xref: /linux/drivers/acpi/scan.c (revision c288ea679840de4dee2ce6da5d0f139e3774ad86)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 
23 #include "internal.h"
24 
25 extern struct acpi_device *acpi_root;
26 
27 #define ACPI_BUS_CLASS			"system_bus"
28 #define ACPI_BUS_HID			"LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME		"System Bus"
30 
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32 
33 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
34 
35 static const char *dummy_hid = "device";
36 
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45 
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52 
53 void acpi_scan_lock_acquire(void)
54 {
55 	mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58 
59 void acpi_scan_lock_release(void)
60 {
61 	mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64 
65 void acpi_lock_hp_context(void)
66 {
67 	mutex_lock(&acpi_hp_context_lock);
68 }
69 
70 void acpi_unlock_hp_context(void)
71 {
72 	mutex_unlock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 				struct acpi_hotplug_context *hp,
77 				int (*notify)(struct acpi_device *, u32),
78 				void (*uevent)(struct acpi_device *, u32))
79 {
80 	acpi_lock_hp_context();
81 	hp->notify = notify;
82 	hp->uevent = uevent;
83 	acpi_set_hp_context(adev, hp);
84 	acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87 
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 	if (!handler)
91 		return -EINVAL;
92 
93 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 	return 0;
95 }
96 
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 				       const char *hotplug_profile_name)
99 {
100 	int error;
101 
102 	error = acpi_scan_add_handler(handler);
103 	if (error)
104 		return error;
105 
106 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 	return 0;
108 }
109 
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 	struct acpi_device_physical_node *pn;
113 	bool offline = true;
114 	char *envp[] = { "EVENT=offline", NULL };
115 
116 	/*
117 	 * acpi_container_offline() calls this for all of the container's
118 	 * children under the container's physical_node_lock lock.
119 	 */
120 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121 
122 	list_for_each_entry(pn, &adev->physical_node_list, node)
123 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 			if (uevent)
125 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126 
127 			offline = false;
128 			break;
129 		}
130 
131 	mutex_unlock(&adev->physical_node_lock);
132 	return offline;
133 }
134 
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 				    void **ret_p)
137 {
138 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 	struct acpi_device_physical_node *pn;
140 	bool second_pass = (bool)data;
141 	acpi_status status = AE_OK;
142 
143 	if (!device)
144 		return AE_OK;
145 
146 	if (device->handler && !device->handler->hotplug.enabled) {
147 		*ret_p = &device->dev;
148 		return AE_SUPPORT;
149 	}
150 
151 	mutex_lock(&device->physical_node_lock);
152 
153 	list_for_each_entry(pn, &device->physical_node_list, node) {
154 		int ret;
155 
156 		if (second_pass) {
157 			/* Skip devices offlined by the first pass. */
158 			if (pn->put_online)
159 				continue;
160 		} else {
161 			pn->put_online = false;
162 		}
163 		ret = device_offline(pn->dev);
164 		if (ret >= 0) {
165 			pn->put_online = !ret;
166 		} else {
167 			*ret_p = pn->dev;
168 			if (second_pass) {
169 				status = AE_ERROR;
170 				break;
171 			}
172 		}
173 	}
174 
175 	mutex_unlock(&device->physical_node_lock);
176 
177 	return status;
178 }
179 
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 				   void **ret_p)
182 {
183 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 	struct acpi_device_physical_node *pn;
185 
186 	if (!device)
187 		return AE_OK;
188 
189 	mutex_lock(&device->physical_node_lock);
190 
191 	list_for_each_entry(pn, &device->physical_node_list, node)
192 		if (pn->put_online) {
193 			device_online(pn->dev);
194 			pn->put_online = false;
195 		}
196 
197 	mutex_unlock(&device->physical_node_lock);
198 
199 	return AE_OK;
200 }
201 
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 	acpi_handle handle = device->handle;
205 	struct device *errdev = NULL;
206 	acpi_status status;
207 
208 	/*
209 	 * Carry out two passes here and ignore errors in the first pass,
210 	 * because if the devices in question are memory blocks and
211 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 	 * that the other blocks depend on, but it is not known in advance which
213 	 * block holds them.
214 	 *
215 	 * If the first pass is successful, the second one isn't needed, though.
216 	 */
217 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 				     NULL, acpi_bus_offline, (void *)false,
219 				     (void **)&errdev);
220 	if (status == AE_SUPPORT) {
221 		dev_warn(errdev, "Offline disabled.\n");
222 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				    acpi_bus_online, NULL, NULL, NULL);
224 		return -EPERM;
225 	}
226 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 	if (errdev) {
228 		errdev = NULL;
229 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 				    NULL, acpi_bus_offline, (void *)true,
231 				    (void **)&errdev);
232 		if (!errdev)
233 			acpi_bus_offline(handle, 0, (void *)true,
234 					 (void **)&errdev);
235 
236 		if (errdev) {
237 			dev_warn(errdev, "Offline failed.\n");
238 			acpi_bus_online(handle, 0, NULL, NULL);
239 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 					    ACPI_UINT32_MAX, acpi_bus_online,
241 					    NULL, NULL, NULL);
242 			return -EBUSY;
243 		}
244 	}
245 	return 0;
246 }
247 
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 	acpi_handle handle = device->handle;
251 	unsigned long long sta;
252 	acpi_status status;
253 
254 	if (device->handler && device->handler->hotplug.demand_offline) {
255 		if (!acpi_scan_is_offline(device, true))
256 			return -EBUSY;
257 	} else {
258 		int error = acpi_scan_try_to_offline(device);
259 		if (error)
260 			return error;
261 	}
262 
263 	acpi_handle_debug(handle, "Ejecting\n");
264 
265 	acpi_bus_trim(device);
266 
267 	acpi_evaluate_lck(handle, 0);
268 	/*
269 	 * TBD: _EJD support.
270 	 */
271 	status = acpi_evaluate_ej0(handle);
272 	if (status == AE_NOT_FOUND)
273 		return -ENODEV;
274 	else if (ACPI_FAILURE(status))
275 		return -EIO;
276 
277 	/*
278 	 * Verify if eject was indeed successful.  If not, log an error
279 	 * message.  No need to call _OST since _EJ0 call was made OK.
280 	 */
281 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 	if (ACPI_FAILURE(status)) {
283 		acpi_handle_warn(handle,
284 			"Status check after eject failed (0x%x)\n", status);
285 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 		acpi_handle_warn(handle,
287 			"Eject incomplete - status 0x%llx\n", sta);
288 	}
289 
290 	return 0;
291 }
292 
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 	if (!acpi_device_enumerated(adev)) {
296 		dev_warn(&adev->dev, "Still not present\n");
297 		return -EALREADY;
298 	}
299 	acpi_bus_trim(adev);
300 	return 0;
301 }
302 
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 	int error;
306 
307 	acpi_bus_get_status(adev);
308 	if (adev->status.present || adev->status.functional) {
309 		/*
310 		 * This function is only called for device objects for which
311 		 * matching scan handlers exist.  The only situation in which
312 		 * the scan handler is not attached to this device object yet
313 		 * is when the device has just appeared (either it wasn't
314 		 * present at all before or it was removed and then added
315 		 * again).
316 		 */
317 		if (adev->handler) {
318 			dev_warn(&adev->dev, "Already enumerated\n");
319 			return -EALREADY;
320 		}
321 		error = acpi_bus_scan(adev->handle);
322 		if (error) {
323 			dev_warn(&adev->dev, "Namespace scan failure\n");
324 			return error;
325 		}
326 		if (!adev->handler) {
327 			dev_warn(&adev->dev, "Enumeration failure\n");
328 			error = -ENODEV;
329 		}
330 	} else {
331 		error = acpi_scan_device_not_present(adev);
332 	}
333 	return error;
334 }
335 
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 	struct acpi_scan_handler *handler = adev->handler;
339 	struct acpi_device *child;
340 	int error;
341 
342 	acpi_bus_get_status(adev);
343 	if (!(adev->status.present || adev->status.functional)) {
344 		acpi_scan_device_not_present(adev);
345 		return 0;
346 	}
347 	if (handler && handler->hotplug.scan_dependent)
348 		return handler->hotplug.scan_dependent(adev);
349 
350 	error = acpi_bus_scan(adev->handle);
351 	if (error) {
352 		dev_warn(&adev->dev, "Namespace scan failure\n");
353 		return error;
354 	}
355 	list_for_each_entry(child, &adev->children, node) {
356 		error = acpi_scan_bus_check(child);
357 		if (error)
358 			return error;
359 	}
360 	return 0;
361 }
362 
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 	switch (type) {
366 	case ACPI_NOTIFY_BUS_CHECK:
367 		return acpi_scan_bus_check(adev);
368 	case ACPI_NOTIFY_DEVICE_CHECK:
369 		return acpi_scan_device_check(adev);
370 	case ACPI_NOTIFY_EJECT_REQUEST:
371 	case ACPI_OST_EC_OSPM_EJECT:
372 		if (adev->handler && !adev->handler->hotplug.enabled) {
373 			dev_info(&adev->dev, "Eject disabled\n");
374 			return -EPERM;
375 		}
376 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 		return acpi_scan_hot_remove(adev);
379 	}
380 	return -EINVAL;
381 }
382 
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 	int error = -ENODEV;
387 
388 	lock_device_hotplug();
389 	mutex_lock(&acpi_scan_lock);
390 
391 	/*
392 	 * The device object's ACPI handle cannot become invalid as long as we
393 	 * are holding acpi_scan_lock, but it might have become invalid before
394 	 * that lock was acquired.
