1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_rimt.h> 15 #include <linux/acpi_viot.h> 16 #include <linux/iommu.h> 17 #include <linux/signal.h> 18 #include <linux/kthread.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/platform_data/x86/apple.h> 22 #include <linux/pgtable.h> 23 #include <linux/crc32.h> 24 #include <linux/dma-direct.h> 25 26 #include "internal.h" 27 #include "sleep.h" 28 29 #define ACPI_BUS_CLASS "system_bus" 30 #define ACPI_BUS_HID "LNXSYBUS" 31 #define ACPI_BUS_DEVICE_NAME "System Bus" 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 acpi_hp_notify notify, acpi_hp_uevent uevent) 78 { 79 acpi_lock_hp_context(); 80 hp->notify = notify; 81 hp->uevent = uevent; 82 acpi_set_hp_context(adev, hp); 83 acpi_unlock_hp_context(); 84 } 85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 86 87 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 88 { 89 if (!handler) 90 return -EINVAL; 91 92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 93 return 0; 94 } 95 96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 97 const char *hotplug_profile_name) 98 { 99 int error; 100 101 error = acpi_scan_add_handler(handler); 102 if (error) 103 return error; 104 105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 106 return 0; 107 } 108 109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 110 { 111 struct acpi_device_physical_node *pn; 112 bool offline = true; 113 char *envp[] = { "EVENT=offline", NULL }; 114 115 /* 116 * acpi_container_offline() calls this for all of the container's 117 * children under the container's physical_node_lock lock. 118 */ 119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 120 121 list_for_each_entry(pn, &adev->physical_node_list, node) 122 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 123 if (uevent) 124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 125 126 offline = false; 127 break; 128 } 129 130 mutex_unlock(&adev->physical_node_lock); 131 return offline; 132 } 133 134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 135 void **ret_p) 136 { 137 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 138 struct acpi_device_physical_node *pn; 139 bool second_pass = (bool)data; 140 acpi_status status = AE_OK; 141 142 if (!device) 143 return AE_OK; 144 145 if (device->handler && !device->handler->hotplug.enabled) { 146 *ret_p = &device->dev; 147 return AE_SUPPORT; 148 } 149 150 mutex_lock(&device->physical_node_lock); 151 152 list_for_each_entry(pn, &device->physical_node_list, node) { 153 int ret; 154 155 if (second_pass) { 156 /* Skip devices offlined by the first pass. */ 157 if (pn->put_online) 158 continue; 159 } else { 160 pn->put_online = false; 161 } 162 ret = device_offline(pn->dev); 163 if (ret >= 0) { 164 pn->put_online = !ret; 165 } else { 166 *ret_p = pn->dev; 167 if (second_pass) { 168 status = AE_ERROR; 169 break; 170 } 171 } 172 } 173 174 mutex_unlock(&device->physical_node_lock); 175 176 return status; 177 } 178 179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 180 void **ret_p) 181 { 182 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 183 struct acpi_device_physical_node *pn; 184 185 if (!device) 186 return AE_OK; 187 188 mutex_lock(&device->physical_node_lock); 189 190 list_for_each_entry(pn, &device->physical_node_list, node) 191 if (pn->put_online) { 192 device_online(pn->dev); 193 pn->put_online = false; 194 } 195 196 mutex_unlock(&device->physical_node_lock); 197 198 return AE_OK; 199 } 200 201 static int acpi_scan_try_to_offline(struct acpi_device *device) 202 { 203 acpi_handle handle = device->handle; 204 struct device *errdev = NULL; 205 acpi_status status; 206 207 /* 208 * Carry out two passes here and ignore errors in the first pass, 209 * because if the devices in question are memory blocks and 210 * CONFIG_MEMCG is set, one of the blocks may hold data structures 211 * that the other blocks depend on, but it is not known in advance which 212 * block holds them. 213 * 214 * If the first pass is successful, the second one isn't needed, though. 215 */ 216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 217 NULL, acpi_bus_offline, (void *)false, 218 (void **)&errdev); 219 if (status == AE_SUPPORT) { 220 dev_warn(errdev, "Offline disabled.\n"); 221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 222 acpi_bus_online, NULL, NULL, NULL); 223 return -EPERM; 224 } 225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 226 if (errdev) { 227 errdev = NULL; 228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 229 NULL, acpi_bus_offline, (void *)true, 230 (void **)&errdev); 231 if (!errdev) 232 acpi_bus_offline(handle, 0, (void *)true, 233 (void **)&errdev); 234 235 if (errdev) { 236 dev_warn(errdev, "Offline failed.\n"); 237 acpi_bus_online(handle, 0, NULL, NULL); 238 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 239 ACPI_UINT32_MAX, acpi_bus_online, 240 NULL, NULL, NULL); 241 return -EBUSY; 242 } 243 } 244 return 0; 245 } 246 247 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0) 248 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1) 249 250 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p) 251 { 252 struct acpi_scan_handler *handler = adev->handler; 253 uintptr_t flags = (uintptr_t)p; 254 255 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p); 256 257 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) { 258 acpi_bus_get_status(adev); 259 /* 260 * Skip devices that are still there and take the enabled 261 * flag into account. 262 */ 263 if (acpi_device_is_enabled(adev)) 264 return 0; 265 266 /* Skip device that have not been enumerated. */ 267 if (!acpi_device_enumerated(adev)) { 268 dev_dbg(&adev->dev, "Still not enumerated\n"); 269 return 0; 270 } 271 } 272 273 adev->flags.match_driver = false; 274 if (handler) { 275 if (handler->detach) 276 handler->detach(adev); 277 } else { 278 device_release_driver(&adev->dev); 279 } 280 /* 281 * Most likely, the device is going away, so put it into D3cold before 282 * that. 283 */ 284 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 285 adev->flags.initialized = false; 286 287 /* For eject this is deferred to acpi_bus_post_eject() */ 288 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) { 289 adev->handler = NULL; 290 acpi_device_clear_enumerated(adev); 291 } 292 return 0; 293 } 294 295 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used) 296 { 297 struct acpi_scan_handler *handler = adev->handler; 298 299 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL); 300 301 if (handler) { 302 if (handler->post_eject) 303 handler->post_eject(adev); 304 305 adev->handler = NULL; 306 } 307 308 acpi_device_clear_enumerated(adev); 309 310 return 0; 311 } 312 313 static void acpi_scan_check_subtree(struct acpi_device *adev) 314 { 315 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS; 316 317 acpi_scan_check_and_detach(adev, (void *)flags); 318 } 319 320 static int acpi_scan_hot_remove(struct acpi_device *device) 321 { 322 acpi_handle handle = device->handle; 323 unsigned long long sta; 324 acpi_status status; 325 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT; 326 327 if (device->handler && device->handler->hotplug.demand_offline) { 328 if (!acpi_scan_is_offline(device, true)) 329 return -EBUSY; 330 } else { 331 int error = acpi_scan_try_to_offline(device); 332 if (error) 333 return error; 334 } 335 336 acpi_handle_debug(handle, "Ejecting\n"); 337 338 acpi_scan_check_and_detach(device, (void *)flags); 339 340 acpi_evaluate_lck(handle, 0); 341 /* 342 * TBD: _EJD support. 343 */ 344 status = acpi_evaluate_ej0(handle); 345 if (status == AE_NOT_FOUND) 346 return -ENODEV; 347 else if (ACPI_FAILURE(status)) 348 return -EIO; 349 350 /* 351 * Verify if eject was indeed successful. If not, log an error 352 * message. No need to call _OST since _EJ0 call was made OK. 353 */ 354 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 355 if (ACPI_FAILURE(status)) { 356 acpi_handle_warn(handle, 357 "Status check after eject failed (0x%x)\n", status); 358 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 359 acpi_handle_warn(handle, 360 "Eject incomplete - status 0x%llx\n", sta); 361 } else { 362 acpi_bus_post_eject(device, NULL); 363 } 364 365 return 0; 366 } 367 368 static int acpi_scan_rescan_bus(struct acpi_device *adev) 369 { 370 struct acpi_scan_handler *handler = adev->handler; 371 int ret; 372 373 if (handler && handler->hotplug.scan_dependent) 374 ret = handler->hotplug.scan_dependent(adev); 375 else 376 ret = acpi_bus_scan(adev->handle); 377 378 if (ret) 379 dev_info(&adev->dev, "Namespace scan failure\n"); 380 381 return ret; 382 } 383 384 static int acpi_scan_device_check(struct acpi_device *adev) 385 { 386 struct acpi_device *parent; 387 388 acpi_scan_check_subtree(adev); 389 390 if (!acpi_device_is_present(adev)) 391 return 0; 392 393 /* 394 * This function is only called for device objects for which matching 395 * scan handlers exist. The only situation in which the scan handler 396 * is not attached to this device object yet is when the device has 397 * just appeared (either it wasn't present at all before or it was 398 * removed and then added again). 