254 		if (!acpi_scan_is_offline(device, true))
255 			return -EBUSY;
256 	} else {
257 		int error = acpi_scan_try_to_offline(device);
258 		if (error)
259 			return error;
260 	}
261 
262 	acpi_handle_debug(handle, "Ejecting\n");
263 
264 	acpi_bus_trim(device);
265 
266 	acpi_evaluate_lck(handle, 0);
267 	/*
268 	 * TBD: _EJD support.
269 	 */
270 	status = acpi_evaluate_ej0(handle);
271 	if (status == AE_NOT_FOUND)
272 		return -ENODEV;
273 	else if (ACPI_FAILURE(status))
274 		return -EIO;
275 
276 	/*
277 	 * Verify if eject was indeed successful.  If not, log an error
278 	 * message.  No need to call _OST since _EJ0 call was made OK.
279 	 */
280 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 	if (ACPI_FAILURE(status)) {
282 		acpi_handle_warn(handle,
283 			"Status check after eject failed (0x%x)\n", status);
284 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 		acpi_handle_warn(handle,
286 			"Eject incomplete - status 0x%llx\n", sta);
287 	}
288 
289 	return 0;
290 }
291 
292 static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
293 {
294 	if (!acpi_device_enumerated(adev)) {
295 		dev_warn(&adev->dev, "Still not enumerated\n");
296 		return -EALREADY;
297 	}
298 	acpi_bus_trim(adev);
299 	return 0;
300 }
301 
302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 	int error;
305 
306 	acpi_bus_get_status(adev);
307 	if (acpi_device_is_present(adev)) {
308 		/*
309 		 * This function is only called for device objects for which
310 		 * matching scan handlers exist.  The only situation in which
311 		 * the scan handler is not attached to this device object yet
312 		 * is when the device has just appeared (either it wasn't
313 		 * present at all before or it was removed and then added
314 		 * again).
315 		 */
316 		if (adev->handler) {
317 			dev_warn(&adev->dev, "Already enumerated\n");
318 			return -EALREADY;
319 		}
320 		error = acpi_bus_scan(adev->handle);
321 		if (error) {
322 			dev_warn(&adev->dev, "Namespace scan failure\n");
323 			return error;
324 		}
325 		if (!adev->handler) {
326 			dev_warn(&adev->dev, "Enumeration failure\n");
327 			error = -ENODEV;
328 		}
329 	} else {
330 		error = acpi_scan_device_not_enumerated(adev);
331 	}
332 	return error;
333 }
334 
335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336 {
337 	struct acpi_scan_handler *handler = adev->handler;
338 	int error;
339 
340 	acpi_bus_get_status(adev);
341 	if (!acpi_device_is_present(adev)) {
342 		acpi_scan_device_not_enumerated(adev);
343 		return 0;
344 	}
345 	if (handler && handler->hotplug.scan_dependent)
346 		return handler->hotplug.scan_dependent(adev);
347 
348 	error = acpi_bus_scan(adev->handle);
349 	if (error) {
350 		dev_warn(&adev->dev, "Namespace scan failure\n");
351 		return error;
352 	}
353 	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354 }
355 
356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357 {
358 	switch (type) {
359 	case ACPI_NOTIFY_BUS_CHECK:
360 		return acpi_scan_bus_check(adev, NULL);
361 	case ACPI_NOTIFY_DEVICE_CHECK:
362 		return acpi_scan_device_check(adev);
363 	case ACPI_NOTIFY_EJECT_REQUEST:
364 	case ACPI_OST_EC_OSPM_EJECT:
365 		if (adev->handler && !adev->handler->hotplug.enabled) {
366 			dev_info(&adev->dev, "Eject disabled\n");
367 			return -EPERM;
368 		}
369 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 		return acpi_scan_hot_remove(adev);
372 	}
373 	return -EINVAL;
374 }
375 
376 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377 {
378 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 	int error = -ENODEV;
380 
381 	lock_device_hotplug();
382 	mutex_lock(&acpi_scan_lock);
383 
384 	/*
385 	 * The device object's ACPI handle cannot become invalid as long as we
386 	 * are holding acpi_scan_lock, but it might have become invalid before
387 	 * that lock was acquired.
388 	 */
389 	if (adev->handle == INVALID_ACPI_HANDLE)
390 		goto err_out;
391 
392 	if (adev->flags.is_dock_station) {
393 		error = dock_notify(adev, src);
394 	} else if (adev->flags.hotplug_notify) {
395 		error = acpi_generic_hotplug_event(adev, src);
396 	} else {
397 		int (*notify)(struct acpi_device *, u32);
398 
399 		acpi_lock_hp_context();
400 		notify = adev->hp ? adev->hp->notify : NULL;
401 		acpi_unlock_hp_context();
402 		/*
403 		 * There may be additional notify handlers for device objects
404 		 * without the .event() callback, so ignore them here.
405 		 */
406 		if (notify)
407 			error = notify(adev, src);
408 		else
409 			goto out;
410 	}
411 	switch (error) {
412 	case 0:
413 		ost_code = ACPI_OST_SC_SUCCESS;
414 		break;
415 	case -EPERM:
416 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 		break;
418 	case -EBUSY:
419 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 		break;
421 	default:
422 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 		break;
424 	}
425 
426  err_out:
427 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428 
429  out:
430 	acpi_put_acpi_dev(adev);
431 	mutex_unlock(&acpi_scan_lock);
432 	unlock_device_hotplug();
433 }
434 
435 static void acpi_free_power_resources_lists(struct acpi_device *device)
436 {
437 	int i;
438 
439 	if (device->wakeup.flags.valid)
440 		acpi_power_resources_list_free(&device->wakeup.resources);
441 
442 	if (!device->power.flags.power_resources)
443 		return;
444 
445 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 		struct acpi_device_power_state *ps = &device->power.states[i];
447 		acpi_power_resources_list_free(&ps->resources);
448 	}
449 }
450 
451 static void acpi_device_release(struct device *dev)
452 {
453 	struct acpi_device *acpi_dev = to_acpi_device(dev);
454 
455 	acpi_free_properties(acpi_dev);
456 	acpi_free_pnp_ids(&acpi_dev->pnp);
457 	acpi_free_power_resources_lists(acpi_dev);
458 	kfree(acpi_dev);
459 }
460 
461 static void acpi_device_del(struct acpi_device *device)
462 {
463 	struct acpi_device_bus_id *acpi_device_bus_id;
464 
465 	mutex_lock(&acpi_device_lock);
466 
467 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 		if (!strcmp(acpi_device_bus_id->bus_id,
469 			    acpi_device_hid(device))) {
470 			ida_free(&acpi_device_bus_id->instance_ida,
471 				 device->pnp.instance_no);
472 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 				list_del(&acpi_device_bus_id->node);
474 				kfree_const(acpi_device_bus_id->bus_id);
475 				kfree(acpi_device_bus_id);
476 			}
477 			break;
478 		}
479 
480 	list_del(&device->wakeup_list);
481 
482 	mutex_unlock(&acpi_device_lock);
483 
484 	acpi_power_add_remove_device(device, false);
485 	acpi_device_remove_files(device);
486 	if (device->remove)
487 		device->remove(device);
488 
489 	device_del(&device->dev);
490 }
491 
492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493 
494 static LIST_HEAD(acpi_device_del_list);
495 static DEFINE_MUTEX(acpi_device_del_lock);
496 
497 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498 {
499 	for (;;) {
500 		struct acpi_device *adev;
501 
502 		mutex_lock(&acpi_device_del_lock);
503 
504 		if (list_empty(&acpi_device_del_list)) {
505 			mutex_unlock(&acpi_device_del_lock);
506 			break;
507 		}
508 		adev = list_first_entry(&acpi_device_del_list,
509 					struct acpi_device, del_list);
510 		list_del(&adev->del_list);
511 
512 		mutex_unlock(&acpi_device_del_lock);
513 
514 		blocking_notifier_call_chain(&acpi_reconfig_chain,
515 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
516 
517 		acpi_device_del(adev);
518 		/*
519 		 * Drop references to all power resources that might have been
520 		 * used by the device.
521 		 */
522 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 		acpi_dev_put(adev);
524 	}
525 }
526 
527 /**
528  * acpi_scan_drop_device - Drop an ACPI device object.
529  * @handle: Handle of an ACPI namespace node, not used.
530  * @context: Address of the ACPI device object to drop.
531  *
532  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533  * namespace node the device object pointed to by @context is attached to.
534  *
535  * The unregistration is carried out asynchronously to avoid running
536  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537  * ensure the correct ordering (the device objects must be unregistered in the
538  * same order in which the corresponding namespace nodes are deleted).
539  */
540 static void acpi_scan_drop_device(acpi_handle handle, void *context)
541 {
542 	static DECLARE_WORK(work, acpi_device_del_work_fn);
543 	struct acpi_device *adev = context;
544 
545 	mutex_lock(&acpi_device_del_lock);
546 
547 	/*
548 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 	 * won't run after any hotplug work items submitted subsequently.  That
550 	 * prevents attempts to register device objects identical to those being
551 	 * deleted from happening concurrently (such attempts result from
552 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
553 	 * run after all of the work items submitted previously, which helps
554 	 * those work items to ensure that they are not accessing stale device
555 	 * objects.
