xref: /linux/drivers/acpi/scan.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				acpi_hp_notify notify, acpi_hp_uevent uevent)
77 {
78 	acpi_lock_hp_context();
79 	hp->notify = notify;
80 	hp->uevent = uevent;
81 	acpi_set_hp_context(adev, hp);
82 	acpi_unlock_hp_context();
83 }
84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85 
86 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87 {
88 	if (!handler)
89 		return -EINVAL;
90 
91 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 	return 0;
93 }
94 
95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 				       const char *hotplug_profile_name)
97 {
98 	int error;
99 
100 	error = acpi_scan_add_handler(handler);
101 	if (error)
102 		return error;
103 
104 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 	return 0;
106 }
107 
108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109 {
110 	struct acpi_device_physical_node *pn;
111 	bool offline = true;
112 	char *envp[] = { "EVENT=offline", NULL };
113 
114 	/*
115 	 * acpi_container_offline() calls this for all of the container's
116 	 * children under the container's physical_node_lock lock.
117 	 */
118 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119 
120 	list_for_each_entry(pn, &adev->physical_node_list, node)
121 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 			if (uevent)
123 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124 
125 			offline = false;
126 			break;
127 		}
128 
129 	mutex_unlock(&adev->physical_node_lock);
130 	return offline;
131 }
132 
133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 				    void **ret_p)
135 {
136 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 	struct acpi_device_physical_node *pn;
138 	bool second_pass = (bool)data;
139 	acpi_status status = AE_OK;
140 
141 	if (!device)
142 		return AE_OK;
143 
144 	if (device->handler && !device->handler->hotplug.enabled) {
145 		*ret_p = &device->dev;
146 		return AE_SUPPORT;
147 	}
148 
149 	mutex_lock(&device->physical_node_lock);
150 
151 	list_for_each_entry(pn, &device->physical_node_list, node) {
152 		int ret;
153 
154 		if (second_pass) {
155 			/* Skip devices offlined by the first pass. */
156 			if (pn->put_online)
157 				continue;
158 		} else {
159 			pn->put_online = false;
160 		}
161 		ret = device_offline(pn->dev);
162 		if (ret >= 0) {
163 			pn->put_online = !ret;
164 		} else {
165 			*ret_p = pn->dev;
166 			if (second_pass) {
167 				status = AE_ERROR;
168 				break;
169 			}
170 		}
171 	}
172 
173 	mutex_unlock(&device->physical_node_lock);
174 
175 	return status;
176 }
177 
178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 				   void **ret_p)
180 {
181 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 	struct acpi_device_physical_node *pn;
183 
184 	if (!device)
185 		return AE_OK;
186 
187 	mutex_lock(&device->physical_node_lock);
188 
189 	list_for_each_entry(pn, &device->physical_node_list, node)
190 		if (pn->put_online) {
191 			device_online(pn->dev);
192 			pn->put_online = false;
193 		}
194 
195 	mutex_unlock(&device->physical_node_lock);
196 
197 	return AE_OK;
198 }
199 
200 static int acpi_scan_try_to_offline(struct acpi_device *device)
201 {
202 	acpi_handle handle = device->handle;
203 	struct device *errdev = NULL;
204 	acpi_status status;
205 
206 	/*
207 	 * Carry out two passes here and ignore errors in the first pass,
208 	 * because if the devices in question are memory blocks and
209 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 	 * that the other blocks depend on, but it is not known in advance which
211 	 * block holds them.
212 	 *
213 	 * If the first pass is successful, the second one isn't needed, though.
214 	 */
215 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 				     NULL, acpi_bus_offline, (void *)false,
217 				     (void **)&errdev);
218 	if (status == AE_SUPPORT) {
219 		dev_warn(errdev, "Offline disabled.\n");
220 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 				    acpi_bus_online, NULL, NULL, NULL);
222 		return -EPERM;
223 	}
224 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 	if (errdev) {
226 		errdev = NULL;
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    NULL, acpi_bus_offline, (void *)true,
229 				    (void **)&errdev);
230 		if (!errdev)
231 			acpi_bus_offline(handle, 0, (void *)true,
232 					 (void **)&errdev);
233 
234 		if (errdev) {
235 			dev_warn(errdev, "Offline failed.\n");
236 			acpi_bus_online(handle, 0, NULL, NULL);
237 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 					    ACPI_UINT32_MAX, acpi_bus_online,
239 					    NULL, NULL, NULL);
240 			return -EBUSY;
241 		}
242 	}
243 	return 0;
244 }
245 
246 #define ACPI_SCAN_CHECK_FLAG_STATUS	BIT(0)
247 #define ACPI_SCAN_CHECK_FLAG_EJECT	BIT(1)
248 
249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250 {
251 	struct acpi_scan_handler *handler = adev->handler;
252 	uintptr_t flags = (uintptr_t)p;
253 
254 	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255 
256 	if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 		acpi_bus_get_status(adev);
258 		/*
259 		 * Skip devices that are still there and take the enabled
260 		 * flag into account.
261 		 */
262 		if (acpi_device_is_enabled(adev))
263 			return 0;
264 
265 		/* Skip device that have not been enumerated. */
266 		if (!acpi_device_enumerated(adev)) {
267 			dev_dbg(&adev->dev, "Still not enumerated\n");
268 			return 0;
269 		}
270 	}
271 
272 	adev->flags.match_driver = false;
273 	if (handler) {
274 		if (handler->detach)
275 			handler->detach(adev);
276 	} else {
277 		device_release_driver(&adev->dev);
278 	}
279 	/*
280 	 * Most likely, the device is going away, so put it into D3cold before
281 	 * that.
282 	 */
283 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 	adev->flags.initialized = false;
285 
286 	/* For eject this is deferred to acpi_bus_post_eject() */
287 	if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 		adev->handler = NULL;
289 		acpi_device_clear_enumerated(adev);
290 	}
291 	return 0;
292 }
293 
294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295 {
296 	struct acpi_scan_handler *handler = adev->handler;
297 
298 	acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299 
300 	if (handler) {
301 		if (handler->post_eject)
302 			handler->post_eject(adev);
303 
304 		adev->handler = NULL;
305 	}
306 
307 	acpi_device_clear_enumerated(adev);
308 
309 	return 0;
310 }
311 
312 static void acpi_scan_check_subtree(struct acpi_device *adev)
313 {
314 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315 
316 	acpi_scan_check_and_detach(adev, (void *)flags);
317 }
318 
319 static int acpi_scan_hot_remove(struct acpi_device *device)
320 {
321 	acpi_handle handle = device->handle;
322 	unsigned long long sta;
323 	acpi_status status;
324 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325 
326 	if (device->handler && device->handler->hotplug.demand_offline) {
327 		if (!acpi_scan_is_offline(device, true))
328 			return -EBUSY;
329 	} else {
330 		int error = acpi_scan_try_to_offline(device);
331 		if (error)
332 			return error;
333 	}
334 
335 	acpi_handle_debug(handle, "Ejecting\n");
336 
337 	acpi_scan_check_and_detach(device, (void *)flags);
338 
339 	acpi_evaluate_lck(handle, 0);
340 	/*
341 	 * TBD: _EJD support.
342 	 */
343 	status = acpi_evaluate_ej0(handle);
344 	if (status == AE_NOT_FOUND)
345 		return -ENODEV;
346 	else if (ACPI_FAILURE(status))
347 		return -EIO;
348 
349 	/*
350 	 * Verify if eject was indeed successful.  If not, log an error
351 	 * message.  No need to call _OST since _EJ0 call was made OK.
352 	 */
353 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 	if (ACPI_FAILURE(status)) {
355 		acpi_handle_warn(handle,
356 			"Status check after eject failed (0x%x)\n", status);
357 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 		acpi_handle_warn(handle,
359 			"Eject incomplete - status 0x%llx\n", sta);
360 	} else {
361 		acpi_bus_post_eject(device, NULL);
362 	}
363 
364 	return 0;
365 }
366 
367 static int acpi_scan_rescan_bus(struct acpi_device *adev)
368 {
369 	struct acpi_scan_handler *handler = adev->handler;
370 	int ret;
371 
372 	if (handler && handler->hotplug.scan_dependent)
373 		ret = handler->hotplug.scan_dependent(adev);
374 	else
375 		ret = acpi_bus_scan(adev->handle);
376 
377 	if (ret)
378 		dev_info(&adev->dev, "Namespace scan failure\n");
379 
380 	return ret;
381 }
382 
383 static int acpi_scan_device_check(struct acpi_device *adev)
384 {
385 	struct acpi_device *parent;
386 
387 	acpi_scan_check_subtree(adev);
388 
389 	if (!acpi_device_is_present(adev))
390 		return 0;
391 
392 	/*
393 	 * This function is only called for device objects for which matching
394 	 * scan handlers exist.  The only situation in which the scan handler
395 	 * is not attached to this device object yet is when the device has
396 	 * just appeared (either it wasn't present at all before or it was
397 	 * removed and then added again).
398 	 */
399 	if (adev->handler) {
400 		dev_dbg(&adev->dev, "Already enumerated\n");
401 		return 0;
402 	}
403 
404 	parent = acpi_dev_parent(adev);
405 	if (!parent)
406 		parent = adev;
407 
408 	return acpi_scan_rescan_bus(parent);
409 }
410 
411 static int acpi_scan_bus_check(struct acpi_device *adev)
412 {
413 	acpi_scan_check_subtree(adev);
414 
415 	return acpi_scan_rescan_bus(adev);
416 }
417 
418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419 {
420 	switch (type) {
421 	case ACPI_NOTIFY_BUS_CHECK:
422 		return acpi_scan_bus_check(adev);
423 	case ACPI_NOTIFY_DEVICE_CHECK:
424 		return acpi_scan_device_check(adev);
425 	case ACPI_NOTIFY_EJECT_REQUEST:
426 	case ACPI_OST_EC_OSPM_EJECT:
427 		if (adev->handler && !adev->handler->hotplug.enabled) {
428 			dev_info(&adev->dev, "Eject disabled\n");
429 			return -EPERM;
430 		}
431 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 		return acpi_scan_hot_remove(adev);
434 	}
435 	return -EINVAL;
436 }
437 
438 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439 {
440 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 	int error = -ENODEV;
442 
443 	lock_device_hotplug();
444 	mutex_lock(&acpi_scan_lock);
445 
446 	/*
447 	 * The device object's ACPI handle cannot become invalid as long as we
448 	 * are holding acpi_scan_lock, but it might have become invalid before
449 	 * that lock was acquired.
