xref: /linux/drivers/acpi/scan.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				acpi_hp_notify notify, acpi_hp_uevent uevent)
77 {
78 	acpi_lock_hp_context();
79 	hp->notify = notify;
80 	hp->uevent = uevent;
81 	acpi_set_hp_context(adev, hp);
82 	acpi_unlock_hp_context();
83 }
84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85 
86 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87 {
88 	if (!handler)
89 		return -EINVAL;
90 
91 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 	return 0;
93 }
94 
95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 				       const char *hotplug_profile_name)
97 {
98 	int error;
99 
100 	error = acpi_scan_add_handler(handler);
101 	if (error)
102 		return error;
103 
104 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 	return 0;
106 }
107 
108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109 {
110 	struct acpi_device_physical_node *pn;
111 	bool offline = true;
112 	char *envp[] = { "EVENT=offline", NULL };
113 
114 	/*
115 	 * acpi_container_offline() calls this for all of the container's
116 	 * children under the container's physical_node_lock lock.
117 	 */
118 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119 
120 	list_for_each_entry(pn, &adev->physical_node_list, node)
121 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 			if (uevent)
123 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124 
125 			offline = false;
126 			break;
127 		}
128 
129 	mutex_unlock(&adev->physical_node_lock);
130 	return offline;
131 }
132 
133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 				    void **ret_p)
135 {
136 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 	struct acpi_device_physical_node *pn;
138 	bool second_pass = (bool)data;
139 	acpi_status status = AE_OK;
140 
141 	if (!device)
142 		return AE_OK;
143 
144 	if (device->handler && !device->handler->hotplug.enabled) {
145 		*ret_p = &device->dev;
146 		return AE_SUPPORT;
147 	}
148 
149 	mutex_lock(&device->physical_node_lock);
150 
151 	list_for_each_entry(pn, &device->physical_node_list, node) {
152 		int ret;
153 
154 		if (second_pass) {
155 			/* Skip devices offlined by the first pass. */
156 			if (pn->put_online)
157 				continue;
158 		} else {
159 			pn->put_online = false;
160 		}
161 		ret = device_offline(pn->dev);
162 		if (ret >= 0) {
163 			pn->put_online = !ret;
164 		} else {
165 			*ret_p = pn->dev;
166 			if (second_pass) {
167 				status = AE_ERROR;
168 				break;
169 			}
170 		}
171 	}
172 
173 	mutex_unlock(&device->physical_node_lock);
174 
175 	return status;
176 }
177 
178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 				   void **ret_p)
180 {
181 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 	struct acpi_device_physical_node *pn;
183 
184 	if (!device)
185 		return AE_OK;
186 
187 	mutex_lock(&device->physical_node_lock);
188 
189 	list_for_each_entry(pn, &device->physical_node_list, node)
190 		if (pn->put_online) {
191 			device_online(pn->dev);
192 			pn->put_online = false;
193 		}
194 
195 	mutex_unlock(&device->physical_node_lock);
196 
197 	return AE_OK;
198 }
199 
200 static int acpi_scan_try_to_offline(struct acpi_device *device)
201 {
202 	acpi_handle handle = device->handle;
203 	struct device *errdev = NULL;
204 	acpi_status status;
205 
206 	/*
207 	 * Carry out two passes here and ignore errors in the first pass,
208 	 * because if the devices in question are memory blocks and
209 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 	 * that the other blocks depend on, but it is not known in advance which
211 	 * block holds them.
212 	 *
213 	 * If the first pass is successful, the second one isn't needed, though.
214 	 */
215 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 				     NULL, acpi_bus_offline, (void *)false,
217 				     (void **)&errdev);
218 	if (status == AE_SUPPORT) {
219 		dev_warn(errdev, "Offline disabled.\n");
220 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 				    acpi_bus_online, NULL, NULL, NULL);
222 		return -EPERM;
223 	}
224 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 	if (errdev) {
226 		errdev = NULL;
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    NULL, acpi_bus_offline, (void *)true,
229 				    (void **)&errdev);
230 		if (!errdev)
231 			acpi_bus_offline(handle, 0, (void *)true,
232 					 (void **)&errdev);
233 
234 		if (errdev) {
235 			dev_warn(errdev, "Offline failed.\n");
236 			acpi_bus_online(handle, 0, NULL, NULL);
237 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 					    ACPI_UINT32_MAX, acpi_bus_online,
239 					    NULL, NULL, NULL);
240 			return -EBUSY;
241 		}
242 	}
243 	return 0;
244 }
245 
246 #define ACPI_SCAN_CHECK_FLAG_STATUS	BIT(0)
247 #define ACPI_SCAN_CHECK_FLAG_EJECT	BIT(1)
248 
249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250 {
251 	struct acpi_scan_handler *handler = adev->handler;
252 	uintptr_t flags = (uintptr_t)p;
253 
254 	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255 
256 	if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 		acpi_bus_get_status(adev);
258 		/*
259 		 * Skip devices that are still there and take the enabled
260 		 * flag into account.
261 		 */
262 		if (acpi_device_is_enabled(adev))
263 			return 0;
264 
265 		/* Skip device that have not been enumerated. */
266 		if (!acpi_device_enumerated(adev)) {
267 			dev_dbg(&adev->dev, "Still not enumerated\n");
268 			return 0;
269 		}
270 	}
271 
272 	adev->flags.match_driver = false;
273 	if (handler) {
274 		if (handler->detach)
275 			handler->detach(adev);
276 	} else {
277 		device_release_driver(&adev->dev);
278 	}
279 	/*
280 	 * Most likely, the device is going away, so put it into D3cold before
281 	 * that.
282 	 */
283 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 	adev->flags.initialized = false;
285 
286 	/* For eject this is deferred to acpi_bus_post_eject() */
287 	if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 		adev->handler = NULL;
289 		acpi_device_clear_enumerated(adev);
290 	}
291 	return 0;
292 }
293 
294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295 {
296 	struct acpi_scan_handler *handler = adev->handler;
297 
298 	acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299 
300 	if (handler) {
301 		if (handler->post_eject)
302 			handler->post_eject(adev);
303 
304 		adev->handler = NULL;
305 	}
306 
307 	acpi_device_clear_enumerated(adev);
308 
309 	return 0;
310 }
311 
312 static void acpi_scan_check_subtree(struct acpi_device *adev)
313 {
314 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315 
316 	acpi_scan_check_and_detach(adev, (void *)flags);
317 }
318 
319 static int acpi_scan_hot_remove(struct acpi_device *device)
320 {
321 	acpi_handle handle = device->handle;
322 	unsigned long long sta;
323 	acpi_status status;
324 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325 
326 	if (device->handler && device->handler->hotplug.demand_offline) {
327 		if (!acpi_scan_is_offline(device, true))
328 			return -EBUSY;
329 	} else {
330 		int error = acpi_scan_try_to_offline(device);
331 		if (error)
332 			return error;
333 	}
334 
335 	acpi_handle_debug(handle, "Ejecting\n");
336 
337 	acpi_scan_check_and_detach(device, (void *)flags);
338 
339 	acpi_evaluate_lck(handle, 0);
340 	/*
341 	 * TBD: _EJD support.
342 	 */
343 	status = acpi_evaluate_ej0(handle);
344 	if (status == AE_NOT_FOUND)
345 		return -ENODEV;
346 	else if (ACPI_FAILURE(status))
347 		return -EIO;
348 
349 	/*
350 	 * Verify if eject was indeed successful.  If not, log an error
351 	 * message.  No need to call _OST since _EJ0 call was made OK.
