1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 23 #include "internal.h" 24 25 extern struct acpi_device *acpi_root; 26 27 #define ACPI_BUS_CLASS "system_bus" 28 #define ACPI_BUS_HID "LNXSYBUS" 29 #define ACPI_BUS_DEVICE_NAME "System Bus" 30 31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 int (*notify)(struct acpi_device *, u32), 78 void (*uevent)(struct acpi_device *, u32)) 79 { 80 acpi_lock_hp_context(); 81 hp->notify = notify; 82 hp->uevent = uevent; 83 acpi_set_hp_context(adev, hp); 84 acpi_unlock_hp_context(); 85 } 86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 87 88 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 89 { 90 if (!handler) 91 return -EINVAL; 92 93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 94 return 0; 95 } 96 97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 98 const char *hotplug_profile_name) 99 { 100 int error; 101 102 error = acpi_scan_add_handler(handler); 103 if (error) 104 return error; 105 106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 107 return 0; 108 } 109 110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 111 { 112 struct acpi_device_physical_node *pn; 113 bool offline = true; 114 char *envp[] = { "EVENT=offline", NULL }; 115 116 /* 117 * acpi_container_offline() calls this for all of the container's 118 * children under the container's physical_node_lock lock. 119 */ 120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 121 122 list_for_each_entry(pn, &adev->physical_node_list, node) 123 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 124 if (uevent) 125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 126 127 offline = false; 128 break; 129 } 130 131 mutex_unlock(&adev->physical_node_lock); 132 return offline; 133 } 134 135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 136 void **ret_p) 137 { 138 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 139 struct acpi_device_physical_node *pn; 140 bool second_pass = (bool)data; 141 acpi_status status = AE_OK; 142 143 if (!device) 144 return AE_OK; 145 146 if (device->handler && !device->handler->hotplug.enabled) { 147 *ret_p = &device->dev; 148 return AE_SUPPORT; 149 } 150 151 mutex_lock(&device->physical_node_lock); 152 153 list_for_each_entry(pn, &device->physical_node_list, node) { 154 int ret; 155 156 if (second_pass) { 157 /* Skip devices offlined by the first pass. */ 158 if (pn->put_online) 159 continue; 160 } else { 161 pn->put_online = false; 162 } 163 ret = device_offline(pn->dev); 164 if (ret >= 0) { 165 pn->put_online = !ret; 166 } else { 167 *ret_p = pn->dev; 168 if (second_pass) { 169 status = AE_ERROR; 170 break; 171 } 172 } 173 } 174 175 mutex_unlock(&device->physical_node_lock); 176 177 return status; 178 } 179 180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 181 void **ret_p) 182 { 183 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 184 struct acpi_device_physical_node *pn; 185 186 if (!device) 187 return AE_OK; 188 189 mutex_lock(&device->physical_node_lock); 190 191 list_for_each_entry(pn, &device->physical_node_list, node) 192 if (pn->put_online) { 193 device_online(pn->dev); 194 pn->put_online = false; 195 } 196 197 mutex_unlock(&device->physical_node_lock); 198 199 return AE_OK; 200 } 201 202 static int acpi_scan_try_to_offline(struct acpi_device *device) 203 { 204 acpi_handle handle = device->handle; 205 struct device *errdev = NULL; 206 acpi_status status; 207 208 /* 209 * Carry out two passes here and ignore errors in the first pass, 210 * because if the devices in question are memory blocks and 211 * CONFIG_MEMCG is set, one of the blocks may hold data structures 212 * that the other blocks depend on, but it is not known in advance which 213 * block holds them. 214 * 215 * If the first pass is successful, the second one isn't needed, though. 216 */ 217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 218 NULL, acpi_bus_offline, (void *)false, 219 (void **)&errdev); 220 if (status == AE_SUPPORT) { 221 dev_warn(errdev, "Offline disabled.\n"); 222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 acpi_bus_online, NULL, NULL, NULL); 224 return -EPERM; 225 } 226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 227 if (errdev) { 228 errdev = NULL; 229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 230 NULL, acpi_bus_offline, (void *)true, 231 (void **)&errdev); 232 if (!errdev) 233 acpi_bus_offline(handle, 0, (void *)true, 234 (void **)&errdev); 235 236 if (errdev) { 237 dev_warn(errdev, "Offline failed.\n"); 238 acpi_bus_online(handle, 0, NULL, NULL); 239 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 240 ACPI_UINT32_MAX, acpi_bus_online, 241 NULL, NULL, NULL); 242 return -EBUSY; 243 } 244 } 245 return 0; 246 } 247 248 static int acpi_scan_hot_remove(struct acpi_device *device) 249 { 250 acpi_handle handle = device->handle; 251 unsigned long long sta; 252 acpi_status status; 253 254 if (device->handler && device->handler->hotplug.demand_offline) { 255 if (!acpi_scan_is_offline(device, true)) 256 return -EBUSY; 257 } else { 258 int error = acpi_scan_try_to_offline(device); 259 if (error) 260 return error; 261 } 262 263 acpi_handle_debug(handle, "Ejecting\n"); 264 265 acpi_bus_trim(device); 266 267 acpi_evaluate_lck(handle, 0); 268 /* 269 * TBD: _EJD support. 270 */ 271 status = acpi_evaluate_ej0(handle); 272 if (status == AE_NOT_FOUND) 273 return -ENODEV; 274 else if (ACPI_FAILURE(status)) 275 return -EIO; 276 277 /* 278 * Verify if eject was indeed successful. If not, log an error 279 * message. No need to call _OST since _EJ0 call was made OK. 280 */ 281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 282 if (ACPI_FAILURE(status)) { 283 acpi_handle_warn(handle, 284 "Status check after eject failed (0x%x)\n", status); 285 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 286 acpi_handle_warn(handle, 287 "Eject incomplete - status 0x%llx\n", sta); 288 } 289 290 return 0; 291 } 292 293 static int acpi_scan_device_not_present(struct acpi_device *adev) 294 { 295 if (!acpi_device_enumerated(adev)) { 296 dev_warn(&adev->dev, "Still not present\n"); 297 return -EALREADY; 298 } 299 acpi_bus_trim(adev); 300 return 0; 301 } 302 303 static int acpi_scan_device_check(struct acpi_device *adev) 304 { 305 int error; 306 307 acpi_bus_get_status(adev); 308 if (adev->status.present || adev->status.functional) { 309 /* 310 * This function is only called for device objects for which 311 * matching scan handlers exist. The only situation in which 312 * the scan handler is not attached to this device object yet 313 * is when the device has just appeared (either it wasn't 314 * present at all before or it was removed and then added 315 * again). 316 */ 317 if (adev->handler) { 318 dev_warn(&adev->dev, "Already enumerated\n"); 319 return -EALREADY; 320 } 321 error = acpi_bus_scan(adev->handle); 322 if (error) { 323 dev_warn(&adev->dev, "Namespace scan failure\n"); 324 return error; 325 } 326 if (!adev->handler) { 327 dev_warn(&adev->dev, "Enumeration failure\n"); 328 error = -ENODEV; 329 } 330 } else { 331 error = acpi_scan_device_not_present(adev); 332 } 333 return error; 334 } 335 336 static int acpi_scan_bus_check(struct acpi_device *adev) 337 { 338 struct acpi_scan_handler *handler = adev->handler; 339 struct acpi_device *child; 340 int error; 341 342 acpi_bus_get_status(adev); 343 if (!(adev->status.present || adev->status.functional)) { 344 acpi_scan_device_not_present(adev); 345 return 0; 346 } 347 if (handler && handler->hotplug.scan_dependent) 348 return handler->hotplug.scan_dependent(adev); 349 350 error = acpi_bus_scan(adev->handle); 351 if (error) { 352 dev_warn(&adev->dev, "Namespace scan failure\n"); 353 return error; 354 } 355 list_for_each_entry(child, &adev->children, node) { 356 error = acpi_scan_bus_check(child); 357 if (error) 358 return error; 359 } 360 return 0; 361 } 362 363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 364 { 365 switch (type) { 366 case ACPI_NOTIFY_BUS_CHECK: 367 return acpi_scan_bus_check(adev); 368 case ACPI_NOTIFY_DEVICE_CHECK: 369 return acpi_scan_device_check(adev); 370 case ACPI_NOTIFY_EJECT_REQUEST: 371 case ACPI_OST_EC_OSPM_EJECT: 372 if (adev->handler && !adev->handler->hotplug.enabled) { 373 dev_info(&adev->dev, "Eject disabled\n"); 374 return -EPERM; 375 } 376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 378 return acpi_scan_hot_remove(adev); 379 } 380 return -EINVAL; 381 } 382 383 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 384 { 385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 386 int error = -ENODEV; 387 388 lock_device_hotplug(); 389 mutex_lock(&acpi_scan_lock); 390 391 /* 392 * The device object's ACPI handle cannot become invalid as long as we 393 * are holding acpi_scan_lock, but it might have become invalid before 394 * that lock was acquired. 