450 	 */
451 	if (adev->handle == INVALID_ACPI_HANDLE)
452 		goto err_out;
453 
454 	if (adev->flags.is_dock_station) {
455 		error = dock_notify(adev, src);
456 	} else if (adev->flags.hotplug_notify) {
457 		error = acpi_generic_hotplug_event(adev, src);
458 	} else {
459 		acpi_hp_notify notify;
460 
461 		acpi_lock_hp_context();
462 		notify = adev->hp ? adev->hp->notify : NULL;
463 		acpi_unlock_hp_context();
464 		/*
465 		 * There may be additional notify handlers for device objects
466 		 * without the .event() callback, so ignore them here.
467 		 */
468 		if (notify)
469 			error = notify(adev, src);
470 		else
471 			goto out;
472 	}
473 	switch (error) {
474 	case 0:
475 		ost_code = ACPI_OST_SC_SUCCESS;
476 		break;
477 	case -EPERM:
478 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 		break;
480 	case -EBUSY:
481 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 		break;
483 	default:
484 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 		break;
486 	}
487 
488  err_out:
489 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490 
491  out:
492 	acpi_put_acpi_dev(adev);
493 	mutex_unlock(&acpi_scan_lock);
494 	unlock_device_hotplug();
495 }
496 
497 static void acpi_free_power_resources_lists(struct acpi_device *device)
498 {
499 	int i;
500 
501 	if (device->wakeup.flags.valid)
502 		acpi_power_resources_list_free(&device->wakeup.resources);
503 
504 	if (!device->power.flags.power_resources)
505 		return;
506 
507 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 		struct acpi_device_power_state *ps = &device->power.states[i];
509 		acpi_power_resources_list_free(&ps->resources);
510 	}
511 }
512 
513 static void acpi_device_release(struct device *dev)
514 {
515 	struct acpi_device *acpi_dev = to_acpi_device(dev);
516 
517 	acpi_free_properties(acpi_dev);
518 	acpi_free_pnp_ids(&acpi_dev->pnp);
519 	acpi_free_power_resources_lists(acpi_dev);
520 	kfree(acpi_dev);
521 }
522 
523 static void acpi_device_del(struct acpi_device *device)
524 {
525 	struct acpi_device_bus_id *acpi_device_bus_id;
526 
527 	mutex_lock(&acpi_device_lock);
528 
529 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 		if (!strcmp(acpi_device_bus_id->bus_id,
531 			    acpi_device_hid(device))) {
532 			ida_free(&acpi_device_bus_id->instance_ida,
533 				 device->pnp.instance_no);
534 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 				list_del(&acpi_device_bus_id->node);
536 				kfree_const(acpi_device_bus_id->bus_id);
537 				kfree(acpi_device_bus_id);
538 			}
539 			break;
540 		}
541 
542 	list_del(&device->wakeup_list);
543 
544 	mutex_unlock(&acpi_device_lock);
545 
546 	acpi_power_add_remove_device(device, false);
547 	acpi_device_remove_files(device);
548 	if (device->remove)
549 		device->remove(device);
550 
551 	device_del(&device->dev);
552 }
553 
554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555 
556 static LIST_HEAD(acpi_device_del_list);
557 static DEFINE_MUTEX(acpi_device_del_lock);
558 
559 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560 {
561 	for (;;) {
562 		struct acpi_device *adev;
563 
564 		mutex_lock(&acpi_device_del_lock);
565 
566 		if (list_empty(&acpi_device_del_list)) {
567 			mutex_unlock(&acpi_device_del_lock);
568 			break;
569 		}
570 		adev = list_first_entry(&acpi_device_del_list,
571 					struct acpi_device, del_list);
572 		list_del(&adev->del_list);
573 
574 		mutex_unlock(&acpi_device_del_lock);
575 
576 		blocking_notifier_call_chain(&acpi_reconfig_chain,
577 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
578 
579 		acpi_device_del(adev);
580 		/*
581 		 * Drop references to all power resources that might have been
582 		 * used by the device.
583 		 */
584 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 		acpi_dev_put(adev);
586 	}
587 }
588 
589 /**
590  * acpi_scan_drop_device - Drop an ACPI device object.
591  * @handle: Handle of an ACPI namespace node, not used.
592  * @context: Address of the ACPI device object to drop.
593  *
594  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595  * namespace node the device object pointed to by @context is attached to.
596  *
597  * The unregistration is carried out asynchronously to avoid running
598  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599  * ensure the correct ordering (the device objects must be unregistered in the
600  * same order in which the corresponding namespace nodes are deleted).
601  */
602 static void acpi_scan_drop_device(acpi_handle handle, void *context)
603 {
604 	static DECLARE_WORK(work, acpi_device_del_work_fn);
605 	struct acpi_device *adev = context;
606 
607 	mutex_lock(&acpi_device_del_lock);
608 
609 	/*
610 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 	 * won't run after any hotplug work items submitted subsequently.  That
612 	 * prevents attempts to register device objects identical to those being
613 	 * deleted from happening concurrently (such attempts result from
614 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
615 	 * run after all of the work items submitted previously, which helps
616 	 * those work items to ensure that they are not accessing stale device
617 	 * objects.
618 	 */
619 	if (list_empty(&acpi_device_del_list))
620 		acpi_queue_hotplug_work(&work);
621 
622 	list_add_tail(&adev->del_list, &acpi_device_del_list);
623 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
624 	adev->handle = INVALID_ACPI_HANDLE;
625 
626 	mutex_unlock(&acpi_device_del_lock);
627 }
628 
629 static struct acpi_device *handle_to_device(acpi_handle handle,
630 					    void (*callback)(void *))
631 {
632 	struct acpi_device *adev = NULL;
633 	acpi_status status;
634 
635 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 				    (void **)&adev, callback);
637 	if (ACPI_FAILURE(status) || !adev) {
638 		acpi_handle_debug(handle, "No context!\n");
639 		return NULL;
640 	}
641 	return adev;
642 }
643 
644 /**
645  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646  * @handle: ACPI handle associated with the requested ACPI device object.
647  *
648  * Return a pointer to the ACPI device object associated with @handle, if
649  * present, or NULL otherwise.
650  */
651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652 {
653 	return handle_to_device(handle, NULL);
654 }
655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656 
657 static void get_acpi_device(void *dev)
658 {
659 	acpi_dev_get(dev);
660 }
661 
662 /**
663  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664  * @handle: ACPI handle associated with the requested ACPI device object.
665  *
666  * Return a pointer to the ACPI device object associated with @handle and bump
667  * up that object's reference counter (under the ACPI Namespace lock), if
668  * present, or return NULL otherwise.
669  *
670  * The ACPI device object reference acquired by this function needs to be
671  * dropped via acpi_dev_put().
672  */
673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674 {
675 	return handle_to_device(handle, get_acpi_device);
676 }
677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678 
679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680 {
681 	struct acpi_device_bus_id *acpi_device_bus_id;
682 
683 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 			return acpi_device_bus_id;
687 	}
688 	return NULL;
689 }
690 
691 static int acpi_device_set_name(struct acpi_device *device,
692 				struct acpi_device_bus_id *acpi_device_bus_id)
693 {
694 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 	int result;
696 
697 	result = ida_alloc(instance_ida, GFP_KERNEL);
698 	if (result < 0)
699 		return result;
700 
701 	device->pnp.instance_no = result;
702 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 	return 0;
704 }
705 
706 int acpi_tie_acpi_dev(struct acpi_device *adev)
707 {
708 	acpi_handle handle = adev->handle;
709 	acpi_status status;
710 
711 	if (!handle)
712 		return 0;
713 
714 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 	if (ACPI_FAILURE(status)) {
716 		acpi_handle_err(handle, "Unable to attach device data\n");
717 		return -ENODEV;
718 	}
719 
720 	return 0;
721 }
722 
723 static void acpi_store_pld_crc(struct acpi_device *adev)
724 {
725 	struct acpi_pld_info *pld;
726 	acpi_status status;
727 
728 	status = acpi_get_physical_device_location(adev->handle, &pld);
729 	if (ACPI_FAILURE(status))
730 		return;
731 
732 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
733 	ACPI_FREE(pld);
734 }
735 
736 int acpi_device_add(struct acpi_device *device)
737 {
738 	struct acpi_device_bus_id *acpi_device_bus_id;
739 	int result;
740 
741 	/*
742 	 * Linkage
743 	 * -------
744 	 * Link this device to its parent and siblings.