395 	 */
396 	if (adev->handle == INVALID_ACPI_HANDLE)
397 		goto err_out;
398 
399 	if (adev->flags.is_dock_station) {
400 		error = dock_notify(adev, src);
401 	} else if (adev->flags.hotplug_notify) {
402 		error = acpi_generic_hotplug_event(adev, src);
403 	} else {
404 		int (*notify)(struct acpi_device *, u32);
405 
406 		acpi_lock_hp_context();
407 		notify = adev->hp ? adev->hp->notify : NULL;
408 		acpi_unlock_hp_context();
409 		/*
410 		 * There may be additional notify handlers for device objects
411 		 * without the .event() callback, so ignore them here.
412 		 */
413 		if (notify)
414 			error = notify(adev, src);
415 		else
416 			goto out;
417 	}
418 	switch (error) {
419 	case 0:
420 		ost_code = ACPI_OST_SC_SUCCESS;
421 		break;
422 	case -EPERM:
423 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 		break;
425 	case -EBUSY:
426 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 		break;
428 	default:
429 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 		break;
431 	}
432 
433  err_out:
434 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435 
436  out:
437 	acpi_bus_put_acpi_device(adev);
438 	mutex_unlock(&acpi_scan_lock);
439 	unlock_device_hotplug();
440 }
441 
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 	int i;
445 
446 	if (device->wakeup.flags.valid)
447 		acpi_power_resources_list_free(&device->wakeup.resources);
448 
449 	if (!device->power.flags.power_resources)
450 		return;
451 
452 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 		struct acpi_device_power_state *ps = &device->power.states[i];
454 		acpi_power_resources_list_free(&ps->resources);
455 	}
456 }
457 
458 static void acpi_device_release(struct device *dev)
459 {
460 	struct acpi_device *acpi_dev = to_acpi_device(dev);
461 
462 	acpi_free_properties(acpi_dev);
463 	acpi_free_pnp_ids(&acpi_dev->pnp);
464 	acpi_free_power_resources_lists(acpi_dev);
465 	kfree(acpi_dev);
466 }
467 
468 static void acpi_device_del(struct acpi_device *device)
469 {
470 	struct acpi_device_bus_id *acpi_device_bus_id;
471 
472 	mutex_lock(&acpi_device_lock);
473 	if (device->parent)
474 		list_del(&device->node);
475 
476 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 		if (!strcmp(acpi_device_bus_id->bus_id,
478 			    acpi_device_hid(device))) {
479 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 				list_del(&acpi_device_bus_id->node);
482 				kfree_const(acpi_device_bus_id->bus_id);
483 				kfree(acpi_device_bus_id);
484 			}
485 			break;
486 		}
487 
488 	list_del(&device->wakeup_list);
489 	mutex_unlock(&acpi_device_lock);
490 
491 	acpi_power_add_remove_device(device, false);
492 	acpi_device_remove_files(device);
493 	if (device->remove)
494 		device->remove(device);
495 
496 	device_del(&device->dev);
497 }
498 
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500 
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503 
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 	for (;;) {
507 		struct acpi_device *adev;
508 
509 		mutex_lock(&acpi_device_del_lock);
510 
511 		if (list_empty(&acpi_device_del_list)) {
512 			mutex_unlock(&acpi_device_del_lock);
513 			break;
514 		}
515 		adev = list_first_entry(&acpi_device_del_list,
516 					struct acpi_device, del_list);
517 		list_del(&adev->del_list);
518 
519 		mutex_unlock(&acpi_device_del_lock);
520 
521 		blocking_notifier_call_chain(&acpi_reconfig_chain,
522 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
523 
524 		acpi_device_del(adev);
525 		/*
526 		 * Drop references to all power resources that might have been
527 		 * used by the device.
528 		 */
529 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 		acpi_dev_put(adev);
531 	}
532 }
533 
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 	static DECLARE_WORK(work, acpi_device_del_work_fn);
550 	struct acpi_device *adev = context;
551 
552 	mutex_lock(&acpi_device_del_lock);
553 
554 	/*
555 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 	 * won't run after any hotplug work items submitted subsequently.  That
557 	 * prevents attempts to register device objects identical to those being
558 	 * deleted from happening concurrently (such attempts result from
559 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
560 	 * run after all of the work items submitted previously, which helps
561 	 * those work items to ensure that they are not accessing stale device
562 	 * objects.
563 	 */
564 	if (list_empty(&acpi_device_del_list))
565 		acpi_queue_hotplug_work(&work);
566 
567 	list_add_tail(&adev->del_list, &acpi_device_del_list);
568 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
569 	adev->handle = INVALID_ACPI_HANDLE;
570 
571 	mutex_unlock(&acpi_device_del_lock);
572 }
573 
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 					    void (*callback)(void *))
576 {
577 	struct acpi_device *adev = NULL;
578 	acpi_status status;
579 
580 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 				    (void **)&adev, callback);
582 	if (ACPI_FAILURE(status) || !adev) {
583 		acpi_handle_debug(handle, "No context!\n");
584 		return NULL;
585 	}
586 	return adev;
587 }
588 
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 	if (!device)
592 		return -EINVAL;
593 
594 	*device = handle_to_device(handle, NULL);
595 	if (!*device)
596 		return -ENODEV;
597 
598 	return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601 
602 /**
603  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
604  * @handle: ACPI handle associated with the requested ACPI device object.
605  *
606  * Return a pointer to the ACPI device object associated with @handle, if
607  * present, or NULL otherwise.
608  */
609 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
610 {
611 	return handle_to_device(handle, NULL);
612 }
613 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
614 
615 static void get_acpi_device(void *dev)
616 {
617 	acpi_dev_get(dev);
618 }
619 
620 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
621 {
622 	return handle_to_device(handle, get_acpi_device);
623 }
624 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
625 
626 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
627 {
628 	struct acpi_device_bus_id *acpi_device_bus_id;
629 
630 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
631 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
632 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
633 			return acpi_device_bus_id;
634 	}
635 	return NULL;
636 }
637 
638 static int acpi_device_set_name(struct acpi_device *device,
639 				struct acpi_device_bus_id *acpi_device_bus_id)
640 {
641 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
642 	int result;
643 
644 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
645 	if (result < 0)
646 		return result;
647 
648 	device->pnp.instance_no = result;
649 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
650 	return 0;
651 }
652 
653 static int acpi_tie_acpi_dev(struct acpi_device *adev)
654 {
655 	acpi_handle handle = adev->handle;
656 	acpi_status status;
657 
658 	if (!handle)
659 		return 0;
660 
661 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
662 	if (ACPI_FAILURE(status)) {
663 		acpi_handle_err(handle, "Unable to attach device data\n");
664 		return -ENODEV;
665 	}
666 
667 	return 0;
668 }
669 
670 static int __acpi_device_add(struct acpi_device *device,
671 			     void (*release)(struct device *))
672 {
673 	struct acpi_device_bus_id *acpi_device_bus_id;
674 	int result;
675 
676 	/*
677 	 * Linkage
678 	 * -------
679 	 * Link this device to its parent and siblings.
680 	 */
681 	INIT_LIST_HEAD(&device->children);
682 	INIT_LIST_HEAD(&device->node);
683 	INIT_LIST_HEAD(&device->wakeup_list);
684 	INIT_LIST_HEAD(&device->physical_node_list);
685 	INIT_LIST_HEAD(&device->del_list);
686 	mutex_init(&device->physical_node_lock);
687 
688 	mutex_lock(&acpi_device_lock);
689 
690 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
691 	if (acpi_device_bus_id) {
692 		result = acpi_device_set_name(device, acpi_device_bus_id);
693 		if (result)
694 			goto err_unlock;
695 	} else {
696 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
697 					     GFP_KERNEL);
698 		if (!acpi_device_bus_id) {
699 			result = -ENOMEM;
700 			goto err_unlock;
701 		}
702 		acpi_device_bus_id->bus_id =
703 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
704 		if (!acpi_device_bus_id->bus_id) {
705 			kfree(acpi_device_bus_id);
706 			result = -ENOMEM;
707 			goto err_unlock;
708 		}
709 
710 		ida_init(&acpi_device_bus_id->instance_ida);
711 
712 		result = acpi_device_set_name(device, acpi_device_bus_id);
713 		if (result) {
714 			kfree_const(acpi_device_bus_id->bus_id);
715 			kfree(acpi_device_bus_id);
716 			goto err_unlock;
717 		}
718 
719 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
720 	}
721 
722 	if (device->parent)
723 		list_add_tail(&device->node, &device->parent->children);
724 
725 	if (device->wakeup.flags.valid)
726 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
727 
728 	mutex_unlock(&acpi_device_lock);
729 
730 	if (device->parent)
731 		device->dev.parent = &device->parent->dev;
732 
733 	device->dev.bus = &acpi_bus_type;
734 	device->dev.release = release;
735 	result = device_add(&device->dev);
736 	if (result) {
737 		dev_err(&device->dev, "Error registering device\n");
738 		goto err;
739 	}
740 
741 	result = acpi_device_setup_files(device);
742 	if (result)
743 		pr_err("Error creating sysfs interface for device %s\n",
744 		       dev_name(&device->dev));
745 
746 	return 0;
747 
748 err:
749 	mutex_lock(&acpi_device_lock);
750 
751 	if (device->parent)
752 		list_del(&device->node);
753 
754 	list_del(&device->wakeup_list);
755 
756 err_unlock:
757 	mutex_unlock(&acpi_device_lock);
758 
759 	acpi_detach_data(device->handle, acpi_scan_drop_device);
760 
761 	return result;
762 }
763 
764 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
765 {
766 	int ret;
767 
768 	ret = acpi_tie_acpi_dev(adev);
769 	if (ret)
770 		return ret;
771 
772 	return __acpi_device_add(adev, release);
773 }
774 
775 /* --------------------------------------------------------------------------
776                                  Device Enumeration
777    -------------------------------------------------------------------------- */
778 static bool acpi_info_matches_ids(struct acpi_device_info *info,
779 				  const char * const ids[])
780 {
781 	struct acpi_pnp_device_id_list *cid_list = NULL;
782 	int i, index;
783 
784 	if (!(info->valid & ACPI_VALID_HID))
785 		return false;
786 
787 	index = match_string(ids, -1, info->hardware_id.string);
788 	if (index >= 0)
789 		return true;
790 
791 	if (info->valid & ACPI_VALID_CID)
792 		cid_list = &info->compatible_id_list;
793 
794 	if (!cid_list)
795 		return false;
796 
797 	for (i = 0; i < cid_list->count; i++) {
798 		index = match_string(ids, -1, cid_list->ids[i].string);
799 		if (index >= 0)
800 			return true;
801 	}
802 
803 	return false;
804 }
805 
806 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
807 static const char * const acpi_ignore_dep_ids[] = {
808 	"PNP0D80", /* Windows-compatible System Power Management Controller */
809 	"INT33BD", /* Intel Baytrail Mailbox Device */
810 	NULL
811 };
812 
813 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
814 static const char * const acpi_honor_dep_ids[] = {
815 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
816 	NULL
817 };
818 
819 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
820 {
821 	struct acpi_device *device;
822 	acpi_status status;
823 
824 	/*
825 	 * Fixed hardware devices do not appear in the namespace and do not
826 	 * have handles, but we fabricate acpi_devices for them, so we have
827 	 * to deal with them specially.
