1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 23 #include "internal.h" 24 25 extern struct acpi_device *acpi_root; 26 27 #define ACPI_BUS_CLASS "system_bus" 28 #define ACPI_BUS_HID "LNXSYBUS" 29 #define ACPI_BUS_DEVICE_NAME "System Bus" 30 31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 int (*notify)(struct acpi_device *, u32), 78 void (*uevent)(struct acpi_device *, u32)) 79 { 80 acpi_lock_hp_context(); 81 hp->notify = notify; 82 hp->uevent = uevent; 83 acpi_set_hp_context(adev, hp); 84 acpi_unlock_hp_context(); 85 } 86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 87 88 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 89 { 90 if (!handler) 91 return -EINVAL; 92 93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 94 return 0; 95 } 96 97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 98 const char *hotplug_profile_name) 99 { 100 int error; 101 102 error = acpi_scan_add_handler(handler); 103 if (error) 104 return error; 105 106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 107 return 0; 108 } 109 110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 111 { 112 struct acpi_device_physical_node *pn; 113 bool offline = true; 114 char *envp[] = { "EVENT=offline", NULL }; 115 116 /* 117 * acpi_container_offline() calls this for all of the container's 118 * children under the container's physical_node_lock lock. 119 */ 120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 121 122 list_for_each_entry(pn, &adev->physical_node_list, node) 123 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 124 if (uevent) 125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 126 127 offline = false; 128 break; 129 } 130 131 mutex_unlock(&adev->physical_node_lock); 132 return offline; 133 } 134 135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 136 void **ret_p) 137 { 138 struct acpi_device *device = NULL; 139 struct acpi_device_physical_node *pn; 140 bool second_pass = (bool)data; 141 acpi_status status = AE_OK; 142 143 if (acpi_bus_get_device(handle, &device)) 144 return AE_OK; 145 146 if (device->handler && !device->handler->hotplug.enabled) { 147 *ret_p = &device->dev; 148 return AE_SUPPORT; 149 } 150 151 mutex_lock(&device->physical_node_lock); 152 153 list_for_each_entry(pn, &device->physical_node_list, node) { 154 int ret; 155 156 if (second_pass) { 157 /* Skip devices offlined by the first pass. */ 158 if (pn->put_online) 159 continue; 160 } else { 161 pn->put_online = false; 162 } 163 ret = device_offline(pn->dev); 164 if (ret >= 0) { 165 pn->put_online = !ret; 166 } else { 167 *ret_p = pn->dev; 168 if (second_pass) { 169 status = AE_ERROR; 170 break; 171 } 172 } 173 } 174 175 mutex_unlock(&device->physical_node_lock); 176 177 return status; 178 } 179 180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 181 void **ret_p) 182 { 183 struct acpi_device *device = NULL; 184 struct acpi_device_physical_node *pn; 185 186 if (acpi_bus_get_device(handle, &device)) 187 return AE_OK; 188 189 mutex_lock(&device->physical_node_lock); 190 191 list_for_each_entry(pn, &device->physical_node_list, node) 192 if (pn->put_online) { 193 device_online(pn->dev); 194 pn->put_online = false; 195 } 196 197 mutex_unlock(&device->physical_node_lock); 198 199 return AE_OK; 200 } 201 202 static int acpi_scan_try_to_offline(struct acpi_device *device) 203 { 204 acpi_handle handle = device->handle; 205 struct device *errdev = NULL; 206 acpi_status status; 207 208 /* 209 * Carry out two passes here and ignore errors in the first pass, 210 * because if the devices in question are memory blocks and 211 * CONFIG_MEMCG is set, one of the blocks may hold data structures 212 * that the other blocks depend on, but it is not known in advance which 213 * block holds them. 214 * 215 * If the first pass is successful, the second one isn't needed, though. 216 */ 217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 218 NULL, acpi_bus_offline, (void *)false, 219 (void **)&errdev); 220 if (status == AE_SUPPORT) { 221 dev_warn(errdev, "Offline disabled.\n"); 222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 acpi_bus_online, NULL, NULL, NULL); 224 return -EPERM; 225 } 226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 227 if (errdev) { 228 errdev = NULL; 229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 230 NULL, acpi_bus_offline, (void *)true, 231 (void **)&errdev); 232 if (!errdev) 233 acpi_bus_offline(handle, 0, (void *)true, 234 (void **)&errdev); 235 236 if (errdev) { 237 dev_warn(errdev, "Offline failed.\n"); 238 acpi_bus_online(handle, 0, NULL, NULL); 239 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 240 ACPI_UINT32_MAX, acpi_bus_online, 241 NULL, NULL, NULL); 242 return -EBUSY; 243 } 244 } 245 return 0; 246 } 247 248 static int acpi_scan_hot_remove(struct acpi_device *device) 249 { 250 acpi_handle handle = device->handle; 251 unsigned long long sta; 252 acpi_status status; 253 254 if (device->handler && device->handler->hotplug.demand_offline) { 255 if (!acpi_scan_is_offline(device, true)) 256 return -EBUSY; 257 } else { 258 int error = acpi_scan_try_to_offline(device); 259 if (error) 260 return error; 261 } 262 263 acpi_handle_debug(handle, "Ejecting\n"); 264 265 acpi_bus_trim(device); 266 267 acpi_evaluate_lck(handle, 0); 268 /* 269 * TBD: _EJD support. 270 */ 271 status = acpi_evaluate_ej0(handle); 272 if (status == AE_NOT_FOUND) 273 return -ENODEV; 274 else if (ACPI_FAILURE(status)) 275 return -EIO; 276 277 /* 278 * Verify if eject was indeed successful. If not, log an error 279 * message. No need to call _OST since _EJ0 call was made OK. 280 */ 281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 282 if (ACPI_FAILURE(status)) { 283 acpi_handle_warn(handle, 284 "Status check after eject failed (0x%x)\n", status); 285 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 286 acpi_handle_warn(handle, 287 "Eject incomplete - status 0x%llx\n", sta); 288 } 289 290 return 0; 291 } 292 293 static int acpi_scan_device_not_present(struct acpi_device *adev) 294 { 295 if (!acpi_device_enumerated(adev)) { 296 dev_warn(&adev->dev, "Still not present\n"); 297 return -EALREADY; 298 } 299 acpi_bus_trim(adev); 300 return 0; 301 } 302 303 static int acpi_scan_device_check(struct acpi_device *adev) 304 { 305 int error; 306 307 acpi_bus_get_status(adev); 308 if (adev->status.present || adev->status.functional) { 309 /* 310 * This function is only called for device objects for which 311 * matching scan handlers exist. The only situation in which 312 * the scan handler is not attached to this device object yet 313 * is when the device has just appeared (either it wasn't 314 * present at all before or it was removed and then added 315 * again). 316 */ 317 if (adev->handler) { 318 dev_warn(&adev->dev, "Already enumerated\n"); 319 return -EALREADY; 320 } 321 error = acpi_bus_scan(adev->handle); 322 if (error) { 323 dev_warn(&adev->dev, "Namespace scan failure\n"); 324 return error; 325 } 326 if (!adev->handler) { 327 dev_warn(&adev->dev, "Enumeration failure\n"); 328 error = -ENODEV; 329 } 330 } else { 331 error = acpi_scan_device_not_present(adev); 332 } 333 return error; 334 } 335 336 static int acpi_scan_bus_check(struct acpi_device *adev) 337 { 338 struct acpi_scan_handler *handler = adev->handler; 339 struct acpi_device *child; 340 int error; 341 342 acpi_bus_get_status(adev); 343 if (!(adev->status.present || adev->status.functional)) { 344 acpi_scan_device_not_present(adev); 345 return 0; 346 } 347 if (handler && handler->hotplug.scan_dependent) 348 return handler->hotplug.scan_dependent(adev); 349 350 error = acpi_bus_scan(adev->handle); 351 if (error) { 352 dev_warn(&adev->dev, "Namespace scan failure\n"); 353 return error; 354 } 355 list_for_each_entry(child, &adev->children, node) { 356 error = acpi_scan_bus_check(child); 357 if (error) 358 return error; 359 } 360 return 0; 361 } 362 363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 364 { 365 switch (type) { 366 case ACPI_NOTIFY_BUS_CHECK: 367 return acpi_scan_bus_check(adev); 368 case ACPI_NOTIFY_DEVICE_CHECK: 369 return acpi_scan_device_check(adev); 370 case ACPI_NOTIFY_EJECT_REQUEST: 371 case ACPI_OST_EC_OSPM_EJECT: 372 if (adev->handler && !adev->handler->hotplug.enabled) { 373 dev_info(&adev->dev, "Eject disabled\n"); 374 return -EPERM; 375 } 376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 378 return acpi_scan_hot_remove(adev); 379 } 380 return -EINVAL; 381 } 382 383 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 384 { 385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 386 int error = -ENODEV; 387 388 lock_device_hotplug(); 389 mutex_lock(&acpi_scan_lock); 390 391 /* 392 * The device object's ACPI handle cannot become invalid as long as we 393 * are holding acpi_scan_lock, but it might have become invalid before 394 * that lock was acquired. 