352 	 */
353 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 	if (ACPI_FAILURE(status)) {
355 		acpi_handle_warn(handle,
356 			"Status check after eject failed (0x%x)\n", status);
357 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 		acpi_handle_warn(handle,
359 			"Eject incomplete - status 0x%llx\n", sta);
360 	} else {
361 		acpi_bus_post_eject(device, NULL);
362 	}
363 
364 	return 0;
365 }
366 
367 static int acpi_scan_rescan_bus(struct acpi_device *adev)
368 {
369 	struct acpi_scan_handler *handler = adev->handler;
370 	int ret;
371 
372 	if (handler && handler->hotplug.scan_dependent)
373 		ret = handler->hotplug.scan_dependent(adev);
374 	else
375 		ret = acpi_bus_scan(adev->handle);
376 
377 	if (ret)
378 		dev_info(&adev->dev, "Namespace scan failure\n");
379 
380 	return ret;
381 }
382 
383 static int acpi_scan_device_check(struct acpi_device *adev)
384 {
385 	struct acpi_device *parent;
386 
387 	acpi_scan_check_subtree(adev);
388 
389 	if (!acpi_device_is_present(adev))
390 		return 0;
391 
392 	/*
393 	 * This function is only called for device objects for which matching
394 	 * scan handlers exist.  The only situation in which the scan handler
395 	 * is not attached to this device object yet is when the device has
396 	 * just appeared (either it wasn't present at all before or it was
397 	 * removed and then added again).
398 	 */
399 	if (adev->handler) {
400 		dev_dbg(&adev->dev, "Already enumerated\n");
401 		return 0;
402 	}
403 
404 	parent = acpi_dev_parent(adev);
405 	if (!parent)
406 		parent = adev;
407 
408 	return acpi_scan_rescan_bus(parent);
409 }
410 
411 static int acpi_scan_bus_check(struct acpi_device *adev)
412 {
413 	acpi_scan_check_subtree(adev);
414 
415 	return acpi_scan_rescan_bus(adev);
416 }
417 
418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419 {
420 	switch (type) {
421 	case ACPI_NOTIFY_BUS_CHECK:
422 		return acpi_scan_bus_check(adev);
423 	case ACPI_NOTIFY_DEVICE_CHECK:
424 		return acpi_scan_device_check(adev);
425 	case ACPI_NOTIFY_EJECT_REQUEST:
426 	case ACPI_OST_EC_OSPM_EJECT:
427 		if (adev->handler && !adev->handler->hotplug.enabled) {
428 			dev_info(&adev->dev, "Eject disabled\n");
429 			return -EPERM;
430 		}
431 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 		return acpi_scan_hot_remove(adev);
434 	}
435 	return -EINVAL;
436 }
437 
438 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439 {
440 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 	int error = -ENODEV;
442 
443 	lock_device_hotplug();
444 	mutex_lock(&acpi_scan_lock);
445 
446 	/*
447 	 * The device object's ACPI handle cannot become invalid as long as we
448 	 * are holding acpi_scan_lock, but it might have become invalid before
449 	 * that lock was acquired.
450 	 */
451 	if (adev->handle == INVALID_ACPI_HANDLE)
452 		goto err_out;
453 
454 	if (adev->flags.is_dock_station) {
455 		error = dock_notify(adev, src);
456 	} else if (adev->flags.hotplug_notify) {
457 		error = acpi_generic_hotplug_event(adev, src);
458 	} else {
459 		acpi_hp_notify notify;
460 
461 		acpi_lock_hp_context();
462 		notify = adev->hp ? adev->hp->notify : NULL;
463 		acpi_unlock_hp_context();
464 		/*
465 		 * There may be additional notify handlers for device objects
466 		 * without the .event() callback, so ignore them here.
467 		 */
468 		if (notify)
469 			error = notify(adev, src);
470 		else
471 			goto out;
472 	}
473 	switch (error) {
474 	case 0:
475 		ost_code = ACPI_OST_SC_SUCCESS;
476 		break;
477 	case -EPERM:
478 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 		break;
480 	case -EBUSY:
481 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 		break;
483 	default:
484 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 		break;
486 	}
487 
488  err_out:
489 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490 
491  out:
492 	acpi_put_acpi_dev(adev);
493 	mutex_unlock(&acpi_scan_lock);
494 	unlock_device_hotplug();
495 }
496 
497 static void acpi_free_power_resources_lists(struct acpi_device *device)
498 {
499 	int i;
500 
501 	if (device->wakeup.flags.valid)
502 		acpi_power_resources_list_free(&device->wakeup.resources);
503 
504 	if (!device->power.flags.power_resources)
505 		return;
506 
507 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 		struct acpi_device_power_state *ps = &device->power.states[i];
509 		acpi_power_resources_list_free(&ps->resources);
510 	}
511 }
512 
513 static void acpi_device_release(struct device *dev)
514 {
515 	struct acpi_device *acpi_dev = to_acpi_device(dev);
516 
517 	acpi_free_properties(acpi_dev);
518 	acpi_free_pnp_ids(&acpi_dev->pnp);
519 	acpi_free_power_resources_lists(acpi_dev);
520 	kfree(acpi_dev);
521 }
522 
523 static void acpi_device_del(struct acpi_device *device)
524 {
525 	struct acpi_device_bus_id *acpi_device_bus_id;
526 
527 	mutex_lock(&acpi_device_lock);
528 
529 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 		if (!strcmp(acpi_device_bus_id->bus_id,
531 			    acpi_device_hid(device))) {
532 			ida_free(&acpi_device_bus_id->instance_ida,
533 				 device->pnp.instance_no);
534 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 				list_del(&acpi_device_bus_id->node);
536 				kfree_const(acpi_device_bus_id->bus_id);
537 				kfree(acpi_device_bus_id);
538 			}
539 			break;
540 		}
541 
542 	list_del(&device->wakeup_list);
543 
544 	mutex_unlock(&acpi_device_lock);
545 
546 	acpi_power_add_remove_device(device, false);
547 	acpi_device_remove_files(device);
548 	if (device->remove)
549 		device->remove(device);
550 
551 	device_del(&device->dev);
552 }
553 
554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555 
556 static LIST_HEAD(acpi_device_del_list);
557 static DEFINE_MUTEX(acpi_device_del_lock);
558 
559 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560 {
561 	for (;;) {
562 		struct acpi_device *adev;
563 
564 		mutex_lock(&acpi_device_del_lock);
565 
566 		if (list_empty(&acpi_device_del_list)) {
567 			mutex_unlock(&acpi_device_del_lock);
568 			break;
569 		}
570 		adev = list_first_entry(&acpi_device_del_list,
571 					struct acpi_device, del_list);
572 		list_del(&adev->del_list);
573 
574 		mutex_unlock(&acpi_device_del_lock);
575 
576 		blocking_notifier_call_chain(&acpi_reconfig_chain,
577 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
578 
579 		acpi_device_del(adev);
580 		/*
581 		 * Drop references to all power resources that might have been
582 		 * used by the device.
583 		 */
584 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 		acpi_dev_put(adev);
586 	}
587 }
588 
589 /**
590  * acpi_scan_drop_device - Drop an ACPI device object.