395 */ 396 if (adev->handle == INVALID_ACPI_HANDLE) 397 goto err_out; 398 399 if (adev->flags.is_dock_station) { 400 error = dock_notify(adev, src); 401 } else if (adev->flags.hotplug_notify) { 402 error = acpi_generic_hotplug_event(adev, src); 403 } else { 404 int (*notify)(struct acpi_device *, u32); 405 406 acpi_lock_hp_context(); 407 notify = adev->hp ? adev->hp->notify : NULL; 408 acpi_unlock_hp_context(); 409 /* 410 * There may be additional notify handlers for device objects 411 * without the .event() callback, so ignore them here. 412 */ 413 if (notify) 414 error = notify(adev, src); 415 else 416 goto out; 417 } 418 switch (error) { 419 case 0: 420 ost_code = ACPI_OST_SC_SUCCESS; 421 break; 422 case -EPERM: 423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 424 break; 425 case -EBUSY: 426 ost_code = ACPI_OST_SC_DEVICE_BUSY; 427 break; 428 default: 429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 430 break; 431 } 432 433 err_out: 434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 435 436 out: 437 acpi_bus_put_acpi_device(adev); 438 mutex_unlock(&acpi_scan_lock); 439 unlock_device_hotplug(); 440 } 441 442 static void acpi_free_power_resources_lists(struct acpi_device *device) 443 { 444 int i; 445 446 if (device->wakeup.flags.valid) 447 acpi_power_resources_list_free(&device->wakeup.resources); 448 449 if (!device->power.flags.power_resources) 450 return; 451 452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 453 struct acpi_device_power_state *ps = &device->power.states[i]; 454 acpi_power_resources_list_free(&ps->resources); 455 } 456 } 457 458 static void acpi_device_release(struct device *dev) 459 { 460 struct acpi_device *acpi_dev = to_acpi_device(dev); 461 462 acpi_free_properties(acpi_dev); 463 acpi_free_pnp_ids(&acpi_dev->pnp); 464 acpi_free_power_resources_lists(acpi_dev); 465 kfree(acpi_dev); 466 } 467 468 static void acpi_device_del(struct acpi_device *device) 469 { 470 struct acpi_device_bus_id *acpi_device_bus_id; 471 472 mutex_lock(&acpi_device_lock); 473 if (device->parent) 474 list_del(&device->node); 475 476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 477 if (!strcmp(acpi_device_bus_id->bus_id, 478 acpi_device_hid(device))) { 479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 481 list_del(&acpi_device_bus_id->node); 482 kfree_const(acpi_device_bus_id->bus_id); 483 kfree(acpi_device_bus_id); 484 } 485 break; 486 } 487 488 list_del(&device->wakeup_list); 489 mutex_unlock(&acpi_device_lock); 490 491 acpi_power_add_remove_device(device, false); 492 acpi_device_remove_files(device); 493 if (device->remove) 494 device->remove(device); 495 496 device_del(&device->dev); 497 } 498 499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 500 501 static LIST_HEAD(acpi_device_del_list); 502 static DEFINE_MUTEX(acpi_device_del_lock); 503 504 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 505 { 506 for (;;) { 507 struct acpi_device *adev; 508 509 mutex_lock(&acpi_device_del_lock); 510 511 if (list_empty(&acpi_device_del_list)) { 512 mutex_unlock(&acpi_device_del_lock); 513 break; 514 } 515 adev = list_first_entry(&acpi_device_del_list, 516 struct acpi_device, del_list); 517 list_del(&adev->del_list); 518 519 mutex_unlock(&acpi_device_del_lock); 520 521 blocking_notifier_call_chain(&acpi_reconfig_chain, 522 ACPI_RECONFIG_DEVICE_REMOVE, adev); 523 524 acpi_device_del(adev); 525 /* 526 * Drop references to all power resources that might have been 527 * used by the device. 528 */ 529 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 530 acpi_dev_put(adev); 531 } 532 } 533 534 /** 535 * acpi_scan_drop_device - Drop an ACPI device object. 536 * @handle: Handle of an ACPI namespace node, not used. 537 * @context: Address of the ACPI device object to drop. 538 * 539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 540 * namespace node the device object pointed to by @context is attached to. 541 * 542 * The unregistration is carried out asynchronously to avoid running 543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 544 * ensure the correct ordering (the device objects must be unregistered in the 545 * same order in which the corresponding namespace nodes are deleted). 546 */ 547 static void acpi_scan_drop_device(acpi_handle handle, void *context) 548 { 549 static DECLARE_WORK(work, acpi_device_del_work_fn); 550 struct acpi_device *adev = context; 551 552 mutex_lock(&acpi_device_del_lock); 553 554 /* 555 * Use the ACPI hotplug workqueue which is ordered, so this work item 556 * won't run after any hotplug work items submitted subsequently. That 557 * prevents attempts to register device objects identical to those being 558 * deleted from happening concurrently (such attempts result from 559 * hotplug events handled via the ACPI hotplug workqueue). It also will 560 * run after all of the work items submitted previously, which helps 561 * those work items to ensure that they are not accessing stale device 562 * objects. 563 */ 564 if (list_empty(&acpi_device_del_list)) 565 acpi_queue_hotplug_work(&work); 566 567 list_add_tail(&adev->del_list, &acpi_device_del_list); 568 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 569 adev->handle = INVALID_ACPI_HANDLE; 570 571 mutex_unlock(&acpi_device_del_lock); 572 } 573 574 static struct acpi_device *handle_to_device(acpi_handle handle, 575 void (*callback)(void *)) 576 { 577 struct acpi_device *adev = NULL; 578 acpi_status status; 579 580 status = acpi_get_data_full(handle, acpi_scan_drop_device, 581 (void **)&adev, callback); 582 if (ACPI_FAILURE(status) || !adev) { 583 acpi_handle_debug(handle, "No context!\n"); 584 return NULL; 585 } 586 return adev; 587 } 588 589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 590 { 591 if (!device) 592 return -EINVAL; 593 594 *device = handle_to_device(handle, NULL); 595 if (!*device) 596 return -ENODEV; 597 598 return 0; 599 } 600 EXPORT_SYMBOL(acpi_bus_get_device); 601 602 /** 603 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 604 * @handle: ACPI handle associated with the requested ACPI device object. 605 * 606 * Return a pointer to the ACPI device object associated with @handle, if 607 * present, or NULL otherwise. 608 */ 609 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 610 { 611 return handle_to_device(handle, NULL); 612 } 613 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 614 615 static void get_acpi_device(void *dev) 616 { 617 acpi_dev_get(dev); 618 } 619 620 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 621 { 622 return handle_to_device(handle, get_acpi_device); 623 } 624 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 625 626 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 627 { 628 struct acpi_device_bus_id *acpi_device_bus_id; 629 630 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 631 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 632 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 633 return acpi_device_bus_id; 634 } 635 return NULL; 636 } 637 638 static int acpi_device_set_name(struct acpi_device *device, 639 struct acpi_device_bus_id *acpi_device_bus_id) 640 { 641 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 642 int result; 643 644 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 645 if (result < 0) 646 return result; 647 648 device->pnp.instance_no = result; 649 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 650 return 0; 651 } 652 653 static int acpi_tie_acpi_dev(struct acpi_device *adev) 654 { 655 acpi_handle handle = adev->handle; 656 acpi_status status; 657 658 if (!handle) 659 return 0; 660 661 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 662 if (ACPI_FAILURE(status)) { 663 acpi_handle_err(handle, "Unable to attach device data\n"); 664 return -ENODEV; 665 } 666 667 return 0; 668 } 669 670 static int __acpi_device_add(struct acpi_device *device, 671 void (*release)(struct device *)) 672 { 673 struct acpi_device_bus_id *acpi_device_bus_id; 674 int result; 675 676 /* 677 * Linkage 678 * ------- 679 * Link this device to its parent and siblings. 680 */ 681 INIT_LIST_HEAD(&device->children); 682 INIT_LIST_HEAD(&device->node); 683 INIT_LIST_HEAD(&device->wakeup_list); 684 INIT_LIST_HEAD(&device->physical_node_list); 685 INIT_LIST_HEAD(&device->del_list); 686 mutex_init(&device->physical_node_lock); 687 688 mutex_lock(&acpi_device_lock); 689 690 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 691 if (acpi_device_bus_id) { 692 result = acpi_device_set_name(device, acpi_device_bus_id); 693 if (result) 694 goto err_unlock; 695 } else { 696 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 697 GFP_KERNEL); 698 if (!acpi_device_bus_id) { 699 result = -ENOMEM; 700 goto err_unlock; 701 } 702 acpi_device_bus_id->bus_id = 703 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 704 if (!acpi_device_bus_id->bus_id) { 705 kfree(acpi_device_bus_id); 706 result = -ENOMEM; 707 goto err_unlock; 708 } 709 710 ida_init(&acpi_device_bus_id->instance_ida); 711 712 result = acpi_device_set_name(device, acpi_device_bus_id); 713 if (result) { 714 kfree_const(acpi_device_bus_id->bus_id); 715 kfree(acpi_device_bus_id); 716 goto err_unlock; 717 } 718 719 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 720 } 721 722 if (device->parent) 723 list_add_tail(&device->node, &device->parent->children); 724 725 if (device->wakeup.flags.valid) 726 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 727 728 mutex_unlock(&acpi_device_lock); 729 730 if (device->parent) 731 device->dev.parent = &device->parent->dev; 732 733 device->dev.bus = &acpi_bus_type; 734 device->dev.release = release; 735 result = device_add(&device->dev); 736 if (result) { 737 dev_err(&device->dev, "Error registering device\n"); 738 goto err; 739 } 740 741 result = acpi_device_setup_files(device); 742 if (result) 743 pr_err("Error creating sysfs interface for device %s\n", 744 dev_name(&device->dev)); 745 746 return 0; 747 748 err: 749 mutex_lock(&acpi_device_lock); 750 751 if (device->parent) 752 list_del(&device->node); 753 754 list_del(&device->wakeup_list); 755 756 err_unlock: 757 mutex_unlock(&acpi_device_lock); 758 759 acpi_detach_data(device->handle, acpi_scan_drop_device); 760 761 return result; 762 } 763 764 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 765 { 766 int ret; 767 768 ret = acpi_tie_acpi_dev(adev); 769 if (ret) 770 return ret; 771 772 return __acpi_device_add(adev, release); 773 } 774 775 /* -------------------------------------------------------------------------- 776 Device Enumeration 777 -------------------------------------------------------------------------- */ 778 static bool acpi_info_matches_ids(struct acpi_device_info *info, 779 const char * const ids[]) 780 { 781 struct acpi_pnp_device_id_list *cid_list = NULL; 782 int i, index; 783 784 if (!