xref: /linux/drivers/acpi/scan.c (revision 74cc09fd8d04c56b652cfb332adb61f10bc2c199)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/acpi.h>
11 #include <linux/acpi_iort.h>
12 #include <linux/signal.h>
13 #include <linux/kthread.h>
14 #include <linux/dmi.h>
15 #include <linux/nls.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/platform_data/x86/apple.h>
18 #include <linux/pgtable.h>
19 
20 #include "internal.h"
21 
22 #define _COMPONENT		ACPI_BUS_COMPONENT
23 ACPI_MODULE_NAME("scan");
24 extern struct acpi_device *acpi_root;
25 
26 #define ACPI_BUS_CLASS			"system_bus"
27 #define ACPI_BUS_HID			"LNXSYBUS"
28 #define ACPI_BUS_DEVICE_NAME		"System Bus"
29 
30 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 struct acpi_dep_data {
53 	struct list_head node;
54 	acpi_handle master;
55 	acpi_handle slave;
56 };
57 
58 void acpi_scan_lock_acquire(void)
59 {
60 	mutex_lock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
63 
64 void acpi_scan_lock_release(void)
65 {
66 	mutex_unlock(&acpi_scan_lock);
67 }
68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
69 
70 void acpi_lock_hp_context(void)
71 {
72 	mutex_lock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_unlock_hp_context(void)
76 {
77 	mutex_unlock(&acpi_hp_context_lock);
78 }
79 
80 void acpi_initialize_hp_context(struct acpi_device *adev,
81 				struct acpi_hotplug_context *hp,
82 				int (*notify)(struct acpi_device *, u32),
83 				void (*uevent)(struct acpi_device *, u32))
84 {
85 	acpi_lock_hp_context();
86 	hp->notify = notify;
87 	hp->uevent = uevent;
88 	acpi_set_hp_context(adev, hp);
89 	acpi_unlock_hp_context();
90 }
91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
92 
93 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
94 {
95 	if (!handler)
96 		return -EINVAL;
97 
98 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
99 	return 0;
100 }
101 
102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
103 				       const char *hotplug_profile_name)
104 {
105 	int error;
106 
107 	error = acpi_scan_add_handler(handler);
108 	if (error)
109 		return error;
110 
111 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
112 	return 0;
113 }
114 
115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
116 {
117 	struct acpi_device_physical_node *pn;
118 	bool offline = true;
119 	char *envp[] = { "EVENT=offline", NULL };
120 
121 	/*
122 	 * acpi_container_offline() calls this for all of the container's
123 	 * children under the container's physical_node_lock lock.
124 	 */
125 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
126 
127 	list_for_each_entry(pn, &adev->physical_node_list, node)
128 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
129 			if (uevent)
130 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
131 
132 			offline = false;
133 			break;
134 		}
135 
136 	mutex_unlock(&adev->physical_node_lock);
137 	return offline;
138 }
139 
140 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
141 				    void **ret_p)
142 {
143 	struct acpi_device *device = NULL;
144 	struct acpi_device_physical_node *pn;
145 	bool second_pass = (bool)data;
146 	acpi_status status = AE_OK;
147 
148 	if (acpi_bus_get_device(handle, &device))
149 		return AE_OK;
150 
151 	if (device->handler && !device->handler->hotplug.enabled) {
152 		*ret_p = &device->dev;
153 		return AE_SUPPORT;
154 	}
155 
156 	mutex_lock(&device->physical_node_lock);
157 
158 	list_for_each_entry(pn, &device->physical_node_list, node) {
159 		int ret;
160 
161 		if (second_pass) {
162 			/* Skip devices offlined by the first pass. */
163 			if (pn->put_online)
164 				continue;
165 		} else {
166 			pn->put_online = false;
167 		}
168 		ret = device_offline(pn->dev);
169 		if (ret >= 0) {
170 			pn->put_online = !ret;
171 		} else {
172 			*ret_p = pn->dev;
173 			if (second_pass) {
174 				status = AE_ERROR;
175 				break;
176 			}
177 		}
178 	}
179 
180 	mutex_unlock(&device->physical_node_lock);
181 
182 	return status;
183 }
184 
185 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
186 				   void **ret_p)
187 {
188 	struct acpi_device *device = NULL;
189 	struct acpi_device_physical_node *pn;
190 
191 	if (acpi_bus_get_device(handle, &device))
192 		return AE_OK;
193 
194 	mutex_lock(&device->physical_node_lock);
195 
196 	list_for_each_entry(pn, &device->physical_node_list, node)
197 		if (pn->put_online) {
198 			device_online(pn->dev);
199 			pn->put_online = false;
200 		}
201 
202 	mutex_unlock(&device->physical_node_lock);
203 
204 	return AE_OK;
205 }
206 
207 static int acpi_scan_try_to_offline(struct acpi_device *device)
208 {
209 	acpi_handle handle = device->handle;
210 	struct device *errdev = NULL;
211 	acpi_status status;
212 
213 	/*
214 	 * Carry out two passes here and ignore errors in the first pass,
215 	 * because if the devices in question are memory blocks and
216 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
217 	 * that the other blocks depend on, but it is not known in advance which
218 	 * block holds them.
219 	 *
220 	 * If the first pass is successful, the second one isn't needed, though.
221 	 */
222 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				     NULL, acpi_bus_offline, (void *)false,
224 				     (void **)&errdev);
225 	if (status == AE_SUPPORT) {
226 		dev_warn(errdev, "Offline disabled.\n");
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    acpi_bus_online, NULL, NULL, NULL);
229 		return -EPERM;
230 	}
231 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
232 	if (errdev) {
233 		errdev = NULL;
234 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
235 				    NULL, acpi_bus_offline, (void *)true,
236 				    (void **)&errdev);
237 		if (!errdev)
238 			acpi_bus_offline(handle, 0, (void *)true,
239 					 (void **)&errdev);
240 
241 		if (errdev) {
242 			dev_warn(errdev, "Offline failed.\n");
243 			acpi_bus_online(handle, 0, NULL, NULL);
244 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
245 					    ACPI_UINT32_MAX, acpi_bus_online,
246 					    NULL, NULL, NULL);
247 			return -EBUSY;
248 		}
249 	}
250 	return 0;
251 }
252 
253 static int acpi_scan_hot_remove(struct acpi_device *device)
254 {
255 	acpi_handle handle = device->handle;
256 	unsigned long long sta;
257 	acpi_status status;
258 
259 	if (device->handler && device->handler->hotplug.demand_offline) {
260 		if (!acpi_scan_is_offline(device, true))
261 			return -EBUSY;
262 	} else {
263 		int error = acpi_scan_try_to_offline(device);
264 		if (error)
265 			return error;
266 	}
267 
268 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269 		"Hot-removing device %s...\n", dev_name(&device->dev)));
270 
271 	acpi_bus_trim(device);
272 
273 	acpi_evaluate_lck(handle, 0);
274 	/*
275 	 * TBD: _EJD support.
276 	 */
277 	status = acpi_evaluate_ej0(handle);
278 	if (status == AE_NOT_FOUND)
279 		return -ENODEV;
280 	else if (ACPI_FAILURE(status))
281 		return -EIO;
282 
283 	/*
284 	 * Verify if eject was indeed successful.  If not, log an error
285 	 * message.  No need to call _OST since _EJ0 call was made OK.
286 	 */
287 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
288 	if (ACPI_FAILURE(status)) {
289 		acpi_handle_warn(handle,
290 			"Status check after eject failed (0x%x)\n", status);
291 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
292 		acpi_handle_warn(handle,
293 			"Eject incomplete - status 0x%llx\n", sta);
294 	}
295 
296 	return 0;
297 }
298 
299 static int acpi_scan_device_not_present(struct acpi_device *adev)
300 {
301 	if (!acpi_device_enumerated(adev)) {
302 		dev_warn(&adev->dev, "Still not present\n");
303 		return -EALREADY;
304 	}
305 	acpi_bus_trim(adev);
306 	return 0;
307 }
308 
309 static int acpi_scan_device_check(struct acpi_device *adev)
310 {
311 	int error;
312 
313 	acpi_bus_get_status(adev);
314 	if (adev->status.present || adev->status.functional) {
315 		/*
316 		 * This function is only called for device objects for which
317 		 * matching scan handlers exist.  The only situation in which
318 		 * the scan handler is not attached to this device object yet
319 		 * is when the device has just appeared (either it wasn't
320 		 * present at all before or it was removed and then added
321 		 * again).