828 	 */
829 	if (!handle)
830 		return acpi_root;
831 
832 	do {
833 		status = acpi_get_parent(handle, &handle);
834 		if (ACPI_FAILURE(status))
835 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
836 
837 		device = acpi_fetch_acpi_dev(handle);
838 	} while (!device);
839 	return device;
840 }
841 
842 acpi_status
843 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
844 {
845 	acpi_status status;
846 	acpi_handle tmp;
847 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
848 	union acpi_object *obj;
849 
850 	status = acpi_get_handle(handle, "_EJD", &tmp);
851 	if (ACPI_FAILURE(status))
852 		return status;
853 
854 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
855 	if (ACPI_SUCCESS(status)) {
856 		obj = buffer.pointer;
857 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
858 					 ejd);
859 		kfree(buffer.pointer);
860 	}
861 	return status;
862 }
863 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
864 
865 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
866 {
867 	acpi_handle handle = dev->handle;
868 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
869 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
870 	union acpi_object *package = NULL;
871 	union acpi_object *element = NULL;
872 	acpi_status status;
873 	int err = -ENODATA;
874 
875 	INIT_LIST_HEAD(&wakeup->resources);
876 
877 	/* _PRW */
878 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
879 	if (ACPI_FAILURE(status)) {
880 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
881 				 acpi_format_exception(status));
882 		return err;
883 	}
884 
885 	package = (union acpi_object *)buffer.pointer;
886 
887 	if (!package || package->package.count < 2)
888 		goto out;
889 
890 	element = &(package->package.elements[0]);
891 	if (!element)
892 		goto out;
893 
894 	if (element->type == ACPI_TYPE_PACKAGE) {
895 		if ((element->package.count < 2) ||
896 		    (element->package.elements[0].type !=
897 		     ACPI_TYPE_LOCAL_REFERENCE)
898 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
899 			goto out;
900 
901 		wakeup->gpe_device =
902 		    element->package.elements[0].reference.handle;
903 		wakeup->gpe_number =
904 		    (u32) element->package.elements[1].integer.value;
905 	} else if (element->type == ACPI_TYPE_INTEGER) {
906 		wakeup->gpe_device = NULL;
907 		wakeup->gpe_number = element->integer.value;
908 	} else {
909 		goto out;
910 	}
911 
912 	element = &(package->package.elements[1]);
913 	if (element->type != ACPI_TYPE_INTEGER)
914 		goto out;
915 
916 	wakeup->sleep_state = element->integer.value;
917 
918 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
919 	if (err)
920 		goto out;
921 
922 	if (!list_empty(&wakeup->resources)) {
923 		int sleep_state;
924 
925 		err = acpi_power_wakeup_list_init(&wakeup->resources,
926 						  &sleep_state);
927 		if (err) {
928 			acpi_handle_warn(handle, "Retrieving current states "
929 					 "of wakeup power resources failed\n");
930 			acpi_power_resources_list_free(&wakeup->resources);
931 			goto out;
932 		}
933 		if (sleep_state < wakeup->sleep_state) {
934 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
935 					 "(S%d) by S%d from power resources\n",
936 					 (int)wakeup->sleep_state, sleep_state);
937 			wakeup->sleep_state = sleep_state;
938 		}
939 	}
940 
941  out:
942 	kfree(buffer.pointer);
943 	return err;
944 }
945 
946 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
947 {
948 	static const struct acpi_device_id button_device_ids[] = {
949 		{"PNP0C0C", 0},		/* Power button */
950 		{"PNP0C0D", 0},		/* Lid */
951 		{"PNP0C0E", 0},		/* Sleep button */
952 		{"", 0},
953 	};
954 	struct acpi_device_wakeup *wakeup = &device->wakeup;
955 	acpi_status status;
956 
957 	wakeup->flags.notifier_present = 0;
958 
959 	/* Power button, Lid switch always enable wakeup */
960 	if (!acpi_match_device_ids(device, button_device_ids)) {
961 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
962 			/* Do not use Lid/sleep button for S5 wakeup */
963 			if (wakeup->sleep_state == ACPI_STATE_S5)
964 				wakeup->sleep_state = ACPI_STATE_S4;
965 		}
966 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
967 		device_set_wakeup_capable(&device->dev, true);
968 		return true;
969 	}
970 
971 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
972 					 wakeup->gpe_number);
973 	return ACPI_SUCCESS(status);
974 }
975 
976 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
977 {
978 	int err;
979 
980 	/* Presence of _PRW indicates wake capable */
981 	if (!acpi_has_method(device->handle, "_PRW"))
982 		return;
983 
984 	err = acpi_bus_extract_wakeup_device_power_package(device);
985 	if (err) {
986 		dev_err(&device->dev, "Unable to extract wakeup power resources");
987 		return;
988 	}
989 
990 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
991 	device->wakeup.prepare_count = 0;
992 	/*
993 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
994 	 * system for the ACPI device with the _PRW object.
995 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
996 	 * So it is necessary to call _DSW object first. Only when it is not
997 	 * present will the _PSW object used.
998 	 */
999 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1000 	if (err)
1001 		pr_debug("error in _DSW or _PSW evaluation\n");
1002 }
1003 
1004 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1005 {
1006 	struct acpi_device_power_state *ps = &device->power.states[state];
1007 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1008 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1009 	acpi_status status;
1010 
1011 	INIT_LIST_HEAD(&ps->resources);
1012 
1013 	/* Evaluate "_PRx" to get referenced power resources */
1014 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1015 	if (ACPI_SUCCESS(status)) {
1016 		union acpi_object *package = buffer.pointer;
1017 
1018 		if (buffer.length && package
1019 		    && package->type == ACPI_TYPE_PACKAGE
1020 		    && package->package.count)
1021 			acpi_extract_power_resources(package, 0, &ps->resources);
1022 
1023 		ACPI_FREE(buffer.pointer);
1024 	}
1025 
1026 	/* Evaluate "_PSx" to see if we can do explicit sets */
1027 	pathname[2] = 'S';
1028 	if (acpi_has_method(device->handle, pathname))
1029 		ps->flags.explicit_set = 1;
1030 
1031 	/* State is valid if there are means to put the device into it. */
1032 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1033 		ps->flags.valid = 1;
1034 
1035 	ps->power = -1;		/* Unknown - driver assigned */
1036 	ps->latency = -1;	/* Unknown - driver assigned */
1037 }
1038 
1039 static void acpi_bus_get_power_flags(struct acpi_device *device)
1040 {
1041 	unsigned long long dsc = ACPI_STATE_D0;
1042 	u32 i;
1043 
1044 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1045 	if (!acpi_has_method(device->handle, "_PS0") &&
1046 	    !acpi_has_method(device->handle, "_PR0"))
1047 		return;
1048 
1049 	device->flags.power_manageable = 1;
1050 
1051 	/*
1052 	 * Power Management Flags
1053 	 */
1054 	if (acpi_has_method(device->handle, "_PSC"))
1055 		device->power.flags.explicit_get = 1;
1056 
1057 	if (acpi_has_method(device->handle, "_IRC"))
1058 		device->power.flags.inrush_current = 1;
1059 
1060 	if (acpi_has_method(device->handle, "_DSW"))
1061 		device->power.flags.dsw_present = 1;
1062 
1063 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1064 	device->power.state_for_enumeration = dsc;
1065 
1066 	/*
1067 	 * Enumerate supported power management states
1068 	 */
1069 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1070 		acpi_bus_init_power_state(device, i);
1071 
1072 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1073 
1074 	/* Set the defaults for D0 and D3hot (always supported). */
1075 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1076 	device->power.states[ACPI_STATE_D0].power = 100;
1077 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1078 
1079 	/*
1080 	 * Use power resources only if the D0 list of them is populated, because
1081 	 * some platforms may provide _PR3 only to indicate D3cold support and
1082 	 * in those cases the power resources list returned by it may be bogus.