399 */ 400 if (adev->handler) { 401 dev_dbg(&adev->dev, "Already enumerated\n"); 402 return 0; 403 } 404 405 parent = acpi_dev_parent(adev); 406 if (!parent) 407 parent = adev; 408 409 return acpi_scan_rescan_bus(parent); 410 } 411 412 static int acpi_scan_bus_check(struct acpi_device *adev) 413 { 414 acpi_scan_check_subtree(adev); 415 416 return acpi_scan_rescan_bus(adev); 417 } 418 419 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 420 { 421 switch (type) { 422 case ACPI_NOTIFY_BUS_CHECK: 423 return acpi_scan_bus_check(adev); 424 case ACPI_NOTIFY_DEVICE_CHECK: 425 return acpi_scan_device_check(adev); 426 case ACPI_NOTIFY_EJECT_REQUEST: 427 case ACPI_OST_EC_OSPM_EJECT: 428 if (adev->handler && !adev->handler->hotplug.enabled) { 429 dev_info(&adev->dev, "Eject disabled\n"); 430 return -EPERM; 431 } 432 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 433 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 434 return acpi_scan_hot_remove(adev); 435 } 436 return -EINVAL; 437 } 438 439 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 440 { 441 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 442 int error = -ENODEV; 443 444 lock_device_hotplug(); 445 mutex_lock(&acpi_scan_lock); 446 447 /* 448 * The device object's ACPI handle cannot become invalid as long as we 449 * are holding acpi_scan_lock, but it might have become invalid before 450 * that lock was acquired. 451 */ 452 if (adev->handle == INVALID_ACPI_HANDLE) 453 goto err_out; 454 455 if (adev->flags.is_dock_station) { 456 error = dock_notify(adev, src); 457 } else if (adev->flags.hotplug_notify) { 458 error = acpi_generic_hotplug_event(adev, src); 459 } else { 460 acpi_hp_notify notify; 461 462 acpi_lock_hp_context(); 463 notify = adev->hp ? adev->hp->notify : NULL; 464 acpi_unlock_hp_context(); 465 /* 466 * There may be additional notify handlers for device objects 467 * without the .event() callback, so ignore them here. 468 */ 469 if (notify) 470 error = notify(adev, src); 471 else 472 goto out; 473 } 474 switch (error) { 475 case 0: 476 ost_code = ACPI_OST_SC_SUCCESS; 477 break; 478 case -EPERM: 479 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 480 break; 481 case -EBUSY: 482 ost_code = ACPI_OST_SC_DEVICE_BUSY; 483 break; 484 default: 485 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 486 break; 487 } 488 489 err_out: 490 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 491 492 out: 493 acpi_put_acpi_dev(adev); 494 mutex_unlock(&acpi_scan_lock); 495 unlock_device_hotplug(); 496 } 497 498 static void acpi_free_power_resources_lists(struct acpi_device *device) 499 { 500 int i; 501 502 if (device->wakeup.flags.valid) 503 acpi_power_resources_list_free(&device->wakeup.resources); 504 505 if (!device->power.flags.power_resources) 506 return; 507 508 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 509 struct acpi_device_power_state *ps = &device->power.states[i]; 510 acpi_power_resources_list_free(&ps->resources); 511 } 512 } 513 514 static void acpi_device_release(struct device *dev) 515 { 516 struct acpi_device *acpi_dev = to_acpi_device(dev); 517 518 acpi_free_properties(acpi_dev); 519 acpi_free_pnp_ids(&acpi_dev->pnp); 520 acpi_free_power_resources_lists(acpi_dev); 521 kfree(acpi_dev); 522 } 523 524 static void acpi_device_del(struct acpi_device *device) 525 { 526 struct acpi_device_bus_id *acpi_device_bus_id; 527 528 mutex_lock(&acpi_device_lock); 529 530 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 531 if (!strcmp(acpi_device_bus_id->bus_id, 532 acpi_device_hid(device))) { 533 ida_free(&acpi_device_bus_id->instance_ida, 534 device->pnp.instance_no); 535 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 536 list_del(&acpi_device_bus_id->node); 537 kfree_const(acpi_device_bus_id->bus_id); 538 kfree(acpi_device_bus_id); 539 } 540 break; 541 } 542 543 list_del(&device->wakeup_list); 544 545 mutex_unlock(&acpi_device_lock); 546 547 acpi_power_add_remove_device(device, false); 548 acpi_device_remove_files(device); 549 if (device->remove) 550 device->remove(device); 551 552 device_del(&device->dev); 553 } 554 555 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 556 557 static LIST_HEAD(acpi_device_del_list); 558 static DEFINE_MUTEX(acpi_device_del_lock); 559 560 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 561 { 562 for (;;) { 563 struct acpi_device *adev; 564 565 mutex_lock(&acpi_device_del_lock); 566 567 if (list_empty(&acpi_device_del_list)) { 568 mutex_unlock(&acpi_device_del_lock); 569 break; 570 } 571 adev = list_first_entry(&acpi_device_del_list, 572 struct acpi_device, del_list); 573 list_del(&adev->del_list); 574 575 mutex_unlock(&acpi_device_del_lock); 576 577 blocking_notifier_call_chain(&acpi_reconfig_chain, 578 ACPI_RECONFIG_DEVICE_REMOVE, adev); 579 580 acpi_device_del(adev); 581 /* 582 * Drop references to all power resources that might have been 583 * used by the device. 584 */ 585 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 586 acpi_dev_put(adev); 587 } 588 } 589 590 /** 591 * acpi_scan_drop_device - Drop an ACPI device object. 592 * @handle: Handle of an ACPI namespace node, not used. 593 * @context: Address of the ACPI device object to drop. 594 * 595 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 596 * namespace node the device object pointed to by @context is attached to. 597 * 598 * The unregistration is carried out asynchronously to avoid running 599 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 600 * ensure the correct ordering (the device objects must be unregistered in the 601 * same order in which the corresponding namespace nodes are deleted). 602 */ 603 static void acpi_scan_drop_device(acpi_handle handle, void *context) 604 { 605 static DECLARE_WORK(work, acpi_device_del_work_fn); 606 struct acpi_device *adev = context; 607 608 mutex_lock(&acpi_device_del_lock); 609 610 /* 611 * Use the ACPI hotplug workqueue which is ordered, so this work item 612 * won't run after any hotplug work items submitted subsequently. That 613 * prevents attempts to register device objects identical to those being 614 * deleted from happening concurrently (such attempts result from 615 * hotplug events handled via the ACPI hotplug workqueue). It also will 616 * run after all of the work items submitted previously, which helps 617 * those work items to ensure that they are not accessing stale device 618 * objects. 619 */ 620 if (list_empty(&acpi_device_del_list)) 621 acpi_queue_hotplug_work(&work); 622 623 list_add_tail(&adev->del_list, &acpi_device_del_list); 624 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 625 adev->handle = INVALID_ACPI_HANDLE; 626 627 mutex_unlock(&acpi_device_del_lock); 628 } 629 630 static struct acpi_device *handle_to_device(acpi_handle handle, 631 void (*callback)(void *)) 632 { 633 struct acpi_device *adev = NULL; 634 acpi_status status; 635 636 status = acpi_get_data_full(handle, acpi_scan_drop_device, 637 (void **)&adev, callback); 638 if (ACPI_FAILURE(status) || !adev) { 639 acpi_handle_debug(handle, "No context!\n"); 640 return NULL; 641 } 642 return adev; 643 } 644 645 /** 646 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 647 * @handle: ACPI handle associated with the requested ACPI device object. 648 * 649 * Return a pointer to the ACPI device object associated with @handle, if 650 * present, or NULL otherwise. 651 */ 652 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 653 { 654 return handle_to_device(handle, NULL); 655 } 656 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 657 658 static void get_acpi_device(void *dev) 659 { 660 acpi_dev_get(dev); 661 } 662 663 /** 664 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 665 * @handle: ACPI handle associated with the requested ACPI device object. 666 * 667 * Return a pointer to the ACPI device object associated with @handle and bump 668 * up that object's reference counter (under the ACPI Namespace lock), if 669 * present, or return NULL otherwise. 670 * 671 * The ACPI device object reference acquired by this function needs to be 672 * dropped via acpi_dev_put(). 673 */ 674 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 675 { 676 return handle_to_device(handle, get_acpi_device); 677 } 678 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 679 680 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 681 { 682 struct acpi_device_bus_id *acpi_device_bus_id; 683 684 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 685 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 686 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 687 return acpi_device_bus_id; 688 } 689 return NULL; 690 } 691 692 static int acpi_device_set_name(struct acpi_device *device, 693 struct acpi_device_bus_id *acpi_device_bus_id) 694 { 695 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 696 int result; 697 698 result = ida_alloc(instance_ida, GFP_KERNEL); 699 if (result < 0) 700 return result; 701 702 device->pnp.instance_no = result; 703 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 704 return 0; 705 } 706 707 int acpi_tie_acpi_dev(struct acpi_device *adev) 708 { 709 acpi_handle handle = adev->handle; 710 acpi_status status; 711 712 if (!handle) 713 return 0; 714 715 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 716 if (ACPI_FAILURE(status)) { 717 acpi_handle_err(handle, "Unable to attach device data\n"); 718 return -ENODEV; 719 } 720 721 return 0; 722 } 723 724 static void acpi_store_pld_crc(struct acpi_device *adev) 725 { 726 struct acpi_pld_info *pld; 727 728 if (!acpi_get_physical_device_location(adev->handle, &pld)) 729 return; 730 731 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 732 ACPI_FREE(pld); 733 } 734 735 int acpi_device_add(struct acpi_device *device) 736 { 737 struct acpi_device_bus_id *acpi_device_bus_id; 738 int result; 739 740 /* 741 * Linkage 742 * ------- 743 * Link this device to its parent and siblings. 