1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 acpi_hp_notify notify, acpi_hp_uevent uevent) 77 { 78 acpi_lock_hp_context(); 79 hp->notify = notify; 80 hp->uevent = uevent; 81 acpi_set_hp_context(adev, hp); 82 acpi_unlock_hp_context(); 83 } 84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 85 86 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 87 { 88 if (!handler) 89 return -EINVAL; 90 91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 92 return 0; 93 } 94 95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 96 const char *hotplug_profile_name) 97 { 98 int error; 99 100 error = acpi_scan_add_handler(handler); 101 if (error) 102 return error; 103 104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 105 return 0; 106 } 107 108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 109 { 110 struct acpi_device_physical_node *pn; 111 bool offline = true; 112 char *envp[] = { "EVENT=offline", NULL }; 113 114 /* 115 * acpi_container_offline() calls this for all of the container's 116 * children under the container's physical_node_lock lock. 117 */ 118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 119 120 list_for_each_entry(pn, &adev->physical_node_list, node) 121 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 122 if (uevent) 123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 124 125 offline = false; 126 break; 127 } 128 129 mutex_unlock(&adev->physical_node_lock); 130 return offline; 131 } 132 133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 134 void **ret_p) 135 { 136 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 137 struct acpi_device_physical_node *pn; 138 bool second_pass = (bool)data; 139 acpi_status status = AE_OK; 140 141 if (!device) 142 return AE_OK; 143 144 if (device->handler && !device->handler->hotplug.enabled) { 145 *ret_p = &device->dev; 146 return AE_SUPPORT; 147 } 148 149 mutex_lock(&device->physical_node_lock); 150 151 list_for_each_entry(pn, &device->physical_node_list, node) { 152 int ret; 153 154 if (second_pass) { 155 /* Skip devices offlined by the first pass. */ 156 if (pn->put_online) 157 continue; 158 } else { 159 pn->put_online = false; 160 } 161 ret = device_offline(pn->dev); 162 if (ret >= 0) { 163 pn->put_online = !ret; 164 } else { 165 *ret_p = pn->dev; 166 if (second_pass) { 167 status = AE_ERROR; 168 break; 169 } 170 } 171 } 172 173 mutex_unlock(&device->physical_node_lock); 174 175 return status; 176 } 177 178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 179 void **ret_p) 180 { 181 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 182 struct acpi_device_physical_node *pn; 183 184 if (!device) 185 return AE_OK; 186 187 mutex_lock(&device->physical_node_lock); 188 189 list_for_each_entry(pn, &device->physical_node_list, node) 190 if (pn->put_online) { 191 device_online(pn->dev); 192 pn->put_online = false; 193 } 194 195 mutex_unlock(&device->physical_node_lock); 196 197 return AE_OK; 198 } 199 200 static int acpi_scan_try_to_offline(struct acpi_device *device) 201 { 202 acpi_handle handle = device->handle; 203 struct device *errdev = NULL; 204 acpi_status status; 205 206 /* 207 * Carry out two passes here and ignore errors in the first pass, 208 * because if the devices in question are memory blocks and 209 * CONFIG_MEMCG is set, one of the blocks may hold data structures 210 * that the other blocks depend on, but it is not known in advance which 211 * block holds them. 212 * 213 * If the first pass is successful, the second one isn't needed, though. 214 */ 215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 216 NULL, acpi_bus_offline, (void *)false, 217 (void **)&errdev); 218 if (status == AE_SUPPORT) { 219 dev_warn(errdev, "Offline disabled.\n"); 220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 221 acpi_bus_online, NULL, NULL, NULL); 222 return -EPERM; 223 } 224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 225 if (errdev) { 226 errdev = NULL; 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 NULL, acpi_bus_offline, (void *)true, 229 (void **)&errdev); 230 if (!errdev) 231 acpi_bus_offline(handle, 0, (void *)true, 232 (void **)&errdev); 233 234 if (errdev) { 235 dev_warn(errdev, "Offline failed.\n"); 236 acpi_bus_online(handle, 0, NULL, NULL); 237 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 238 ACPI_UINT32_MAX, acpi_bus_online, 239 NULL, NULL, NULL); 240 return -EBUSY; 241 } 242 } 243 return 0; 244 } 245 246 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0) 247 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1) 248 249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p) 250 { 251 struct acpi_scan_handler *handler = adev->handler; 252 uintptr_t flags = (uintptr_t)p; 253 254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p); 255 256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) { 257 acpi_bus_get_status(adev); 258 /* 259 * Skip devices that are still there and take the enabled 260 * flag into account. 261 */ 262 if (acpi_device_is_enabled(adev)) 263 return 0; 264 265 /* Skip device that have not been enumerated. */ 266 if (!acpi_device_enumerated(adev)) { 267 dev_dbg(&adev->dev, "Still not enumerated\n"); 268 return 0; 269 } 270 } 271 272 adev->flags.match_driver = false; 273 if (handler) { 274 if (handler->detach) 275 handler->detach(adev); 276 } else { 277 device_release_driver(&adev->dev); 278 } 279 /* 280 * Most likely, the device is going away, so put it into D3cold before 281 * that. 282 */ 283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 284 adev->flags.initialized = false; 285 286 /* For eject this is deferred to acpi_bus_post_eject() */ 287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) { 288 adev->handler = NULL; 289 acpi_device_clear_enumerated(adev); 290 } 291 return 0; 292 } 293 294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used) 295 { 296 struct acpi_scan_handler *handler = adev->handler; 297 298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL); 299 300 if (handler) { 301 if (handler->post_eject) 302 handler->post_eject(adev); 303 304 adev->handler = NULL; 305 } 306 307 acpi_device_clear_enumerated(adev); 308 309 return 0; 310 } 311 312 static void acpi_scan_check_subtree(struct acpi_device *adev) 313 { 314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS; 315 316 acpi_scan_check_and_detach(adev, (void *)flags); 317 } 318 319 static int acpi_scan_hot_remove(struct acpi_device *device) 320 { 321 acpi_handle handle = device->handle; 322 unsigned long long sta; 323 acpi_status status; 324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT; 325 326 if (device->handler && device->handler->hotplug.demand_offline) { 327 if (!acpi_scan_is_offline(device, true)) 328 return -EBUSY; 329 } else { 330 int error = acpi_scan_try_to_offline(device); 331 if (error) 332 return error; 333 } 334 335 acpi_handle_debug(handle, "Ejecting\n"); 336 337 acpi_scan_check_and_detach(device, (void *)flags); 338 339 acpi_evaluate_lck(handle, 0); 340 /* 341 * TBD: _EJD support. 342 */ 343 status = acpi_evaluate_ej0(handle); 344 if (status == AE_NOT_FOUND) 345 return -ENODEV; 346 else if (ACPI_FAILURE(status)) 347 return -EIO; 348 349 /* 350 * Verify if eject was indeed successful. If not, log an error 351 * message. No need to call _OST since _EJ0 call was made OK. 352 */ 353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 354 if (ACPI_FAILURE(status)) { 355 acpi_handle_warn(handle, 356 "Status check after eject failed (0x%x)\n", status); 357 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 358 acpi_handle_warn(handle, 359 "Eject incomplete - status 0x%llx\n", sta); 360 } else { 361 acpi_bus_post_eject(device, NULL); 362 } 363 364 return 0; 365 } 366 367 static int acpi_scan_rescan_bus(struct acpi_device *adev) 368 { 369 struct acpi_scan_handler *handler = adev->handler; 370 int ret; 371 372 if (handler && handler->hotplug.scan_dependent) 373 ret = handler->hotplug.scan_dependent(adev); 374 else 375 ret = acpi_bus_scan(adev->handle); 376 377 if (ret) 378 dev_info(&adev->dev, "Namespace scan failure\n"); 379 380 return ret; 381 } 382 383 static int acpi_scan_device_check(struct acpi_device *adev) 384 { 385 struct acpi_device *parent; 386 387 acpi_scan_check_subtree(adev); 388 389 if (!acpi_device_is_present(adev)) 390 return 0; 391 392 /* 393 * This function is only called for device objects for which matching 394 * scan handlers exist. The only situation in which the scan handler 395 * is not attached to this device object yet is when the device has 396 * just appeared (either it wasn't present at all before or it was 397 * removed and then added again). 398 */ 399 if (adev->handler) { 400 dev_dbg(&adev->dev, "Already enumerated\n"); 401 return 0; 402 } 403 404 parent = acpi_dev_parent(adev); 405 if (!parent) 406 parent = adev; 407 408 return acpi_scan_rescan_bus(parent); 409 } 410 411 static int acpi_scan_bus_check(struct acpi_device *adev) 412 { 413 acpi_scan_check_subtree(adev); 414 415 return acpi_scan_rescan_bus(adev); 416 } 417 418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 419 { 420 switch (type) { 421 case ACPI_NOTIFY_BUS_CHECK: 422 return acpi_scan_bus_check(adev); 423 case ACPI_NOTIFY_DEVICE_CHECK: 424 return acpi_scan_device_check(adev); 425 case ACPI_NOTIFY_EJECT_REQUEST: 426 case ACPI_OST_EC_OSPM_EJECT: 427 if (adev->handler && !adev->handler->hotplug.enabled) { 428 dev_info(&adev->dev, "Eject disabled\n"); 429 return -EPERM; 430 } 431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 433 return acpi_scan_hot_remove(adev); 434 } 435 return -EINVAL; 436 } 437 438 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 439 { 440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 441 int error = -ENODEV; 442 443 lock_device_hotplug(); 444 mutex_lock(&acpi_scan_lock); 445 446 /* 447 * The device object's ACPI handle cannot become invalid as long as we 448 * are holding acpi_scan_lock, but it might have become invalid before 449 * that lock was acquired. 