591  * @handle: Handle of an ACPI namespace node, not used.
592  * @context: Address of the ACPI device object to drop.
593  *
594  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595  * namespace node the device object pointed to by @context is attached to.
596  *
597  * The unregistration is carried out asynchronously to avoid running
598  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599  * ensure the correct ordering (the device objects must be unregistered in the
600  * same order in which the corresponding namespace nodes are deleted).
601  */
602 static void acpi_scan_drop_device(acpi_handle handle, void *context)
603 {
604 	static DECLARE_WORK(work, acpi_device_del_work_fn);
605 	struct acpi_device *adev = context;
606 
607 	mutex_lock(&acpi_device_del_lock);
608 
609 	/*
610 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 	 * won't run after any hotplug work items submitted subsequently.  That
612 	 * prevents attempts to register device objects identical to those being
613 	 * deleted from happening concurrently (such attempts result from
614 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
615 	 * run after all of the work items submitted previously, which helps
616 	 * those work items to ensure that they are not accessing stale device
617 	 * objects.
618 	 */
619 	if (list_empty(&acpi_device_del_list))
620 		acpi_queue_hotplug_work(&work);
621 
622 	list_add_tail(&adev->del_list, &acpi_device_del_list);
623 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
624 	adev->handle = INVALID_ACPI_HANDLE;
625 
626 	mutex_unlock(&acpi_device_del_lock);
627 }
628 
629 static struct acpi_device *handle_to_device(acpi_handle handle,
630 					    void (*callback)(void *))
631 {
632 	struct acpi_device *adev = NULL;
633 	acpi_status status;
634 
635 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 				    (void **)&adev, callback);
637 	if (ACPI_FAILURE(status) || !adev) {
638 		acpi_handle_debug(handle, "No context!\n");
639 		return NULL;
640 	}
641 	return adev;
642 }
643 
644 /**
645  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646  * @handle: ACPI handle associated with the requested ACPI device object.
647  *
648  * Return a pointer to the ACPI device object associated with @handle, if
649  * present, or NULL otherwise.
650  */
651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652 {
653 	return handle_to_device(handle, NULL);
654 }
655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656 
657 static void get_acpi_device(void *dev)
658 {
659 	acpi_dev_get(dev);
660 }
661 
662 /**
663  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664  * @handle: ACPI handle associated with the requested ACPI device object.
665  *
666  * Return a pointer to the ACPI device object associated with @handle and bump
667  * up that object's reference counter (under the ACPI Namespace lock), if
668  * present, or return NULL otherwise.
669  *
670  * The ACPI device object reference acquired by this function needs to be
671  * dropped via acpi_dev_put().
672  */
673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674 {
675 	return handle_to_device(handle, get_acpi_device);
676 }
677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678 
679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680 {
681 	struct acpi_device_bus_id *acpi_device_bus_id;
682 
683 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 			return acpi_device_bus_id;
687 	}
688 	return NULL;
689 }
690 
691 static int acpi_device_set_name(struct acpi_device *device,
692 				struct acpi_device_bus_id *acpi_device_bus_id)
693 {
694 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 	int result;
696 
697 	result = ida_alloc(instance_ida, GFP_KERNEL);
698 	if (result < 0)
699 		return result;
700 
701 	device->pnp.instance_no = result;
702 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 	return 0;
704 }
705 
706 int acpi_tie_acpi_dev(struct acpi_device *adev)
707 {
708 	acpi_handle handle = adev->handle;
709 	acpi_status status;
710 
711 	if (!handle)
712 		return 0;
713 
714 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 	if (ACPI_FAILURE(status)) {
716 		acpi_handle_err(handle, "Unable to attach device data\n");
717 		return -ENODEV;
718 	}
719 
720 	return 0;
721 }
722 
723 static void acpi_store_pld_crc(struct acpi_device *adev)
724 {
725 	struct acpi_pld_info *pld;
726 	acpi_status status;
727 
728 	status = acpi_get_physical_device_location(adev->handle, &pld);
729 	if (ACPI_FAILURE(status))
730 		return;
731 
732 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
733 	ACPI_FREE(pld);
734 }
735 
736 int acpi_device_add(struct acpi_device *device)
737 {
738 	struct acpi_device_bus_id *acpi_device_bus_id;
739 	int result;
740 
741 	/*
742 	 * Linkage
743 	 * -------
744 	 * Link this device to its parent and siblings.
745 	 */
746 	INIT_LIST_HEAD(&device->wakeup_list);
747 	INIT_LIST_HEAD(&device->physical_node_list);
748 	INIT_LIST_HEAD(&device->del_list);
749 	mutex_init(&device->physical_node_lock);
750 
751 	mutex_lock(&acpi_device_lock);
752 
753 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
754 	if (acpi_device_bus_id) {
755 		result = acpi_device_set_name(device, acpi_device_bus_id);
756 		if (result)
757 			goto err_unlock;
758 	} else {
759 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
760 					     GFP_KERNEL);
761 		if (!acpi_device_bus_id) {
762 			result = -ENOMEM;
763 			goto err_unlock;
764 		}
765 		acpi_device_bus_id->bus_id =
766 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
767 		if (!acpi_device_bus_id->bus_id) {
768 			kfree(acpi_device_bus_id);
769 			result = -ENOMEM;
770 			goto err_unlock;
771 		}
772 
773 		ida_init(&acpi_device_bus_id->instance_ida);
774 
775 		result = acpi_device_set_name(device, acpi_device_bus_id);
776 		if (result) {
777 			kfree_const(acpi_device_bus_id->bus_id);
778 			kfree(acpi_device_bus_id);
779 			goto err_unlock;
780 		}
781 
782 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
783 	}
784 
785 	if (device->wakeup.flags.valid)
786 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
787 
788 	acpi_store_pld_crc(device);
789 
790 	mutex_unlock(&acpi_device_lock);
791 
792 	result = device_add(&device->dev);
793 	if (result) {
794 		dev_err(&device->dev, "Error registering device\n");
795 		goto err;
796 	}
797 
798 	acpi_device_setup_files(device);
799 
800 	return 0;
801 
802 err:
803 	mutex_lock(&acpi_device_lock);
804 
805 	list_del(&device->wakeup_list);
806 
807 err_unlock:
808 	mutex_unlock(&acpi_device_lock);
809 
810 	acpi_detach_data(device->handle, acpi_scan_drop_device);
811 
812 	return result;
813 }
814 
815 /* --------------------------------------------------------------------------
816                                  Device Enumeration
817    -------------------------------------------------------------------------- */
818 static bool acpi_info_matches_ids(struct acpi_device_info *info,
819 				  const char * const ids[])
820 {
821 	struct acpi_pnp_device_id_list *cid_list = NULL;
822 	int i, index;
823 
824 	if (!(info->valid & ACPI_VALID_HID))
825 		return false;
826 
827 	index = match_string(ids, -1, info->hardware_id.string);
828 	if (index >= 0)
829 		return true;
830 
831 	if (info->valid & ACPI_VALID_CID)
832 		cid_list = &info->compatible_id_list;
833 
834 	if (!cid_list)
835 		return false;
836 
837 	for (i = 0; i < cid_list->count; i++) {
838 		index = match_string(ids, -1, cid_list->ids[i].string);
839 		if (index >= 0)
840 			return true;
841 	}
842 
843 	return false;
844 }
845 
846 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
847 static const char * const acpi_ignore_dep_ids[] = {
848 	"PNP0D80", /* Windows-compatible System Power Management Controller */
849 	"INT33BD", /* Intel Baytrail Mailbox Device */
850 	"LATT2021", /* Lattice FW Update Client Driver */
851 	NULL
852 };
853 
854 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
855 static const char * const acpi_honor_dep_ids[] = {
856 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
857 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
858 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
859 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
860 	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
861 	"RSCV0001", /* RISC-V PLIC */
862 	"RSCV0002", /* RISC-V APLIC */
863 	"PNP0C0F",  /* PCI Link Device */
864 	NULL
865 };
866 
867 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
868 {
869 	struct acpi_device *adev;
870 
871 	/*
872 	 * Fixed hardware devices do not appear in the namespace and do not
873 	 * have handles, but we fabricate acpi_devices for them, so we have
874 	 * to deal with them specially.