(info->valid & ACPI_VALID_HID)) 785 return false; 786 787 index = match_string(ids, -1, info->hardware_id.string); 788 if (index >= 0) 789 return true; 790 791 if (info->valid & ACPI_VALID_CID) 792 cid_list = &info->compatible_id_list; 793 794 if (!cid_list) 795 return false; 796 797 for (i = 0; i < cid_list->count; i++) { 798 index = match_string(ids, -1, cid_list->ids[i].string); 799 if (index >= 0) 800 return true; 801 } 802 803 return false; 804 } 805 806 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 807 static const char * const acpi_ignore_dep_ids[] = { 808 "PNP0D80", /* Windows-compatible System Power Management Controller */ 809 "INT33BD", /* Intel Baytrail Mailbox Device */ 810 NULL 811 }; 812 813 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 814 static const char * const acpi_honor_dep_ids[] = { 815 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 816 NULL 817 }; 818 819 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 820 { 821 struct acpi_device *device; 822 acpi_status status; 823 824 /* 825 * Fixed hardware devices do not appear in the namespace and do not 826 * have handles, but we fabricate acpi_devices for them, so we have 827 * to deal with them specially. 828 */ 829 if (!handle) 830 return acpi_root; 831 832 do { 833 status = acpi_get_parent(handle, &handle); 834 if (ACPI_FAILURE(status)) 835 return status == AE_NULL_ENTRY ? NULL : acpi_root; 836 837 device = acpi_fetch_acpi_dev(handle); 838 } while (!device); 839 return device; 840 } 841 842 acpi_status 843 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 844 { 845 acpi_status status; 846 acpi_handle tmp; 847 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 848 union acpi_object *obj; 849 850 status = acpi_get_handle(handle, "_EJD", &tmp); 851 if (ACPI_FAILURE(status)) 852 return status; 853 854 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 855 if (ACPI_SUCCESS(status)) { 856 obj = buffer.pointer; 857 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 858 ejd); 859 kfree(buffer.pointer); 860 } 861 return status; 862 } 863 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 864 865 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 866 { 867 acpi_handle handle = dev->handle; 868 struct acpi_device_wakeup *wakeup = &dev->wakeup; 869 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 870 union acpi_object *package = NULL; 871 union acpi_object *element = NULL; 872 acpi_status status; 873 int err = -ENODATA; 874 875 INIT_LIST_HEAD(&wakeup->resources); 876 877 /* _PRW */ 878 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 879 if (ACPI_FAILURE(status)) { 880 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 881 acpi_format_exception(status)); 882 return err; 883 } 884 885 package = (union acpi_object *)buffer.pointer; 886 887 if (!package || package->package.count < 2) 888 goto out; 889 890 element = &(package->package.elements[0]); 891 if (!element) 892 goto out; 893 894 if (element->type == ACPI_TYPE_PACKAGE) { 895 if ((element->package.count < 2) || 896 (element->package.elements[0].type != 897 ACPI_TYPE_LOCAL_REFERENCE) 898 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 899 goto out; 900 901 wakeup->gpe_device = 902 element->package.elements[0].reference.handle; 903 wakeup->gpe_number = 904 (u32) element->package.elements[1].integer.value; 905 } else if (element->type == ACPI_TYPE_INTEGER) { 906 wakeup->gpe_device = NULL; 907 wakeup->gpe_number = element->integer.value; 908 } else { 909 goto out; 910 } 911 912 element = &(package->package.elements[1]); 913 if (element->type != ACPI_TYPE_INTEGER) 914 goto out; 915 916 wakeup->sleep_state = element->integer.value; 917 918 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 919 if (err) 920 goto out; 921 922 if (!list_empty(&wakeup->resources)) { 923 int sleep_state; 924 925 err = acpi_power_wakeup_list_init(&wakeup->resources, 926 &sleep_state); 927 if (err) { 928 acpi_handle_warn(handle, "Retrieving current states " 929 "of wakeup power resources failed\n"); 930 acpi_power_resources_list_free(&wakeup->resources); 931 goto out; 932 } 933 if (sleep_state < wakeup->sleep_state) { 934 acpi_handle_warn(handle, "Overriding _PRW sleep state " 935 "(S%d) by S%d from power resources\n", 936 (int)wakeup->sleep_state, sleep_state); 937 wakeup->sleep_state = sleep_state; 938 } 939 } 940 941 out: 942 kfree(buffer.pointer); 943 return err; 944 } 945 946 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 947 { 948 static const struct acpi_device_id button_device_ids[] = { 949 {"PNP0C0C", 0}, /* Power button */ 950 {"PNP0C0D", 0}, /* Lid */ 951 {"PNP0C0E", 0}, /* Sleep button */ 952 {"", 0}, 953 }; 954 struct acpi_device_wakeup *wakeup = &device->wakeup; 955 acpi_status status; 956 957 wakeup->flags.notifier_present = 0; 958 959 /* Power button, Lid switch always enable wakeup */ 960 if (!acpi_match_device_ids(device, button_device_ids)) { 961 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 962 /* Do not use Lid/sleep button for S5 wakeup */ 963 if (wakeup->sleep_state == ACPI_STATE_S5) 964 wakeup->sleep_state = ACPI_STATE_S4; 965 } 966 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 967 device_set_wakeup_capable(&device->dev, true); 968 return true; 969 } 970 971 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 972 wakeup->gpe_number); 973 return ACPI_SUCCESS(status); 974 } 975 976 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 977 { 978 int err; 979 980 /* Presence of _PRW indicates wake capable */ 981 if (!acpi_has_method(device->handle, "_PRW")) 982 return; 983 984 err = acpi_bus_extract_wakeup_device_power_package(device); 985 if (err) { 986 dev_err(&device->dev, "Unable to extract wakeup power resources"); 987 return; 988 } 989 990 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 991 device->wakeup.prepare_count = 0; 992 /* 993 * Call _PSW/_DSW object to disable its ability to wake the sleeping 994 * system for the ACPI device with the _PRW object. 995 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 996 * So it is necessary to call _DSW object first. Only when it is not 997 * present will the _PSW object used. 998 */ 999 err = acpi_device_sleep_wake(device, 0, 0, 0); 1000 if (err) 1001 pr_debug("error in _DSW or _PSW evaluation\n"); 1002 } 1003 1004 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1005 { 1006 struct acpi_device_power_state *ps = &device->power.states[state]; 1007 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1008 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1009 acpi_status status; 1010 1011 INIT_LIST_HEAD(&ps->resources); 1012 1013 /* Evaluate "_PRx" to get referenced power resources */ 1014 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1015 if (ACPI_SUCCESS(status)) { 1016 union acpi_object *package = buffer.pointer; 1017 1018 if (buffer.length && package 1019 && package->type == ACPI_TYPE_PACKAGE 1020 && package->package.count) 1021 acpi_extract_power_resources(package, 0, &ps->resources); 1022 1023 ACPI_FREE(buffer.pointer); 1024 } 1025 1026 /* Evaluate "_PSx" to see if we can do explicit sets */ 1027 pathname[2] = 'S'; 1028 if (acpi_has_method(device->handle, pathname)) 1029 ps->flags.explicit_set = 1; 1030 1031 /* State is valid if there are means to put the device into it. */ 1032 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1033 ps->flags.valid = 1; 1034 1035 ps->power = -1; /* Unknown - driver assigned */ 1036 ps->latency = -1; /* Unknown - driver assigned */ 1037 } 1038 1039 static void acpi_bus_get_power_flags(struct acpi_device *device) 1040 { 1041 unsigned long long dsc = ACPI_STATE_D0; 1042 u32 i; 1043 1044 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1045 if (!acpi_has_method(device->handle, "_PS0") && 1046 !acpi_has_method(device->handle, "_PR0")) 1047 return; 1048 1049 device->flags.power_manageable = 1; 1050 1051 /* 1052 * Power Management Flags 1053 */ 1054 if (acpi_has_method(device->handle, "_PSC")) 1055 device->power.flags.explicit_get = 1; 1056 1057 if (acpi_has_method(device->handle, "_IRC")) 1058 device->power.flags.inrush_current = 1; 1059 1060 if (acpi_has_method(device->handle, "_DSW")) 1061 device->power.flags.dsw_present = 1; 1062 1063 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1064 device->power.state_for_enumeration = dsc; 1065 1066 /* 1067 * Enumerate supported power management states 1068 */ 1069 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1070 acpi_bus_init_power_state(device, i); 1071 1072 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1073 1074 /* Set the defaults for D0 and D3hot (always supported). */ 1075 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1076 device->power.states[ACPI_STATE_D0].power = 100; 1077 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1078 1079 /* 1080 * Use power resources only if the D0 list of them is populated, because 1081 * some platforms may provide _PR3 only to indicate D3cold support and 1082 * in those cases the power resources list returned by it may be bogus. 