745 	 */
746 	INIT_LIST_HEAD(&device->wakeup_list);
747 	INIT_LIST_HEAD(&device->physical_node_list);
748 	INIT_LIST_HEAD(&device->del_list);
749 	mutex_init(&device->physical_node_lock);
750 
751 	mutex_lock(&acpi_device_lock);
752 
753 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
754 	if (acpi_device_bus_id) {
755 		result = acpi_device_set_name(device, acpi_device_bus_id);
756 		if (result)
757 			goto err_unlock;
758 	} else {
759 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
760 					     GFP_KERNEL);
761 		if (!acpi_device_bus_id) {
762 			result = -ENOMEM;
763 			goto err_unlock;
764 		}
765 		acpi_device_bus_id->bus_id =
766 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
767 		if (!acpi_device_bus_id->bus_id) {
768 			kfree(acpi_device_bus_id);
769 			result = -ENOMEM;
770 			goto err_unlock;
771 		}
772 
773 		ida_init(&acpi_device_bus_id->instance_ida);
774 
775 		result = acpi_device_set_name(device, acpi_device_bus_id);
776 		if (result) {
777 			kfree_const(acpi_device_bus_id->bus_id);
778 			kfree(acpi_device_bus_id);
779 			goto err_unlock;
780 		}
781 
782 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
783 	}
784 
785 	if (device->wakeup.flags.valid)
786 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
787 
788 	acpi_store_pld_crc(device);
789 
790 	mutex_unlock(&acpi_device_lock);
791 
792 	result = device_add(&device->dev);
793 	if (result) {
794 		dev_err(&device->dev, "Error registering device\n");
795 		goto err;
796 	}
797 
798 	result = acpi_device_setup_files(device);
799 	if (result)
800 		pr_err("Error creating sysfs interface for device %s\n",
801 		       dev_name(&device->dev));
802 
803 	return 0;
804 
805 err:
806 	mutex_lock(&acpi_device_lock);
807 
808 	list_del(&device->wakeup_list);
809 
810 err_unlock:
811 	mutex_unlock(&acpi_device_lock);
812 
813 	acpi_detach_data(device->handle, acpi_scan_drop_device);
814 
815 	return result;
816 }
817 
818 /* --------------------------------------------------------------------------
819                                  Device Enumeration
820    -------------------------------------------------------------------------- */
821 static bool acpi_info_matches_ids(struct acpi_device_info *info,
822 				  const char * const ids[])
823 {
824 	struct acpi_pnp_device_id_list *cid_list = NULL;
825 	int i, index;
826 
827 	if (!(info->valid & ACPI_VALID_HID))
828 		return false;
829 
830 	index = match_string(ids, -1, info->hardware_id.string);
831 	if (index >= 0)
832 		return true;
833 
834 	if (info->valid & ACPI_VALID_CID)
835 		cid_list = &info->compatible_id_list;
836 
837 	if (!cid_list)
838 		return false;
839 
840 	for (i = 0; i < cid_list->count; i++) {
841 		index = match_string(ids, -1, cid_list->ids[i].string);
842 		if (index >= 0)
843 			return true;
844 	}
845 
846 	return false;
847 }
848 
849 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
850 static const char * const acpi_ignore_dep_ids[] = {
851 	"PNP0D80", /* Windows-compatible System Power Management Controller */
852 	"INT33BD", /* Intel Baytrail Mailbox Device */
853 	"LATT2021", /* Lattice FW Update Client Driver */
854 	NULL
855 };
856 
857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
858 static const char * const acpi_honor_dep_ids[] = {
859 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
860 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
861 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
862 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
863 	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
864 	NULL
865 };
866 
867 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
868 {
869 	struct acpi_device *adev;
870 
871 	/*
872 	 * Fixed hardware devices do not appear in the namespace and do not
873 	 * have handles, but we fabricate acpi_devices for them, so we have
874 	 * to deal with them specially.
875 	 */
876 	if (!handle)
877 		return acpi_root;
878 
879 	do {
880 		acpi_status status;
881 
882 		status = acpi_get_parent(handle, &handle);
883 		if (ACPI_FAILURE(status)) {
884 			if (status != AE_NULL_ENTRY)
885 				return acpi_root;
886 
887 			return NULL;
888 		}
889 		adev = acpi_fetch_acpi_dev(handle);
890 	} while (!adev);
891 	return adev;
892 }
893 
894 acpi_status
895 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
896 {
897 	acpi_status status;
898 	acpi_handle tmp;
899 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
900 	union acpi_object *obj;
901 
902 	status = acpi_get_handle(handle, "_EJD", &tmp);
903 	if (ACPI_FAILURE(status))
904 		return status;
905 
906 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
907 	if (ACPI_SUCCESS(status)) {
908 		obj = buffer.pointer;
909 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
910 					 ejd);
911 		kfree(buffer.pointer);
912 	}
913 	return status;
914 }
915 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
916 
917 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
918 {
919 	acpi_handle handle = dev->handle;
920 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
921 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
922 	union acpi_object *package = NULL;
923 	union acpi_object *element = NULL;
924 	acpi_status status;
925 	int err = -ENODATA;
926 
927 	INIT_LIST_HEAD(&wakeup->resources);
928 
929 	/* _PRW */
930 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
931 	if (ACPI_FAILURE(status)) {
932 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
933 				 acpi_format_exception(status));
934 		return err;
935 	}
936 
937 	package = (union acpi_object *)buffer.pointer;
938 
939 	if (!package || package->package.count < 2)
940 		goto out;
941 
942 	element = &(package->package.elements[0]);
943 	if (!element)
944 		goto out;
945 
946 	if (element->type == ACPI_TYPE_PACKAGE) {
947 		if ((element->package.count < 2) ||
948 		    (element->package.elements[0].type !=
949 		     ACPI_TYPE_LOCAL_REFERENCE)
950 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
951 			goto out;
952 
953 		wakeup->gpe_device =
954 		    element->package.elements[0].reference.handle;
955 		wakeup->gpe_number =
956 		    (u32) element->package.elements[1].integer.value;
957 	} else if (element->type == ACPI_TYPE_INTEGER) {
958 		wakeup->gpe_device = NULL;
959 		wakeup->gpe_number = element->integer.value;
960 	} else {
961 		goto out;
962 	}
963 
964 	element = &(package->package.elements[1]);
965 	if (element->type != ACPI_TYPE_INTEGER)
966 		goto out;
967 
968 	wakeup->sleep_state = element->integer.value;
969 
970 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
971 	if (err)
972 		goto out;
973 
974 	if (!list_empty(&wakeup->resources)) {
975 		int sleep_state;
976 
977 		err = acpi_power_wakeup_list_init(&wakeup->resources,
978 						  &sleep_state);
979 		if (err) {
980 			acpi_handle_warn(handle, "Retrieving current states "
981 					 "of wakeup power resources failed\n");
982 			acpi_power_resources_list_free(&wakeup->resources);
983 			goto out;
984 		}
985 		if (sleep_state < wakeup->sleep_state) {
986 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
987 					 "(S%d) by S%d from power resources\n",
988 					 (int)wakeup->sleep_state, sleep_state);
989 			wakeup->sleep_state = sleep_state;
990 		}
991 	}
992 
993  out:
994 	kfree(buffer.pointer);
995 	return err;
996 }
997 
998 /* Do not use a button for S5 wakeup */
999 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
1000 
1001 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1002 {
1003 	static const struct acpi_device_id button_device_ids[] = {
1004 		{"PNP0C0C", 0},				/* Power button */
1005 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
1006 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
1007 		{"", 0},
1008 	};
1009 	struct acpi_device_wakeup *wakeup = &device->wakeup;
1010 	const struct acpi_device_id *match;
1011 	acpi_status status;
1012 
1013 	wakeup->flags.notifier_present = 0;
1014 
1015 	/* Power button, Lid switch always enable wakeup */
1016 	match = acpi_match_acpi_device(button_device_ids, device);
1017 	if (match) {
1018 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1019 		    wakeup->sleep_state == ACPI_STATE_S5)
1020 			wakeup->sleep_state = ACPI_STATE_S4;
1021 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1022 		device_set_wakeup_capable(&device->dev, true);
1023 		return true;
1024 	}
1025 
1026 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1027 					 wakeup->gpe_number);
1028 	return ACPI_SUCCESS(status);
1029 }
1030 
1031 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1032 {
1033 	int err;
1034 
1035 	/* Presence of _PRW indicates wake capable */
1036 	if (!acpi_has_method(device->handle, "_PRW"))
1037 		return;
1038 
1039 	err = acpi_bus_extract_wakeup_device_power_package(device);
1040 	if (err) {
1041 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1042 		return;
1043 	}
1044 
1045 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1046 	device->wakeup.prepare_count = 0;
1047 	/*
1048 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1049 	 * system for the ACPI device with the _PRW object.
1050 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1051 	 * So it is necessary to call _DSW object first. Only when it is not
1052 	 * present will the _PSW object used.
1053 	 */
1054 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1055 	if (err)
1056 		pr_debug("error in _DSW or _PSW evaluation\n");
1057 }
1058 
1059 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1060 {
1061 	struct acpi_device_power_state *ps = &device->power.states[state];
1062 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1063 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1064 	acpi_status status;
1065 
1066 	INIT_LIST_HEAD(&ps->resources);
1067 
1068 	/* Evaluate "_PRx" to get referenced power resources */
1069 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1070 	if (ACPI_SUCCESS(status)) {
1071 		union acpi_object *package = buffer.pointer;
1072 
1073 		if (buffer.length && package
1074 		    && package->type == ACPI_TYPE_PACKAGE
1075 		    && package->package.count)
1076 			acpi_extract_power_resources(package, 0, &ps->resources);
1077 
1078 		ACPI_FREE(buffer.pointer);
1079 	}
1080 
1081 	/* Evaluate "_PSx" to see if we can do explicit sets */
1082 	pathname[2] = 'S';
1083 	if (acpi_has_method(device->handle, pathname))
1084 		ps->flags.explicit_set = 1;
1085 
1086 	/* State is valid if there are means to put the device into it. */
1087 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1088 		ps->flags.valid = 1;
1089 
1090 	ps->power = -1;		/* Unknown - driver assigned */
1091 	ps->latency = -1;	/* Unknown - driver assigned */
1092 }
1093 
1094 static void acpi_bus_get_power_flags(struct acpi_device *device)
1095 {
1096 	unsigned long long dsc = ACPI_STATE_D0;
1097 	u32 i;
1098 
1099 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1100 	if (!acpi_has_method(device->handle, "_PS0") &&
1101 	    !acpi_has_method(device->handle, "_PR0"))
1102 		return;
1103 
1104 	device->flags.power_manageable = 1;
1105 
1106 	/*
1107 	 * Power Management Flags
1108 	 */
1109 	if (acpi_has_method(device->handle, "_PSC"))
1110 		device->power.flags.explicit_get = 1;
1111 
1112 	if (acpi_has_method(device->handle, "_IRC"))
1113 		device->power.flags.inrush_current = 1;
1114 
1115 	if (acpi_has_method(device->handle, "_DSW"))
1116 		device->power.flags.dsw_present = 1;
1117 
1118 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1119 	device->power.state_for_enumeration = dsc;
1120 
1121 	/*
1122 	 * Enumerate supported power management states
1123 	 */
1124 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1125 		acpi_bus_init_power_state(device, i);
1126 
1127 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1128 
1129 	/* Set the defaults for D0 and D3hot (always supported). */
1130 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1131 	device->power.states[ACPI_STATE_D0].power = 100;
1132 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1133 
1134 	/*
1135 	 * Use power resources only if the D0 list of them is populated, because
1136 	 * some platforms may provide _PR3 only to indicate D3cold support and
1137 	 * in those cases the power resources list returned by it may be bogus.