450 */ 451 if (adev->handle == INVALID_ACPI_HANDLE) 452 goto err_out; 453 454 if (adev->flags.is_dock_station) { 455 error = dock_notify(adev, src); 456 } else if (adev->flags.hotplug_notify) { 457 error = acpi_generic_hotplug_event(adev, src); 458 } else { 459 acpi_hp_notify notify; 460 461 acpi_lock_hp_context(); 462 notify = adev->hp ? adev->hp->notify : NULL; 463 acpi_unlock_hp_context(); 464 /* 465 * There may be additional notify handlers for device objects 466 * without the .event() callback, so ignore them here. 467 */ 468 if (notify) 469 error = notify(adev, src); 470 else 471 goto out; 472 } 473 switch (error) { 474 case 0: 475 ost_code = ACPI_OST_SC_SUCCESS; 476 break; 477 case -EPERM: 478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 479 break; 480 case -EBUSY: 481 ost_code = ACPI_OST_SC_DEVICE_BUSY; 482 break; 483 default: 484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 485 break; 486 } 487 488 err_out: 489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 490 491 out: 492 acpi_put_acpi_dev(adev); 493 mutex_unlock(&acpi_scan_lock); 494 unlock_device_hotplug(); 495 } 496 497 static void acpi_free_power_resources_lists(struct acpi_device *device) 498 { 499 int i; 500 501 if (device->wakeup.flags.valid) 502 acpi_power_resources_list_free(&device->wakeup.resources); 503 504 if (!device->power.flags.power_resources) 505 return; 506 507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 508 struct acpi_device_power_state *ps = &device->power.states[i]; 509 acpi_power_resources_list_free(&ps->resources); 510 } 511 } 512 513 static void acpi_device_release(struct device *dev) 514 { 515 struct acpi_device *acpi_dev = to_acpi_device(dev); 516 517 acpi_free_properties(acpi_dev); 518 acpi_free_pnp_ids(&acpi_dev->pnp); 519 acpi_free_power_resources_lists(acpi_dev); 520 kfree(acpi_dev); 521 } 522 523 static void acpi_device_del(struct acpi_device *device) 524 { 525 struct acpi_device_bus_id *acpi_device_bus_id; 526 527 mutex_lock(&acpi_device_lock); 528 529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 530 if (!strcmp(acpi_device_bus_id->bus_id, 531 acpi_device_hid(device))) { 532 ida_free(&acpi_device_bus_id->instance_ida, 533 device->pnp.instance_no); 534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 535 list_del(&acpi_device_bus_id->node); 536 kfree_const(acpi_device_bus_id->bus_id); 537 kfree(acpi_device_bus_id); 538 } 539 break; 540 } 541 542 list_del(&device->wakeup_list); 543 544 mutex_unlock(&acpi_device_lock); 545 546 acpi_power_add_remove_device(device, false); 547 acpi_device_remove_files(device); 548 if (device->remove) 549 device->remove(device); 550 551 device_del(&device->dev); 552 } 553 554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 555 556 static LIST_HEAD(acpi_device_del_list); 557 static DEFINE_MUTEX(acpi_device_del_lock); 558 559 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 560 { 561 for (;;) { 562 struct acpi_device *adev; 563 564 mutex_lock(&acpi_device_del_lock); 565 566 if (list_empty(&acpi_device_del_list)) { 567 mutex_unlock(&acpi_device_del_lock); 568 break; 569 } 570 adev = list_first_entry(&acpi_device_del_list, 571 struct acpi_device, del_list); 572 list_del(&adev->del_list); 573 574 mutex_unlock(&acpi_device_del_lock); 575 576 blocking_notifier_call_chain(&acpi_reconfig_chain, 577 ACPI_RECONFIG_DEVICE_REMOVE, adev); 578 579 acpi_device_del(adev); 580 /* 581 * Drop references to all power resources that might have been 582 * used by the device. 583 */ 584 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 585 acpi_dev_put(adev); 586 } 587 } 588 589 /** 590 * acpi_scan_drop_device - Drop an ACPI device object. 591 * @handle: Handle of an ACPI namespace node, not used. 592 * @context: Address of the ACPI device object to drop. 593 * 594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 595 * namespace node the device object pointed to by @context is attached to. 596 * 597 * The unregistration is carried out asynchronously to avoid running 598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 599 * ensure the correct ordering (the device objects must be unregistered in the 600 * same order in which the corresponding namespace nodes are deleted). 601 */ 602 static void acpi_scan_drop_device(acpi_handle handle, void *context) 603 { 604 static DECLARE_WORK(work, acpi_device_del_work_fn); 605 struct acpi_device *adev = context; 606 607 mutex_lock(&acpi_device_del_lock); 608 609 /* 610 * Use the ACPI hotplug workqueue which is ordered, so this work item 611 * won't run after any hotplug work items submitted subsequently. That 612 * prevents attempts to register device objects identical to those being 613 * deleted from happening concurrently (such attempts result from 614 * hotplug events handled via the ACPI hotplug workqueue). It also will 615 * run after all of the work items submitted previously, which helps 616 * those work items to ensure that they are not accessing stale device 617 * objects. 618 */ 619 if (list_empty(&acpi_device_del_list)) 620 acpi_queue_hotplug_work(&work); 621 622 list_add_tail(&adev->del_list, &acpi_device_del_list); 623 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 624 adev->handle = INVALID_ACPI_HANDLE; 625 626 mutex_unlock(&acpi_device_del_lock); 627 } 628 629 static struct acpi_device *handle_to_device(acpi_handle handle, 630 void (*callback)(void *)) 631 { 632 struct acpi_device *adev = NULL; 633 acpi_status status; 634 635 status = acpi_get_data_full(handle, acpi_scan_drop_device, 636 (void **)&adev, callback); 637 if (ACPI_FAILURE(status) || !adev) { 638 acpi_handle_debug(handle, "No context!\n"); 639 return NULL; 640 } 641 return adev; 642 } 643 644 /** 645 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 646 * @handle: ACPI handle associated with the requested ACPI device object. 647 * 648 * Return a pointer to the ACPI device object associated with @handle, if 649 * present, or NULL otherwise. 650 */ 651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 652 { 653 return handle_to_device(handle, NULL); 654 } 655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 656 657 static void get_acpi_device(void *dev) 658 { 659 acpi_dev_get(dev); 660 } 661 662 /** 663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 664 * @handle: ACPI handle associated with the requested ACPI device object. 665 * 666 * Return a pointer to the ACPI device object associated with @handle and bump 667 * up that object's reference counter (under the ACPI Namespace lock), if 668 * present, or return NULL otherwise. 669 * 670 * The ACPI device object reference acquired by this function needs to be 671 * dropped via acpi_dev_put(). 672 */ 673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 674 { 675 return handle_to_device(handle, get_acpi_device); 676 } 677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 678 679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 680 { 681 struct acpi_device_bus_id *acpi_device_bus_id; 682 683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 686 return acpi_device_bus_id; 687 } 688 return NULL; 689 } 690 691 static int acpi_device_set_name(struct acpi_device *device, 692 struct acpi_device_bus_id *acpi_device_bus_id) 693 { 694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 695 int result; 696 697 result = ida_alloc(instance_ida, GFP_KERNEL); 698 if (result < 0) 699 return result; 700 701 device->pnp.instance_no = result; 702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 703 return 0; 704 } 705 706 int acpi_tie_acpi_dev(struct acpi_device *adev) 707 { 708 acpi_handle handle = adev->handle; 709 acpi_status status; 710 711 if (!handle) 712 return 0; 713 714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 715 if (ACPI_FAILURE(status)) { 716 acpi_handle_err(handle, "Unable to attach device data\n"); 717 return -ENODEV; 718 } 719 720 return 0; 721 } 722 723 static void acpi_store_pld_crc(struct acpi_device *adev) 724 { 725 struct acpi_pld_info *pld; 726 acpi_status status; 727 728 status = acpi_get_physical_device_location(adev->handle, &pld); 729 if (ACPI_FAILURE(status)) 730 return; 731 732 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 733 ACPI_FREE(pld); 734 } 735 736 int acpi_device_add(struct acpi_device *device) 737 { 738 struct acpi_device_bus_id *acpi_device_bus_id; 739 int result; 740 741 /* 742 * Linkage 743 * ------- 744 * Link this device to its parent and siblings. 