556 	 */
557 	if (list_empty(&acpi_device_del_list))
558 		acpi_queue_hotplug_work(&work);
559 
560 	list_add_tail(&adev->del_list, &acpi_device_del_list);
561 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
562 	adev->handle = INVALID_ACPI_HANDLE;
563 
564 	mutex_unlock(&acpi_device_del_lock);
565 }
566 
567 static struct acpi_device *handle_to_device(acpi_handle handle,
568 					    void (*callback)(void *))
569 {
570 	struct acpi_device *adev = NULL;
571 	acpi_status status;
572 
573 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 				    (void **)&adev, callback);
575 	if (ACPI_FAILURE(status) || !adev) {
576 		acpi_handle_debug(handle, "No context!\n");
577 		return NULL;
578 	}
579 	return adev;
580 }
581 
582 /**
583  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584  * @handle: ACPI handle associated with the requested ACPI device object.
585  *
586  * Return a pointer to the ACPI device object associated with @handle, if
587  * present, or NULL otherwise.
588  */
589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590 {
591 	return handle_to_device(handle, NULL);
592 }
593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594 
595 static void get_acpi_device(void *dev)
596 {
597 	acpi_dev_get(dev);
598 }
599 
600 /**
601  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602  * @handle: ACPI handle associated with the requested ACPI device object.
603  *
604  * Return a pointer to the ACPI device object associated with @handle and bump
605  * up that object's reference counter (under the ACPI Namespace lock), if
606  * present, or return NULL otherwise.
607  *
608  * The ACPI device object reference acquired by this function needs to be
609  * dropped via acpi_dev_put().
610  */
611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612 {
613 	return handle_to_device(handle, get_acpi_device);
614 }
615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616 
617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618 {
619 	struct acpi_device_bus_id *acpi_device_bus_id;
620 
621 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 			return acpi_device_bus_id;
625 	}
626 	return NULL;
627 }
628 
629 static int acpi_device_set_name(struct acpi_device *device,
630 				struct acpi_device_bus_id *acpi_device_bus_id)
631 {
632 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 	int result;
634 
635 	result = ida_alloc(instance_ida, GFP_KERNEL);
636 	if (result < 0)
637 		return result;
638 
639 	device->pnp.instance_no = result;
640 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 	return 0;
642 }
643 
644 int acpi_tie_acpi_dev(struct acpi_device *adev)
645 {
646 	acpi_handle handle = adev->handle;
647 	acpi_status status;
648 
649 	if (!handle)
650 		return 0;
651 
652 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 	if (ACPI_FAILURE(status)) {
654 		acpi_handle_err(handle, "Unable to attach device data\n");
655 		return -ENODEV;
656 	}
657 
658 	return 0;
659 }
660 
661 static void acpi_store_pld_crc(struct acpi_device *adev)
662 {
663 	struct acpi_pld_info *pld;
664 	acpi_status status;
665 
666 	status = acpi_get_physical_device_location(adev->handle, &pld);
667 	if (ACPI_FAILURE(status))
668 		return;
669 
670 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 	ACPI_FREE(pld);
672 }
673 
674 int acpi_device_add(struct acpi_device *device)
675 {
676 	struct acpi_device_bus_id *acpi_device_bus_id;
677 	int result;
678 
679 	/*
680 	 * Linkage
681 	 * -------
682 	 * Link this device to its parent and siblings.
683 	 */
684 	INIT_LIST_HEAD(&device->wakeup_list);
685 	INIT_LIST_HEAD(&device->physical_node_list);
686 	INIT_LIST_HEAD(&device->del_list);
687 	mutex_init(&device->physical_node_lock);
688 
689 	mutex_lock(&acpi_device_lock);
690 
691 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 	if (acpi_device_bus_id) {
693 		result = acpi_device_set_name(device, acpi_device_bus_id);
694 		if (result)
695 			goto err_unlock;
696 	} else {
697 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 					     GFP_KERNEL);
699 		if (!acpi_device_bus_id) {
700 			result = -ENOMEM;
701 			goto err_unlock;
702 		}
703 		acpi_device_bus_id->bus_id =
704 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 		if (!acpi_device_bus_id->bus_id) {
706 			kfree(acpi_device_bus_id);
707 			result = -ENOMEM;
708 			goto err_unlock;
709 		}
710 
711 		ida_init(&acpi_device_bus_id->instance_ida);
712 
713 		result = acpi_device_set_name(device, acpi_device_bus_id);
714 		if (result) {
715 			kfree_const(acpi_device_bus_id->bus_id);
716 			kfree(acpi_device_bus_id);
717 			goto err_unlock;
718 		}
719 
720 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 	}
722 
723 	if (device->wakeup.flags.valid)
724 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725 
726 	acpi_store_pld_crc(device);
727 
728 	mutex_unlock(&acpi_device_lock);
729 
730 	result = device_add(&device->dev);
731 	if (result) {
732 		dev_err(&device->dev, "Error registering device\n");
733 		goto err;
734 	}
735 
736 	result = acpi_device_setup_files(device);
737 	if (result)
738 		pr_err("Error creating sysfs interface for device %s\n",
739 		       dev_name(&device->dev));
740 
741 	return 0;
742 
743 err:
744 	mutex_lock(&acpi_device_lock);
745 
746 	list_del(&device->wakeup_list);
747 
748 err_unlock:
749 	mutex_unlock(&acpi_device_lock);
750 
751 	acpi_detach_data(device->handle, acpi_scan_drop_device);
752 
753 	return result;
754 }
755 
756 /* --------------------------------------------------------------------------
757                                  Device Enumeration
758    -------------------------------------------------------------------------- */
759 static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 				  const char * const ids[])
761 {
762 	struct acpi_pnp_device_id_list *cid_list = NULL;
763 	int i, index;
764 
765 	if (!(info->valid & ACPI_VALID_HID))
766 		return false;
767 
768 	index = match_string(ids, -1, info->hardware_id.string);
769 	if (index >= 0)
770 		return true;
771 
772 	if (info->valid & ACPI_VALID_CID)
773 		cid_list = &info->compatible_id_list;
774 
775 	if (!cid_list)
776 		return false;
777 
778 	for (i = 0; i < cid_list->count; i++) {
779 		index = match_string(ids, -1, cid_list->ids[i].string);
780 		if (index >= 0)
781 			return true;
782 	}
783 
784 	return false;
785 }
786 
787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788 static const char * const acpi_ignore_dep_ids[] = {
789 	"PNP0D80", /* Windows-compatible System Power Management Controller */
790 	"INT33BD", /* Intel Baytrail Mailbox Device */
791 	"LATT2021", /* Lattice FW Update Client Driver */
792 	NULL
793 };
794 
795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796 static const char * const acpi_honor_dep_ids[] = {
797 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
798 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 	NULL
802 };
803 
804 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805 {
806 	struct acpi_device *adev;
807 
808 	/*
809 	 * Fixed hardware devices do not appear in the namespace and do not
810 	 * have handles, but we fabricate acpi_devices for them, so we have
811 	 * to deal with them specially.