322 		 */
323 		if (adev->handler) {
324 			dev_warn(&adev->dev, "Already enumerated\n");
325 			return -EALREADY;
326 		}
327 		error = acpi_bus_scan(adev->handle);
328 		if (error) {
329 			dev_warn(&adev->dev, "Namespace scan failure\n");
330 			return error;
331 		}
332 		if (!adev->handler) {
333 			dev_warn(&adev->dev, "Enumeration failure\n");
334 			error = -ENODEV;
335 		}
336 	} else {
337 		error = acpi_scan_device_not_present(adev);
338 	}
339 	return error;
340 }
341 
342 static int acpi_scan_bus_check(struct acpi_device *adev)
343 {
344 	struct acpi_scan_handler *handler = adev->handler;
345 	struct acpi_device *child;
346 	int error;
347 
348 	acpi_bus_get_status(adev);
349 	if (!(adev->status.present || adev->status.functional)) {
350 		acpi_scan_device_not_present(adev);
351 		return 0;
352 	}
353 	if (handler && handler->hotplug.scan_dependent)
354 		return handler->hotplug.scan_dependent(adev);
355 
356 	error = acpi_bus_scan(adev->handle);
357 	if (error) {
358 		dev_warn(&adev->dev, "Namespace scan failure\n");
359 		return error;
360 	}
361 	list_for_each_entry(child, &adev->children, node) {
362 		error = acpi_scan_bus_check(child);
363 		if (error)
364 			return error;
365 	}
366 	return 0;
367 }
368 
369 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
370 {
371 	switch (type) {
372 	case ACPI_NOTIFY_BUS_CHECK:
373 		return acpi_scan_bus_check(adev);
374 	case ACPI_NOTIFY_DEVICE_CHECK:
375 		return acpi_scan_device_check(adev);
376 	case ACPI_NOTIFY_EJECT_REQUEST:
377 	case ACPI_OST_EC_OSPM_EJECT:
378 		if (adev->handler && !adev->handler->hotplug.enabled) {
379 			dev_info(&adev->dev, "Eject disabled\n");
380 			return -EPERM;
381 		}
382 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
383 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
384 		return acpi_scan_hot_remove(adev);
385 	}
386 	return -EINVAL;
387 }
388 
389 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
390 {
391 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
392 	int error = -ENODEV;
393 
394 	lock_device_hotplug();
395 	mutex_lock(&acpi_scan_lock);
396 
397 	/*
398 	 * The device object's ACPI handle cannot become invalid as long as we
399 	 * are holding acpi_scan_lock, but it might have become invalid before
400 	 * that lock was acquired.
401 	 */
402 	if (adev->handle == INVALID_ACPI_HANDLE)
403 		goto err_out;
404 
405 	if (adev->flags.is_dock_station) {
406 		error = dock_notify(adev, src);
407 	} else if (adev->flags.hotplug_notify) {
408 		error = acpi_generic_hotplug_event(adev, src);
409 	} else {
410 		int (*notify)(struct acpi_device *, u32);
411 
412 		acpi_lock_hp_context();
413 		notify = adev->hp ? adev->hp->notify : NULL;
414 		acpi_unlock_hp_context();
415 		/*
416 		 * There may be additional notify handlers for device objects
417 		 * without the .event() callback, so ignore them here.
418 		 */
419 		if (notify)
420 			error = notify(adev, src);
421 		else
422 			goto out;
423 	}
424 	switch (error) {
425 	case 0:
426 		ost_code = ACPI_OST_SC_SUCCESS;
427 		break;
428 	case -EPERM:
429 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
430 		break;
431 	case -EBUSY:
432 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
433 		break;
434 	default:
435 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
436 		break;
437 	}
438 
439  err_out:
440 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
441 
442  out:
443 	acpi_bus_put_acpi_device(adev);
444 	mutex_unlock(&acpi_scan_lock);
445 	unlock_device_hotplug();
446 }
447 
448 static void acpi_free_power_resources_lists(struct acpi_device *device)
449 {
450 	int i;
451 
452 	if (device->wakeup.flags.valid)
453 		acpi_power_resources_list_free(&device->wakeup.resources);
454 
455 	if (!device->power.flags.power_resources)
456 		return;
457 
458 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
459 		struct acpi_device_power_state *ps = &device->power.states[i];
460 		acpi_power_resources_list_free(&ps->resources);
461 	}
462 }
463 
464 static void acpi_device_release(struct device *dev)
465 {
466 	struct acpi_device *acpi_dev = to_acpi_device(dev);
467 
468 	acpi_free_properties(acpi_dev);
469 	acpi_free_pnp_ids(&acpi_dev->pnp);
470 	acpi_free_power_resources_lists(acpi_dev);
471 	kfree(acpi_dev);
472 }
473 
474 static void acpi_device_del(struct acpi_device *device)
475 {
476 	struct acpi_device_bus_id *acpi_device_bus_id;
477 
478 	mutex_lock(&acpi_device_lock);
479 	if (device->parent)
480 		list_del(&device->node);
481 
482 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
483 		if (!strcmp(acpi_device_bus_id->bus_id,
484 			    acpi_device_hid(device))) {
485 			if (acpi_device_bus_id->instance_no > 0)
486 				acpi_device_bus_id->instance_no--;
487 			else {
488 				list_del(&acpi_device_bus_id->node);
489 				kfree(acpi_device_bus_id);
490 			}
491 			break;
492 		}
493 
494 	list_del(&device->wakeup_list);
495 	mutex_unlock(&acpi_device_lock);
496 
497 	acpi_power_add_remove_device(device, false);
498 	acpi_device_remove_files(device);
499 	if (device->remove)
500 		device->remove(device);
501 
502 	device_del(&device->dev);
503 }
504 
505 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
506 
507 static LIST_HEAD(acpi_device_del_list);
508 static DEFINE_MUTEX(acpi_device_del_lock);
509 
510 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
511 {
512 	for (;;) {
513 		struct acpi_device *adev;
514 
515 		mutex_lock(&acpi_device_del_lock);
516 
517 		if (list_empty(&acpi_device_del_list)) {
518 			mutex_unlock(&acpi_device_del_lock);
519 			break;
520 		}
521 		adev = list_first_entry(&acpi_device_del_list,
522 					struct acpi_device, del_list);
523 		list_del(&adev->del_list);
524 
525 		mutex_unlock(&acpi_device_del_lock);
526 
527 		blocking_notifier_call_chain(&acpi_reconfig_chain,
528 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
529 
530 		acpi_device_del(adev);
531 		/*
532 		 * Drop references to all power resources that might have been
533 		 * used by the device.
534 		 */
535 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
536 		put_device(&adev->dev);
537 	}
538 }
539 
540 /**
541  * acpi_scan_drop_device - Drop an ACPI device object.
542  * @handle: Handle of an ACPI namespace node, not used.
543  * @context: Address of the ACPI device object to drop.
544  *
545  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
546  * namespace node the device object pointed to by @context is attached to.
547  *
548  * The unregistration is carried out asynchronously to avoid running
549  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
550  * ensure the correct ordering (the device objects must be unregistered in the
551  * same order in which the corresponding namespace nodes are deleted).
552  */
553 static void acpi_scan_drop_device(acpi_handle handle, void *context)
554 {
555 	static DECLARE_WORK(work, acpi_device_del_work_fn);
556 	struct acpi_device *adev = context;
557 
558 	mutex_lock(&acpi_device_del_lock);
559 
560 	/*
561 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
562 	 * won't run after any hotplug work items submitted subsequently.  That
563 	 * prevents attempts to register device objects identical to those being
564 	 * deleted from happening concurrently (such attempts result from
565 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
566 	 * run after all of the work items submitted previosuly, which helps
567 	 * those work items to ensure that they are not accessing stale device
568 	 * objects.
569 	 */
570 	if (list_empty(&acpi_device_del_list))
571 		acpi_queue_hotplug_work(&work);
572 
573 	list_add_tail(&adev->del_list, &acpi_device_del_list);
574 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
575 	adev->handle = INVALID_ACPI_HANDLE;
576 
577 	mutex_unlock(&acpi_device_del_lock);
578 }
579 
580 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device,
581 				void (*callback)(void *))
582 {
583 	acpi_status status;
584 
585 	if (!device)
586 		return -EINVAL;
587 
588 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
589 				    (void **)device, callback);
590 	if (ACPI_FAILURE(status) || !*device) {
591 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
592 				  handle));
593 		return -ENODEV;
594 	}
595 	return 0;
596 }
597 
598 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
599 {
600 	return acpi_get_device_data(handle, device, NULL);
601 }
602 EXPORT_SYMBOL(acpi_bus_get_device);
603 
604 static void get_acpi_device(void *dev)
605 {
606 	if (dev)
607 		get_device(&((struct acpi_device *)dev)->dev);
608 }
609 
610 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
611 {
612 	struct acpi_device *adev = NULL;
613 
614 	acpi_get_device_data(handle, &adev, get_acpi_device);
615 	return adev;
616 }
617 
618 void acpi_bus_put_acpi_device(struct acpi_device *adev)
619 {
620 	put_device(&adev->dev);
621 }
622 
623 int acpi_device_add(struct acpi_device *device,
624 		    void (*release)(struct device *))
625 {
626 	int result;
627 	struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
628 	int found = 0;
629 
630 	if (device->handle) {
631 		acpi_status status;
632 
633 		status = acpi_attach_data(device->handle, acpi_scan_drop_device,
634 					  device);
635 		if (ACPI_FAILURE(status)) {
636 			acpi_handle_err(device->handle,
637 					"Unable to attach device data\n");
638 			return -ENODEV;
639 		}
640 	}
641 
642 	/*
643 	 * Linkage
644 	 * -------
645 	 * Link this device to its parent and siblings.
