xref: /linux/drivers/acpi/scan.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * scan.c - support for transforming the ACPI namespace into individual objects
3  */
4 
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/acpi.h>
10 #include <linux/acpi_iort.h>
11 #include <linux/signal.h>
12 #include <linux/kthread.h>
13 #include <linux/dmi.h>
14 #include <linux/nls.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/platform_data/x86/apple.h>
17 
18 #include <asm/pgtable.h>
19 
20 #include "internal.h"
21 
22 #define _COMPONENT		ACPI_BUS_COMPONENT
23 ACPI_MODULE_NAME("scan");
24 extern struct acpi_device *acpi_root;
25 
26 #define ACPI_BUS_CLASS			"system_bus"
27 #define ACPI_BUS_HID			"LNXSYBUS"
28 #define ACPI_BUS_DEVICE_NAME		"System Bus"
29 
30 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 struct acpi_dep_data {
53 	struct list_head node;
54 	acpi_handle master;
55 	acpi_handle slave;
56 };
57 
58 void acpi_scan_lock_acquire(void)
59 {
60 	mutex_lock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
63 
64 void acpi_scan_lock_release(void)
65 {
66 	mutex_unlock(&acpi_scan_lock);
67 }
68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
69 
70 void acpi_lock_hp_context(void)
71 {
72 	mutex_lock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_unlock_hp_context(void)
76 {
77 	mutex_unlock(&acpi_hp_context_lock);
78 }
79 
80 void acpi_initialize_hp_context(struct acpi_device *adev,
81 				struct acpi_hotplug_context *hp,
82 				int (*notify)(struct acpi_device *, u32),
83 				void (*uevent)(struct acpi_device *, u32))
84 {
85 	acpi_lock_hp_context();
86 	hp->notify = notify;
87 	hp->uevent = uevent;
88 	acpi_set_hp_context(adev, hp);
89 	acpi_unlock_hp_context();
90 }
91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
92 
93 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
94 {
95 	if (!handler)
96 		return -EINVAL;
97 
98 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
99 	return 0;
100 }
101 
102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
103 				       const char *hotplug_profile_name)
104 {
105 	int error;
106 
107 	error = acpi_scan_add_handler(handler);
108 	if (error)
109 		return error;
110 
111 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
112 	return 0;
113 }
114 
115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
116 {
117 	struct acpi_device_physical_node *pn;
118 	bool offline = true;
119 
120 	/*
121 	 * acpi_container_offline() calls this for all of the container's
122 	 * children under the container's physical_node_lock lock.
123 	 */
124 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
125 
126 	list_for_each_entry(pn, &adev->physical_node_list, node)
127 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
128 			if (uevent)
129 				kobject_uevent(&pn->dev->kobj, KOBJ_CHANGE);
130 
131 			offline = false;
132 			break;
133 		}
134 
135 	mutex_unlock(&adev->physical_node_lock);
136 	return offline;
137 }
138 
139 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
140 				    void **ret_p)
141 {
142 	struct acpi_device *device = NULL;
143 	struct acpi_device_physical_node *pn;
144 	bool second_pass = (bool)data;
145 	acpi_status status = AE_OK;
146 
147 	if (acpi_bus_get_device(handle, &device))
148 		return AE_OK;
149 
150 	if (device->handler && !device->handler->hotplug.enabled) {
151 		*ret_p = &device->dev;
152 		return AE_SUPPORT;
153 	}
154 
155 	mutex_lock(&device->physical_node_lock);
156 
157 	list_for_each_entry(pn, &device->physical_node_list, node) {
158 		int ret;
159 
160 		if (second_pass) {
161 			/* Skip devices offlined by the first pass. */
162 			if (pn->put_online)
163 				continue;
164 		} else {
165 			pn->put_online = false;
166 		}
167 		ret = device_offline(pn->dev);
168 		if (ret >= 0) {
169 			pn->put_online = !ret;
170 		} else {
171 			*ret_p = pn->dev;
172 			if (second_pass) {
173 				status = AE_ERROR;
174 				break;
175 			}
176 		}
177 	}
178 
179 	mutex_unlock(&device->physical_node_lock);
180 
181 	return status;
182 }
183 
184 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
185 				   void **ret_p)
186 {
187 	struct acpi_device *device = NULL;
188 	struct acpi_device_physical_node *pn;
189 
190 	if (acpi_bus_get_device(handle, &device))
191 		return AE_OK;
192 
193 	mutex_lock(&device->physical_node_lock);
194 
195 	list_for_each_entry(pn, &device->physical_node_list, node)
196 		if (pn->put_online) {
197 			device_online(pn->dev);
198 			pn->put_online = false;
199 		}
200 
201 	mutex_unlock(&device->physical_node_lock);
202 
203 	return AE_OK;
204 }
205 
206 static int acpi_scan_try_to_offline(struct acpi_device *device)
207 {
208 	acpi_handle handle = device->handle;
209 	struct device *errdev = NULL;
210 	acpi_status status;
211 
212 	/*
213 	 * Carry out two passes here and ignore errors in the first pass,
214 	 * because if the devices in question are memory blocks and
215 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
216 	 * that the other blocks depend on, but it is not known in advance which
217 	 * block holds them.
218 	 *
219 	 * If the first pass is successful, the second one isn't needed, though.
220 	 */
221 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 				     NULL, acpi_bus_offline, (void *)false,
223 				     (void **)&errdev);
224 	if (status == AE_SUPPORT) {
225 		dev_warn(errdev, "Offline disabled.\n");
226 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
227 				    acpi_bus_online, NULL, NULL, NULL);
228 		return -EPERM;
229 	}
230 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
231 	if (errdev) {
232 		errdev = NULL;
233 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
234 				    NULL, acpi_bus_offline, (void *)true,
235 				    (void **)&errdev);
236 		if (!errdev)
237 			acpi_bus_offline(handle, 0, (void *)true,
238 					 (void **)&errdev);
239 
240 		if (errdev) {
241 			dev_warn(errdev, "Offline failed.\n");
242 			acpi_bus_online(handle, 0, NULL, NULL);
243 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
244 					    ACPI_UINT32_MAX, acpi_bus_online,
245 					    NULL, NULL, NULL);
246 			return -EBUSY;
247 		}
248 	}
249 	return 0;
250 }
251 
252 static int acpi_scan_hot_remove(struct acpi_device *device)
253 {
254 	acpi_handle handle = device->handle;
255 	unsigned long long sta;
256 	acpi_status status;
257 
258 	if (device->handler && device->handler->hotplug.demand_offline) {
259 		if (!acpi_scan_is_offline(device, true))
260 			return -EBUSY;
261 	} else {
262 		int error = acpi_scan_try_to_offline(device);
263 		if (error)
264 			return error;
265 	}
266 
267 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 		"Hot-removing device %s...\n", dev_name(&device->dev)));
269 
270 	acpi_bus_trim(device);
271 
272 	acpi_evaluate_lck(handle, 0);
273 	/*
274 	 * TBD: _EJD support.
275 	 */
276 	status = acpi_evaluate_ej0(handle);
277 	if (status == AE_NOT_FOUND)
278 		return -ENODEV;
279 	else if (ACPI_FAILURE(status))
280 		return -EIO;
281 
282 	/*
283 	 * Verify if eject was indeed successful.  If not, log an error
284 	 * message.  No need to call _OST since _EJ0 call was made OK.
285 	 */
286 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
287 	if (ACPI_FAILURE(status)) {
288 		acpi_handle_warn(handle,
289 			"Status check after eject failed (0x%x)\n", status);
290 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
291 		acpi_handle_warn(handle,
292 			"Eject incomplete - status 0x%llx\n", sta);
293 	}
294 
295 	return 0;
296 }
297 
298 static int acpi_scan_device_not_present(struct acpi_device *adev)
299 {
300 	if (!acpi_device_enumerated(adev)) {
301 		dev_warn(&adev->dev, "Still not present\n");
302 		return -EALREADY;
303 	}
304 	acpi_bus_trim(adev);
305 	return 0;
306 }
307 
308 static int acpi_scan_device_check(struct acpi_device *adev)
309 {
310 	int error;
311 
312 	acpi_bus_get_status(adev);
313 	if (adev->status.present || adev->status.functional) {
314 		/*
315 		 * This function is only called for device objects for which
316 		 * matching scan handlers exist.  The only situation in which
317 		 * the scan handler is not attached to this device object yet
318 		 * is when the device has just appeared (either it wasn't
319 		 * present at all before or it was removed and then added
320 		 * again).