1138 	 */
1139 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1140 		device->power.flags.power_resources = 1;
1141 		/*
1142 		 * D3cold is supported if the D3hot list of power resources is
1143 		 * not empty.
1144 		 */
1145 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1146 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1147 	}
1148 
1149 	if (acpi_bus_init_power(device))
1150 		device->flags.power_manageable = 0;
1151 }
1152 
1153 static void acpi_bus_get_flags(struct acpi_device *device)
1154 {
1155 	/* Presence of _STA indicates 'dynamic_status' */
1156 	if (acpi_has_method(device->handle, "_STA"))
1157 		device->flags.dynamic_status = 1;
1158 
1159 	/* Presence of _RMV indicates 'removable' */
1160 	if (acpi_has_method(device->handle, "_RMV"))
1161 		device->flags.removable = 1;
1162 
1163 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1164 	if (acpi_has_method(device->handle, "_EJD") ||
1165 	    acpi_has_method(device->handle, "_EJ0"))
1166 		device->flags.ejectable = 1;
1167 }
1168 
1169 static void acpi_device_get_busid(struct acpi_device *device)
1170 {
1171 	char bus_id[5] = { '?', 0 };
1172 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1173 	int i = 0;
1174 
1175 	/*
1176 	 * Bus ID
1177 	 * ------
1178 	 * The device's Bus ID is simply the object name.
1179 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1180 	 */
1181 	if (!acpi_dev_parent(device)) {
1182 		strcpy(device->pnp.bus_id, "ACPI");
1183 		return;
1184 	}
1185 
1186 	switch (device->device_type) {
1187 	case ACPI_BUS_TYPE_POWER_BUTTON:
1188 		strcpy(device->pnp.bus_id, "PWRF");
1189 		break;
1190 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1191 		strcpy(device->pnp.bus_id, "SLPF");
1192 		break;
1193 	case ACPI_BUS_TYPE_ECDT_EC:
1194 		strcpy(device->pnp.bus_id, "ECDT");
1195 		break;
1196 	default:
1197 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1198 		/* Clean up trailing underscores (if any) */
1199 		for (i = 3; i > 1; i--) {
1200 			if (bus_id[i] == '_')
1201 				bus_id[i] = '\0';
1202 			else
1203 				break;
1204 		}
1205 		strcpy(device->pnp.bus_id, bus_id);
1206 		break;
1207 	}
1208 }
1209 
1210 /*
1211  * acpi_ata_match - see if an acpi object is an ATA device
1212  *
1213  * If an acpi object has one of the ACPI ATA methods defined,
1214  * then we can safely call it an ATA device.
1215  */
1216 bool acpi_ata_match(acpi_handle handle)
1217 {
1218 	return acpi_has_method(handle, "_GTF") ||
1219 	       acpi_has_method(handle, "_GTM") ||
1220 	       acpi_has_method(handle, "_STM") ||
1221 	       acpi_has_method(handle, "_SDD");
1222 }
1223 
1224 /*
1225  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1226  *
1227  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1228  * then we can safely call it an ejectable drive bay
1229  */
1230 bool acpi_bay_match(acpi_handle handle)
1231 {
1232 	acpi_handle phandle;
1233 
1234 	if (!acpi_has_method(handle, "_EJ0"))
1235 		return false;
1236 	if (acpi_ata_match(handle))
1237 		return true;
1238 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1239 		return false;
1240 
1241 	return acpi_ata_match(phandle);
1242 }
1243 
1244 bool acpi_device_is_battery(struct acpi_device *adev)
1245 {
1246 	struct acpi_hardware_id *hwid;
1247 
1248 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1249 		if (!strcmp("PNP0C0A", hwid->id))
1250 			return true;
1251 
1252 	return false;
1253 }
1254 
1255 static bool is_ejectable_bay(struct acpi_device *adev)
1256 {
1257 	acpi_handle handle = adev->handle;
1258 
1259 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1260 		return true;
1261 
1262 	return acpi_bay_match(handle);
1263 }
1264 
1265 /*
1266  * acpi_dock_match - see if an acpi object has a _DCK method
1267  */
1268 bool acpi_dock_match(acpi_handle handle)
1269 {
1270 	return acpi_has_method(handle, "_DCK");
1271 }
1272 
1273 static acpi_status
1274 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1275 			  void **return_value)
1276 {
1277 	long *cap = context;
1278 
1279 	if (acpi_has_method(handle, "_BCM") &&
1280 	    acpi_has_method(handle, "_BCL")) {
1281 		acpi_handle_debug(handle, "Found generic backlight support\n");
1282 		*cap |= ACPI_VIDEO_BACKLIGHT;
1283 		/* We have backlight support, no need to scan further */
1284 		return AE_CTRL_TERMINATE;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /* Returns true if the ACPI object is a video device which can be
1290  * handled by video.ko.
1291  * The device will get a Linux specific CID added in scan.c to
1292  * identify the device as an ACPI graphics device
1293  * Be aware that the graphics device may not be physically present
1294  * Use acpi_video_get_capabilities() to detect general ACPI video
1295  * capabilities of present cards
1296  */
1297 long acpi_is_video_device(acpi_handle handle)
1298 {
1299 	long video_caps = 0;
1300 
1301 	/* Is this device able to support video switching ? */
1302 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1303 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1304 
1305 	/* Is this device able to retrieve a video ROM ? */
1306 	if (acpi_has_method(handle, "_ROM"))
1307 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1308 
1309 	/* Is this device able to configure which video head to be POSTed ? */
1310 	if (acpi_has_method(handle, "_VPO") &&
1311 	    acpi_has_method(handle, "_GPD") &&
1312 	    acpi_has_method(handle, "_SPD"))
1313 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1314 
1315 	/* Only check for backlight functionality if one of the above hit. */
1316 	if (video_caps)
1317 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1318 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1319 				    &video_caps, NULL);
1320 
1321 	return video_caps;
1322 }
1323 EXPORT_SYMBOL(acpi_is_video_device);
1324 
1325 const char *acpi_device_hid(struct acpi_device *device)
1326 {
1327 	struct acpi_hardware_id *hid;
1328 
1329 	hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1330 	if (!hid)
1331 		return dummy_hid;
1332 
1333 	return hid->id;
1334 }
1335 EXPORT_SYMBOL(acpi_device_hid);
1336 
1337 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1338 {
1339 	struct acpi_hardware_id *id;
1340 
1341 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1342 	if (!id)
1343 		return;
1344 
1345 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1346 	if (!id->id) {
1347 		kfree(id);
1348 		return;
1349 	}
1350 
1351 	list_add_tail(&id->list, &pnp->ids);
1352 	pnp->type.hardware_id = 1;
1353 }
1354 
1355 /*
1356  * Old IBM workstations have a DSDT bug wherein the SMBus object
1357  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1358  * prefix.  Work around this.
1359  */
1360 static bool acpi_ibm_smbus_match(acpi_handle handle)
1361 {
1362 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1363 	struct acpi_buffer path = { sizeof(node_name), node_name };
1364 
1365 	if (!dmi_name_in_vendors("IBM"))
1366 		return false;
1367 
1368 	/* Look for SMBS object */
1369 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1370 	    strcmp("SMBS", path.pointer))
1371 		return false;
1372 
1373 	/* Does it have the necessary (but misnamed) methods? */
1374 	if (acpi_has_method(handle, "SBI") &&
1375 	    acpi_has_method(handle, "SBR") &&
1376 	    acpi_has_method(handle, "SBW"))
1377 		return true;
1378 
1379 	return false;
1380 }
1381 
1382 static bool acpi_object_is_system_bus(acpi_handle handle)
1383 {
1384 	acpi_handle tmp;
1385 
1386 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1387 	    tmp == handle)
1388 		return true;
1389 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1390 	    tmp == handle)
1391 		return true;
1392 
1393 	return false;
1394 }
1395 
1396 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1397 			     int device_type)
1398 {
1399 	struct acpi_device_info *info = NULL;
1400 	struct acpi_pnp_device_id_list *cid_list;
1401 	int i;
1402 
1403 	switch (device_type) {
1404 	case ACPI_BUS_TYPE_DEVICE:
1405 		if (handle == ACPI_ROOT_OBJECT) {
1406 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1407 			break;
1408 		}
1409 
1410 		acpi_get_object_info(handle, &info);
1411 		if (!info) {
1412 			pr_err("%s: Error reading device info\n", __func__);
1413 			return;
1414 		}
1415 
1416 		if (info->valid & ACPI_VALID_HID) {
1417 			acpi_add_id(pnp, info->hardware_id.string);
1418 			pnp->type.platform_id = 1;
1419 		}
1420 		if (info->valid & ACPI_VALID_CID) {
1421 			cid_list = &info->compatible_id_list;
1422 			for (i = 0; i < cid_list->count; i++)
1423 				acpi_add_id(pnp, cid_list->ids[i].string);
1424 		}
1425 		if (info->valid & ACPI_VALID_ADR) {
1426 			pnp->bus_address = info->address;
1427 			pnp->type.bus_address = 1;
1428 		}
1429 		if (info->valid & ACPI_VALID_UID)
1430 			pnp->unique_id = kstrdup(info->unique_id.string,
1431 							GFP_KERNEL);
1432 		if (info->valid & ACPI_VALID_CLS)
1433 			acpi_add_id(pnp, info->class_code.string);
1434 
1435 		kfree(info);
1436 
1437 		/*
1438 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1439 		 * synthetic HIDs to make sure drivers can find them.