812 	 */
813 	if (!handle)
814 		return acpi_root;
815 
816 	do {
817 		acpi_status status;
818 
819 		status = acpi_get_parent(handle, &handle);
820 		if (ACPI_FAILURE(status)) {
821 			if (status != AE_NULL_ENTRY)
822 				return acpi_root;
823 
824 			return NULL;
825 		}
826 		adev = acpi_fetch_acpi_dev(handle);
827 	} while (!adev);
828 	return adev;
829 }
830 
831 acpi_status
832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834 	acpi_status status;
835 	acpi_handle tmp;
836 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 	union acpi_object *obj;
838 
839 	status = acpi_get_handle(handle, "_EJD", &tmp);
840 	if (ACPI_FAILURE(status))
841 		return status;
842 
843 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 	if (ACPI_SUCCESS(status)) {
845 		obj = buffer.pointer;
846 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 					 ejd);
848 		kfree(buffer.pointer);
849 	}
850 	return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853 
854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856 	acpi_handle handle = dev->handle;
857 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 	union acpi_object *package = NULL;
860 	union acpi_object *element = NULL;
861 	acpi_status status;
862 	int err = -ENODATA;
863 
864 	INIT_LIST_HEAD(&wakeup->resources);
865 
866 	/* _PRW */
867 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 	if (ACPI_FAILURE(status)) {
869 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 				 acpi_format_exception(status));
871 		return err;
872 	}
873 
874 	package = (union acpi_object *)buffer.pointer;
875 
876 	if (!package || package->package.count < 2)
877 		goto out;
878 
879 	element = &(package->package.elements[0]);
880 	if (!element)
881 		goto out;
882 
883 	if (element->type == ACPI_TYPE_PACKAGE) {
884 		if ((element->package.count < 2) ||
885 		    (element->package.elements[0].type !=
886 		     ACPI_TYPE_LOCAL_REFERENCE)
887 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 			goto out;
889 
890 		wakeup->gpe_device =
891 		    element->package.elements[0].reference.handle;
892 		wakeup->gpe_number =
893 		    (u32) element->package.elements[1].integer.value;
894 	} else if (element->type == ACPI_TYPE_INTEGER) {
895 		wakeup->gpe_device = NULL;
896 		wakeup->gpe_number = element->integer.value;
897 	} else {
898 		goto out;
899 	}
900 
901 	element = &(package->package.elements[1]);
902 	if (element->type != ACPI_TYPE_INTEGER)
903 		goto out;
904 
905 	wakeup->sleep_state = element->integer.value;
906 
907 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 	if (err)
909 		goto out;
910 
911 	if (!list_empty(&wakeup->resources)) {
912 		int sleep_state;
913 
914 		err = acpi_power_wakeup_list_init(&wakeup->resources,
915 						  &sleep_state);
916 		if (err) {
917 			acpi_handle_warn(handle, "Retrieving current states "
918 					 "of wakeup power resources failed\n");
919 			acpi_power_resources_list_free(&wakeup->resources);
920 			goto out;
921 		}
922 		if (sleep_state < wakeup->sleep_state) {
923 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 					 "(S%d) by S%d from power resources\n",
925 					 (int)wakeup->sleep_state, sleep_state);
926 			wakeup->sleep_state = sleep_state;
927 		}
928 	}
929 
930  out:
931 	kfree(buffer.pointer);
932 	return err;
933 }
934 
935 /* Do not use a button for S5 wakeup */
936 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
937 
938 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939 {
940 	static const struct acpi_device_id button_device_ids[] = {
941 		{"PNP0C0C", 0},				/* Power button */
942 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
943 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
944 		{"", 0},
945 	};
946 	struct acpi_device_wakeup *wakeup = &device->wakeup;
947 	const struct acpi_device_id *match;
948 	acpi_status status;
949 
950 	wakeup->flags.notifier_present = 0;
951 
952 	/* Power button, Lid switch always enable wakeup */
953 	match = acpi_match_acpi_device(button_device_ids, device);
954 	if (match) {
955 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 		    wakeup->sleep_state == ACPI_STATE_S5)
957 			wakeup->sleep_state = ACPI_STATE_S4;
958 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 		device_set_wakeup_capable(&device->dev, true);
960 		return true;
961 	}
962 
963 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 					 wakeup->gpe_number);
965 	return ACPI_SUCCESS(status);
966 }
967 
968 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969 {
970 	int err;
971 
972 	/* Presence of _PRW indicates wake capable */
973 	if (!acpi_has_method(device->handle, "_PRW"))
974 		return;
975 
976 	err = acpi_bus_extract_wakeup_device_power_package(device);
977 	if (err) {
978 		dev_err(&device->dev, "Unable to extract wakeup power resources");
979 		return;
980 	}
981 
982 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 	device->wakeup.prepare_count = 0;
984 	/*
985 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 	 * system for the ACPI device with the _PRW object.
987 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 	 * So it is necessary to call _DSW object first. Only when it is not
989 	 * present will the _PSW object used.
990 	 */
991 	err = acpi_device_sleep_wake(device, 0, 0, 0);
992 	if (err)
993 		pr_debug("error in _DSW or _PSW evaluation\n");
994 }
995 
996 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997 {
998 	struct acpi_device_power_state *ps = &device->power.states[state];
999 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 	acpi_status status;
1002 
1003 	INIT_LIST_HEAD(&ps->resources);
1004 
1005 	/* Evaluate "_PRx" to get referenced power resources */
1006 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 	if (ACPI_SUCCESS(status)) {
1008 		union acpi_object *package = buffer.pointer;
1009 
1010 		if (buffer.length && package
1011 		    && package->type == ACPI_TYPE_PACKAGE
1012 		    && package->package.count)
1013 			acpi_extract_power_resources(package, 0, &ps->resources);
1014 
1015 		ACPI_FREE(buffer.pointer);
1016 	}
1017 
1018 	/* Evaluate "_PSx" to see if we can do explicit sets */
1019 	pathname[2] = 'S';
1020 	if (acpi_has_method(device->handle, pathname))
1021 		ps->flags.explicit_set = 1;
1022 
1023 	/* State is valid if there are means to put the device into it. */
1024 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 		ps->flags.valid = 1;
1026 
1027 	ps->power = -1;		/* Unknown - driver assigned */
1028 	ps->latency = -1;	/* Unknown - driver assigned */
1029 }
1030 
1031 static void acpi_bus_get_power_flags(struct acpi_device *device)
1032 {
1033 	unsigned long long dsc = ACPI_STATE_D0;
1034 	u32 i;
1035 
1036 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 	if (!acpi_has_method(device->handle, "_PS0") &&
1038 	    !acpi_has_method(device->handle, "_PR0"))
1039 		return;
1040 
1041 	device->flags.power_manageable = 1;
1042 
1043 	/*
1044 	 * Power Management Flags
1045 	 */
1046 	if (acpi_has_method(device->handle, "_PSC"))
1047 		device->power.flags.explicit_get = 1;
1048 
1049 	if (acpi_has_method(device->handle, "_IRC"))
1050 		device->power.flags.inrush_current = 1;
1051 
1052 	if (acpi_has_method(device->handle, "_DSW"))
1053 		device->power.flags.dsw_present = 1;
1054 
1055 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 	device->power.state_for_enumeration = dsc;
1057 
1058 	/*
1059 	 * Enumerate supported power management states
1060 	 */
1061 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 		acpi_bus_init_power_state(device, i);
1063 
1064 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065 
1066 	/* Set the defaults for D0 and D3hot (always supported). */
1067 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 	device->power.states[ACPI_STATE_D0].power = 100;
1069 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070 
1071 	/*
1072 	 * Use power resources only if the D0 list of them is populated, because
1073 	 * some platforms may provide _PR3 only to indicate D3cold support and
1074 	 * in those cases the power resources list returned by it may be bogus.
1075 	 */
1076 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 		device->power.flags.power_resources = 1;
1078 		/*
1079 		 * D3cold is supported if the D3hot list of power resources is
1080 		 * not empty.
1081 		 */
1082 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 	}
1085 
1086 	if (acpi_bus_init_power(device))
1087 		device->flags.power_manageable = 0;
1088 }
1089 
1090 static void acpi_bus_get_flags(struct acpi_device *device)
1091 {
1092 	/* Presence of _STA indicates 'dynamic_status' */
1093 	if (acpi_has_method(device->handle, "_STA"))
1094 		device->flags.dynamic_status = 1;
1095 
1096 	/* Presence of _RMV indicates 'removable' */
1097 	if (acpi_has_method(device->handle, "_RMV"))
1098 		device->flags.removable = 1;
1099 
1100 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 	if (acpi_has_method(device->handle, "_EJD") ||
1102 	    acpi_has_method(device->handle, "_EJ0"))
1103 		device->flags.ejectable = 1;
1104 }
1105 
1106 static void acpi_device_get_busid(struct acpi_device *device)
1107 {
1108 	char bus_id[5] = { '?', 0 };
1109 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 	int i = 0;
1111 
1112 	/*
1113 	 * Bus ID
1114 	 * ------
1115 	 * The device's Bus ID is simply the object name.
1116 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 	 */
1118 	if (!acpi_dev_parent(device)) {
1119 		strcpy(device->pnp.bus_id, "ACPI");
1120 		return;
1121 	}
1122 
1123 	switch (device->device_type) {
1124 	case ACPI_BUS_TYPE_POWER_BUTTON:
1125 		strcpy(device->pnp.bus_id, "PWRF");
1126 		break;
1127 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 		strcpy(device->pnp.bus_id, "SLPF");
1129 		break;
1130 	case ACPI_BUS_TYPE_ECDT_EC:
1131 		strcpy(device->pnp.bus_id, "ECDT");
1132 		break;
1133 	default:
1134 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 		/* Clean up trailing underscores (if any) */
1136 		for (i = 3; i > 1; i--) {
1137 			if (bus_id[i] == '_')
1138 				bus_id[i] = '\0';
1139 			else
1140 				break;
1141 		}
1142 		strcpy(device->pnp.bus_id, bus_id);
1143 		break;
1144 	}
1145 }
1146 
1147 /*
1148  * acpi_ata_match - see if an acpi object is an ATA device
1149  *
1150  * If an acpi object has one of the ACPI ATA methods defined,
1151  * then we can safely call it an ATA device.
1152  */
1153 bool acpi_ata_match(acpi_handle handle)
1154 {
1155 	return acpi_has_method(handle, "_GTF") ||
1156 	       acpi_has_method(handle, "_GTM") ||
1157 	       acpi_has_method(handle, "_STM") ||
1158 	       acpi_has_method(handle, "_SDD");
1159 }
1160 
1161 /*
1162  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163  *
1164  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165  * then we can safely call it an ejectable drive bay
1166  */
1167 bool acpi_bay_match(acpi_handle handle)
1168 {
1169 	acpi_handle phandle;
1170 
1171 	if (!acpi_has_method(handle, "_EJ0"))
1172 		return false;
1173 	if (acpi_ata_match(handle))
1174 		return true;
1175 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 		return false;
1177 
1178 	return acpi_ata_match(phandle);
1179 }
1180 
1181 bool acpi_device_is_battery(struct acpi_device *adev)
1182 {
1183 	struct acpi_hardware_id *hwid;
1184 
1185 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 		if (!strcmp("PNP0C0A", hwid->id))
1187 			return true;
1188 
1189 	return false;
1190 }
1191 
1192 static bool is_ejectable_bay(struct acpi_device *adev)
1193 {
1194 	acpi_handle handle = adev->handle;
1195 
1196 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 		return true;
1198 
1199 	return acpi_bay_match(handle);
1200 }
1201 
1202 /*
1203  * acpi_dock_match - see if an acpi object has a _DCK method
1204  */
1205 bool acpi_dock_match(acpi_handle handle)
1206 {
1207 	return acpi_has_method(handle, "_DCK");
1208 }
1209 
1210 static acpi_status
1211 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 			  void **return_value)
1213 {
1214 	long *cap = context;
1215 
1216 	if (acpi_has_method(handle, "_BCM") &&
1217 	    acpi_has_method(handle, "_BCL")) {
1218 		acpi_handle_debug(handle, "Found generic backlight support\n");
1219 		*cap |= ACPI_VIDEO_BACKLIGHT;
1220 		/* We have backlight support, no need to scan further */
1221 		return AE_CTRL_TERMINATE;
1222 	}
1223 	return 0;
1224 }
1225 
1226 /* Returns true if the ACPI object is a video device which can be
1227  * handled by video.ko.