646 	 */
647 	INIT_LIST_HEAD(&device->children);
648 	INIT_LIST_HEAD(&device->node);
649 	INIT_LIST_HEAD(&device->wakeup_list);
650 	INIT_LIST_HEAD(&device->physical_node_list);
651 	INIT_LIST_HEAD(&device->del_list);
652 	mutex_init(&device->physical_node_lock);
653 
654 	new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
655 	if (!new_bus_id) {
656 		pr_err(PREFIX "Memory allocation error\n");
657 		result = -ENOMEM;
658 		goto err_detach;
659 	}
660 
661 	mutex_lock(&acpi_device_lock);
662 	/*
663 	 * Find suitable bus_id and instance number in acpi_bus_id_list
664 	 * If failed, create one and link it into acpi_bus_id_list
665 	 */
666 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
667 		if (!strcmp(acpi_device_bus_id->bus_id,
668 			    acpi_device_hid(device))) {
669 			acpi_device_bus_id->instance_no++;
670 			found = 1;
671 			kfree(new_bus_id);
672 			break;
673 		}
674 	}
675 	if (!found) {
676 		acpi_device_bus_id = new_bus_id;
677 		strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
678 		acpi_device_bus_id->instance_no = 0;
679 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
680 	}
681 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
682 
683 	if (device->parent)
684 		list_add_tail(&device->node, &device->parent->children);
685 
686 	if (device->wakeup.flags.valid)
687 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
688 	mutex_unlock(&acpi_device_lock);
689 
690 	if (device->parent)
691 		device->dev.parent = &device->parent->dev;
692 	device->dev.bus = &acpi_bus_type;
693 	device->dev.release = release;
694 	result = device_add(&device->dev);
695 	if (result) {
696 		dev_err(&device->dev, "Error registering device\n");
697 		goto err;
698 	}
699 
700 	result = acpi_device_setup_files(device);
701 	if (result)
702 		printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
703 		       dev_name(&device->dev));
704 
705 	return 0;
706 
707  err:
708 	mutex_lock(&acpi_device_lock);
709 	if (device->parent)
710 		list_del(&device->node);
711 	list_del(&device->wakeup_list);
712 	mutex_unlock(&acpi_device_lock);
713 
714  err_detach:
715 	acpi_detach_data(device->handle, acpi_scan_drop_device);
716 	return result;
717 }
718 
719 /* --------------------------------------------------------------------------
720                                  Device Enumeration
721    -------------------------------------------------------------------------- */
722 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
723 {
724 	struct acpi_device *device = NULL;
725 	acpi_status status;
726 
727 	/*
728 	 * Fixed hardware devices do not appear in the namespace and do not
729 	 * have handles, but we fabricate acpi_devices for them, so we have
730 	 * to deal with them specially.
731 	 */
732 	if (!handle)
733 		return acpi_root;
734 
735 	do {
736 		status = acpi_get_parent(handle, &handle);
737 		if (ACPI_FAILURE(status))
738 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
739 	} while (acpi_bus_get_device(handle, &device));
740 	return device;
741 }
742 
743 acpi_status
744 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
745 {
746 	acpi_status status;
747 	acpi_handle tmp;
748 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
749 	union acpi_object *obj;
750 
751 	status = acpi_get_handle(handle, "_EJD", &tmp);
752 	if (ACPI_FAILURE(status))
753 		return status;
754 
755 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
756 	if (ACPI_SUCCESS(status)) {
757 		obj = buffer.pointer;
758 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
759 					 ejd);
760 		kfree(buffer.pointer);
761 	}
762 	return status;
763 }
764 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
765 
766 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
767 {
768 	acpi_handle handle = dev->handle;
769 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
770 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
771 	union acpi_object *package = NULL;
772 	union acpi_object *element = NULL;
773 	acpi_status status;
774 	int err = -ENODATA;
775 
776 	INIT_LIST_HEAD(&wakeup->resources);
777 
778 	/* _PRW */
779 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
780 	if (ACPI_FAILURE(status)) {
781 		ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
782 		return err;
783 	}
784 
785 	package = (union acpi_object *)buffer.pointer;
786 
787 	if (!package || package->package.count < 2)
788 		goto out;
789 
790 	element = &(package->package.elements[0]);
791 	if (!element)
792 		goto out;
793 
794 	if (element->type == ACPI_TYPE_PACKAGE) {
795 		if ((element->package.count < 2) ||
796 		    (element->package.elements[0].type !=
797 		     ACPI_TYPE_LOCAL_REFERENCE)
798 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
799 			goto out;
800 
801 		wakeup->gpe_device =
802 		    element->package.elements[0].reference.handle;
803 		wakeup->gpe_number =
804 		    (u32) element->package.elements[1].integer.value;
805 	} else if (element->type == ACPI_TYPE_INTEGER) {
806 		wakeup->gpe_device = NULL;
807 		wakeup->gpe_number = element->integer.value;
808 	} else {
809 		goto out;
810 	}
811 
812 	element = &(package->package.elements[1]);
813 	if (element->type != ACPI_TYPE_INTEGER)
814 		goto out;
815 
816 	wakeup->sleep_state = element->integer.value;
817 
818 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
819 	if (err)
820 		goto out;
821 
822 	if (!list_empty(&wakeup->resources)) {
823 		int sleep_state;
824 
825 		err = acpi_power_wakeup_list_init(&wakeup->resources,
826 						  &sleep_state);
827 		if (err) {
828 			acpi_handle_warn(handle, "Retrieving current states "
829 					 "of wakeup power resources failed\n");
830 			acpi_power_resources_list_free(&wakeup->resources);
831 			goto out;
832 		}
833 		if (sleep_state < wakeup->sleep_state) {
834 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
835 					 "(S%d) by S%d from power resources\n",
836 					 (int)wakeup->sleep_state, sleep_state);
837 			wakeup->sleep_state = sleep_state;
838 		}
839 	}
840 
841  out:
842 	kfree(buffer.pointer);
843 	return err;
844 }
845 
846 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
847 {
848 	static const struct acpi_device_id button_device_ids[] = {
849 		{"PNP0C0C", 0},		/* Power button */
850 		{"PNP0C0D", 0},		/* Lid */
851 		{"PNP0C0E", 0},		/* Sleep button */
852 		{"", 0},
853 	};
854 	struct acpi_device_wakeup *wakeup = &device->wakeup;
855 	acpi_status status;
856 
857 	wakeup->flags.notifier_present = 0;
858 
859 	/* Power button, Lid switch always enable wakeup */
860 	if (!acpi_match_device_ids(device, button_device_ids)) {
861 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
862 			/* Do not use Lid/sleep button for S5 wakeup */
863 			if (wakeup->sleep_state == ACPI_STATE_S5)
864 				wakeup->sleep_state = ACPI_STATE_S4;
865 		}
866 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
867 		device_set_wakeup_capable(&device->dev, true);
868 		return true;
869 	}
870 
871 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
872 					 wakeup->gpe_number);
873 	return ACPI_SUCCESS(status);
874 }
875 
876 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
877 {
878 	int err;
879 
880 	/* Presence of _PRW indicates wake capable */
881 	if (!acpi_has_method(device->handle, "_PRW"))
882 		return;
883 
884 	err = acpi_bus_extract_wakeup_device_power_package(device);
885 	if (err) {
886 		dev_err(&device->dev, "_PRW evaluation error: %d\n", err);
887 		return;
888 	}
889 
890 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
891 	device->wakeup.prepare_count = 0;
892 	/*
893 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
894 	 * system for the ACPI device with the _PRW object.
895 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
896 	 * So it is necessary to call _DSW object first. Only when it is not
897 	 * present will the _PSW object used.