1083 */ 1084 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1085 device->power.flags.power_resources = 1; 1086 /* 1087 * D3cold is supported if the D3hot list of power resources is 1088 * not empty. 1089 */ 1090 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1091 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1092 } 1093 1094 if (acpi_bus_init_power(device)) 1095 device->flags.power_manageable = 0; 1096 } 1097 1098 static void acpi_bus_get_flags(struct acpi_device *device) 1099 { 1100 /* Presence of _STA indicates 'dynamic_status' */ 1101 if (acpi_has_method(device->handle, "_STA")) 1102 device->flags.dynamic_status = 1; 1103 1104 /* Presence of _RMV indicates 'removable' */ 1105 if (acpi_has_method(device->handle, "_RMV")) 1106 device->flags.removable = 1; 1107 1108 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1109 if (acpi_has_method(device->handle, "_EJD") || 1110 acpi_has_method(device->handle, "_EJ0")) 1111 device->flags.ejectable = 1; 1112 } 1113 1114 static void acpi_device_get_busid(struct acpi_device *device) 1115 { 1116 char bus_id[5] = { '?', 0 }; 1117 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1118 int i = 0; 1119 1120 /* 1121 * Bus ID 1122 * ------ 1123 * The device's Bus ID is simply the object name. 1124 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1125 */ 1126 if (ACPI_IS_ROOT_DEVICE(device)) { 1127 strcpy(device->pnp.bus_id, "ACPI"); 1128 return; 1129 } 1130 1131 switch (device->device_type) { 1132 case ACPI_BUS_TYPE_POWER_BUTTON: 1133 strcpy(device->pnp.bus_id, "PWRF"); 1134 break; 1135 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1136 strcpy(device->pnp.bus_id, "SLPF"); 1137 break; 1138 case ACPI_BUS_TYPE_ECDT_EC: 1139 strcpy(device->pnp.bus_id, "ECDT"); 1140 break; 1141 default: 1142 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1143 /* Clean up trailing underscores (if any) */ 1144 for (i = 3; i > 1; i--) { 1145 if (bus_id[i] == '_') 1146 bus_id[i] = '\0'; 1147 else 1148 break; 1149 } 1150 strcpy(device->pnp.bus_id, bus_id); 1151 break; 1152 } 1153 } 1154 1155 /* 1156 * acpi_ata_match - see if an acpi object is an ATA device 1157 * 1158 * If an acpi object has one of the ACPI ATA methods defined, 1159 * then we can safely call it an ATA device. 1160 */ 1161 bool acpi_ata_match(acpi_handle handle) 1162 { 1163 return acpi_has_method(handle, "_GTF") || 1164 acpi_has_method(handle, "_GTM") || 1165 acpi_has_method(handle, "_STM") || 1166 acpi_has_method(handle, "_SDD"); 1167 } 1168 1169 /* 1170 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1171 * 1172 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1173 * then we can safely call it an ejectable drive bay 1174 */ 1175 bool acpi_bay_match(acpi_handle handle) 1176 { 1177 acpi_handle phandle; 1178 1179 if (!acpi_has_method(handle, "_EJ0")) 1180 return false; 1181 if (acpi_ata_match(handle)) 1182 return true; 1183 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1184 return false; 1185 1186 return acpi_ata_match(phandle); 1187 } 1188 1189 bool acpi_device_is_battery(struct acpi_device *adev) 1190 { 1191 struct acpi_hardware_id *hwid; 1192 1193 list_for_each_entry(hwid, &adev->pnp.ids, list) 1194 if (!strcmp("PNP0C0A", hwid->id)) 1195 return true; 1196 1197 return false; 1198 } 1199 1200 static bool is_ejectable_bay(struct acpi_device *adev) 1201 { 1202 acpi_handle handle = adev->handle; 1203 1204 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1205 return true; 1206 1207 return acpi_bay_match(handle); 1208 } 1209 1210 /* 1211 * acpi_dock_match - see if an acpi object has a _DCK method 1212 */ 1213 bool acpi_dock_match(acpi_handle handle) 1214 { 1215 return acpi_has_method(handle, "_DCK"); 1216 } 1217 1218 static acpi_status 1219 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1220 void **return_value) 1221 { 1222 long *cap = context; 1223 1224 if (acpi_has_method(handle, "_BCM") && 1225 acpi_has_method(handle, "_BCL")) { 1226 acpi_handle_debug(handle, "Found generic backlight support\n"); 1227 *cap |= ACPI_VIDEO_BACKLIGHT; 1228 /* We have backlight support, no need to scan further */ 1229 return AE_CTRL_TERMINATE; 1230 } 1231 return 0; 1232 } 1233 1234 /* Returns true if the ACPI object is a video device which can be 1235 * handled by video.ko. 1236 * The device will get a Linux specific CID added in scan.c to 1237 * identify the device as an ACPI graphics device 1238 * Be aware that the graphics device may not be physically present 1239 * Use acpi_video_get_capabilities() to detect general ACPI video 1240 * capabilities of present cards 1241 */ 1242 long acpi_is_video_device(acpi_handle handle) 1243 { 1244 long video_caps = 0; 1245 1246 /* Is this device able to support video switching ? */ 1247 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1248 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1249 1250 /* Is this device able to retrieve a video ROM ? */ 1251 if (acpi_has_method(handle, "_ROM")) 1252 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1253 1254 /* Is this device able to configure which video head to be POSTed ? */ 1255 if (acpi_has_method(handle, "_VPO") && 1256 acpi_has_method(handle, "_GPD") && 1257 acpi_has_method(handle, "_SPD")) 1258 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1259 1260 /* Only check for backlight functionality if one of the above hit. */ 1261 if (video_caps) 1262 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1263 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1264 &video_caps, NULL); 1265 1266 return video_caps; 1267 } 1268 EXPORT_SYMBOL(acpi_is_video_device); 1269 1270 const char *acpi_device_hid(struct acpi_device *device) 1271 { 1272 struct acpi_hardware_id *hid; 1273 1274 if (list_empty(&device->pnp.ids)) 1275 return dummy_hid; 1276 1277 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1278 return hid->id; 1279 } 1280 EXPORT_SYMBOL(acpi_device_hid); 1281 1282 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1283 { 1284 struct acpi_hardware_id *id; 1285 1286 id = kmalloc(sizeof(*id), GFP_KERNEL); 1287 if (!id) 1288 return; 1289 1290 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1291 if (!id->id) { 1292 kfree(id); 1293 return; 1294 } 1295 1296 list_add_tail(&id->list, &pnp->ids); 1297 pnp->type.hardware_id = 1; 1298 } 1299 1300 /* 1301 * Old IBM workstations have a DSDT bug wherein the SMBus object 1302 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1303 * prefix. Work around this. 1304 */ 1305 static bool acpi_ibm_smbus_match(acpi_handle handle) 1306 { 1307 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1308 struct acpi_buffer path = { sizeof(node_name), node_name }; 1309 1310 if (!dmi_name_in_vendors("IBM")) 1311 return false; 1312 1313 /* Look for SMBS object */ 1314 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1315 strcmp("SMBS", path.pointer)) 1316 return false; 1317 1318 /* Does it have the necessary (but misnamed) methods? */ 1319 if (acpi_has_method(handle, "SBI") && 1320 acpi_has_method(handle, "SBR") && 1321 acpi_has_method(handle, "SBW")) 1322 return true; 1323 1324 return false; 1325 } 1326 1327 static bool acpi_object_is_system_bus(acpi_handle handle) 1328 { 1329 acpi_handle tmp; 1330 1331 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1332 tmp == handle) 1333 return true; 1334 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1335 tmp == handle) 1336 return true; 1337 1338 return false; 1339 } 1340 1341 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1342 int device_type) 1343 { 1344 struct acpi_device_info *info = NULL; 1345 struct acpi_pnp_device_id_list *cid_list; 1346 int i; 1347 1348 switch (device_type) { 1349 case ACPI_BUS_TYPE_DEVICE: 1350 if (handle == ACPI_ROOT_OBJECT) { 1351 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1352 break; 1353 } 1354 1355 acpi_get_object_info(handle, &info); 1356 if (!info) { 1357 pr_err("%s: Error reading device info\n", __func__); 1358 return; 1359 } 1360 1361 if (info->valid & ACPI_VALID_HID) { 1362 acpi_add_id(pnp, info->hardware_id.string); 1363 pnp->type.platform_id = 1; 1364 if (info->valid & ACPI_VALID_CID) { 1365 cid_list = &info->compatible_id_list; 1366 for (i = 0; i < cid_list->count; i++) 1367 acpi_add_id(pnp, cid_list->ids[i].string); 