1228  * The device will get a Linux specific CID added in scan.c to
1229  * identify the device as an ACPI graphics device
1230  * Be aware that the graphics device may not be physically present
1231  * Use acpi_video_get_capabilities() to detect general ACPI video
1232  * capabilities of present cards
1233  */
1234 long acpi_is_video_device(acpi_handle handle)
1235 {
1236 	long video_caps = 0;
1237 
1238 	/* Is this device able to support video switching ? */
1239 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241 
1242 	/* Is this device able to retrieve a video ROM ? */
1243 	if (acpi_has_method(handle, "_ROM"))
1244 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245 
1246 	/* Is this device able to configure which video head to be POSTed ? */
1247 	if (acpi_has_method(handle, "_VPO") &&
1248 	    acpi_has_method(handle, "_GPD") &&
1249 	    acpi_has_method(handle, "_SPD"))
1250 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251 
1252 	/* Only check for backlight functionality if one of the above hit. */
1253 	if (video_caps)
1254 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 				    &video_caps, NULL);
1257 
1258 	return video_caps;
1259 }
1260 EXPORT_SYMBOL(acpi_is_video_device);
1261 
1262 const char *acpi_device_hid(struct acpi_device *device)
1263 {
1264 	struct acpi_hardware_id *hid;
1265 
1266 	if (list_empty(&device->pnp.ids))
1267 		return dummy_hid;
1268 
1269 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 	return hid->id;
1271 }
1272 EXPORT_SYMBOL(acpi_device_hid);
1273 
1274 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275 {
1276 	struct acpi_hardware_id *id;
1277 
1278 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 	if (!id)
1280 		return;
1281 
1282 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 	if (!id->id) {
1284 		kfree(id);
1285 		return;
1286 	}
1287 
1288 	list_add_tail(&id->list, &pnp->ids);
1289 	pnp->type.hardware_id = 1;
1290 }
1291 
1292 /*
1293  * Old IBM workstations have a DSDT bug wherein the SMBus object
1294  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295  * prefix.  Work around this.
1296  */
1297 static bool acpi_ibm_smbus_match(acpi_handle handle)
1298 {
1299 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 	struct acpi_buffer path = { sizeof(node_name), node_name };
1301 
1302 	if (!dmi_name_in_vendors("IBM"))
1303 		return false;
1304 
1305 	/* Look for SMBS object */
1306 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 	    strcmp("SMBS", path.pointer))
1308 		return false;
1309 
1310 	/* Does it have the necessary (but misnamed) methods? */
1311 	if (acpi_has_method(handle, "SBI") &&
1312 	    acpi_has_method(handle, "SBR") &&
1313 	    acpi_has_method(handle, "SBW"))
1314 		return true;
1315 
1316 	return false;
1317 }
1318 
1319 static bool acpi_object_is_system_bus(acpi_handle handle)
1320 {
1321 	acpi_handle tmp;
1322 
1323 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 	    tmp == handle)
1325 		return true;
1326 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 	    tmp == handle)
1328 		return true;
1329 
1330 	return false;
1331 }
1332 
1333 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 			     int device_type)
1335 {
1336 	struct acpi_device_info *info = NULL;
1337 	struct acpi_pnp_device_id_list *cid_list;
1338 	int i;
1339 
1340 	switch (device_type) {
1341 	case ACPI_BUS_TYPE_DEVICE:
1342 		if (handle == ACPI_ROOT_OBJECT) {
1343 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 			break;
1345 		}
1346 
1347 		acpi_get_object_info(handle, &info);
1348 		if (!info) {
1349 			pr_err("%s: Error reading device info\n", __func__);
1350 			return;
1351 		}
1352 
1353 		if (info->valid & ACPI_VALID_HID) {
1354 			acpi_add_id(pnp, info->hardware_id.string);
1355 			pnp->type.platform_id = 1;
1356 		}
1357 		if (info->valid & ACPI_VALID_CID) {
1358 			cid_list = &info->compatible_id_list;
1359 			for (i = 0; i < cid_list->count; i++)
1360 				acpi_add_id(pnp, cid_list->ids[i].string);
1361 		}
1362 		if (info->valid & ACPI_VALID_ADR) {
1363 			pnp->bus_address = info->address;
1364 			pnp->type.bus_address = 1;
1365 		}
1366 		if (info->valid & ACPI_VALID_UID)
1367 			pnp->unique_id = kstrdup(info->unique_id.string,
1368 							GFP_KERNEL);
1369 		if (info->valid & ACPI_VALID_CLS)
1370 			acpi_add_id(pnp, info->class_code.string);
1371 
1372 		kfree(info);
1373 
1374 		/*
1375 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 		 * synthetic HIDs to make sure drivers can find them.
1377 		 */
1378 		if (acpi_is_video_device(handle)) {
1379 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 			pnp->type.backlight = 1;
1381 			break;
1382 		}
1383 		if (acpi_bay_match(handle))
1384 			acpi_add_id(pnp, ACPI_BAY_HID);
1385 		else if (acpi_dock_match(handle))
1386 			acpi_add_id(pnp, ACPI_DOCK_HID);
1387 		else if (acpi_ibm_smbus_match(handle))
1388 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 		else if (list_empty(&pnp->ids) &&
1390 			 acpi_object_is_system_bus(handle)) {
1391 			/* \_SB, \_TZ, LNXSYBUS */
1392 			acpi_add_id(pnp, ACPI_BUS_HID);
1393 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 		}
1396 
1397 		break;
1398 	case ACPI_BUS_TYPE_POWER:
1399 		acpi_add_id(pnp, ACPI_POWER_HID);
1400 		break;
1401 	case ACPI_BUS_TYPE_PROCESSOR:
1402 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 		break;
1404 	case ACPI_BUS_TYPE_THERMAL:
1405 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 		break;
1407 	case ACPI_BUS_TYPE_POWER_BUTTON:
1408 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 		break;
1410 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 		break;
1413 	case ACPI_BUS_TYPE_ECDT_EC:
1414 		acpi_add_id(pnp, ACPI_ECDT_HID);
1415 		break;
1416 	}
1417 }
1418 
1419 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420 {
1421 	struct acpi_hardware_id *id, *tmp;
1422 
1423 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 		kfree_const(id->id);
1425 		kfree(id);
1426 	}
1427 	kfree(pnp->unique_id);
1428 }
1429 
1430 /**
1431  * acpi_dma_supported - Check DMA support for the specified device.
1432  * @adev: The pointer to acpi device
1433  *
1434  * Return false if DMA is not supported. Otherwise, return true
1435  */
1436 bool acpi_dma_supported(const struct acpi_device *adev)
1437 {
1438 	if (!adev)
1439 		return false;
1440 
1441 	if (adev->flags.cca_seen)
1442 		return true;
1443 
1444 	/*
1445 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1447 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 	*/
1449 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 		return true;
1451 
1452 	return false;
1453 }
1454 
1455 /**
1456  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457  * @adev: The pointer to acpi device
1458  *
1459  * Return enum dev_dma_attr.
1460  */
1461 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462 {
1463 	if (!acpi_dma_supported(adev))
1464 		return DEV_DMA_NOT_SUPPORTED;
1465 
1466 	if (adev->flags.coherent_dma)
1467 		return DEV_DMA_COHERENT;
1468 	else
1469 		return DEV_DMA_NON_COHERENT;
1470 }
1471 
1472 /**
1473  * acpi_dma_get_range() - Get device DMA parameters.
1474  *
1475  * @dev: device to configure
1476  * @map: pointer to DMA ranges result
1477  *
1478  * Evaluate DMA regions and return pointer to DMA regions on
1479  * parsing success; it does not update the passed in values on failure.
1480  *
1481  * Return 0 on success, < 0 on failure.
1482  */
1483 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484 {
1485 	struct acpi_device *adev;
1486 	LIST_HEAD(list);
1487 	struct resource_entry *rentry;
1488 	int ret;
1489 	struct device *dma_dev = dev;
1490 	struct bus_dma_region *r;
1491 
1492 	/*
1493 	 * Walk the device tree chasing an ACPI companion with a _DMA
1494 	 * object while we go. Stop if we find a device with an ACPI
1495 	 * companion containing a _DMA method.