898 	 */
899 	err = acpi_device_sleep_wake(device, 0, 0, 0);
900 	if (err)
901 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
902 				"error in _DSW or _PSW evaluation\n"));
903 }
904 
905 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
906 {
907 	struct acpi_device_power_state *ps = &device->power.states[state];
908 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
909 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
910 	acpi_status status;
911 
912 	INIT_LIST_HEAD(&ps->resources);
913 
914 	/* Evaluate "_PRx" to get referenced power resources */
915 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
916 	if (ACPI_SUCCESS(status)) {
917 		union acpi_object *package = buffer.pointer;
918 
919 		if (buffer.length && package
920 		    && package->type == ACPI_TYPE_PACKAGE
921 		    && package->package.count)
922 			acpi_extract_power_resources(package, 0, &ps->resources);
923 
924 		ACPI_FREE(buffer.pointer);
925 	}
926 
927 	/* Evaluate "_PSx" to see if we can do explicit sets */
928 	pathname[2] = 'S';
929 	if (acpi_has_method(device->handle, pathname))
930 		ps->flags.explicit_set = 1;
931 
932 	/* State is valid if there are means to put the device into it. */
933 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
934 		ps->flags.valid = 1;
935 
936 	ps->power = -1;		/* Unknown - driver assigned */
937 	ps->latency = -1;	/* Unknown - driver assigned */
938 }
939 
940 static void acpi_bus_get_power_flags(struct acpi_device *device)
941 {
942 	u32 i;
943 
944 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
945 	if (!acpi_has_method(device->handle, "_PS0") &&
946 	    !acpi_has_method(device->handle, "_PR0"))
947 		return;
948 
949 	device->flags.power_manageable = 1;
950 
951 	/*
952 	 * Power Management Flags
953 	 */
954 	if (acpi_has_method(device->handle, "_PSC"))
955 		device->power.flags.explicit_get = 1;
956 
957 	if (acpi_has_method(device->handle, "_IRC"))
958 		device->power.flags.inrush_current = 1;
959 
960 	if (acpi_has_method(device->handle, "_DSW"))
961 		device->power.flags.dsw_present = 1;
962 
963 	/*
964 	 * Enumerate supported power management states
965 	 */
966 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
967 		acpi_bus_init_power_state(device, i);
968 
969 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
970 
971 	/* Set the defaults for D0 and D3hot (always supported). */
972 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
973 	device->power.states[ACPI_STATE_D0].power = 100;
974 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
975 
976 	/*
977 	 * Use power resources only if the D0 list of them is populated, because
978 	 * some platforms may provide _PR3 only to indicate D3cold support and
979 	 * in those cases the power resources list returned by it may be bogus.
980 	 */
981 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
982 		device->power.flags.power_resources = 1;
983 		/*
984 		 * D3cold is supported if the D3hot list of power resources is
985 		 * not empty.
986 		 */
987 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
988 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
989 	}
990 
991 	if (acpi_bus_init_power(device))
992 		device->flags.power_manageable = 0;
993 }
994 
995 static void acpi_bus_get_flags(struct acpi_device *device)
996 {
997 	/* Presence of _STA indicates 'dynamic_status' */
998 	if (acpi_has_method(device->handle, "_STA"))
999 		device->flags.dynamic_status = 1;
1000 
1001 	/* Presence of _RMV indicates 'removable' */
1002 	if (acpi_has_method(device->handle, "_RMV"))
1003 		device->flags.removable = 1;
1004 
1005 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1006 	if (acpi_has_method(device->handle, "_EJD") ||
1007 	    acpi_has_method(device->handle, "_EJ0"))
1008 		device->flags.ejectable = 1;
1009 }
1010 
1011 static void acpi_device_get_busid(struct acpi_device *device)
1012 {
1013 	char bus_id[5] = { '?', 0 };
1014 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1015 	int i = 0;
1016 
1017 	/*
1018 	 * Bus ID
1019 	 * ------
1020 	 * The device's Bus ID is simply the object name.
1021 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1022 	 */
1023 	if (ACPI_IS_ROOT_DEVICE(device)) {
1024 		strcpy(device->pnp.bus_id, "ACPI");
1025 		return;
1026 	}
1027 
1028 	switch (device->device_type) {
1029 	case ACPI_BUS_TYPE_POWER_BUTTON:
1030 		strcpy(device->pnp.bus_id, "PWRF");
1031 		break;
1032 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1033 		strcpy(device->pnp.bus_id, "SLPF");
1034 		break;
1035 	case ACPI_BUS_TYPE_ECDT_EC:
1036 		strcpy(device->pnp.bus_id, "ECDT");
1037 		break;
1038 	default:
1039 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1040 		/* Clean up trailing underscores (if any) */
1041 		for (i = 3; i > 1; i--) {
1042 			if (bus_id[i] == '_')
1043 				bus_id[i] = '\0';
1044 			else
1045 				break;
1046 		}
1047 		strcpy(device->pnp.bus_id, bus_id);
1048 		break;
1049 	}
1050 }
1051 
1052 /*
1053  * acpi_ata_match - see if an acpi object is an ATA device
1054  *
1055  * If an acpi object has one of the ACPI ATA methods defined,
1056  * then we can safely call it an ATA device.
1057  */
1058 bool acpi_ata_match(acpi_handle handle)
1059 {
1060 	return acpi_has_method(handle, "_GTF") ||
1061 	       acpi_has_method(handle, "_GTM") ||
1062 	       acpi_has_method(handle, "_STM") ||
1063 	       acpi_has_method(handle, "_SDD");
1064 }
1065 
1066 /*
1067  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1068  *
1069  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1070  * then we can safely call it an ejectable drive bay
1071  */
1072 bool acpi_bay_match(acpi_handle handle)
1073 {
1074 	acpi_handle phandle;
1075 
1076 	if (!acpi_has_method(handle, "_EJ0"))
1077 		return false;
1078 	if (acpi_ata_match(handle))
1079 		return true;
1080 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1081 		return false;
1082 
1083 	return acpi_ata_match(phandle);
1084 }
1085 
1086 bool acpi_device_is_battery(struct acpi_device *adev)
1087 {
1088 	struct acpi_hardware_id *hwid;
1089 
1090 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1091 		if (!strcmp("PNP0C0A", hwid->id))
1092 			return true;
1093 
1094 	return false;
1095 }
1096 
1097 static bool is_ejectable_bay(struct acpi_device *adev)
1098 {
1099 	acpi_handle handle = adev->handle;
1100 
1101 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1102 		return true;
1103 
1104 	return acpi_bay_match(handle);
1105 }
1106 
1107 /*
1108  * acpi_dock_match - see if an acpi object has a _DCK method
1109  */
1110 bool acpi_dock_match(acpi_handle handle)
1111 {
1112 	return acpi_has_method(handle, "_DCK");
1113 }
1114 
1115 static acpi_status
1116 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1117 			  void **return_value)
1118 {
1119 	long *cap = context;
1120 
1121 	if (acpi_has_method(handle, "_BCM") &&
1122 	    acpi_has_method(handle, "_BCL")) {
1123 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight "
1124 				  "support\n"));
1125 		*cap |= ACPI_VIDEO_BACKLIGHT;
1126 		/* We have backlight support, no need to scan further */
1127 		return AE_CTRL_TERMINATE;
1128 	}
1129 	return 0;
1130 }
1131 
1132 /* Returns true if the ACPI object is a video device which can be
1133  * handled by video.ko.
1134  * The device will get a Linux specific CID added in scan.c to
1135  * identify the device as an ACPI graphics device
1136  * Be aware that the graphics device may not be physically present
1137  * Use acpi_video_get_capabilities() to detect general ACPI video
1138  * capabilities of present cards
1139  */
1140 long acpi_is_video_device(acpi_handle handle)
1141 {
1142 	long video_caps = 0;
1143 
1144 	/* Is this device able to support video switching ? */
1145 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1146 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1147 
1148 	/* Is this device able to retrieve a video ROM ? */
1149 	if (acpi_has_method(handle, "_ROM"))
1150 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1151 
1152 	/* Is this device able to configure which video head to be POSTed ? */
1153 	if (acpi_has_method(handle, "_VPO") &&
1154 	    acpi_has_method(handle, "_GPD") &&
1155 	    acpi_has_method(handle, "_SPD"))
1156 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1157 
1158 	/* Only check for backlight functionality if one of the above hit. */
1159 	if (video_caps)
1160 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1161 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1162 				    &video_caps, NULL);
1163 
1164 	return video_caps;
1165 }
1166 EXPORT_SYMBOL(acpi_is_video_device);
1167 
1168 const char *acpi_device_hid(struct acpi_device *device)
1169 {
1170 	struct acpi_hardware_id *hid;
1171 
1172 	if (list_empty(&device->pnp.ids))
1173 		return dummy_hid;
1174 
1175 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1176 	return hid->id;
1177 }
1178 EXPORT_SYMBOL(acpi_device_hid);
1179 
1180 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1181 {
1182 	struct acpi_hardware_id *id;
1183 
1184 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1185 	if (!id)
1186 		return;
1187 
1188 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1189 	if (!id->id) {
1190 		kfree(id);
1191 		return;
1192 	}
1193 
1194 	list_add_tail(&id->list, &pnp->ids);
1195 	pnp->type.hardware_id = 1;
1196 }
1197 
1198 /*
1199  * Old IBM workstations have a DSDT bug wherein the SMBus object
1200  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1201  * prefix.  Work around this.