395 */ 396 if (adev->handle == INVALID_ACPI_HANDLE) 397 goto err_out; 398 399 if (adev->flags.is_dock_station) { 400 error = dock_notify(adev, src); 401 } else if (adev->flags.hotplug_notify) { 402 error = acpi_generic_hotplug_event(adev, src); 403 } else { 404 int (*notify)(struct acpi_device *, u32); 405 406 acpi_lock_hp_context(); 407 notify = adev->hp ? adev->hp->notify : NULL; 408 acpi_unlock_hp_context(); 409 /* 410 * There may be additional notify handlers for device objects 411 * without the .event() callback, so ignore them here. 412 */ 413 if (notify) 414 error = notify(adev, src); 415 else 416 goto out; 417 } 418 switch (error) { 419 case 0: 420 ost_code = ACPI_OST_SC_SUCCESS; 421 break; 422 case -EPERM: 423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 424 break; 425 case -EBUSY: 426 ost_code = ACPI_OST_SC_DEVICE_BUSY; 427 break; 428 default: 429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 430 break; 431 } 432 433 err_out: 434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 435 436 out: 437 acpi_bus_put_acpi_device(adev); 438 mutex_unlock(&acpi_scan_lock); 439 unlock_device_hotplug(); 440 } 441 442 static void acpi_free_power_resources_lists(struct acpi_device *device) 443 { 444 int i; 445 446 if (device->wakeup.flags.valid) 447 acpi_power_resources_list_free(&device->wakeup.resources); 448 449 if (!device->power.flags.power_resources) 450 return; 451 452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 453 struct acpi_device_power_state *ps = &device->power.states[i]; 454 acpi_power_resources_list_free(&ps->resources); 455 } 456 } 457 458 static void acpi_device_release(struct device *dev) 459 { 460 struct acpi_device *acpi_dev = to_acpi_device(dev); 461 462 acpi_free_properties(acpi_dev); 463 acpi_free_pnp_ids(&acpi_dev->pnp); 464 acpi_free_power_resources_lists(acpi_dev); 465 kfree(acpi_dev); 466 } 467 468 static void acpi_device_del(struct acpi_device *device) 469 { 470 struct acpi_device_bus_id *acpi_device_bus_id; 471 472 mutex_lock(&acpi_device_lock); 473 if (device->parent) 474 list_del(&device->node); 475 476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 477 if (!strcmp(acpi_device_bus_id->bus_id, 478 acpi_device_hid(device))) { 479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 481 list_del(&acpi_device_bus_id->node); 482 kfree_const(acpi_device_bus_id->bus_id); 483 kfree(acpi_device_bus_id); 484 } 485 break; 486 } 487 488 list_del(&device->wakeup_list); 489 mutex_unlock(&acpi_device_lock); 490 491 acpi_power_add_remove_device(device, false); 492 acpi_device_remove_files(device); 493 if (device->remove) 494 device->remove(device); 495 496 device_del(&device->dev); 497 } 498 499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 500 501 static LIST_HEAD(acpi_device_del_list); 502 static DEFINE_MUTEX(acpi_device_del_lock); 503 504 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 505 { 506 for (;;) { 507 struct acpi_device *adev; 508 509 mutex_lock(&acpi_device_del_lock); 510 511 if (list_empty(&acpi_device_del_list)) { 512 mutex_unlock(&acpi_device_del_lock); 513 break; 514 } 515 adev = list_first_entry(&acpi_device_del_list, 516 struct acpi_device, del_list); 517 list_del(&adev->del_list); 518 519 mutex_unlock(&acpi_device_del_lock); 520 521 blocking_notifier_call_chain(&acpi_reconfig_chain, 522 ACPI_RECONFIG_DEVICE_REMOVE, adev); 523 524 acpi_device_del(adev); 525 /* 526 * Drop references to all power resources that might have been 527 * used by the device. 528 */ 529 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 530 acpi_dev_put(adev); 531 } 532 } 533 534 /** 535 * acpi_scan_drop_device - Drop an ACPI device object. 536 * @handle: Handle of an ACPI namespace node, not used. 537 * @context: Address of the ACPI device object to drop. 538 * 539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 540 * namespace node the device object pointed to by @context is attached to. 541 * 542 * The unregistration is carried out asynchronously to avoid running 543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 544 * ensure the correct ordering (the device objects must be unregistered in the 545 * same order in which the corresponding namespace nodes are deleted). 546 */ 547 static void acpi_scan_drop_device(acpi_handle handle, void *context) 548 { 549 static DECLARE_WORK(work, acpi_device_del_work_fn); 550 struct acpi_device *adev = context; 551 552 mutex_lock(&acpi_device_del_lock); 553 554 /* 555 * Use the ACPI hotplug workqueue which is ordered, so this work item 556 * won't run after any hotplug work items submitted subsequently. That 557 * prevents attempts to register device objects identical to those being 558 * deleted from happening concurrently (such attempts result from 559 * hotplug events handled via the ACPI hotplug workqueue). It also will 560 * run after all of the work items submitted previously, which helps 561 * those work items to ensure that they are not accessing stale device 562 * objects. 563 */ 564 if (list_empty(&acpi_device_del_list)) 565 acpi_queue_hotplug_work(&work); 566 567 list_add_tail(&adev->del_list, &acpi_device_del_list); 568 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 569 adev->handle = INVALID_ACPI_HANDLE; 570 571 mutex_unlock(&acpi_device_del_lock); 572 } 573 574 static struct acpi_device *handle_to_device(acpi_handle handle, 575 void (*callback)(void *)) 576 { 577 struct acpi_device *adev = NULL; 578 acpi_status status; 579 580 status = acpi_get_data_full(handle, acpi_scan_drop_device, 581 (void **)&adev, callback); 582 if (ACPI_FAILURE(status) || !adev) { 583 acpi_handle_debug(handle, "No context!\n"); 584 return NULL; 585 } 586 return adev; 587 } 588 589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 590 { 591 if (!device) 592 return -EINVAL; 593 594 *device = handle_to_device(handle, NULL); 595 if (!*device) 596 return -ENODEV; 597 598 return 0; 599 } 600 EXPORT_SYMBOL(acpi_bus_get_device); 601 602 static void get_acpi_device(void *dev) 603 { 604 acpi_dev_get(dev); 605 } 606 607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 608 { 609 return handle_to_device(handle, get_acpi_device); 610 } 611 612 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 613 { 614 struct acpi_device_bus_id *acpi_device_bus_id; 615 616 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 617 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 618 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 619 return acpi_device_bus_id; 620 } 621 return NULL; 622 } 623 624 static int acpi_device_set_name(struct acpi_device *device, 625 struct acpi_device_bus_id *acpi_device_bus_id) 626 { 627 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 628 int result; 629 630 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 631 if (result < 0) 632 return result; 633 634 device->pnp.instance_no = result; 635 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 636 return 0; 637 } 638 639 static int acpi_tie_acpi_dev(struct acpi_device *adev) 640 { 641 acpi_handle handle = adev->handle; 642 acpi_status status; 643 644 if (!handle) 645 return 0; 646 647 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 648 if (ACPI_FAILURE(status)) { 649 acpi_handle_err(handle, "Unable to attach device data\n"); 650 return -ENODEV; 651 } 652 653 return 0; 654 } 655 656 static int __acpi_device_add(struct acpi_device *device, 657 void (*release)(struct device *)) 658 { 659 struct acpi_device_bus_id *acpi_device_bus_id; 660 int result; 661 662 /* 663 * Linkage 664 * ------- 665 * Link this device to its parent and siblings. 666 */ 667 INIT_LIST_HEAD(&device->children); 668 INIT_LIST_HEAD(&device->node); 669 INIT_LIST_HEAD(&device->wakeup_list); 670 INIT_LIST_HEAD(&device->physical_node_list); 671 INIT_LIST_HEAD(&device->del_list); 672 mutex_init(&device->physical_node_lock); 673 674 mutex_lock(&acpi_device_lock); 675 676 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 677 if (acpi_device_bus_id) { 678 result = acpi_device_set_name(device, acpi_device_bus_id); 679 if (result) 680 goto err_unlock; 681 } else { 682 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 683 GFP_KERNEL); 684 if (!acpi_device_bus_id) { 685 result = -ENOMEM; 686 goto err_unlock; 687 } 688 acpi_device_bus_id->bus_id = 689 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 690 if (!acpi_device_bus_id->bus_id) { 691 kfree(acpi_device_bus_id); 692 result = -ENOMEM; 693 goto err_unlock; 694 } 695 696 ida_init(&acpi_device_bus_id->instance_ida); 697 698 result = acpi_device_set_name(device, acpi_device_bus_id); 699 if (result) { 700 kfree_const(acpi_device_bus_id->bus_id); 701 kfree(acpi_device_bus_id); 702 goto err_unlock; 703 } 704 705 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 706 } 707 708 if (device->parent) 709 list_add_tail(&device->node, &device->parent->children); 710 711 if (device->wakeup.flags.valid) 712 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 713 714 mutex_unlock(&acpi_device_lock); 715 716 if (device->parent) 717 device->dev.parent = &device->parent->dev; 718 719 device->dev.bus = &acpi_bus_type; 720 device->dev.release = release; 721 result = device_add(&device->dev); 722 if (result) { 723 dev_err(&device->dev, "Error registering device\n"); 724 goto err; 725 } 726 727 result = acpi_device_setup_files(device); 728 if (result) 729 pr_err("Error creating sysfs interface for device %s\n", 730 dev_name(&device->dev)); 731 732 return 0; 733 734 err: 735 mutex_lock(&acpi_device_lock); 736 737 if (device->parent) 738 list_del(&device->node); 739 740 list_del(&device->wakeup_list); 741 742 err_unlock: 743 mutex_unlock(&acpi_device_lock); 744 745 acpi_detach_data(device->handle, acpi_scan_drop_device); 746 747 return result; 748 } 749 750 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 751 { 752 int ret; 753 754 ret = acpi_tie_acpi_dev(adev); 755 if (ret) 756 return ret; 757 758 return __acpi_device_add(adev, release); 759 } 760 761 /* -------------------------------------------------------------------------- 762 Device Enumeration 763 -------------------------------------------------------------------------- */ 764 static bool acpi_info_matches_ids(struct acpi_device_info *info, 765 const char * const ids[]) 766 { 767 struct acpi_pnp_device_id_list *cid_list = NULL; 768 int i, index; 769 770 if (!