321 		 */
322 		if (adev->handler) {
323 			dev_warn(&adev->dev, "Already enumerated\n");
324 			return -EALREADY;
325 		}
326 		error = acpi_bus_scan(adev->handle);
327 		if (error) {
328 			dev_warn(&adev->dev, "Namespace scan failure\n");
329 			return error;
330 		}
331 		if (!adev->handler) {
332 			dev_warn(&adev->dev, "Enumeration failure\n");
333 			error = -ENODEV;
334 		}
335 	} else {
336 		error = acpi_scan_device_not_present(adev);
337 	}
338 	return error;
339 }
340 
341 static int acpi_scan_bus_check(struct acpi_device *adev)
342 {
343 	struct acpi_scan_handler *handler = adev->handler;
344 	struct acpi_device *child;
345 	int error;
346 
347 	acpi_bus_get_status(adev);
348 	if (!(adev->status.present || adev->status.functional)) {
349 		acpi_scan_device_not_present(adev);
350 		return 0;
351 	}
352 	if (handler && handler->hotplug.scan_dependent)
353 		return handler->hotplug.scan_dependent(adev);
354 
355 	error = acpi_bus_scan(adev->handle);
356 	if (error) {
357 		dev_warn(&adev->dev, "Namespace scan failure\n");
358 		return error;
359 	}
360 	list_for_each_entry(child, &adev->children, node) {
361 		error = acpi_scan_bus_check(child);
362 		if (error)
363 			return error;
364 	}
365 	return 0;
366 }
367 
368 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
369 {
370 	switch (type) {
371 	case ACPI_NOTIFY_BUS_CHECK:
372 		return acpi_scan_bus_check(adev);
373 	case ACPI_NOTIFY_DEVICE_CHECK:
374 		return acpi_scan_device_check(adev);
375 	case ACPI_NOTIFY_EJECT_REQUEST:
376 	case ACPI_OST_EC_OSPM_EJECT:
377 		if (adev->handler && !adev->handler->hotplug.enabled) {
378 			dev_info(&adev->dev, "Eject disabled\n");
379 			return -EPERM;
380 		}
381 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
382 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
383 		return acpi_scan_hot_remove(adev);
384 	}
385 	return -EINVAL;
386 }
387 
388 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
389 {
390 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
391 	int error = -ENODEV;
392 
393 	lock_device_hotplug();
394 	mutex_lock(&acpi_scan_lock);
395 
396 	/*
397 	 * The device object's ACPI handle cannot become invalid as long as we
398 	 * are holding acpi_scan_lock, but it might have become invalid before
399 	 * that lock was acquired.
400 	 */
401 	if (adev->handle == INVALID_ACPI_HANDLE)
402 		goto err_out;
403 
404 	if (adev->flags.is_dock_station) {
405 		error = dock_notify(adev, src);
406 	} else if (adev->flags.hotplug_notify) {
407 		error = acpi_generic_hotplug_event(adev, src);
408 	} else {
409 		int (*notify)(struct acpi_device *, u32);
410 
411 		acpi_lock_hp_context();
412 		notify = adev->hp ? adev->hp->notify : NULL;
413 		acpi_unlock_hp_context();
414 		/*
415 		 * There may be additional notify handlers for device objects
416 		 * without the .event() callback, so ignore them here.
417 		 */
418 		if (notify)
419 			error = notify(adev, src);
420 		else
421 			goto out;
422 	}
423 	switch (error) {
424 	case 0:
425 		ost_code = ACPI_OST_SC_SUCCESS;
426 		break;
427 	case -EPERM:
428 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
429 		break;
430 	case -EBUSY:
431 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
432 		break;
433 	default:
434 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
435 		break;
436 	}
437 
438  err_out:
439 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
440 
441  out:
442 	acpi_bus_put_acpi_device(adev);
443 	mutex_unlock(&acpi_scan_lock);
444 	unlock_device_hotplug();
445 }
446 
447 static void acpi_free_power_resources_lists(struct acpi_device *device)
448 {
449 	int i;
450 
451 	if (device->wakeup.flags.valid)
452 		acpi_power_resources_list_free(&device->wakeup.resources);
453 
454 	if (!device->power.flags.power_resources)
455 		return;
456 
457 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
458 		struct acpi_device_power_state *ps = &device->power.states[i];
459 		acpi_power_resources_list_free(&ps->resources);
460 	}
461 }
462 
463 static void acpi_device_release(struct device *dev)
464 {
465 	struct acpi_device *acpi_dev = to_acpi_device(dev);
466 
467 	acpi_free_properties(acpi_dev);
468 	acpi_free_pnp_ids(&acpi_dev->pnp);
469 	acpi_free_power_resources_lists(acpi_dev);
470 	kfree(acpi_dev);
471 }
472 
473 static void acpi_device_del(struct acpi_device *device)
474 {
475 	struct acpi_device_bus_id *acpi_device_bus_id;
476 
477 	mutex_lock(&acpi_device_lock);
478 	if (device->parent)
479 		list_del(&device->node);
480 
481 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
482 		if (!strcmp(acpi_device_bus_id->bus_id,
483 			    acpi_device_hid(device))) {
484 			if (acpi_device_bus_id->instance_no > 0)
485 				acpi_device_bus_id->instance_no--;
486 			else {
487 				list_del(&acpi_device_bus_id->node);
488 				kfree(acpi_device_bus_id);
489 			}
490 			break;
491 		}
492 
493 	list_del(&device->wakeup_list);
494 	mutex_unlock(&acpi_device_lock);
495 
496 	acpi_power_add_remove_device(device, false);
497 	acpi_device_remove_files(device);
498 	if (device->remove)
499 		device->remove(device);
500 
501 	device_del(&device->dev);
502 }
503 
504 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
505 
506 static LIST_HEAD(acpi_device_del_list);
507 static DEFINE_MUTEX(acpi_device_del_lock);
508 
509 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
510 {
511 	for (;;) {
512 		struct acpi_device *adev;
513 
514 		mutex_lock(&acpi_device_del_lock);
515 
516 		if (list_empty(&acpi_device_del_list)) {
517 			mutex_unlock(&acpi_device_del_lock);
518 			break;
519 		}
520 		adev = list_first_entry(&acpi_device_del_list,
521 					struct acpi_device, del_list);
522 		list_del(&adev->del_list);
523 
524 		mutex_unlock(&acpi_device_del_lock);
525 
526 		blocking_notifier_call_chain(&acpi_reconfig_chain,
527 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
528 
529 		acpi_device_del(adev);
530 		/*
531 		 * Drop references to all power resources that might have been
532 		 * used by the device.
533 		 */
534 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
535 		put_device(&adev->dev);
536 	}
537 }
538 
539 /**
540  * acpi_scan_drop_device - Drop an ACPI device object.
541  * @handle: Handle of an ACPI namespace node, not used.
542  * @context: Address of the ACPI device object to drop.
543  *
544  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
545  * namespace node the device object pointed to by @context is attached to.
546  *
547  * The unregistration is carried out asynchronously to avoid running
548  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
549  * ensure the correct ordering (the device objects must be unregistered in the
550  * same order in which the corresponding namespace nodes are deleted).
551  */
552 static void acpi_scan_drop_device(acpi_handle handle, void *context)
553 {
554 	static DECLARE_WORK(work, acpi_device_del_work_fn);
555 	struct acpi_device *adev = context;
556 
557 	mutex_lock(&acpi_device_del_lock);
558 
559 	/*
560 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
561 	 * won't run after any hotplug work items submitted subsequently.  That
562 	 * prevents attempts to register device objects identical to those being
563 	 * deleted from happening concurrently (such attempts result from
564 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
565 	 * run after all of the work items submitted previosuly, which helps
566 	 * those work items to ensure that they are not accessing stale device
567 	 * objects.
568 	 */
569 	if (list_empty(&acpi_device_del_list))
570 		acpi_queue_hotplug_work(&work);
571 
572 	list_add_tail(&adev->del_list, &acpi_device_del_list);
573 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
574 	adev->handle = INVALID_ACPI_HANDLE;
575 
576 	mutex_unlock(&acpi_device_del_lock);
577 }
578 
579 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device,
580 				void (*callback)(void *))
581 {
582 	acpi_status status;
583 
584 	if (!device)
585 		return -EINVAL;
586 
587 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
588 				    (void **)device, callback);
589 	if (ACPI_FAILURE(status) || !*device) {
590 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
591 				  handle));
592 		return -ENODEV;
593 	}
594 	return 0;
595 }
596 
597 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
598 {
599 	return acpi_get_device_data(handle, device, NULL);
600 }
601 EXPORT_SYMBOL(acpi_bus_get_device);
602 
603 static void get_acpi_device(void *dev)
604 {
605 	if (dev)
606 		get_device(&((struct acpi_device *)dev)->dev);
607 }
608 
609 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
610 {
611 	struct acpi_device *adev = NULL;
612 
613 	acpi_get_device_data(handle, &adev, get_acpi_device);
614 	return adev;
615 }
616 
617 void acpi_bus_put_acpi_device(struct acpi_device *adev)
618 {
619 	put_device(&adev->dev);
620 }
621 
622 int acpi_device_add(struct acpi_device *device,
623 		    void (*release)(struct device *))
624 {
625 	int result;
626 	struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
627 	int found = 0;
628 
629 	if (device->handle) {
630 		acpi_status status;
631 
632 		status = acpi_attach_data(device->handle, acpi_scan_drop_device,
633 					  device);
634 		if (ACPI_FAILURE(status)) {
635 			acpi_handle_err(device->handle,
636 					"Unable to attach device data\n");
637 			return -ENODEV;
638 		}
639 	}
640 
641 	/*
642 	 * Linkage
643 	 * -------
644 	 * Link this device to its parent and siblings.