1496 	 */
1497 	do {
1498 		adev = ACPI_COMPANION(dma_dev);
1499 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 			break;
1501 
1502 		dma_dev = dma_dev->parent;
1503 	} while (dma_dev);
1504 
1505 	if (!dma_dev)
1506 		return -ENODEV;
1507 
1508 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 		return -EINVAL;
1511 	}
1512 
1513 	ret = acpi_dev_get_dma_resources(adev, &list);
1514 	if (ret > 0) {
1515 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 		if (!r) {
1517 			ret = -ENOMEM;
1518 			goto out;
1519 		}
1520 
1521 		*map = r;
1522 
1523 		list_for_each_entry(rentry, &list, node) {
1524 			if (rentry->res->start >= rentry->res->end) {
1525 				kfree(*map);
1526 				*map = NULL;
1527 				ret = -EINVAL;
1528 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 				goto out;
1530 			}
1531 
1532 			r->cpu_start = rentry->res->start;
1533 			r->dma_start = rentry->res->start - rentry->offset;
1534 			r->size = resource_size(rentry->res);
1535 			r++;
1536 		}
1537 	}
1538  out:
1539 	acpi_dev_free_resource_list(&list);
1540 
1541 	return ret >= 0 ? 0 : ret;
1542 }
1543 
1544 #ifdef CONFIG_IOMMU_API
1545 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1546 			   struct fwnode_handle *fwnode,
1547 			   const struct iommu_ops *ops)
1548 {
1549 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1550 
1551 	if (!ret)
1552 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1553 
1554 	return ret;
1555 }
1556 
1557 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1558 {
1559 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1560 
1561 	return fwspec ? fwspec->ops : NULL;
1562 }
1563 
1564 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1565 {
1566 	int err;
1567 	const struct iommu_ops *ops;
1568 
1569 	/* Serialise to make dev->iommu stable under our potential fwspec */
1570 	mutex_lock(&iommu_probe_device_lock);
1571 	/*
1572 	 * If we already translated the fwspec there is nothing left to do,
1573 	 * return the iommu_ops.
1574 	 */
1575 	ops = acpi_iommu_fwspec_ops(dev);
1576 	if (ops) {
1577 		mutex_unlock(&iommu_probe_device_lock);
1578 		return 0;
1579 	}
1580 
1581 	err = iort_iommu_configure_id(dev, id_in);
1582 	if (err && err != -EPROBE_DEFER)
1583 		err = viot_iommu_configure(dev);
1584 	mutex_unlock(&iommu_probe_device_lock);
1585 
1586 	/*
1587 	 * If we have reason to believe the IOMMU driver missed the initial
1588 	 * iommu_probe_device() call for dev, replay it to get things in order.
1589 	 */
1590 	if (!err && dev->bus)
1591 		err = iommu_probe_device(dev);
1592 
1593 	/* Ignore all other errors apart from EPROBE_DEFER */
1594 	if (err == -EPROBE_DEFER) {
1595 		return err;
1596 	} else if (err) {
1597 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1598 		return -ENODEV;
1599 	}
1600 	if (!acpi_iommu_fwspec_ops(dev))
1601 		return -ENODEV;
1602 	return 0;
1603 }
1604 
1605 #else /* !CONFIG_IOMMU_API */
1606 
1607 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1608 			   struct fwnode_handle *fwnode,
1609 			   const struct iommu_ops *ops)
1610 {
1611 	return -ENODEV;
1612 }
1613 
1614 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1615 {
1616 	return -ENODEV;
1617 }
1618 
1619 #endif /* !CONFIG_IOMMU_API */
1620 
1621 /**
1622  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1623  * @dev: The pointer to the device
1624  * @attr: device dma attributes
1625  * @input_id: input device id const value pointer
1626  */
1627 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1628 			  const u32 *input_id)
1629 {
1630 	int ret;
1631 
1632 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1633 		set_dma_ops(dev, &dma_dummy_ops);
1634 		return 0;
1635 	}
1636 
1637 	acpi_arch_dma_setup(dev);
1638 
1639 	ret = acpi_iommu_configure_id(dev, input_id);
1640 	if (ret == -EPROBE_DEFER)
1641 		return -EPROBE_DEFER;
1642 
1643 	/*
1644 	 * Historically this routine doesn't fail driver probing due to errors
1645 	 * in acpi_iommu_configure_id()
1646 	 */
1647 
1648 	arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1649 
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1653 
1654 static void acpi_init_coherency(struct acpi_device *adev)
1655 {
1656 	unsigned long long cca = 0;
1657 	acpi_status status;
1658 	struct acpi_device *parent = acpi_dev_parent(adev);
1659 
1660 	if (parent && parent->flags.cca_seen) {
1661 		/*
1662 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1663 		 * already saw one.
1664 		 */
1665 		adev->flags.cca_seen = 1;
1666 		cca = parent->flags.coherent_dma;
1667 	} else {
1668 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1669 					       NULL, &cca);
1670 		if (ACPI_SUCCESS(status))
1671 			adev->flags.cca_seen = 1;
1672 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1673 			/*
1674 			 * If architecture does not specify that _CCA is
1675 			 * required for DMA-able devices (e.g. x86),
1676 			 * we default to _CCA=1.
1677 			 */
1678 			cca = 1;
1679 		else
1680 			acpi_handle_debug(adev->handle,
1681 					  "ACPI device is missing _CCA.\n");
1682 	}
1683 
1684 	adev->flags.coherent_dma = cca;
1685 }
1686 
1687 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1688 {
1689 	bool *is_serial_bus_slave_p = data;
1690 
1691 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1692 		return 1;
1693 
1694 	*is_serial_bus_slave_p = true;
1695 
1696 	 /* no need to do more checking */
1697 	return -1;
1698 }
1699 
1700 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1701 {
1702 	struct acpi_device *parent = acpi_dev_parent(device);
1703 	static const struct acpi_device_id indirect_io_hosts[] = {
1704 		{"HISI0191", 0},
1705 		{}
1706 	};
1707 
1708 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1709 }
1710 
1711 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1712 {
1713 	struct list_head resource_list;
1714 	bool is_serial_bus_slave = false;
1715 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1716 	/*
1717 	 * These devices have multiple SerialBus resources and a client
1718 	 * device must be instantiated for each of them, each with
1719 	 * its own device id.
1720 	 * Normally we only instantiate one client device for the first
1721 	 * resource, using the ACPI HID as id. These special cases are handled
1722 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1723 	 * knows which client device id to use for each resource.
1724 	 */
1725 		{"BSG1160", },
1726 		{"BSG2150", },
1727 		{"CSC3551", },
1728 		{"CSC3556", },
1729 		{"INT33FE", },
1730 		{"INT3515", },
1731 		/* Non-conforming _HID for Cirrus Logic already released */
1732 		{"CLSA0100", },
1733 		{"CLSA0101", },
1734 	/*
1735 	 * Some ACPI devs contain SerialBus resources even though they are not
1736 	 * attached to a serial bus at all.
1737 	 */
1738 		{ACPI_VIDEO_HID, },
1739 		{"MSHW0028", },
1740 	/*
1741 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1742 	 * expects a regular tty cdev to be created (instead of the in kernel
1743 	 * serdev) and which have a kernel driver which expects a platform_dev
1744 	 * such as the rfkill-gpio driver.
1745 	 */
1746 		{"BCM4752", },
1747 		{"LNV4752", },
1748 		{}
1749 	};
1750 
1751 	if (acpi_is_indirect_io_slave(device))
1752 		return true;
1753 
1754 	/* Macs use device properties in lieu of _CRS resources */
1755 	if (x86_apple_machine &&
1756 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1757 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1758 	     fwnode_property_present(&device->fwnode, "baud")))
1759 		return true;
1760 
1761 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1762 		return false;
1763 
1764 	INIT_LIST_HEAD(&resource_list);
1765 	acpi_dev_get_resources(device, &resource_list,
1766 			       acpi_check_serial_bus_slave,
1767 			       &is_serial_bus_slave);
1768 	acpi_dev_free_resource_list(&resource_list);
1769 
1770 	return is_serial_bus_slave;
1771 }
1772 
1773 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1774 			     int type, void (*release)(struct device *))
1775 {
1776 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1777 
1778 	INIT_LIST_HEAD(&device->pnp.ids);
1779 	device->device_type = type;
1780 	device->handle = handle;
1781 	device->dev.parent = parent ? &parent->dev : NULL;
1782 	device->dev.release = release;
1783 	device->dev.bus = &acpi_bus_type;
1784 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1785 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1786 	acpi_device_get_busid(device);
1787 	acpi_set_pnp_ids(handle, &device->pnp, type);
1788 	acpi_init_properties(device);
1789 	acpi_bus_get_flags(device);
1790 	device->flags.match_driver = false;
1791 	device->flags.initialized = true;
1792 	device->flags.enumeration_by_parent =
1793 		acpi_device_enumeration_by_parent(device);
1794 	acpi_device_clear_enumerated(device);
1795 	device_initialize(&device->dev);
1796 	dev_set_uevent_suppress(&device->dev, true);
1797 	acpi_init_coherency(device);
1798 }
1799 
1800 static void acpi_scan_dep_init(struct acpi_device *adev)
1801 {
1802 	struct acpi_dep_data *dep;
1803 
1804 	list_for_each_entry(dep, &acpi_dep_list, node) {
1805 		if (dep->consumer == adev->handle) {
1806 			if (dep->honor_dep)
1807 				adev->flags.honor_deps = 1;
1808 
1809 			adev->dep_unmet++;
1810 		}
1811 	}
1812 }
1813 
1814 void acpi_device_add_finalize(struct acpi_device *device)
1815 {
1816 	dev_set_uevent_suppress(&device->dev, false);
1817 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1818 }
1819 
1820 static void acpi_scan_init_status(struct acpi_device *adev)
1821 {
1822 	if (acpi_bus_get_status(adev))
1823 		acpi_set_device_status(adev, 0);
1824 }
1825 
1826 static int acpi_add_single_object(struct acpi_device **child,
1827 				  acpi_handle handle, int type, bool dep_init)
1828 {
1829 	struct acpi_device *device;
1830 	bool release_dep_lock = false;
1831 	int result;
1832 
1833 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1834 	if (!device)
1835 		return -ENOMEM;
1836 
1837 	acpi_init_device_object(device, handle, type, acpi_device_release);
1838 	/*
1839 	 * Getting the status is delayed till here so that we can call
1840 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1841 	 * this must be done before the get power-/wakeup_dev-flags calls.