1083 	 */
1084 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1085 		device->power.flags.power_resources = 1;
1086 		/*
1087 		 * D3cold is supported if the D3hot list of power resources is
1088 		 * not empty.
1089 		 */
1090 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1091 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1092 	}
1093 
1094 	if (acpi_bus_init_power(device))
1095 		device->flags.power_manageable = 0;
1096 }
1097 
1098 static void acpi_bus_get_flags(struct acpi_device *device)
1099 {
1100 	/* Presence of _STA indicates 'dynamic_status' */
1101 	if (acpi_has_method(device->handle, "_STA"))
1102 		device->flags.dynamic_status = 1;
1103 
1104 	/* Presence of _RMV indicates 'removable' */
1105 	if (acpi_has_method(device->handle, "_RMV"))
1106 		device->flags.removable = 1;
1107 
1108 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1109 	if (acpi_has_method(device->handle, "_EJD") ||
1110 	    acpi_has_method(device->handle, "_EJ0"))
1111 		device->flags.ejectable = 1;
1112 }
1113 
1114 static void acpi_device_get_busid(struct acpi_device *device)
1115 {
1116 	char bus_id[5] = { '?', 0 };
1117 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1118 	int i = 0;
1119 
1120 	/*
1121 	 * Bus ID
1122 	 * ------
1123 	 * The device's Bus ID is simply the object name.
1124 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1125 	 */
1126 	if (ACPI_IS_ROOT_DEVICE(device)) {
1127 		strcpy(device->pnp.bus_id, "ACPI");
1128 		return;
1129 	}
1130 
1131 	switch (device->device_type) {
1132 	case ACPI_BUS_TYPE_POWER_BUTTON:
1133 		strcpy(device->pnp.bus_id, "PWRF");
1134 		break;
1135 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1136 		strcpy(device->pnp.bus_id, "SLPF");
1137 		break;
1138 	case ACPI_BUS_TYPE_ECDT_EC:
1139 		strcpy(device->pnp.bus_id, "ECDT");
1140 		break;
1141 	default:
1142 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1143 		/* Clean up trailing underscores (if any) */
1144 		for (i = 3; i > 1; i--) {
1145 			if (bus_id[i] == '_')
1146 				bus_id[i] = '\0';
1147 			else
1148 				break;
1149 		}
1150 		strcpy(device->pnp.bus_id, bus_id);
1151 		break;
1152 	}
1153 }
1154 
1155 /*
1156  * acpi_ata_match - see if an acpi object is an ATA device
1157  *
1158  * If an acpi object has one of the ACPI ATA methods defined,
1159  * then we can safely call it an ATA device.
1160  */
1161 bool acpi_ata_match(acpi_handle handle)
1162 {
1163 	return acpi_has_method(handle, "_GTF") ||
1164 	       acpi_has_method(handle, "_GTM") ||
1165 	       acpi_has_method(handle, "_STM") ||
1166 	       acpi_has_method(handle, "_SDD");
1167 }
1168 
1169 /*
1170  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1171  *
1172  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1173  * then we can safely call it an ejectable drive bay
1174  */
1175 bool acpi_bay_match(acpi_handle handle)
1176 {
1177 	acpi_handle phandle;
1178 
1179 	if (!acpi_has_method(handle, "_EJ0"))
1180 		return false;
1181 	if (acpi_ata_match(handle))
1182 		return true;
1183 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1184 		return false;
1185 
1186 	return acpi_ata_match(phandle);
1187 }
1188 
1189 bool acpi_device_is_battery(struct acpi_device *adev)
1190 {
1191 	struct acpi_hardware_id *hwid;
1192 
1193 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1194 		if (!strcmp("PNP0C0A", hwid->id))
1195 			return true;
1196 
1197 	return false;
1198 }
1199 
1200 static bool is_ejectable_bay(struct acpi_device *adev)
1201 {
1202 	acpi_handle handle = adev->handle;
1203 
1204 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1205 		return true;
1206 
1207 	return acpi_bay_match(handle);
1208 }
1209 
1210 /*
1211  * acpi_dock_match - see if an acpi object has a _DCK method
1212  */
1213 bool acpi_dock_match(acpi_handle handle)
1214 {
1215 	return acpi_has_method(handle, "_DCK");
1216 }
1217 
1218 static acpi_status
1219 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1220 			  void **return_value)
1221 {
1222 	long *cap = context;
1223 
1224 	if (acpi_has_method(handle, "_BCM") &&
1225 	    acpi_has_method(handle, "_BCL")) {
1226 		acpi_handle_debug(handle, "Found generic backlight support\n");
1227 		*cap |= ACPI_VIDEO_BACKLIGHT;
1228 		/* We have backlight support, no need to scan further */
1229 		return AE_CTRL_TERMINATE;
1230 	}
1231 	return 0;
1232 }
1233 
1234 /* Returns true if the ACPI object is a video device which can be
1235  * handled by video.ko.
1236  * The device will get a Linux specific CID added in scan.c to
1237  * identify the device as an ACPI graphics device
1238  * Be aware that the graphics device may not be physically present
1239  * Use acpi_video_get_capabilities() to detect general ACPI video
1240  * capabilities of present cards
1241  */
1242 long acpi_is_video_device(acpi_handle handle)
1243 {
1244 	long video_caps = 0;
1245 
1246 	/* Is this device able to support video switching ? */
1247 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1248 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1249 
1250 	/* Is this device able to retrieve a video ROM ? */
1251 	if (acpi_has_method(handle, "_ROM"))
1252 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1253 
1254 	/* Is this device able to configure which video head to be POSTed ? */
1255 	if (acpi_has_method(handle, "_VPO") &&
1256 	    acpi_has_method(handle, "_GPD") &&
1257 	    acpi_has_method(handle, "_SPD"))
1258 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1259 
1260 	/* Only check for backlight functionality if one of the above hit. */
1261 	if (video_caps)
1262 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1263 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1264 				    &video_caps, NULL);
1265 
1266 	return video_caps;
1267 }
1268 EXPORT_SYMBOL(acpi_is_video_device);
1269 
1270 const char *acpi_device_hid(struct acpi_device *device)
1271 {
1272 	struct acpi_hardware_id *hid;
1273 
1274 	if (list_empty(&device->pnp.ids))
1275 		return dummy_hid;
1276 
1277 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1278 	return hid->id;
1279 }
1280 EXPORT_SYMBOL(acpi_device_hid);
1281 
1282 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1283 {
1284 	struct acpi_hardware_id *id;
1285 
1286 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1287 	if (!id)
1288 		return;
1289 
1290 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1291 	if (!id->id) {
1292 		kfree(id);
1293 		return;
1294 	}
1295 
1296 	list_add_tail(&id->list, &pnp->ids);
1297 	pnp->type.hardware_id = 1;
1298 }
1299 
1300 /*
1301  * Old IBM workstations have a DSDT bug wherein the SMBus object
1302  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1303  * prefix.  Work around this.
1304  */
1305 static bool acpi_ibm_smbus_match(acpi_handle handle)
1306 {
1307 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1308 	struct acpi_buffer path = { sizeof(node_name), node_name };
1309 
1310 	if (!dmi_name_in_vendors("IBM"))
1311 		return false;
1312 
1313 	/* Look for SMBS object */
1314 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1315 	    strcmp("SMBS", path.pointer))
1316 		return false;
1317 
1318 	/* Does it have the necessary (but misnamed) methods? */
1319 	if (acpi_has_method(handle, "SBI") &&
1320 	    acpi_has_method(handle, "SBR") &&
1321 	    acpi_has_method(handle, "SBW"))
1322 		return true;
1323 
1324 	return false;
1325 }
1326 
1327 static bool acpi_object_is_system_bus(acpi_handle handle)
1328 {
1329 	acpi_handle tmp;
1330 
1331 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1332 	    tmp == handle)
1333 		return true;
1334 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1335 	    tmp == handle)
1336 		return true;
1337 
1338 	return false;
1339 }
1340 
1341 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1342 			     int device_type)
1343 {
1344 	struct acpi_device_info *info = NULL;
1345 	struct acpi_pnp_device_id_list *cid_list;
1346 	int i;
1347 
1348 	switch (device_type) {
1349 	case ACPI_BUS_TYPE_DEVICE:
1350 		if (handle == ACPI_ROOT_OBJECT) {
1351 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1352 			break;
1353 		}
1354 
1355 		acpi_get_object_info(handle, &info);
1356 		if (!info) {
1357 			pr_err("%s: Error reading device info\n", __func__);
1358 			return;
1359 		}
1360 
1361 		if (info->valid & ACPI_VALID_HID) {
1362 			acpi_add_id(pnp, info->hardware_id.string);
1363 			pnp->type.platform_id = 1;
1364 			if (info->valid & ACPI_VALID_CID) {
1365 				cid_list = &info->compatible_id_list;
1366 				for (i = 0; i < cid_list->count; i++)
1367 					acpi_add_id(pnp, cid_list->ids[i].string);
1368 			}
1369 		}
1370 		if (info->valid & ACPI_VALID_ADR) {
1371 			pnp->bus_address = info->address;
1372 			pnp->type.bus_address = 1;
1373 		}
1374 		if (info->valid & ACPI_VALID_UID)
1375 			pnp->unique_id = kstrdup(info->unique_id.string,
1376 							GFP_KERNEL);
1377 		if (info->valid & ACPI_VALID_CLS)
1378 			acpi_add_id(pnp, info->class_code.string);
1379 
1380 		kfree(info);
1381 
1382 		/*
1383 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1384 		 * synthetic HIDs to make sure drivers can find them.