875 	 */
876 	if (!handle)
877 		return acpi_root;
878 
879 	do {
880 		acpi_status status;
881 
882 		status = acpi_get_parent(handle, &handle);
883 		if (ACPI_FAILURE(status)) {
884 			if (status != AE_NULL_ENTRY)
885 				return acpi_root;
886 
887 			return NULL;
888 		}
889 		adev = acpi_fetch_acpi_dev(handle);
890 	} while (!adev);
891 	return adev;
892 }
893 
894 acpi_status
895 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
896 {
897 	acpi_status status;
898 	acpi_handle tmp;
899 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
900 	union acpi_object *obj;
901 
902 	status = acpi_get_handle(handle, "_EJD", &tmp);
903 	if (ACPI_FAILURE(status))
904 		return status;
905 
906 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
907 	if (ACPI_SUCCESS(status)) {
908 		obj = buffer.pointer;
909 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
910 					 ejd);
911 		kfree(buffer.pointer);
912 	}
913 	return status;
914 }
915 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
916 
917 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
918 {
919 	acpi_handle handle = dev->handle;
920 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
921 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
922 	union acpi_object *package = NULL;
923 	union acpi_object *element = NULL;
924 	acpi_status status;
925 	int err = -ENODATA;
926 
927 	INIT_LIST_HEAD(&wakeup->resources);
928 
929 	/* _PRW */
930 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
931 	if (ACPI_FAILURE(status)) {
932 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
933 				 acpi_format_exception(status));
934 		return err;
935 	}
936 
937 	package = (union acpi_object *)buffer.pointer;
938 
939 	if (!package || package->package.count < 2)
940 		goto out;
941 
942 	element = &(package->package.elements[0]);
943 	if (!element)
944 		goto out;
945 
946 	if (element->type == ACPI_TYPE_PACKAGE) {
947 		if ((element->package.count < 2) ||
948 		    (element->package.elements[0].type !=
949 		     ACPI_TYPE_LOCAL_REFERENCE)
950 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
951 			goto out;
952 
953 		wakeup->gpe_device =
954 		    element->package.elements[0].reference.handle;
955 		wakeup->gpe_number =
956 		    (u32) element->package.elements[1].integer.value;
957 	} else if (element->type == ACPI_TYPE_INTEGER) {
958 		wakeup->gpe_device = NULL;
959 		wakeup->gpe_number = element->integer.value;
960 	} else {
961 		goto out;
962 	}
963 
964 	element = &(package->package.elements[1]);
965 	if (element->type != ACPI_TYPE_INTEGER)
966 		goto out;
967 
968 	wakeup->sleep_state = element->integer.value;
969 
970 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
971 	if (err)
972 		goto out;
973 
974 	if (!list_empty(&wakeup->resources)) {
975 		int sleep_state;
976 
977 		err = acpi_power_wakeup_list_init(&wakeup->resources,
978 						  &sleep_state);
979 		if (err) {
980 			acpi_handle_warn(handle, "Retrieving current states "
981 					 "of wakeup power resources failed\n");
982 			acpi_power_resources_list_free(&wakeup->resources);
983 			goto out;
984 		}
985 		if (sleep_state < wakeup->sleep_state) {
986 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
987 					 "(S%d) by S%d from power resources\n",
988 					 (int)wakeup->sleep_state, sleep_state);
989 			wakeup->sleep_state = sleep_state;
990 		}
991 	}
992 
993  out:
994 	kfree(buffer.pointer);
995 	return err;
996 }
997 
998 /* Do not use a button for S5 wakeup */
999 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
1000 
1001 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1002 {
1003 	static const struct acpi_device_id button_device_ids[] = {
1004 		{"PNP0C0C", 0},				/* Power button */
1005 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
1006 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
1007 		{"", 0},
1008 	};
1009 	struct acpi_device_wakeup *wakeup = &device->wakeup;
1010 	const struct acpi_device_id *match;
1011 	acpi_status status;
1012 
1013 	wakeup->flags.notifier_present = 0;
1014 
1015 	/* Power button, Lid switch always enable wakeup */
1016 	match = acpi_match_acpi_device(button_device_ids, device);
1017 	if (match) {
1018 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1019 		    wakeup->sleep_state == ACPI_STATE_S5)
1020 			wakeup->sleep_state = ACPI_STATE_S4;
1021 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1022 		device_set_wakeup_capable(&device->dev, true);
1023 		return true;
1024 	}
1025 
1026 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1027 					 wakeup->gpe_number);
1028 	return ACPI_SUCCESS(status);
1029 }
1030 
1031 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1032 {
1033 	int err;
1034 
1035 	/* Presence of _PRW indicates wake capable */
1036 	if (!acpi_has_method(device->handle, "_PRW"))
1037 		return;
1038 
1039 	err = acpi_bus_extract_wakeup_device_power_package(device);
1040 	if (err) {
1041 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1042 		return;
1043 	}
1044 
1045 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1046 	device->wakeup.prepare_count = 0;
1047 	/*
1048 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1049 	 * system for the ACPI device with the _PRW object.
1050 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1051 	 * So it is necessary to call _DSW object first. Only when it is not
1052 	 * present will the _PSW object used.