744 */ 745 INIT_LIST_HEAD(&device->wakeup_list); 746 INIT_LIST_HEAD(&device->physical_node_list); 747 INIT_LIST_HEAD(&device->del_list); 748 mutex_init(&device->physical_node_lock); 749 750 mutex_lock(&acpi_device_lock); 751 752 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 753 if (acpi_device_bus_id) { 754 result = acpi_device_set_name(device, acpi_device_bus_id); 755 if (result) 756 goto err_unlock; 757 } else { 758 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 759 GFP_KERNEL); 760 if (!acpi_device_bus_id) { 761 result = -ENOMEM; 762 goto err_unlock; 763 } 764 acpi_device_bus_id->bus_id = 765 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 766 if (!acpi_device_bus_id->bus_id) { 767 kfree(acpi_device_bus_id); 768 result = -ENOMEM; 769 goto err_unlock; 770 } 771 772 ida_init(&acpi_device_bus_id->instance_ida); 773 774 result = acpi_device_set_name(device, acpi_device_bus_id); 775 if (result) { 776 kfree_const(acpi_device_bus_id->bus_id); 777 kfree(acpi_device_bus_id); 778 goto err_unlock; 779 } 780 781 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 782 } 783 784 if (device->wakeup.flags.valid) 785 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 786 787 acpi_store_pld_crc(device); 788 789 mutex_unlock(&acpi_device_lock); 790 791 result = device_add(&device->dev); 792 if (result) { 793 dev_err(&device->dev, "Error registering device\n"); 794 goto err; 795 } 796 797 acpi_device_setup_files(device); 798 799 return 0; 800 801 err: 802 mutex_lock(&acpi_device_lock); 803 804 list_del(&device->wakeup_list); 805 806 err_unlock: 807 mutex_unlock(&acpi_device_lock); 808 809 acpi_detach_data(device->handle, acpi_scan_drop_device); 810 811 return result; 812 } 813 814 /* -------------------------------------------------------------------------- 815 Device Enumeration 816 -------------------------------------------------------------------------- */ 817 static bool acpi_info_matches_ids(struct acpi_device_info *info, 818 const char * const ids[]) 819 { 820 struct acpi_pnp_device_id_list *cid_list = NULL; 821 int i, index; 822 823 if (!(info->valid & ACPI_VALID_HID)) 824 return false; 825 826 index = match_string(ids, -1, info->hardware_id.string); 827 if (index >= 0) 828 return true; 829 830 if (info->valid & ACPI_VALID_CID) 831 cid_list = &info->compatible_id_list; 832 833 if (!cid_list) 834 return false; 835 836 for (i = 0; i < cid_list->count; i++) { 837 index = match_string(ids, -1, cid_list->ids[i].string); 838 if (index >= 0) 839 return true; 840 } 841 842 return false; 843 } 844 845 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 846 static const char * const acpi_ignore_dep_ids[] = { 847 "PNP0D80", /* Windows-compatible System Power Management Controller */ 848 "INT33BD", /* Intel Baytrail Mailbox Device */ 849 "INTC10DE", /* Intel CVS LNL */ 850 "INTC10E0", /* Intel CVS ARL */ 851 "LATT2021", /* Lattice FW Update Client Driver */ 852 NULL 853 }; 854 855 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 856 static const char * const acpi_honor_dep_ids[] = { 857 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 858 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 859 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 860 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 861 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */ 862 "RSCV0001", /* RISC-V PLIC */ 863 "RSCV0002", /* RISC-V APLIC */ 864 "RSCV0005", /* RISC-V SBI MPXY MBOX */ 865 "RSCV0006", /* RISC-V RPMI SYSMSI */ 866 "PNP0C0F", /* PCI Link Device */ 867 NULL 868 }; 869 870 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 871 { 872 struct acpi_device *adev; 873 874 /* 875 * Fixed hardware devices do not appear in the namespace and do not 876 * have handles, but we fabricate acpi_devices for them, so we have 877 * to deal with them specially. 878 */ 879 if (!handle) 880 return acpi_root; 881 882 do { 883 acpi_status status; 884 885 status = acpi_get_parent(handle, &handle); 886 if (ACPI_FAILURE(status)) { 887 if (status != AE_NULL_ENTRY) 888 return acpi_root; 889 890 return NULL; 891 } 892 adev = acpi_fetch_acpi_dev(handle); 893 } while (!adev); 894 return adev; 895 } 896 897 acpi_status 898 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 899 { 900 acpi_status status; 901 acpi_handle tmp; 902 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 903 union acpi_object *obj; 904 905 status = acpi_get_handle(handle, "_EJD", &tmp); 906 if (ACPI_FAILURE(status)) 907 return status; 908 909 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 910 if (ACPI_SUCCESS(status)) { 911 obj = buffer.pointer; 912 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 913 ejd); 914 kfree(buffer.pointer); 915 } 916 return status; 917 } 918 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 919 920 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 921 { 922 acpi_handle handle = dev->handle; 923 struct acpi_device_wakeup *wakeup = &dev->wakeup; 924 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 925 union acpi_object *package = NULL; 926 union acpi_object *element = NULL; 927 acpi_status status; 928 int err = -ENODATA; 929 930 INIT_LIST_HEAD(&wakeup->resources); 931 932 /* _PRW */ 933 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 934 if (ACPI_FAILURE(status)) { 935 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 936 acpi_format_exception(status)); 937 return err; 938 } 939 940 package = (union acpi_object *)buffer.pointer; 941 942 if (!package || package->package.count < 2) 943 goto out; 944 945 element = &(package->package.elements[0]); 946 if (!element) 947 goto out; 948 949 if (element->type == ACPI_TYPE_PACKAGE) { 950 if ((element->package.count < 2) || 951 (element->package.elements[0].type != 952 ACPI_TYPE_LOCAL_REFERENCE) 953 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 954 goto out; 955 956 wakeup->gpe_device = 957 element->package.elements[0].reference.handle; 958 wakeup->gpe_number = 959 (u32) element->package.elements[1].integer.value; 960 } else if (element->type == ACPI_TYPE_INTEGER) { 961 wakeup->gpe_device = NULL; 962 wakeup->gpe_number = element->integer.value; 963 } else { 964 goto out; 965 } 966 967 element = &(package->package.elements[1]); 968 if (element->type != ACPI_TYPE_INTEGER) 969 goto out; 970 971 wakeup->sleep_state = element->integer.value; 972 973 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 974 if (err) 975 goto out; 976 977 if (!list_empty(&wakeup->resources)) { 978 int sleep_state; 979 980 err = acpi_power_wakeup_list_init(&wakeup->resources, 981 &sleep_state); 982 if (err) { 983 acpi_handle_warn(handle, "Retrieving current states " 984 "of wakeup power resources failed\n"); 985 acpi_power_resources_list_free(&wakeup->resources); 986 goto out; 987 } 988 if (sleep_state < wakeup->sleep_state) { 989 acpi_handle_warn(handle, "Overriding _PRW sleep state " 990 "(S%d) by S%d from power resources\n", 991 (int)wakeup->sleep_state, sleep_state); 992 wakeup->sleep_state = sleep_state; 993 } 994 } 995 996 out: 997 kfree(buffer.pointer); 998 return err; 999 } 1000 1001 /* Do not use a button for S5 wakeup */ 1002 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 1003 1004 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 1005 { 1006 static const struct acpi_device_id button_device_ids[] = { 1007 {"PNP0C0C", 0}, /* Power button */ 1008 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 1009 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 1010 {"", 0}, 1011 }; 1012 struct acpi_device_wakeup *wakeup = &device->wakeup; 1013 const struct acpi_device_id *match; 1014 acpi_status status; 1015 1016 wakeup->flags.notifier_present = 0; 1017 1018 /* Power button, Lid switch always enable wakeup */ 1019 match = acpi_match_acpi_device(button_device_ids, device); 1020 if (match) { 1021 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 1022 wakeup->sleep_state == ACPI_STATE_S5) 1023 wakeup->sleep_state = ACPI_STATE_S4; 1024 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 1025 device_set_wakeup_capable(&device->dev, true); 1026 return true; 1027 } 1028 1029 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 1030 wakeup->gpe_number); 1031 return ACPI_SUCCESS(status); 1032 } 1033 1034 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 1035 { 1036 int err; 1037 1038 /* Presence of _PRW indicates wake capable */ 1039 if (!acpi_has_method(device->handle, "_PRW")) 1040 return; 1041 1042 err = acpi_bus_extract_wakeup_device_power_package(device); 1043 if (err) { 1044 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1045 return; 1046 } 1047 1048 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1049 device->wakeup.prepare_count = 0; 1050 /* 1051 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1052 * system for the ACPI device with the _PRW object. 1053 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1054 * So it is necessary to call _DSW object first. Only when it is not 1055 * present will the _PSW object used. 1056 */ 1057 err = acpi_device_sleep_wake(device, 0, 0, 0); 1058 if (err) 1059 pr_debug("error in _DSW or _PSW evaluation\n"); 1060 } 1061 1062 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1063 { 1064 struct acpi_device_power_state *ps = &device->power.states[state]; 1065 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1066 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1067 acpi_status status; 1068 1069 INIT_LIST_HEAD(&ps->resources); 1070 1071 /* Evaluate "_PRx" to get referenced power resources */ 1072 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1073 if (ACPI_SUCCESS(status)) { 1074 union acpi_object *package = buffer.pointer; 1075 1076 if (buffer.length && package 1077 && package->type == ACPI_TYPE_PACKAGE 1078 && package->package.count) 1079 acpi_extract_power_resources(package, 0, &ps->resources); 1080 1081 ACPI_FREE(buffer.pointer); 1082 } 1083 1084 /* Evaluate "_PSx" to see if we can do explicit sets */ 1085 pathname[2] = 'S'; 1086 if (acpi_has_method(device->handle, pathname)) 1087 ps->flags.explicit_set = 1; 1088 1089 /* State is valid if there are means to put the device into it. */ 1090 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1091 ps->flags.valid = 1; 1092 1093 ps->power = -1; /* Unknown - driver assigned */ 1094 ps->latency = -1; /* Unknown - driver assigned */ 1095 } 1096 1097 static void