1368 } 1369 } 1370 if (info->valid & ACPI_VALID_ADR) { 1371 pnp->bus_address = info->address; 1372 pnp->type.bus_address = 1; 1373 } 1374 if (info->valid & ACPI_VALID_UID) 1375 pnp->unique_id = kstrdup(info->unique_id.string, 1376 GFP_KERNEL); 1377 if (info->valid & ACPI_VALID_CLS) 1378 acpi_add_id(pnp, info->class_code.string); 1379 1380 kfree(info); 1381 1382 /* 1383 * Some devices don't reliably have _HIDs & _CIDs, so add 1384 * synthetic HIDs to make sure drivers can find them. 1385 */ 1386 if (acpi_is_video_device(handle)) 1387 acpi_add_id(pnp, ACPI_VIDEO_HID); 1388 else if (acpi_bay_match(handle)) 1389 acpi_add_id(pnp, ACPI_BAY_HID); 1390 else if (acpi_dock_match(handle)) 1391 acpi_add_id(pnp, ACPI_DOCK_HID); 1392 else if (acpi_ibm_smbus_match(handle)) 1393 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1394 else if (list_empty(&pnp->ids) && 1395 acpi_object_is_system_bus(handle)) { 1396 /* \_SB, \_TZ, LNXSYBUS */ 1397 acpi_add_id(pnp, ACPI_BUS_HID); 1398 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1399 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1400 } 1401 1402 break; 1403 case ACPI_BUS_TYPE_POWER: 1404 acpi_add_id(pnp, ACPI_POWER_HID); 1405 break; 1406 case ACPI_BUS_TYPE_PROCESSOR: 1407 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1408 break; 1409 case ACPI_BUS_TYPE_THERMAL: 1410 acpi_add_id(pnp, ACPI_THERMAL_HID); 1411 break; 1412 case ACPI_BUS_TYPE_POWER_BUTTON: 1413 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1414 break; 1415 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1416 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1417 break; 1418 case ACPI_BUS_TYPE_ECDT_EC: 1419 acpi_add_id(pnp, ACPI_ECDT_HID); 1420 break; 1421 } 1422 } 1423 1424 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1425 { 1426 struct acpi_hardware_id *id, *tmp; 1427 1428 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1429 kfree_const(id->id); 1430 kfree(id); 1431 } 1432 kfree(pnp->unique_id); 1433 } 1434 1435 /** 1436 * acpi_dma_supported - Check DMA support for the specified device. 1437 * @adev: The pointer to acpi device 1438 * 1439 * Return false if DMA is not supported. Otherwise, return true 1440 */ 1441 bool acpi_dma_supported(const struct acpi_device *adev) 1442 { 1443 if (!adev) 1444 return false; 1445 1446 if (adev->flags.cca_seen) 1447 return true; 1448 1449 /* 1450 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1451 * DMA on "Intel platforms". Presumably that includes all x86 and 1452 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1453 */ 1454 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1455 return true; 1456 1457 return false; 1458 } 1459 1460 /** 1461 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1462 * @adev: The pointer to acpi device 1463 * 1464 * Return enum dev_dma_attr. 1465 */ 1466 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1467 { 1468 if (!acpi_dma_supported(adev)) 1469 return DEV_DMA_NOT_SUPPORTED; 1470 1471 if (adev->flags.coherent_dma) 1472 return DEV_DMA_COHERENT; 1473 else 1474 return DEV_DMA_NON_COHERENT; 1475 } 1476 1477 /** 1478 * acpi_dma_get_range() - Get device DMA parameters. 1479 * 1480 * @dev: device to configure 1481 * @dma_addr: pointer device DMA address result 1482 * @offset: pointer to the DMA offset result 1483 * @size: pointer to DMA range size result 1484 * 1485 * Evaluate DMA regions and return respectively DMA region start, offset 1486 * and size in dma_addr, offset and size on parsing success; it does not 1487 * update the passed in values on failure. 1488 * 1489 * Return 0 on success, < 0 on failure. 1490 */ 1491 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1492 u64 *size) 1493 { 1494 struct acpi_device *adev; 1495 LIST_HEAD(list); 1496 struct resource_entry *rentry; 1497 int ret; 1498 struct device *dma_dev = dev; 1499 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1500 1501 /* 1502 * Walk the device tree chasing an ACPI companion with a _DMA 1503 * object while we go. Stop if we find a device with an ACPI 1504 * companion containing a _DMA method. 1505 */ 1506 do { 1507 adev = ACPI_COMPANION(dma_dev); 1508 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1509 break; 1510 1511 dma_dev = dma_dev->parent; 1512 } while (dma_dev); 1513 1514 if (!dma_dev) 1515 return -ENODEV; 1516 1517 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1518 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1519 return -EINVAL; 1520 } 1521 1522 ret = acpi_dev_get_dma_resources(adev, &list); 1523 if (ret > 0) { 1524 list_for_each_entry(rentry, &list, node) { 1525 if (dma_offset && rentry->offset != dma_offset) { 1526 ret = -EINVAL; 1527 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1528 goto out; 1529 } 1530 dma_offset = rentry->offset; 1531 1532 /* Take lower and upper limits */ 1533 if (rentry->res->start < dma_start) 1534 dma_start = rentry->res->start; 1535 if (rentry->res->end > dma_end) 1536 dma_end = rentry->res->end; 1537 } 1538 1539 if (dma_start >= dma_end) { 1540 ret = -EINVAL; 1541 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1542 goto out; 1543 } 1544 1545 *dma_addr = dma_start - dma_offset; 1546 len = dma_end - dma_start; 1547 *size = max(len, len + 1); 1548 *offset = dma_offset; 1549 } 1550 out: 1551 acpi_dev_free_resource_list(&list); 1552 1553 return ret >= 0 ? 0 : ret; 1554 } 1555 1556 #ifdef CONFIG_IOMMU_API 1557 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1558 struct fwnode_handle *fwnode, 1559 const struct iommu_ops *ops) 1560 { 1561 int ret = iommu_fwspec_init(dev, fwnode, ops); 1562 1563 if (!ret) 1564 ret = iommu_fwspec_add_ids(dev, &id, 1); 1565 1566 return ret; 1567 } 1568 1569 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1570 { 1571 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1572 1573 return fwspec ? fwspec->ops : NULL; 1574 } 1575 1576 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1577 const u32 *id_in) 1578 { 1579 int err; 1580 const struct iommu_ops *ops; 1581 1582 /* 1583 * If we already translated the fwspec there is nothing left to do, 1584 * return the iommu_ops. 1585 */ 1586 ops = acpi_iommu_fwspec_ops(dev); 1587 if (ops) 1588 return ops; 1589 1590 err = iort_iommu_configure_id(dev, id_in); 1591 if (err && err != -EPROBE_DEFER) 1592 err = viot_iommu_configure(dev); 1593 1594 /* 1595 * If we have reason to believe the IOMMU driver missed the initial 1596 * iommu_probe_device() call for dev, replay it to get things in order. 1597 */ 1598 if (!err && dev->bus && !device_iommu_mapped(dev)) 1599 err = iommu_probe_device(dev); 1600 1601 /* Ignore all other errors apart from EPROBE_DEFER */ 1602 if (err == -EPROBE_DEFER) { 1603 return ERR_PTR(err); 1604 } else if (err) { 1605 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1606 return NULL; 1607 } 1608 return acpi_iommu_fwspec_ops(dev); 1609 } 1610 1611 #else /* !CONFIG_IOMMU_API */ 1612 1613 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1614 struct fwnode_handle *fwnode, 1615 const struct iommu_ops *ops) 1616 { 1617 return -ENODEV; 1618 } 1619 1620 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1621 const u32 *id_in) 1622 { 1623 return NULL; 1624 } 1625 1626 #endif /* !CONFIG_IOMMU_API */ 1627 1628 /** 1629 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1630 * @dev: The pointer to the device 1631 * @attr: device dma attributes 1632 * @input_id: input device id const value pointer 1633 */ 1634 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1635 const u32 *input_id) 1636 { 1637 const struct iommu_ops *iommu; 1638 u64 dma_addr = 0, size = 0; 1639 1640 if (attr == DEV_DMA_NOT_SUPPORTED) { 1641 set_dma_ops(dev, &dma_dummy_ops); 1642 return 0; 1643 } 1644 1645 acpi_arch_dma_setup(dev, &dma_addr, &size); 1646 1647 iommu = acpi_iommu_configure_id(dev, input_id); 1648 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1649 return -EPROBE_DEFER; 1650 1651 arch_setup_dma_ops(dev, dma_addr, size, 1652 iommu, attr == DEV_DMA_COHERENT); 1653 1654 return 0; 1655 } 1656 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1657 1658 static void acpi_init_coherency(struct acpi_device *adev) 1659 { 1660 unsigned long long cca = 0; 1661 acpi_status status; 1662 struct acpi_device *parent = adev->parent; 1663 1664 if (parent && parent->flags.cca_seen) { 1665 /* 1666 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1667 * already saw one. 1668 */ 1669 adev->flags.cca_seen = 1; 1670 cca = parent->flags.coherent_dma; 1671 } else { 1672 status = acpi_evaluate_integer(adev->handle, "_CCA", 1673 NULL, &cca); 1674 if (ACPI_SUCCESS(status)) 1675 adev->flags.cca_seen = 1; 1676 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1677 /* 1678 * If architecture does not specify that _CCA is 1679 * required for DMA-able devices (e.g. x86), 1680 * we default to _CCA=1. 1681 */ 1682 cca = 1; 1683 else 1684 acpi_handle_debug(adev->handle, 1685 "ACPI device is missing _CCA.