745 */ 746 INIT_LIST_HEAD(&device->wakeup_list); 747 INIT_LIST_HEAD(&device->physical_node_list); 748 INIT_LIST_HEAD(&device->del_list); 749 mutex_init(&device->physical_node_lock); 750 751 mutex_lock(&acpi_device_lock); 752 753 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 754 if (acpi_device_bus_id) { 755 result = acpi_device_set_name(device, acpi_device_bus_id); 756 if (result) 757 goto err_unlock; 758 } else { 759 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 760 GFP_KERNEL); 761 if (!acpi_device_bus_id) { 762 result = -ENOMEM; 763 goto err_unlock; 764 } 765 acpi_device_bus_id->bus_id = 766 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 767 if (!acpi_device_bus_id->bus_id) { 768 kfree(acpi_device_bus_id); 769 result = -ENOMEM; 770 goto err_unlock; 771 } 772 773 ida_init(&acpi_device_bus_id->instance_ida); 774 775 result = acpi_device_set_name(device, acpi_device_bus_id); 776 if (result) { 777 kfree_const(acpi_device_bus_id->bus_id); 778 kfree(acpi_device_bus_id); 779 goto err_unlock; 780 } 781 782 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 783 } 784 785 if (device->wakeup.flags.valid) 786 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 787 788 acpi_store_pld_crc(device); 789 790 mutex_unlock(&acpi_device_lock); 791 792 result = device_add(&device->dev); 793 if (result) { 794 dev_err(&device->dev, "Error registering device\n"); 795 goto err; 796 } 797 798 result = acpi_device_setup_files(device); 799 if (result) 800 pr_err("Error creating sysfs interface for device %s\n", 801 dev_name(&device->dev)); 802 803 return 0; 804 805 err: 806 mutex_lock(&acpi_device_lock); 807 808 list_del(&device->wakeup_list); 809 810 err_unlock: 811 mutex_unlock(&acpi_device_lock); 812 813 acpi_detach_data(device->handle, acpi_scan_drop_device); 814 815 return result; 816 } 817 818 /* -------------------------------------------------------------------------- 819 Device Enumeration 820 -------------------------------------------------------------------------- */ 821 static bool acpi_info_matches_ids(struct acpi_device_info *info, 822 const char * const ids[]) 823 { 824 struct acpi_pnp_device_id_list *cid_list = NULL; 825 int i, index; 826 827 if (!(info->valid & ACPI_VALID_HID)) 828 return false; 829 830 index = match_string(ids, -1, info->hardware_id.string); 831 if (index >= 0) 832 return true; 833 834 if (info->valid & ACPI_VALID_CID) 835 cid_list = &info->compatible_id_list; 836 837 if (!cid_list) 838 return false; 839 840 for (i = 0; i < cid_list->count; i++) { 841 index = match_string(ids, -1, cid_list->ids[i].string); 842 if (index >= 0) 843 return true; 844 } 845 846 return false; 847 } 848 849 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 850 static const char * const acpi_ignore_dep_ids[] = { 851 "PNP0D80", /* Windows-compatible System Power Management Controller */ 852 "INT33BD", /* Intel Baytrail Mailbox Device */ 853 "LATT2021", /* Lattice FW Update Client Driver */ 854 NULL 855 }; 856 857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 858 static const char * const acpi_honor_dep_ids[] = { 859 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 860 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 861 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 862 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 863 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */ 864 NULL 865 }; 866 867 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 868 { 869 struct acpi_device *adev; 870 871 /* 872 * Fixed hardware devices do not appear in the namespace and do not 873 * have handles, but we fabricate acpi_devices for them, so we have 874 * to deal with them specially. 875 */ 876 if (!handle) 877 return acpi_root; 878 879 do { 880 acpi_status status; 881 882 status = acpi_get_parent(handle, &handle); 883 if (ACPI_FAILURE(status)) { 884 if (status != AE_NULL_ENTRY) 885 return acpi_root; 886 887 return NULL; 888 } 889 adev = acpi_fetch_acpi_dev(handle); 890 } while (!adev); 891 return adev; 892 } 893 894 acpi_status 895 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 896 { 897 acpi_status status; 898 acpi_handle tmp; 899 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 900 union acpi_object *obj; 901 902 status = acpi_get_handle(handle, "_EJD", &tmp); 903 if (ACPI_FAILURE(status)) 904 return status; 905 906 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 907 if (ACPI_SUCCESS(status)) { 908 obj = buffer.pointer; 909 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 910 ejd); 911 kfree(buffer.pointer); 912 } 913 return status; 914 } 915 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 916 917 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 918 { 919 acpi_handle handle = dev->handle; 920 struct acpi_device_wakeup *wakeup = &dev->wakeup; 921 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 922 union acpi_object *package = NULL; 923 union acpi_object *element = NULL; 924 acpi_status status; 925 int err = -ENODATA; 926 927 INIT_LIST_HEAD(&wakeup->resources); 928 929 /* _PRW */ 930 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 931 if (ACPI_FAILURE(status)) { 932 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 933 acpi_format_exception(status)); 934 return err; 935 } 936 937 package = (union acpi_object *)buffer.pointer; 938 939 if (!package || package->package.count < 2) 940 goto out; 941 942 element = &(package->package.elements[0]); 943 if (!element) 944 goto out; 945 946 if (element->type == ACPI_TYPE_PACKAGE) { 947 if ((element->package.count < 2) || 948 (element->package.elements[0].type != 949 ACPI_TYPE_LOCAL_REFERENCE) 950 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 951 goto out; 952 953 wakeup->gpe_device = 954 element->package.elements[0].reference.handle; 955 wakeup->gpe_number = 956 (u32) element->package.elements[1].integer.value; 957 } else if (element->type == ACPI_TYPE_INTEGER) { 958 wakeup->gpe_device = NULL; 959 wakeup->gpe_number = element->integer.value; 960 } else { 961 goto out; 962 } 963 964 element = &(package->package.elements[1]); 965 if (element->type != ACPI_TYPE_INTEGER) 966 goto out; 967 968 wakeup->sleep_state = element->integer.value; 969 970 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 971 if (err) 972 goto out; 973 974 if (!list_empty(&wakeup->resources)) { 975 int sleep_state; 976 977 err = acpi_power_wakeup_list_init(&wakeup->resources, 978 &sleep_state); 979 if (err) { 980 acpi_handle_warn(handle, "Retrieving current states " 981 "of wakeup power resources failed\n"); 982 acpi_power_resources_list_free(&wakeup->resources); 983 goto out; 984 } 985 if (sleep_state < wakeup->sleep_state) { 986 acpi_handle_warn(handle, "Overriding _PRW sleep state " 987 "(S%d) by S%d from power resources\n", 988 (int)wakeup->sleep_state, sleep_state); 989 wakeup->sleep_state = sleep_state; 990 } 991 } 992 993 out: 994 kfree(buffer.pointer); 995 return err; 996 } 997 998 /* Do not use a button for S5 wakeup */ 999 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 1000 1001 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 1002 { 1003 static const struct acpi_device_id button_device_ids[] = { 1004 {"PNP0C0C", 0}, /* Power button */ 1005 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 1006 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 1007 {"", 0}, 1008 }; 1009 struct acpi_device_wakeup *wakeup = &device->wakeup; 1010 const struct acpi_device_id *match; 1011 acpi_status status; 1012 1013 wakeup->flags.notifier_present = 0; 1014 1015 /* Power button, Lid switch always enable wakeup */ 1016 match = acpi_match_acpi_device(button_device_ids, device); 1017 if (match) { 1018 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 1019 wakeup->sleep_state == ACPI_STATE_S5) 1020 wakeup->sleep_state = ACPI_STATE_S4; 1021 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 1022 device_set_wakeup_capable(&device->dev, true); 1023 return true; 1024 } 1025 1026 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 1027 wakeup->gpe_number); 1028 return ACPI_SUCCESS(status); 1029 } 1030 1031 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 1032 { 1033 int err; 1034 1035 /* Presence of _PRW indicates wake capable */ 1036 if (!acpi_has_method(device->handle, "_PRW")) 1037 return; 1038 1039 err = acpi_bus_extract_wakeup_device_power_package(device); 1040 if (err) { 1041 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1042 return; 1043 } 1044 1045 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1046 device->wakeup.prepare_count = 0; 1047 /* 1048 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1049 * system for the ACPI device with the _PRW object. 1050 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1051 * So it is necessary to call _DSW object first. Only when it is not 1052 * present will the _PSW object used. 1053 */ 1054 err = acpi_device_sleep_wake(device, 0, 0, 0); 1055 if (err) 1056 pr_debug("error in _DSW or _PSW evaluation\n"); 1057 } 1058 1059 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1060 { 1061 struct acpi_device_power_state *ps = &device->power.states[state]; 1062 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1063 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1064 acpi_status status; 1065 1066 INIT_LIST_HEAD(&ps->resources); 1067 1068 /* Evaluate "_PRx" to get referenced power resources */ 1069 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1070 if (ACPI_SUCCESS(status)) { 1071 union acpi_object *package = buffer.pointer; 1072 1073 if (buffer.length && package 1074 && package->type == ACPI_TYPE_PACKAGE 1075 && package->package.count) 1076 acpi_extract_power_resources(package, 0, &ps->resources); 1077 1078 ACPI_FREE(buffer.pointer); 1079 } 1080 1081 /* Evaluate "_PSx" to see if we can do explicit sets */ 1082 pathname[2] = 'S'; 1083 if (acpi_has_method(device->handle, pathname)) 1084 ps->flags.explicit_set = 1; 1085 1086 /* State is valid if there are means to put the device into it. */ 1087 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1088 ps->flags.valid = 1; 1089 1090 ps->power = -1; /* Unknown - driver assigned */ 1091 ps->latency = -1; /* Unknown - driver assigned */ 1092 } 1093 1094 static void acpi_bus_get_power_flags(struct acpi_device *device) 1095 { 1096 unsigned long long dsc = ACPI_STATE_D0; 1097 u32 i; 1098 1099 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1100 if (!acpi_has_method(device->handle, "_PS0") && 1101 !acpi_has_method(device->handle, "_PR0")) 1102 return; 1103 1104 device->flags.power_manageable = 1; 1105 1106 /* 1107 * Power Management Flags 1108 */ 1109 if (acpi_has_method(device->handle, "_PSC")) 1110 device->power.flags.explicit_get = 1; 1111 1112 if (acpi_has_method(device->handle, "_IRC")) 1113 device->power.flags.inrush_current = 1; 1114 1115 if (acpi_has_method(device->handle, "_DSW")) 1116 device->power.flags.dsw_present = 1; 1117 1118 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1119 device->power.state_for_enumeration = dsc; 1120 1121 /* 1122 * Enumerate supported power management states 1123 */ 1124 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1125 acpi_bus_init_power_state(device, i); 1126 1127 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1128 1129 /* Set the defaults for D0 and D3hot (always supported). */ 1130 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1131 device->power.states[ACPI_STATE_D0].power = 100; 1132 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1133 1134 /* 1135 * Use power resources only if the D0 list of them is populated, because 1136 * some platforms may provide _PR3 only to indicate D3cold support and 1137 * in those cases the power resources list returned by it may be bogus. 