1385 		 */
1386 		if (acpi_is_video_device(handle))
1387 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1388 		else if (acpi_bay_match(handle))
1389 			acpi_add_id(pnp, ACPI_BAY_HID);
1390 		else if (acpi_dock_match(handle))
1391 			acpi_add_id(pnp, ACPI_DOCK_HID);
1392 		else if (acpi_ibm_smbus_match(handle))
1393 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1394 		else if (list_empty(&pnp->ids) &&
1395 			 acpi_object_is_system_bus(handle)) {
1396 			/* \_SB, \_TZ, LNXSYBUS */
1397 			acpi_add_id(pnp, ACPI_BUS_HID);
1398 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1399 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1400 		}
1401 
1402 		break;
1403 	case ACPI_BUS_TYPE_POWER:
1404 		acpi_add_id(pnp, ACPI_POWER_HID);
1405 		break;
1406 	case ACPI_BUS_TYPE_PROCESSOR:
1407 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1408 		break;
1409 	case ACPI_BUS_TYPE_THERMAL:
1410 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1411 		break;
1412 	case ACPI_BUS_TYPE_POWER_BUTTON:
1413 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1414 		break;
1415 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1416 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1417 		break;
1418 	case ACPI_BUS_TYPE_ECDT_EC:
1419 		acpi_add_id(pnp, ACPI_ECDT_HID);
1420 		break;
1421 	}
1422 }
1423 
1424 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1425 {
1426 	struct acpi_hardware_id *id, *tmp;
1427 
1428 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1429 		kfree_const(id->id);
1430 		kfree(id);
1431 	}
1432 	kfree(pnp->unique_id);
1433 }
1434 
1435 /**
1436  * acpi_dma_supported - Check DMA support for the specified device.
1437  * @adev: The pointer to acpi device
1438  *
1439  * Return false if DMA is not supported. Otherwise, return true
1440  */
1441 bool acpi_dma_supported(const struct acpi_device *adev)
1442 {
1443 	if (!adev)
1444 		return false;
1445 
1446 	if (adev->flags.cca_seen)
1447 		return true;
1448 
1449 	/*
1450 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1451 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1452 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1453 	*/
1454 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1455 		return true;
1456 
1457 	return false;
1458 }
1459 
1460 /**
1461  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1462  * @adev: The pointer to acpi device
1463  *
1464  * Return enum dev_dma_attr.
1465  */
1466 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1467 {
1468 	if (!acpi_dma_supported(adev))
1469 		return DEV_DMA_NOT_SUPPORTED;
1470 
1471 	if (adev->flags.coherent_dma)
1472 		return DEV_DMA_COHERENT;
1473 	else
1474 		return DEV_DMA_NON_COHERENT;
1475 }
1476 
1477 /**
1478  * acpi_dma_get_range() - Get device DMA parameters.
1479  *
1480  * @dev: device to configure
1481  * @dma_addr: pointer device DMA address result
1482  * @offset: pointer to the DMA offset result
1483  * @size: pointer to DMA range size result
1484  *
1485  * Evaluate DMA regions and return respectively DMA region start, offset
1486  * and size in dma_addr, offset and size on parsing success; it does not
1487  * update the passed in values on failure.
1488  *
1489  * Return 0 on success, < 0 on failure.
1490  */
1491 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1492 		       u64 *size)
1493 {
1494 	struct acpi_device *adev;
1495 	LIST_HEAD(list);
1496 	struct resource_entry *rentry;
1497 	int ret;
1498 	struct device *dma_dev = dev;
1499 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1500 
1501 	/*
1502 	 * Walk the device tree chasing an ACPI companion with a _DMA
1503 	 * object while we go. Stop if we find a device with an ACPI
1504 	 * companion containing a _DMA method.
1505 	 */
1506 	do {
1507 		adev = ACPI_COMPANION(dma_dev);
1508 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1509 			break;
1510 
1511 		dma_dev = dma_dev->parent;
1512 	} while (dma_dev);
1513 
1514 	if (!dma_dev)
1515 		return -ENODEV;
1516 
1517 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1518 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1519 		return -EINVAL;
1520 	}
1521 
1522 	ret = acpi_dev_get_dma_resources(adev, &list);
1523 	if (ret > 0) {
1524 		list_for_each_entry(rentry, &list, node) {
1525 			if (dma_offset && rentry->offset != dma_offset) {
1526 				ret = -EINVAL;
1527 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1528 				goto out;
1529 			}
1530 			dma_offset = rentry->offset;
1531 
1532 			/* Take lower and upper limits */
1533 			if (rentry->res->start < dma_start)
1534 				dma_start = rentry->res->start;
1535 			if (rentry->res->end > dma_end)
1536 				dma_end = rentry->res->end;
1537 		}
1538 
1539 		if (dma_start >= dma_end) {
1540 			ret = -EINVAL;
1541 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1542 			goto out;
1543 		}
1544 
1545 		*dma_addr = dma_start - dma_offset;
1546 		len = dma_end - dma_start;
1547 		*size = max(len, len + 1);
1548 		*offset = dma_offset;
1549 	}
1550  out:
1551 	acpi_dev_free_resource_list(&list);
1552 
1553 	return ret >= 0 ? 0 : ret;
1554 }
1555 
1556 #ifdef CONFIG_IOMMU_API
1557 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1558 			   struct fwnode_handle *fwnode,
1559 			   const struct iommu_ops *ops)
1560 {
1561 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1562 
1563 	if (!ret)
1564 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1565 
1566 	return ret;
1567 }
1568 
1569 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1570 {
1571 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1572 
1573 	return fwspec ? fwspec->ops : NULL;
1574 }
1575 
1576 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1577 						       const u32 *id_in)
1578 {
1579 	int err;
1580 	const struct iommu_ops *ops;
1581 
1582 	/*
1583 	 * If we already translated the fwspec there is nothing left to do,
1584 	 * return the iommu_ops.
1585 	 */
1586 	ops = acpi_iommu_fwspec_ops(dev);
1587 	if (ops)
1588 		return ops;
1589 
1590 	err = iort_iommu_configure_id(dev, id_in);
1591 	if (err && err != -EPROBE_DEFER)
1592 		err = viot_iommu_configure(dev);
1593 
1594 	/*
1595 	 * If we have reason to believe the IOMMU driver missed the initial
1596 	 * iommu_probe_device() call for dev, replay it to get things in order.
1597 	 */
1598 	if (!err && dev->bus && !device_iommu_mapped(dev))
1599 		err = iommu_probe_device(dev);
1600 
1601 	/* Ignore all other errors apart from EPROBE_DEFER */
1602 	if (err == -EPROBE_DEFER) {
1603 		return ERR_PTR(err);
1604 	} else if (err) {
1605 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1606 		return NULL;
1607 	}
1608 	return acpi_iommu_fwspec_ops(dev);
1609 }
1610 
1611 #else /* !CONFIG_IOMMU_API */
1612 
1613 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1614 			   struct fwnode_handle *fwnode,
1615 			   const struct iommu_ops *ops)
1616 {
1617 	return -ENODEV;
1618 }
1619 
1620 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1621 						       const u32 *id_in)
1622 {
1623 	return NULL;
1624 }
1625 
1626 #endif /* !CONFIG_IOMMU_API */
1627 
1628 /**
1629  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1630  * @dev: The pointer to the device
1631  * @attr: device dma attributes
1632  * @input_id: input device id const value pointer
1633  */
1634 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1635 			  const u32 *input_id)
1636 {
1637 	const struct iommu_ops *iommu;
1638 	u64 dma_addr = 0, size = 0;
1639 
1640 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1641 		set_dma_ops(dev, &dma_dummy_ops);
1642 		return 0;
1643 	}
1644 
1645 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1646 
1647 	iommu = acpi_iommu_configure_id(dev, input_id);
1648 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1649 		return -EPROBE_DEFER;
1650 
1651 	arch_setup_dma_ops(dev, dma_addr, size,
1652 				iommu, attr == DEV_DMA_COHERENT);
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1657 
1658 static void acpi_init_coherency(struct acpi_device *adev)
1659 {
1660 	unsigned long long cca = 0;
1661 	acpi_status status;
1662 	struct acpi_device *parent = adev->parent;
1663 
1664 	if (parent && parent->flags.cca_seen) {
1665 		/*
1666 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1667 		 * already saw one.
1668 		 */
1669 		adev->flags.cca_seen = 1;
1670 		cca = parent->flags.coherent_dma;
1671 	} else {
1672 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1673 					       NULL, &cca);
1674 		if (ACPI_SUCCESS(status))
1675 			adev->flags.cca_seen = 1;
1676 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1677 			/*
1678 			 * If architecture does not specify that _CCA is
1679 			 * required for DMA-able devices (e.g. x86),
1680 			 * we default to _CCA=1.
1681 			 */
1682 			cca = 1;
1683 		else
1684 			acpi_handle_debug(adev->handle,
1685 					  "ACPI device is missing _CCA.\n");
1686 	}
1687 
1688 	adev->flags.coherent_dma = cca;
1689 }
1690 
1691 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1692 {
1693 	bool *is_serial_bus_slave_p = data;
1694 
1695 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1696 		return 1;
1697 
1698 	*is_serial_bus_slave_p = true;
1699 
1700 	 /* no need to do more checking */
1701 	return -1;
1702 }
1703 
1704 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1705 {
1706 	struct acpi_device *parent = device->parent;
1707 	static const struct acpi_device_id indirect_io_hosts[] = {
1708 		{"HISI0191", 0},
1709 		{}
1710 	};
1711 
1712 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1713 }
1714 
1715 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1716 {
1717 	struct list_head resource_list;
1718 	bool is_serial_bus_slave = false;
1719 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1720 	/*
1721 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1722 	 * must be instantiated for each, each with its own i2c_device_id.