645 	 */
646 	INIT_LIST_HEAD(&device->children);
647 	INIT_LIST_HEAD(&device->node);
648 	INIT_LIST_HEAD(&device->wakeup_list);
649 	INIT_LIST_HEAD(&device->physical_node_list);
650 	INIT_LIST_HEAD(&device->del_list);
651 	mutex_init(&device->physical_node_lock);
652 
653 	new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
654 	if (!new_bus_id) {
655 		pr_err(PREFIX "Memory allocation error\n");
656 		result = -ENOMEM;
657 		goto err_detach;
658 	}
659 
660 	mutex_lock(&acpi_device_lock);
661 	/*
662 	 * Find suitable bus_id and instance number in acpi_bus_id_list
663 	 * If failed, create one and link it into acpi_bus_id_list
664 	 */
665 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
666 		if (!strcmp(acpi_device_bus_id->bus_id,
667 			    acpi_device_hid(device))) {
668 			acpi_device_bus_id->instance_no++;
669 			found = 1;
670 			kfree(new_bus_id);
671 			break;
672 		}
673 	}
674 	if (!found) {
675 		acpi_device_bus_id = new_bus_id;
676 		strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
677 		acpi_device_bus_id->instance_no = 0;
678 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
679 	}
680 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
681 
682 	if (device->parent)
683 		list_add_tail(&device->node, &device->parent->children);
684 
685 	if (device->wakeup.flags.valid)
686 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
687 	mutex_unlock(&acpi_device_lock);
688 
689 	if (device->parent)
690 		device->dev.parent = &device->parent->dev;
691 	device->dev.bus = &acpi_bus_type;
692 	device->dev.release = release;
693 	result = device_add(&device->dev);
694 	if (result) {
695 		dev_err(&device->dev, "Error registering device\n");
696 		goto err;
697 	}
698 
699 	result = acpi_device_setup_files(device);
700 	if (result)
701 		printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
702 		       dev_name(&device->dev));
703 
704 	return 0;
705 
706  err:
707 	mutex_lock(&acpi_device_lock);
708 	if (device->parent)
709 		list_del(&device->node);
710 	list_del(&device->wakeup_list);
711 	mutex_unlock(&acpi_device_lock);
712 
713  err_detach:
714 	acpi_detach_data(device->handle, acpi_scan_drop_device);
715 	return result;
716 }
717 
718 /* --------------------------------------------------------------------------
719                                  Device Enumeration
720    -------------------------------------------------------------------------- */
721 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
722 {
723 	struct acpi_device *device = NULL;
724 	acpi_status status;
725 
726 	/*
727 	 * Fixed hardware devices do not appear in the namespace and do not
728 	 * have handles, but we fabricate acpi_devices for them, so we have
729 	 * to deal with them specially.
730 	 */
731 	if (!handle)
732 		return acpi_root;
733 
734 	do {
735 		status = acpi_get_parent(handle, &handle);
736 		if (ACPI_FAILURE(status))
737 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
738 	} while (acpi_bus_get_device(handle, &device));
739 	return device;
740 }
741 
742 acpi_status
743 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
744 {
745 	acpi_status status;
746 	acpi_handle tmp;
747 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
748 	union acpi_object *obj;
749 
750 	status = acpi_get_handle(handle, "_EJD", &tmp);
751 	if (ACPI_FAILURE(status))
752 		return status;
753 
754 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
755 	if (ACPI_SUCCESS(status)) {
756 		obj = buffer.pointer;
757 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
758 					 ejd);
759 		kfree(buffer.pointer);
760 	}
761 	return status;
762 }
763 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
764 
765 static int acpi_bus_extract_wakeup_device_power_package(acpi_handle handle,
766 					struct acpi_device_wakeup *wakeup)
767 {
768 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
769 	union acpi_object *package = NULL;
770 	union acpi_object *element = NULL;
771 	acpi_status status;
772 	int err = -ENODATA;
773 
774 	if (!wakeup)
775 		return -EINVAL;
776 
777 	INIT_LIST_HEAD(&wakeup->resources);
778 
779 	/* _PRW */
780 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
781 	if (ACPI_FAILURE(status)) {
782 		ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
783 		return err;
784 	}
785 
786 	package = (union acpi_object *)buffer.pointer;
787 
788 	if (!package || package->package.count < 2)
789 		goto out;
790 
791 	element = &(package->package.elements[0]);
792 	if (!element)
793 		goto out;
794 
795 	if (element->type == ACPI_TYPE_PACKAGE) {
796 		if ((element->package.count < 2) ||
797 		    (element->package.elements[0].type !=
798 		     ACPI_TYPE_LOCAL_REFERENCE)
799 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
800 			goto out;
801 
802 		wakeup->gpe_device =
803 		    element->package.elements[0].reference.handle;
804 		wakeup->gpe_number =
805 		    (u32) element->package.elements[1].integer.value;
806 	} else if (element->type == ACPI_TYPE_INTEGER) {
807 		wakeup->gpe_device = NULL;
808 		wakeup->gpe_number = element->integer.value;
809 	} else {
810 		goto out;
811 	}
812 
813 	element = &(package->package.elements[1]);
814 	if (element->type != ACPI_TYPE_INTEGER)
815 		goto out;
816 
817 	wakeup->sleep_state = element->integer.value;
818 
819 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
820 	if (err)
821 		goto out;
822 
823 	if (!list_empty(&wakeup->resources)) {
824 		int sleep_state;
825 
826 		err = acpi_power_wakeup_list_init(&wakeup->resources,
827 						  &sleep_state);
828 		if (err) {
829 			acpi_handle_warn(handle, "Retrieving current states "
830 					 "of wakeup power resources failed\n");
831 			acpi_power_resources_list_free(&wakeup->resources);
832 			goto out;
833 		}
834 		if (sleep_state < wakeup->sleep_state) {
835 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
836 					 "(S%d) by S%d from power resources\n",
837 					 (int)wakeup->sleep_state, sleep_state);
838 			wakeup->sleep_state = sleep_state;
839 		}
840 	}
841 
842  out:
843 	kfree(buffer.pointer);
844 	return err;
845 }
846 
847 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
848 {
849 	static const struct acpi_device_id button_device_ids[] = {
850 		{"PNP0C0C", 0},
851 		{"PNP0C0D", 0},
852 		{"PNP0C0E", 0},
853 		{"", 0},
854 	};
855 	struct acpi_device_wakeup *wakeup = &device->wakeup;
856 	acpi_status status;
857 
858 	wakeup->flags.notifier_present = 0;
859 
860 	/* Power button, Lid switch always enable wakeup */
861 	if (!acpi_match_device_ids(device, button_device_ids)) {
862 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
863 			/* Do not use Lid/sleep button for S5 wakeup */
864 			if (wakeup->sleep_state == ACPI_STATE_S5)
865 				wakeup->sleep_state = ACPI_STATE_S4;
866 		}
867 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
868 		device_set_wakeup_capable(&device->dev, true);
869 		return true;
870 	}
871 
872 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
873 					 wakeup->gpe_number);
874 	return ACPI_SUCCESS(status);
875 }
876 
877 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
878 {
879 	int err;
880 
881 	/* Presence of _PRW indicates wake capable */
882 	if (!acpi_has_method(device->handle, "_PRW"))
883 		return;
884 
885 	err = acpi_bus_extract_wakeup_device_power_package(device->handle,
886 							   &device->wakeup);
887 	if (err) {
888 		dev_err(&device->dev, "_PRW evaluation error: %d\n", err);
889 		return;
890 	}
891 
892 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
893 	device->wakeup.prepare_count = 0;
894 	/*
895 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
896 	 * system for the ACPI device with the _PRW object.
897 	 * The _PSW object is depreciated in ACPI 3.0 and is replaced by _DSW.
898 	 * So it is necessary to call _DSW object first. Only when it is not
899 	 * present will the _PSW object used.