1138 */ 1139 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1140 device->power.flags.power_resources = 1; 1141 /* 1142 * D3cold is supported if the D3hot list of power resources is 1143 * not empty. 1144 */ 1145 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1146 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1147 } 1148 1149 if (acpi_bus_init_power(device)) 1150 device->flags.power_manageable = 0; 1151 } 1152 1153 static void acpi_bus_get_flags(struct acpi_device *device) 1154 { 1155 /* Presence of _STA indicates 'dynamic_status' */ 1156 if (acpi_has_method(device->handle, "_STA")) 1157 device->flags.dynamic_status = 1; 1158 1159 /* Presence of _RMV indicates 'removable' */ 1160 if (acpi_has_method(device->handle, "_RMV")) 1161 device->flags.removable = 1; 1162 1163 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1164 if (acpi_has_method(device->handle, "_EJD") || 1165 acpi_has_method(device->handle, "_EJ0")) 1166 device->flags.ejectable = 1; 1167 } 1168 1169 static void acpi_device_get_busid(struct acpi_device *device) 1170 { 1171 char bus_id[5] = { '?', 0 }; 1172 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1173 int i = 0; 1174 1175 /* 1176 * Bus ID 1177 * ------ 1178 * The device's Bus ID is simply the object name. 1179 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1180 */ 1181 if (!acpi_dev_parent(device)) { 1182 strcpy(device->pnp.bus_id, "ACPI"); 1183 return; 1184 } 1185 1186 switch (device->device_type) { 1187 case ACPI_BUS_TYPE_POWER_BUTTON: 1188 strcpy(device->pnp.bus_id, "PWRF"); 1189 break; 1190 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1191 strcpy(device->pnp.bus_id, "SLPF"); 1192 break; 1193 case ACPI_BUS_TYPE_ECDT_EC: 1194 strcpy(device->pnp.bus_id, "ECDT"); 1195 break; 1196 default: 1197 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1198 /* Clean up trailing underscores (if any) */ 1199 for (i = 3; i > 1; i--) { 1200 if (bus_id[i] == '_') 1201 bus_id[i] = '\0'; 1202 else 1203 break; 1204 } 1205 strcpy(device->pnp.bus_id, bus_id); 1206 break; 1207 } 1208 } 1209 1210 /* 1211 * acpi_ata_match - see if an acpi object is an ATA device 1212 * 1213 * If an acpi object has one of the ACPI ATA methods defined, 1214 * then we can safely call it an ATA device. 1215 */ 1216 bool acpi_ata_match(acpi_handle handle) 1217 { 1218 return acpi_has_method(handle, "_GTF") || 1219 acpi_has_method(handle, "_GTM") || 1220 acpi_has_method(handle, "_STM") || 1221 acpi_has_method(handle, "_SDD"); 1222 } 1223 1224 /* 1225 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1226 * 1227 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1228 * then we can safely call it an ejectable drive bay 1229 */ 1230 bool acpi_bay_match(acpi_handle handle) 1231 { 1232 acpi_handle phandle; 1233 1234 if (!acpi_has_method(handle, "_EJ0")) 1235 return false; 1236 if (acpi_ata_match(handle)) 1237 return true; 1238 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1239 return false; 1240 1241 return acpi_ata_match(phandle); 1242 } 1243 1244 bool acpi_device_is_battery(struct acpi_device *adev) 1245 { 1246 struct acpi_hardware_id *hwid; 1247 1248 list_for_each_entry(hwid, &adev->pnp.ids, list) 1249 if (!strcmp("PNP0C0A", hwid->id)) 1250 return true; 1251 1252 return false; 1253 } 1254 1255 static bool is_ejectable_bay(struct acpi_device *adev) 1256 { 1257 acpi_handle handle = adev->handle; 1258 1259 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1260 return true; 1261 1262 return acpi_bay_match(handle); 1263 } 1264 1265 /* 1266 * acpi_dock_match - see if an acpi object has a _DCK method 1267 */ 1268 bool acpi_dock_match(acpi_handle handle) 1269 { 1270 return acpi_has_method(handle, "_DCK"); 1271 } 1272 1273 static acpi_status 1274 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1275 void **return_value) 1276 { 1277 long *cap = context; 1278 1279 if (acpi_has_method(handle, "_BCM") && 1280 acpi_has_method(handle, "_BCL")) { 1281 acpi_handle_debug(handle, "Found generic backlight support\n"); 1282 *cap |= ACPI_VIDEO_BACKLIGHT; 1283 /* We have backlight support, no need to scan further */ 1284 return AE_CTRL_TERMINATE; 1285 } 1286 return 0; 1287 } 1288 1289 /* Returns true if the ACPI object is a video device which can be 1290 * handled by video.ko. 1291 * The device will get a Linux specific CID added in scan.c to 1292 * identify the device as an ACPI graphics device 1293 * Be aware that the graphics device may not be physically present 1294 * Use acpi_video_get_capabilities() to detect general ACPI video 1295 * capabilities of present cards 1296 */ 1297 long acpi_is_video_device(acpi_handle handle) 1298 { 1299 long video_caps = 0; 1300 1301 /* Is this device able to support video switching ? */ 1302 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1303 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1304 1305 /* Is this device able to retrieve a video ROM ? */ 1306 if (acpi_has_method(handle, "_ROM")) 1307 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1308 1309 /* Is this device able to configure which video head to be POSTed ? */ 1310 if (acpi_has_method(handle, "_VPO") && 1311 acpi_has_method(handle, "_GPD") && 1312 acpi_has_method(handle, "_SPD")) 1313 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1314 1315 /* Only check for backlight functionality if one of the above hit. */ 1316 if (video_caps) 1317 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1318 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1319 &video_caps, NULL); 1320 1321 return video_caps; 1322 } 1323 EXPORT_SYMBOL(acpi_is_video_device); 1324 1325 const char *acpi_device_hid(struct acpi_device *device) 1326 { 1327 struct acpi_hardware_id *hid; 1328 1329 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list); 1330 if (!hid) 1331 return dummy_hid; 1332 1333 return hid->id; 1334 } 1335 EXPORT_SYMBOL(acpi_device_hid); 1336 1337 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1338 { 1339 struct acpi_hardware_id *id; 1340 1341 id = kmalloc(sizeof(*id), GFP_KERNEL); 1342 if (!id) 1343 return; 1344 1345 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1346 if (!id->id) { 1347 kfree(id); 1348 return; 1349 } 1350 1351 list_add_tail(&id->list, &pnp->ids); 1352 pnp->type.hardware_id = 1; 1353 } 1354 1355 /* 1356 * Old IBM workstations have a DSDT bug wherein the SMBus object 1357 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1358 * prefix. Work around this. 1359 */ 1360 static bool acpi_ibm_smbus_match(acpi_handle handle) 1361 { 1362 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1363 struct acpi_buffer path = { sizeof(node_name), node_name }; 1364 1365 if (!dmi_name_in_vendors("IBM")) 1366 return false; 1367 1368 /* Look for SMBS object */ 1369 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1370 strcmp("SMBS", path.pointer)) 1371 return false; 1372 1373 /* Does it have the necessary (but misnamed) methods? */ 1374 if (acpi_has_method(handle, "SBI") && 1375 acpi_has_method(handle, "SBR") && 1376 acpi_has_method(handle, "SBW")) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 static bool acpi_object_is_system_bus(acpi_handle handle) 1383 { 1384 acpi_handle tmp; 1385 1386 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1387 tmp == handle) 1388 return true; 1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1390 tmp == handle) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1397 int device_type) 1398 { 1399 struct acpi_device_info *info = NULL; 1400 struct acpi_pnp_device_id_list *cid_list; 1401 int i; 1402 1403 switch (device_type) { 1404 case ACPI_BUS_TYPE_DEVICE: 1405 if (handle == ACPI_ROOT_OBJECT) { 1406 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1407 break; 1408 } 1409 1410 acpi_get_object_info(handle, &info); 1411 if (!info) { 1412 pr_err("%s: Error reading device info\n", __func__); 1413 return; 1414 } 1415 1416 if (info->valid & ACPI_VALID_HID) { 1417 acpi_add_id(pnp, info->hardware_id.string); 1418 pnp->type.platform_id = 1; 1419 } 1420 if (info->valid & ACPI_VALID_CID) { 1421 cid_list = &info->compatible_id_list; 1422 for (i = 0; i < cid_list->count; i++) 1423 acpi_add_id(pnp, cid_list->ids[i].string); 1424 } 1425 if (info->valid & ACPI_VALID_ADR) { 1426 pnp->bus_address = info->address; 1427 pnp->type.bus_address = 1; 1428 } 1429 if (info->valid & ACPI_VALID_UID) 1430 