\n"); 1686 } 1687 1688 adev->flags.coherent_dma = cca; 1689 } 1690 1691 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1692 { 1693 bool *is_serial_bus_slave_p = data; 1694 1695 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1696 return 1; 1697 1698 *is_serial_bus_slave_p = true; 1699 1700 /* no need to do more checking */ 1701 return -1; 1702 } 1703 1704 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1705 { 1706 struct acpi_device *parent = device->parent; 1707 static const struct acpi_device_id indirect_io_hosts[] = { 1708 {"HISI0191", 0}, 1709 {} 1710 }; 1711 1712 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1713 } 1714 1715 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1716 { 1717 struct list_head resource_list; 1718 bool is_serial_bus_slave = false; 1719 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1720 /* 1721 * These devices have multiple I2cSerialBus resources and an i2c-client 1722 * must be instantiated for each, each with its own i2c_device_id. 1723 * Normally we only instantiate an i2c-client for the first resource, 1724 * using the ACPI HID as id. These special cases are handled by the 1725 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1726 * which i2c_device_id to use for each resource. 1727 */ 1728 {"BSG1160", }, 1729 {"BSG2150", }, 1730 {"INT33FE", }, 1731 {"INT3515", }, 1732 /* 1733 * HIDs of device with an UartSerialBusV2 resource for which userspace 1734 * expects a regular tty cdev to be created (instead of the in kernel 1735 * serdev) and which have a kernel driver which expects a platform_dev 1736 * such as the rfkill-gpio driver. 1737 */ 1738 {"BCM4752", }, 1739 {"LNV4752", }, 1740 {} 1741 }; 1742 1743 if (acpi_is_indirect_io_slave(device)) 1744 return true; 1745 1746 /* Macs use device properties in lieu of _CRS resources */ 1747 if (x86_apple_machine && 1748 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1749 fwnode_property_present(&device->fwnode, "i2cAddress") || 1750 fwnode_property_present(&device->fwnode, "baud"))) 1751 return true; 1752 1753 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1754 return false; 1755 1756 INIT_LIST_HEAD(&resource_list); 1757 acpi_dev_get_resources(device, &resource_list, 1758 acpi_check_serial_bus_slave, 1759 &is_serial_bus_slave); 1760 acpi_dev_free_resource_list(&resource_list); 1761 1762 return is_serial_bus_slave; 1763 } 1764 1765 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1766 int type) 1767 { 1768 INIT_LIST_HEAD(&device->pnp.ids); 1769 device->device_type = type; 1770 device->handle = handle; 1771 device->parent = acpi_bus_get_parent(handle); 1772 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1773 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1774 acpi_device_get_busid(device); 1775 acpi_set_pnp_ids(handle, &device->pnp, type); 1776 acpi_init_properties(device); 1777 acpi_bus_get_flags(device); 1778 device->flags.match_driver = false; 1779 device->flags.initialized = true; 1780 device->flags.enumeration_by_parent = 1781 acpi_device_enumeration_by_parent(device); 1782 acpi_device_clear_enumerated(device); 1783 device_initialize(&device->dev); 1784 dev_set_uevent_suppress(&device->dev, true); 1785 acpi_init_coherency(device); 1786 } 1787 1788 static void acpi_scan_dep_init(struct acpi_device *adev) 1789 { 1790 struct acpi_dep_data *dep; 1791 1792 list_for_each_entry(dep, &acpi_dep_list, node) { 1793 if (dep->consumer == adev->handle) { 1794 if (dep->honor_dep) 1795 adev->flags.honor_deps = 1; 1796 1797 adev->dep_unmet++; 1798 } 1799 } 1800 } 1801 1802 void acpi_device_add_finalize(struct acpi_device *device) 1803 { 1804 dev_set_uevent_suppress(&device->dev, false); 1805 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1806 } 1807 1808 static void acpi_scan_init_status(struct acpi_device *adev) 1809 { 1810 if (acpi_bus_get_status(adev)) 1811 acpi_set_device_status(adev, 0); 1812 } 1813 1814 static int acpi_add_single_object(struct acpi_device **child, 1815 acpi_handle handle, int type, bool dep_init) 1816 { 1817 struct acpi_device *device; 1818 bool release_dep_lock = false; 1819 int result; 1820 1821 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1822 if (!device) 1823 return -ENOMEM; 1824 1825 acpi_init_device_object(device, handle, type); 1826 /* 1827 * Getting the status is delayed till here so that we can call 1828 * acpi_bus_get_status() and use its quirk handling. Note that 1829 * this must be done before the get power-/wakeup_dev-flags calls. 1830 */ 1831 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1832 if (dep_init) { 1833 mutex_lock(&acpi_dep_list_lock); 1834 /* 1835 * Hold the lock until the acpi_tie_acpi_dev() call 1836 * below to prevent concurrent acpi_scan_clear_dep() 1837 * from deleting a dependency list entry without 1838 * updating dep_unmet for the device. 1839 */ 1840 release_dep_lock = true; 1841 acpi_scan_dep_init(device); 1842 } 1843 acpi_scan_init_status(device); 1844 } 1845 1846 acpi_bus_get_power_flags(device); 1847 acpi_bus_get_wakeup_device_flags(device); 1848 1849 result = acpi_tie_acpi_dev(device); 1850 1851 if (release_dep_lock) 1852 mutex_unlock(&acpi_dep_list_lock); 1853 1854 if (!result) 1855 result = __acpi_device_add(device, acpi_device_release); 1856 1857 if (result) { 1858 acpi_device_release(&device->dev); 1859 return result; 1860 } 1861 1862 acpi_power_add_remove_device(device, true); 1863 acpi_device_add_finalize(device); 1864 1865 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1866 dev_name(&device->dev), device->parent ? 1867 dev_name(&device->parent->dev) : "(null)"); 1868 1869 *child = device; 1870 return 0; 1871 } 1872 1873 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1874 void *context) 1875 { 1876 struct resource *res = context; 1877 1878 if (acpi_dev_resource_memory(ares, res)) 1879 return AE_CTRL_TERMINATE; 1880 1881 return AE_OK; 1882 } 1883 1884 static bool acpi_device_should_be_hidden(acpi_handle handle) 1885 { 1886 acpi_status status; 1887 struct resource res; 1888 1889 /* Check if it should ignore the UART device */ 1890 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1891 return false; 1892 1893 /* 1894 * The UART device described in SPCR table is assumed to have only one 1895 * memory resource present. So we only look for the first one here. 1896 */ 1897 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1898 acpi_get_resource_memory, &res); 1899 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1900 return false; 1901 1902 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1903 &res.start); 1904 1905 return true; 1906 } 1907 1908 bool acpi_device_is_present(const struct acpi_device *adev) 1909 { 1910 return adev->status.present || adev->status.functional; 1911 } 1912 1913 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1914 const char *idstr, 1915 const struct acpi_device_id **matchid) 1916 { 1917 const struct acpi_device_id *devid; 1918 1919 if (handler->match) 1920 return handler->match(idstr, matchid); 1921 1922 for (devid = handler->ids; devid->id[0]; devid++) 1923 if (!strcmp((char *)devid->id, idstr)) { 1924 if (matchid) 1925 *matchid = devid; 1926 1927 return true; 1928 } 1929 1930 return false; 1931 } 1932 1933 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1934 const struct acpi_device_id **matchid) 1935 { 1936 struct acpi_scan_handler *handler; 1937 1938 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1939 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1940 return handler; 1941 1942 return NULL; 1943 } 1944 1945 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1946 { 1947 if (!!hotplug->enabled == !!val) 1948 return; 1949 1950 mutex_lock(&acpi_scan_lock); 1951 1952 hotplug->enabled = val; 1953 1954 mutex_unlock(&acpi_scan_lock); 1955 } 1956 1957 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1958 { 1959 struct acpi_hardware_id *hwid; 1960 1961 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1962 acpi_dock_add(adev); 1963 return; 1964 } 1965 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1966 struct acpi_scan_handler *handler; 1967 1968 handler = acpi_scan_match_handler(hwid->id, NULL); 1969 if (handler) { 1970 adev->flags.hotplug_notify = true; 1971 break; 1972 } 1973 } 1974 } 1975 1976 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1977 { 1978 struct acpi_handle_list dep_devices; 1979 acpi_status status; 1980 u32 count; 1981 int i; 1982 1983 /* 1984 * Check for _HID here to avoid deferring the enumeration of: 1985 * 1. PCI devices. 1986 * 2. ACPI nodes describing USB ports. 1987 * Still, checking for _HID catches more then just these cases ... 