900 	 */
901 	err = acpi_device_sleep_wake(device, 0, 0, 0);
902 	if (err)
903 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
904 				"error in _DSW or _PSW evaluation\n"));
905 }
906 
907 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
908 {
909 	struct acpi_device_power_state *ps = &device->power.states[state];
910 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
911 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
912 	acpi_status status;
913 
914 	INIT_LIST_HEAD(&ps->resources);
915 
916 	/* Evaluate "_PRx" to get referenced power resources */
917 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
918 	if (ACPI_SUCCESS(status)) {
919 		union acpi_object *package = buffer.pointer;
920 
921 		if (buffer.length && package
922 		    && package->type == ACPI_TYPE_PACKAGE
923 		    && package->package.count) {
924 			int err = acpi_extract_power_resources(package, 0,
925 							       &ps->resources);
926 			if (!err)
927 				device->power.flags.power_resources = 1;
928 		}
929 		ACPI_FREE(buffer.pointer);
930 	}
931 
932 	/* Evaluate "_PSx" to see if we can do explicit sets */
933 	pathname[2] = 'S';
934 	if (acpi_has_method(device->handle, pathname))
935 		ps->flags.explicit_set = 1;
936 
937 	/* State is valid if there are means to put the device into it. */
938 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
939 		ps->flags.valid = 1;
940 
941 	ps->power = -1;		/* Unknown - driver assigned */
942 	ps->latency = -1;	/* Unknown - driver assigned */
943 }
944 
945 static void acpi_bus_get_power_flags(struct acpi_device *device)
946 {
947 	u32 i;
948 
949 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
950 	if (!acpi_has_method(device->handle, "_PS0") &&
951 	    !acpi_has_method(device->handle, "_PR0"))
952 		return;
953 
954 	device->flags.power_manageable = 1;
955 
956 	/*
957 	 * Power Management Flags
958 	 */
959 	if (acpi_has_method(device->handle, "_PSC"))
960 		device->power.flags.explicit_get = 1;
961 
962 	if (acpi_has_method(device->handle, "_IRC"))
963 		device->power.flags.inrush_current = 1;
964 
965 	if (acpi_has_method(device->handle, "_DSW"))
966 		device->power.flags.dsw_present = 1;
967 
968 	/*
969 	 * Enumerate supported power management states
970 	 */
971 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
972 		acpi_bus_init_power_state(device, i);
973 
974 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
975 	if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
976 		device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
977 
978 	/* Set defaults for D0 and D3hot states (always valid) */
979 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
980 	device->power.states[ACPI_STATE_D0].power = 100;
981 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
982 
983 	if (acpi_bus_init_power(device))
984 		device->flags.power_manageable = 0;
985 }
986 
987 static void acpi_bus_get_flags(struct acpi_device *device)
988 {
989 	/* Presence of _STA indicates 'dynamic_status' */
990 	if (acpi_has_method(device->handle, "_STA"))
991 		device->flags.dynamic_status = 1;
992 
993 	/* Presence of _RMV indicates 'removable' */
994 	if (acpi_has_method(device->handle, "_RMV"))
995 		device->flags.removable = 1;
996 
997 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
998 	if (acpi_has_method(device->handle, "_EJD") ||
999 	    acpi_has_method(device->handle, "_EJ0"))
1000 		device->flags.ejectable = 1;
1001 }
1002 
1003 static void acpi_device_get_busid(struct acpi_device *device)
1004 {
1005 	char bus_id[5] = { '?', 0 };
1006 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1007 	int i = 0;
1008 
1009 	/*
1010 	 * Bus ID
1011 	 * ------
1012 	 * The device's Bus ID is simply the object name.
1013 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1014 	 */
1015 	if (ACPI_IS_ROOT_DEVICE(device)) {
1016 		strcpy(device->pnp.bus_id, "ACPI");
1017 		return;
1018 	}
1019 
1020 	switch (device->device_type) {
1021 	case ACPI_BUS_TYPE_POWER_BUTTON:
1022 		strcpy(device->pnp.bus_id, "PWRF");
1023 		break;
1024 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1025 		strcpy(device->pnp.bus_id, "SLPF");
1026 		break;
1027 	case ACPI_BUS_TYPE_ECDT_EC:
1028 		strcpy(device->pnp.bus_id, "ECDT");
1029 		break;
1030 	default:
1031 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1032 		/* Clean up trailing underscores (if any) */
1033 		for (i = 3; i > 1; i--) {
1034 			if (bus_id[i] == '_')
1035 				bus_id[i] = '\0';
1036 			else
1037 				break;
1038 		}
1039 		strcpy(device->pnp.bus_id, bus_id);
1040 		break;
1041 	}
1042 }
1043 
1044 /*
1045  * acpi_ata_match - see if an acpi object is an ATA device
1046  *
1047  * If an acpi object has one of the ACPI ATA methods defined,
1048  * then we can safely call it an ATA device.
1049  */
1050 bool acpi_ata_match(acpi_handle handle)
1051 {
1052 	return acpi_has_method(handle, "_GTF") ||
1053 	       acpi_has_method(handle, "_GTM") ||
1054 	       acpi_has_method(handle, "_STM") ||
1055 	       acpi_has_method(handle, "_SDD");
1056 }
1057 
1058 /*
1059  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1060  *
1061  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1062  * then we can safely call it an ejectable drive bay
1063  */
1064 bool acpi_bay_match(acpi_handle handle)
1065 {
1066 	acpi_handle phandle;
1067 
1068 	if (!acpi_has_method(handle, "_EJ0"))
1069 		return false;
1070 	if (acpi_ata_match(handle))
1071 		return true;
1072 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1073 		return false;
1074 
1075 	return acpi_ata_match(phandle);
1076 }
1077 
1078 bool acpi_device_is_battery(struct acpi_device *adev)
1079 {
1080 	struct acpi_hardware_id *hwid;
1081 
1082 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1083 		if (!strcmp("PNP0C0A", hwid->id))
1084 			return true;
1085 
1086 	return false;
1087 }
1088 
1089 static bool is_ejectable_bay(struct acpi_device *adev)
1090 {
1091 	acpi_handle handle = adev->handle;
1092 
1093 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1094 		return true;
1095 
1096 	return acpi_bay_match(handle);
1097 }
1098 
1099 /*
1100  * acpi_dock_match - see if an acpi object has a _DCK method
1101  */
1102 bool acpi_dock_match(acpi_handle handle)
1103 {
1104 	return acpi_has_method(handle, "_DCK");
1105 }
1106 
1107 static acpi_status
1108 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1109 			  void **return_value)
1110 {
1111 	long *cap = context;
1112 
1113 	if (acpi_has_method(handle, "_BCM") &&
1114 	    acpi_has_method(handle, "_BCL")) {
1115 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight "
1116 				  "support\n"));
1117 		*cap |= ACPI_VIDEO_BACKLIGHT;
1118 		/* We have backlight support, no need to scan further */
1119 		return AE_CTRL_TERMINATE;
1120 	}
1121 	return 0;
1122 }
1123 
1124 /* Returns true if the ACPI object is a video device which can be
1125  * handled by video.ko.
1126  * The device will get a Linux specific CID added in scan.c to
1127  * identify the device as an ACPI graphics device
1128  * Be aware that the graphics device may not be physically present
1129  * Use acpi_video_get_capabilities() to detect general ACPI video
1130  * capabilities of present cards
1131  */
1132 long acpi_is_video_device(acpi_handle handle)
1133 {
1134 	long video_caps = 0;
1135 
1136 	/* Is this device able to support video switching ? */
1137 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1138 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1139 
1140 	/* Is this device able to retrieve a video ROM ? */
1141 	if (acpi_has_method(handle, "_ROM"))
1142 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1143 
1144 	/* Is this device able to configure which video head to be POSTed ? */
1145 	if (acpi_has_method(handle, "_VPO") &&
1146 	    acpi_has_method(handle, "_GPD") &&
1147 	    acpi_has_method(handle, "_SPD"))
1148 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1149 
1150 	/* Only check for backlight functionality if one of the above hit. */
1151 	if (video_caps)
1152 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1153 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1154 				    &video_caps, NULL);
1155 
1156 	return video_caps;
1157 }
1158 EXPORT_SYMBOL(acpi_is_video_device);
1159 
1160 const char *acpi_device_hid(struct acpi_device *device)
1161 {
1162 	struct acpi_hardware_id *hid;
1163 
1164 	if (list_empty(&device->pnp.ids))
1165 		return dummy_hid;
1166 
1167 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1168 	return hid->id;
1169 }
1170 EXPORT_SYMBOL(acpi_device_hid);
1171 
1172 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1173 {
1174 	struct acpi_hardware_id *id;
1175 
1176 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1177 	if (!id)
1178 		return;
1179 
1180 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1181 	if (!id->id) {
1182 		kfree(id);
1183 		return;
1184 	}
1185 
1186 	list_add_tail(&id->list, &pnp->ids);
1187 	pnp->type.hardware_id = 1;
1188 }
1189 
1190 /*
1191  * Old IBM workstations have a DSDT bug wherein the SMBus object
1192  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1193  * prefix.  Work around this.