(info->valid & ACPI_VALID_HID)) 771 return false; 772 773 index = match_string(ids, -1, info->hardware_id.string); 774 if (index >= 0) 775 return true; 776 777 if (info->valid & ACPI_VALID_CID) 778 cid_list = &info->compatible_id_list; 779 780 if (!cid_list) 781 return false; 782 783 for (i = 0; i < cid_list->count; i++) { 784 index = match_string(ids, -1, cid_list->ids[i].string); 785 if (index >= 0) 786 return true; 787 } 788 789 return false; 790 } 791 792 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 793 static const char * const acpi_ignore_dep_ids[] = { 794 "PNP0D80", /* Windows-compatible System Power Management Controller */ 795 "INT33BD", /* Intel Baytrail Mailbox Device */ 796 NULL 797 }; 798 799 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 800 { 801 struct acpi_device *device = NULL; 802 acpi_status status; 803 804 /* 805 * Fixed hardware devices do not appear in the namespace and do not 806 * have handles, but we fabricate acpi_devices for them, so we have 807 * to deal with them specially. 808 */ 809 if (!handle) 810 return acpi_root; 811 812 do { 813 status = acpi_get_parent(handle, &handle); 814 if (ACPI_FAILURE(status)) 815 return status == AE_NULL_ENTRY ? NULL : acpi_root; 816 } while (acpi_bus_get_device(handle, &device)); 817 return device; 818 } 819 820 acpi_status 821 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 822 { 823 acpi_status status; 824 acpi_handle tmp; 825 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 826 union acpi_object *obj; 827 828 status = acpi_get_handle(handle, "_EJD", &tmp); 829 if (ACPI_FAILURE(status)) 830 return status; 831 832 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 833 if (ACPI_SUCCESS(status)) { 834 obj = buffer.pointer; 835 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 836 ejd); 837 kfree(buffer.pointer); 838 } 839 return status; 840 } 841 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 842 843 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 844 { 845 acpi_handle handle = dev->handle; 846 struct acpi_device_wakeup *wakeup = &dev->wakeup; 847 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 848 union acpi_object *package = NULL; 849 union acpi_object *element = NULL; 850 acpi_status status; 851 int err = -ENODATA; 852 853 INIT_LIST_HEAD(&wakeup->resources); 854 855 /* _PRW */ 856 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 857 if (ACPI_FAILURE(status)) { 858 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 859 acpi_format_exception(status)); 860 return err; 861 } 862 863 package = (union acpi_object *)buffer.pointer; 864 865 if (!package || package->package.count < 2) 866 goto out; 867 868 element = &(package->package.elements[0]); 869 if (!element) 870 goto out; 871 872 if (element->type == ACPI_TYPE_PACKAGE) { 873 if ((element->package.count < 2) || 874 (element->package.elements[0].type != 875 ACPI_TYPE_LOCAL_REFERENCE) 876 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 877 goto out; 878 879 wakeup->gpe_device = 880 element->package.elements[0].reference.handle; 881 wakeup->gpe_number = 882 (u32) element->package.elements[1].integer.value; 883 } else if (element->type == ACPI_TYPE_INTEGER) { 884 wakeup->gpe_device = NULL; 885 wakeup->gpe_number = element->integer.value; 886 } else { 887 goto out; 888 } 889 890 element = &(package->package.elements[1]); 891 if (element->type != ACPI_TYPE_INTEGER) 892 goto out; 893 894 wakeup->sleep_state = element->integer.value; 895 896 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 897 if (err) 898 goto out; 899 900 if (!list_empty(&wakeup->resources)) { 901 int sleep_state; 902 903 err = acpi_power_wakeup_list_init(&wakeup->resources, 904 &sleep_state); 905 if (err) { 906 acpi_handle_warn(handle, "Retrieving current states " 907 "of wakeup power resources failed\n"); 908 acpi_power_resources_list_free(&wakeup->resources); 909 goto out; 910 } 911 if (sleep_state < wakeup->sleep_state) { 912 acpi_handle_warn(handle, "Overriding _PRW sleep state " 913 "(S%d) by S%d from power resources\n", 914 (int)wakeup->sleep_state, sleep_state); 915 wakeup->sleep_state = sleep_state; 916 } 917 } 918 919 out: 920 kfree(buffer.pointer); 921 return err; 922 } 923 924 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 925 { 926 static const struct acpi_device_id button_device_ids[] = { 927 {"PNP0C0C", 0}, /* Power button */ 928 {"PNP0C0D", 0}, /* Lid */ 929 {"PNP0C0E", 0}, /* Sleep button */ 930 {"", 0}, 931 }; 932 struct acpi_device_wakeup *wakeup = &device->wakeup; 933 acpi_status status; 934 935 wakeup->flags.notifier_present = 0; 936 937 /* Power button, Lid switch always enable wakeup */ 938 if (!acpi_match_device_ids(device, button_device_ids)) { 939 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 940 /* Do not use Lid/sleep button for S5 wakeup */ 941 if (wakeup->sleep_state == ACPI_STATE_S5) 942 wakeup->sleep_state = ACPI_STATE_S4; 943 } 944 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 945 device_set_wakeup_capable(&device->dev, true); 946 return true; 947 } 948 949 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 950 wakeup->gpe_number); 951 return ACPI_SUCCESS(status); 952 } 953 954 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 955 { 956 int err; 957 958 /* Presence of _PRW indicates wake capable */ 959 if (!acpi_has_method(device->handle, "_PRW")) 960 return; 961 962 err = acpi_bus_extract_wakeup_device_power_package(device); 963 if (err) { 964 dev_err(&device->dev, "Unable to extract wakeup power resources"); 965 return; 966 } 967 968 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 969 device->wakeup.prepare_count = 0; 970 /* 971 * Call _PSW/_DSW object to disable its ability to wake the sleeping 972 * system for the ACPI device with the _PRW object. 973 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 974 * So it is necessary to call _DSW object first. Only when it is not 975 * present will the _PSW object used. 976 */ 977 err = acpi_device_sleep_wake(device, 0, 0, 0); 978 if (err) 979 pr_debug("error in _DSW or _PSW evaluation\n"); 980 } 981 982 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 983 { 984 struct acpi_device_power_state *ps = &device->power.states[state]; 985 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 986 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 987 acpi_status status; 988 989 INIT_LIST_HEAD(&ps->resources); 990 991 /* Evaluate "_PRx" to get referenced power resources */ 992 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 993 if (ACPI_SUCCESS(status)) { 994 union acpi_object *package = buffer.pointer; 995 996 if (buffer.length && package 997 && package->type == ACPI_TYPE_PACKAGE 998 && package->package.count) 999 acpi_extract_power_resources(package, 0, &ps->resources); 1000 1001 ACPI_FREE(buffer.pointer); 1002 } 1003 1004 /* Evaluate "_PSx" to see if we can do explicit sets */ 1005 pathname[2] = 'S'; 1006 if (acpi_has_method(device->handle, pathname)) 1007 ps->flags.explicit_set = 1; 1008 1009 /* State is valid if there are means to put the device into it. */ 1010 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1011 ps->flags.valid = 1; 1012 1013 ps->power = -1; /* Unknown - driver assigned */ 1014 ps->latency = -1; /* Unknown - driver assigned */ 1015 } 1016 1017 static void acpi_bus_get_power_flags(struct acpi_device *device) 1018 { 1019 u32 i; 1020 1021 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1022 if (!acpi_has_method(device->handle, "_PS0") && 1023 !acpi_has_method(device->handle, "_PR0")) 1024 return; 1025 1026 device->flags.power_manageable = 1; 1027 1028 /* 1029 * Power Management Flags 1030 */ 1031 if (acpi_has_method(device->handle, "_PSC")) 1032 device->power.flags.explicit_get = 1; 1033 1034 if (acpi_has_method(device->handle, "_IRC")) 1035 device->power.flags.inrush_current = 1; 1036 1037 if (acpi_has_method(device->handle, "_DSW")) 1038 device->power.flags.dsw_present = 1; 1039 1040 /* 1041 * Enumerate supported power management states 1042 */ 1043 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1044 acpi_bus_init_power_state(device, i); 1045 1046 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1047 1048 /* Set the defaults for D0 and D3hot (always supported). */ 1049 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1050 device->power.states[ACPI_STATE_D0].power = 100; 1051 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1052 1053 /* 1054 * Use power resources only if the D0 list of them is populated, because 1055 * some platforms may provide _PR3 only to indicate D3cold support and 1056 * in those cases the power resources list returned by it may be bogus. 