1202  */
1203 static bool acpi_ibm_smbus_match(acpi_handle handle)
1204 {
1205 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1206 	struct acpi_buffer path = { sizeof(node_name), node_name };
1207 
1208 	if (!dmi_name_in_vendors("IBM"))
1209 		return false;
1210 
1211 	/* Look for SMBS object */
1212 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1213 	    strcmp("SMBS", path.pointer))
1214 		return false;
1215 
1216 	/* Does it have the necessary (but misnamed) methods? */
1217 	if (acpi_has_method(handle, "SBI") &&
1218 	    acpi_has_method(handle, "SBR") &&
1219 	    acpi_has_method(handle, "SBW"))
1220 		return true;
1221 
1222 	return false;
1223 }
1224 
1225 static bool acpi_object_is_system_bus(acpi_handle handle)
1226 {
1227 	acpi_handle tmp;
1228 
1229 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1230 	    tmp == handle)
1231 		return true;
1232 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1233 	    tmp == handle)
1234 		return true;
1235 
1236 	return false;
1237 }
1238 
1239 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1240 				int device_type)
1241 {
1242 	acpi_status status;
1243 	struct acpi_device_info *info;
1244 	struct acpi_pnp_device_id_list *cid_list;
1245 	int i;
1246 
1247 	switch (device_type) {
1248 	case ACPI_BUS_TYPE_DEVICE:
1249 		if (handle == ACPI_ROOT_OBJECT) {
1250 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1251 			break;
1252 		}
1253 
1254 		status = acpi_get_object_info(handle, &info);
1255 		if (ACPI_FAILURE(status)) {
1256 			pr_err(PREFIX "%s: Error reading device info\n",
1257 					__func__);
1258 			return;
1259 		}
1260 
1261 		if (info->valid & ACPI_VALID_HID) {
1262 			acpi_add_id(pnp, info->hardware_id.string);
1263 			pnp->type.platform_id = 1;
1264 		}
1265 		if (info->valid & ACPI_VALID_CID) {
1266 			cid_list = &info->compatible_id_list;
1267 			for (i = 0; i < cid_list->count; i++)
1268 				acpi_add_id(pnp, cid_list->ids[i].string);
1269 		}
1270 		if (info->valid & ACPI_VALID_ADR) {
1271 			pnp->bus_address = info->address;
1272 			pnp->type.bus_address = 1;
1273 		}
1274 		if (info->valid & ACPI_VALID_UID)
1275 			pnp->unique_id = kstrdup(info->unique_id.string,
1276 							GFP_KERNEL);
1277 		if (info->valid & ACPI_VALID_CLS)
1278 			acpi_add_id(pnp, info->class_code.string);
1279 
1280 		kfree(info);
1281 
1282 		/*
1283 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1284 		 * synthetic HIDs to make sure drivers can find them.
1285 		 */
1286 		if (acpi_is_video_device(handle))
1287 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1288 		else if (acpi_bay_match(handle))
1289 			acpi_add_id(pnp, ACPI_BAY_HID);
1290 		else if (acpi_dock_match(handle))
1291 			acpi_add_id(pnp, ACPI_DOCK_HID);
1292 		else if (acpi_ibm_smbus_match(handle))
1293 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1294 		else if (list_empty(&pnp->ids) &&
1295 			 acpi_object_is_system_bus(handle)) {
1296 			/* \_SB, \_TZ, LNXSYBUS */
1297 			acpi_add_id(pnp, ACPI_BUS_HID);
1298 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1299 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1300 		}
1301 
1302 		break;
1303 	case ACPI_BUS_TYPE_POWER:
1304 		acpi_add_id(pnp, ACPI_POWER_HID);
1305 		break;
1306 	case ACPI_BUS_TYPE_PROCESSOR:
1307 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1308 		break;
1309 	case ACPI_BUS_TYPE_THERMAL:
1310 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1311 		break;
1312 	case ACPI_BUS_TYPE_POWER_BUTTON:
1313 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1314 		break;
1315 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1316 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1317 		break;
1318 	case ACPI_BUS_TYPE_ECDT_EC:
1319 		acpi_add_id(pnp, ACPI_ECDT_HID);
1320 		break;
1321 	}
1322 }
1323 
1324 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1325 {
1326 	struct acpi_hardware_id *id, *tmp;
1327 
1328 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1329 		kfree_const(id->id);
1330 		kfree(id);
1331 	}
1332 	kfree(pnp->unique_id);
1333 }
1334 
1335 /**
1336  * acpi_dma_supported - Check DMA support for the specified device.
1337  * @adev: The pointer to acpi device
1338  *
1339  * Return false if DMA is not supported. Otherwise, return true
1340  */
1341 bool acpi_dma_supported(struct acpi_device *adev)
1342 {
1343 	if (!adev)
1344 		return false;
1345 
1346 	if (adev->flags.cca_seen)
1347 		return true;
1348 
1349 	/*
1350 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1351 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1352 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1353 	*/
1354 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1355 		return true;
1356 
1357 	return false;
1358 }
1359 
1360 /**
1361  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1362  * @adev: The pointer to acpi device
1363  *
1364  * Return enum dev_dma_attr.
1365  */
1366 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1367 {
1368 	if (!acpi_dma_supported(adev))
1369 		return DEV_DMA_NOT_SUPPORTED;
1370 
1371 	if (adev->flags.coherent_dma)
1372 		return DEV_DMA_COHERENT;
1373 	else
1374 		return DEV_DMA_NON_COHERENT;
1375 }
1376 
1377 /**
1378  * acpi_dma_get_range() - Get device DMA parameters.
1379  *
1380  * @dev: device to configure
1381  * @dma_addr: pointer device DMA address result
1382  * @offset: pointer to the DMA offset result
1383  * @size: pointer to DMA range size result
1384  *
1385  * Evaluate DMA regions and return respectively DMA region start, offset
1386  * and size in dma_addr, offset and size on parsing success; it does not
1387  * update the passed in values on failure.
1388  *
1389  * Return 0 on success, < 0 on failure.
1390  */
1391 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1392 		       u64 *size)
1393 {
1394 	struct acpi_device *adev;
1395 	LIST_HEAD(list);
1396 	struct resource_entry *rentry;
1397 	int ret;
1398 	struct device *dma_dev = dev;
1399 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1400 
1401 	/*
1402 	 * Walk the device tree chasing an ACPI companion with a _DMA
1403 	 * object while we go. Stop if we find a device with an ACPI
1404 	 * companion containing a _DMA method.
1405 	 */
1406 	do {
1407 		adev = ACPI_COMPANION(dma_dev);
1408 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1409 			break;
1410 
1411 		dma_dev = dma_dev->parent;
1412 	} while (dma_dev);
1413 
1414 	if (!dma_dev)
1415 		return -ENODEV;
1416 
1417 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1418 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1419 		return -EINVAL;
1420 	}
1421 
1422 	ret = acpi_dev_get_dma_resources(adev, &list);
1423 	if (ret > 0) {
1424 		list_for_each_entry(rentry, &list, node) {
1425 			if (dma_offset && rentry->offset != dma_offset) {
1426 				ret = -EINVAL;
1427 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1428 				goto out;
1429 			}
1430 			dma_offset = rentry->offset;
1431 
1432 			/* Take lower and upper limits */
1433 			if (rentry->res->start < dma_start)
1434 				dma_start = rentry->res->start;
1435 			if (rentry->res->end > dma_end)
1436 				dma_end = rentry->res->end;
1437 		}
1438 
1439 		if (dma_start >= dma_end) {
1440 			ret = -EINVAL;
1441 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1442 			goto out;
1443 		}
1444 
1445 		*dma_addr = dma_start - dma_offset;
1446 		len = dma_end - dma_start;
1447 		*size = max(len, len + 1);
1448 		*offset = dma_offset;
1449 	}
1450  out:
1451 	acpi_dev_free_resource_list(&list);
1452 
1453 	return ret >= 0 ? 0 : ret;
1454 }
1455 
1456 /**
1457  * acpi_dma_configure - Set-up DMA configuration for the device.
1458  * @dev: The pointer to the device
1459  * @attr: device dma attributes
1460  */
1461 int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr)
1462 {
1463 	const struct iommu_ops *iommu;
1464 	u64 dma_addr = 0, size = 0;
1465 
1466 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1467 		set_dma_ops(dev, &dma_dummy_ops);
1468 		return 0;
1469 	}
1470 
1471 	iort_dma_setup(dev, &dma_addr, &size);
1472 
1473 	iommu = iort_iommu_configure(dev);
1474 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1475 		return -EPROBE_DEFER;
1476 
1477 	arch_setup_dma_ops(dev, dma_addr, size,
1478 				iommu, attr == DEV_DMA_COHERENT);
1479 
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(acpi_dma_configure);
1483 
1484 static void acpi_init_coherency(struct acpi_device *adev)
1485 {
1486 	unsigned long long cca = 0;
1487 	acpi_status status;
1488 	struct acpi_device *parent = adev->parent;
1489 
1490 	if (parent && parent->flags.cca_seen) {
1491 		/*
1492 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1493 		 * already saw one.