acpi_bus_get_power_flags(struct acpi_device *device) 1098 { 1099 unsigned long long dsc = ACPI_STATE_D0; 1100 u32 i; 1101 1102 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1103 if (!acpi_has_method(device->handle, "_PS0") && 1104 !acpi_has_method(device->handle, "_PR0")) 1105 return; 1106 1107 device->flags.power_manageable = 1; 1108 1109 /* 1110 * Power Management Flags 1111 */ 1112 if (acpi_has_method(device->handle, "_PSC")) 1113 device->power.flags.explicit_get = 1; 1114 1115 if (acpi_has_method(device->handle, "_IRC")) 1116 device->power.flags.inrush_current = 1; 1117 1118 if (acpi_has_method(device->handle, "_DSW")) 1119 device->power.flags.dsw_present = 1; 1120 1121 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1122 device->power.state_for_enumeration = dsc; 1123 1124 /* 1125 * Enumerate supported power management states 1126 */ 1127 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1128 acpi_bus_init_power_state(device, i); 1129 1130 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1131 1132 /* Set the defaults for D0 and D3hot (always supported). */ 1133 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1134 device->power.states[ACPI_STATE_D0].power = 100; 1135 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1136 1137 /* 1138 * Use power resources only if the D0 list of them is populated, because 1139 * some platforms may provide _PR3 only to indicate D3cold support and 1140 * in those cases the power resources list returned by it may be bogus. 1141 */ 1142 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1143 device->power.flags.power_resources = 1; 1144 /* 1145 * D3cold is supported if the D3hot list of power resources is 1146 * not empty. 1147 */ 1148 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1149 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1150 } 1151 1152 if (acpi_bus_init_power(device)) 1153 device->flags.power_manageable = 0; 1154 } 1155 1156 static void acpi_bus_get_flags(struct acpi_device *device) 1157 { 1158 /* Presence of _STA indicates 'dynamic_status' */ 1159 if (acpi_has_method(device->handle, "_STA")) 1160 device->flags.dynamic_status = 1; 1161 1162 /* Presence of _RMV indicates 'removable' */ 1163 if (acpi_has_method(device->handle, "_RMV")) 1164 device->flags.removable = 1; 1165 1166 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1167 if (acpi_has_method(device->handle, "_EJD") || 1168 acpi_has_method(device->handle, "_EJ0")) 1169 device->flags.ejectable = 1; 1170 } 1171 1172 static void acpi_device_get_busid(struct acpi_device *device) 1173 { 1174 char bus_id[5] = { '?', 0 }; 1175 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1176 int i = 0; 1177 1178 /* 1179 * Bus ID 1180 * ------ 1181 * The device's Bus ID is simply the object name. 1182 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1183 */ 1184 if (!acpi_dev_parent(device)) { 1185 strscpy(device->pnp.bus_id, "ACPI"); 1186 return; 1187 } 1188 1189 switch (device->device_type) { 1190 case ACPI_BUS_TYPE_POWER_BUTTON: 1191 strscpy(device->pnp.bus_id, "PWRF"); 1192 break; 1193 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1194 strscpy(device->pnp.bus_id, "SLPF"); 1195 break; 1196 case ACPI_BUS_TYPE_ECDT_EC: 1197 strscpy(device->pnp.bus_id, "ECDT"); 1198 break; 1199 default: 1200 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1201 /* Clean up trailing underscores (if any) */ 1202 for (i = 3; i > 1; i--) { 1203 if (bus_id[i] == '_') 1204 bus_id[i] = '\0'; 1205 else 1206 break; 1207 } 1208 strscpy(device->pnp.bus_id, bus_id); 1209 break; 1210 } 1211 } 1212 1213 /* 1214 * acpi_ata_match - see if an acpi object is an ATA device 1215 * 1216 * If an acpi object has one of the ACPI ATA methods defined, 1217 * then we can safely call it an ATA device. 1218 */ 1219 bool acpi_ata_match(acpi_handle handle) 1220 { 1221 return acpi_has_method(handle, "_GTF") || 1222 acpi_has_method(handle, "_GTM") || 1223 acpi_has_method(handle, "_STM") || 1224 acpi_has_method(handle, "_SDD"); 1225 } 1226 1227 /* 1228 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1229 * 1230 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1231 * then we can safely call it an ejectable drive bay 1232 */ 1233 bool acpi_bay_match(acpi_handle handle) 1234 { 1235 acpi_handle phandle; 1236 1237 if (!acpi_has_method(handle, "_EJ0")) 1238 return false; 1239 if (acpi_ata_match(handle)) 1240 return true; 1241 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1242 return false; 1243 1244 return acpi_ata_match(phandle); 1245 } 1246 1247 bool acpi_device_is_battery(struct acpi_device *adev) 1248 { 1249 struct acpi_hardware_id *hwid; 1250 1251 list_for_each_entry(hwid, &adev->pnp.ids, list) 1252 if (!strcmp("PNP0C0A", hwid->id)) 1253 return true; 1254 1255 return false; 1256 } 1257 1258 static bool is_ejectable_bay(struct acpi_device *adev) 1259 { 1260 acpi_handle handle = adev->handle; 1261 1262 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1263 return true; 1264 1265 return acpi_bay_match(handle); 1266 } 1267 1268 /* 1269 * acpi_dock_match - see if an acpi object has a _DCK method 1270 */ 1271 bool acpi_dock_match(acpi_handle handle) 1272 { 1273 return acpi_has_method(handle, "_DCK"); 1274 } 1275 1276 static acpi_status 1277 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1278 void **return_value) 1279 { 1280 long *cap = context; 1281 1282 if (acpi_has_method(handle, "_BCM") && 1283 acpi_has_method(handle, "_BCL")) { 1284 acpi_handle_debug(handle, "Found generic backlight support\n"); 1285 *cap |= ACPI_VIDEO_BACKLIGHT; 1286 /* We have backlight support, no need to scan further */ 1287 return AE_CTRL_TERMINATE; 1288 } 1289 return 0; 1290 } 1291 1292 /* Returns true if the ACPI object is a video device which can be 1293 * handled by video.ko. 1294 * The device will get a Linux specific CID added in scan.c to 1295 * identify the device as an ACPI graphics device 1296 * Be aware that the graphics device may not be physically present 1297 * Use acpi_video_get_capabilities() to detect general ACPI video 1298 * capabilities of present cards 1299 */ 1300 long acpi_is_video_device(acpi_handle handle) 1301 { 1302 long video_caps = 0; 1303 1304 /* Is this device able to support video switching ? */ 1305 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1306 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1307 1308 /* Is this device able to retrieve a video ROM ? */ 1309 if (acpi_has_method(handle, "_ROM")) 1310 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1311 1312 /* Is this device able to configure which video head to be POSTed ? */ 1313 if (acpi_has_method(handle, "_VPO") && 1314 acpi_has_method(handle, "_GPD") && 1315 acpi_has_method(handle, "_SPD")) 1316 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1317 1318 /* Only check for backlight functionality if one of the above hit. */ 1319 if (video_caps) 1320 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1321 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1322 &video_caps, NULL); 1323 1324 return video_caps; 1325 } 1326 EXPORT_SYMBOL(acpi_is_video_device); 1327 1328 const char *acpi_device_hid(struct acpi_device *device) 1329 { 1330 struct acpi_hardware_id *hid; 1331 1332 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list); 1333 if (!hid) 1334 return dummy_hid; 1335 1336 return hid->id; 1337 } 1338 EXPORT_SYMBOL(acpi_device_hid); 1339 1340 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1341 { 1342 struct acpi_hardware_id *id; 1343 1344 id = kmalloc(sizeof(*id), GFP_KERNEL); 1345 if (!id) 1346 return; 1347 1348 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1349 if (!id->id) { 1350 kfree(id); 1351 return; 1352 } 1353 1354 list_add_tail(&id->list, &pnp->ids); 1355 pnp->type.hardware_id = 1; 1356 } 1357 1358 /* 1359 * Old IBM workstations have a DSDT bug wherein the SMBus object 1360 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1361 * prefix. Work around this. 1362 */ 1363 static bool acpi_ibm_smbus_match(acpi_handle handle) 1364 { 1365 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1366 struct acpi_buffer path = { sizeof(node_name), node_name }; 1367 1368 if (!dmi_name_in_vendors("IBM")) 1369 return false; 1370 1371 /* Look for SMBS object */ 1372 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1373 strcmp("SMBS", path.pointer)) 1374 return false; 1375 1376 /* Does it have the necessary (but misnamed) methods? */ 1377 if (acpi_has_method(handle, "SBI") && 1378 acpi_has_method(handle, "SBR") && 1379 acpi_has_method(handle, "SBW")) 1380 return true; 1381 1382 return false; 1383 } 1384 1385 static bool acpi_object_is_system_bus(acpi_handle handle) 1386 { 1387 acpi_handle tmp; 1388 1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1390 tmp == handle) 1391 return true; 1392 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1393 tmp == handle) 1394 return true; 1395 1396 return false; 1397 } 1398 1399 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1400 int device_type) 1401 { 1402 struct acpi_device_info *info = NULL; 1403 struct acpi_pnp_device_id_list *cid_list; 1404 int i; 1405 1406 switch (device_type) { 1407 case ACPI_BUS_TYPE_DEVICE: 1408 if (handle == ACPI_ROOT_OBJECT) { 1409 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1410 break; 1411 } 1412 1413 acpi_get_object_info(handle, &info); 1414 if (!info) { 1415 pr_err("%s: Error reading device info\n", __func__); 1416 return; 1417 } 1418 1419 if (info->valid & ACPI_VALID_HID) { 1420 acpi_add_id(pnp, info->hardware_id.string); 1421 pnp->type.platform_id = 1; 1422 } 1423 if (info->valid & ACPI_VALID_CID) { 1424 cid_list = &info->compatible_id_list; 1425 for (i = 0; i < cid_list->count; i++) 1426 acpi_add_id(pnp, cid_list->ids[i].string); 1427 } 1428 if (info->valid & ACPI_VALID_ADR) { 1429 pnp->bus_address = info->address; 1430 pnp->type.bus_address = 1; 1431 } 1432 if (info->valid & ACPI_VALID_UID) 1433 pnp->unique_id = kstrdup(info->unique_id.string, 1434 GFP_KERNEL); 1435 if (info->valid & ACPI_VALID_CLS) 1436 acpi_add_id(pnp, info->class_code.string); 1437 1438 kfree(info); 1439 1440 /* 1441 * Some devices don't reliably have _HIDs & _CIDs, so add 1442 * synthetic HIDs to make sure drivers can find them. 1443 */ 1444 if (acpi_is_video_device(handle)) { 1445 acpi_add_id(pnp, ACPI_VIDEO_HID); 1446 pnp->type.backlight = 1; 1447 break; 1448 } 1449 if (acpi_bay_match(handle)) 1450 acpi_add_id(pnp, ACPI_BAY_HID); 1451 else if (acpi_dock_match(handle)) 1452 acpi_add_id(pnp, ACPI_DOCK_HID); 1453 else if (acpi_ibm_smbus_match(handle)) 1454 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1455 else if (list_empty(&pnp->ids) && 1456 acpi_object_is_system_bus(handle)) { 1457 /* \_SB, \_TZ, LNXSYBUS */ 1458 acpi_add_id(pnp, ACPI_BUS_HID); 1459 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1460 strscpy(pnp->device_class, ACPI_BUS_CLASS); 1461 } 1462 1463 break; 1464 case ACPI_BUS_TYPE_POWER: 1465 acpi_add_id(pnp, ACPI_POWER_HID); 1466 break; 1467 case ACPI_BUS_TYPE_PROCESSOR: 1468 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1469 break; 1470 case ACPI_BUS_TYPE_THERMAL: 1471 acpi_add_id(pnp, ACPI_THERMAL_HID); 1472 break; 1473 case ACPI_BUS_TYPE_POWER_BUTTON: 1474 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1475 break; 1476 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1477 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1478 break; 1479 case ACPI_BUS_TYPE_ECDT_EC: 1480 acpi_add_id(pnp, ACPI_ECDT_HID); 1481 break; 1482 } 1483 } 1484 1485 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1486 { 1487 struct acpi_hardware_id *id, *tmp; 1488 1489 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1490 kfree_const(id->id); 1491 kfree(id); 1492 } 1493 kfree(pnp->unique_id); 1494 } 1495 1496 /** 1497 * acpi_dma_supported - Check DMA support for the specified device. 1498 * @adev: The pointer to acpi device 1499 * 1500 * Return false if DMA is not supported. Otherwise, return true 1501 */ 1502 bool acpi_dma_supported(const struct acpi_device *adev) 1503 { 1504 if (!adev) 1505 return false; 1506 1507 if (adev->flags.cca_seen) 1508 return true; 1509 1510 /* 1511 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1512 * DMA on "Intel platforms". Presumably that includes all x86 and 1513 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1514 */ 1515 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1516 return true; 1517 1518 return false; 1519 } 1520 1521 /** 1522 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1523 * @adev: The pointer to acpi device 1524 * 1525 * Return enum dev_dma_attr. 1526 */ 1527 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1528 { 1529 if (!acpi_dma_supported(adev)) 1530 return DEV_DMA_NOT_SUPPORTED; 1531 1532 if (adev->flags.coherent_dma) 1533 return DEV_DMA_COHERENT; 1534 else 1535 return DEV_DMA_NON_COHERENT; 1536 } 1537 1538 /** 1539 * acpi_dma_get_range() - Get device DMA parameters. 1540 * 1541 * @dev: device to configure 1542 * @map: pointer to DMA ranges result 1543 * 1544 * Evaluate DMA regions and return pointer to DMA regions on 1545 * parsing success; it does not update the passed in values on failure. 1546 * 1547 * Return 0 on success, < 0 on failure. 1548 */ 1549 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1550 { 1551 struct acpi_device *adev; 1552 LIST_HEAD(list); 1553 struct resource_entry *rentry; 1554 int ret; 1555 struct device *dma_dev = dev; 1556 struct bus_dma_region *r; 1557 1558 /* 1559 * Walk the device tree chasing an ACPI companion with a _DMA 1560 * object while we go. Stop if we find a device with an ACPI 1561 * companion containing a _DMA method. 1562 */ 1563 do { 1564 adev = ACPI_COMPANION(dma_dev); 1565 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1566 break; 1567 1568 dma_dev = dma_dev->parent; 1569 } while (dma_dev); 1570 1571 if (!dma_dev) 1572 return -ENODEV; 1573 1574 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1575 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1576 return -EINVAL; 1577 } 1578 1579 ret = acpi_dev_get_dma_resources(adev, &list); 1580 if (ret > 0) { 1581 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1582 if (!r) { 1583 ret = -ENOMEM; 1584 goto out; 1585 } 1586 1587 *map = r; 1588 1589 list_for_each_entry(rentry, &list, node) { 1590 if (rentry->res->start >= rentry->res->end) { 1591 kfree(*map); 1592 *map = NULL; 1593 ret = -EINVAL; 1594 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1595 goto out; 1596 } 1597 1598 r->cpu_start = rentry->res->start; 1599 r->dma_start = rentry->res->start - rentry->offset; 1600 r->size = resource_size(rentry->res); 1601 r++; 1602 } 1603 } 1604 out: 1605 acpi_dev_free_resource_list(&list); 1606 1607 return ret >= 0 ? 0 : ret; 1608 } 1609 1610 #ifdef CONFIG_IOMMU_API 1611 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1612 struct fwnode_handle *fwnode) 1613 { 1614 int ret; 1615 1616 ret = iommu_fwspec_init(dev, fwnode); 1617 if (ret) 1618 return ret; 1619 1620 return iommu_fwspec_add_ids(dev, &id, 1); 1621 } 1622 1623 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1624 { 1625 int err; 1626 1627 /* Serialise to make dev->iommu stable under our potential fwspec */ 1628 mutex_lock(&iommu_probe_device_lock); 1629 /* If we already translated the fwspec there is nothing left to do */ 1630 if (dev_iommu_fwspec_get(dev)) { 1631 mutex_unlock(&iommu_probe_device_lock); 1632 return 0; 1633 } 1634 1635 err = iort_iommu_configure_id(dev, id_in); 1636 if (err && err != -EPROBE_DEFER) 1637 err = rimt_iommu_configure_id(dev, id_in); 1638 if (err && err != -EPROBE_DEFER) 1639 err = viot_iommu_configure(dev); 1640 1641 mutex_unlock(&iommu_probe_device_lock); 1642 1643 return err; 1644 } 1645 1646 #else /* !CONFIG_IOMMU_API */ 1647 1648 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1649 struct fwnode_handle *fwnode) 1650 { 1651 return -ENODEV; 1652 } 1653 1654 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1655 { 1656 return -ENODEV; 1657 } 1658 1659 #endif /* !CONFIG_IOMMU_API */ 1660 1661 /** 1662 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1663 * @dev: The pointer to the device 1664 * @attr: device dma attributes 1665 * @input_id: input device id const value pointer 1666 */ 1667 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1668 const u32 *input_id) 1669 { 1670 int ret; 1671 1672 if (attr == DEV_DMA_NOT_SUPPORTED) { 1673 set_dma_ops(dev, &dma_dummy_ops); 1674 return 0; 1675 } 1676 1677 acpi_arch_dma_setup(dev); 1678 1679 /* Ignore all other errors apart from EPROBE_DEFER */ 1680 ret = acpi_iommu_configure_id(dev, input_id); 1681 if (ret == -EPROBE_DEFER) 1682 return -EPROBE_DEFER; 1683 if (ret) 1684 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret); 1685 1686 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT); 1687 1688 return 0; 1689 } 1690 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1691 1692 static void acpi_init_coherency(struct acpi_device *adev) 1693 { 1694 unsigned long long cca = 0; 1695 acpi_status status; 1696 struct acpi_device *parent = acpi_dev_parent(adev); 1697 1698 if (parent && parent->flags.cca_seen) { 1699 /* 1700 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1701 * already saw one. 1702 */ 1703 adev->flags.cca_seen = 1; 1704 cca = parent->flags.coherent_dma; 1705 } else { 1706 status = acpi_evaluate_integer(adev->handle, "_CCA", 1707 NULL, &cca); 1708 if (ACPI_SUCCESS(status)) 1709 adev->flags.cca_seen = 1; 1710 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1711 /* 1712 * If architecture does not specify that _CCA is 1713 * required for DMA-able devices (e.g. x86), 1714 * we default to _CCA=1. 1715 */ 1716 cca = 1; 1717 else 1718 acpi_handle_debug(adev->handle, 1719 "ACPI device is missing _CCA.\n"); 1720 } 1721 1722 adev->flags.coherent_dma = cca; 1723 } 1724 1725 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1726 { 1727 bool *is_serial_bus_slave_p = data; 1728 1729 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1730 return 1; 1731 1732 *is_serial_bus_slave_p = true; 1733 1734 /* no need to do more checking */ 1735 return -1; 1736 } 1737 1738 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1739 { 1740 struct acpi_device *parent = acpi_dev_parent(device); 1741 static const struct acpi_device_id indirect_io_hosts[] = { 1742 {"HISI0191", 0}, 1743 {} 1744 }; 1745 1746 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1747 } 1748 1749 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1750 { 1751 struct list_head resource_list; 1752 bool is_serial_bus_slave = false; 1753 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1754 /* 1755 * These devices have multiple SerialBus resources and a client 1756 * device must be instantiated for each of them, each with 1757 * its own device id. 1758 * Normally we only instantiate one client device for the first 1759 * resource, using the ACPI HID as id. These special cases are handled 1760 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1761 * knows which client device id to use for each resource. 1762 */ 1763 {"BSG1160", }, 1764 {"BSG2150", }, 1765 {"CSC3551", }, 1766 {"CSC3554", }, 1767 {"CSC3556", }, 1768 {"CSC3557", }, 1769 {"INT33FE", }, 1770 {"INT3515", }, 1771 {"TXNW2781", }, 1772 /* Non-conforming _HID for Cirrus Logic already released */ 1773 {"CLSA0100", }, 1774 {"CLSA0101", }, 1775 /* 1776 * Some ACPI devs contain SerialBus resources even though they are not 1777 * attached to a serial bus at all. 1778 */ 1779 {ACPI_VIDEO_HID, }, 1780 {"MSHW0028", }, 1781 /* 1782 * HIDs of device with an UartSerialBusV2 resource for which userspace 1783 * expects a regular tty cdev to be created (instead of the in kernel 1784 * serdev) and which have a kernel driver which expects a platform_dev 1785 * such as the rfkill-gpio driver. 