1842 	 */
1843 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1844 		if (dep_init) {
1845 			mutex_lock(&acpi_dep_list_lock);
1846 			/*
1847 			 * Hold the lock until the acpi_tie_acpi_dev() call
1848 			 * below to prevent concurrent acpi_scan_clear_dep()
1849 			 * from deleting a dependency list entry without
1850 			 * updating dep_unmet for the device.
1851 			 */
1852 			release_dep_lock = true;
1853 			acpi_scan_dep_init(device);
1854 		}
1855 		acpi_scan_init_status(device);
1856 	}
1857 
1858 	acpi_bus_get_power_flags(device);
1859 	acpi_bus_get_wakeup_device_flags(device);
1860 
1861 	result = acpi_tie_acpi_dev(device);
1862 
1863 	if (release_dep_lock)
1864 		mutex_unlock(&acpi_dep_list_lock);
1865 
1866 	if (!result)
1867 		result = acpi_device_add(device);
1868 
1869 	if (result) {
1870 		acpi_device_release(&device->dev);
1871 		return result;
1872 	}
1873 
1874 	acpi_power_add_remove_device(device, true);
1875 	acpi_device_add_finalize(device);
1876 
1877 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1878 			  dev_name(&device->dev), device->dev.parent ?
1879 				dev_name(device->dev.parent) : "(null)");
1880 
1881 	*child = device;
1882 	return 0;
1883 }
1884 
1885 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1886 					    void *context)
1887 {
1888 	struct resource *res = context;
1889 
1890 	if (acpi_dev_resource_memory(ares, res))
1891 		return AE_CTRL_TERMINATE;
1892 
1893 	return AE_OK;
1894 }
1895 
1896 static bool acpi_device_should_be_hidden(acpi_handle handle)
1897 {
1898 	acpi_status status;
1899 	struct resource res;
1900 
1901 	/* Check if it should ignore the UART device */
1902 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1903 		return false;
1904 
1905 	/*
1906 	 * The UART device described in SPCR table is assumed to have only one
1907 	 * memory resource present. So we only look for the first one here.
1908 	 */
1909 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1910 				     acpi_get_resource_memory, &res);
1911 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1912 		return false;
1913 
1914 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1915 			 &res.start);
1916 
1917 	return true;
1918 }
1919 
1920 bool acpi_device_is_present(const struct acpi_device *adev)
1921 {
1922 	return adev->status.present || adev->status.functional;
1923 }
1924 
1925 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1926 				       const char *idstr,
1927 				       const struct acpi_device_id **matchid)
1928 {
1929 	const struct acpi_device_id *devid;
1930 
1931 	if (handler->match)
1932 		return handler->match(idstr, matchid);
1933 
1934 	for (devid = handler->ids; devid->id[0]; devid++)
1935 		if (!strcmp((char *)devid->id, idstr)) {
1936 			if (matchid)
1937 				*matchid = devid;
1938 
1939 			return true;
1940 		}
1941 
1942 	return false;
1943 }
1944 
1945 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1946 					const struct acpi_device_id **matchid)
1947 {
1948 	struct acpi_scan_handler *handler;
1949 
1950 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1951 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1952 			return handler;
1953 
1954 	return NULL;
1955 }
1956 
1957 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1958 {
1959 	if (!!hotplug->enabled == !!val)
1960 		return;
1961 
1962 	mutex_lock(&acpi_scan_lock);
1963 
1964 	hotplug->enabled = val;
1965 
1966 	mutex_unlock(&acpi_scan_lock);
1967 }
1968 
1969 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1970 {
1971 	struct acpi_hardware_id *hwid;
1972 
1973 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1974 		acpi_dock_add(adev);
1975 		return;
1976 	}
1977 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1978 		struct acpi_scan_handler *handler;
1979 
1980 		handler = acpi_scan_match_handler(hwid->id, NULL);
1981 		if (handler) {
1982 			adev->flags.hotplug_notify = true;
1983 			break;
1984 		}
1985 	}
1986 }
1987 
1988 static u32 acpi_scan_check_dep(acpi_handle handle)
1989 {
1990 	struct acpi_handle_list dep_devices;
1991 	u32 count;
1992 	int i;
1993 
1994 	/*
1995 	 * Check for _HID here to avoid deferring the enumeration of:
1996 	 * 1. PCI devices.
1997 	 * 2. ACPI nodes describing USB ports.
1998 	 * Still, checking for _HID catches more then just these cases ...
1999 	 */
2000 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2001 		return 0;
2002 
2003 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2004 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2005 		return 0;
2006 	}
2007 
2008 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2009 		struct acpi_device_info *info;
2010 		struct acpi_dep_data *dep;
2011 		bool skip, honor_dep;
2012 		acpi_status status;
2013 
2014 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2015 		if (ACPI_FAILURE(status)) {
2016 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2017 			continue;
2018 		}
2019 
2020 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2021 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2022 		kfree(info);
2023 
2024 		if (skip)
2025 			continue;
2026 
2027 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2028 		if (!dep)
2029 			continue;
2030 
2031 		count++;
2032 
2033 		dep->supplier = dep_devices.handles[i];
2034 		dep->consumer = handle;
2035 		dep->honor_dep = honor_dep;
2036 
2037 		mutex_lock(&acpi_dep_list_lock);
2038 		list_add_tail(&dep->node , &acpi_dep_list);
2039 		mutex_unlock(&acpi_dep_list_lock);
2040 	}
2041 
2042 	acpi_handle_list_free(&dep_devices);
2043 	return count;
2044 }
2045 
2046 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2047 {
2048 	acpi_mipi_check_crs_csi2(handle);
2049 	return AE_OK;
2050 }
2051 
2052 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2053 				      struct acpi_device **adev_p)
2054 {
2055 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2056 	acpi_object_type acpi_type;
2057 	int type;
2058 
2059 	if (device)
2060 		goto out;
2061 
2062 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2063 		return AE_OK;
2064 
2065 	switch (acpi_type) {
2066 	case ACPI_TYPE_DEVICE:
2067 		if (acpi_device_should_be_hidden(handle))
2068 			return AE_OK;
2069 
2070 		if (first_pass) {
2071 			acpi_mipi_check_crs_csi2(handle);
2072 
2073 			/* Bail out if there are dependencies. */
2074 			if (acpi_scan_check_dep(handle) > 0) {
2075 				/*
2076 				 * The entire CSI-2 connection graph needs to be
2077 				 * extracted before any drivers or scan handlers
2078 				 * are bound to struct device objects, so scan
2079 				 * _CRS CSI-2 resource descriptors for all
2080 				 * devices below the current handle.
2081 				 */
2082 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2083 						    ACPI_UINT32_MAX,
2084 						    acpi_scan_check_crs_csi2_cb,
2085 						    NULL, NULL, NULL);
2086 				return AE_CTRL_DEPTH;
2087 			}
2088 		}
2089 
2090 		fallthrough;
2091 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2092 		type = ACPI_BUS_TYPE_DEVICE;
2093 		break;
2094 
2095 	case ACPI_TYPE_PROCESSOR:
2096 		type = ACPI_BUS_TYPE_PROCESSOR;
2097 		break;
2098 
2099 	case ACPI_TYPE_THERMAL:
2100 		type = ACPI_BUS_TYPE_THERMAL;
2101 		break;
2102 
2103 	case ACPI_TYPE_POWER:
2104 		acpi_add_power_resource(handle);
2105 		fallthrough;
2106 	default:
2107 		return AE_OK;
2108 	}
2109 
2110 	/*
2111 	 * If first_pass is true at this point, the device has no dependencies,
2112 	 * or the creation of the device object would have been postponed above.
2113 	 */
2114 	acpi_add_single_object(&device, handle, type, !first_pass);
2115 	if (!device)
2116 		return AE_CTRL_DEPTH;
2117 
2118 	acpi_scan_init_hotplug(device);
2119 
2120 out:
2121 	if (!*adev_p)
2122 		*adev_p = device;
2123 
2124 	return AE_OK;
2125 }
2126 
2127 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2128 					void *not_used, void **ret_p)
2129 {
2130 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2131 }
2132 
2133 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2134 					void *not_used, void **ret_p)
2135 {
2136 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2137 }
2138 
2139 static void acpi_default_enumeration(struct acpi_device *device)
2140 {
2141 	/*
2142 	 * Do not enumerate devices with enumeration_by_parent flag set as
2143 	 * they will be enumerated by their respective parents.