1988 */ 1989 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1990 !acpi_has_method(handle, "_HID")) 1991 return 0; 1992 1993 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1994 if (ACPI_FAILURE(status)) { 1995 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1996 return 0; 1997 } 1998 1999 for (count = 0, i = 0; i < dep_devices.count; i++) { 2000 struct acpi_device_info *info; 2001 struct acpi_dep_data *dep; 2002 bool skip, honor_dep; 2003 2004 status = acpi_get_object_info(dep_devices.handles[i], &info); 2005 if (ACPI_FAILURE(status)) { 2006 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2007 continue; 2008 } 2009 2010 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2011 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2012 kfree(info); 2013 2014 if (skip) 2015 continue; 2016 2017 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2018 if (!dep) 2019 continue; 2020 2021 count++; 2022 2023 dep->supplier = dep_devices.handles[i]; 2024 dep->consumer = handle; 2025 dep->honor_dep = honor_dep; 2026 2027 mutex_lock(&acpi_dep_list_lock); 2028 list_add_tail(&dep->node , &acpi_dep_list); 2029 mutex_unlock(&acpi_dep_list_lock); 2030 } 2031 2032 return count; 2033 } 2034 2035 static bool acpi_bus_scan_second_pass; 2036 2037 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2038 struct acpi_device **adev_p) 2039 { 2040 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2041 acpi_object_type acpi_type; 2042 int type; 2043 2044 if (device) 2045 goto out; 2046 2047 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2048 return AE_OK; 2049 2050 switch (acpi_type) { 2051 case ACPI_TYPE_DEVICE: 2052 if (acpi_device_should_be_hidden(handle)) 2053 return AE_OK; 2054 2055 /* Bail out if there are dependencies. */ 2056 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2057 acpi_bus_scan_second_pass = true; 2058 return AE_CTRL_DEPTH; 2059 } 2060 2061 fallthrough; 2062 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2063 type = ACPI_BUS_TYPE_DEVICE; 2064 break; 2065 2066 case ACPI_TYPE_PROCESSOR: 2067 type = ACPI_BUS_TYPE_PROCESSOR; 2068 break; 2069 2070 case ACPI_TYPE_THERMAL: 2071 type = ACPI_BUS_TYPE_THERMAL; 2072 break; 2073 2074 case ACPI_TYPE_POWER: 2075 acpi_add_power_resource(handle); 2076 fallthrough; 2077 default: 2078 return AE_OK; 2079 } 2080 2081 /* 2082 * If check_dep is true at this point, the device has no dependencies, 2083 * or the creation of the device object would have been postponed above. 2084 */ 2085 acpi_add_single_object(&device, handle, type, !check_dep); 2086 if (!device) 2087 return AE_CTRL_DEPTH; 2088 2089 acpi_scan_init_hotplug(device); 2090 2091 out: 2092 if (!*adev_p) 2093 *adev_p = device; 2094 2095 return AE_OK; 2096 } 2097 2098 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2099 void *not_used, void **ret_p) 2100 { 2101 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2102 } 2103 2104 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2105 void *not_used, void **ret_p) 2106 { 2107 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2108 } 2109 2110 static void acpi_default_enumeration(struct acpi_device *device) 2111 { 2112 /* 2113 * Do not enumerate devices with enumeration_by_parent flag set as 2114 * they will be enumerated by their respective parents. 2115 */ 2116 if (!device->flags.enumeration_by_parent) { 2117 acpi_create_platform_device(device, NULL); 2118 acpi_device_set_enumerated(device); 2119 } else { 2120 blocking_notifier_call_chain(&acpi_reconfig_chain, 2121 ACPI_RECONFIG_DEVICE_ADD, device); 2122 } 2123 } 2124 2125 static const struct acpi_device_id generic_device_ids[] = { 2126 {ACPI_DT_NAMESPACE_HID, }, 2127 {"", }, 2128 }; 2129 2130 static int acpi_generic_device_attach(struct acpi_device *adev, 2131 const struct acpi_device_id *not_used) 2132 { 2133 /* 2134 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2135 * below can be unconditional. 2136 */ 2137 if (adev->data.of_compatible) 2138 acpi_default_enumeration(adev); 2139 2140 return 1; 2141 } 2142 2143 static struct acpi_scan_handler generic_device_handler = { 2144 .ids = generic_device_ids, 2145 .attach = acpi_generic_device_attach, 2146 }; 2147 2148 static int acpi_scan_attach_handler(struct acpi_device *device) 2149 { 2150 struct acpi_hardware_id *hwid; 2151 int ret = 0; 2152 2153 list_for_each_entry(hwid, &device->pnp.ids, list) { 2154 const struct acpi_device_id *devid; 2155 struct acpi_scan_handler *handler; 2156 2157 handler = acpi_scan_match_handler(hwid->id, &devid); 2158 if (handler) { 2159 if (!handler->attach) { 2160 device->pnp.type.platform_id = 0; 2161 continue; 2162 } 2163 device->handler = handler; 2164 ret = handler->attach(device, devid); 2165 if (ret > 0) 2166 break; 2167 2168 device->handler = NULL; 2169 if (ret < 0) 2170 break; 2171 } 2172 } 2173 2174 return ret; 2175 } 2176 2177 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2178 { 2179 struct acpi_device *child; 2180 bool skip = !first_pass && device->flags.visited; 2181 acpi_handle ejd; 2182 int ret; 2183 2184 if (skip) 2185 goto ok; 2186 2187 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2188 register_dock_dependent_device(device, ejd); 2189 2190 acpi_bus_get_status(device); 2191 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2192 if (!acpi_dev_ready_for_enumeration(device)) { 2193 device->flags.initialized = false; 2194 acpi_device_clear_enumerated(device); 2195 device->flags.power_manageable = 0; 2196 return; 2197 } 2198 if (device->handler) 2199 goto ok; 2200 2201 if (!device->flags.initialized) { 2202 device->flags.power_manageable = 2203 device->power.states[ACPI_STATE_D0].flags.valid; 2204 if (acpi_bus_init_power(device)) 2205 device->flags.power_manageable = 0; 2206 2207 device->flags.initialized = true; 2208 } else if (device->flags.visited) { 2209 goto ok; 2210 } 2211 2212 ret = acpi_scan_attach_handler(device); 2213 if (ret < 0) 2214 return; 2215 2216 device->flags.match_driver = true; 2217 if (ret > 0 && !device->flags.enumeration_by_parent) { 2218 acpi_device_set_enumerated(device); 2219 goto ok; 2220 } 2221 2222 ret = device_attach(&device->dev); 2223 if (ret < 0) 2224 return; 2225 2226 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2227 acpi_default_enumeration(device); 2228 else 2229 acpi_device_set_enumerated(device); 2230 2231 ok: 2232 list_for_each_entry(child, &device->children, node) 2233 acpi_bus_attach(child, first_pass); 2234 2235 if (!skip && device->handler && device->handler->hotplug.notify_online) 2236 device->handler->hotplug.notify_online(device); 2237 } 2238 2239 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2240 { 2241 struct acpi_device *adev; 2242 2243 adev = acpi_bus_get_acpi_device(dep->consumer); 2244 if (adev) { 2245 *(struct acpi_device **)data = adev; 2246 return 1; 2247 } 2248 /* Continue parsing if the device object is not present. */ 2249 return 0; 2250 } 2251 2252 struct acpi_scan_clear_dep_work { 2253 struct work_struct work; 2254 struct acpi_device *adev; 2255 }; 2256 2257 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2258 { 2259 struct acpi_scan_clear_dep_work *cdw; 2260 2261 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2262 2263 acpi_scan_lock_acquire(); 2264 acpi_bus_attach(cdw->adev, true); 2265 acpi_scan_lock_release(); 2266 2267 acpi_dev_put(cdw->adev); 2268 kfree(cdw); 2269 } 2270 2271 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2272 { 2273 struct acpi_scan_clear_dep_work *cdw; 2274 2275 if (adev->dep_unmet) 2276 return false; 2277 2278 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2279 if (!cdw) 2280 return false; 2281 2282 cdw->adev = adev; 2283 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2284 /* 2285 * Since the work function may block on the lock until the entire 2286 * initial enumeration of devices is complete, put it into the unbound 2287 * workqueue. 2288 */ 2289 queue_work(system_unbound_wq, &cdw->work); 2290 2291 return true; 2292 } 2293 2294 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2295 { 2296 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2297 2298 if (adev) { 2299 adev->dep_unmet--; 2300 if (!acpi_scan_clear_dep_queue(adev)) 2301 acpi_dev_put(adev); 2302 } 2303 2304 list_del(&dep->node); 2305 kfree(dep); 2306 2307 return 0; 2308 } 2309 2310 /** 2311 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2312 * @handle: The ACPI handle of the supplier device 2313 * @callback: Pointer to the callback function to apply 2314 * @data: Pointer to some data to pass to the callback 2315 * 2316 * The return value of the callback determines this function's behaviour. If 0 2317 * is returned we continue to iterate over acpi_dep_list. If a positive value 2318 * is returned then the loop is broken but this function returns 0. If a 2319 * negative value is returned by the callback then the loop is broken and that 2320 * value is returned as the final error. 2321 */ 2322 static int acpi_walk_dep_device_list(acpi_handle handle, 2323 int (*callback)(struct acpi_dep_data *, void *), 2324 void *data) 2325 { 2326 struct acpi_dep_data *dep, *tmp; 2327 int ret = 0; 2328 2329 mutex_lock(&acpi_dep_list_lock); 2330 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2331 if (dep->supplier == handle) { 2332 ret = callback(dep, data); 2333 if (ret) 2334 break; 2335 } 2336 } 2337 mutex_unlock(&acpi_dep_list_lock); 2338 2339 return ret > 0 ? 0 : ret; 2340 } 2341 2342 /** 2343 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2344 * @supplier: Pointer to the supplier &struct acpi_device 2345 * 2346 * Clear dependencies on the given device. 2347 */ 2348 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2349 { 2350 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2351 } 2352 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2353 2354 /** 2355 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2356 * @device: Pointer to the &struct acpi_device to check 2357 * 2358 * Check if the device is present and has no unmet dependencies. 2359 * 2360 * Return true if the device is ready for enumeratino. Otherwise, return false. 