1786 */ 1787 {"BCM4752", }, 1788 {"LNV4752", }, 1789 {} 1790 }; 1791 1792 if (acpi_is_indirect_io_slave(device)) 1793 return true; 1794 1795 /* Macs use device properties in lieu of _CRS resources */ 1796 if (x86_apple_machine && 1797 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1798 fwnode_property_present(&device->fwnode, "i2cAddress") || 1799 fwnode_property_present(&device->fwnode, "baud"))) 1800 return true; 1801 1802 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1803 return false; 1804 1805 INIT_LIST_HEAD(&resource_list); 1806 acpi_dev_get_resources(device, &resource_list, 1807 acpi_check_serial_bus_slave, 1808 &is_serial_bus_slave); 1809 acpi_dev_free_resource_list(&resource_list); 1810 1811 return is_serial_bus_slave; 1812 } 1813 1814 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1815 int type, void (*release)(struct device *)) 1816 { 1817 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1818 1819 INIT_LIST_HEAD(&device->pnp.ids); 1820 device->device_type = type; 1821 device->handle = handle; 1822 device->dev.parent = parent ? &parent->dev : NULL; 1823 device->dev.release = release; 1824 device->dev.bus = &acpi_bus_type; 1825 device->dev.groups = acpi_groups; 1826 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1827 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1828 acpi_device_get_busid(device); 1829 acpi_set_pnp_ids(handle, &device->pnp, type); 1830 acpi_init_properties(device); 1831 acpi_bus_get_flags(device); 1832 device->flags.match_driver = false; 1833 device->flags.initialized = true; 1834 device->flags.enumeration_by_parent = 1835 acpi_device_enumeration_by_parent(device); 1836 acpi_device_clear_enumerated(device); 1837 device_initialize(&device->dev); 1838 dev_set_uevent_suppress(&device->dev, true); 1839 acpi_init_coherency(device); 1840 } 1841 1842 static void acpi_scan_dep_init(struct acpi_device *adev) 1843 { 1844 struct acpi_dep_data *dep; 1845 1846 list_for_each_entry(dep, &acpi_dep_list, node) { 1847 if (dep->consumer == adev->handle) { 1848 if (dep->honor_dep) 1849 adev->flags.honor_deps = 1; 1850 1851 if (!dep->met) 1852 adev->dep_unmet++; 1853 } 1854 } 1855 } 1856 1857 void acpi_device_add_finalize(struct acpi_device *device) 1858 { 1859 dev_set_uevent_suppress(&device->dev, false); 1860 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1861 } 1862 1863 static void acpi_scan_init_status(struct acpi_device *adev) 1864 { 1865 if (acpi_bus_get_status(adev)) 1866 acpi_set_device_status(adev, 0); 1867 } 1868 1869 static int acpi_add_single_object(struct acpi_device **child, 1870 acpi_handle handle, int type, bool dep_init) 1871 { 1872 struct acpi_device *device; 1873 bool release_dep_lock = false; 1874 int result; 1875 1876 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1877 if (!device) 1878 return -ENOMEM; 1879 1880 acpi_init_device_object(device, handle, type, acpi_device_release); 1881 /* 1882 * Getting the status is delayed till here so that we can call 1883 * acpi_bus_get_status() and use its quirk handling. Note that 1884 * this must be done before the get power-/wakeup_dev-flags calls. 1885 */ 1886 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1887 if (dep_init) { 1888 mutex_lock(&acpi_dep_list_lock); 1889 /* 1890 * Hold the lock until the acpi_tie_acpi_dev() call 1891 * below to prevent concurrent acpi_scan_clear_dep() 1892 * from deleting a dependency list entry without 1893 * updating dep_unmet for the device. 1894 */ 1895 release_dep_lock = true; 1896 acpi_scan_dep_init(device); 1897 } 1898 acpi_scan_init_status(device); 1899 } 1900 1901 acpi_bus_get_power_flags(device); 1902 acpi_bus_get_wakeup_device_flags(device); 1903 1904 result = acpi_tie_acpi_dev(device); 1905 1906 if (release_dep_lock) 1907 mutex_unlock(&acpi_dep_list_lock); 1908 1909 if (!result) 1910 result = acpi_device_add(device); 1911 1912 if (result) { 1913 acpi_device_release(&device->dev); 1914 return result; 1915 } 1916 1917 acpi_power_add_remove_device(device, true); 1918 acpi_device_add_finalize(device); 1919 1920 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1921 dev_name(&device->dev), device->dev.parent ? 1922 dev_name(device->dev.parent) : "(null)"); 1923 1924 *child = device; 1925 return 0; 1926 } 1927 1928 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1929 void *context) 1930 { 1931 struct resource *res = context; 1932 1933 if (acpi_dev_resource_memory(ares, res)) 1934 return AE_CTRL_TERMINATE; 1935 1936 return AE_OK; 1937 } 1938 1939 static bool acpi_device_should_be_hidden(acpi_handle handle) 1940 { 1941 acpi_status status; 1942 struct resource res; 1943 1944 /* Check if it should ignore the UART device */ 1945 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1946 return false; 1947 1948 /* 1949 * The UART device described in SPCR table is assumed to have only one 1950 * memory resource present. So we only look for the first one here. 1951 */ 1952 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1953 acpi_get_resource_memory, &res); 1954 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1955 return false; 1956 1957 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1958 &res.start); 1959 1960 return true; 1961 } 1962 1963 bool acpi_device_is_present(const struct acpi_device *adev) 1964 { 1965 return adev->status.present || adev->status.functional; 1966 } 1967 1968 bool acpi_device_is_enabled(const struct acpi_device *adev) 1969 { 1970 return adev->status.enabled; 1971 } 1972 1973 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1974 const char *idstr, 1975 const struct acpi_device_id **matchid) 1976 { 1977 const struct acpi_device_id *devid; 1978 1979 if (handler->match) 1980 return handler->match(idstr, matchid); 1981 1982 for (devid = handler->ids; devid->id[0]; devid++) 1983 if (!strcmp((char *)devid->id, idstr)) { 1984 if (matchid) 1985 *matchid = devid; 1986 1987 return true; 1988 } 1989 1990 return false; 1991 } 1992 1993 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1994 const struct acpi_device_id **matchid) 1995 { 1996 struct acpi_scan_handler *handler; 1997 1998 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1999 if (acpi_scan_handler_matching(handler, idstr, matchid)) 2000 return handler; 2001 2002 return NULL; 2003 } 2004 2005 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 2006 { 2007 if (!!hotplug->enabled == !!val) 2008 return; 2009 2010 mutex_lock(&acpi_scan_lock); 2011 2012 hotplug->enabled = val; 2013 2014 mutex_unlock(&acpi_scan_lock); 2015 } 2016 2017 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices) 2018 { 2019 u32 count; 2020 int i; 2021 2022 for (count = 0, i = 0; i < dep_devices->count; i++) { 2023 struct acpi_device_info *info; 2024 struct acpi_dep_data *dep; 2025 bool skip, honor_dep; 2026 acpi_status status; 2027 2028 status = acpi_get_object_info(dep_devices->handles[i], &info); 2029 if (ACPI_FAILURE(status)) { 2030 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2031 continue; 2032 } 2033 2034 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2035 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2036 kfree(info); 2037 2038 if (skip) 2039 continue; 2040 2041 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2042 if (!dep) 2043 continue; 2044 2045 count++; 2046 2047 dep->supplier = dep_devices->handles[i]; 2048 dep->consumer = handle; 2049 dep->honor_dep = honor_dep; 2050 2051 mutex_lock(&acpi_dep_list_lock); 2052 list_add_tail(&dep->node, &acpi_dep_list); 2053 mutex_unlock(&acpi_dep_list_lock); 2054 } 2055 2056 acpi_handle_list_free(dep_devices); 2057 return count; 2058 } 2059 2060 static void acpi_scan_init_hotplug(struct acpi_device *adev) 2061 { 2062 struct acpi_hardware_id *hwid; 2063 2064 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 2065 acpi_dock_add(adev); 2066 return; 2067 } 2068 list_for_each_entry(hwid, &adev->pnp.ids, list) { 2069 struct acpi_scan_handler *handler; 2070 2071 handler = acpi_scan_match_handler(hwid->id, NULL); 2072 if (handler) { 2073 adev->flags.hotplug_notify = true; 2074 break; 2075 } 2076 } 2077 } 2078 2079 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; } 2080 2081 static u32 acpi_scan_check_dep(acpi_handle handle) 2082 { 2083 struct acpi_handle_list dep_devices; 2084 u32 count = 0; 2085 2086 /* 2087 * Some architectures like RISC-V need to add dependencies for 2088 * all devices which use GSI to the interrupt controller so that 2089 * interrupt controller is probed before any of those devices. 2090 * Instead of mandating _DEP on all the devices, detect the 2091 * dependency and add automatically. 2092 */ 2093 count += arch_acpi_add_auto_dep(handle); 2094 2095 /* 2096 * Check for _HID here to avoid deferring the enumeration of: 2097 * 1. PCI devices. 2098 * 2. ACPI nodes describing USB ports. 2099 * Still, checking for _HID catches more then just these cases ... 2100 */ 2101 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 2102 return count; 2103 2104 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) { 2105 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2106 return count; 2107 } 2108 2109 count += acpi_scan_add_dep(handle, &dep_devices); 2110 return count; 2111 } 2112 2113 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c) 2114 { 2115 acpi_mipi_check_crs_csi2(handle); 2116 return AE_OK; 2117 } 2118 2119 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass, 2120 struct acpi_device **adev_p) 2121 { 2122 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2123 acpi_object_type acpi_type; 2124 int type; 2125 2126 if (device) 2127 goto out; 2128 2129 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2130 return AE_OK; 2131 2132 switch (acpi_type) { 2133 case ACPI_TYPE_DEVICE: 2134 if (acpi_device_should_be_hidden(handle)) 2135 return AE_OK; 2136 2137 if (first_pass) { 2138 acpi_mipi_check_crs_csi2(handle); 2139 2140 /* Bail out if there are dependencies. */ 2141 if (acpi_scan_check_dep(handle) > 0) { 2142 /* 2143 * The entire CSI-2 connection graph needs to be 2144 * extracted before any drivers or scan handlers 2145 * are bound to struct device objects, so scan 2146 * _CRS CSI-2 resource descriptors for all 2147 * devices below the current handle. 