1494 		 */
1495 		adev->flags.cca_seen = 1;
1496 		cca = parent->flags.coherent_dma;
1497 	} else {
1498 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1499 					       NULL, &cca);
1500 		if (ACPI_SUCCESS(status))
1501 			adev->flags.cca_seen = 1;
1502 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1503 			/*
1504 			 * If architecture does not specify that _CCA is
1505 			 * required for DMA-able devices (e.g. x86),
1506 			 * we default to _CCA=1.
1507 			 */
1508 			cca = 1;
1509 		else
1510 			acpi_handle_debug(adev->handle,
1511 					  "ACPI device is missing _CCA.\n");
1512 	}
1513 
1514 	adev->flags.coherent_dma = cca;
1515 }
1516 
1517 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1518 {
1519 	bool *is_serial_bus_slave_p = data;
1520 
1521 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1522 		return 1;
1523 
1524 	*is_serial_bus_slave_p = true;
1525 
1526 	 /* no need to do more checking */
1527 	return -1;
1528 }
1529 
1530 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1531 {
1532 	struct acpi_device *parent = device->parent;
1533 	static const struct acpi_device_id indirect_io_hosts[] = {
1534 		{"HISI0191", 0},
1535 		{}
1536 	};
1537 
1538 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1539 }
1540 
1541 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1542 {
1543 	struct list_head resource_list;
1544 	bool is_serial_bus_slave = false;
1545 	/*
1546 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1547 	 * must be instantiated for each, each with its own i2c_device_id.
1548 	 * Normally we only instantiate an i2c-client for the first resource,
1549 	 * using the ACPI HID as id. These special cases are handled by the
1550 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1551 	 * which i2c_device_id to use for each resource.
1552 	 */
1553 	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1554 		{"BSG1160", },
1555 		{"BSG2150", },
1556 		{"INT33FE", },
1557 		{"INT3515", },
1558 		{}
1559 	};
1560 
1561 	if (acpi_is_indirect_io_slave(device))
1562 		return true;
1563 
1564 	/* Macs use device properties in lieu of _CRS resources */
1565 	if (x86_apple_machine &&
1566 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1567 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1568 	     fwnode_property_present(&device->fwnode, "baud")))
1569 		return true;
1570 
1571 	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1572 	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1573 		return false;
1574 
1575 	INIT_LIST_HEAD(&resource_list);
1576 	acpi_dev_get_resources(device, &resource_list,
1577 			       acpi_check_serial_bus_slave,
1578 			       &is_serial_bus_slave);
1579 	acpi_dev_free_resource_list(&resource_list);
1580 
1581 	return is_serial_bus_slave;
1582 }
1583 
1584 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1585 			     int type, unsigned long long sta)
1586 {
1587 	INIT_LIST_HEAD(&device->pnp.ids);
1588 	device->device_type = type;
1589 	device->handle = handle;
1590 	device->parent = acpi_bus_get_parent(handle);
1591 	device->fwnode.ops = &acpi_device_fwnode_ops;
1592 	acpi_set_device_status(device, sta);
1593 	acpi_device_get_busid(device);
1594 	acpi_set_pnp_ids(handle, &device->pnp, type);
1595 	acpi_init_properties(device);
1596 	acpi_bus_get_flags(device);
1597 	device->flags.match_driver = false;
1598 	device->flags.initialized = true;
1599 	device->flags.enumeration_by_parent =
1600 		acpi_device_enumeration_by_parent(device);
1601 	acpi_device_clear_enumerated(device);
1602 	device_initialize(&device->dev);
1603 	dev_set_uevent_suppress(&device->dev, true);
1604 	acpi_init_coherency(device);
1605 	/* Assume there are unmet deps until acpi_device_dep_initialize() runs */
1606 	device->dep_unmet = 1;
1607 }
1608 
1609 void acpi_device_add_finalize(struct acpi_device *device)
1610 {
1611 	dev_set_uevent_suppress(&device->dev, false);
1612 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1613 }
1614 
1615 static int acpi_add_single_object(struct acpi_device **child,
1616 				  acpi_handle handle, int type,
1617 				  unsigned long long sta)
1618 {
1619 	int result;
1620 	struct acpi_device *device;
1621 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1622 
1623 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1624 	if (!device) {
1625 		printk(KERN_ERR PREFIX "Memory allocation error\n");
1626 		return -ENOMEM;
1627 	}
1628 
1629 	acpi_init_device_object(device, handle, type, sta);
1630 	/*
1631 	 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so
1632 	 * that we can call acpi_bus_get_status() and use its quirk handling.
1633 	 * Note this must be done before the get power-/wakeup_dev-flags calls.
1634 	 */
1635 	if (type == ACPI_BUS_TYPE_DEVICE)
1636 		if (acpi_bus_get_status(device) < 0)
1637 			acpi_set_device_status(device, 0);
1638 
1639 	acpi_bus_get_power_flags(device);
1640 	acpi_bus_get_wakeup_device_flags(device);
1641 
1642 	result = acpi_device_add(device, acpi_device_release);
1643 	if (result) {
1644 		acpi_device_release(&device->dev);
1645 		return result;
1646 	}
1647 
1648 	acpi_power_add_remove_device(device, true);
1649 	acpi_device_add_finalize(device);
1650 	acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
1651 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n",
1652 		dev_name(&device->dev), (char *) buffer.pointer,
1653 		device->parent ? dev_name(&device->parent->dev) : "(null)"));
1654 	kfree(buffer.pointer);
1655 	*child = device;
1656 	return 0;
1657 }
1658 
1659 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1660 					    void *context)
1661 {
1662 	struct resource *res = context;
1663 
1664 	if (acpi_dev_resource_memory(ares, res))
1665 		return AE_CTRL_TERMINATE;
1666 
1667 	return AE_OK;
1668 }
1669 
1670 static bool acpi_device_should_be_hidden(acpi_handle handle)
1671 {
1672 	acpi_status status;
1673 	struct resource res;
1674 
1675 	/* Check if it should ignore the UART device */
1676 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1677 		return false;
1678 
1679 	/*
1680 	 * The UART device described in SPCR table is assumed to have only one
1681 	 * memory resource present. So we only look for the first one here.
1682 	 */
1683 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1684 				     acpi_get_resource_memory, &res);
1685 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1686 		return false;
1687 
1688 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1689 			 &res.start);
1690 
1691 	return true;
1692 }
1693 
1694 static int acpi_bus_type_and_status(acpi_handle handle, int *type,
1695 				    unsigned long long *sta)
1696 {
1697 	acpi_status status;
1698 	acpi_object_type acpi_type;
1699 
1700 	status = acpi_get_type(handle, &acpi_type);
1701 	if (ACPI_FAILURE(status))
1702 		return -ENODEV;
1703 
1704 	switch (acpi_type) {
1705 	case ACPI_TYPE_ANY:		/* for ACPI_ROOT_OBJECT */
1706 	case ACPI_TYPE_DEVICE:
1707 		if (acpi_device_should_be_hidden(handle))
1708 			return -ENODEV;
1709 
1710 		*type = ACPI_BUS_TYPE_DEVICE;
1711 		/*
1712 		 * acpi_add_single_object updates this once we've an acpi_device
1713 		 * so that acpi_bus_get_status' quirk handling can be used.