2144 	 */
2145 	if (!device->flags.enumeration_by_parent) {
2146 		acpi_create_platform_device(device, NULL);
2147 		acpi_device_set_enumerated(device);
2148 	} else {
2149 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2150 					     ACPI_RECONFIG_DEVICE_ADD, device);
2151 	}
2152 }
2153 
2154 static const struct acpi_device_id generic_device_ids[] = {
2155 	{ACPI_DT_NAMESPACE_HID, },
2156 	{"", },
2157 };
2158 
2159 static int acpi_generic_device_attach(struct acpi_device *adev,
2160 				      const struct acpi_device_id *not_used)
2161 {
2162 	/*
2163 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2164 	 * below can be unconditional.
2165 	 */
2166 	if (adev->data.of_compatible)
2167 		acpi_default_enumeration(adev);
2168 
2169 	return 1;
2170 }
2171 
2172 static struct acpi_scan_handler generic_device_handler = {
2173 	.ids = generic_device_ids,
2174 	.attach = acpi_generic_device_attach,
2175 };
2176 
2177 static int acpi_scan_attach_handler(struct acpi_device *device)
2178 {
2179 	struct acpi_hardware_id *hwid;
2180 	int ret = 0;
2181 
2182 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2183 		const struct acpi_device_id *devid;
2184 		struct acpi_scan_handler *handler;
2185 
2186 		handler = acpi_scan_match_handler(hwid->id, &devid);
2187 		if (handler) {
2188 			if (!handler->attach) {
2189 				device->pnp.type.platform_id = 0;
2190 				continue;
2191 			}
2192 			device->handler = handler;
2193 			ret = handler->attach(device, devid);
2194 			if (ret > 0)
2195 				break;
2196 
2197 			device->handler = NULL;
2198 			if (ret < 0)
2199 				break;
2200 		}
2201 	}
2202 
2203 	return ret;
2204 }
2205 
2206 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2207 {
2208 	bool skip = !first_pass && device->flags.visited;
2209 	acpi_handle ejd;
2210 	int ret;
2211 
2212 	if (skip)
2213 		goto ok;
2214 
2215 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2216 		register_dock_dependent_device(device, ejd);
2217 
2218 	acpi_bus_get_status(device);
2219 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2220 	if (!acpi_dev_ready_for_enumeration(device)) {
2221 		device->flags.initialized = false;
2222 		acpi_device_clear_enumerated(device);
2223 		device->flags.power_manageable = 0;
2224 		return 0;
2225 	}
2226 	if (device->handler)
2227 		goto ok;
2228 
2229 	if (!device->flags.initialized) {
2230 		device->flags.power_manageable =
2231 			device->power.states[ACPI_STATE_D0].flags.valid;
2232 		if (acpi_bus_init_power(device))
2233 			device->flags.power_manageable = 0;
2234 
2235 		device->flags.initialized = true;
2236 	} else if (device->flags.visited) {
2237 		goto ok;
2238 	}
2239 
2240 	ret = acpi_scan_attach_handler(device);
2241 	if (ret < 0)
2242 		return 0;
2243 
2244 	device->flags.match_driver = true;
2245 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2246 		acpi_device_set_enumerated(device);
2247 		goto ok;
2248 	}
2249 
2250 	ret = device_attach(&device->dev);
2251 	if (ret < 0)
2252 		return 0;
2253 
2254 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2255 		acpi_default_enumeration(device);
2256 	else
2257 		acpi_device_set_enumerated(device);
2258 
2259 ok:
2260 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2261 
2262 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2263 		device->handler->hotplug.notify_online(device);
2264 
2265 	return 0;
2266 }
2267 
2268 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2269 {
2270 	struct acpi_device **adev_p = data;
2271 	struct acpi_device *adev = *adev_p;
2272 
2273 	/*
2274 	 * If we're passed a 'previous' consumer device then we need to skip
2275 	 * any consumers until we meet the previous one, and then NULL @data
2276 	 * so the next one can be returned.
2277 	 */
2278 	if (adev) {
2279 		if (dep->consumer == adev->handle)
2280 			*adev_p = NULL;
2281 
2282 		return 0;
2283 	}
2284 
2285 	adev = acpi_get_acpi_dev(dep->consumer);
2286 	if (adev) {
2287 		*(struct acpi_device **)data = adev;
2288 		return 1;
2289 	}
2290 	/* Continue parsing if the device object is not present. */
2291 	return 0;
2292 }
2293 
2294 struct acpi_scan_clear_dep_work {
2295 	struct work_struct work;
2296 	struct acpi_device *adev;
2297 };
2298 
2299 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2300 {
2301 	struct acpi_scan_clear_dep_work *cdw;
2302 
2303 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2304 
2305 	acpi_scan_lock_acquire();
2306 	acpi_bus_attach(cdw->adev, (void *)true);
2307 	acpi_scan_lock_release();
2308 
2309 	acpi_dev_put(cdw->adev);
2310 	kfree(cdw);
2311 }
2312 
2313 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2314 {
2315 	struct acpi_scan_clear_dep_work *cdw;
2316 
2317 	if (adev->dep_unmet)
2318 		return false;
2319 
2320 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2321 	if (!cdw)
2322 		return false;
2323 
2324 	cdw->adev = adev;
2325 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2326 	/*
2327 	 * Since the work function may block on the lock until the entire
2328 	 * initial enumeration of devices is complete, put it into the unbound
2329 	 * workqueue.
2330 	 */
2331 	queue_work(system_unbound_wq, &cdw->work);
2332 
2333 	return true;
2334 }
2335 
2336 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2337 {
2338 	list_del(&dep->node);
2339 	kfree(dep);
2340 }
2341 
2342 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2343 {
2344 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2345 
2346 	if (adev) {
2347 		adev->dep_unmet--;
2348 		if (!acpi_scan_clear_dep_queue(adev))
2349 			acpi_dev_put(adev);
2350 	}
2351 
2352 	if (dep->free_when_met)
2353 		acpi_scan_delete_dep_data(dep);
2354 	else
2355 		dep->met = true;
2356 
2357 	return 0;
2358 }
2359 
2360 /**
2361  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2362  * @handle:	The ACPI handle of the supplier device
2363  * @callback:	Pointer to the callback function to apply
2364  * @data:	Pointer to some data to pass to the callback
2365  *
2366  * The return value of the callback determines this function's behaviour. If 0
2367  * is returned we continue to iterate over acpi_dep_list. If a positive value
2368  * is returned then the loop is broken but this function returns 0. If a
2369  * negative value is returned by the callback then the loop is broken and that
2370  * value is returned as the final error.
2371  */
2372 static int acpi_walk_dep_device_list(acpi_handle handle,
2373 				int (*callback)(struct acpi_dep_data *, void *),
2374 				void *data)
2375 {
2376 	struct acpi_dep_data *dep, *tmp;
2377 	int ret = 0;
2378 
2379 	mutex_lock(&acpi_dep_list_lock);
2380 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2381 		if (dep->supplier == handle) {
2382 			ret = callback(dep, data);
2383 			if (ret)
2384 				break;
2385 		}
2386 	}
2387 	mutex_unlock(&acpi_dep_list_lock);
2388 
2389 	return ret > 0 ? 0 : ret;
2390 }
2391 
2392 /**
2393  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2394  * @supplier: Pointer to the supplier &struct acpi_device
2395  *
2396  * Clear dependencies on the given device.
2397  */
2398 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2399 {
2400 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2401 }
2402 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2403 
2404 /**
2405  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2406  * @device: Pointer to the &struct acpi_device to check
2407  *
2408  * Check if the device is present and has no unmet dependencies.
2409  *
2410  * Return true if the device is ready for enumeratino. Otherwise, return false.
2411  */
2412 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2413 {
2414 	if (device->flags.honor_deps && device->dep_unmet)
2415 		return false;
2416 
2417 	return acpi_device_is_present(device);
2418 }
2419 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2420 
2421 /**
2422  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2423  * @supplier: Pointer to the dependee device
2424  * @start: Pointer to the current dependent device
2425  *
2426  * Returns the next &struct acpi_device which declares itself dependent on
2427  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2428  *
2429  * If the returned adev is not passed as @start to this function, the caller is
2430  * responsible for putting the reference to adev when it is no longer needed.
2431  */
2432 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2433 						   struct acpi_device *start)
2434 {
2435 	struct acpi_device *adev = start;
2436 
2437 	acpi_walk_dep_device_list(supplier->handle,
2438 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2439 
2440 	acpi_dev_put(start);
2441 
2442 	if (adev == start)
2443 		return NULL;
2444 
2445 	return adev;
2446 }
2447 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2448 
2449 static void acpi_scan_postponed_branch(acpi_handle handle)
2450 {
2451 	struct acpi_device *adev = NULL;
2452 
2453 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2454 		return;
2455 
2456 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2457 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2458 
2459 	/*
2460 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2461 	 * have been added above.
2462 	 */
2463 	acpi_mipi_init_crs_csi2_swnodes();
2464 
2465 	acpi_bus_attach(adev, NULL);
2466 }
2467 
2468 static void acpi_scan_postponed(void)
2469 {
2470 	struct acpi_dep_data *dep, *tmp;
2471 
2472 	mutex_lock(&acpi_dep_list_lock);
2473 
2474 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2475 		acpi_handle handle = dep->consumer;
2476 
2477 		/*
2478 		 * In case there are multiple acpi_dep_list entries with the
2479 		 * same consumer, skip the current entry if the consumer device
2480 		 * object corresponding to it is present already.