1440 		 */
1441 		if (acpi_is_video_device(handle)) {
1442 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1443 			pnp->type.backlight = 1;
1444 			break;
1445 		}
1446 		if (acpi_bay_match(handle))
1447 			acpi_add_id(pnp, ACPI_BAY_HID);
1448 		else if (acpi_dock_match(handle))
1449 			acpi_add_id(pnp, ACPI_DOCK_HID);
1450 		else if (acpi_ibm_smbus_match(handle))
1451 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1452 		else if (list_empty(&pnp->ids) &&
1453 			 acpi_object_is_system_bus(handle)) {
1454 			/* \_SB, \_TZ, LNXSYBUS */
1455 			acpi_add_id(pnp, ACPI_BUS_HID);
1456 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1457 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1458 		}
1459 
1460 		break;
1461 	case ACPI_BUS_TYPE_POWER:
1462 		acpi_add_id(pnp, ACPI_POWER_HID);
1463 		break;
1464 	case ACPI_BUS_TYPE_PROCESSOR:
1465 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1466 		break;
1467 	case ACPI_BUS_TYPE_THERMAL:
1468 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1469 		break;
1470 	case ACPI_BUS_TYPE_POWER_BUTTON:
1471 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1472 		break;
1473 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1474 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1475 		break;
1476 	case ACPI_BUS_TYPE_ECDT_EC:
1477 		acpi_add_id(pnp, ACPI_ECDT_HID);
1478 		break;
1479 	}
1480 }
1481 
1482 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1483 {
1484 	struct acpi_hardware_id *id, *tmp;
1485 
1486 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1487 		kfree_const(id->id);
1488 		kfree(id);
1489 	}
1490 	kfree(pnp->unique_id);
1491 }
1492 
1493 /**
1494  * acpi_dma_supported - Check DMA support for the specified device.
1495  * @adev: The pointer to acpi device
1496  *
1497  * Return false if DMA is not supported. Otherwise, return true
1498  */
1499 bool acpi_dma_supported(const struct acpi_device *adev)
1500 {
1501 	if (!adev)
1502 		return false;
1503 
1504 	if (adev->flags.cca_seen)
1505 		return true;
1506 
1507 	/*
1508 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1509 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1510 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1511 	*/
1512 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1513 		return true;
1514 
1515 	return false;
1516 }
1517 
1518 /**
1519  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1520  * @adev: The pointer to acpi device
1521  *
1522  * Return enum dev_dma_attr.
1523  */
1524 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1525 {
1526 	if (!acpi_dma_supported(adev))
1527 		return DEV_DMA_NOT_SUPPORTED;
1528 
1529 	if (adev->flags.coherent_dma)
1530 		return DEV_DMA_COHERENT;
1531 	else
1532 		return DEV_DMA_NON_COHERENT;
1533 }
1534 
1535 /**
1536  * acpi_dma_get_range() - Get device DMA parameters.
1537  *
1538  * @dev: device to configure
1539  * @map: pointer to DMA ranges result
1540  *
1541  * Evaluate DMA regions and return pointer to DMA regions on
1542  * parsing success; it does not update the passed in values on failure.
1543  *
1544  * Return 0 on success, < 0 on failure.
1545  */
1546 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1547 {
1548 	struct acpi_device *adev;
1549 	LIST_HEAD(list);
1550 	struct resource_entry *rentry;
1551 	int ret;
1552 	struct device *dma_dev = dev;
1553 	struct bus_dma_region *r;
1554 
1555 	/*
1556 	 * Walk the device tree chasing an ACPI companion with a _DMA
1557 	 * object while we go. Stop if we find a device with an ACPI
1558 	 * companion containing a _DMA method.
1559 	 */
1560 	do {
1561 		adev = ACPI_COMPANION(dma_dev);
1562 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1563 			break;
1564 
1565 		dma_dev = dma_dev->parent;
1566 	} while (dma_dev);
1567 
1568 	if (!dma_dev)
1569 		return -ENODEV;
1570 
1571 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1572 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	ret = acpi_dev_get_dma_resources(adev, &list);
1577 	if (ret > 0) {
1578 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1579 		if (!r) {
1580 			ret = -ENOMEM;
1581 			goto out;
1582 		}
1583 
1584 		*map = r;
1585 
1586 		list_for_each_entry(rentry, &list, node) {
1587 			if (rentry->res->start >= rentry->res->end) {
1588 				kfree(*map);
1589 				*map = NULL;
1590 				ret = -EINVAL;
1591 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1592 				goto out;
1593 			}
1594 
1595 			r->cpu_start = rentry->res->start;
1596 			r->dma_start = rentry->res->start - rentry->offset;
1597 			r->size = resource_size(rentry->res);
1598 			r++;
1599 		}
1600 	}
1601  out:
1602 	acpi_dev_free_resource_list(&list);
1603 
1604 	return ret >= 0 ? 0 : ret;
1605 }
1606 
1607 #ifdef CONFIG_IOMMU_API
1608 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1609 			   struct fwnode_handle *fwnode)
1610 {
1611 	int ret;
1612 
1613 	ret = iommu_fwspec_init(dev, fwnode);
1614 	if (ret)
1615 		return ret;
1616 
1617 	return iommu_fwspec_add_ids(dev, &id, 1);
1618 }
1619 
1620 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1621 {
1622 	int err;
1623 
1624 	/* Serialise to make dev->iommu stable under our potential fwspec */
1625 	mutex_lock(&iommu_probe_device_lock);
1626 	/* If we already translated the fwspec there is nothing left to do */
1627 	if (dev_iommu_fwspec_get(dev)) {
1628 		mutex_unlock(&iommu_probe_device_lock);
1629 		return 0;
1630 	}
1631 
1632 	err = iort_iommu_configure_id(dev, id_in);
1633 	if (err && err != -EPROBE_DEFER)
1634 		err = viot_iommu_configure(dev);
1635 	mutex_unlock(&iommu_probe_device_lock);
1636 
1637 	/*
1638 	 * If we have reason to believe the IOMMU driver missed the initial
1639 	 * iommu_probe_device() call for dev, replay it to get things in order.
1640 	 */
1641 	if (!err && dev->bus)
1642 		err = iommu_probe_device(dev);
1643 
1644 	return err;
1645 }
1646 
1647 #else /* !CONFIG_IOMMU_API */
1648 
1649 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1650 			   struct fwnode_handle *fwnode)
1651 {
1652 	return -ENODEV;
1653 }
1654 
1655 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1656 {
1657 	return -ENODEV;
1658 }
1659 
1660 #endif /* !CONFIG_IOMMU_API */
1661 
1662 /**
1663  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1664  * @dev: The pointer to the device
1665  * @attr: device dma attributes
1666  * @input_id: input device id const value pointer
1667  */
1668 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1669 			  const u32 *input_id)
1670 {
1671 	int ret;
1672 
1673 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1674 		set_dma_ops(dev, &dma_dummy_ops);
1675 		return 0;
1676 	}
1677 
1678 	acpi_arch_dma_setup(dev);
1679 
1680 	/* Ignore all other errors apart from EPROBE_DEFER */
1681 	ret = acpi_iommu_configure_id(dev, input_id);
1682 	if (ret == -EPROBE_DEFER)
1683 		return -EPROBE_DEFER;
1684 	if (ret)
1685 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1686 
1687 	arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1692 
1693 static void acpi_init_coherency(struct acpi_device *adev)
1694 {
1695 	unsigned long long cca = 0;
1696 	acpi_status status;
1697 	struct acpi_device *parent = acpi_dev_parent(adev);
1698 
1699 	if (parent && parent->flags.cca_seen) {
1700 		/*
1701 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1702 		 * already saw one.
1703 		 */
1704 		adev->flags.cca_seen = 1;
1705 		cca = parent->flags.coherent_dma;
1706 	} else {
1707 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1708 					       NULL, &cca);
1709 		if (ACPI_SUCCESS(status))
1710 			adev->flags.cca_seen = 1;
1711 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1712 			/*
1713 			 * If architecture does not specify that _CCA is
1714 			 * required for DMA-able devices (e.g. x86),
1715 			 * we default to _CCA=1.
1716 			 */
1717 			cca = 1;
1718 		else
1719 			acpi_handle_debug(adev->handle,
1720 					  "ACPI device is missing _CCA.\n");
1721 	}
1722 
1723 	adev->flags.coherent_dma = cca;
1724 }
1725 
1726 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1727 {
1728 	bool *is_serial_bus_slave_p = data;
1729 
1730 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1731 		return 1;
1732 
1733 	*is_serial_bus_slave_p = true;
1734 
1735 	 /* no need to do more checking */
1736 	return -1;
1737 }
1738 
1739 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1740 {
1741 	struct acpi_device *parent = acpi_dev_parent(device);
1742 	static const struct acpi_device_id indirect_io_hosts[] = {
1743 		{"HISI0191", 0},
1744 		{}
1745 	};
1746 
1747 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1748 }
1749 
1750 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1751 {
1752 	struct list_head resource_list;
1753 	bool is_serial_bus_slave = false;
1754 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1755 	/*
1756 	 * These devices have multiple SerialBus resources and a client
1757 	 * device must be instantiated for each of them, each with
1758 	 * its own device id.
1759 	 * Normally we only instantiate one client device for the first
1760 	 * resource, using the ACPI HID as id. These special cases are handled
1761 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1762 	 * knows which client device id to use for each resource.
1763 	 */
1764 		{"BSG1160", },
1765 		{"BSG2150", },
1766 		{"CSC3551", },
1767 		{"CSC3554", },
1768 		{"CSC3556", },
1769 		{"CSC3557", },
1770 		{"INT33FE", },
1771 		{"INT3515", },
1772 		/* Non-conforming _HID for Cirrus Logic already released */
1773 		{"CLSA0100", },
1774 		{"CLSA0101", },
1775 	/*
1776 	 * Some ACPI devs contain SerialBus resources even though they are not
1777 	 * attached to a serial bus at all.