1057 */ 1058 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1059 device->power.flags.power_resources = 1; 1060 /* 1061 * D3cold is supported if the D3hot list of power resources is 1062 * not empty. 1063 */ 1064 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1065 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1066 } 1067 1068 if (acpi_bus_init_power(device)) 1069 device->flags.power_manageable = 0; 1070 } 1071 1072 static void acpi_bus_get_flags(struct acpi_device *device) 1073 { 1074 /* Presence of _STA indicates 'dynamic_status' */ 1075 if (acpi_has_method(device->handle, "_STA")) 1076 device->flags.dynamic_status = 1; 1077 1078 /* Presence of _RMV indicates 'removable' */ 1079 if (acpi_has_method(device->handle, "_RMV")) 1080 device->flags.removable = 1; 1081 1082 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1083 if (acpi_has_method(device->handle, "_EJD") || 1084 acpi_has_method(device->handle, "_EJ0")) 1085 device->flags.ejectable = 1; 1086 } 1087 1088 static void acpi_device_get_busid(struct acpi_device *device) 1089 { 1090 char bus_id[5] = { '?', 0 }; 1091 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1092 int i = 0; 1093 1094 /* 1095 * Bus ID 1096 * ------ 1097 * The device's Bus ID is simply the object name. 1098 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1099 */ 1100 if (ACPI_IS_ROOT_DEVICE(device)) { 1101 strcpy(device->pnp.bus_id, "ACPI"); 1102 return; 1103 } 1104 1105 switch (device->device_type) { 1106 case ACPI_BUS_TYPE_POWER_BUTTON: 1107 strcpy(device->pnp.bus_id, "PWRF"); 1108 break; 1109 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1110 strcpy(device->pnp.bus_id, "SLPF"); 1111 break; 1112 case ACPI_BUS_TYPE_ECDT_EC: 1113 strcpy(device->pnp.bus_id, "ECDT"); 1114 break; 1115 default: 1116 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1117 /* Clean up trailing underscores (if any) */ 1118 for (i = 3; i > 1; i--) { 1119 if (bus_id[i] == '_') 1120 bus_id[i] = '\0'; 1121 else 1122 break; 1123 } 1124 strcpy(device->pnp.bus_id, bus_id); 1125 break; 1126 } 1127 } 1128 1129 /* 1130 * acpi_ata_match - see if an acpi object is an ATA device 1131 * 1132 * If an acpi object has one of the ACPI ATA methods defined, 1133 * then we can safely call it an ATA device. 1134 */ 1135 bool acpi_ata_match(acpi_handle handle) 1136 { 1137 return acpi_has_method(handle, "_GTF") || 1138 acpi_has_method(handle, "_GTM") || 1139 acpi_has_method(handle, "_STM") || 1140 acpi_has_method(handle, "_SDD"); 1141 } 1142 1143 /* 1144 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1145 * 1146 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1147 * then we can safely call it an ejectable drive bay 1148 */ 1149 bool acpi_bay_match(acpi_handle handle) 1150 { 1151 acpi_handle phandle; 1152 1153 if (!acpi_has_method(handle, "_EJ0")) 1154 return false; 1155 if (acpi_ata_match(handle)) 1156 return true; 1157 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1158 return false; 1159 1160 return acpi_ata_match(phandle); 1161 } 1162 1163 bool acpi_device_is_battery(struct acpi_device *adev) 1164 { 1165 struct acpi_hardware_id *hwid; 1166 1167 list_for_each_entry(hwid, &adev->pnp.ids, list) 1168 if (!strcmp("PNP0C0A", hwid->id)) 1169 return true; 1170 1171 return false; 1172 } 1173 1174 static bool is_ejectable_bay(struct acpi_device *adev) 1175 { 1176 acpi_handle handle = adev->handle; 1177 1178 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1179 return true; 1180 1181 return acpi_bay_match(handle); 1182 } 1183 1184 /* 1185 * acpi_dock_match - see if an acpi object has a _DCK method 1186 */ 1187 bool acpi_dock_match(acpi_handle handle) 1188 { 1189 return acpi_has_method(handle, "_DCK"); 1190 } 1191 1192 static acpi_status 1193 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1194 void **return_value) 1195 { 1196 long *cap = context; 1197 1198 if (acpi_has_method(handle, "_BCM") && 1199 acpi_has_method(handle, "_BCL")) { 1200 acpi_handle_debug(handle, "Found generic backlight support\n"); 1201 *cap |= ACPI_VIDEO_BACKLIGHT; 1202 /* We have backlight support, no need to scan further */ 1203 return AE_CTRL_TERMINATE; 1204 } 1205 return 0; 1206 } 1207 1208 /* Returns true if the ACPI object is a video device which can be 1209 * handled by video.ko. 1210 * The device will get a Linux specific CID added in scan.c to 1211 * identify the device as an ACPI graphics device 1212 * Be aware that the graphics device may not be physically present 1213 * Use acpi_video_get_capabilities() to detect general ACPI video 1214 * capabilities of present cards 1215 */ 1216 long acpi_is_video_device(acpi_handle handle) 1217 { 1218 long video_caps = 0; 1219 1220 /* Is this device able to support video switching ? */ 1221 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1222 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1223 1224 /* Is this device able to retrieve a video ROM ? */ 1225 if (acpi_has_method(handle, "_ROM")) 1226 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1227 1228 /* Is this device able to configure which video head to be POSTed ? */ 1229 if (acpi_has_method(handle, "_VPO") && 1230 acpi_has_method(handle, "_GPD") && 1231 acpi_has_method(handle, "_SPD")) 1232 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1233 1234 /* Only check for backlight functionality if one of the above hit. */ 1235 if (video_caps) 1236 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1237 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1238 &video_caps, NULL); 1239 1240 return video_caps; 1241 } 1242 EXPORT_SYMBOL(acpi_is_video_device); 1243 1244 const char *acpi_device_hid(struct acpi_device *device) 1245 { 1246 struct acpi_hardware_id *hid; 1247 1248 if (list_empty(&device->pnp.ids)) 1249 return dummy_hid; 1250 1251 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1252 return hid->id; 1253 } 1254 EXPORT_SYMBOL(acpi_device_hid); 1255 1256 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1257 { 1258 struct acpi_hardware_id *id; 1259 1260 id = kmalloc(sizeof(*id), GFP_KERNEL); 1261 if (!id) 1262 return; 1263 1264 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1265 if (!id->id) { 1266 kfree(id); 1267 return; 1268 } 1269 1270 list_add_tail(&id->list, &pnp->ids); 1271 pnp->type.hardware_id = 1; 1272 } 1273 1274 /* 1275 * Old IBM workstations have a DSDT bug wherein the SMBus object 1276 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1277 * prefix. Work around this. 1278 */ 1279 static bool acpi_ibm_smbus_match(acpi_handle handle) 1280 { 1281 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1282 struct acpi_buffer path = { sizeof(node_name), node_name }; 1283 1284 if (!dmi_name_in_vendors("IBM")) 1285 return false; 1286 1287 /* Look for SMBS object */ 1288 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1289 strcmp("SMBS", path.pointer)) 1290 return false; 1291 1292 /* Does it have the necessary (but misnamed) methods? */ 1293 if (acpi_has_method(handle, "SBI") && 1294 acpi_has_method(handle, "SBR") && 1295 acpi_has_method(handle, "SBW")) 1296 return true; 1297 1298 return false; 1299 } 1300 1301 static bool acpi_object_is_system_bus(acpi_handle handle) 1302 { 1303 acpi_handle tmp; 1304 1305 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1306 tmp == handle) 1307 return true; 1308 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1309 tmp == handle) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1316 int device_type) 1317 { 1318 struct acpi_device_info *info = NULL; 1319 struct acpi_pnp_device_id_list *cid_list; 1320 int i; 1321 1322 switch (device_type) { 1323 case ACPI_BUS_TYPE_DEVICE: 1324 if (handle == ACPI_ROOT_OBJECT) { 1325 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1326 break; 1327 } 1328 1329 acpi_get_object_info(handle, &info); 1330 if (!info) { 1331 pr_err("%s: Error reading device info\n", __func__); 1332 return; 1333 } 1334 1335 if (info->valid & ACPI_VALID_HID) { 1336 acpi_add_id(pnp, info->hardware_id.string); 1337 pnp->type.platform_id = 1; 1338 } 1339 if (info->valid & ACPI_VALID_CID) { 1340 cid_list = &info->compatible_id_list; 1341 for (i = 0; i < cid_list->count; i++) 1342 acpi_add_id(pnp, cid_list->ids[i].string); 1343 } 1344 if (info->valid & ACPI_VALID_ADR) { 1345 pnp->bus_address = info->address; 1346 pnp->type.bus_address = 1; 1347 } 1348 if (info->valid & ACPI_VALID_UID) 1349 pnp->unique_id = kstrdup(info->unique_id.string, 1350 GFP_KERNEL); 1351 if (info->valid & ACPI_VALID_CLS) 1352 acpi_add_id(pnp, info->class_code.string); 1353 1354 kfree(info); 1355 1356 /* 1357 * Some devices don't reliably have _HIDs & _CIDs, so add 1358 * synthetic HIDs to make sure drivers can find them. 1359 */ 1360 if (acpi_is_video_device(handle)) 1361 acpi_add_id(pnp, ACPI_VIDEO_HID); 1362 else if (acpi_bay_match(handle)) 1363 acpi_add_id(pnp, ACPI_BAY_HID); 1364 else if (acpi_dock_match(handle)) 1365 acpi_add_id(pnp, ACPI_DOCK_HID); 1366 else if (acpi_ibm_smbus_match(handle)) 1367 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1368 else if (list_empty(&pnp->ids) && 1369 acpi_object_is_system_bus(handle)) { 1370 /* \_SB, \_TZ, LNXSYBUS */ 1371 acpi_add_id(pnp, ACPI_BUS_HID); 1372 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1373 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1374 } 1375 1376 break; 1377 case ACPI_BUS_TYPE_POWER: 1378 acpi_add_id(pnp, ACPI_POWER_HID); 1379 break; 1380 case ACPI_BUS_TYPE_PROCESSOR: 1381 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1382 break; 1383 case ACPI_BUS_TYPE_THERMAL: 1384 acpi_add_id(pnp, ACPI_THERMAL_HID); 1385 break; 1386 case ACPI_BUS_TYPE_POWER_BUTTON: 1387 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1388 break; 1389 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1390 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1391 break; 1392 case ACPI_BUS_TYPE_ECDT_EC: 1393 acpi_add_id(pnp, ACPI_ECDT_HID); 1394 break; 1395 } 1396 } 1397 1398 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1399 { 1400 struct acpi_hardware_id *id, *tmp; 1401 1402 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1403 kfree_const(id->id); 1404 kfree(id); 1405 } 1406 kfree(pnp->unique_id); 1407 } 1408 1409 /** 1410 * acpi_dma_supported - Check DMA support for the specified device. 1411 * @adev: The pointer to acpi device 1412 * 1413 * Return false if DMA is not supported. Otherwise, return true 1414 */ 1415 bool acpi_dma_supported(const struct acpi_device *adev) 1416 { 1417 if (!adev) 1418 return false; 1419 1420 if (adev->flags.cca_seen) 1421 return true; 1422 1423 /* 1424 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1425 * DMA on "Intel platforms". Presumably that includes all x86 and 1426 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1427 */ 1428 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1429 return true; 1430 1431 return false; 1432 } 1433 1434 /** 1435 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1436 * @adev: The pointer to acpi device 1437 * 1438 * Return enum dev_dma_attr. 1439 */ 1440 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1441 { 1442 if (!acpi_dma_supported(adev)) 1443 return DEV_DMA_NOT_SUPPORTED; 1444 1445 if (adev->flags.coherent_dma) 1446 return DEV_DMA_COHERENT; 1447 else 1448 return DEV_DMA_NON_COHERENT; 1449 } 1450 1451 /** 1452 * acpi_dma_get_range() - Get device DMA parameters. 1453 * 1454 * @dev: device to configure 1455 * @dma_addr: pointer device DMA address result 1456 * @offset: pointer to the DMA offset result 1457 * @size: pointer to DMA range size result 1458 * 1459 * Evaluate DMA regions and return respectively DMA region start, offset 1460 * and size in dma_addr, offset and size on parsing success; it does not 1461 * update the passed in values on failure. 1462 * 1463 * Return 0 on success, < 0 on failure. 1464 */ 1465 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1466 u64 *size) 1467 { 1468 struct acpi_device *adev; 1469 LIST_HEAD(list); 1470 struct resource_entry *rentry; 1471 int ret; 1472 struct device *dma_dev = dev; 1473 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1474 1475 /* 1476 * Walk the device tree chasing an ACPI companion with a _DMA 1477 * object while we go. Stop if we find a device with an ACPI 1478 * companion containing a _DMA method. 1479 */ 1480 do { 1481 adev = ACPI_COMPANION(dma_dev); 1482 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1483 break; 1484 1485 dma_dev = dma_dev->parent; 1486 } while (dma_dev); 1487 1488 if (!dma_dev) 1489 return -ENODEV; 1490 1491 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1492 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1493 return -EINVAL; 1494 } 1495 1496 ret = acpi_dev_get_dma_resources(adev, &list); 1497 if (ret > 0) { 1498 list_for_each_entry(rentry, &list, node) { 1499 if (dma_offset && rentry->offset != dma_offset) { 1500 ret = -EINVAL; 1501 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1502 goto out; 1503 } 1504 dma_offset = rentry->offset; 1505 1506 /* Take lower and upper limits */ 1507 if (rentry->res->start < dma_start) 1508 dma_start = rentry->res->start; 1509 if (rentry->res->end > dma_end) 1510 dma_end = rentry->res->end; 1511 } 1512 1513 if (dma_start >= dma_end) { 1514 ret = -EINVAL; 1515 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1516 goto out; 1517 } 1518 1519 *dma_addr = dma_start - dma_offset; 1520 len = dma_end - dma_start; 1521 *size = max(len, len + 1); 1522 *offset = dma_offset; 1523 } 1524 out: 1525 acpi_dev_free_resource_list(&list); 1526 1527 return ret >= 0 ? 0 : ret; 1528 } 1529 1530 #ifdef CONFIG_IOMMU_API 1531 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1532 struct fwnode_handle *fwnode, 1533 const struct iommu_ops *ops) 1534 { 1535 int ret = iommu_fwspec_init(dev, fwnode, ops); 1536 1537 if (!ret) 1538 ret = iommu_fwspec_add_ids(dev, &id, 1); 1539 1540 return ret; 1541 } 1542 1543 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1544 { 1545 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1546 1547 return fwspec ? fwspec->ops : NULL; 1548 } 1549 1550 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1551 const u32 *id_in) 1552 { 1553 int err; 1554 const struct iommu_ops *ops; 1555 1556 /* 1557 * If we already translated the fwspec there is nothing left to do, 1558 * return the iommu_ops. 1559 */ 1560 ops = acpi_iommu_fwspec_ops(dev); 1561 if (ops) 1562 return ops; 1563 1564 err = iort_iommu_configure_id(dev, id_in); 1565 if (err && err != -EPROBE_DEFER) 1566 err = viot_iommu_configure(dev); 1567 1568 /* 1569 * If we have reason to believe the IOMMU driver missed the initial 1570 * iommu_probe_device() call for dev, replay it to get things in order. 1571 */ 1572 if (!err && dev->bus && !device_iommu_mapped(dev)) 1573 err = iommu_probe_device(dev); 1574 1575 /* Ignore all other errors apart from EPROBE_DEFER */ 1576 if (err == -EPROBE_DEFER) { 1577 return ERR_PTR(err); 1578 } else if (err) { 1579 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1580 return NULL; 1581 } 1582 return acpi_iommu_fwspec_ops(dev); 1583 } 1584 1585 #else /* !CONFIG_IOMMU_API */ 1586 1587 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1588 struct fwnode_handle *fwnode, 1589 const struct iommu_ops *ops) 1590 { 1591 return -ENODEV; 1592 } 1593 1594 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1595 const u32 *id_in) 1596 { 1597 return NULL; 1598 } 1599 1600 #endif /* !CONFIG_IOMMU_API */ 1601 1602 /** 1603 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1604 * @dev: The pointer to the device 1605 * @attr: device dma attributes 1606 * @input_id: input device id const value pointer 1607 */ 1608 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1609 const u32 *input_id) 1610 { 1611 const struct iommu_ops *iommu; 1612 u64 dma_addr = 0, size = 0; 1613 1614 if (attr == DEV_DMA_NOT_SUPPORTED) { 1615 set_dma_ops(dev, &dma_dummy_ops); 1616 return 0; 1617 } 1618 1619 acpi_arch_dma_setup(dev, &dma_addr, &size); 1620 1621 iommu = acpi_iommu_configure_id(dev, input_id); 1622 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1623 return -EPROBE_DEFER; 1624 1625 arch_setup_dma_ops(dev, dma_addr, size, 1626 iommu, attr == DEV_DMA_COHERENT); 1627 1628 return 0; 1629 } 1630 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1631 1632 static void acpi_init_coherency(struct acpi_device *adev) 1633 { 1634 unsigned long long cca = 0; 1635 acpi_status status; 1636 struct acpi_device *parent = adev->parent; 1637 1638 if (parent && parent->flags.cca_seen) { 1639 /* 1640 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1641 * already saw one. 1642 */ 1643 adev->flags.cca_seen = 1; 1644 cca = parent->flags.coherent_dma; 1645 } else { 1646 status = acpi_evaluate_integer(adev->handle, "_CCA", 1647 NULL, &cca); 1648 if (ACPI_SUCCESS(status)) 1649 adev->flags.cca_seen = 1; 1650 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1651 /* 1652 * If architecture does not specify that _CCA is 1653 * required for DMA-able devices (e.g. x86), 1654 * we default to _CCA=1. 1655 */ 1656 cca = 1; 1657 else 1658 acpi_handle_debug(adev->handle, 1659 "ACPI device is missing _CCA.