2148 */ 2149 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2150 ACPI_UINT32_MAX, 2151 acpi_scan_check_crs_csi2_cb, 2152 NULL, NULL, NULL); 2153 return AE_CTRL_DEPTH; 2154 } 2155 } 2156 2157 fallthrough; 2158 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2159 type = ACPI_BUS_TYPE_DEVICE; 2160 break; 2161 2162 case ACPI_TYPE_PROCESSOR: 2163 type = ACPI_BUS_TYPE_PROCESSOR; 2164 break; 2165 2166 case ACPI_TYPE_THERMAL: 2167 type = ACPI_BUS_TYPE_THERMAL; 2168 break; 2169 2170 case ACPI_TYPE_POWER: 2171 acpi_add_power_resource(handle); 2172 fallthrough; 2173 default: 2174 return AE_OK; 2175 } 2176 2177 /* 2178 * If first_pass is true at this point, the device has no dependencies, 2179 * or the creation of the device object would have been postponed above. 2180 */ 2181 acpi_add_single_object(&device, handle, type, !first_pass); 2182 if (!device) 2183 return AE_CTRL_DEPTH; 2184 2185 acpi_scan_init_hotplug(device); 2186 2187 out: 2188 if (!*adev_p) 2189 *adev_p = device; 2190 2191 return AE_OK; 2192 } 2193 2194 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2195 void *not_used, void **ret_p) 2196 { 2197 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2198 } 2199 2200 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2201 void *not_used, void **ret_p) 2202 { 2203 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2204 } 2205 2206 static void acpi_default_enumeration(struct acpi_device *device) 2207 { 2208 /* 2209 * Do not enumerate devices with enumeration_by_parent flag set as 2210 * they will be enumerated by their respective parents. 2211 */ 2212 if (!device->flags.enumeration_by_parent) { 2213 acpi_create_platform_device(device, NULL); 2214 acpi_device_set_enumerated(device); 2215 } else { 2216 blocking_notifier_call_chain(&acpi_reconfig_chain, 2217 ACPI_RECONFIG_DEVICE_ADD, device); 2218 } 2219 } 2220 2221 static const struct acpi_device_id generic_device_ids[] = { 2222 {ACPI_DT_NAMESPACE_HID, }, 2223 {"", }, 2224 }; 2225 2226 static int acpi_generic_device_attach(struct acpi_device *adev, 2227 const struct acpi_device_id *not_used) 2228 { 2229 /* 2230 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2231 * below can be unconditional. 2232 */ 2233 if (adev->data.of_compatible) 2234 acpi_default_enumeration(adev); 2235 2236 return 1; 2237 } 2238 2239 static struct acpi_scan_handler generic_device_handler = { 2240 .ids = generic_device_ids, 2241 .attach = acpi_generic_device_attach, 2242 }; 2243 2244 static int acpi_scan_attach_handler(struct acpi_device *device) 2245 { 2246 struct acpi_hardware_id *hwid; 2247 int ret = 0; 2248 2249 list_for_each_entry(hwid, &device->pnp.ids, list) { 2250 const struct acpi_device_id *devid; 2251 struct acpi_scan_handler *handler; 2252 2253 handler = acpi_scan_match_handler(hwid->id, &devid); 2254 if (handler) { 2255 if (!handler->attach) { 2256 device->pnp.type.platform_id = 0; 2257 continue; 2258 } 2259 device->handler = handler; 2260 ret = handler->attach(device, devid); 2261 if (ret > 0) 2262 break; 2263 2264 device->handler = NULL; 2265 if (ret < 0) 2266 break; 2267 } 2268 } 2269 2270 return ret; 2271 } 2272 2273 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2274 { 2275 bool skip = !first_pass && device->flags.visited; 2276 acpi_handle ejd; 2277 int ret; 2278 2279 if (skip) 2280 goto ok; 2281 2282 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2283 register_dock_dependent_device(device, ejd); 2284 2285 acpi_bus_get_status(device); 2286 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2287 if (!acpi_dev_ready_for_enumeration(device)) { 2288 device->flags.initialized = false; 2289 acpi_device_clear_enumerated(device); 2290 device->flags.power_manageable = 0; 2291 return 0; 2292 } 2293 if (device->handler) 2294 goto ok; 2295 2296 acpi_ec_register_opregions(device); 2297 2298 if (!device->flags.initialized) { 2299 device->flags.power_manageable = 2300 device->power.states[ACPI_STATE_D0].flags.valid; 2301 if (acpi_bus_init_power(device)) 2302 device->flags.power_manageable = 0; 2303 2304 device->flags.initialized = true; 2305 } else if (device->flags.visited) { 2306 goto ok; 2307 } 2308 2309 ret = acpi_scan_attach_handler(device); 2310 if (ret < 0) 2311 return 0; 2312 2313 device->flags.match_driver = true; 2314 if (ret > 0 && !device->flags.enumeration_by_parent) { 2315 acpi_device_set_enumerated(device); 2316 goto ok; 2317 } 2318 2319 ret = device_attach(&device->dev); 2320 if (ret < 0) 2321 return 0; 2322 2323 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2324 acpi_default_enumeration(device); 2325 else 2326 acpi_device_set_enumerated(device); 2327 2328 ok: 2329 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2330 2331 if (!skip && device->handler && device->handler->hotplug.notify_online) 2332 device->handler->hotplug.notify_online(device); 2333 2334 return 0; 2335 } 2336 2337 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2338 { 2339 struct acpi_device **adev_p = data; 2340 struct acpi_device *adev = *adev_p; 2341 2342 /* 2343 * If we're passed a 'previous' consumer device then we need to skip 2344 * any consumers until we meet the previous one, and then NULL @data 2345 * so the next one can be returned. 2346 */ 2347 if (adev) { 2348 if (dep->consumer == adev->handle) 2349 *adev_p = NULL; 2350 2351 return 0; 2352 } 2353 2354 adev = acpi_get_acpi_dev(dep->consumer); 2355 if (adev) { 2356 *(struct acpi_device **)data = adev; 2357 return 1; 2358 } 2359 /* Continue parsing if the device object is not present. */ 2360 return 0; 2361 } 2362 2363 struct acpi_scan_clear_dep_work { 2364 struct work_struct work; 2365 struct acpi_device *adev; 2366 }; 2367 2368 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2369 { 2370 struct acpi_scan_clear_dep_work *cdw; 2371 2372 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2373 2374 acpi_scan_lock_acquire(); 2375 acpi_bus_attach(cdw->adev, (void *)true); 2376 acpi_scan_lock_release(); 2377 2378 acpi_dev_put(cdw->adev); 2379 kfree(cdw); 2380 } 2381 2382 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2383 { 2384 struct acpi_scan_clear_dep_work *cdw; 2385 2386 if (adev->dep_unmet) 2387 return false; 2388 2389 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2390 if (!cdw) 2391 return false; 2392 2393 cdw->adev = adev; 2394 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2395 /* 2396 * Since the work function may block on the lock until the entire 2397 * initial enumeration of devices is complete, put it into the unbound 2398 * workqueue. 2399 */ 2400 queue_work(system_unbound_wq, &cdw->work); 2401 2402 return true; 2403 } 2404 2405 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2406 { 2407 list_del(&dep->node); 2408 kfree(dep); 2409 } 2410 2411 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2412 { 2413 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2414 2415 if (adev) { 2416 adev->dep_unmet--; 2417 if (!acpi_scan_clear_dep_queue(adev)) 2418 acpi_dev_put(adev); 2419 } 2420 2421 if (dep->free_when_met) 2422 acpi_scan_delete_dep_data(dep); 2423 else 2424 dep->met = true; 2425 2426 return 0; 2427 } 2428 2429 /** 2430 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2431 * @handle: The ACPI handle of the supplier device 2432 * @callback: Pointer to the callback function to apply 2433 * @data: Pointer to some data to pass to the callback 2434 * 2435 * The return value of the callback determines this function's behaviour. If 0 2436 * is returned we continue to iterate over acpi_dep_list. If a positive value 2437 * is returned then the loop is broken but this function returns 0. If a 2438 * negative value is returned by the callback then the loop is broken and that 2439 * value is returned as the final error. 2440 */ 2441 static int acpi_walk_dep_device_list(acpi_handle handle, 2442 int (*callback)(struct acpi_dep_data *, void *), 2443 void *data) 2444 { 2445 struct acpi_dep_data *dep, *tmp; 2446 int ret = 0; 2447 2448 mutex_lock(&acpi_dep_list_lock); 2449 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2450 if (dep->supplier == handle) { 2451 ret = callback(dep, data); 2452 if (ret) 2453 break; 2454 } 2455 } 2456 mutex_unlock(&acpi_dep_list_lock); 2457 2458 return ret > 0 ? 0 : ret; 2459 } 2460 2461 /** 2462 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2463 * @supplier: Pointer to the supplier &struct acpi_device 2464 * 2465 * Clear dependencies on the given device. 2466 */ 2467 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2468 { 2469 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2470 } 2471 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2472 2473 /** 2474 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2475 * @device: Pointer to the &struct acpi_device to check 2476 * 2477 * Check if the device is present and has no unmet dependencies. 2478 * 2479 * Return true if the device is ready for enumeratino. Otherwise, return false. 