1714 		 */
1715 		*sta = ACPI_STA_DEFAULT;
1716 		break;
1717 	case ACPI_TYPE_PROCESSOR:
1718 		*type = ACPI_BUS_TYPE_PROCESSOR;
1719 		status = acpi_bus_get_status_handle(handle, sta);
1720 		if (ACPI_FAILURE(status))
1721 			return -ENODEV;
1722 		break;
1723 	case ACPI_TYPE_THERMAL:
1724 		*type = ACPI_BUS_TYPE_THERMAL;
1725 		*sta = ACPI_STA_DEFAULT;
1726 		break;
1727 	case ACPI_TYPE_POWER:
1728 		*type = ACPI_BUS_TYPE_POWER;
1729 		*sta = ACPI_STA_DEFAULT;
1730 		break;
1731 	default:
1732 		return -ENODEV;
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 bool acpi_device_is_present(const struct acpi_device *adev)
1739 {
1740 	return adev->status.present || adev->status.functional;
1741 }
1742 
1743 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1744 				       const char *idstr,
1745 				       const struct acpi_device_id **matchid)
1746 {
1747 	const struct acpi_device_id *devid;
1748 
1749 	if (handler->match)
1750 		return handler->match(idstr, matchid);
1751 
1752 	for (devid = handler->ids; devid->id[0]; devid++)
1753 		if (!strcmp((char *)devid->id, idstr)) {
1754 			if (matchid)
1755 				*matchid = devid;
1756 
1757 			return true;
1758 		}
1759 
1760 	return false;
1761 }
1762 
1763 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1764 					const struct acpi_device_id **matchid)
1765 {
1766 	struct acpi_scan_handler *handler;
1767 
1768 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1769 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1770 			return handler;
1771 
1772 	return NULL;
1773 }
1774 
1775 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1776 {
1777 	if (!!hotplug->enabled == !!val)
1778 		return;
1779 
1780 	mutex_lock(&acpi_scan_lock);
1781 
1782 	hotplug->enabled = val;
1783 
1784 	mutex_unlock(&acpi_scan_lock);
1785 }
1786 
1787 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1788 {
1789 	struct acpi_hardware_id *hwid;
1790 
1791 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1792 		acpi_dock_add(adev);
1793 		return;
1794 	}
1795 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1796 		struct acpi_scan_handler *handler;
1797 
1798 		handler = acpi_scan_match_handler(hwid->id, NULL);
1799 		if (handler) {
1800 			adev->flags.hotplug_notify = true;
1801 			break;
1802 		}
1803 	}
1804 }
1805 
1806 static void acpi_device_dep_initialize(struct acpi_device *adev)
1807 {
1808 	struct acpi_dep_data *dep;
1809 	struct acpi_handle_list dep_devices;
1810 	acpi_status status;
1811 	int i;
1812 
1813 	adev->dep_unmet = 0;
1814 
1815 	if (!acpi_has_method(adev->handle, "_DEP"))
1816 		return;
1817 
1818 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
1819 					&dep_devices);
1820 	if (ACPI_FAILURE(status)) {
1821 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
1822 		return;
1823 	}
1824 
1825 	for (i = 0; i < dep_devices.count; i++) {
1826 		struct acpi_device_info *info;
1827 		int skip;
1828 
1829 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1830 		if (ACPI_FAILURE(status)) {
1831 			dev_dbg(&adev->dev, "Error reading _DEP device info\n");
1832 			continue;
1833 		}
1834 
1835 		/*
1836 		 * Skip the dependency of Windows System Power
1837 		 * Management Controller
1838 		 */
1839 		skip = info->valid & ACPI_VALID_HID &&
1840 			!strcmp(info->hardware_id.string, "INT3396");
1841 
1842 		kfree(info);
1843 
1844 		if (skip)
1845 			continue;
1846 
1847 		dep = kzalloc(sizeof(struct acpi_dep_data), GFP_KERNEL);
1848 		if (!dep)
1849 			return;
1850 
1851 		dep->master = dep_devices.handles[i];
1852 		dep->slave  = adev->handle;
1853 		adev->dep_unmet++;
1854 
1855 		mutex_lock(&acpi_dep_list_lock);
1856 		list_add_tail(&dep->node , &acpi_dep_list);
1857 		mutex_unlock(&acpi_dep_list_lock);
1858 	}
1859 }
1860 
1861 static acpi_status acpi_bus_check_add(acpi_handle handle, u32 lvl_not_used,
1862 				      void *not_used, void **return_value)
1863 {
1864 	struct acpi_device *device = NULL;
1865 	int type;
1866 	unsigned long long sta;
1867 	int result;
1868 
1869 	acpi_bus_get_device(handle, &device);
1870 	if (device)
1871 		goto out;
1872 
1873 	result = acpi_bus_type_and_status(handle, &type, &sta);
1874 	if (result)
1875 		return AE_OK;
1876 
1877 	if (type == ACPI_BUS_TYPE_POWER) {
1878 		acpi_add_power_resource(handle);
1879 		return AE_OK;
1880 	}
1881 
1882 	acpi_add_single_object(&device, handle, type, sta);
1883 	if (!device)
1884 		return AE_CTRL_DEPTH;
1885 
1886 	acpi_scan_init_hotplug(device);
1887 	acpi_device_dep_initialize(device);
1888 
1889  out:
1890 	if (!*return_value)
1891 		*return_value = device;
1892 
1893 	return AE_OK;
1894 }
1895 
1896 static void acpi_default_enumeration(struct acpi_device *device)
1897 {
1898 	/*
1899 	 * Do not enumerate devices with enumeration_by_parent flag set as
1900 	 * they will be enumerated by their respective parents.
1901 	 */
1902 	if (!device->flags.enumeration_by_parent) {
1903 		acpi_create_platform_device(device, NULL);
1904 		acpi_device_set_enumerated(device);
1905 	} else {
1906 		blocking_notifier_call_chain(&acpi_reconfig_chain,
1907 					     ACPI_RECONFIG_DEVICE_ADD, device);
1908 	}
1909 }
1910 
1911 static const struct acpi_device_id generic_device_ids[] = {
1912 	{ACPI_DT_NAMESPACE_HID, },
1913 	{"", },
1914 };
1915 
1916 static int acpi_generic_device_attach(struct acpi_device *adev,
1917 				      const struct acpi_device_id *not_used)
1918 {
1919 	/*
1920 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
1921 	 * below can be unconditional.
1922 	 */
1923 	if (adev->data.of_compatible)
1924 		acpi_default_enumeration(adev);
1925 
1926 	return 1;
1927 }
1928 
1929 static struct acpi_scan_handler generic_device_handler = {
1930 	.ids = generic_device_ids,
1931 	.attach = acpi_generic_device_attach,
1932 };
1933 
1934 static int acpi_scan_attach_handler(struct acpi_device *device)
1935 {
1936 	struct acpi_hardware_id *hwid;
1937 	int ret = 0;
1938 
1939 	list_for_each_entry(hwid, &device->pnp.ids, list) {
1940 		const struct acpi_device_id *devid;
1941 		struct acpi_scan_handler *handler;
1942 
1943 		handler = acpi_scan_match_handler(hwid->id, &devid);
1944 		if (handler) {
1945 			if (!handler->attach) {
1946 				device->pnp.type.platform_id = 0;
1947 				continue;
1948 			}
1949 			device->handler = handler;
1950 			ret = handler->attach(device, devid);
1951 			if (ret > 0)
1952 				break;
1953 
1954 			device->handler = NULL;
1955 			if (ret < 0)
1956 				break;
1957 		}
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 static void acpi_bus_attach(struct acpi_device *device)
1964 {
1965 	struct acpi_device *child;
1966 	acpi_handle ejd;
1967 	int ret;
1968 
1969 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
1970 		register_dock_dependent_device(device, ejd);
1971 
1972 	acpi_bus_get_status(device);
1973 	/* Skip devices that are not present. */
1974 	if (!acpi_device_is_present(device)) {
1975 		device->flags.initialized = false;
1976 		acpi_device_clear_enumerated(device);
1977 		device->flags.power_manageable = 0;
1978 		return;
1979 	}
1980 	if (device->handler)
1981 		goto ok;
1982 
1983 	if (!device->flags.initialized) {
1984 		device->flags.power_manageable =
1985 			device->power.states[ACPI_STATE_D0].flags.valid;
1986 		if (acpi_bus_init_power(device))
1987 			device->flags.power_manageable = 0;
1988 
1989 		device->flags.initialized = true;
1990 	} else if (device->flags.visited) {
1991 		goto ok;
1992 	}
1993 
1994 	ret = acpi_scan_attach_handler(device);
1995 	if (ret < 0)
1996 		return;
1997 
1998 	device->flags.match_driver = true;
1999 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2000 		acpi_device_set_enumerated(device);
2001 		goto ok;
2002 	}
2003 
2004 	ret = device_attach(&device->dev);
2005 	if (ret < 0)
2006 		return;
2007 
2008 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2009 		acpi_default_enumeration(device);
2010 	else
2011 		acpi_device_set_enumerated(device);
2012 
2013  ok:
2014 	list_for_each_entry(child, &device->children, node)
2015 		acpi_bus_attach(child);
2016 
2017 	if (device->handler && device->handler->hotplug.notify_online)
2018 		device->handler->hotplug.notify_online(device);
2019 }
2020 
2021 void acpi_walk_dep_device_list(acpi_handle handle)
2022 {
2023 	struct acpi_dep_data *dep, *tmp;
2024 	struct acpi_device *adev;
2025 
2026 	mutex_lock(&acpi_dep_list_lock);
2027 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2028 		if (dep->master == handle) {
2029 			acpi_bus_get_device(dep->slave, &adev);
2030 			if (!adev)
2031 				continue;
2032 
2033 			adev->dep_unmet--;
2034 			if (!adev->dep_unmet)
2035 				acpi_bus_attach(adev);
2036 			list_del(&dep->node);
2037 			kfree(dep);
2038 		}
2039 	}
2040 	mutex_unlock(&acpi_dep_list_lock);
2041 }
2042 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2043 
2044 /**
2045  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2046  * @handle: Root of the namespace scope to scan.
2047  *
2048  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2049  * found devices.
2050  *
2051  * If no devices were found, -ENODEV is returned, but it does not mean that
2052  * there has been a real error.  There just have been no suitable ACPI objects
2053  * in the table trunk from which the kernel could create a device and add an
2054  * appropriate driver.