1053 	 */
1054 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1055 	if (err)
1056 		pr_debug("error in _DSW or _PSW evaluation\n");
1057 }
1058 
1059 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1060 {
1061 	struct acpi_device_power_state *ps = &device->power.states[state];
1062 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1063 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1064 	acpi_status status;
1065 
1066 	INIT_LIST_HEAD(&ps->resources);
1067 
1068 	/* Evaluate "_PRx" to get referenced power resources */
1069 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1070 	if (ACPI_SUCCESS(status)) {
1071 		union acpi_object *package = buffer.pointer;
1072 
1073 		if (buffer.length && package
1074 		    && package->type == ACPI_TYPE_PACKAGE
1075 		    && package->package.count)
1076 			acpi_extract_power_resources(package, 0, &ps->resources);
1077 
1078 		ACPI_FREE(buffer.pointer);
1079 	}
1080 
1081 	/* Evaluate "_PSx" to see if we can do explicit sets */
1082 	pathname[2] = 'S';
1083 	if (acpi_has_method(device->handle, pathname))
1084 		ps->flags.explicit_set = 1;
1085 
1086 	/* State is valid if there are means to put the device into it. */
1087 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1088 		ps->flags.valid = 1;
1089 
1090 	ps->power = -1;		/* Unknown - driver assigned */
1091 	ps->latency = -1;	/* Unknown - driver assigned */
1092 }
1093 
1094 static void acpi_bus_get_power_flags(struct acpi_device *device)
1095 {
1096 	unsigned long long dsc = ACPI_STATE_D0;
1097 	u32 i;
1098 
1099 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1100 	if (!acpi_has_method(device->handle, "_PS0") &&
1101 	    !acpi_has_method(device->handle, "_PR0"))
1102 		return;
1103 
1104 	device->flags.power_manageable = 1;
1105 
1106 	/*
1107 	 * Power Management Flags
1108 	 */
1109 	if (acpi_has_method(device->handle, "_PSC"))
1110 		device->power.flags.explicit_get = 1;
1111 
1112 	if (acpi_has_method(device->handle, "_IRC"))
1113 		device->power.flags.inrush_current = 1;
1114 
1115 	if (acpi_has_method(device->handle, "_DSW"))
1116 		device->power.flags.dsw_present = 1;
1117 
1118 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1119 	device->power.state_for_enumeration = dsc;
1120 
1121 	/*
1122 	 * Enumerate supported power management states
1123 	 */
1124 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1125 		acpi_bus_init_power_state(device, i);
1126 
1127 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1128 
1129 	/* Set the defaults for D0 and D3hot (always supported). */
1130 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1131 	device->power.states[ACPI_STATE_D0].power = 100;
1132 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1133 
1134 	/*
1135 	 * Use power resources only if the D0 list of them is populated, because
1136 	 * some platforms may provide _PR3 only to indicate D3cold support and
1137 	 * in those cases the power resources list returned by it may be bogus.
1138 	 */
1139 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1140 		device->power.flags.power_resources = 1;
1141 		/*
1142 		 * D3cold is supported if the D3hot list of power resources is
1143 		 * not empty.
1144 		 */
1145 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1146 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1147 	}
1148 
1149 	if (acpi_bus_init_power(device))
1150 		device->flags.power_manageable = 0;
1151 }
1152 
1153 static void acpi_bus_get_flags(struct acpi_device *device)
1154 {
1155 	/* Presence of _STA indicates 'dynamic_status' */
1156 	if (acpi_has_method(device->handle, "_STA"))
1157 		device->flags.dynamic_status = 1;
1158 
1159 	/* Presence of _RMV indicates 'removable' */
1160 	if (acpi_has_method(device->handle, "_RMV"))
1161 		device->flags.removable = 1;
1162 
1163 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1164 	if (acpi_has_method(device->handle, "_EJD") ||
1165 	    acpi_has_method(device->handle, "_EJ0"))
1166 		device->flags.ejectable = 1;
1167 }
1168 
1169 static void acpi_device_get_busid(struct acpi_device *device)
1170 {
1171 	char bus_id[5] = { '?', 0 };
1172 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1173 	int i = 0;
1174 
1175 	/*
1176 	 * Bus ID
1177 	 * ------
1178 	 * The device's Bus ID is simply the object name.
1179 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1180 	 */
1181 	if (!acpi_dev_parent(device)) {
1182 		strcpy(device->pnp.bus_id, "ACPI");
1183 		return;
1184 	}
1185 
1186 	switch (device->device_type) {
1187 	case ACPI_BUS_TYPE_POWER_BUTTON:
1188 		strcpy(device->pnp.bus_id, "PWRF");
1189 		break;
1190 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1191 		strcpy(device->pnp.bus_id, "SLPF");
1192 		break;
1193 	case ACPI_BUS_TYPE_ECDT_EC:
1194 		strcpy(device->pnp.bus_id, "ECDT");
1195 		break;
1196 	default:
1197 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1198 		/* Clean up trailing underscores (if any) */
1199 		for (i = 3; i > 1; i--) {
1200 			if (bus_id[i] == '_')
1201 				bus_id[i] = '\0';
1202 			else
1203 				break;
1204 		}
1205 		strcpy(device->pnp.bus_id, bus_id);
1206 		break;
1207 	}
1208 }
1209 
1210 /*
1211  * acpi_ata_match - see if an acpi object is an ATA device
1212  *
1213  * If an acpi object has one of the ACPI ATA methods defined,
1214  * then we can safely call it an ATA device.
1215  */
1216 bool acpi_ata_match(acpi_handle handle)
1217 {
1218 	return acpi_has_method(handle, "_GTF") ||
1219 	       acpi_has_method(handle, "_GTM") ||
1220 	       acpi_has_method(handle, "_STM") ||
1221 	       acpi_has_method(handle, "_SDD");
1222 }
1223 
1224 /*
1225  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1226  *
1227  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1228  * then we can safely call it an ejectable drive bay
1229  */
1230 bool acpi_bay_match(acpi_handle handle)
1231 {
1232 	acpi_handle phandle;
1233 
1234 	if (!acpi_has_method(handle, "_EJ0"))
1235 		return false;
1236 	if (acpi_ata_match(handle))
1237 		return true;
1238 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1239 		return false;
1240 
1241 	return acpi_ata_match(phandle);
1242 }
1243 
1244 bool acpi_device_is_battery(struct acpi_device *adev)
1245 {
1246 	struct acpi_hardware_id *hwid;
1247 
1248 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1249 		if (!strcmp("PNP0C0A", hwid->id))
1250 			return true;
1251 
1252 	return false;
1253 }
1254 
1255 static bool is_ejectable_bay(struct acpi_device *adev)
1256 {
1257 	acpi_handle handle = adev->handle;
1258 
1259 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1260 		return true;
1261 
1262 	return acpi_bay_match(handle);
1263 }
1264 
1265 /*
1266  * acpi_dock_match - see if an acpi object has a _DCK method
1267  */
1268 bool acpi_dock_match(acpi_handle handle)
1269 {
1270 	return acpi_has_method(handle, "_DCK");
1271 }
1272 
1273 static acpi_status
1274 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1275 			  void **return_value)
1276 {
1277 	long *cap = context;
1278 
1279 	if (acpi_has_method(handle, "_BCM") &&
1280 	    acpi_has_method(handle, "_BCL")) {
1281 		acpi_handle_debug(handle, "Found generic backlight support\n");
1282 		*cap |= ACPI_VIDEO_BACKLIGHT;
1283 		/* We have backlight support, no need to scan further */
1284 		return AE_CTRL_TERMINATE;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /* Returns true if the ACPI object is a video device which can be
1290  * handled by video.ko.
1291  * The device will get a Linux specific CID added in scan.c to
1292  * identify the device as an ACPI graphics device
1293  * Be aware that the graphics device may not be physically present
1294  * Use acpi_video_get_capabilities() to detect general ACPI video
1295  * capabilities of present cards
1296  */
1297 long acpi_is_video_device(acpi_handle handle)
1298 {
1299 	long video_caps = 0;
1300 
1301 	/* Is this device able to support video switching ? */
1302 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1303 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1304 
1305 	/* Is this device able to retrieve a video ROM ? */
1306 	if (acpi_has_method(handle, "_ROM"))
1307 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1308 
1309 	/* Is this device able to configure which video head to be POSTed ? */
1310 	if (acpi_has_method(handle, "_VPO") &&
1311 	    acpi_has_method(handle, "_GPD") &&
1312 	    acpi_has_method(handle, "_SPD"))
1313 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1314 
1315 	/* Only check for backlight functionality if one of the above hit. */
1316 	if (video_caps)
1317 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1318 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1319 				    &video_caps, NULL);
1320 
1321 	return video_caps;
1322 }
1323 EXPORT_SYMBOL(acpi_is_video_device);
1324 
1325 const char *acpi_device_hid(struct acpi_device *device)
1326 {
1327 	struct acpi_hardware_id *hid;
1328 
1329 	hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1330 	if (!hid)
1331 		return dummy_hid;
1332 
1333 	return hid->id;
1334 }
1335 EXPORT_SYMBOL(acpi_device_hid);
1336 
1337 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1338 {
1339 	struct acpi_hardware_id *id;
1340 
1341 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1342 	if (!id)
1343 		return;
1344 
1345 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1346 	if (!id->id) {
1347 		kfree(id);
1348 		return;
1349 	}
1350 
1351 	list_add_tail(&id->list, &pnp->ids);
1352 	pnp->type.hardware_id = 1;
1353 }
1354 
1355 /*
1356  * Old IBM workstations have a DSDT bug wherein the SMBus object
1357  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1358  * prefix.  Work around this.