1194  */
1195 static bool acpi_ibm_smbus_match(acpi_handle handle)
1196 {
1197 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1198 	struct acpi_buffer path = { sizeof(node_name), node_name };
1199 
1200 	if (!dmi_name_in_vendors("IBM"))
1201 		return false;
1202 
1203 	/* Look for SMBS object */
1204 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1205 	    strcmp("SMBS", path.pointer))
1206 		return false;
1207 
1208 	/* Does it have the necessary (but misnamed) methods? */
1209 	if (acpi_has_method(handle, "SBI") &&
1210 	    acpi_has_method(handle, "SBR") &&
1211 	    acpi_has_method(handle, "SBW"))
1212 		return true;
1213 
1214 	return false;
1215 }
1216 
1217 static bool acpi_object_is_system_bus(acpi_handle handle)
1218 {
1219 	acpi_handle tmp;
1220 
1221 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1222 	    tmp == handle)
1223 		return true;
1224 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1225 	    tmp == handle)
1226 		return true;
1227 
1228 	return false;
1229 }
1230 
1231 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1232 				int device_type)
1233 {
1234 	acpi_status status;
1235 	struct acpi_device_info *info;
1236 	struct acpi_pnp_device_id_list *cid_list;
1237 	int i;
1238 
1239 	switch (device_type) {
1240 	case ACPI_BUS_TYPE_DEVICE:
1241 		if (handle == ACPI_ROOT_OBJECT) {
1242 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1243 			break;
1244 		}
1245 
1246 		status = acpi_get_object_info(handle, &info);
1247 		if (ACPI_FAILURE(status)) {
1248 			pr_err(PREFIX "%s: Error reading device info\n",
1249 					__func__);
1250 			return;
1251 		}
1252 
1253 		if (info->valid & ACPI_VALID_HID) {
1254 			acpi_add_id(pnp, info->hardware_id.string);
1255 			pnp->type.platform_id = 1;
1256 		}
1257 		if (info->valid & ACPI_VALID_CID) {
1258 			cid_list = &info->compatible_id_list;
1259 			for (i = 0; i < cid_list->count; i++)
1260 				acpi_add_id(pnp, cid_list->ids[i].string);
1261 		}
1262 		if (info->valid & ACPI_VALID_ADR) {
1263 			pnp->bus_address = info->address;
1264 			pnp->type.bus_address = 1;
1265 		}
1266 		if (info->valid & ACPI_VALID_UID)
1267 			pnp->unique_id = kstrdup(info->unique_id.string,
1268 							GFP_KERNEL);
1269 		if (info->valid & ACPI_VALID_CLS)
1270 			acpi_add_id(pnp, info->class_code.string);
1271 
1272 		kfree(info);
1273 
1274 		/*
1275 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1276 		 * synthetic HIDs to make sure drivers can find them.
1277 		 */
1278 		if (acpi_is_video_device(handle))
1279 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1280 		else if (acpi_bay_match(handle))
1281 			acpi_add_id(pnp, ACPI_BAY_HID);
1282 		else if (acpi_dock_match(handle))
1283 			acpi_add_id(pnp, ACPI_DOCK_HID);
1284 		else if (acpi_ibm_smbus_match(handle))
1285 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1286 		else if (list_empty(&pnp->ids) &&
1287 			 acpi_object_is_system_bus(handle)) {
1288 			/* \_SB, \_TZ, LNXSYBUS */
1289 			acpi_add_id(pnp, ACPI_BUS_HID);
1290 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1291 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1292 		}
1293 
1294 		break;
1295 	case ACPI_BUS_TYPE_POWER:
1296 		acpi_add_id(pnp, ACPI_POWER_HID);
1297 		break;
1298 	case ACPI_BUS_TYPE_PROCESSOR:
1299 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1300 		break;
1301 	case ACPI_BUS_TYPE_THERMAL:
1302 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1303 		break;
1304 	case ACPI_BUS_TYPE_POWER_BUTTON:
1305 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1306 		break;
1307 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1308 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1309 		break;
1310 	case ACPI_BUS_TYPE_ECDT_EC:
1311 		acpi_add_id(pnp, ACPI_ECDT_HID);
1312 		break;
1313 	}
1314 }
1315 
1316 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1317 {
1318 	struct acpi_hardware_id *id, *tmp;
1319 
1320 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1321 		kfree_const(id->id);
1322 		kfree(id);
1323 	}
1324 	kfree(pnp->unique_id);
1325 }
1326 
1327 /**
1328  * acpi_dma_supported - Check DMA support for the specified device.
1329  * @adev: The pointer to acpi device
1330  *
1331  * Return false if DMA is not supported. Otherwise, return true
1332  */
1333 bool acpi_dma_supported(struct acpi_device *adev)
1334 {
1335 	if (!adev)
1336 		return false;
1337 
1338 	if (adev->flags.cca_seen)
1339 		return true;
1340 
1341 	/*
1342 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1343 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1344 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1345 	*/
1346 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1347 		return true;
1348 
1349 	return false;
1350 }
1351 
1352 /**
1353  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1354  * @adev: The pointer to acpi device
1355  *
1356  * Return enum dev_dma_attr.
1357  */
1358 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1359 {
1360 	if (!acpi_dma_supported(adev))
1361 		return DEV_DMA_NOT_SUPPORTED;
1362 
1363 	if (adev->flags.coherent_dma)
1364 		return DEV_DMA_COHERENT;
1365 	else
1366 		return DEV_DMA_NON_COHERENT;
1367 }
1368 
1369 /**
1370  * acpi_dma_get_range() - Get device DMA parameters.
1371  *
1372  * @dev: device to configure
1373  * @dma_addr: pointer device DMA address result
1374  * @offset: pointer to the DMA offset result
1375  * @size: pointer to DMA range size result
1376  *
1377  * Evaluate DMA regions and return respectively DMA region start, offset
1378  * and size in dma_addr, offset and size on parsing success; it does not
1379  * update the passed in values on failure.
1380  *
1381  * Return 0 on success, < 0 on failure.
1382  */
1383 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1384 		       u64 *size)
1385 {
1386 	struct acpi_device *adev;
1387 	LIST_HEAD(list);
1388 	struct resource_entry *rentry;
1389 	int ret;
1390 	struct device *dma_dev = dev;
1391 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1392 
1393 	/*
1394 	 * Walk the device tree chasing an ACPI companion with a _DMA
1395 	 * object while we go. Stop if we find a device with an ACPI
1396 	 * companion containing a _DMA method.
1397 	 */
1398 	do {
1399 		adev = ACPI_COMPANION(dma_dev);
1400 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1401 			break;
1402 
1403 		dma_dev = dma_dev->parent;
1404 	} while (dma_dev);
1405 
1406 	if (!dma_dev)
1407 		return -ENODEV;
1408 
1409 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1410 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	ret = acpi_dev_get_dma_resources(adev, &list);
1415 	if (ret > 0) {
1416 		list_for_each_entry(rentry, &list, node) {
1417 			if (dma_offset && rentry->offset != dma_offset) {
1418 				ret = -EINVAL;
1419 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1420 				goto out;
1421 			}
1422 			dma_offset = rentry->offset;
1423 
1424 			/* Take lower and upper limits */
1425 			if (rentry->res->start < dma_start)
1426 				dma_start = rentry->res->start;
1427 			if (rentry->res->end > dma_end)
1428 				dma_end = rentry->res->end;
1429 		}
1430 
1431 		if (dma_start >= dma_end) {
1432 			ret = -EINVAL;
1433 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1434 			goto out;
1435 		}
1436 
1437 		*dma_addr = dma_start - dma_offset;
1438 		len = dma_end - dma_start;
1439 		*size = max(len, len + 1);
1440 		*offset = dma_offset;
1441 	}
1442  out:
1443 	acpi_dev_free_resource_list(&list);
1444 
1445 	return ret >= 0 ? 0 : ret;
1446 }
1447 
1448 /**
1449  * acpi_dma_configure - Set-up DMA configuration for the device.
1450  * @dev: The pointer to the device
1451  * @attr: device dma attributes
1452  */
1453 int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr)
1454 {
1455 	const struct iommu_ops *iommu;
1456 	u64 dma_addr = 0, size = 0;
1457 
1458 	iort_dma_setup(dev, &dma_addr, &size);
1459 
1460 	iommu = iort_iommu_configure(dev);
1461 	if (IS_ERR(iommu) && PTR_ERR(iommu) == -EPROBE_DEFER)
1462 		return -EPROBE_DEFER;
1463 
1464 	arch_setup_dma_ops(dev, dma_addr, size,
1465 				iommu, attr == DEV_DMA_COHERENT);
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(acpi_dma_configure);
1470 
1471 /**
1472  * acpi_dma_deconfigure - Tear-down DMA configuration for the device.