1723 	 * Normally we only instantiate an i2c-client for the first resource,
1724 	 * using the ACPI HID as id. These special cases are handled by the
1725 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1726 	 * which i2c_device_id to use for each resource.
1727 	 */
1728 		{"BSG1160", },
1729 		{"BSG2150", },
1730 		{"INT33FE", },
1731 		{"INT3515", },
1732 	/*
1733 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1734 	 * expects a regular tty cdev to be created (instead of the in kernel
1735 	 * serdev) and which have a kernel driver which expects a platform_dev
1736 	 * such as the rfkill-gpio driver.
1737 	 */
1738 		{"BCM4752", },
1739 		{"LNV4752", },
1740 		{}
1741 	};
1742 
1743 	if (acpi_is_indirect_io_slave(device))
1744 		return true;
1745 
1746 	/* Macs use device properties in lieu of _CRS resources */
1747 	if (x86_apple_machine &&
1748 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1749 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1750 	     fwnode_property_present(&device->fwnode, "baud")))
1751 		return true;
1752 
1753 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1754 		return false;
1755 
1756 	INIT_LIST_HEAD(&resource_list);
1757 	acpi_dev_get_resources(device, &resource_list,
1758 			       acpi_check_serial_bus_slave,
1759 			       &is_serial_bus_slave);
1760 	acpi_dev_free_resource_list(&resource_list);
1761 
1762 	return is_serial_bus_slave;
1763 }
1764 
1765 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1766 			     int type)
1767 {
1768 	INIT_LIST_HEAD(&device->pnp.ids);
1769 	device->device_type = type;
1770 	device->handle = handle;
1771 	device->parent = acpi_bus_get_parent(handle);
1772 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1773 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1774 	acpi_device_get_busid(device);
1775 	acpi_set_pnp_ids(handle, &device->pnp, type);
1776 	acpi_init_properties(device);
1777 	acpi_bus_get_flags(device);
1778 	device->flags.match_driver = false;
1779 	device->flags.initialized = true;
1780 	device->flags.enumeration_by_parent =
1781 		acpi_device_enumeration_by_parent(device);
1782 	acpi_device_clear_enumerated(device);
1783 	device_initialize(&device->dev);
1784 	dev_set_uevent_suppress(&device->dev, true);
1785 	acpi_init_coherency(device);
1786 }
1787 
1788 static void acpi_scan_dep_init(struct acpi_device *adev)
1789 {
1790 	struct acpi_dep_data *dep;
1791 
1792 	list_for_each_entry(dep, &acpi_dep_list, node) {
1793 		if (dep->consumer == adev->handle) {
1794 			if (dep->honor_dep)
1795 				adev->flags.honor_deps = 1;
1796 
1797 			adev->dep_unmet++;
1798 		}
1799 	}
1800 }
1801 
1802 void acpi_device_add_finalize(struct acpi_device *device)
1803 {
1804 	dev_set_uevent_suppress(&device->dev, false);
1805 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1806 }
1807 
1808 static void acpi_scan_init_status(struct acpi_device *adev)
1809 {
1810 	if (acpi_bus_get_status(adev))
1811 		acpi_set_device_status(adev, 0);
1812 }
1813 
1814 static int acpi_add_single_object(struct acpi_device **child,
1815 				  acpi_handle handle, int type, bool dep_init)
1816 {
1817 	struct acpi_device *device;
1818 	bool release_dep_lock = false;
1819 	int result;
1820 
1821 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1822 	if (!device)
1823 		return -ENOMEM;
1824 
1825 	acpi_init_device_object(device, handle, type);
1826 	/*
1827 	 * Getting the status is delayed till here so that we can call
1828 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1829 	 * this must be done before the get power-/wakeup_dev-flags calls.
1830 	 */
1831 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1832 		if (dep_init) {
1833 			mutex_lock(&acpi_dep_list_lock);
1834 			/*
1835 			 * Hold the lock until the acpi_tie_acpi_dev() call
1836 			 * below to prevent concurrent acpi_scan_clear_dep()
1837 			 * from deleting a dependency list entry without
1838 			 * updating dep_unmet for the device.
1839 			 */
1840 			release_dep_lock = true;
1841 			acpi_scan_dep_init(device);
1842 		}
1843 		acpi_scan_init_status(device);
1844 	}
1845 
1846 	acpi_bus_get_power_flags(device);
1847 	acpi_bus_get_wakeup_device_flags(device);
1848 
1849 	result = acpi_tie_acpi_dev(device);
1850 
1851 	if (release_dep_lock)
1852 		mutex_unlock(&acpi_dep_list_lock);
1853 
1854 	if (!result)
1855 		result = __acpi_device_add(device, acpi_device_release);
1856 
1857 	if (result) {
1858 		acpi_device_release(&device->dev);
1859 		return result;
1860 	}
1861 
1862 	acpi_power_add_remove_device(device, true);
1863 	acpi_device_add_finalize(device);
1864 
1865 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1866 			  dev_name(&device->dev), device->parent ?
1867 				dev_name(&device->parent->dev) : "(null)");
1868 
1869 	*child = device;
1870 	return 0;
1871 }
1872 
1873 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1874 					    void *context)
1875 {
1876 	struct resource *res = context;
1877 
1878 	if (acpi_dev_resource_memory(ares, res))
1879 		return AE_CTRL_TERMINATE;
1880 
1881 	return AE_OK;
1882 }
1883 
1884 static bool acpi_device_should_be_hidden(acpi_handle handle)
1885 {
1886 	acpi_status status;
1887 	struct resource res;
1888 
1889 	/* Check if it should ignore the UART device */
1890 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1891 		return false;
1892 
1893 	/*
1894 	 * The UART device described in SPCR table is assumed to have only one
1895 	 * memory resource present. So we only look for the first one here.
1896 	 */
1897 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1898 				     acpi_get_resource_memory, &res);
1899 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1900 		return false;
1901 
1902 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1903 			 &res.start);
1904 
1905 	return true;
1906 }
1907 
1908 bool acpi_device_is_present(const struct acpi_device *adev)
1909 {
1910 	return adev->status.present || adev->status.functional;
1911 }
1912 
1913 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1914 				       const char *idstr,
1915 				       const struct acpi_device_id **matchid)
1916 {
1917 	const struct acpi_device_id *devid;
1918 
1919 	if (handler->match)
1920 		return handler->match(idstr, matchid);
1921 
1922 	for (devid = handler->ids; devid->id[0]; devid++)
1923 		if (!strcmp((char *)devid->id, idstr)) {
1924 			if (matchid)
1925 				*matchid = devid;
1926 
1927 			return true;
1928 		}
1929 
1930 	return false;
1931 }
1932 
1933 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1934 					const struct acpi_device_id **matchid)
1935 {
1936 	struct acpi_scan_handler *handler;
1937 
1938 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1939 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1940 			return handler;
1941 
1942 	return NULL;
1943 }
1944 
1945 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1946 {
1947 	if (!!hotplug->enabled == !!val)
1948 		return;
1949 
1950 	mutex_lock(&acpi_scan_lock);
1951 
1952 	hotplug->enabled = val;
1953 
1954 	mutex_unlock(&acpi_scan_lock);
1955 }
1956 
1957 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1958 {
1959 	struct acpi_hardware_id *hwid;
1960 
1961 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1962 		acpi_dock_add(adev);
1963 		return;
1964 	}
1965 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1966 		struct acpi_scan_handler *handler;
1967 
1968 		handler = acpi_scan_match_handler(hwid->id, NULL);
1969 		if (handler) {
1970 			adev->flags.hotplug_notify = true;
1971 			break;
1972 		}
1973 	}
1974 }
1975 
1976 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1977 {
1978 	struct acpi_handle_list dep_devices;
1979 	acpi_status status;
1980 	u32 count;
1981 	int i;
1982 
1983 	/*
1984 	 * Check for _HID here to avoid deferring the enumeration of:
1985 	 * 1. PCI devices.
1986 	 * 2. ACPI nodes describing USB ports.
1987 	 * Still, checking for _HID catches more then just these cases ...