\n"); 1660 } 1661 1662 adev->flags.coherent_dma = cca; 1663 } 1664 1665 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1666 { 1667 bool *is_serial_bus_slave_p = data; 1668 1669 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1670 return 1; 1671 1672 *is_serial_bus_slave_p = true; 1673 1674 /* no need to do more checking */ 1675 return -1; 1676 } 1677 1678 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1679 { 1680 struct acpi_device *parent = device->parent; 1681 static const struct acpi_device_id indirect_io_hosts[] = { 1682 {"HISI0191", 0}, 1683 {} 1684 }; 1685 1686 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1687 } 1688 1689 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1690 { 1691 struct list_head resource_list; 1692 bool is_serial_bus_slave = false; 1693 /* 1694 * These devices have multiple I2cSerialBus resources and an i2c-client 1695 * must be instantiated for each, each with its own i2c_device_id. 1696 * Normally we only instantiate an i2c-client for the first resource, 1697 * using the ACPI HID as id. These special cases are handled by the 1698 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1699 * which i2c_device_id to use for each resource. 1700 */ 1701 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1702 {"BSG1160", }, 1703 {"BSG2150", }, 1704 {"INT33FE", }, 1705 {"INT3515", }, 1706 {} 1707 }; 1708 1709 if (acpi_is_indirect_io_slave(device)) 1710 return true; 1711 1712 /* Macs use device properties in lieu of _CRS resources */ 1713 if (x86_apple_machine && 1714 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1715 fwnode_property_present(&device->fwnode, "i2cAddress") || 1716 fwnode_property_present(&device->fwnode, "baud"))) 1717 return true; 1718 1719 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1720 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1721 return false; 1722 1723 INIT_LIST_HEAD(&resource_list); 1724 acpi_dev_get_resources(device, &resource_list, 1725 acpi_check_serial_bus_slave, 1726 &is_serial_bus_slave); 1727 acpi_dev_free_resource_list(&resource_list); 1728 1729 return is_serial_bus_slave; 1730 } 1731 1732 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1733 int type) 1734 { 1735 INIT_LIST_HEAD(&device->pnp.ids); 1736 device->device_type = type; 1737 device->handle = handle; 1738 device->parent = acpi_bus_get_parent(handle); 1739 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1740 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1741 acpi_device_get_busid(device); 1742 acpi_set_pnp_ids(handle, &device->pnp, type); 1743 acpi_init_properties(device); 1744 acpi_bus_get_flags(device); 1745 device->flags.match_driver = false; 1746 device->flags.initialized = true; 1747 device->flags.enumeration_by_parent = 1748 acpi_device_enumeration_by_parent(device); 1749 acpi_device_clear_enumerated(device); 1750 device_initialize(&device->dev); 1751 dev_set_uevent_suppress(&device->dev, true); 1752 acpi_init_coherency(device); 1753 } 1754 1755 static void acpi_scan_dep_init(struct acpi_device *adev) 1756 { 1757 struct acpi_dep_data *dep; 1758 1759 list_for_each_entry(dep, &acpi_dep_list, node) { 1760 if (dep->consumer == adev->handle) 1761 adev->dep_unmet++; 1762 } 1763 } 1764 1765 void acpi_device_add_finalize(struct acpi_device *device) 1766 { 1767 dev_set_uevent_suppress(&device->dev, false); 1768 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1769 } 1770 1771 static void acpi_scan_init_status(struct acpi_device *adev) 1772 { 1773 if (acpi_bus_get_status(adev)) 1774 acpi_set_device_status(adev, 0); 1775 } 1776 1777 static int acpi_add_single_object(struct acpi_device **child, 1778 acpi_handle handle, int type, bool dep_init) 1779 { 1780 struct acpi_device *device; 1781 bool release_dep_lock = false; 1782 int result; 1783 1784 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1785 if (!device) 1786 return -ENOMEM; 1787 1788 acpi_init_device_object(device, handle, type); 1789 /* 1790 * Getting the status is delayed till here so that we can call 1791 * acpi_bus_get_status() and use its quirk handling. Note that 1792 * this must be done before the get power-/wakeup_dev-flags calls. 1793 */ 1794 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1795 if (dep_init) { 1796 mutex_lock(&acpi_dep_list_lock); 1797 /* 1798 * Hold the lock until the acpi_tie_acpi_dev() call 1799 * below to prevent concurrent acpi_scan_clear_dep() 1800 * from deleting a dependency list entry without 1801 * updating dep_unmet for the device. 1802 */ 1803 release_dep_lock = true; 1804 acpi_scan_dep_init(device); 1805 } 1806 acpi_scan_init_status(device); 1807 } 1808 1809 acpi_bus_get_power_flags(device); 1810 acpi_bus_get_wakeup_device_flags(device); 1811 1812 result = acpi_tie_acpi_dev(device); 1813 1814 if (release_dep_lock) 1815 mutex_unlock(&acpi_dep_list_lock); 1816 1817 if (!result) 1818 result = __acpi_device_add(device, acpi_device_release); 1819 1820 if (result) { 1821 acpi_device_release(&device->dev); 1822 return result; 1823 } 1824 1825 acpi_power_add_remove_device(device, true); 1826 acpi_device_add_finalize(device); 1827 1828 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1829 dev_name(&device->dev), device->parent ? 1830 dev_name(&device->parent->dev) : "(null)"); 1831 1832 *child = device; 1833 return 0; 1834 } 1835 1836 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1837 void *context) 1838 { 1839 struct resource *res = context; 1840 1841 if (acpi_dev_resource_memory(ares, res)) 1842 return AE_CTRL_TERMINATE; 1843 1844 return AE_OK; 1845 } 1846 1847 static bool acpi_device_should_be_hidden(acpi_handle handle) 1848 { 1849 acpi_status status; 1850 struct resource res; 1851 1852 /* Check if it should ignore the UART device */ 1853 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1854 return false; 1855 1856 /* 1857 * The UART device described in SPCR table is assumed to have only one 1858 * memory resource present. So we only look for the first one here. 1859 */ 1860 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1861 acpi_get_resource_memory, &res); 1862 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1863 return false; 1864 1865 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1866 &res.start); 1867 1868 return true; 1869 } 1870 1871 bool acpi_device_is_present(const struct acpi_device *adev) 1872 { 1873 return adev->status.present || adev->status.functional; 1874 } 1875 1876 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1877 const char *idstr, 1878 const struct acpi_device_id **matchid) 1879 { 1880 const struct acpi_device_id *devid; 1881 1882 if (handler->match) 1883 return handler->match(idstr, matchid); 1884 1885 for (devid = handler->ids; devid->id[0]; devid++) 1886 if (!strcmp((char *)devid->id, idstr)) { 1887 if (matchid) 1888 *matchid = devid; 1889 1890 return true; 1891 } 1892 1893 return false; 1894 } 1895 1896 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1897 const struct acpi_device_id **matchid) 1898 { 1899 struct acpi_scan_handler *handler; 1900 1901 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1902 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1903 return handler; 1904 1905 return NULL; 1906 } 1907 1908 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1909 { 1910 if (!!hotplug->enabled == !!val) 1911 return; 1912 1913 mutex_lock(&acpi_scan_lock); 1914 1915 hotplug->enabled = val; 1916 1917 mutex_unlock(&acpi_scan_lock); 1918 } 1919 1920 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1921 { 1922 struct acpi_hardware_id *hwid; 1923 1924 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1925 acpi_dock_add(adev); 1926 return; 1927 } 1928 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1929 struct acpi_scan_handler *handler; 1930 1931 handler = acpi_scan_match_handler(hwid->id, NULL); 1932 if (handler) { 1933 adev->flags.hotplug_notify = true; 1934 break; 1935 } 1936 } 1937 } 1938 1939 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1940 { 1941 struct acpi_handle_list dep_devices; 1942 acpi_status status; 1943 u32 count; 1944 int i; 1945 1946 /* 1947 * Check for _HID here to avoid deferring the enumeration of: 1948 * 1. PCI devices. 1949 * 2. ACPI nodes describing USB ports. 1950 * Still, checking for _HID catches more then just these cases ... 