2480 */ 2481 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2482 { 2483 if (device->flags.honor_deps && device->dep_unmet) 2484 return false; 2485 2486 return acpi_device_is_present(device); 2487 } 2488 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2489 2490 /** 2491 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2492 * @supplier: Pointer to the dependee device 2493 * @start: Pointer to the current dependent device 2494 * 2495 * Returns the next &struct acpi_device which declares itself dependent on 2496 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2497 * 2498 * If the returned adev is not passed as @start to this function, the caller is 2499 * responsible for putting the reference to adev when it is no longer needed. 2500 */ 2501 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2502 struct acpi_device *start) 2503 { 2504 struct acpi_device *adev = start; 2505 2506 acpi_walk_dep_device_list(supplier->handle, 2507 acpi_dev_get_next_consumer_dev_cb, &adev); 2508 2509 acpi_dev_put(start); 2510 2511 if (adev == start) 2512 return NULL; 2513 2514 return adev; 2515 } 2516 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2517 2518 static void acpi_scan_postponed_branch(acpi_handle handle) 2519 { 2520 struct acpi_device *adev = NULL; 2521 2522 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2523 return; 2524 2525 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2526 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2527 2528 /* 2529 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that 2530 * have been added above. 2531 */ 2532 acpi_mipi_init_crs_csi2_swnodes(); 2533 2534 acpi_bus_attach(adev, NULL); 2535 } 2536 2537 static void acpi_scan_postponed(void) 2538 { 2539 struct acpi_dep_data *dep, *tmp; 2540 2541 mutex_lock(&acpi_dep_list_lock); 2542 2543 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2544 acpi_handle handle = dep->consumer; 2545 2546 /* 2547 * In case there are multiple acpi_dep_list entries with the 2548 * same consumer, skip the current entry if the consumer device 2549 * object corresponding to it is present already. 2550 */ 2551 if (!acpi_fetch_acpi_dev(handle)) { 2552 /* 2553 * Even though the lock is released here, tmp is 2554 * guaranteed to be valid, because none of the list 2555 * entries following dep is marked as "free when met" 2556 * and so they cannot be deleted. 2557 */ 2558 mutex_unlock(&acpi_dep_list_lock); 2559 2560 acpi_scan_postponed_branch(handle); 2561 2562 mutex_lock(&acpi_dep_list_lock); 2563 } 2564 2565 if (dep->met) 2566 acpi_scan_delete_dep_data(dep); 2567 else 2568 dep->free_when_met = true; 2569 } 2570 2571 mutex_unlock(&acpi_dep_list_lock); 2572 } 2573 2574 /** 2575 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2576 * @handle: Root of the namespace scope to scan. 2577 * 2578 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2579 * found devices. 2580 * 2581 * If no devices were found, -ENODEV is returned, but it does not mean that 2582 * there has been a real error. There just have been no suitable ACPI objects 2583 * in the table trunk from which the kernel could create a device and add an 2584 * appropriate driver. 2585 * 2586 * Must be called under acpi_scan_lock. 2587 */ 2588 int acpi_bus_scan(acpi_handle handle) 2589 { 2590 struct acpi_device *device = NULL; 2591 2592 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2593 2594 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2595 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2596 acpi_bus_check_add_1, NULL, NULL, 2597 (void **)&device); 2598 2599 if (!device) 2600 return -ENODEV; 2601 2602 /* 2603 * Set up ACPI _CRS CSI-2 software nodes using information extracted 2604 * from the _CRS CSI-2 resource descriptors during the ACPI namespace 2605 * walk above and MIPI DisCo for Imaging device properties. 2606 */ 2607 acpi_mipi_scan_crs_csi2(); 2608 acpi_mipi_init_crs_csi2_swnodes(); 2609 2610 acpi_bus_attach(device, (void *)true); 2611 2612 /* Pass 2: Enumerate all of the remaining devices. */ 2613 2614 acpi_scan_postponed(); 2615 2616 acpi_mipi_crs_csi2_cleanup(); 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL(acpi_bus_scan); 2621 2622 /** 2623 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2624 * @adev: Root of the ACPI namespace scope to walk. 2625 * 2626 * Must be called under acpi_scan_lock. 2627 */ 2628 void acpi_bus_trim(struct acpi_device *adev) 2629 { 2630 uintptr_t flags = 0; 2631 2632 acpi_scan_check_and_detach(adev, (void *)flags); 2633 } 2634 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2635 2636 int acpi_bus_register_early_device(int type) 2637 { 2638 struct acpi_device *device = NULL; 2639 int result; 2640 2641 result = acpi_add_single_object(&device, NULL, type, false); 2642 if (result) 2643 return result; 2644 2645 device->flags.match_driver = true; 2646 return device_attach(&device->dev); 2647 } 2648 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2649 2650 static void acpi_bus_scan_fixed(void) 2651 { 2652 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2653 struct acpi_device *adev = NULL; 2654 2655 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2656 false); 2657 if (adev) { 2658 adev->flags.match_driver = true; 2659 if (device_attach(&adev->dev) >= 0) 2660 device_init_wakeup(&adev->dev, true); 2661 else 2662 dev_dbg(&adev->dev, "No driver\n"); 2663 } 2664 } 2665 2666 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2667 struct acpi_device *adev = NULL; 2668 2669 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2670 false); 2671 if (adev) { 2672 adev->flags.match_driver = true; 2673 if (device_attach(&adev->dev) < 0) 2674 dev_dbg(&adev->dev, "No driver\n"); 2675 } 2676 } 2677 } 2678 2679 static void __init acpi_get_spcr_uart_addr(void) 2680 { 2681 acpi_status status; 2682 struct acpi_table_spcr *spcr_ptr; 2683 2684 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2685 (struct acpi_table_header **)&spcr_ptr); 2686 if (ACPI_FAILURE(status)) { 2687 pr_warn("STAO table present, but SPCR is missing\n"); 2688 return; 2689 } 2690 2691 spcr_uart_addr = spcr_ptr->serial_port.address; 2692 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2693 } 2694 2695 static bool acpi_scan_initialized; 2696 2697 void __init acpi_scan_init(void) 2698 { 2699 acpi_status status; 2700 struct acpi_table_stao *stao_ptr; 2701 2702 acpi_pci_root_init(); 2703 acpi_pci_link_init(); 2704 acpi_processor_init(); 2705 acpi_platform_init(); 2706 acpi_lpss_init(); 2707 acpi_apd_init(); 2708 acpi_cmos_rtc_init(); 2709 acpi_container_init(); 2710 acpi_memory_hotplug_init(); 2711 acpi_watchdog_init(); 2712 acpi_pnp_init(); 2713 acpi_power_resources_init(); 2714 acpi_int340x_thermal_init(); 2715 acpi_init_lpit(); 2716 2717 acpi_scan_add_handler(&generic_device_handler); 2718 2719 /* 2720 * If there is STAO table, check whether it needs to ignore the UART 2721 * device in SPCR table. 2722 */ 2723 status = acpi_get_table(ACPI_SIG_STAO, 0, 2724 (struct acpi_table_header **)&stao_ptr); 2725 if (ACPI_SUCCESS(status)) { 2726 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2727 pr_info("STAO Name List not yet supported.\n"); 2728 2729 if (stao_ptr->ignore_uart) 2730 acpi_get_spcr_uart_addr(); 2731 2732 acpi_put_table((struct acpi_table_header *)stao_ptr); 2733 } 2734 2735 acpi_gpe_apply_masked_gpes(); 2736 acpi_update_all_gpes(); 2737 2738 /* 2739 * Although we call __add_memory() that is documented to require the 2740 * device_hotplug_lock, it is not necessary here because this is an 2741 * early code when userspace or any other code path cannot trigger 2742 * hotplug/hotunplug operations. 2743 */ 2744 mutex_lock(&acpi_scan_lock); 2745 /* 2746 * Enumerate devices in the ACPI namespace. 2747 */ 2748 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2749 goto unlock; 2750 2751 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2752 if (!acpi_root) 2753 goto unlock; 2754 2755 /* Fixed feature devices do not exist on HW-reduced platform */ 2756 if (!acpi_gbl_reduced_hardware) 2757 acpi_bus_scan_fixed(); 2758 2759 acpi_turn_off_unused_power_resources(); 2760 2761 acpi_scan_initialized = true; 2762 2763 unlock: 2764 mutex_unlock(&acpi_scan_lock); 2765 } 2766 2767 static struct acpi_probe_entry *ape; 2768 static int acpi_probe_count; 2769 static DEFINE_MUTEX(acpi_probe_mutex); 2770 2771 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2772 const unsigned long end) 2773 { 2774 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2775 if (!ape->probe_subtbl(header, end)) 2776 acpi_probe_count++; 2777 2778 return 0; 2779 } 2780 2781 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { } 2782 2783 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2784 { 2785 int count = 0; 2786 2787 if (acpi_disabled) 2788 return 0; 2789 2790 mutex_lock(&acpi_probe_mutex); 2791 arch_sort_irqchip_probe(ap_head, nr); 2792 for (ape = ap_head; nr; ape++, nr--) { 2793 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2794 acpi_probe_count = 0; 2795 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2796 count += acpi_probe_count; 2797 } else { 2798 int res; 2799 res = acpi_table_parse(ape->id, ape->probe_table); 2800 if (!res) 2801 count++; 2802 } 2803 } 2804 mutex_unlock(&acpi_probe_mutex); 2805 2806 return count; 2807 } 2808 2809 static void acpi_table_events_fn(struct work_struct *work) 2810 { 2811 acpi_scan_lock_acquire(); 2812 acpi_bus_scan(ACPI_ROOT_OBJECT); 2813 acpi_scan_lock_release(); 2814 2815 kfree(work); 2816 } 2817 2818 void acpi_scan_table_notify(void) 2819 { 2820 struct work_struct *work; 2821 2822 if (!acpi_scan_initialized) 2823 return; 2824 2825 work = kmalloc(sizeof(*work), GFP_KERNEL); 2826 if (!work) 2827 return; 2828 2829 INIT_WORK(work, acpi_table_events_fn); 2830 schedule_work(work); 2831 } 2832 2833 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2834 { 2835 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2836 } 2837 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2838 2839 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2840 { 2841 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2842 } 2843 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2844