1473  * @dev: The pointer to the device
1474  */
1475 void acpi_dma_deconfigure(struct device *dev)
1476 {
1477 	arch_teardown_dma_ops(dev);
1478 }
1479 EXPORT_SYMBOL_GPL(acpi_dma_deconfigure);
1480 
1481 static void acpi_init_coherency(struct acpi_device *adev)
1482 {
1483 	unsigned long long cca = 0;
1484 	acpi_status status;
1485 	struct acpi_device *parent = adev->parent;
1486 
1487 	if (parent && parent->flags.cca_seen) {
1488 		/*
1489 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1490 		 * already saw one.
1491 		 */
1492 		adev->flags.cca_seen = 1;
1493 		cca = parent->flags.coherent_dma;
1494 	} else {
1495 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1496 					       NULL, &cca);
1497 		if (ACPI_SUCCESS(status))
1498 			adev->flags.cca_seen = 1;
1499 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1500 			/*
1501 			 * If architecture does not specify that _CCA is
1502 			 * required for DMA-able devices (e.g. x86),
1503 			 * we default to _CCA=1.
1504 			 */
1505 			cca = 1;
1506 		else
1507 			acpi_handle_debug(adev->handle,
1508 					  "ACPI device is missing _CCA.\n");
1509 	}
1510 
1511 	adev->flags.coherent_dma = cca;
1512 }
1513 
1514 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1515 {
1516 	bool *is_serial_bus_slave_p = data;
1517 
1518 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1519 		return 1;
1520 
1521 	*is_serial_bus_slave_p = true;
1522 
1523 	 /* no need to do more checking */
1524 	return -1;
1525 }
1526 
1527 static bool acpi_is_serial_bus_slave(struct acpi_device *device)
1528 {
1529 	struct list_head resource_list;
1530 	bool is_serial_bus_slave = false;
1531 
1532 	/* Macs use device properties in lieu of _CRS resources */
1533 	if (x86_apple_machine &&
1534 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1535 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1536 	     fwnode_property_present(&device->fwnode, "baud")))
1537 		return true;
1538 
1539 	INIT_LIST_HEAD(&resource_list);
1540 	acpi_dev_get_resources(device, &resource_list,
1541 			       acpi_check_serial_bus_slave,
1542 			       &is_serial_bus_slave);
1543 	acpi_dev_free_resource_list(&resource_list);
1544 
1545 	return is_serial_bus_slave;
1546 }
1547 
1548 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1549 			     int type, unsigned long long sta)
1550 {
1551 	INIT_LIST_HEAD(&device->pnp.ids);
1552 	device->device_type = type;
1553 	device->handle = handle;
1554 	device->parent = acpi_bus_get_parent(handle);
1555 	device->fwnode.ops = &acpi_device_fwnode_ops;
1556 	acpi_set_device_status(device, sta);
1557 	acpi_device_get_busid(device);
1558 	acpi_set_pnp_ids(handle, &device->pnp, type);
1559 	acpi_init_properties(device);
1560 	acpi_bus_get_flags(device);
1561 	device->flags.match_driver = false;
1562 	device->flags.initialized = true;
1563 	device->flags.serial_bus_slave = acpi_is_serial_bus_slave(device);
1564 	acpi_device_clear_enumerated(device);
1565 	device_initialize(&device->dev);
1566 	dev_set_uevent_suppress(&device->dev, true);
1567 	acpi_init_coherency(device);
1568 	/* Assume there are unmet deps until acpi_device_dep_initialize() runs */
1569 	device->dep_unmet = 1;
1570 }
1571 
1572 void acpi_device_add_finalize(struct acpi_device *device)
1573 {
1574 	dev_set_uevent_suppress(&device->dev, false);
1575 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1576 }
1577 
1578 static int acpi_add_single_object(struct acpi_device **child,
1579 				  acpi_handle handle, int type,
1580 				  unsigned long long sta)
1581 {
1582 	int result;
1583 	struct acpi_device *device;
1584 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1585 
1586 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1587 	if (!device) {
1588 		printk(KERN_ERR PREFIX "Memory allocation error\n");
1589 		return -ENOMEM;
1590 	}
1591 
1592 	acpi_init_device_object(device, handle, type, sta);
1593 	/*
1594 	 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so
1595 	 * that we can call acpi_bus_get_status() and use its quirk handling.
1596 	 * Note this must be done before the get power-/wakeup_dev-flags calls.
1597 	 */
1598 	if (type == ACPI_BUS_TYPE_DEVICE)
1599 		acpi_bus_get_status(device);
1600 
1601 	acpi_bus_get_power_flags(device);
1602 	acpi_bus_get_wakeup_device_flags(device);
1603 
1604 	result = acpi_device_add(device, acpi_device_release);
1605 	if (result) {
1606 		acpi_device_release(&device->dev);
1607 		return result;
1608 	}
1609 
1610 	acpi_power_add_remove_device(device, true);
1611 	acpi_device_add_finalize(device);
1612 	acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
1613 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n",
1614 		dev_name(&device->dev), (char *) buffer.pointer,
1615 		device->parent ? dev_name(&device->parent->dev) : "(null)"));
1616 	kfree(buffer.pointer);
1617 	*child = device;
1618 	return 0;
1619 }
1620 
1621 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1622 					    void *context)
1623 {
1624 	struct resource *res = context;
1625 
1626 	if (acpi_dev_resource_memory(ares, res))
1627 		return AE_CTRL_TERMINATE;
1628 
1629 	return AE_OK;
1630 }
1631 
1632 static bool acpi_device_should_be_hidden(acpi_handle handle)
1633 {
1634 	acpi_status status;
1635 	struct resource res;
1636 
1637 	/* Check if it should ignore the UART device */
1638 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1639 		return false;
1640 
1641 	/*
1642 	 * The UART device described in SPCR table is assumed to have only one
1643 	 * memory resource present. So we only look for the first one here.
1644 	 */
1645 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1646 				     acpi_get_resource_memory, &res);
1647 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1648 		return false;
1649 
1650 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1651 			 &res.start);
1652 
1653 	return true;
1654 }
1655 
1656 static int acpi_bus_type_and_status(acpi_handle handle, int *type,
1657 				    unsigned long long *sta)
1658 {
1659 	acpi_status status;
1660 	acpi_object_type acpi_type;
1661 
1662 	status = acpi_get_type(handle, &acpi_type);
1663 	if (ACPI_FAILURE(status))
1664 		return -ENODEV;
1665 
1666 	switch (acpi_type) {
1667 	case ACPI_TYPE_ANY:		/* for ACPI_ROOT_OBJECT */
1668 	case ACPI_TYPE_DEVICE:
1669 		if (acpi_device_should_be_hidden(handle))
1670 			return -ENODEV;
1671 
1672 		*type = ACPI_BUS_TYPE_DEVICE;
1673 		/*
1674 		 * acpi_add_single_object updates this once we've an acpi_device
1675 		 * so that acpi_bus_get_status' quirk handling can be used.