1951 */ 1952 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1953 !acpi_has_method(handle, "_HID")) 1954 return 0; 1955 1956 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1957 if (ACPI_FAILURE(status)) { 1958 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1959 return 0; 1960 } 1961 1962 for (count = 0, i = 0; i < dep_devices.count; i++) { 1963 struct acpi_device_info *info; 1964 struct acpi_dep_data *dep; 1965 bool skip; 1966 1967 status = acpi_get_object_info(dep_devices.handles[i], &info); 1968 if (ACPI_FAILURE(status)) { 1969 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1970 continue; 1971 } 1972 1973 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1974 kfree(info); 1975 1976 if (skip) 1977 continue; 1978 1979 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1980 if (!dep) 1981 continue; 1982 1983 count++; 1984 1985 dep->supplier = dep_devices.handles[i]; 1986 dep->consumer = handle; 1987 1988 mutex_lock(&acpi_dep_list_lock); 1989 list_add_tail(&dep->node , &acpi_dep_list); 1990 mutex_unlock(&acpi_dep_list_lock); 1991 } 1992 1993 return count; 1994 } 1995 1996 static bool acpi_bus_scan_second_pass; 1997 1998 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 1999 struct acpi_device **adev_p) 2000 { 2001 struct acpi_device *device = NULL; 2002 acpi_object_type acpi_type; 2003 int type; 2004 2005 acpi_bus_get_device(handle, &device); 2006 if (device) 2007 goto out; 2008 2009 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2010 return AE_OK; 2011 2012 switch (acpi_type) { 2013 case ACPI_TYPE_DEVICE: 2014 if (acpi_device_should_be_hidden(handle)) 2015 return AE_OK; 2016 2017 /* Bail out if there are dependencies. */ 2018 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2019 acpi_bus_scan_second_pass = true; 2020 return AE_CTRL_DEPTH; 2021 } 2022 2023 fallthrough; 2024 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2025 type = ACPI_BUS_TYPE_DEVICE; 2026 break; 2027 2028 case ACPI_TYPE_PROCESSOR: 2029 type = ACPI_BUS_TYPE_PROCESSOR; 2030 break; 2031 2032 case ACPI_TYPE_THERMAL: 2033 type = ACPI_BUS_TYPE_THERMAL; 2034 break; 2035 2036 case ACPI_TYPE_POWER: 2037 acpi_add_power_resource(handle); 2038 fallthrough; 2039 default: 2040 return AE_OK; 2041 } 2042 2043 /* 2044 * If check_dep is true at this point, the device has no dependencies, 2045 * or the creation of the device object would have been postponed above. 2046 */ 2047 acpi_add_single_object(&device, handle, type, !check_dep); 2048 if (!device) 2049 return AE_CTRL_DEPTH; 2050 2051 acpi_scan_init_hotplug(device); 2052 2053 out: 2054 if (!*adev_p) 2055 *adev_p = device; 2056 2057 return AE_OK; 2058 } 2059 2060 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2061 void *not_used, void **ret_p) 2062 { 2063 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2064 } 2065 2066 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2067 void *not_used, void **ret_p) 2068 { 2069 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2070 } 2071 2072 static void acpi_default_enumeration(struct acpi_device *device) 2073 { 2074 /* 2075 * Do not enumerate devices with enumeration_by_parent flag set as 2076 * they will be enumerated by their respective parents. 2077 */ 2078 if (!device->flags.enumeration_by_parent) { 2079 acpi_create_platform_device(device, NULL); 2080 acpi_device_set_enumerated(device); 2081 } else { 2082 blocking_notifier_call_chain(&acpi_reconfig_chain, 2083 ACPI_RECONFIG_DEVICE_ADD, device); 2084 } 2085 } 2086 2087 static const struct acpi_device_id generic_device_ids[] = { 2088 {ACPI_DT_NAMESPACE_HID, }, 2089 {"", }, 2090 }; 2091 2092 static int acpi_generic_device_attach(struct acpi_device *adev, 2093 const struct acpi_device_id *not_used) 2094 { 2095 /* 2096 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2097 * below can be unconditional. 2098 */ 2099 if (adev->data.of_compatible) 2100 acpi_default_enumeration(adev); 2101 2102 return 1; 2103 } 2104 2105 static struct acpi_scan_handler generic_device_handler = { 2106 .ids = generic_device_ids, 2107 .attach = acpi_generic_device_attach, 2108 }; 2109 2110 static int acpi_scan_attach_handler(struct acpi_device *device) 2111 { 2112 struct acpi_hardware_id *hwid; 2113 int ret = 0; 2114 2115 list_for_each_entry(hwid, &device->pnp.ids, list) { 2116 const struct acpi_device_id *devid; 2117 struct acpi_scan_handler *handler; 2118 2119 handler = acpi_scan_match_handler(hwid->id, &devid); 2120 if (handler) { 2121 if (!handler->attach) { 2122 device->pnp.type.platform_id = 0; 2123 continue; 2124 } 2125 device->handler = handler; 2126 ret = handler->attach(device, devid); 2127 if (ret > 0) 2128 break; 2129 2130 device->handler = NULL; 2131 if (ret < 0) 2132 break; 2133 } 2134 } 2135 2136 return ret; 2137 } 2138 2139 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2140 { 2141 struct acpi_device *child; 2142 bool skip = !first_pass && device->flags.visited; 2143 acpi_handle ejd; 2144 int ret; 2145 2146 if (skip) 2147 goto ok; 2148 2149 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2150 register_dock_dependent_device(device, ejd); 2151 2152 acpi_bus_get_status(device); 2153 /* Skip devices that are not present. */ 2154 if (!acpi_device_is_present(device)) { 2155 device->flags.initialized = false; 2156 acpi_device_clear_enumerated(device); 2157 device->flags.power_manageable = 0; 2158 return; 2159 } 2160 if (device->handler) 2161 goto ok; 2162 2163 if (!device->flags.initialized) { 2164 device->flags.power_manageable = 2165 device->power.states[ACPI_STATE_D0].flags.valid; 2166 if (acpi_bus_init_power(device)) 2167 device->flags.power_manageable = 0; 2168 2169 device->flags.initialized = true; 2170 } else if (device->flags.visited) { 2171 goto ok; 2172 } 2173 2174 ret = acpi_scan_attach_handler(device); 2175 if (ret < 0) 2176 return; 2177 2178 device->flags.match_driver = true; 2179 if (ret > 0 && !device->flags.enumeration_by_parent) { 2180 acpi_device_set_enumerated(device); 2181 goto ok; 2182 } 2183 2184 ret = device_attach(&device->dev); 2185 if (ret < 0) 2186 return; 2187 2188 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2189 acpi_default_enumeration(device); 2190 else 2191 acpi_device_set_enumerated(device); 2192 2193 ok: 2194 list_for_each_entry(child, &device->children, node) 2195 acpi_bus_attach(child, first_pass); 2196 2197 if (!skip && device->handler && device->handler->hotplug.notify_online) 2198 device->handler->hotplug.notify_online(device); 2199 } 2200 2201 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2202 { 2203 struct acpi_device *adev; 2204 2205 adev = acpi_bus_get_acpi_device(dep->consumer); 2206 if (adev) { 2207 *(struct acpi_device **)data = adev; 2208 return 1; 2209 } 2210 /* Continue parsing if the device object is not present. */ 2211 return 0; 2212 } 2213 2214 struct acpi_scan_clear_dep_work { 2215 struct work_struct work; 2216 struct acpi_device *adev; 2217 }; 2218 2219 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2220 { 2221 struct acpi_scan_clear_dep_work *cdw; 2222 2223 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2224 2225 acpi_scan_lock_acquire(); 2226 acpi_bus_attach(cdw->adev, true); 2227 acpi_scan_lock_release(); 2228 2229 acpi_dev_put(cdw->adev); 2230 kfree(cdw); 2231 } 2232 2233 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2234 { 2235 struct acpi_scan_clear_dep_work *cdw; 2236 2237 if (adev->dep_unmet) 2238 return false; 2239 2240 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2241 if (!cdw) 2242 return false; 2243 2244 cdw->adev = adev; 2245 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2246 /* 2247 * Since the work function may block on the lock until the entire 2248 * initial enumeration of devices is complete, put it into the unbound 2249 * workqueue. 2250 */ 2251 queue_work(system_unbound_wq, &cdw->work); 2252 2253 return true; 2254 } 2255 2256 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2257 { 2258 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2259 2260 if (adev) { 2261 adev->dep_unmet--; 2262 if (!acpi_scan_clear_dep_queue(adev)) 2263 acpi_dev_put(adev); 2264 } 2265 2266 list_del(&dep->node); 2267 kfree(dep); 2268 2269 return 0; 2270 } 2271 2272 /** 2273 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2274 * @handle: The ACPI handle of the supplier device 2275 * @callback: Pointer to the callback function to apply 2276 * @data: Pointer to some data to pass to the callback 2277 * 2278 * The return value of the callback determines this function's behaviour. If 0 2279 * is returned we continue to iterate over acpi_dep_list. If a positive value 2280 * is returned then the loop is broken but this function returns 0. If a 2281 * negative value is returned by the callback then the loop is broken and that 2282 * value is returned as the final error. 2283 */ 2284 static int acpi_walk_dep_device_list(acpi_handle handle, 2285 int (*callback)(struct acpi_dep_data *, void *), 2286 void *data) 2287 { 2288 struct acpi_dep_data *dep, *tmp; 2289 int ret = 0; 2290 2291 mutex_lock(&acpi_dep_list_lock); 2292 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2293 if (dep->supplier == handle) { 2294 ret = callback(dep, data); 2295 if (ret) 2296 break; 2297 } 2298 } 2299 mutex_unlock(&acpi_dep_list_lock); 2300 2301 return ret > 0 ? 0 : ret; 2302 } 2303 2304 /** 2305 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2306 * @supplier: Pointer to the supplier &struct acpi_device 2307 * 2308 * Clear dependencies on the given device. 