2361 */ 2362 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2363 { 2364 if (device->flags.honor_deps && device->dep_unmet) 2365 return false; 2366 2367 return acpi_device_is_present(device); 2368 } 2369 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2370 2371 /** 2372 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2373 * @supplier: Pointer to the dependee device 2374 * 2375 * Returns the first &struct acpi_device which declares itself dependent on 2376 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2377 * 2378 * The caller is responsible for putting the reference to adev when it is no 2379 * longer needed. 2380 */ 2381 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2382 { 2383 struct acpi_device *adev = NULL; 2384 2385 acpi_walk_dep_device_list(supplier->handle, 2386 acpi_dev_get_first_consumer_dev_cb, &adev); 2387 2388 return adev; 2389 } 2390 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2391 2392 /** 2393 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2394 * @handle: Root of the namespace scope to scan. 2395 * 2396 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2397 * found devices. 2398 * 2399 * If no devices were found, -ENODEV is returned, but it does not mean that 2400 * there has been a real error. There just have been no suitable ACPI objects 2401 * in the table trunk from which the kernel could create a device and add an 2402 * appropriate driver. 2403 * 2404 * Must be called under acpi_scan_lock. 2405 */ 2406 int acpi_bus_scan(acpi_handle handle) 2407 { 2408 struct acpi_device *device = NULL; 2409 2410 acpi_bus_scan_second_pass = false; 2411 2412 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2413 2414 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2415 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2416 acpi_bus_check_add_1, NULL, NULL, 2417 (void **)&device); 2418 2419 if (!device) 2420 return -ENODEV; 2421 2422 acpi_bus_attach(device, true); 2423 2424 if (!acpi_bus_scan_second_pass) 2425 return 0; 2426 2427 /* Pass 2: Enumerate all of the remaining devices. */ 2428 2429 device = NULL; 2430 2431 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2432 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2433 acpi_bus_check_add_2, NULL, NULL, 2434 (void **)&device); 2435 2436 acpi_bus_attach(device, false); 2437 2438 return 0; 2439 } 2440 EXPORT_SYMBOL(acpi_bus_scan); 2441 2442 /** 2443 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2444 * @adev: Root of the ACPI namespace scope to walk. 2445 * 2446 * Must be called under acpi_scan_lock. 2447 */ 2448 void acpi_bus_trim(struct acpi_device *adev) 2449 { 2450 struct acpi_scan_handler *handler = adev->handler; 2451 struct acpi_device *child; 2452 2453 list_for_each_entry_reverse(child, &adev->children, node) 2454 acpi_bus_trim(child); 2455 2456 adev->flags.match_driver = false; 2457 if (handler) { 2458 if (handler->detach) 2459 handler->detach(adev); 2460 2461 adev->handler = NULL; 2462 } else { 2463 device_release_driver(&adev->dev); 2464 } 2465 /* 2466 * Most likely, the device is going away, so put it into D3cold before 2467 * that. 2468 */ 2469 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2470 adev->flags.initialized = false; 2471 acpi_device_clear_enumerated(adev); 2472 } 2473 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2474 2475 int acpi_bus_register_early_device(int type) 2476 { 2477 struct acpi_device *device = NULL; 2478 int result; 2479 2480 result = acpi_add_single_object(&device, NULL, type, false); 2481 if (result) 2482 return result; 2483 2484 device->flags.match_driver = true; 2485 return device_attach(&device->dev); 2486 } 2487 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2488 2489 static int acpi_bus_scan_fixed(void) 2490 { 2491 int result = 0; 2492 2493 /* 2494 * Enumerate all fixed-feature devices. 2495 */ 2496 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2497 struct acpi_device *device = NULL; 2498 2499 result = acpi_add_single_object(&device, NULL, 2500 ACPI_BUS_TYPE_POWER_BUTTON, false); 2501 if (result) 2502 return result; 2503 2504 device->flags.match_driver = true; 2505 result = device_attach(&device->dev); 2506 if (result < 0) 2507 return result; 2508 2509 device_init_wakeup(&device->dev, true); 2510 } 2511 2512 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2513 struct acpi_device *device = NULL; 2514 2515 result = acpi_add_single_object(&device, NULL, 2516 ACPI_BUS_TYPE_SLEEP_BUTTON, false); 2517 if (result) 2518 return result; 2519 2520 device->flags.match_driver = true; 2521 result = device_attach(&device->dev); 2522 } 2523 2524 return result < 0 ? result : 0; 2525 } 2526 2527 static void __init acpi_get_spcr_uart_addr(void) 2528 { 2529 acpi_status status; 2530 struct acpi_table_spcr *spcr_ptr; 2531 2532 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2533 (struct acpi_table_header **)&spcr_ptr); 2534 if (ACPI_FAILURE(status)) { 2535 pr_warn("STAO table present, but SPCR is missing\n"); 2536 return; 2537 } 2538 2539 spcr_uart_addr = spcr_ptr->serial_port.address; 2540 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2541 } 2542 2543 static bool acpi_scan_initialized; 2544 2545 int __init acpi_scan_init(void) 2546 { 2547 int result; 2548 acpi_status status; 2549 struct acpi_table_stao *stao_ptr; 2550 2551 acpi_pci_root_init(); 2552 acpi_pci_link_init(); 2553 acpi_processor_init(); 2554 acpi_platform_init(); 2555 acpi_lpss_init(); 2556 acpi_apd_init(); 2557 acpi_cmos_rtc_init(); 2558 acpi_container_init(); 2559 acpi_memory_hotplug_init(); 2560 acpi_watchdog_init(); 2561 acpi_pnp_init(); 2562 acpi_int340x_thermal_init(); 2563 acpi_amba_init(); 2564 acpi_init_lpit(); 2565 2566 acpi_scan_add_handler(&generic_device_handler); 2567 2568 /* 2569 * If there is STAO table, check whether it needs to ignore the UART 2570 * device in SPCR table. 2571 */ 2572 status = acpi_get_table(ACPI_SIG_STAO, 0, 2573 (struct acpi_table_header **)&stao_ptr); 2574 if (ACPI_SUCCESS(status)) { 2575 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2576 pr_info("STAO Name List not yet supported.\n"); 2577 2578 if (stao_ptr->ignore_uart) 2579 acpi_get_spcr_uart_addr(); 2580 2581 acpi_put_table((struct acpi_table_header *)stao_ptr); 2582 } 2583 2584 acpi_gpe_apply_masked_gpes(); 2585 acpi_update_all_gpes(); 2586 2587 /* 2588 * Although we call __add_memory() that is documented to require the 2589 * device_hotplug_lock, it is not necessary here because this is an 2590 * early code when userspace or any other code path cannot trigger 2591 * hotplug/hotunplug operations. 2592 */ 2593 mutex_lock(&acpi_scan_lock); 2594 /* 2595 * Enumerate devices in the ACPI namespace. 2596 */ 2597 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2598 if (result) 2599 goto out; 2600 2601 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2602 if (!acpi_root) 2603 goto out; 2604 2605 /* Fixed feature devices do not exist on HW-reduced platform */ 2606 if (!acpi_gbl_reduced_hardware) { 2607 result = acpi_bus_scan_fixed(); 2608 if (result) { 2609 acpi_detach_data(acpi_root->handle, 2610 acpi_scan_drop_device); 2611 acpi_device_del(acpi_root); 2612 acpi_bus_put_acpi_device(acpi_root); 2613 goto out; 2614 } 2615 } 2616 2617 acpi_turn_off_unused_power_resources(); 2618 2619 acpi_scan_initialized = true; 2620 2621 out: 2622 mutex_unlock(&acpi_scan_lock); 2623 return result; 2624 } 2625 2626 static struct acpi_probe_entry *ape; 2627 static int acpi_probe_count; 2628 static DEFINE_MUTEX(acpi_probe_mutex); 2629 2630 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2631 const unsigned long end) 2632 { 2633 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2634 if (!ape->probe_subtbl(header, end)) 2635 acpi_probe_count++; 2636 2637 return 0; 2638 } 2639 2640 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2641 { 2642 int count = 0; 2643 2644 if (acpi_disabled) 2645 return 0; 2646 2647 mutex_lock(&acpi_probe_mutex); 2648 for (ape = ap_head; nr; ape++, nr--) { 2649 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2650 acpi_probe_count = 0; 2651 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2652 count += acpi_probe_count; 2653 } else { 2654 int res; 2655 res = acpi_table_parse(ape->id, ape->probe_table); 2656 if (!res) 2657 count++; 2658 } 2659 } 2660 mutex_unlock(&acpi_probe_mutex); 2661 2662 return count; 2663 } 2664 2665 static void acpi_table_events_fn(struct work_struct *work) 2666 { 2667 acpi_scan_lock_acquire(); 2668 acpi_bus_scan(ACPI_ROOT_OBJECT); 2669 acpi_scan_lock_release(); 2670 2671 kfree(work); 2672 } 2673 2674 void acpi_scan_table_notify(void) 2675 { 2676 struct work_struct *work; 2677 2678 if (!acpi_scan_initialized) 2679 return; 2680 2681 work = kmalloc(sizeof(*work), GFP_KERNEL); 2682 if (!work) 2683 return; 2684 2685 INIT_WORK(work, acpi_table_events_fn); 2686 schedule_work(work); 2687 } 2688 2689 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2690 { 2691 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2692 } 2693 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2694 2695 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2696 { 2697 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2698 } 2699 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2700