1359  */
1360 static bool acpi_ibm_smbus_match(acpi_handle handle)
1361 {
1362 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1363 	struct acpi_buffer path = { sizeof(node_name), node_name };
1364 
1365 	if (!dmi_name_in_vendors("IBM"))
1366 		return false;
1367 
1368 	/* Look for SMBS object */
1369 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1370 	    strcmp("SMBS", path.pointer))
1371 		return false;
1372 
1373 	/* Does it have the necessary (but misnamed) methods? */
1374 	if (acpi_has_method(handle, "SBI") &&
1375 	    acpi_has_method(handle, "SBR") &&
1376 	    acpi_has_method(handle, "SBW"))
1377 		return true;
1378 
1379 	return false;
1380 }
1381 
1382 static bool acpi_object_is_system_bus(acpi_handle handle)
1383 {
1384 	acpi_handle tmp;
1385 
1386 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1387 	    tmp == handle)
1388 		return true;
1389 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1390 	    tmp == handle)
1391 		return true;
1392 
1393 	return false;
1394 }
1395 
1396 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1397 			     int device_type)
1398 {
1399 	struct acpi_device_info *info = NULL;
1400 	struct acpi_pnp_device_id_list *cid_list;
1401 	int i;
1402 
1403 	switch (device_type) {
1404 	case ACPI_BUS_TYPE_DEVICE:
1405 		if (handle == ACPI_ROOT_OBJECT) {
1406 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1407 			break;
1408 		}
1409 
1410 		acpi_get_object_info(handle, &info);
1411 		if (!info) {
1412 			pr_err("%s: Error reading device info\n", __func__);
1413 			return;
1414 		}
1415 
1416 		if (info->valid & ACPI_VALID_HID) {
1417 			acpi_add_id(pnp, info->hardware_id.string);
1418 			pnp->type.platform_id = 1;
1419 		}
1420 		if (info->valid & ACPI_VALID_CID) {
1421 			cid_list = &info->compatible_id_list;
1422 			for (i = 0; i < cid_list->count; i++)
1423 				acpi_add_id(pnp, cid_list->ids[i].string);
1424 		}
1425 		if (info->valid & ACPI_VALID_ADR) {
1426 			pnp->bus_address = info->address;
1427 			pnp->type.bus_address = 1;
1428 		}
1429 		if (info->valid & ACPI_VALID_UID)
1430 			pnp->unique_id = kstrdup(info->unique_id.string,
1431 							GFP_KERNEL);
1432 		if (info->valid & ACPI_VALID_CLS)
1433 			acpi_add_id(pnp, info->class_code.string);
1434 
1435 		kfree(info);
1436 
1437 		/*
1438 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1439 		 * synthetic HIDs to make sure drivers can find them.
1440 		 */
1441 		if (acpi_is_video_device(handle)) {
1442 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1443 			pnp->type.backlight = 1;
1444 			break;
1445 		}
1446 		if (acpi_bay_match(handle))
1447 			acpi_add_id(pnp, ACPI_BAY_HID);
1448 		else if (acpi_dock_match(handle))
1449 			acpi_add_id(pnp, ACPI_DOCK_HID);
1450 		else if (acpi_ibm_smbus_match(handle))
1451 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1452 		else if (list_empty(&pnp->ids) &&
1453 			 acpi_object_is_system_bus(handle)) {
1454 			/* \_SB, \_TZ, LNXSYBUS */
1455 			acpi_add_id(pnp, ACPI_BUS_HID);
1456 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1457 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1458 		}
1459 
1460 		break;
1461 	case ACPI_BUS_TYPE_POWER:
1462 		acpi_add_id(pnp, ACPI_POWER_HID);
1463 		break;
1464 	case ACPI_BUS_TYPE_PROCESSOR:
1465 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1466 		break;
1467 	case ACPI_BUS_TYPE_THERMAL:
1468 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1469 		break;
1470 	case ACPI_BUS_TYPE_POWER_BUTTON:
1471 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1472 		break;
1473 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1474 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1475 		break;
1476 	case ACPI_BUS_TYPE_ECDT_EC:
1477 		acpi_add_id(pnp, ACPI_ECDT_HID);
1478 		break;
1479 	}
1480 }
1481 
1482 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1483 {
1484 	struct acpi_hardware_id *id, *tmp;
1485 
1486 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1487 		kfree_const(id->id);
1488 		kfree(id);
1489 	}
1490 	kfree(pnp->unique_id);
1491 }
1492 
1493 /**
1494  * acpi_dma_supported - Check DMA support for the specified device.
1495  * @adev: The pointer to acpi device
1496  *
1497  * Return false if DMA is not supported. Otherwise, return true
1498  */
1499 bool acpi_dma_supported(const struct acpi_device *adev)
1500 {
1501 	if (!adev)
1502 		return false;
1503 
1504 	if (adev->flags.cca_seen)
1505 		return true;
1506 
1507 	/*
1508 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1509 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1510 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1511 	*/
1512 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1513 		return true;
1514 
1515 	return false;
1516 }
1517 
1518 /**
1519  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1520  * @adev: The pointer to acpi device
1521  *
1522  * Return enum dev_dma_attr.
1523  */
1524 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1525 {
1526 	if (!acpi_dma_supported(adev))
1527 		return DEV_DMA_NOT_SUPPORTED;
1528 
1529 	if (adev->flags.coherent_dma)
1530 		return DEV_DMA_COHERENT;
1531 	else
1532 		return DEV_DMA_NON_COHERENT;
1533 }
1534 
1535 /**
1536  * acpi_dma_get_range() - Get device DMA parameters.
1537  *
1538  * @dev: device to configure
1539  * @map: pointer to DMA ranges result
1540  *
1541  * Evaluate DMA regions and return pointer to DMA regions on
1542  * parsing success; it does not update the passed in values on failure.
1543  *
1544  * Return 0 on success, < 0 on failure.
1545  */
1546 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1547 {
1548 	struct acpi_device *adev;
1549 	LIST_HEAD(list);
1550 	struct resource_entry *rentry;
1551 	int ret;
1552 	struct device *dma_dev = dev;
1553 	struct bus_dma_region *r;
1554 
1555 	/*
1556 	 * Walk the device tree chasing an ACPI companion with a _DMA
1557 	 * object while we go. Stop if we find a device with an ACPI
1558 	 * companion containing a _DMA method.