1988 	 */
1989 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1990 	    !acpi_has_method(handle, "_HID"))
1991 		return 0;
1992 
1993 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1994 	if (ACPI_FAILURE(status)) {
1995 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1996 		return 0;
1997 	}
1998 
1999 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2000 		struct acpi_device_info *info;
2001 		struct acpi_dep_data *dep;
2002 		bool skip, honor_dep;
2003 
2004 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2005 		if (ACPI_FAILURE(status)) {
2006 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2007 			continue;
2008 		}
2009 
2010 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2011 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2012 		kfree(info);
2013 
2014 		if (skip)
2015 			continue;
2016 
2017 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2018 		if (!dep)
2019 			continue;
2020 
2021 		count++;
2022 
2023 		dep->supplier = dep_devices.handles[i];
2024 		dep->consumer = handle;
2025 		dep->honor_dep = honor_dep;
2026 
2027 		mutex_lock(&acpi_dep_list_lock);
2028 		list_add_tail(&dep->node , &acpi_dep_list);
2029 		mutex_unlock(&acpi_dep_list_lock);
2030 	}
2031 
2032 	return count;
2033 }
2034 
2035 static bool acpi_bus_scan_second_pass;
2036 
2037 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2038 				      struct acpi_device **adev_p)
2039 {
2040 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2041 	acpi_object_type acpi_type;
2042 	int type;
2043 
2044 	if (device)
2045 		goto out;
2046 
2047 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2048 		return AE_OK;
2049 
2050 	switch (acpi_type) {
2051 	case ACPI_TYPE_DEVICE:
2052 		if (acpi_device_should_be_hidden(handle))
2053 			return AE_OK;
2054 
2055 		/* Bail out if there are dependencies. */
2056 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2057 			acpi_bus_scan_second_pass = true;
2058 			return AE_CTRL_DEPTH;
2059 		}
2060 
2061 		fallthrough;
2062 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2063 		type = ACPI_BUS_TYPE_DEVICE;
2064 		break;
2065 
2066 	case ACPI_TYPE_PROCESSOR:
2067 		type = ACPI_BUS_TYPE_PROCESSOR;
2068 		break;
2069 
2070 	case ACPI_TYPE_THERMAL:
2071 		type = ACPI_BUS_TYPE_THERMAL;
2072 		break;
2073 
2074 	case ACPI_TYPE_POWER:
2075 		acpi_add_power_resource(handle);
2076 		fallthrough;
2077 	default:
2078 		return AE_OK;
2079 	}
2080 
2081 	/*
2082 	 * If check_dep is true at this point, the device has no dependencies,
2083 	 * or the creation of the device object would have been postponed above.
2084 	 */
2085 	acpi_add_single_object(&device, handle, type, !check_dep);
2086 	if (!device)
2087 		return AE_CTRL_DEPTH;
2088 
2089 	acpi_scan_init_hotplug(device);
2090 
2091 out:
2092 	if (!*adev_p)
2093 		*adev_p = device;
2094 
2095 	return AE_OK;
2096 }
2097 
2098 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2099 					void *not_used, void **ret_p)
2100 {
2101 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2102 }
2103 
2104 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2105 					void *not_used, void **ret_p)
2106 {
2107 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2108 }
2109 
2110 static void acpi_default_enumeration(struct acpi_device *device)
2111 {
2112 	/*
2113 	 * Do not enumerate devices with enumeration_by_parent flag set as
2114 	 * they will be enumerated by their respective parents.
2115 	 */
2116 	if (!device->flags.enumeration_by_parent) {
2117 		acpi_create_platform_device(device, NULL);
2118 		acpi_device_set_enumerated(device);
2119 	} else {
2120 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2121 					     ACPI_RECONFIG_DEVICE_ADD, device);
2122 	}
2123 }
2124 
2125 static const struct acpi_device_id generic_device_ids[] = {
2126 	{ACPI_DT_NAMESPACE_HID, },
2127 	{"", },
2128 };
2129 
2130 static int acpi_generic_device_attach(struct acpi_device *adev,
2131 				      const struct acpi_device_id *not_used)
2132 {
2133 	/*
2134 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2135 	 * below can be unconditional.
2136 	 */
2137 	if (adev->data.of_compatible)
2138 		acpi_default_enumeration(adev);
2139 
2140 	return 1;
2141 }
2142 
2143 static struct acpi_scan_handler generic_device_handler = {
2144 	.ids = generic_device_ids,
2145 	.attach = acpi_generic_device_attach,
2146 };
2147 
2148 static int acpi_scan_attach_handler(struct acpi_device *device)
2149 {
2150 	struct acpi_hardware_id *hwid;
2151 	int ret = 0;
2152 
2153 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2154 		const struct acpi_device_id *devid;
2155 		struct acpi_scan_handler *handler;
2156 
2157 		handler = acpi_scan_match_handler(hwid->id, &devid);
2158 		if (handler) {
2159 			if (!handler->attach) {
2160 				device->pnp.type.platform_id = 0;
2161 				continue;
2162 			}
2163 			device->handler = handler;
2164 			ret = handler->attach(device, devid);
2165 			if (ret > 0)
2166 				break;
2167 
2168 			device->handler = NULL;
2169 			if (ret < 0)
2170 				break;
2171 		}
2172 	}
2173 
2174 	return ret;
2175 }
2176 
2177 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2178 {
2179 	struct acpi_device *child;
2180 	bool skip = !first_pass && device->flags.visited;
2181 	acpi_handle ejd;
2182 	int ret;
2183 
2184 	if (skip)
2185 		goto ok;
2186 
2187 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2188 		register_dock_dependent_device(device, ejd);
2189 
2190 	acpi_bus_get_status(device);
2191 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2192 	if (!acpi_dev_ready_for_enumeration(device)) {
2193 		device->flags.initialized = false;
2194 		acpi_device_clear_enumerated(device);
2195 		device->flags.power_manageable = 0;
2196 		return;
2197 	}
2198 	if (device->handler)
2199 		goto ok;
2200 
2201 	if (!device->flags.initialized) {
2202 		device->flags.power_manageable =
2203 			device->power.states[ACPI_STATE_D0].flags.valid;
2204 		if (acpi_bus_init_power(device))
2205 			device->flags.power_manageable = 0;
2206 
2207 		device->flags.initialized = true;
2208 	} else if (device->flags.visited) {
2209 		goto ok;
2210 	}
2211 
2212 	ret = acpi_scan_attach_handler(device);
2213 	if (ret < 0)
2214 		return;
2215 
2216 	device->flags.match_driver = true;
2217 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2218 		acpi_device_set_enumerated(device);
2219 		goto ok;
2220 	}
2221 
2222 	ret = device_attach(&device->dev);
2223 	if (ret < 0)
2224 		return;
2225 
2226 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2227 		acpi_default_enumeration(device);
2228 	else
2229 		acpi_device_set_enumerated(device);
2230 
2231  ok:
2232 	list_for_each_entry(child, &device->children, node)
2233 		acpi_bus_attach(child, first_pass);
2234 
2235 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2236 		device->handler->hotplug.notify_online(device);
2237 }
2238 
2239 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2240 {
2241 	struct acpi_device *adev;
2242 
2243 	adev = acpi_bus_get_acpi_device(dep->consumer);
2244 	if (adev) {
2245 		*(struct acpi_device **)data = adev;
2246 		return 1;
2247 	}
2248 	/* Continue parsing if the device object is not present. */
2249 	return 0;
2250 }
2251 
2252 struct acpi_scan_clear_dep_work {
2253 	struct work_struct work;
2254 	struct acpi_device *adev;
2255 };
2256 
2257 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2258 {
2259 	struct acpi_scan_clear_dep_work *cdw;
2260 
2261 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2262 
2263 	acpi_scan_lock_acquire();
2264 	acpi_bus_attach(cdw->adev, true);
2265 	acpi_scan_lock_release();
2266 
2267 	acpi_dev_put(cdw->adev);
2268 	kfree(cdw);
2269 }
2270 
2271 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2272 {
2273 	struct acpi_scan_clear_dep_work *cdw;
2274 
2275 	if (adev->dep_unmet)
2276 		return false;
2277 
2278 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2279 	if (!cdw)
2280 		return false;
2281 
2282 	cdw->adev = adev;
2283 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2284 	/*
2285 	 * Since the work function may block on the lock until the entire
2286 	 * initial enumeration of devices is complete, put it into the unbound
2287 	 * workqueue.
2288 	 */
2289 	queue_work(system_unbound_wq, &cdw->work);
2290 
2291 	return true;
2292 }
2293 
2294 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2295 {
2296 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2297 
2298 	if (adev) {
2299 		adev->dep_unmet--;
2300 		if (!acpi_scan_clear_dep_queue(adev))
2301 			acpi_dev_put(adev);
2302 	}
2303 
2304 	list_del(&dep->node);
2305 	kfree(dep);
2306 
2307 	return 0;
2308 }
2309 
2310 /**
2311  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2312  * @handle:	The ACPI handle of the supplier device
2313  * @callback:	Pointer to the callback function to apply
2314  * @data:	Pointer to some data to pass to the callback
2315  *
2316  * The return value of the callback determines this function's behaviour. If 0
2317  * is returned we continue to iterate over acpi_dep_list. If a positive value
2318  * is returned then the loop is broken but this function returns 0. If a
2319  * negative value is returned by the callback then the loop is broken and that
2320  * value is returned as the final error.
2321  */
2322 static int acpi_walk_dep_device_list(acpi_handle handle,
2323 				int (*callback)(struct acpi_dep_data *, void *),
2324 				void *data)
2325 {
2326 	struct acpi_dep_data *dep, *tmp;
2327 	int ret = 0;
2328 
2329 	mutex_lock(&acpi_dep_list_lock);
2330 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2331 		if (dep->supplier == handle) {
2332 			ret = callback(dep, data);
2333 			if (ret)
2334 				break;
2335 		}
2336 	}
2337 	mutex_unlock(&acpi_dep_list_lock);
2338 
2339 	return ret > 0 ? 0 : ret;
2340 }
2341 
2342 /**
2343  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2344  * @supplier: Pointer to the supplier &struct acpi_device
2345  *
2346  * Clear dependencies on the given device.
2347  */
2348 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2349 {
2350 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2351 }
2352 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2353 
2354 /**
2355  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2356  * @device: Pointer to the &struct acpi_device to check
2357  *
2358  * Check if the device is present and has no unmet dependencies.
2359  *
2360  * Return true if the device is ready for enumeratino. Otherwise, return false.