1676 		 */
1677 		*sta = 0;
1678 		break;
1679 	case ACPI_TYPE_PROCESSOR:
1680 		*type = ACPI_BUS_TYPE_PROCESSOR;
1681 		status = acpi_bus_get_status_handle(handle, sta);
1682 		if (ACPI_FAILURE(status))
1683 			return -ENODEV;
1684 		break;
1685 	case ACPI_TYPE_THERMAL:
1686 		*type = ACPI_BUS_TYPE_THERMAL;
1687 		*sta = ACPI_STA_DEFAULT;
1688 		break;
1689 	case ACPI_TYPE_POWER:
1690 		*type = ACPI_BUS_TYPE_POWER;
1691 		*sta = ACPI_STA_DEFAULT;
1692 		break;
1693 	default:
1694 		return -ENODEV;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 bool acpi_device_is_present(const struct acpi_device *adev)
1701 {
1702 	return adev->status.present || adev->status.functional;
1703 }
1704 
1705 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1706 				       const char *idstr,
1707 				       const struct acpi_device_id **matchid)
1708 {
1709 	const struct acpi_device_id *devid;
1710 
1711 	if (handler->match)
1712 		return handler->match(idstr, matchid);
1713 
1714 	for (devid = handler->ids; devid->id[0]; devid++)
1715 		if (!strcmp((char *)devid->id, idstr)) {
1716 			if (matchid)
1717 				*matchid = devid;
1718 
1719 			return true;
1720 		}
1721 
1722 	return false;
1723 }
1724 
1725 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1726 					const struct acpi_device_id **matchid)
1727 {
1728 	struct acpi_scan_handler *handler;
1729 
1730 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1731 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1732 			return handler;
1733 
1734 	return NULL;
1735 }
1736 
1737 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1738 {
1739 	if (!!hotplug->enabled == !!val)
1740 		return;
1741 
1742 	mutex_lock(&acpi_scan_lock);
1743 
1744 	hotplug->enabled = val;
1745 
1746 	mutex_unlock(&acpi_scan_lock);
1747 }
1748 
1749 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1750 {
1751 	struct acpi_hardware_id *hwid;
1752 
1753 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1754 		acpi_dock_add(adev);
1755 		return;
1756 	}
1757 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1758 		struct acpi_scan_handler *handler;
1759 
1760 		handler = acpi_scan_match_handler(hwid->id, NULL);
1761 		if (handler) {
1762 			adev->flags.hotplug_notify = true;
1763 			break;
1764 		}
1765 	}
1766 }
1767 
1768 static void acpi_device_dep_initialize(struct acpi_device *adev)
1769 {
1770 	struct acpi_dep_data *dep;
1771 	struct acpi_handle_list dep_devices;
1772 	acpi_status status;
1773 	int i;
1774 
1775 	adev->dep_unmet = 0;
1776 
1777 	if (!acpi_has_method(adev->handle, "_DEP"))
1778 		return;
1779 
1780 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
1781 					&dep_devices);
1782 	if (ACPI_FAILURE(status)) {
1783 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
1784 		return;
1785 	}
1786 
1787 	for (i = 0; i < dep_devices.count; i++) {
1788 		struct acpi_device_info *info;
1789 		int skip;
1790 
1791 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1792 		if (ACPI_FAILURE(status)) {
1793 			dev_dbg(&adev->dev, "Error reading _DEP device info\n");
1794 			continue;
1795 		}
1796 
1797 		/*
1798 		 * Skip the dependency of Windows System Power
1799 		 * Management Controller
1800 		 */
1801 		skip = info->valid & ACPI_VALID_HID &&
1802 			!strcmp(info->hardware_id.string, "INT3396");
1803 
1804 		kfree(info);
1805 
1806 		if (skip)
1807 			continue;
1808 
1809 		dep = kzalloc(sizeof(struct acpi_dep_data), GFP_KERNEL);
1810 		if (!dep)
1811 			return;
1812 
1813 		dep->master = dep_devices.handles[i];
1814 		dep->slave  = adev->handle;
1815 		adev->dep_unmet++;
1816 
1817 		mutex_lock(&acpi_dep_list_lock);
1818 		list_add_tail(&dep->node , &acpi_dep_list);
1819 		mutex_unlock(&acpi_dep_list_lock);
1820 	}
1821 }
1822 
1823 static acpi_status acpi_bus_check_add(acpi_handle handle, u32 lvl_not_used,
1824 				      void *not_used, void **return_value)
1825 {
1826 	struct acpi_device *device = NULL;
1827 	int type;
1828 	unsigned long long sta;
1829 	int result;
1830 
1831 	acpi_bus_get_device(handle, &device);
1832 	if (device)
1833 		goto out;
1834 
1835 	result = acpi_bus_type_and_status(handle, &type, &sta);
1836 	if (result)
1837 		return AE_OK;
1838 
1839 	if (type == ACPI_BUS_TYPE_POWER) {
1840 		acpi_add_power_resource(handle);
1841 		return AE_OK;
1842 	}
1843 
1844 	acpi_add_single_object(&device, handle, type, sta);
1845 	if (!device)
1846 		return AE_CTRL_DEPTH;
1847 
1848 	acpi_scan_init_hotplug(device);
1849 	acpi_device_dep_initialize(device);
1850 
1851  out:
1852 	if (!*return_value)
1853 		*return_value = device;
1854 
1855 	return AE_OK;
1856 }
1857 
1858 static void acpi_default_enumeration(struct acpi_device *device)
1859 {
1860 	/*
1861 	 * Do not enumerate SPI/I2C/UART slaves as they will be enumerated by
1862 	 * their respective parents.
1863 	 */
1864 	if (!device->flags.serial_bus_slave) {
1865 		acpi_create_platform_device(device, NULL);
1866 		acpi_device_set_enumerated(device);
1867 	} else {
1868 		blocking_notifier_call_chain(&acpi_reconfig_chain,
1869 					     ACPI_RECONFIG_DEVICE_ADD, device);
1870 	}
1871 }
1872 
1873 static const struct acpi_device_id generic_device_ids[] = {
1874 	{ACPI_DT_NAMESPACE_HID, },
1875 	{"", },
1876 };
1877 
1878 static int acpi_generic_device_attach(struct acpi_device *adev,
1879 				      const struct acpi_device_id *not_used)
1880 {
1881 	/*
1882 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
1883 	 * below can be unconditional.
1884 	 */
1885 	if (adev->data.of_compatible)
1886 		acpi_default_enumeration(adev);
1887 
1888 	return 1;
1889 }
1890 
1891 static struct acpi_scan_handler generic_device_handler = {
1892 	.ids = generic_device_ids,
1893 	.attach = acpi_generic_device_attach,
1894 };
1895 
1896 static int acpi_scan_attach_handler(struct acpi_device *device)
1897 {
1898 	struct acpi_hardware_id *hwid;
1899 	int ret = 0;
1900 
1901 	list_for_each_entry(hwid, &device->pnp.ids, list) {
1902 		const struct acpi_device_id *devid;
1903 		struct acpi_scan_handler *handler;
1904 
1905 		handler = acpi_scan_match_handler(hwid->id, &devid);
1906 		if (handler) {
1907 			if (!handler->attach) {
1908 				device->pnp.type.platform_id = 0;
1909 				continue;
1910 			}
1911 			device->handler = handler;
1912 			ret = handler->attach(device, devid);
1913 			if (ret > 0)
1914 				break;
1915 
1916 			device->handler = NULL;
1917 			if (ret < 0)
1918 				break;
1919 		}
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static void acpi_bus_attach(struct acpi_device *device)
1926 {
1927 	struct acpi_device *child;
1928 	acpi_handle ejd;
1929 	int ret;
1930 
1931 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
1932 		register_dock_dependent_device(device, ejd);
1933 
1934 	acpi_bus_get_status(device);
1935 	/* Skip devices that are not present. */
1936 	if (!acpi_device_is_present(device)) {
1937 		device->flags.initialized = false;
1938 		acpi_device_clear_enumerated(device);
1939 		device->flags.power_manageable = 0;
1940 		return;
1941 	}
1942 	if (device->handler)
1943 		goto ok;
1944 
1945 	if (!device->flags.initialized) {
1946 		device->flags.power_manageable =
1947 			device->power.states[ACPI_STATE_D0].flags.valid;
1948 		if (acpi_bus_init_power(device))
1949 			device->flags.power_manageable = 0;
1950 
1951 		device->flags.initialized = true;
1952 	} else if (device->flags.visited) {
1953 		goto ok;
1954 	}
1955 
1956 	ret = acpi_scan_attach_handler(device);
1957 	if (ret < 0)
1958 		return;
1959 
1960 	device->flags.match_driver = true;
1961 	if (ret > 0 && !device->flags.serial_bus_slave) {
1962 		acpi_device_set_enumerated(device);
1963 		goto ok;
1964 	}
1965 
1966 	ret = device_attach(&device->dev);
1967 	if (ret < 0)
1968 		return;
1969 
1970 	if (!device->pnp.type.platform_id && !device->flags.serial_bus_slave)
1971 		acpi_device_set_enumerated(device);
1972 	else
1973 		acpi_default_enumeration(device);
1974 
1975  ok:
1976 	list_for_each_entry(child, &device->children, node)
1977 		acpi_bus_attach(child);
1978 
1979 	if (device->handler && device->handler->hotplug.notify_online)
1980 		device->handler->hotplug.notify_online(device);
1981 }
1982 
1983 void acpi_walk_dep_device_list(acpi_handle handle)
1984 {
1985 	struct acpi_dep_data *dep, *tmp;
1986 	struct acpi_device *adev;
1987 
1988 	mutex_lock(&acpi_dep_list_lock);
1989 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
1990 		if (dep->master == handle) {
1991 			acpi_bus_get_device(dep->slave, &adev);
1992 			if (!adev)
1993 				continue;
1994 
1995 			adev->dep_unmet--;
1996 			if (!adev->dep_unmet)
1997 				acpi_bus_attach(adev);
1998 			list_del(&dep->node);
1999 			kfree(dep);
2000 		}
2001 	}
2002 	mutex_unlock(&acpi_dep_list_lock);
2003 }
2004 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2005 
2006 /**
2007  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2008  * @handle: Root of the namespace scope to scan.
2009  *
2010  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2011  * found devices.