1559 	 */
1560 	do {
1561 		adev = ACPI_COMPANION(dma_dev);
1562 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1563 			break;
1564 
1565 		dma_dev = dma_dev->parent;
1566 	} while (dma_dev);
1567 
1568 	if (!dma_dev)
1569 		return -ENODEV;
1570 
1571 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1572 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	ret = acpi_dev_get_dma_resources(adev, &list);
1577 	if (ret > 0) {
1578 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1579 		if (!r) {
1580 			ret = -ENOMEM;
1581 			goto out;
1582 		}
1583 
1584 		*map = r;
1585 
1586 		list_for_each_entry(rentry, &list, node) {
1587 			if (rentry->res->start >= rentry->res->end) {
1588 				kfree(*map);
1589 				*map = NULL;
1590 				ret = -EINVAL;
1591 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1592 				goto out;
1593 			}
1594 
1595 			r->cpu_start = rentry->res->start;
1596 			r->dma_start = rentry->res->start - rentry->offset;
1597 			r->size = resource_size(rentry->res);
1598 			r++;
1599 		}
1600 	}
1601  out:
1602 	acpi_dev_free_resource_list(&list);
1603 
1604 	return ret >= 0 ? 0 : ret;
1605 }
1606 
1607 #ifdef CONFIG_IOMMU_API
1608 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1609 			   struct fwnode_handle *fwnode)
1610 {
1611 	int ret;
1612 
1613 	ret = iommu_fwspec_init(dev, fwnode);
1614 	if (ret)
1615 		return ret;
1616 
1617 	return iommu_fwspec_add_ids(dev, &id, 1);
1618 }
1619 
1620 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1621 {
1622 	int err;
1623 
1624 	/* Serialise to make dev->iommu stable under our potential fwspec */
1625 	mutex_lock(&iommu_probe_device_lock);
1626 	/* If we already translated the fwspec there is nothing left to do */
1627 	if (dev_iommu_fwspec_get(dev)) {
1628 		mutex_unlock(&iommu_probe_device_lock);
1629 		return 0;
1630 	}
1631 
1632 	err = iort_iommu_configure_id(dev, id_in);
1633 	if (err && err != -EPROBE_DEFER)
1634 		err = viot_iommu_configure(dev);
1635 	mutex_unlock(&iommu_probe_device_lock);
1636 
1637 	/*
1638 	 * If we have reason to believe the IOMMU driver missed the initial
1639 	 * iommu_probe_device() call for dev, replay it to get things in order.
1640 	 */
1641 	if (!err && dev->bus)
1642 		err = iommu_probe_device(dev);
1643 
1644 	return err;
1645 }
1646 
1647 #else /* !CONFIG_IOMMU_API */
1648 
1649 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1650 			   struct fwnode_handle *fwnode)
1651 {
1652 	return -ENODEV;
1653 }
1654 
1655 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1656 {
1657 	return -ENODEV;
1658 }
1659 
1660 #endif /* !CONFIG_IOMMU_API */
1661 
1662 /**
1663  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1664  * @dev: The pointer to the device
1665  * @attr: device dma attributes
1666  * @input_id: input device id const value pointer
1667  */
1668 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1669 			  const u32 *input_id)
1670 {
1671 	int ret;
1672 
1673 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1674 		set_dma_ops(dev, &dma_dummy_ops);
1675 		return 0;
1676 	}
1677 
1678 	acpi_arch_dma_setup(dev);
1679 
1680 	/* Ignore all other errors apart from EPROBE_DEFER */
1681 	ret = acpi_iommu_configure_id(dev, input_id);
1682 	if (ret == -EPROBE_DEFER)
1683 		return -EPROBE_DEFER;
1684 	if (ret)
1685 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1686 
1687 	arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1692 
1693 static void acpi_init_coherency(struct acpi_device *adev)
1694 {
1695 	unsigned long long cca = 0;
1696 	acpi_status status;
1697 	struct acpi_device *parent = acpi_dev_parent(adev);
1698 
1699 	if (parent && parent->flags.cca_seen) {
1700 		/*
1701 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1702 		 * already saw one.
1703 		 */
1704 		adev->flags.cca_seen = 1;
1705 		cca = parent->flags.coherent_dma;
1706 	} else {
1707 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1708 					       NULL, &cca);
1709 		if (ACPI_SUCCESS(status))
1710 			adev->flags.cca_seen = 1;
1711 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1712 			/*
1713 			 * If architecture does not specify that _CCA is
1714 			 * required for DMA-able devices (e.g. x86),
1715 			 * we default to _CCA=1.
1716 			 */
1717 			cca = 1;
1718 		else
1719 			acpi_handle_debug(adev->handle,
1720 					  "ACPI device is missing _CCA.\n");
1721 	}
1722 
1723 	adev->flags.coherent_dma = cca;
1724 }
1725 
1726 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1727 {
1728 	bool *is_serial_bus_slave_p = data;
1729 
1730 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1731 		return 1;
1732 
1733 	*is_serial_bus_slave_p = true;
1734 
1735 	 /* no need to do more checking */
1736 	return -1;
1737 }
1738 
1739 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1740 {
1741 	struct acpi_device *parent = acpi_dev_parent(device);
1742 	static const struct acpi_device_id indirect_io_hosts[] = {
1743 		{"HISI0191", 0},
1744 		{}
1745 	};
1746 
1747 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1748 }
1749 
1750 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1751 {
1752 	struct list_head resource_list;
1753 	bool is_serial_bus_slave = false;
1754 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1755 	/*
1756 	 * These devices have multiple SerialBus resources and a client
1757 	 * device must be instantiated for each of them, each with
1758 	 * its own device id.
1759 	 * Normally we only instantiate one client device for the first
1760 	 * resource, using the ACPI HID as id. These special cases are handled
1761 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1762 	 * knows which client device id to use for each resource.
1763 	 */
1764 		{"BSG1160", },
1765 		{"BSG2150", },
1766 		{"CSC3551", },
1767 		{"CSC3554", },
1768 		{"CSC3556", },
1769 		{"CSC3557", },
1770 		{"INT33FE", },
1771 		{"INT3515", },
1772 		/* Non-conforming _HID for Cirrus Logic already released */
1773 		{"CLSA0100", },
1774 		{"CLSA0101", },
1775 	/*
1776 	 * Some ACPI devs contain SerialBus resources even though they are not
1777 	 * attached to a serial bus at all.
1778 	 */
1779 		{ACPI_VIDEO_HID, },
1780 		{"MSHW0028", },
1781 	/*
1782 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1783 	 * expects a regular tty cdev to be created (instead of the in kernel
1784 	 * serdev) and which have a kernel driver which expects a platform_dev
1785 	 * such as the rfkill-gpio driver.