pnp->unique_id = kstrdup(info->unique_id.string, 1431 GFP_KERNEL); 1432 if (info->valid & ACPI_VALID_CLS) 1433 acpi_add_id(pnp, info->class_code.string); 1434 1435 kfree(info); 1436 1437 /* 1438 * Some devices don't reliably have _HIDs & _CIDs, so add 1439 * synthetic HIDs to make sure drivers can find them. 1440 */ 1441 if (acpi_is_video_device(handle)) { 1442 acpi_add_id(pnp, ACPI_VIDEO_HID); 1443 pnp->type.backlight = 1; 1444 break; 1445 } 1446 if (acpi_bay_match(handle)) 1447 acpi_add_id(pnp, ACPI_BAY_HID); 1448 else if (acpi_dock_match(handle)) 1449 acpi_add_id(pnp, ACPI_DOCK_HID); 1450 else if (acpi_ibm_smbus_match(handle)) 1451 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1452 else if (list_empty(&pnp->ids) && 1453 acpi_object_is_system_bus(handle)) { 1454 /* \_SB, \_TZ, LNXSYBUS */ 1455 acpi_add_id(pnp, ACPI_BUS_HID); 1456 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1457 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1458 } 1459 1460 break; 1461 case ACPI_BUS_TYPE_POWER: 1462 acpi_add_id(pnp, ACPI_POWER_HID); 1463 break; 1464 case ACPI_BUS_TYPE_PROCESSOR: 1465 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1466 break; 1467 case ACPI_BUS_TYPE_THERMAL: 1468 acpi_add_id(pnp, ACPI_THERMAL_HID); 1469 break; 1470 case ACPI_BUS_TYPE_POWER_BUTTON: 1471 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1472 break; 1473 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1474 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1475 break; 1476 case ACPI_BUS_TYPE_ECDT_EC: 1477 acpi_add_id(pnp, ACPI_ECDT_HID); 1478 break; 1479 } 1480 } 1481 1482 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1483 { 1484 struct acpi_hardware_id *id, *tmp; 1485 1486 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1487 kfree_const(id->id); 1488 kfree(id); 1489 } 1490 kfree(pnp->unique_id); 1491 } 1492 1493 /** 1494 * acpi_dma_supported - Check DMA support for the specified device. 1495 * @adev: The pointer to acpi device 1496 * 1497 * Return false if DMA is not supported. Otherwise, return true 1498 */ 1499 bool acpi_dma_supported(const struct acpi_device *adev) 1500 { 1501 if (!adev) 1502 return false; 1503 1504 if (adev->flags.cca_seen) 1505 return true; 1506 1507 /* 1508 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1509 * DMA on "Intel platforms". Presumably that includes all x86 and 1510 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1511 */ 1512 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1513 return true; 1514 1515 return false; 1516 } 1517 1518 /** 1519 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1520 * @adev: The pointer to acpi device 1521 * 1522 * Return enum dev_dma_attr. 1523 */ 1524 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1525 { 1526 if (!acpi_dma_supported(adev)) 1527 return DEV_DMA_NOT_SUPPORTED; 1528 1529 if (adev->flags.coherent_dma) 1530 return DEV_DMA_COHERENT; 1531 else 1532 return DEV_DMA_NON_COHERENT; 1533 } 1534 1535 /** 1536 * acpi_dma_get_range() - Get device DMA parameters. 1537 * 1538 * @dev: device to configure 1539 * @map: pointer to DMA ranges result 1540 * 1541 * Evaluate DMA regions and return pointer to DMA regions on 1542 * parsing success; it does not update the passed in values on failure. 1543 * 1544 * Return 0 on success, < 0 on failure. 1545 */ 1546 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1547 { 1548 struct acpi_device *adev; 1549 LIST_HEAD(list); 1550 struct resource_entry *rentry; 1551 int ret; 1552 struct device *dma_dev = dev; 1553 struct bus_dma_region *r; 1554 1555 /* 1556 * Walk the device tree chasing an ACPI companion with a _DMA 1557 * object while we go. Stop if we find a device with an ACPI 1558 * companion containing a _DMA method. 1559 */ 1560 do { 1561 adev = ACPI_COMPANION(dma_dev); 1562 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1563 break; 1564 1565 dma_dev = dma_dev->parent; 1566 } while (dma_dev); 1567 1568 if (!dma_dev) 1569 return -ENODEV; 1570 1571 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1572 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1573 return -EINVAL; 1574 } 1575 1576 ret = acpi_dev_get_dma_resources(adev, &list); 1577 if (ret > 0) { 1578 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1579 if (!r) { 1580 ret = -ENOMEM; 1581 goto out; 1582 } 1583 1584 *map = r; 1585 1586 list_for_each_entry(rentry, &list, node) { 1587 if (rentry->res->start >= rentry->res->end) { 1588 kfree(*map); 1589 *map = NULL; 1590 ret = -EINVAL; 1591 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1592 goto out; 1593 } 1594 1595 r->cpu_start = rentry->res->start; 1596 r->dma_start = rentry->res->start - rentry->offset; 1597 r->size = resource_size(rentry->res); 1598 r++; 1599 } 1600 } 1601 out: 1602 acpi_dev_free_resource_list(&list); 1603 1604 return ret >= 0 ? 0 : ret; 1605 } 1606 1607 #ifdef CONFIG_IOMMU_API 1608 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1609 struct fwnode_handle *fwnode) 1610 { 1611 int ret; 1612 1613 ret = iommu_fwspec_init(dev, fwnode); 1614 if (ret) 1615 return ret; 1616 1617 return iommu_fwspec_add_ids(dev, &id, 1); 1618 } 1619 1620 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1621 { 1622 int err; 1623 1624 /* Serialise to make dev->iommu stable under our potential fwspec */ 1625 mutex_lock(&iommu_probe_device_lock); 1626 /* If we already translated the fwspec there is nothing left to do */ 1627 if (dev_iommu_fwspec_get(dev)) { 1628 mutex_unlock(&iommu_probe_device_lock); 1629 return 0; 1630 } 1631 1632 err = iort_iommu_configure_id(dev, id_in); 1633 if (err && err != -EPROBE_DEFER) 1634 err = viot_iommu_configure(dev); 1635 mutex_unlock(&iommu_probe_device_lock); 1636 1637 /* 1638 * If we have reason to believe the IOMMU driver missed the initial 1639 * iommu_probe_device() call for dev, replay it to get things in order. 1640 */ 1641 if (!err && dev->bus) 1642 err = iommu_probe_device(dev); 1643 1644 return err; 1645 } 1646 1647 #else /* !CONFIG_IOMMU_API */ 1648 1649 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1650 struct fwnode_handle *fwnode) 1651 { 1652 return -ENODEV; 1653 } 1654 1655 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1656 { 1657 return -ENODEV; 1658 } 1659 1660 #endif /* !CONFIG_IOMMU_API */ 1661 1662 /** 1663 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1664 * @dev: The pointer to the device 1665 * @attr: device dma attributes 1666 * @input_id: input device id const value pointer 1667 */ 1668 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1669 const u32 *input_id) 1670 { 1671 int ret; 1672 1673 if (attr == DEV_DMA_NOT_SUPPORTED) { 1674 set_dma_ops(dev, &dma_dummy_ops); 1675 return 0; 1676 } 1677 1678 acpi_arch_dma_setup(dev); 1679 1680 /* Ignore all other errors apart from EPROBE_DEFER */ 1681 ret = acpi_iommu_configure_id(dev, input_id); 1682 if (ret == -EPROBE_DEFER) 1683 return -EPROBE_DEFER; 1684 if (ret) 1685 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret); 1686 1687 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT); 1688 1689 return 0; 1690 } 1691 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1692 1693 static void acpi_init_coherency(struct acpi_device *adev) 1694 { 1695 unsigned long long cca = 0; 1696 acpi_status status; 1697 struct acpi_device *parent = acpi_dev_parent(adev); 1698 1699 if (parent && parent->flags.cca_seen) { 1700 /* 1701 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1702 * already saw one. 1703 */ 1704 adev->flags.cca_seen = 1; 1705 cca = parent->flags.coherent_dma; 1706 } else { 1707 status = acpi_evaluate_integer(adev->handle, "_CCA", 1708 NULL, &cca); 1709 if (ACPI_SUCCESS(status)) 1710 adev->flags.cca_seen = 1; 1711 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1712 /* 1713 * If architecture does not specify that _CCA is 1714 * required for DMA-able devices (e.g. x86), 1715 * we default to _CCA=1. 1716 */ 1717 cca = 1; 1718 else 1719 acpi_handle_debug(adev->handle, 1720 "ACPI device is missing _CCA.\n"); 1721 } 1722 1723 adev->flags.coherent_dma = cca; 1724 } 1725 1726 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1727 { 1728 bool *is_serial_bus_slave_p = data; 1729 1730 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1731 return 1; 1732 1733 *is_serial_bus_slave_p = true; 1734 1735 /* no need to do more checking */ 1736 return -1; 1737 } 1738 1739 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1740 { 1741 struct acpi_device *parent = acpi_dev_parent(device); 1742 static const struct acpi_device_id indirect_io_hosts[] = { 1743 {"HISI0191", 0}, 1744 {} 1745 }; 1746 1747 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1748 } 1749 1750 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1751 { 1752 struct list_head resource_list; 1753 bool is_serial_bus_slave = false; 1754 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1755 /* 1756 * These devices have multiple SerialBus resources and a client 1757 * device must be instantiated for each of them, each with 1758 * its own device id. 1759 * Normally we only instantiate one client device for the first 1760 * resource, using the ACPI HID as id. These special cases are handled 1761 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1762 * knows which client device id to use for each resource. 