2012  *
2013  * If no devices were found, -ENODEV is returned, but it does not mean that
2014  * there has been a real error.  There just have been no suitable ACPI objects
2015  * in the table trunk from which the kernel could create a device and add an
2016  * appropriate driver.
2017  *
2018  * Must be called under acpi_scan_lock.
2019  */
2020 int acpi_bus_scan(acpi_handle handle)
2021 {
2022 	void *device = NULL;
2023 
2024 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, 0, NULL, &device)))
2025 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2026 				    acpi_bus_check_add, NULL, NULL, &device);
2027 
2028 	if (device) {
2029 		acpi_bus_attach(device);
2030 		return 0;
2031 	}
2032 	return -ENODEV;
2033 }
2034 EXPORT_SYMBOL(acpi_bus_scan);
2035 
2036 /**
2037  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2038  * @adev: Root of the ACPI namespace scope to walk.
2039  *
2040  * Must be called under acpi_scan_lock.
2041  */
2042 void acpi_bus_trim(struct acpi_device *adev)
2043 {
2044 	struct acpi_scan_handler *handler = adev->handler;
2045 	struct acpi_device *child;
2046 
2047 	list_for_each_entry_reverse(child, &adev->children, node)
2048 		acpi_bus_trim(child);
2049 
2050 	adev->flags.match_driver = false;
2051 	if (handler) {
2052 		if (handler->detach)
2053 			handler->detach(adev);
2054 
2055 		adev->handler = NULL;
2056 	} else {
2057 		device_release_driver(&adev->dev);
2058 	}
2059 	/*
2060 	 * Most likely, the device is going away, so put it into D3cold before
2061 	 * that.
2062 	 */
2063 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2064 	adev->flags.initialized = false;
2065 	acpi_device_clear_enumerated(adev);
2066 }
2067 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2068 
2069 int acpi_bus_register_early_device(int type)
2070 {
2071 	struct acpi_device *device = NULL;
2072 	int result;
2073 
2074 	result = acpi_add_single_object(&device, NULL,
2075 					type, ACPI_STA_DEFAULT);
2076 	if (result)
2077 		return result;
2078 
2079 	device->flags.match_driver = true;
2080 	return device_attach(&device->dev);
2081 }
2082 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2083 
2084 static int acpi_bus_scan_fixed(void)
2085 {
2086 	int result = 0;
2087 
2088 	/*
2089 	 * Enumerate all fixed-feature devices.
2090 	 */
2091 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2092 		struct acpi_device *device = NULL;
2093 
2094 		result = acpi_add_single_object(&device, NULL,
2095 						ACPI_BUS_TYPE_POWER_BUTTON,
2096 						ACPI_STA_DEFAULT);
2097 		if (result)
2098 			return result;
2099 
2100 		device->flags.match_driver = true;
2101 		result = device_attach(&device->dev);
2102 		if (result < 0)
2103 			return result;
2104 
2105 		device_init_wakeup(&device->dev, true);
2106 	}
2107 
2108 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2109 		struct acpi_device *device = NULL;
2110 
2111 		result = acpi_add_single_object(&device, NULL,
2112 						ACPI_BUS_TYPE_SLEEP_BUTTON,
2113 						ACPI_STA_DEFAULT);
2114 		if (result)
2115 			return result;
2116 
2117 		device->flags.match_driver = true;
2118 		result = device_attach(&device->dev);
2119 	}
2120 
2121 	return result < 0 ? result : 0;
2122 }
2123 
2124 static void __init acpi_get_spcr_uart_addr(void)
2125 {
2126 	acpi_status status;
2127 	struct acpi_table_spcr *spcr_ptr;
2128 
2129 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2130 				(struct acpi_table_header **)&spcr_ptr);
2131 	if (ACPI_SUCCESS(status))
2132 		spcr_uart_addr = spcr_ptr->serial_port.address;
2133 	else
2134 		printk(KERN_WARNING PREFIX "STAO table present, but SPCR is missing\n");
2135 }
2136 
2137 static bool acpi_scan_initialized;
2138 
2139 int __init acpi_scan_init(void)
2140 {
2141 	int result;
2142 	acpi_status status;
2143 	struct acpi_table_stao *stao_ptr;
2144 
2145 	acpi_pci_root_init();
2146 	acpi_pci_link_init();
2147 	acpi_processor_init();
2148 	acpi_lpss_init();
2149 	acpi_apd_init();
2150 	acpi_cmos_rtc_init();
2151 	acpi_container_init();
2152 	acpi_memory_hotplug_init();
2153 	acpi_pnp_init();
2154 	acpi_int340x_thermal_init();
2155 	acpi_amba_init();
2156 	acpi_watchdog_init();
2157 	acpi_init_lpit();
2158 
2159 	acpi_scan_add_handler(&generic_device_handler);
2160 
2161 	/*
2162 	 * If there is STAO table, check whether it needs to ignore the UART
2163 	 * device in SPCR table.
2164 	 */
2165 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2166 				(struct acpi_table_header **)&stao_ptr);
2167 	if (ACPI_SUCCESS(status)) {
2168 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2169 			printk(KERN_INFO PREFIX "STAO Name List not yet supported.");
2170 
2171 		if (stao_ptr->ignore_uart)
2172 			acpi_get_spcr_uart_addr();
2173 	}
2174 
2175 	acpi_gpe_apply_masked_gpes();
2176 	acpi_update_all_gpes();
2177 
2178 	mutex_lock(&acpi_scan_lock);
2179 	/*
2180 	 * Enumerate devices in the ACPI namespace.
2181 	 */
2182 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2183 	if (result)
2184 		goto out;
2185 
2186 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2187 	if (result)
2188 		goto out;
2189 
2190 	/* Fixed feature devices do not exist on HW-reduced platform */
2191 	if (!acpi_gbl_reduced_hardware) {
2192 		result = acpi_bus_scan_fixed();
2193 		if (result) {
2194 			acpi_detach_data(acpi_root->handle,
2195 					 acpi_scan_drop_device);
2196 			acpi_device_del(acpi_root);
2197 			put_device(&acpi_root->dev);
2198 			goto out;
2199 		}
2200 	}
2201 
2202 	acpi_scan_initialized = true;
2203 
2204  out:
2205 	mutex_unlock(&acpi_scan_lock);
2206 	return result;
2207 }
2208 
2209 static struct acpi_probe_entry *ape;
2210 static int acpi_probe_count;
2211 static DEFINE_MUTEX(acpi_probe_mutex);
2212 
2213 static int __init acpi_match_madt(struct acpi_subtable_header *header,
2214 				  const unsigned long end)
2215 {
2216 	if (!ape->subtable_valid || ape->subtable_valid(header, ape))
2217 		if (!ape->probe_subtbl(header, end))
2218 			acpi_probe_count++;
2219 
2220 	return 0;
2221 }
2222 
2223 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2224 {
2225 	int count = 0;
2226 
2227 	if (acpi_disabled)
2228 		return 0;
2229 
2230 	mutex_lock(&acpi_probe_mutex);
2231 	for (ape = ap_head; nr; ape++, nr--) {
2232 		if (ACPI_COMPARE_NAME(ACPI_SIG_MADT, ape->id)) {
2233 			acpi_probe_count = 0;
2234 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2235 			count += acpi_probe_count;
2236 		} else {
2237 			int res;
2238 			res = acpi_table_parse(ape->id, ape->probe_table);
2239 			if (!res)
2240 				count++;
2241 		}
2242 	}
2243 	mutex_unlock(&acpi_probe_mutex);
2244 
2245 	return count;
2246 }
2247 
2248 struct acpi_table_events_work {
2249 	struct work_struct work;
2250 	void *table;
2251 	u32 event;
2252 };
2253 
2254 static void acpi_table_events_fn(struct work_struct *work)
2255 {
2256 	struct acpi_table_events_work *tew;
2257 
2258 	tew = container_of(work, struct acpi_table_events_work, work);
2259 
2260 	if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2261 		acpi_scan_lock_acquire();
2262 		acpi_bus_scan(ACPI_ROOT_OBJECT);
2263 		acpi_scan_lock_release();
2264 	}
2265 
2266 	kfree(tew);
2267 }
2268 
2269 void acpi_scan_table_handler(u32 event, void *table, void *context)
2270 {
2271 	struct acpi_table_events_work *tew;
2272 
2273 	if (!acpi_scan_initialized)
2274 		return;
2275 
2276 	if (event != ACPI_TABLE_EVENT_LOAD)
2277 		return;
2278 
2279 	tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2280 	if (!tew)
2281 		return;
2282 
2283 	INIT_WORK(&tew->work, acpi_table_events_fn);
2284 	tew->table = table;
2285 	tew->event = event;
2286 
2287 	schedule_work(&tew->work);
2288 }
2289 
2290 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2291 {
2292 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2293 }
2294 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2295 
2296 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2297 {
2298 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2299 }
2300 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2301