2309 */ 2310 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2311 { 2312 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2313 } 2314 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2315 2316 /** 2317 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2318 * @supplier: Pointer to the dependee device 2319 * 2320 * Returns the first &struct acpi_device which declares itself dependent on 2321 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2322 * 2323 * The caller is responsible for putting the reference to adev when it is no 2324 * longer needed. 2325 */ 2326 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2327 { 2328 struct acpi_device *adev = NULL; 2329 2330 acpi_walk_dep_device_list(supplier->handle, 2331 acpi_dev_get_first_consumer_dev_cb, &adev); 2332 2333 return adev; 2334 } 2335 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2336 2337 /** 2338 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2339 * @handle: Root of the namespace scope to scan. 2340 * 2341 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2342 * found devices. 2343 * 2344 * If no devices were found, -ENODEV is returned, but it does not mean that 2345 * there has been a real error. There just have been no suitable ACPI objects 2346 * in the table trunk from which the kernel could create a device and add an 2347 * appropriate driver. 2348 * 2349 * Must be called under acpi_scan_lock. 2350 */ 2351 int acpi_bus_scan(acpi_handle handle) 2352 { 2353 struct acpi_device *device = NULL; 2354 2355 acpi_bus_scan_second_pass = false; 2356 2357 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2358 2359 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2360 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2361 acpi_bus_check_add_1, NULL, NULL, 2362 (void **)&device); 2363 2364 if (!device) 2365 return -ENODEV; 2366 2367 acpi_bus_attach(device, true); 2368 2369 if (!acpi_bus_scan_second_pass) 2370 return 0; 2371 2372 /* Pass 2: Enumerate all of the remaining devices. */ 2373 2374 device = NULL; 2375 2376 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2377 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2378 acpi_bus_check_add_2, NULL, NULL, 2379 (void **)&device); 2380 2381 acpi_bus_attach(device, false); 2382 2383 return 0; 2384 } 2385 EXPORT_SYMBOL(acpi_bus_scan); 2386 2387 /** 2388 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2389 * @adev: Root of the ACPI namespace scope to walk. 2390 * 2391 * Must be called under acpi_scan_lock. 2392 */ 2393 void acpi_bus_trim(struct acpi_device *adev) 2394 { 2395 struct acpi_scan_handler *handler = adev->handler; 2396 struct acpi_device *child; 2397 2398 list_for_each_entry_reverse(child, &adev->children, node) 2399 acpi_bus_trim(child); 2400 2401 adev->flags.match_driver = false; 2402 if (handler) { 2403 if (handler->detach) 2404 handler->detach(adev); 2405 2406 adev->handler = NULL; 2407 } else { 2408 device_release_driver(&adev->dev); 2409 } 2410 /* 2411 * Most likely, the device is going away, so put it into D3cold before 2412 * that. 2413 */ 2414 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2415 adev->flags.initialized = false; 2416 acpi_device_clear_enumerated(adev); 2417 } 2418 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2419 2420 int acpi_bus_register_early_device(int type) 2421 { 2422 struct acpi_device *device = NULL; 2423 int result; 2424 2425 result = acpi_add_single_object(&device, NULL, type, false); 2426 if (result) 2427 return result; 2428 2429 device->flags.match_driver = true; 2430 return device_attach(&device->dev); 2431 } 2432 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2433 2434 static int acpi_bus_scan_fixed(void) 2435 { 2436 int result = 0; 2437 2438 /* 2439 * Enumerate all fixed-feature devices. 2440 */ 2441 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2442 struct acpi_device *device = NULL; 2443 2444 result = acpi_add_single_object(&device, NULL, 2445 ACPI_BUS_TYPE_POWER_BUTTON, false); 2446 if (result) 2447 return result; 2448 2449 device->flags.match_driver = true; 2450 result = device_attach(&device->dev); 2451 if (result < 0) 2452 return result; 2453 2454 device_init_wakeup(&device->dev, true); 2455 } 2456 2457 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2458 struct acpi_device *device = NULL; 2459 2460 result = acpi_add_single_object(&device, NULL, 2461 ACPI_BUS_TYPE_SLEEP_BUTTON, false); 2462 if (result) 2463 return result; 2464 2465 device->flags.match_driver = true; 2466 result = device_attach(&device->dev); 2467 } 2468 2469 return result < 0 ? result : 0; 2470 } 2471 2472 static void __init acpi_get_spcr_uart_addr(void) 2473 { 2474 acpi_status status; 2475 struct acpi_table_spcr *spcr_ptr; 2476 2477 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2478 (struct acpi_table_header **)&spcr_ptr); 2479 if (ACPI_FAILURE(status)) { 2480 pr_warn("STAO table present, but SPCR is missing\n"); 2481 return; 2482 } 2483 2484 spcr_uart_addr = spcr_ptr->serial_port.address; 2485 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2486 } 2487 2488 static bool acpi_scan_initialized; 2489 2490 int __init acpi_scan_init(void) 2491 { 2492 int result; 2493 acpi_status status; 2494 struct acpi_table_stao *stao_ptr; 2495 2496 acpi_pci_root_init(); 2497 acpi_pci_link_init(); 2498 acpi_processor_init(); 2499 acpi_platform_init(); 2500 acpi_lpss_init(); 2501 acpi_apd_init(); 2502 acpi_cmos_rtc_init(); 2503 acpi_container_init(); 2504 acpi_memory_hotplug_init(); 2505 acpi_watchdog_init(); 2506 acpi_pnp_init(); 2507 acpi_int340x_thermal_init(); 2508 acpi_amba_init(); 2509 acpi_init_lpit(); 2510 2511 acpi_scan_add_handler(&generic_device_handler); 2512 2513 /* 2514 * If there is STAO table, check whether it needs to ignore the UART 2515 * device in SPCR table. 2516 */ 2517 status = acpi_get_table(ACPI_SIG_STAO, 0, 2518 (struct acpi_table_header **)&stao_ptr); 2519 if (ACPI_SUCCESS(status)) { 2520 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2521 pr_info("STAO Name List not yet supported.\n"); 2522 2523 if (stao_ptr->ignore_uart) 2524 acpi_get_spcr_uart_addr(); 2525 2526 acpi_put_table((struct acpi_table_header *)stao_ptr); 2527 } 2528 2529 acpi_gpe_apply_masked_gpes(); 2530 acpi_update_all_gpes(); 2531 2532 /* 2533 * Although we call __add_memory() that is documented to require the 2534 * device_hotplug_lock, it is not necessary here because this is an 2535 * early code when userspace or any other code path cannot trigger 2536 * hotplug/hotunplug operations. 2537 */ 2538 mutex_lock(&acpi_scan_lock); 2539 /* 2540 * Enumerate devices in the ACPI namespace. 2541 */ 2542 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2543 if (result) 2544 goto out; 2545 2546 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2547 if (result) 2548 goto out; 2549 2550 /* Fixed feature devices do not exist on HW-reduced platform */ 2551 if (!acpi_gbl_reduced_hardware) { 2552 result = acpi_bus_scan_fixed(); 2553 if (result) { 2554 acpi_detach_data(acpi_root->handle, 2555 acpi_scan_drop_device); 2556 acpi_device_del(acpi_root); 2557 acpi_bus_put_acpi_device(acpi_root); 2558 goto out; 2559 } 2560 } 2561 2562 acpi_turn_off_unused_power_resources(); 2563 2564 acpi_scan_initialized = true; 2565 2566 out: 2567 mutex_unlock(&acpi_scan_lock); 2568 return result; 2569 } 2570 2571 static struct acpi_probe_entry *ape; 2572 static int acpi_probe_count; 2573 static DEFINE_MUTEX(acpi_probe_mutex); 2574 2575 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2576 const unsigned long end) 2577 { 2578 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2579 if (!ape->probe_subtbl(header, end)) 2580 acpi_probe_count++; 2581 2582 return 0; 2583 } 2584 2585 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2586 { 2587 int count = 0; 2588 2589 if (acpi_disabled) 2590 return 0; 2591 2592 mutex_lock(&acpi_probe_mutex); 2593 for (ape = ap_head; nr; ape++, nr--) { 2594 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2595 acpi_probe_count = 0; 2596 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2597 count += acpi_probe_count; 2598 } else { 2599 int res; 2600 res = acpi_table_parse(ape->id, ape->probe_table); 2601 if (!res) 2602 count++; 2603 } 2604 } 2605 mutex_unlock(&acpi_probe_mutex); 2606 2607 return count; 2608 } 2609 2610 static void acpi_table_events_fn(struct work_struct *work) 2611 { 2612 acpi_scan_lock_acquire(); 2613 acpi_bus_scan(ACPI_ROOT_OBJECT); 2614 acpi_scan_lock_release(); 2615 2616 kfree(work); 2617 } 2618 2619 void acpi_scan_table_notify(void) 2620 { 2621 struct work_struct *work; 2622 2623 if (!acpi_scan_initialized) 2624 return; 2625 2626 work = kmalloc(sizeof(*work), GFP_KERNEL); 2627 if (!work) 2628 return; 2629 2630 INIT_WORK(work, acpi_table_events_fn); 2631 schedule_work(work); 2632 } 2633 2634 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2635 { 2636 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2637 } 2638 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2639 2640 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2641 { 2642 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2643 } 2644 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2645