1778 	 */
1779 		{ACPI_VIDEO_HID, },
1780 		{"MSHW0028", },
1781 	/*
1782 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1783 	 * expects a regular tty cdev to be created (instead of the in kernel
1784 	 * serdev) and which have a kernel driver which expects a platform_dev
1785 	 * such as the rfkill-gpio driver.
1786 	 */
1787 		{"BCM4752", },
1788 		{"LNV4752", },
1789 		{}
1790 	};
1791 
1792 	if (acpi_is_indirect_io_slave(device))
1793 		return true;
1794 
1795 	/* Macs use device properties in lieu of _CRS resources */
1796 	if (x86_apple_machine &&
1797 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1798 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1799 	     fwnode_property_present(&device->fwnode, "baud")))
1800 		return true;
1801 
1802 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1803 		return false;
1804 
1805 	INIT_LIST_HEAD(&resource_list);
1806 	acpi_dev_get_resources(device, &resource_list,
1807 			       acpi_check_serial_bus_slave,
1808 			       &is_serial_bus_slave);
1809 	acpi_dev_free_resource_list(&resource_list);
1810 
1811 	return is_serial_bus_slave;
1812 }
1813 
1814 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1815 			     int type, void (*release)(struct device *))
1816 {
1817 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1818 
1819 	INIT_LIST_HEAD(&device->pnp.ids);
1820 	device->device_type = type;
1821 	device->handle = handle;
1822 	device->dev.parent = parent ? &parent->dev : NULL;
1823 	device->dev.release = release;
1824 	device->dev.bus = &acpi_bus_type;
1825 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1826 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1827 	acpi_device_get_busid(device);
1828 	acpi_set_pnp_ids(handle, &device->pnp, type);
1829 	acpi_init_properties(device);
1830 	acpi_bus_get_flags(device);
1831 	device->flags.match_driver = false;
1832 	device->flags.initialized = true;
1833 	device->flags.enumeration_by_parent =
1834 		acpi_device_enumeration_by_parent(device);
1835 	acpi_device_clear_enumerated(device);
1836 	device_initialize(&device->dev);
1837 	dev_set_uevent_suppress(&device->dev, true);
1838 	acpi_init_coherency(device);
1839 }
1840 
1841 static void acpi_scan_dep_init(struct acpi_device *adev)
1842 {
1843 	struct acpi_dep_data *dep;
1844 
1845 	list_for_each_entry(dep, &acpi_dep_list, node) {
1846 		if (dep->consumer == adev->handle) {
1847 			if (dep->honor_dep)
1848 				adev->flags.honor_deps = 1;
1849 
1850 			if (!dep->met)
1851 				adev->dep_unmet++;
1852 		}
1853 	}
1854 }
1855 
1856 void acpi_device_add_finalize(struct acpi_device *device)
1857 {
1858 	dev_set_uevent_suppress(&device->dev, false);
1859 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1860 }
1861 
1862 static void acpi_scan_init_status(struct acpi_device *adev)
1863 {
1864 	if (acpi_bus_get_status(adev))
1865 		acpi_set_device_status(adev, 0);
1866 }
1867 
1868 static int acpi_add_single_object(struct acpi_device **child,
1869 				  acpi_handle handle, int type, bool dep_init)
1870 {
1871 	struct acpi_device *device;
1872 	bool release_dep_lock = false;
1873 	int result;
1874 
1875 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1876 	if (!device)
1877 		return -ENOMEM;
1878 
1879 	acpi_init_device_object(device, handle, type, acpi_device_release);
1880 	/*
1881 	 * Getting the status is delayed till here so that we can call
1882 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1883 	 * this must be done before the get power-/wakeup_dev-flags calls.
1884 	 */
1885 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1886 		if (dep_init) {
1887 			mutex_lock(&acpi_dep_list_lock);
1888 			/*
1889 			 * Hold the lock until the acpi_tie_acpi_dev() call
1890 			 * below to prevent concurrent acpi_scan_clear_dep()
1891 			 * from deleting a dependency list entry without
1892 			 * updating dep_unmet for the device.
1893 			 */
1894 			release_dep_lock = true;
1895 			acpi_scan_dep_init(device);
1896 		}
1897 		acpi_scan_init_status(device);
1898 	}
1899 
1900 	acpi_bus_get_power_flags(device);
1901 	acpi_bus_get_wakeup_device_flags(device);
1902 
1903 	result = acpi_tie_acpi_dev(device);
1904 
1905 	if (release_dep_lock)
1906 		mutex_unlock(&acpi_dep_list_lock);
1907 
1908 	if (!result)
1909 		result = acpi_device_add(device);
1910 
1911 	if (result) {
1912 		acpi_device_release(&device->dev);
1913 		return result;
1914 	}
1915 
1916 	acpi_power_add_remove_device(device, true);
1917 	acpi_device_add_finalize(device);
1918 
1919 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1920 			  dev_name(&device->dev), device->dev.parent ?
1921 				dev_name(device->dev.parent) : "(null)");
1922 
1923 	*child = device;
1924 	return 0;
1925 }
1926 
1927 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1928 					    void *context)
1929 {
1930 	struct resource *res = context;
1931 
1932 	if (acpi_dev_resource_memory(ares, res))
1933 		return AE_CTRL_TERMINATE;
1934 
1935 	return AE_OK;
1936 }
1937 
1938 static bool acpi_device_should_be_hidden(acpi_handle handle)
1939 {
1940 	acpi_status status;
1941 	struct resource res;
1942 
1943 	/* Check if it should ignore the UART device */
1944 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1945 		return false;
1946 
1947 	/*
1948 	 * The UART device described in SPCR table is assumed to have only one
1949 	 * memory resource present. So we only look for the first one here.
1950 	 */
1951 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1952 				     acpi_get_resource_memory, &res);
1953 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1954 		return false;
1955 
1956 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1957 			 &res.start);
1958 
1959 	return true;
1960 }
1961 
1962 bool acpi_device_is_present(const struct acpi_device *adev)
1963 {
1964 	return adev->status.present || adev->status.functional;
1965 }
1966 
1967 bool acpi_device_is_enabled(const struct acpi_device *adev)
1968 {
1969 	return adev->status.enabled;
1970 }
1971 
1972 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1973 				       const char *idstr,
1974 				       const struct acpi_device_id **matchid)
1975 {
1976 	const struct acpi_device_id *devid;
1977 
1978 	if (handler->match)
1979 		return handler->match(idstr, matchid);
1980 
1981 	for (devid = handler->ids; devid->id[0]; devid++)
1982 		if (!strcmp((char *)devid->id, idstr)) {
1983 			if (matchid)
1984 				*matchid = devid;
1985 
1986 			return true;
1987 		}
1988 
1989 	return false;
1990 }
1991 
1992 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1993 					const struct acpi_device_id **matchid)
1994 {
1995 	struct acpi_scan_handler *handler;
1996 
1997 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1998 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1999 			return handler;
2000 
2001 	return NULL;
2002 }
2003 
2004 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2005 {
2006 	if (!!hotplug->enabled == !!val)
2007 		return;
2008 
2009 	mutex_lock(&acpi_scan_lock);
2010 
2011 	hotplug->enabled = val;
2012 
2013 	mutex_unlock(&acpi_scan_lock);
2014 }
2015 
2016 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2017 {
2018 	struct acpi_hardware_id *hwid;
2019 
2020 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2021 		acpi_dock_add(adev);
2022 		return;
2023 	}
2024 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2025 		struct acpi_scan_handler *handler;
2026 
2027 		handler = acpi_scan_match_handler(hwid->id, NULL);
2028 		if (handler) {
2029 			adev->flags.hotplug_notify = true;
2030 			break;
2031 		}
2032 	}
2033 }
2034 
2035 static u32 acpi_scan_check_dep(acpi_handle handle)
2036 {
2037 	struct acpi_handle_list dep_devices;
2038 	u32 count;
2039 	int i;
2040 
2041 	/*
2042 	 * Check for _HID here to avoid deferring the enumeration of:
2043 	 * 1. PCI devices.
2044 	 * 2. ACPI nodes describing USB ports.
2045 	 * Still, checking for _HID catches more then just these cases ...
2046 	 */
2047 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2048 		return 0;
2049 
2050 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2051 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2052 		return 0;
2053 	}
2054 
2055 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2056 		struct acpi_device_info *info;
2057 		struct acpi_dep_data *dep;
2058 		bool skip, honor_dep;
2059 		acpi_status status;
2060 
2061 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2062 		if (ACPI_FAILURE(status)) {
2063 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2064 			continue;
2065 		}
2066 
2067 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2068 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2069 		kfree(info);
2070 
2071 		if (skip)
2072 			continue;
2073 
2074 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2075 		if (!dep)
2076 			continue;
2077 
2078 		count++;
2079 
2080 		dep->supplier = dep_devices.handles[i];
2081 		dep->consumer = handle;
2082 		dep->honor_dep = honor_dep;
2083 
2084 		mutex_lock(&acpi_dep_list_lock);
2085 		list_add_tail(&dep->node , &acpi_dep_list);
2086 		mutex_unlock(&acpi_dep_list_lock);
2087 	}
2088 
2089 	acpi_handle_list_free(&dep_devices);
2090 	return count;
2091 }
2092 
2093 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2094 {
2095 	acpi_mipi_check_crs_csi2(handle);
2096 	return AE_OK;
2097 }
2098 
2099 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2100 				      struct acpi_device **adev_p)
2101 {
2102 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2103 	acpi_object_type acpi_type;
2104 	int type;
2105 
2106 	if (device)
2107 		goto out;
2108 
2109 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2110 		return AE_OK;
2111 
2112 	switch (acpi_type) {
2113 	case ACPI_TYPE_DEVICE:
2114 		if (acpi_device_should_be_hidden(handle))
2115 			return AE_OK;
2116 
2117 		if (first_pass) {
2118 			acpi_mipi_check_crs_csi2(handle);
2119 
2120 			/* Bail out if there are dependencies. */
2121 			if (acpi_scan_check_dep(handle) > 0) {
2122 				/*
2123 				 * The entire CSI-2 connection graph needs to be
2124 				 * extracted before any drivers or scan handlers
2125 				 * are bound to struct device objects, so scan
2126 				 * _CRS CSI-2 resource descriptors for all
2127 				 * devices below the current handle.