1763 */ 1764 {"BSG1160", }, 1765 {"BSG2150", }, 1766 {"CSC3551", }, 1767 {"CSC3554", }, 1768 {"CSC3556", }, 1769 {"CSC3557", }, 1770 {"INT33FE", }, 1771 {"INT3515", }, 1772 /* Non-conforming _HID for Cirrus Logic already released */ 1773 {"CLSA0100", }, 1774 {"CLSA0101", }, 1775 /* 1776 * Some ACPI devs contain SerialBus resources even though they are not 1777 * attached to a serial bus at all. 1778 */ 1779 {ACPI_VIDEO_HID, }, 1780 {"MSHW0028", }, 1781 /* 1782 * HIDs of device with an UartSerialBusV2 resource for which userspace 1783 * expects a regular tty cdev to be created (instead of the in kernel 1784 * serdev) and which have a kernel driver which expects a platform_dev 1785 * such as the rfkill-gpio driver. 1786 */ 1787 {"BCM4752", }, 1788 {"LNV4752", }, 1789 {} 1790 }; 1791 1792 if (acpi_is_indirect_io_slave(device)) 1793 return true; 1794 1795 /* Macs use device properties in lieu of _CRS resources */ 1796 if (x86_apple_machine && 1797 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1798 fwnode_property_present(&device->fwnode, "i2cAddress") || 1799 fwnode_property_present(&device->fwnode, "baud"))) 1800 return true; 1801 1802 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1803 return false; 1804 1805 INIT_LIST_HEAD(&resource_list); 1806 acpi_dev_get_resources(device, &resource_list, 1807 acpi_check_serial_bus_slave, 1808 &is_serial_bus_slave); 1809 acpi_dev_free_resource_list(&resource_list); 1810 1811 return is_serial_bus_slave; 1812 } 1813 1814 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1815 int type, void (*release)(struct device *)) 1816 { 1817 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1818 1819 INIT_LIST_HEAD(&device->pnp.ids); 1820 device->device_type = type; 1821 device->handle = handle; 1822 device->dev.parent = parent ? &parent->dev : NULL; 1823 device->dev.release = release; 1824 device->dev.bus = &acpi_bus_type; 1825 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1826 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1827 acpi_device_get_busid(device); 1828 acpi_set_pnp_ids(handle, &device->pnp, type); 1829 acpi_init_properties(device); 1830 acpi_bus_get_flags(device); 1831 device->flags.match_driver = false; 1832 device->flags.initialized = true; 1833 device->flags.enumeration_by_parent = 1834 acpi_device_enumeration_by_parent(device); 1835 acpi_device_clear_enumerated(device); 1836 device_initialize(&device->dev); 1837 dev_set_uevent_suppress(&device->dev, true); 1838 acpi_init_coherency(device); 1839 } 1840 1841 static void acpi_scan_dep_init(struct acpi_device *adev) 1842 { 1843 struct acpi_dep_data *dep; 1844 1845 list_for_each_entry(dep, &acpi_dep_list, node) { 1846 if (dep->consumer == adev->handle) { 1847 if (dep->honor_dep) 1848 adev->flags.honor_deps = 1; 1849 1850 if (!dep->met) 1851 adev->dep_unmet++; 1852 } 1853 } 1854 } 1855 1856 void acpi_device_add_finalize(struct acpi_device *device) 1857 { 1858 dev_set_uevent_suppress(&device->dev, false); 1859 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1860 } 1861 1862 static void acpi_scan_init_status(struct acpi_device *adev) 1863 { 1864 if (acpi_bus_get_status(adev)) 1865 acpi_set_device_status(adev, 0); 1866 } 1867 1868 static int acpi_add_single_object(struct acpi_device **child, 1869 acpi_handle handle, int type, bool dep_init) 1870 { 1871 struct acpi_device *device; 1872 bool release_dep_lock = false; 1873 int result; 1874 1875 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1876 if (!device) 1877 return -ENOMEM; 1878 1879 acpi_init_device_object(device, handle, type, acpi_device_release); 1880 /* 1881 * Getting the status is delayed till here so that we can call 1882 * acpi_bus_get_status() and use its quirk handling. Note that 1883 * this must be done before the get power-/wakeup_dev-flags calls. 1884 */ 1885 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1886 if (dep_init) { 1887 mutex_lock(&acpi_dep_list_lock); 1888 /* 1889 * Hold the lock until the acpi_tie_acpi_dev() call 1890 * below to prevent concurrent acpi_scan_clear_dep() 1891 * from deleting a dependency list entry without 1892 * updating dep_unmet for the device. 1893 */ 1894 release_dep_lock = true; 1895 acpi_scan_dep_init(device); 1896 } 1897 acpi_scan_init_status(device); 1898 } 1899 1900 acpi_bus_get_power_flags(device); 1901 acpi_bus_get_wakeup_device_flags(device); 1902 1903 result = acpi_tie_acpi_dev(device); 1904 1905 if (release_dep_lock) 1906 mutex_unlock(&acpi_dep_list_lock); 1907 1908 if (!result) 1909 result = acpi_device_add(device); 1910 1911 if (result) { 1912 acpi_device_release(&device->dev); 1913 return result; 1914 } 1915 1916 acpi_power_add_remove_device(device, true); 1917 acpi_device_add_finalize(device); 1918 1919 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1920 dev_name(&device->dev), device->dev.parent ? 1921 dev_name(device->dev.parent) : "(null)"); 1922 1923 *child = device; 1924 return 0; 1925 } 1926 1927 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1928 void *context) 1929 { 1930 struct resource *res = context; 1931 1932 if (acpi_dev_resource_memory(ares, res)) 1933 return AE_CTRL_TERMINATE; 1934 1935 return AE_OK; 1936 } 1937 1938 static bool acpi_device_should_be_hidden(acpi_handle handle) 1939 { 1940 acpi_status status; 1941 struct resource res; 1942 1943 /* Check if it should ignore the UART device */ 1944 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1945 return false; 1946 1947 /* 1948 * The UART device described in SPCR table is assumed to have only one 1949 * memory resource present. So we only look for the first one here. 1950 */ 1951 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1952 acpi_get_resource_memory, &res); 1953 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1954 return false; 1955 1956 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1957 &res.start); 1958 1959 return true; 1960 } 1961 1962 bool acpi_device_is_present(const struct acpi_device *adev) 1963 { 1964 return adev->status.present || adev->status.functional; 1965 } 1966 1967 bool acpi_device_is_enabled(const struct acpi_device *adev) 1968 { 1969 return adev->status.enabled; 1970 } 1971 1972 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1973 const char *idstr, 1974 const struct acpi_device_id **matchid) 1975 { 1976 const struct acpi_device_id *devid; 1977 1978 if (handler->match) 1979 return handler->match(idstr, matchid); 1980 1981 for (devid = handler->ids; devid->id[0]; devid++) 1982 if (!strcmp((char *)devid->id, idstr)) { 1983 if (matchid) 1984 *matchid = devid; 1985 1986 return true; 1987 } 1988 1989 return false; 1990 } 1991 1992 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1993 const struct acpi_device_id **matchid) 1994 { 1995 struct acpi_scan_handler *handler; 1996 1997 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1998 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1999 return handler; 2000 2001 return NULL; 2002 } 2003 2004 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 2005 { 2006 if (!!hotplug->enabled == !!val) 2007 return; 2008 2009 mutex_lock(&acpi_scan_lock); 2010 2011 hotplug->enabled = val; 2012 2013 mutex_unlock(&acpi_scan_lock); 2014 } 2015 2016 static void acpi_scan_init_hotplug(struct acpi_device *adev) 2017 { 2018 struct acpi_hardware_id *hwid; 2019 2020 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 2021 acpi_dock_add(adev); 2022 return; 2023 } 2024 list_for_each_entry(hwid, &adev->pnp.ids, list) { 2025 struct acpi_scan_handler *handler; 2026 2027 handler = acpi_scan_match_handler(hwid->id, NULL); 2028 if (handler) { 2029 adev->flags.hotplug_notify = true; 2030 break; 2031 } 2032 } 2033 } 2034 2035 static u32 acpi_scan_check_dep(acpi_handle handle) 2036 { 2037 struct acpi_handle_list dep_devices; 2038 u32 count; 2039 int i; 2040 2041 /* 2042 * Check for _HID here to avoid deferring the enumeration of: 2043 * 1. PCI devices. 2044 * 2. ACPI nodes describing USB ports. 2045 * Still, checking for _HID catches more then just these cases ... 2046 */ 2047 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 2048 return 0; 2049 2050 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) { 2051 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2052 return 0; 2053 } 2054 2055 for (count = 0, i = 0; i < dep_devices.count; i++) { 2056 struct acpi_device_info *info; 2057 struct acpi_dep_data *dep; 2058 bool skip, honor_dep; 2059 acpi_status status; 2060 2061 status = acpi_get_object_info(dep_devices.handles[i], &info); 2062 if (ACPI_FAILURE(status)) { 2063 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2064 continue; 2065 } 2066 2067 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2068 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2069 kfree(info); 2070 2071 if (skip) 2072 continue; 2073 2074 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2075 if (!dep) 2076 continue; 2077 2078 count++; 2079 2080 dep->supplier = dep_devices.handles[i]; 2081 dep->consumer = handle; 2082 dep->honor_dep = honor_dep; 2083 2084 mutex_lock(&acpi_dep_list_lock); 2085 list_add_tail(&dep->node , &acpi_dep_list); 2086 mutex_unlock(&acpi_dep_list_lock); 2087 } 2088 2089 acpi_handle_list_free(&dep_devices); 2090 return count; 2091 } 2092 2093 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c) 2094 { 2095 acpi_mipi_check_crs_csi2(handle); 2096 return AE_OK; 2097 } 2098 2099 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass, 2100 struct acpi_device **adev_p) 2101 { 2102 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2103 acpi_object_type acpi_type; 2104 int type; 2105 2106 if (device) 2107 goto out; 2108 2109 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2110 return AE_OK; 2111 2112 switch (acpi_type) { 2113 case ACPI_TYPE_DEVICE: 2114 if (acpi_device_should_be_hidden(handle)) 2115 return AE_OK; 2116 2117 if (first_pass) { 2118 acpi_mipi_check_crs_csi2(handle); 2119 2120 /* Bail out if there are dependencies. */ 2121 if (acpi_scan_check_dep(handle) > 0) { 2122 /* 2123 * The entire CSI-2 connection graph needs to be 2124 * extracted before any drivers or scan handlers 2125 * are bound to struct device objects, so scan 2126 * _CRS CSI-2 resource descriptors for all 2127 * devices below the current handle. 