2481 		 */
2482 		if (!acpi_fetch_acpi_dev(handle)) {
2483 			/*
2484 			 * Even though the lock is released here, tmp is
2485 			 * guaranteed to be valid, because none of the list
2486 			 * entries following dep is marked as "free when met"
2487 			 * and so they cannot be deleted.
2488 			 */
2489 			mutex_unlock(&acpi_dep_list_lock);
2490 
2491 			acpi_scan_postponed_branch(handle);
2492 
2493 			mutex_lock(&acpi_dep_list_lock);
2494 		}
2495 
2496 		if (dep->met)
2497 			acpi_scan_delete_dep_data(dep);
2498 		else
2499 			dep->free_when_met = true;
2500 	}
2501 
2502 	mutex_unlock(&acpi_dep_list_lock);
2503 }
2504 
2505 /**
2506  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2507  * @handle: Root of the namespace scope to scan.
2508  *
2509  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2510  * found devices.
2511  *
2512  * If no devices were found, -ENODEV is returned, but it does not mean that
2513  * there has been a real error.  There just have been no suitable ACPI objects
2514  * in the table trunk from which the kernel could create a device and add an
2515  * appropriate driver.
2516  *
2517  * Must be called under acpi_scan_lock.
2518  */
2519 int acpi_bus_scan(acpi_handle handle)
2520 {
2521 	struct acpi_device *device = NULL;
2522 
2523 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2524 
2525 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2526 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2527 				    acpi_bus_check_add_1, NULL, NULL,
2528 				    (void **)&device);
2529 
2530 	if (!device)
2531 		return -ENODEV;
2532 
2533 	/*
2534 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2535 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2536 	 * walk above and MIPI DisCo for Imaging device properties.
2537 	 */
2538 	acpi_mipi_scan_crs_csi2();
2539 	acpi_mipi_init_crs_csi2_swnodes();
2540 
2541 	acpi_bus_attach(device, (void *)true);
2542 
2543 	/* Pass 2: Enumerate all of the remaining devices. */
2544 
2545 	acpi_scan_postponed();
2546 
2547 	acpi_mipi_crs_csi2_cleanup();
2548 
2549 	return 0;
2550 }
2551 EXPORT_SYMBOL(acpi_bus_scan);
2552 
2553 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2554 {
2555 	struct acpi_scan_handler *handler = adev->handler;
2556 
2557 	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2558 
2559 	adev->flags.match_driver = false;
2560 	if (handler) {
2561 		if (handler->detach)
2562 			handler->detach(adev);
2563 
2564 		adev->handler = NULL;
2565 	} else {
2566 		device_release_driver(&adev->dev);
2567 	}
2568 	/*
2569 	 * Most likely, the device is going away, so put it into D3cold before
2570 	 * that.
2571 	 */
2572 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2573 	adev->flags.initialized = false;
2574 	acpi_device_clear_enumerated(adev);
2575 
2576 	return 0;
2577 }
2578 
2579 /**
2580  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2581  * @adev: Root of the ACPI namespace scope to walk.
2582  *
2583  * Must be called under acpi_scan_lock.
2584  */
2585 void acpi_bus_trim(struct acpi_device *adev)
2586 {
2587 	acpi_bus_trim_one(adev, NULL);
2588 }
2589 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2590 
2591 int acpi_bus_register_early_device(int type)
2592 {
2593 	struct acpi_device *device = NULL;
2594 	int result;
2595 
2596 	result = acpi_add_single_object(&device, NULL, type, false);
2597 	if (result)
2598 		return result;
2599 
2600 	device->flags.match_driver = true;
2601 	return device_attach(&device->dev);
2602 }
2603 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2604 
2605 static void acpi_bus_scan_fixed(void)
2606 {
2607 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2608 		struct acpi_device *adev = NULL;
2609 
2610 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2611 				       false);
2612 		if (adev) {
2613 			adev->flags.match_driver = true;
2614 			if (device_attach(&adev->dev) >= 0)
2615 				device_init_wakeup(&adev->dev, true);
2616 			else
2617 				dev_dbg(&adev->dev, "No driver\n");
2618 		}
2619 	}
2620 
2621 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2622 		struct acpi_device *adev = NULL;
2623 
2624 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2625 				       false);
2626 		if (adev) {
2627 			adev->flags.match_driver = true;
2628 			if (device_attach(&adev->dev) < 0)
2629 				dev_dbg(&adev->dev, "No driver\n");
2630 		}
2631 	}
2632 }
2633 
2634 static void __init acpi_get_spcr_uart_addr(void)
2635 {
2636 	acpi_status status;
2637 	struct acpi_table_spcr *spcr_ptr;
2638 
2639 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2640 				(struct acpi_table_header **)&spcr_ptr);
2641 	if (ACPI_FAILURE(status)) {
2642 		pr_warn("STAO table present, but SPCR is missing\n");
2643 		return;
2644 	}
2645 
2646 	spcr_uart_addr = spcr_ptr->serial_port.address;
2647 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2648 }
2649 
2650 static bool acpi_scan_initialized;
2651 
2652 void __init acpi_scan_init(void)
2653 {
2654 	acpi_status status;
2655 	struct acpi_table_stao *stao_ptr;
2656 
2657 	acpi_pci_root_init();
2658 	acpi_pci_link_init();
2659 	acpi_processor_init();
2660 	acpi_platform_init();
2661 	acpi_lpss_init();
2662 	acpi_apd_init();
2663 	acpi_cmos_rtc_init();
2664 	acpi_container_init();
2665 	acpi_memory_hotplug_init();
2666 	acpi_watchdog_init();
2667 	acpi_pnp_init();
2668 	acpi_int340x_thermal_init();
2669 	acpi_init_lpit();
2670 
2671 	acpi_scan_add_handler(&generic_device_handler);
2672 
2673 	/*
2674 	 * If there is STAO table, check whether it needs to ignore the UART
2675 	 * device in SPCR table.
2676 	 */
2677 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2678 				(struct acpi_table_header **)&stao_ptr);
2679 	if (ACPI_SUCCESS(status)) {
2680 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2681 			pr_info("STAO Name List not yet supported.\n");
2682 
2683 		if (stao_ptr->ignore_uart)
2684 			acpi_get_spcr_uart_addr();
2685 
2686 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2687 	}
2688 
2689 	acpi_gpe_apply_masked_gpes();
2690 	acpi_update_all_gpes();
2691 
2692 	/*
2693 	 * Although we call __add_memory() that is documented to require the
2694 	 * device_hotplug_lock, it is not necessary here because this is an
2695 	 * early code when userspace or any other code path cannot trigger
2696 	 * hotplug/hotunplug operations.
2697 	 */
2698 	mutex_lock(&acpi_scan_lock);
2699 	/*
2700 	 * Enumerate devices in the ACPI namespace.
2701 	 */
2702 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2703 		goto unlock;
2704 
2705 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2706 	if (!acpi_root)
2707 		goto unlock;
2708 
2709 	/* Fixed feature devices do not exist on HW-reduced platform */
2710 	if (!acpi_gbl_reduced_hardware)
2711 		acpi_bus_scan_fixed();
2712 
2713 	acpi_turn_off_unused_power_resources();
2714 
2715 	acpi_scan_initialized = true;
2716 
2717 unlock:
2718 	mutex_unlock(&acpi_scan_lock);
2719 }
2720 
2721 static struct acpi_probe_entry *ape;
2722 static int acpi_probe_count;
2723 static DEFINE_MUTEX(acpi_probe_mutex);
2724 
2725 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2726 				  const unsigned long end)
2727 {
2728 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2729 		if (!ape->probe_subtbl(header, end))
2730 			acpi_probe_count++;
2731 
2732 	return 0;
2733 }
2734 
2735 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2736 {
2737 	int count = 0;
2738 
2739 	if (acpi_disabled)
2740 		return 0;
2741 
2742 	mutex_lock(&acpi_probe_mutex);
2743 	for (ape = ap_head; nr; ape++, nr--) {
2744 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2745 			acpi_probe_count = 0;
2746 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2747 			count += acpi_probe_count;
2748 		} else {
2749 			int res;
2750 			res = acpi_table_parse(ape->id, ape->probe_table);
2751 			if (!res)
2752 				count++;
2753 		}
2754 	}
2755 	mutex_unlock(&acpi_probe_mutex);
2756 
2757 	return count;
2758 }
2759 
2760 static void acpi_table_events_fn(struct work_struct *work)
2761 {
2762 	acpi_scan_lock_acquire();
2763 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2764 	acpi_scan_lock_release();
2765 
2766 	kfree(work);
2767 }
2768 
2769 void acpi_scan_table_notify(void)
2770 {
2771 	struct work_struct *work;
2772 
2773 	if (!acpi_scan_initialized)
2774 		return;
2775 
2776 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2777 	if (!work)
2778 		return;
2779 
2780 	INIT_WORK(work, acpi_table_events_fn);
2781 	schedule_work(work);
2782 }
2783 
2784 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2785 {
2786 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2787 }
2788 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2789 
2790 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2791 {
2792 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2793 }
2794 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2795