2128 				 */
2129 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2130 						    ACPI_UINT32_MAX,
2131 						    acpi_scan_check_crs_csi2_cb,
2132 						    NULL, NULL, NULL);
2133 				return AE_CTRL_DEPTH;
2134 			}
2135 		}
2136 
2137 		fallthrough;
2138 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2139 		type = ACPI_BUS_TYPE_DEVICE;
2140 		break;
2141 
2142 	case ACPI_TYPE_PROCESSOR:
2143 		type = ACPI_BUS_TYPE_PROCESSOR;
2144 		break;
2145 
2146 	case ACPI_TYPE_THERMAL:
2147 		type = ACPI_BUS_TYPE_THERMAL;
2148 		break;
2149 
2150 	case ACPI_TYPE_POWER:
2151 		acpi_add_power_resource(handle);
2152 		fallthrough;
2153 	default:
2154 		return AE_OK;
2155 	}
2156 
2157 	/*
2158 	 * If first_pass is true at this point, the device has no dependencies,
2159 	 * or the creation of the device object would have been postponed above.
2160 	 */
2161 	acpi_add_single_object(&device, handle, type, !first_pass);
2162 	if (!device)
2163 		return AE_CTRL_DEPTH;
2164 
2165 	acpi_scan_init_hotplug(device);
2166 
2167 out:
2168 	if (!*adev_p)
2169 		*adev_p = device;
2170 
2171 	return AE_OK;
2172 }
2173 
2174 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2175 					void *not_used, void **ret_p)
2176 {
2177 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2178 }
2179 
2180 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2181 					void *not_used, void **ret_p)
2182 {
2183 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2184 }
2185 
2186 static void acpi_default_enumeration(struct acpi_device *device)
2187 {
2188 	/*
2189 	 * Do not enumerate devices with enumeration_by_parent flag set as
2190 	 * they will be enumerated by their respective parents.
2191 	 */
2192 	if (!device->flags.enumeration_by_parent) {
2193 		acpi_create_platform_device(device, NULL);
2194 		acpi_device_set_enumerated(device);
2195 	} else {
2196 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2197 					     ACPI_RECONFIG_DEVICE_ADD, device);
2198 	}
2199 }
2200 
2201 static const struct acpi_device_id generic_device_ids[] = {
2202 	{ACPI_DT_NAMESPACE_HID, },
2203 	{"", },
2204 };
2205 
2206 static int acpi_generic_device_attach(struct acpi_device *adev,
2207 				      const struct acpi_device_id *not_used)
2208 {
2209 	/*
2210 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2211 	 * below can be unconditional.
2212 	 */
2213 	if (adev->data.of_compatible)
2214 		acpi_default_enumeration(adev);
2215 
2216 	return 1;
2217 }
2218 
2219 static struct acpi_scan_handler generic_device_handler = {
2220 	.ids = generic_device_ids,
2221 	.attach = acpi_generic_device_attach,
2222 };
2223 
2224 static int acpi_scan_attach_handler(struct acpi_device *device)
2225 {
2226 	struct acpi_hardware_id *hwid;
2227 	int ret = 0;
2228 
2229 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2230 		const struct acpi_device_id *devid;
2231 		struct acpi_scan_handler *handler;
2232 
2233 		handler = acpi_scan_match_handler(hwid->id, &devid);
2234 		if (handler) {
2235 			if (!handler->attach) {
2236 				device->pnp.type.platform_id = 0;
2237 				continue;
2238 			}
2239 			device->handler = handler;
2240 			ret = handler->attach(device, devid);
2241 			if (ret > 0)
2242 				break;
2243 
2244 			device->handler = NULL;
2245 			if (ret < 0)
2246 				break;
2247 		}
2248 	}
2249 
2250 	return ret;
2251 }
2252 
2253 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2254 {
2255 	bool skip = !first_pass && device->flags.visited;
2256 	acpi_handle ejd;
2257 	int ret;
2258 
2259 	if (skip)
2260 		goto ok;
2261 
2262 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2263 		register_dock_dependent_device(device, ejd);
2264 
2265 	acpi_bus_get_status(device);
2266 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2267 	if (!acpi_dev_ready_for_enumeration(device)) {
2268 		device->flags.initialized = false;
2269 		acpi_device_clear_enumerated(device);
2270 		device->flags.power_manageable = 0;
2271 		return 0;
2272 	}
2273 	if (device->handler)
2274 		goto ok;
2275 
2276 	acpi_ec_register_opregions(device);
2277 
2278 	if (!device->flags.initialized) {
2279 		device->flags.power_manageable =
2280 			device->power.states[ACPI_STATE_D0].flags.valid;
2281 		if (acpi_bus_init_power(device))
2282 			device->flags.power_manageable = 0;
2283 
2284 		device->flags.initialized = true;
2285 	} else if (device->flags.visited) {
2286 		goto ok;
2287 	}
2288 
2289 	ret = acpi_scan_attach_handler(device);
2290 	if (ret < 0)
2291 		return 0;
2292 
2293 	device->flags.match_driver = true;
2294 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2295 		acpi_device_set_enumerated(device);
2296 		goto ok;
2297 	}
2298 
2299 	ret = device_attach(&device->dev);
2300 	if (ret < 0)
2301 		return 0;
2302 
2303 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2304 		acpi_default_enumeration(device);
2305 	else
2306 		acpi_device_set_enumerated(device);
2307 
2308 ok:
2309 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2310 
2311 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2312 		device->handler->hotplug.notify_online(device);
2313 
2314 	return 0;
2315 }
2316 
2317 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2318 {
2319 	struct acpi_device **adev_p = data;
2320 	struct acpi_device *adev = *adev_p;
2321 
2322 	/*
2323 	 * If we're passed a 'previous' consumer device then we need to skip
2324 	 * any consumers until we meet the previous one, and then NULL @data
2325 	 * so the next one can be returned.
2326 	 */
2327 	if (adev) {
2328 		if (dep->consumer == adev->handle)
2329 			*adev_p = NULL;
2330 
2331 		return 0;
2332 	}
2333 
2334 	adev = acpi_get_acpi_dev(dep->consumer);
2335 	if (adev) {
2336 		*(struct acpi_device **)data = adev;
2337 		return 1;
2338 	}
2339 	/* Continue parsing if the device object is not present. */
2340 	return 0;
2341 }
2342 
2343 struct acpi_scan_clear_dep_work {
2344 	struct work_struct work;
2345 	struct acpi_device *adev;
2346 };
2347 
2348 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2349 {
2350 	struct acpi_scan_clear_dep_work *cdw;
2351 
2352 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2353 
2354 	acpi_scan_lock_acquire();
2355 	acpi_bus_attach(cdw->adev, (void *)true);
2356 	acpi_scan_lock_release();
2357 
2358 	acpi_dev_put(cdw->adev);
2359 	kfree(cdw);
2360 }
2361 
2362 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2363 {
2364 	struct acpi_scan_clear_dep_work *cdw;
2365 
2366 	if (adev->dep_unmet)
2367 		return false;
2368 
2369 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2370 	if (!cdw)
2371 		return false;
2372 
2373 	cdw->adev = adev;
2374 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2375 	/*
2376 	 * Since the work function may block on the lock until the entire
2377 	 * initial enumeration of devices is complete, put it into the unbound
2378 	 * workqueue.
2379 	 */
2380 	queue_work(system_unbound_wq, &cdw->work);
2381 
2382 	return true;
2383 }
2384 
2385 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2386 {
2387 	list_del(&dep->node);
2388 	kfree(dep);
2389 }
2390 
2391 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2392 {
2393 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2394 
2395 	if (adev) {
2396 		adev->dep_unmet--;
2397 		if (!acpi_scan_clear_dep_queue(adev))
2398 			acpi_dev_put(adev);
2399 	}
2400 
2401 	if (dep->free_when_met)
2402 		acpi_scan_delete_dep_data(dep);
2403 	else
2404 		dep->met = true;
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2411  * @handle:	The ACPI handle of the supplier device
2412  * @callback:	Pointer to the callback function to apply
2413  * @data:	Pointer to some data to pass to the callback
2414  *
2415  * The return value of the callback determines this function's behaviour. If 0
2416  * is returned we continue to iterate over acpi_dep_list. If a positive value
2417  * is returned then the loop is broken but this function returns 0. If a
2418  * negative value is returned by the callback then the loop is broken and that
2419  * value is returned as the final error.
2420  */
2421 static int acpi_walk_dep_device_list(acpi_handle handle,
2422 				int (*callback)(struct acpi_dep_data *, void *),
2423 				void *data)
2424 {
2425 	struct acpi_dep_data *dep, *tmp;
2426 	int ret = 0;
2427 
2428 	mutex_lock(&acpi_dep_list_lock);
2429 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2430 		if (dep->supplier == handle) {
2431 			ret = callback(dep, data);
2432 			if (ret)
2433 				break;
2434 		}
2435 	}
2436 	mutex_unlock(&acpi_dep_list_lock);
2437 
2438 	return ret > 0 ? 0 : ret;
2439 }
2440 
2441 /**
2442  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2443  * @supplier: Pointer to the supplier &struct acpi_device
2444  *
2445  * Clear dependencies on the given device.
2446  */
2447 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2448 {
2449 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2450 }
2451 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2452 
2453 /**
2454  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2455  * @device: Pointer to the &struct acpi_device to check
2456  *
2457  * Check if the device is present and has no unmet dependencies.
2458  *
2459  * Return true if the device is ready for enumeratino. Otherwise, return false.