2128 */ 2129 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2130 ACPI_UINT32_MAX, 2131 acpi_scan_check_crs_csi2_cb, 2132 NULL, NULL, NULL); 2133 return AE_CTRL_DEPTH; 2134 } 2135 } 2136 2137 fallthrough; 2138 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2139 type = ACPI_BUS_TYPE_DEVICE; 2140 break; 2141 2142 case ACPI_TYPE_PROCESSOR: 2143 type = ACPI_BUS_TYPE_PROCESSOR; 2144 break; 2145 2146 case ACPI_TYPE_THERMAL: 2147 type = ACPI_BUS_TYPE_THERMAL; 2148 break; 2149 2150 case ACPI_TYPE_POWER: 2151 acpi_add_power_resource(handle); 2152 fallthrough; 2153 default: 2154 return AE_OK; 2155 } 2156 2157 /* 2158 * If first_pass is true at this point, the device has no dependencies, 2159 * or the creation of the device object would have been postponed above. 2160 */ 2161 acpi_add_single_object(&device, handle, type, !first_pass); 2162 if (!device) 2163 return AE_CTRL_DEPTH; 2164 2165 acpi_scan_init_hotplug(device); 2166 2167 out: 2168 if (!*adev_p) 2169 *adev_p = device; 2170 2171 return AE_OK; 2172 } 2173 2174 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2175 void *not_used, void **ret_p) 2176 { 2177 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2178 } 2179 2180 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2181 void *not_used, void **ret_p) 2182 { 2183 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2184 } 2185 2186 static void acpi_default_enumeration(struct acpi_device *device) 2187 { 2188 /* 2189 * Do not enumerate devices with enumeration_by_parent flag set as 2190 * they will be enumerated by their respective parents. 2191 */ 2192 if (!device->flags.enumeration_by_parent) { 2193 acpi_create_platform_device(device, NULL); 2194 acpi_device_set_enumerated(device); 2195 } else { 2196 blocking_notifier_call_chain(&acpi_reconfig_chain, 2197 ACPI_RECONFIG_DEVICE_ADD, device); 2198 } 2199 } 2200 2201 static const struct acpi_device_id generic_device_ids[] = { 2202 {ACPI_DT_NAMESPACE_HID, }, 2203 {"", }, 2204 }; 2205 2206 static int acpi_generic_device_attach(struct acpi_device *adev, 2207 const struct acpi_device_id *not_used) 2208 { 2209 /* 2210 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2211 * below can be unconditional. 2212 */ 2213 if (adev->data.of_compatible) 2214 acpi_default_enumeration(adev); 2215 2216 return 1; 2217 } 2218 2219 static struct acpi_scan_handler generic_device_handler = { 2220 .ids = generic_device_ids, 2221 .attach = acpi_generic_device_attach, 2222 }; 2223 2224 static int acpi_scan_attach_handler(struct acpi_device *device) 2225 { 2226 struct acpi_hardware_id *hwid; 2227 int ret = 0; 2228 2229 list_for_each_entry(hwid, &device->pnp.ids, list) { 2230 const struct acpi_device_id *devid; 2231 struct acpi_scan_handler *handler; 2232 2233 handler = acpi_scan_match_handler(hwid->id, &devid); 2234 if (handler) { 2235 if (!handler->attach) { 2236 device->pnp.type.platform_id = 0; 2237 continue; 2238 } 2239 device->handler = handler; 2240 ret = handler->attach(device, devid); 2241 if (ret > 0) 2242 break; 2243 2244 device->handler = NULL; 2245 if (ret < 0) 2246 break; 2247 } 2248 } 2249 2250 return ret; 2251 } 2252 2253 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2254 { 2255 bool skip = !first_pass && device->flags.visited; 2256 acpi_handle ejd; 2257 int ret; 2258 2259 if (skip) 2260 goto ok; 2261 2262 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2263 register_dock_dependent_device(device, ejd); 2264 2265 acpi_bus_get_status(device); 2266 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2267 if (!acpi_dev_ready_for_enumeration(device)) { 2268 device->flags.initialized = false; 2269 acpi_device_clear_enumerated(device); 2270 device->flags.power_manageable = 0; 2271 return 0; 2272 } 2273 if (device->handler) 2274 goto ok; 2275 2276 acpi_ec_register_opregions(device); 2277 2278 if (!device->flags.initialized) { 2279 device->flags.power_manageable = 2280 device->power.states[ACPI_STATE_D0].flags.valid; 2281 if (acpi_bus_init_power(device)) 2282 device->flags.power_manageable = 0; 2283 2284 device->flags.initialized = true; 2285 } else if (device->flags.visited) { 2286 goto ok; 2287 } 2288 2289 ret = acpi_scan_attach_handler(device); 2290 if (ret < 0) 2291 return 0; 2292 2293 device->flags.match_driver = true; 2294 if (ret > 0 && !device->flags.enumeration_by_parent) { 2295 acpi_device_set_enumerated(device); 2296 goto ok; 2297 } 2298 2299 ret = device_attach(&device->dev); 2300 if (ret < 0) 2301 return 0; 2302 2303 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2304 acpi_default_enumeration(device); 2305 else 2306 acpi_device_set_enumerated(device); 2307 2308 ok: 2309 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2310 2311 if (!skip && device->handler && device->handler->hotplug.notify_online) 2312 device->handler->hotplug.notify_online(device); 2313 2314 return 0; 2315 } 2316 2317 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2318 { 2319 struct acpi_device **adev_p = data; 2320 struct acpi_device *adev = *adev_p; 2321 2322 /* 2323 * If we're passed a 'previous' consumer device then we need to skip 2324 * any consumers until we meet the previous one, and then NULL @data 2325 * so the next one can be returned. 2326 */ 2327 if (adev) { 2328 if (dep->consumer == adev->handle) 2329 *adev_p = NULL; 2330 2331 return 0; 2332 } 2333 2334 adev = acpi_get_acpi_dev(dep->consumer); 2335 if (adev) { 2336 *(struct acpi_device **)data = adev; 2337 return 1; 2338 } 2339 /* Continue parsing if the device object is not present. */ 2340 return 0; 2341 } 2342 2343 struct acpi_scan_clear_dep_work { 2344 struct work_struct work; 2345 struct acpi_device *adev; 2346 }; 2347 2348 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2349 { 2350 struct acpi_scan_clear_dep_work *cdw; 2351 2352 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2353 2354 acpi_scan_lock_acquire(); 2355 acpi_bus_attach(cdw->adev, (void *)true); 2356 acpi_scan_lock_release(); 2357 2358 acpi_dev_put(cdw->adev); 2359 kfree(cdw); 2360 } 2361 2362 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2363 { 2364 struct acpi_scan_clear_dep_work *cdw; 2365 2366 if (adev->dep_unmet) 2367 return false; 2368 2369 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2370 if (!cdw) 2371 return false; 2372 2373 cdw->adev = adev; 2374 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2375 /* 2376 * Since the work function may block on the lock until the entire 2377 * initial enumeration of devices is complete, put it into the unbound 2378 * workqueue. 2379 */ 2380 queue_work(system_unbound_wq, &cdw->work); 2381 2382 return true; 2383 } 2384 2385 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2386 { 2387 list_del(&dep->node); 2388 kfree(dep); 2389 } 2390 2391 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2392 { 2393 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2394 2395 if (adev) { 2396 adev->dep_unmet--; 2397 if (!acpi_scan_clear_dep_queue(adev)) 2398 acpi_dev_put(adev); 2399 } 2400 2401 if (dep->free_when_met) 2402 acpi_scan_delete_dep_data(dep); 2403 else 2404 dep->met = true; 2405 2406 return 0; 2407 } 2408 2409 /** 2410 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2411 * @handle: The ACPI handle of the supplier device 2412 * @callback: Pointer to the callback function to apply 2413 * @data: Pointer to some data to pass to the callback 2414 * 2415 * The return value of the callback determines this function's behaviour. If 0 2416 * is returned we continue to iterate over acpi_dep_list. If a positive value 2417 * is returned then the loop is broken but this function returns 0. If a 2418 * negative value is returned by the callback then the loop is broken and that 2419 * value is returned as the final error. 2420 */ 2421 static int acpi_walk_dep_device_list(acpi_handle handle, 2422 int (*callback)(struct acpi_dep_data *, void *), 2423 void *data) 2424 { 2425 struct acpi_dep_data *dep, *tmp; 2426 int ret = 0; 2427 2428 mutex_lock(&acpi_dep_list_lock); 2429 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2430 if (dep->supplier == handle) { 2431 ret = callback(dep, data); 2432 if (ret) 2433 break; 2434 } 2435 } 2436 mutex_unlock(&acpi_dep_list_lock); 2437 2438 return ret > 0 ? 0 : ret; 2439 } 2440 2441 /** 2442 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2443 * @supplier: Pointer to the supplier &struct acpi_device 2444 * 2445 * Clear dependencies on the given device. 2446 */ 2447 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2448 { 2449 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2450 } 2451 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2452 2453 /** 2454 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2455 * @device: Pointer to the &struct acpi_device to check 2456 * 2457 * Check if the device is present and has no unmet dependencies. 2458 * 2459 * Return true if the device is ready for enumeratino. Otherwise, return false. 2460 */ 2461 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2462 { 2463 if (device->flags.honor_deps && device->dep_unmet) 2464 return false; 2465 2466 return acpi_device_is_present(device); 2467 } 2468 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2469 2470 /** 2471 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2472 * @supplier: Pointer to the dependee device 2473 * @start: Pointer to the current dependent device 2474 * 2475 * Returns the next &struct acpi_device which declares itself dependent on 2476 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2477 * 2478 * If the returned adev is not passed as @start to this function, the caller is 2479 * responsible for putting the reference to adev when it is no longer needed. 