2361  */
2362 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2363 {
2364 	if (device->flags.honor_deps && device->dep_unmet)
2365 		return false;
2366 
2367 	return acpi_device_is_present(device);
2368 }
2369 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2370 
2371 /**
2372  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2373  * @supplier: Pointer to the dependee device
2374  *
2375  * Returns the first &struct acpi_device which declares itself dependent on
2376  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2377  *
2378  * The caller is responsible for putting the reference to adev when it is no
2379  * longer needed.
2380  */
2381 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2382 {
2383 	struct acpi_device *adev = NULL;
2384 
2385 	acpi_walk_dep_device_list(supplier->handle,
2386 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2387 
2388 	return adev;
2389 }
2390 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2391 
2392 /**
2393  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2394  * @handle: Root of the namespace scope to scan.
2395  *
2396  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2397  * found devices.
2398  *
2399  * If no devices were found, -ENODEV is returned, but it does not mean that
2400  * there has been a real error.  There just have been no suitable ACPI objects
2401  * in the table trunk from which the kernel could create a device and add an
2402  * appropriate driver.
2403  *
2404  * Must be called under acpi_scan_lock.
2405  */
2406 int acpi_bus_scan(acpi_handle handle)
2407 {
2408 	struct acpi_device *device = NULL;
2409 
2410 	acpi_bus_scan_second_pass = false;
2411 
2412 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2413 
2414 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2415 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2416 				    acpi_bus_check_add_1, NULL, NULL,
2417 				    (void **)&device);
2418 
2419 	if (!device)
2420 		return -ENODEV;
2421 
2422 	acpi_bus_attach(device, true);
2423 
2424 	if (!acpi_bus_scan_second_pass)
2425 		return 0;
2426 
2427 	/* Pass 2: Enumerate all of the remaining devices. */
2428 
2429 	device = NULL;
2430 
2431 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2432 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2433 				    acpi_bus_check_add_2, NULL, NULL,
2434 				    (void **)&device);
2435 
2436 	acpi_bus_attach(device, false);
2437 
2438 	return 0;
2439 }
2440 EXPORT_SYMBOL(acpi_bus_scan);
2441 
2442 /**
2443  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2444  * @adev: Root of the ACPI namespace scope to walk.
2445  *
2446  * Must be called under acpi_scan_lock.
2447  */
2448 void acpi_bus_trim(struct acpi_device *adev)
2449 {
2450 	struct acpi_scan_handler *handler = adev->handler;
2451 	struct acpi_device *child;
2452 
2453 	list_for_each_entry_reverse(child, &adev->children, node)
2454 		acpi_bus_trim(child);
2455 
2456 	adev->flags.match_driver = false;
2457 	if (handler) {
2458 		if (handler->detach)
2459 			handler->detach(adev);
2460 
2461 		adev->handler = NULL;
2462 	} else {
2463 		device_release_driver(&adev->dev);
2464 	}
2465 	/*
2466 	 * Most likely, the device is going away, so put it into D3cold before
2467 	 * that.
2468 	 */
2469 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2470 	adev->flags.initialized = false;
2471 	acpi_device_clear_enumerated(adev);
2472 }
2473 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2474 
2475 int acpi_bus_register_early_device(int type)
2476 {
2477 	struct acpi_device *device = NULL;
2478 	int result;
2479 
2480 	result = acpi_add_single_object(&device, NULL, type, false);
2481 	if (result)
2482 		return result;
2483 
2484 	device->flags.match_driver = true;
2485 	return device_attach(&device->dev);
2486 }
2487 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2488 
2489 static int acpi_bus_scan_fixed(void)
2490 {
2491 	int result = 0;
2492 
2493 	/*
2494 	 * Enumerate all fixed-feature devices.
2495 	 */
2496 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2497 		struct acpi_device *device = NULL;
2498 
2499 		result = acpi_add_single_object(&device, NULL,
2500 						ACPI_BUS_TYPE_POWER_BUTTON, false);
2501 		if (result)
2502 			return result;
2503 
2504 		device->flags.match_driver = true;
2505 		result = device_attach(&device->dev);
2506 		if (result < 0)
2507 			return result;
2508 
2509 		device_init_wakeup(&device->dev, true);
2510 	}
2511 
2512 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2513 		struct acpi_device *device = NULL;
2514 
2515 		result = acpi_add_single_object(&device, NULL,
2516 						ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2517 		if (result)
2518 			return result;
2519 
2520 		device->flags.match_driver = true;
2521 		result = device_attach(&device->dev);
2522 	}
2523 
2524 	return result < 0 ? result : 0;
2525 }
2526 
2527 static void __init acpi_get_spcr_uart_addr(void)
2528 {
2529 	acpi_status status;
2530 	struct acpi_table_spcr *spcr_ptr;
2531 
2532 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2533 				(struct acpi_table_header **)&spcr_ptr);
2534 	if (ACPI_FAILURE(status)) {
2535 		pr_warn("STAO table present, but SPCR is missing\n");
2536 		return;
2537 	}
2538 
2539 	spcr_uart_addr = spcr_ptr->serial_port.address;
2540 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2541 }
2542 
2543 static bool acpi_scan_initialized;
2544 
2545 int __init acpi_scan_init(void)
2546 {
2547 	int result;
2548 	acpi_status status;
2549 	struct acpi_table_stao *stao_ptr;
2550 
2551 	acpi_pci_root_init();
2552 	acpi_pci_link_init();
2553 	acpi_processor_init();
2554 	acpi_platform_init();
2555 	acpi_lpss_init();
2556 	acpi_apd_init();
2557 	acpi_cmos_rtc_init();
2558 	acpi_container_init();
2559 	acpi_memory_hotplug_init();
2560 	acpi_watchdog_init();
2561 	acpi_pnp_init();
2562 	acpi_int340x_thermal_init();
2563 	acpi_amba_init();
2564 	acpi_init_lpit();
2565 
2566 	acpi_scan_add_handler(&generic_device_handler);
2567 
2568 	/*
2569 	 * If there is STAO table, check whether it needs to ignore the UART
2570 	 * device in SPCR table.
2571 	 */
2572 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2573 				(struct acpi_table_header **)&stao_ptr);
2574 	if (ACPI_SUCCESS(status)) {
2575 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2576 			pr_info("STAO Name List not yet supported.\n");
2577 
2578 		if (stao_ptr->ignore_uart)
2579 			acpi_get_spcr_uart_addr();
2580 
2581 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2582 	}
2583 
2584 	acpi_gpe_apply_masked_gpes();
2585 	acpi_update_all_gpes();
2586 
2587 	/*
2588 	 * Although we call __add_memory() that is documented to require the
2589 	 * device_hotplug_lock, it is not necessary here because this is an
2590 	 * early code when userspace or any other code path cannot trigger
2591 	 * hotplug/hotunplug operations.
2592 	 */
2593 	mutex_lock(&acpi_scan_lock);
2594 	/*
2595 	 * Enumerate devices in the ACPI namespace.
2596 	 */
2597 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2598 	if (result)
2599 		goto out;
2600 
2601 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2602 	if (!acpi_root)
2603 		goto out;
2604 
2605 	/* Fixed feature devices do not exist on HW-reduced platform */
2606 	if (!acpi_gbl_reduced_hardware) {
2607 		result = acpi_bus_scan_fixed();
2608 		if (result) {
2609 			acpi_detach_data(acpi_root->handle,
2610 					 acpi_scan_drop_device);
2611 			acpi_device_del(acpi_root);
2612 			acpi_bus_put_acpi_device(acpi_root);
2613 			goto out;
2614 		}
2615 	}
2616 
2617 	acpi_turn_off_unused_power_resources();
2618 
2619 	acpi_scan_initialized = true;
2620 
2621  out:
2622 	mutex_unlock(&acpi_scan_lock);
2623 	return result;
2624 }
2625 
2626 static struct acpi_probe_entry *ape;
2627 static int acpi_probe_count;
2628 static DEFINE_MUTEX(acpi_probe_mutex);
2629 
2630 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2631 				  const unsigned long end)
2632 {
2633 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2634 		if (!ape->probe_subtbl(header, end))
2635 			acpi_probe_count++;
2636 
2637 	return 0;
2638 }
2639 
2640 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2641 {
2642 	int count = 0;
2643 
2644 	if (acpi_disabled)
2645 		return 0;
2646 
2647 	mutex_lock(&acpi_probe_mutex);
2648 	for (ape = ap_head; nr; ape++, nr--) {
2649 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2650 			acpi_probe_count = 0;
2651 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2652 			count += acpi_probe_count;
2653 		} else {
2654 			int res;
2655 			res = acpi_table_parse(ape->id, ape->probe_table);
2656 			if (!res)
2657 				count++;
2658 		}
2659 	}
2660 	mutex_unlock(&acpi_probe_mutex);
2661 
2662 	return count;
2663 }
2664 
2665 static void acpi_table_events_fn(struct work_struct *work)
2666 {
2667 	acpi_scan_lock_acquire();
2668 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2669 	acpi_scan_lock_release();
2670 
2671 	kfree(work);
2672 }
2673 
2674 void acpi_scan_table_notify(void)
2675 {
2676 	struct work_struct *work;
2677 
2678 	if (!acpi_scan_initialized)
2679 		return;
2680 
2681 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2682 	if (!work)
2683 		return;
2684 
2685 	INIT_WORK(work, acpi_table_events_fn);
2686 	schedule_work(work);
2687 }
2688 
2689 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2690 {
2691 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2692 }
2693 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2694 
2695 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2696 {
2697 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2698 }
2699 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2700