2460  */
2461 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2462 {
2463 	if (device->flags.honor_deps && device->dep_unmet)
2464 		return false;
2465 
2466 	return acpi_device_is_present(device);
2467 }
2468 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2469 
2470 /**
2471  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2472  * @supplier: Pointer to the dependee device
2473  * @start: Pointer to the current dependent device
2474  *
2475  * Returns the next &struct acpi_device which declares itself dependent on
2476  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2477  *
2478  * If the returned adev is not passed as @start to this function, the caller is
2479  * responsible for putting the reference to adev when it is no longer needed.
2480  */
2481 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2482 						   struct acpi_device *start)
2483 {
2484 	struct acpi_device *adev = start;
2485 
2486 	acpi_walk_dep_device_list(supplier->handle,
2487 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2488 
2489 	acpi_dev_put(start);
2490 
2491 	if (adev == start)
2492 		return NULL;
2493 
2494 	return adev;
2495 }
2496 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2497 
2498 static void acpi_scan_postponed_branch(acpi_handle handle)
2499 {
2500 	struct acpi_device *adev = NULL;
2501 
2502 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2503 		return;
2504 
2505 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2506 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2507 
2508 	/*
2509 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2510 	 * have been added above.
2511 	 */
2512 	acpi_mipi_init_crs_csi2_swnodes();
2513 
2514 	acpi_bus_attach(adev, NULL);
2515 }
2516 
2517 static void acpi_scan_postponed(void)
2518 {
2519 	struct acpi_dep_data *dep, *tmp;
2520 
2521 	mutex_lock(&acpi_dep_list_lock);
2522 
2523 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2524 		acpi_handle handle = dep->consumer;
2525 
2526 		/*
2527 		 * In case there are multiple acpi_dep_list entries with the
2528 		 * same consumer, skip the current entry if the consumer device
2529 		 * object corresponding to it is present already.
2530 		 */
2531 		if (!acpi_fetch_acpi_dev(handle)) {
2532 			/*
2533 			 * Even though the lock is released here, tmp is
2534 			 * guaranteed to be valid, because none of the list
2535 			 * entries following dep is marked as "free when met"
2536 			 * and so they cannot be deleted.
2537 			 */
2538 			mutex_unlock(&acpi_dep_list_lock);
2539 
2540 			acpi_scan_postponed_branch(handle);
2541 
2542 			mutex_lock(&acpi_dep_list_lock);
2543 		}
2544 
2545 		if (dep->met)
2546 			acpi_scan_delete_dep_data(dep);
2547 		else
2548 			dep->free_when_met = true;
2549 	}
2550 
2551 	mutex_unlock(&acpi_dep_list_lock);
2552 }
2553 
2554 /**
2555  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2556  * @handle: Root of the namespace scope to scan.
2557  *
2558  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2559  * found devices.
2560  *
2561  * If no devices were found, -ENODEV is returned, but it does not mean that
2562  * there has been a real error.  There just have been no suitable ACPI objects
2563  * in the table trunk from which the kernel could create a device and add an
2564  * appropriate driver.
2565  *
2566  * Must be called under acpi_scan_lock.
2567  */
2568 int acpi_bus_scan(acpi_handle handle)
2569 {
2570 	struct acpi_device *device = NULL;
2571 
2572 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2573 
2574 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2575 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2576 				    acpi_bus_check_add_1, NULL, NULL,
2577 				    (void **)&device);
2578 
2579 	if (!device)
2580 		return -ENODEV;
2581 
2582 	/*
2583 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2584 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2585 	 * walk above and MIPI DisCo for Imaging device properties.
2586 	 */
2587 	acpi_mipi_scan_crs_csi2();
2588 	acpi_mipi_init_crs_csi2_swnodes();
2589 
2590 	acpi_bus_attach(device, (void *)true);
2591 
2592 	/* Pass 2: Enumerate all of the remaining devices. */
2593 
2594 	acpi_scan_postponed();
2595 
2596 	acpi_mipi_crs_csi2_cleanup();
2597 
2598 	return 0;
2599 }
2600 EXPORT_SYMBOL(acpi_bus_scan);
2601 
2602 /**
2603  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2604  * @adev: Root of the ACPI namespace scope to walk.
2605  *
2606  * Must be called under acpi_scan_lock.
2607  */
2608 void acpi_bus_trim(struct acpi_device *adev)
2609 {
2610 	uintptr_t flags = 0;
2611 
2612 	acpi_scan_check_and_detach(adev, (void *)flags);
2613 }
2614 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2615 
2616 int acpi_bus_register_early_device(int type)
2617 {
2618 	struct acpi_device *device = NULL;
2619 	int result;
2620 
2621 	result = acpi_add_single_object(&device, NULL, type, false);
2622 	if (result)
2623 		return result;
2624 
2625 	device->flags.match_driver = true;
2626 	return device_attach(&device->dev);
2627 }
2628 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2629 
2630 static void acpi_bus_scan_fixed(void)
2631 {
2632 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2633 		struct acpi_device *adev = NULL;
2634 
2635 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2636 				       false);
2637 		if (adev) {
2638 			adev->flags.match_driver = true;
2639 			if (device_attach(&adev->dev) >= 0)
2640 				device_init_wakeup(&adev->dev, true);
2641 			else
2642 				dev_dbg(&adev->dev, "No driver\n");
2643 		}
2644 	}
2645 
2646 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2647 		struct acpi_device *adev = NULL;
2648 
2649 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2650 				       false);
2651 		if (adev) {
2652 			adev->flags.match_driver = true;
2653 			if (device_attach(&adev->dev) < 0)
2654 				dev_dbg(&adev->dev, "No driver\n");
2655 		}
2656 	}
2657 }
2658 
2659 static void __init acpi_get_spcr_uart_addr(void)
2660 {
2661 	acpi_status status;
2662 	struct acpi_table_spcr *spcr_ptr;
2663 
2664 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2665 				(struct acpi_table_header **)&spcr_ptr);
2666 	if (ACPI_FAILURE(status)) {
2667 		pr_warn("STAO table present, but SPCR is missing\n");
2668 		return;
2669 	}
2670 
2671 	spcr_uart_addr = spcr_ptr->serial_port.address;
2672 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2673 }
2674 
2675 static bool acpi_scan_initialized;
2676 
2677 void __init acpi_scan_init(void)
2678 {
2679 	acpi_status status;
2680 	struct acpi_table_stao *stao_ptr;
2681 
2682 	acpi_pci_root_init();
2683 	acpi_pci_link_init();
2684 	acpi_processor_init();
2685 	acpi_platform_init();
2686 	acpi_lpss_init();
2687 	acpi_apd_init();
2688 	acpi_cmos_rtc_init();
2689 	acpi_container_init();
2690 	acpi_memory_hotplug_init();
2691 	acpi_watchdog_init();
2692 	acpi_pnp_init();
2693 	acpi_int340x_thermal_init();
2694 	acpi_init_lpit();
2695 
2696 	acpi_scan_add_handler(&generic_device_handler);
2697 
2698 	/*
2699 	 * If there is STAO table, check whether it needs to ignore the UART
2700 	 * device in SPCR table.
2701 	 */
2702 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2703 				(struct acpi_table_header **)&stao_ptr);
2704 	if (ACPI_SUCCESS(status)) {
2705 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2706 			pr_info("STAO Name List not yet supported.\n");
2707 
2708 		if (stao_ptr->ignore_uart)
2709 			acpi_get_spcr_uart_addr();
2710 
2711 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2712 	}
2713 
2714 	acpi_gpe_apply_masked_gpes();
2715 	acpi_update_all_gpes();
2716 
2717 	/*
2718 	 * Although we call __add_memory() that is documented to require the
2719 	 * device_hotplug_lock, it is not necessary here because this is an
2720 	 * early code when userspace or any other code path cannot trigger
2721 	 * hotplug/hotunplug operations.
2722 	 */
2723 	mutex_lock(&acpi_scan_lock);
2724 	/*
2725 	 * Enumerate devices in the ACPI namespace.
2726 	 */
2727 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2728 		goto unlock;
2729 
2730 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2731 	if (!acpi_root)
2732 		goto unlock;
2733 
2734 	/* Fixed feature devices do not exist on HW-reduced platform */
2735 	if (!acpi_gbl_reduced_hardware)
2736 		acpi_bus_scan_fixed();
2737 
2738 	acpi_turn_off_unused_power_resources();
2739 
2740 	acpi_scan_initialized = true;
2741 
2742 unlock:
2743 	mutex_unlock(&acpi_scan_lock);
2744 }
2745 
2746 static struct acpi_probe_entry *ape;
2747 static int acpi_probe_count;
2748 static DEFINE_MUTEX(acpi_probe_mutex);
2749 
2750 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2751 				  const unsigned long end)
2752 {
2753 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2754 		if (!ape->probe_subtbl(header, end))
2755 			acpi_probe_count++;
2756 
2757 	return 0;
2758 }
2759 
2760 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2761 {
2762 	int count = 0;
2763 
2764 	if (acpi_disabled)
2765 		return 0;
2766 
2767 	mutex_lock(&acpi_probe_mutex);
2768 	for (ape = ap_head; nr; ape++, nr--) {
2769 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2770 			acpi_probe_count = 0;
2771 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2772 			count += acpi_probe_count;
2773 		} else {
2774 			int res;
2775 			res = acpi_table_parse(ape->id, ape->probe_table);
2776 			if (!res)
2777 				count++;
2778 		}
2779 	}
2780 	mutex_unlock(&acpi_probe_mutex);
2781 
2782 	return count;
2783 }
2784 
2785 static void acpi_table_events_fn(struct work_struct *work)
2786 {
2787 	acpi_scan_lock_acquire();
2788 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2789 	acpi_scan_lock_release();
2790 
2791 	kfree(work);
2792 }
2793 
2794 void acpi_scan_table_notify(void)
2795 {
2796 	struct work_struct *work;
2797 
2798 	if (!acpi_scan_initialized)
2799 		return;
2800 
2801 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2802 	if (!work)
2803 		return;
2804 
2805 	INIT_WORK(work, acpi_table_events_fn);
2806 	schedule_work(work);
2807 }
2808 
2809 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2810 {
2811 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2812 }
2813 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2814 
2815 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2816 {
2817 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2818 }
2819 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2820