2480 */ 2481 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2482 struct acpi_device *start) 2483 { 2484 struct acpi_device *adev = start; 2485 2486 acpi_walk_dep_device_list(supplier->handle, 2487 acpi_dev_get_next_consumer_dev_cb, &adev); 2488 2489 acpi_dev_put(start); 2490 2491 if (adev == start) 2492 return NULL; 2493 2494 return adev; 2495 } 2496 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2497 2498 static void acpi_scan_postponed_branch(acpi_handle handle) 2499 { 2500 struct acpi_device *adev = NULL; 2501 2502 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2503 return; 2504 2505 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2506 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2507 2508 /* 2509 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that 2510 * have been added above. 2511 */ 2512 acpi_mipi_init_crs_csi2_swnodes(); 2513 2514 acpi_bus_attach(adev, NULL); 2515 } 2516 2517 static void acpi_scan_postponed(void) 2518 { 2519 struct acpi_dep_data *dep, *tmp; 2520 2521 mutex_lock(&acpi_dep_list_lock); 2522 2523 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2524 acpi_handle handle = dep->consumer; 2525 2526 /* 2527 * In case there are multiple acpi_dep_list entries with the 2528 * same consumer, skip the current entry if the consumer device 2529 * object corresponding to it is present already. 2530 */ 2531 if (!acpi_fetch_acpi_dev(handle)) { 2532 /* 2533 * Even though the lock is released here, tmp is 2534 * guaranteed to be valid, because none of the list 2535 * entries following dep is marked as "free when met" 2536 * and so they cannot be deleted. 2537 */ 2538 mutex_unlock(&acpi_dep_list_lock); 2539 2540 acpi_scan_postponed_branch(handle); 2541 2542 mutex_lock(&acpi_dep_list_lock); 2543 } 2544 2545 if (dep->met) 2546 acpi_scan_delete_dep_data(dep); 2547 else 2548 dep->free_when_met = true; 2549 } 2550 2551 mutex_unlock(&acpi_dep_list_lock); 2552 } 2553 2554 /** 2555 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2556 * @handle: Root of the namespace scope to scan. 2557 * 2558 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2559 * found devices. 2560 * 2561 * If no devices were found, -ENODEV is returned, but it does not mean that 2562 * there has been a real error. There just have been no suitable ACPI objects 2563 * in the table trunk from which the kernel could create a device and add an 2564 * appropriate driver. 2565 * 2566 * Must be called under acpi_scan_lock. 2567 */ 2568 int acpi_bus_scan(acpi_handle handle) 2569 { 2570 struct acpi_device *device = NULL; 2571 2572 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2573 2574 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2575 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2576 acpi_bus_check_add_1, NULL, NULL, 2577 (void **)&device); 2578 2579 if (!device) 2580 return -ENODEV; 2581 2582 /* 2583 * Set up ACPI _CRS CSI-2 software nodes using information extracted 2584 * from the _CRS CSI-2 resource descriptors during the ACPI namespace 2585 * walk above and MIPI DisCo for Imaging device properties. 2586 */ 2587 acpi_mipi_scan_crs_csi2(); 2588 acpi_mipi_init_crs_csi2_swnodes(); 2589 2590 acpi_bus_attach(device, (void *)true); 2591 2592 /* Pass 2: Enumerate all of the remaining devices. */ 2593 2594 acpi_scan_postponed(); 2595 2596 acpi_mipi_crs_csi2_cleanup(); 2597 2598 return 0; 2599 } 2600 EXPORT_SYMBOL(acpi_bus_scan); 2601 2602 /** 2603 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2604 * @adev: Root of the ACPI namespace scope to walk. 2605 * 2606 * Must be called under acpi_scan_lock. 2607 */ 2608 void acpi_bus_trim(struct acpi_device *adev) 2609 { 2610 uintptr_t flags = 0; 2611 2612 acpi_scan_check_and_detach(adev, (void *)flags); 2613 } 2614 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2615 2616 int acpi_bus_register_early_device(int type) 2617 { 2618 struct acpi_device *device = NULL; 2619 int result; 2620 2621 result = acpi_add_single_object(&device, NULL, type, false); 2622 if (result) 2623 return result; 2624 2625 device->flags.match_driver = true; 2626 return device_attach(&device->dev); 2627 } 2628 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2629 2630 static void acpi_bus_scan_fixed(void) 2631 { 2632 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2633 struct acpi_device *adev = NULL; 2634 2635 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2636 false); 2637 if (adev) { 2638 adev->flags.match_driver = true; 2639 if (device_attach(&adev->dev) >= 0) 2640 device_init_wakeup(&adev->dev, true); 2641 else 2642 dev_dbg(&adev->dev, "No driver\n"); 2643 } 2644 } 2645 2646 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2647 struct acpi_device *adev = NULL; 2648 2649 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2650 false); 2651 if (adev) { 2652 adev->flags.match_driver = true; 2653 if (device_attach(&adev->dev) < 0) 2654 dev_dbg(&adev->dev, "No driver\n"); 2655 } 2656 } 2657 } 2658 2659 static void __init acpi_get_spcr_uart_addr(void) 2660 { 2661 acpi_status status; 2662 struct acpi_table_spcr *spcr_ptr; 2663 2664 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2665 (struct acpi_table_header **)&spcr_ptr); 2666 if (ACPI_FAILURE(status)) { 2667 pr_warn("STAO table present, but SPCR is missing\n"); 2668 return; 2669 } 2670 2671 spcr_uart_addr = spcr_ptr->serial_port.address; 2672 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2673 } 2674 2675 static bool acpi_scan_initialized; 2676 2677 void __init acpi_scan_init(void) 2678 { 2679 acpi_status status; 2680 struct acpi_table_stao *stao_ptr; 2681 2682 acpi_pci_root_init(); 2683 acpi_pci_link_init(); 2684 acpi_processor_init(); 2685 acpi_platform_init(); 2686 acpi_lpss_init(); 2687 acpi_apd_init(); 2688 acpi_cmos_rtc_init(); 2689 acpi_container_init(); 2690 acpi_memory_hotplug_init(); 2691 acpi_watchdog_init(); 2692 acpi_pnp_init(); 2693 acpi_int340x_thermal_init(); 2694 acpi_init_lpit(); 2695 2696 acpi_scan_add_handler(&generic_device_handler); 2697 2698 /* 2699 * If there is STAO table, check whether it needs to ignore the UART 2700 * device in SPCR table. 2701 */ 2702 status = acpi_get_table(ACPI_SIG_STAO, 0, 2703 (struct acpi_table_header **)&stao_ptr); 2704 if (ACPI_SUCCESS(status)) { 2705 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2706 pr_info("STAO Name List not yet supported.\n"); 2707 2708 if (stao_ptr->ignore_uart) 2709 acpi_get_spcr_uart_addr(); 2710 2711 acpi_put_table((struct acpi_table_header *)stao_ptr); 2712 } 2713 2714 acpi_gpe_apply_masked_gpes(); 2715 acpi_update_all_gpes(); 2716 2717 /* 2718 * Although we call __add_memory() that is documented to require the 2719 * device_hotplug_lock, it is not necessary here because this is an 2720 * early code when userspace or any other code path cannot trigger 2721 * hotplug/hotunplug operations. 2722 */ 2723 mutex_lock(&acpi_scan_lock); 2724 /* 2725 * Enumerate devices in the ACPI namespace. 2726 */ 2727 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2728 goto unlock; 2729 2730 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2731 if (!acpi_root) 2732 goto unlock; 2733 2734 /* Fixed feature devices do not exist on HW-reduced platform */ 2735 if (!acpi_gbl_reduced_hardware) 2736 acpi_bus_scan_fixed(); 2737 2738 acpi_turn_off_unused_power_resources(); 2739 2740 acpi_scan_initialized = true; 2741 2742 unlock: 2743 mutex_unlock(&acpi_scan_lock); 2744 } 2745 2746 static struct acpi_probe_entry *ape; 2747 static int acpi_probe_count; 2748 static DEFINE_MUTEX(acpi_probe_mutex); 2749 2750 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2751 const unsigned long end) 2752 { 2753 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2754 if (!ape->probe_subtbl(header, end)) 2755 acpi_probe_count++; 2756 2757 return 0; 2758 } 2759 2760 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2761 { 2762 int count = 0; 2763 2764 if (acpi_disabled) 2765 return 0; 2766 2767 mutex_lock(&acpi_probe_mutex); 2768 for (ape = ap_head; nr; ape++, nr--) { 2769 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2770 acpi_probe_count = 0; 2771 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2772 count += acpi_probe_count; 2773 } else { 2774 int res; 2775 res = acpi_table_parse(ape->id, ape->probe_table); 2776 if (!res) 2777 count++; 2778 } 2779 } 2780 mutex_unlock(&acpi_probe_mutex); 2781 2782 return count; 2783 } 2784 2785 static void acpi_table_events_fn(struct work_struct *work) 2786 { 2787 acpi_scan_lock_acquire(); 2788 acpi_bus_scan(ACPI_ROOT_OBJECT); 2789 acpi_scan_lock_release(); 2790 2791 kfree(work); 2792 } 2793 2794 void acpi_scan_table_notify(void) 2795 { 2796 struct work_struct *work; 2797 2798 if (!acpi_scan_initialized) 2799 return; 2800 2801 work = kmalloc(sizeof(*work), GFP_KERNEL); 2802 if (!work) 2803 return; 2804 2805 INIT_WORK(work, acpi_table_events_fn); 2806 schedule_work(work); 2807 } 2808 2809 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2810 { 2811 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2812 } 2813 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2814 2815 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2816 { 2817 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2818 } 2819 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2820