2055  *
2056  * Must be called under acpi_scan_lock.
2057  */
2058 int acpi_bus_scan(acpi_handle handle)
2059 {
2060 	void *device = NULL;
2061 
2062 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, 0, NULL, &device)))
2063 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2064 				    acpi_bus_check_add, NULL, NULL, &device);
2065 
2066 	if (device) {
2067 		acpi_bus_attach(device);
2068 		return 0;
2069 	}
2070 	return -ENODEV;
2071 }
2072 EXPORT_SYMBOL(acpi_bus_scan);
2073 
2074 /**
2075  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2076  * @adev: Root of the ACPI namespace scope to walk.
2077  *
2078  * Must be called under acpi_scan_lock.
2079  */
2080 void acpi_bus_trim(struct acpi_device *adev)
2081 {
2082 	struct acpi_scan_handler *handler = adev->handler;
2083 	struct acpi_device *child;
2084 
2085 	list_for_each_entry_reverse(child, &adev->children, node)
2086 		acpi_bus_trim(child);
2087 
2088 	adev->flags.match_driver = false;
2089 	if (handler) {
2090 		if (handler->detach)
2091 			handler->detach(adev);
2092 
2093 		adev->handler = NULL;
2094 	} else {
2095 		device_release_driver(&adev->dev);
2096 	}
2097 	/*
2098 	 * Most likely, the device is going away, so put it into D3cold before
2099 	 * that.
2100 	 */
2101 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2102 	adev->flags.initialized = false;
2103 	acpi_device_clear_enumerated(adev);
2104 }
2105 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2106 
2107 int acpi_bus_register_early_device(int type)
2108 {
2109 	struct acpi_device *device = NULL;
2110 	int result;
2111 
2112 	result = acpi_add_single_object(&device, NULL,
2113 					type, ACPI_STA_DEFAULT);
2114 	if (result)
2115 		return result;
2116 
2117 	device->flags.match_driver = true;
2118 	return device_attach(&device->dev);
2119 }
2120 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2121 
2122 static int acpi_bus_scan_fixed(void)
2123 {
2124 	int result = 0;
2125 
2126 	/*
2127 	 * Enumerate all fixed-feature devices.
2128 	 */
2129 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2130 		struct acpi_device *device = NULL;
2131 
2132 		result = acpi_add_single_object(&device, NULL,
2133 						ACPI_BUS_TYPE_POWER_BUTTON,
2134 						ACPI_STA_DEFAULT);
2135 		if (result)
2136 			return result;
2137 
2138 		device->flags.match_driver = true;
2139 		result = device_attach(&device->dev);
2140 		if (result < 0)
2141 			return result;
2142 
2143 		device_init_wakeup(&device->dev, true);
2144 	}
2145 
2146 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2147 		struct acpi_device *device = NULL;
2148 
2149 		result = acpi_add_single_object(&device, NULL,
2150 						ACPI_BUS_TYPE_SLEEP_BUTTON,
2151 						ACPI_STA_DEFAULT);
2152 		if (result)
2153 			return result;
2154 
2155 		device->flags.match_driver = true;
2156 		result = device_attach(&device->dev);
2157 	}
2158 
2159 	return result < 0 ? result : 0;
2160 }
2161 
2162 static void __init acpi_get_spcr_uart_addr(void)
2163 {
2164 	acpi_status status;
2165 	struct acpi_table_spcr *spcr_ptr;
2166 
2167 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2168 				(struct acpi_table_header **)&spcr_ptr);
2169 	if (ACPI_FAILURE(status)) {
2170 		pr_warn(PREFIX "STAO table present, but SPCR is missing\n");
2171 		return;
2172 	}
2173 
2174 	spcr_uart_addr = spcr_ptr->serial_port.address;
2175 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2176 }
2177 
2178 static bool acpi_scan_initialized;
2179 
2180 int __init acpi_scan_init(void)
2181 {
2182 	int result;
2183 	acpi_status status;
2184 	struct acpi_table_stao *stao_ptr;
2185 
2186 	acpi_pci_root_init();
2187 	acpi_pci_link_init();
2188 	acpi_processor_init();
2189 	acpi_platform_init();
2190 	acpi_lpss_init();
2191 	acpi_apd_init();
2192 	acpi_cmos_rtc_init();
2193 	acpi_container_init();
2194 	acpi_memory_hotplug_init();
2195 	acpi_watchdog_init();
2196 	acpi_pnp_init();
2197 	acpi_int340x_thermal_init();
2198 	acpi_amba_init();
2199 	acpi_init_lpit();
2200 
2201 	acpi_scan_add_handler(&generic_device_handler);
2202 
2203 	/*
2204 	 * If there is STAO table, check whether it needs to ignore the UART
2205 	 * device in SPCR table.
2206 	 */
2207 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2208 				(struct acpi_table_header **)&stao_ptr);
2209 	if (ACPI_SUCCESS(status)) {
2210 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2211 			pr_info(PREFIX "STAO Name List not yet supported.\n");
2212 
2213 		if (stao_ptr->ignore_uart)
2214 			acpi_get_spcr_uart_addr();
2215 
2216 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2217 	}
2218 
2219 	acpi_gpe_apply_masked_gpes();
2220 	acpi_update_all_gpes();
2221 
2222 	/*
2223 	 * Although we call __add_memory() that is documented to require the
2224 	 * device_hotplug_lock, it is not necessary here because this is an
2225 	 * early code when userspace or any other code path cannot trigger
2226 	 * hotplug/hotunplug operations.
2227 	 */
2228 	mutex_lock(&acpi_scan_lock);
2229 	/*
2230 	 * Enumerate devices in the ACPI namespace.
2231 	 */
2232 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2233 	if (result)
2234 		goto out;
2235 
2236 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2237 	if (result)
2238 		goto out;
2239 
2240 	/* Fixed feature devices do not exist on HW-reduced platform */
2241 	if (!acpi_gbl_reduced_hardware) {
2242 		result = acpi_bus_scan_fixed();
2243 		if (result) {
2244 			acpi_detach_data(acpi_root->handle,
2245 					 acpi_scan_drop_device);
2246 			acpi_device_del(acpi_root);
2247 			put_device(&acpi_root->dev);
2248 			goto out;
2249 		}
2250 	}
2251 
2252 	acpi_scan_initialized = true;
2253 
2254  out:
2255 	mutex_unlock(&acpi_scan_lock);
2256 	return result;
2257 }
2258 
2259 static struct acpi_probe_entry *ape;
2260 static int acpi_probe_count;
2261 static DEFINE_MUTEX(acpi_probe_mutex);
2262 
2263 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2264 				  const unsigned long end)
2265 {
2266 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2267 		if (!ape->probe_subtbl(header, end))
2268 			acpi_probe_count++;
2269 
2270 	return 0;
2271 }
2272 
2273 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2274 {
2275 	int count = 0;
2276 
2277 	if (acpi_disabled)
2278 		return 0;
2279 
2280 	mutex_lock(&acpi_probe_mutex);
2281 	for (ape = ap_head; nr; ape++, nr--) {
2282 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2283 			acpi_probe_count = 0;
2284 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2285 			count += acpi_probe_count;
2286 		} else {
2287 			int res;
2288 			res = acpi_table_parse(ape->id, ape->probe_table);
2289 			if (!res)
2290 				count++;
2291 		}
2292 	}
2293 	mutex_unlock(&acpi_probe_mutex);
2294 
2295 	return count;
2296 }
2297 
2298 struct acpi_table_events_work {
2299 	struct work_struct work;
2300 	void *table;
2301 	u32 event;
2302 };
2303 
2304 static void acpi_table_events_fn(struct work_struct *work)
2305 {
2306 	struct acpi_table_events_work *tew;
2307 
2308 	tew = container_of(work, struct acpi_table_events_work, work);
2309 
2310 	if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2311 		acpi_scan_lock_acquire();
2312 		acpi_bus_scan(ACPI_ROOT_OBJECT);
2313 		acpi_scan_lock_release();
2314 	}
2315 
2316 	kfree(tew);
2317 }
2318 
2319 void acpi_scan_table_handler(u32 event, void *table, void *context)
2320 {
2321 	struct acpi_table_events_work *tew;
2322 
2323 	if (!acpi_scan_initialized)
2324 		return;
2325 
2326 	if (event != ACPI_TABLE_EVENT_LOAD)
2327 		return;
2328 
2329 	tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2330 	if (!tew)
2331 		return;
2332 
2333 	INIT_WORK(&tew->work, acpi_table_events_fn);
2334 	tew->table = table;
2335 	tew->event = event;
2336 
2337 	schedule_work(&tew->work);
2338 }
2339 
2340 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2341 {
2342 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2343 }
2344 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2345 
2346 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2347 {
2348 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2349 }
2350 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2351