1786 	 */
1787 		{"BCM4752", },
1788 		{"LNV4752", },
1789 		{}
1790 	};
1791 
1792 	if (acpi_is_indirect_io_slave(device))
1793 		return true;
1794 
1795 	/* Macs use device properties in lieu of _CRS resources */
1796 	if (x86_apple_machine &&
1797 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1798 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1799 	     fwnode_property_present(&device->fwnode, "baud")))
1800 		return true;
1801 
1802 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1803 		return false;
1804 
1805 	INIT_LIST_HEAD(&resource_list);
1806 	acpi_dev_get_resources(device, &resource_list,
1807 			       acpi_check_serial_bus_slave,
1808 			       &is_serial_bus_slave);
1809 	acpi_dev_free_resource_list(&resource_list);
1810 
1811 	return is_serial_bus_slave;
1812 }
1813 
1814 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1815 			     int type, void (*release)(struct device *))
1816 {
1817 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1818 
1819 	INIT_LIST_HEAD(&device->pnp.ids);
1820 	device->device_type = type;
1821 	device->handle = handle;
1822 	device->dev.parent = parent ? &parent->dev : NULL;
1823 	device->dev.release = release;
1824 	device->dev.bus = &acpi_bus_type;
1825 	device->dev.groups = acpi_groups;
1826 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1827 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1828 	acpi_device_get_busid(device);
1829 	acpi_set_pnp_ids(handle, &device->pnp, type);
1830 	acpi_init_properties(device);
1831 	acpi_bus_get_flags(device);
1832 	device->flags.match_driver = false;
1833 	device->flags.initialized = true;
1834 	device->flags.enumeration_by_parent =
1835 		acpi_device_enumeration_by_parent(device);
1836 	acpi_device_clear_enumerated(device);
1837 	device_initialize(&device->dev);
1838 	dev_set_uevent_suppress(&device->dev, true);
1839 	acpi_init_coherency(device);
1840 }
1841 
1842 static void acpi_scan_dep_init(struct acpi_device *adev)
1843 {
1844 	struct acpi_dep_data *dep;
1845 
1846 	list_for_each_entry(dep, &acpi_dep_list, node) {
1847 		if (dep->consumer == adev->handle) {
1848 			if (dep->honor_dep)
1849 				adev->flags.honor_deps = 1;
1850 
1851 			if (!dep->met)
1852 				adev->dep_unmet++;
1853 		}
1854 	}
1855 }
1856 
1857 void acpi_device_add_finalize(struct acpi_device *device)
1858 {
1859 	dev_set_uevent_suppress(&device->dev, false);
1860 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1861 }
1862 
1863 static void acpi_scan_init_status(struct acpi_device *adev)
1864 {
1865 	if (acpi_bus_get_status(adev))
1866 		acpi_set_device_status(adev, 0);
1867 }
1868 
1869 static int acpi_add_single_object(struct acpi_device **child,
1870 				  acpi_handle handle, int type, bool dep_init)
1871 {
1872 	struct acpi_device *device;
1873 	bool release_dep_lock = false;
1874 	int result;
1875 
1876 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1877 	if (!device)
1878 		return -ENOMEM;
1879 
1880 	acpi_init_device_object(device, handle, type, acpi_device_release);
1881 	/*
1882 	 * Getting the status is delayed till here so that we can call
1883 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1884 	 * this must be done before the get power-/wakeup_dev-flags calls.
1885 	 */
1886 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1887 		if (dep_init) {
1888 			mutex_lock(&acpi_dep_list_lock);
1889 			/*
1890 			 * Hold the lock until the acpi_tie_acpi_dev() call
1891 			 * below to prevent concurrent acpi_scan_clear_dep()
1892 			 * from deleting a dependency list entry without
1893 			 * updating dep_unmet for the device.
1894 			 */
1895 			release_dep_lock = true;
1896 			acpi_scan_dep_init(device);
1897 		}
1898 		acpi_scan_init_status(device);
1899 	}
1900 
1901 	acpi_bus_get_power_flags(device);
1902 	acpi_bus_get_wakeup_device_flags(device);
1903 
1904 	result = acpi_tie_acpi_dev(device);
1905 
1906 	if (release_dep_lock)
1907 		mutex_unlock(&acpi_dep_list_lock);
1908 
1909 	if (!result)
1910 		result = acpi_device_add(device);
1911 
1912 	if (result) {
1913 		acpi_device_release(&device->dev);
1914 		return result;
1915 	}
1916 
1917 	acpi_power_add_remove_device(device, true);
1918 	acpi_device_add_finalize(device);
1919 
1920 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1921 			  dev_name(&device->dev), device->dev.parent ?
1922 				dev_name(device->dev.parent) : "(null)");
1923 
1924 	*child = device;
1925 	return 0;
1926 }
1927 
1928 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1929 					    void *context)
1930 {
1931 	struct resource *res = context;
1932 
1933 	if (acpi_dev_resource_memory(ares, res))
1934 		return AE_CTRL_TERMINATE;
1935 
1936 	return AE_OK;
1937 }
1938 
1939 static bool acpi_device_should_be_hidden(acpi_handle handle)
1940 {
1941 	acpi_status status;
1942 	struct resource res;
1943 
1944 	/* Check if it should ignore the UART device */
1945 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1946 		return false;
1947 
1948 	/*
1949 	 * The UART device described in SPCR table is assumed to have only one
1950 	 * memory resource present. So we only look for the first one here.
1951 	 */
1952 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1953 				     acpi_get_resource_memory, &res);
1954 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1955 		return false;
1956 
1957 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1958 			 &res.start);
1959 
1960 	return true;
1961 }
1962 
1963 bool acpi_device_is_present(const struct acpi_device *adev)
1964 {
1965 	return adev->status.present || adev->status.functional;
1966 }
1967 
1968 bool acpi_device_is_enabled(const struct acpi_device *adev)
1969 {
1970 	return adev->status.enabled;
1971 }
1972 
1973 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1974 				       const char *idstr,
1975 				       const struct acpi_device_id **matchid)
1976 {
1977 	const struct acpi_device_id *devid;
1978 
1979 	if (handler->match)
1980 		return handler->match(idstr, matchid);
1981 
1982 	for (devid = handler->ids; devid->id[0]; devid++)
1983 		if (!strcmp((char *)devid->id, idstr)) {
1984 			if (matchid)
1985 				*matchid = devid;
1986 
1987 			return true;
1988 		}
1989 
1990 	return false;
1991 }
1992 
1993 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1994 					const struct acpi_device_id **matchid)
1995 {
1996 	struct acpi_scan_handler *handler;
1997 
1998 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1999 		if (acpi_scan_handler_matching(handler, idstr, matchid))
2000 			return handler;
2001 
2002 	return NULL;
2003 }
2004 
2005 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2006 {
2007 	if (!!hotplug->enabled == !!val)
2008 		return;
2009 
2010 	mutex_lock(&acpi_scan_lock);
2011 
2012 	hotplug->enabled = val;
2013 
2014 	mutex_unlock(&acpi_scan_lock);
2015 }
2016 
2017 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2018 {
2019 	u32 count;
2020 	int i;
2021 
2022 	for (count = 0, i = 0; i < dep_devices->count; i++) {
2023 		struct acpi_device_info *info;
2024 		struct acpi_dep_data *dep;
2025 		bool skip, honor_dep;
2026 		acpi_status status;
2027 
2028 		status = acpi_get_object_info(dep_devices->handles[i], &info);
2029 		if (ACPI_FAILURE(status)) {
2030 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2031 			continue;
2032 		}
2033 
2034 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2035 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2036 		kfree(info);
2037 
2038 		if (skip)
2039 			continue;
2040 
2041 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2042 		if (!dep)
2043 			continue;
2044 
2045 		count++;
2046 
2047 		dep->supplier = dep_devices->handles[i];
2048 		dep->consumer = handle;
2049 		dep->honor_dep = honor_dep;
2050 
2051 		mutex_lock(&acpi_dep_list_lock);
2052 		list_add_tail(&dep->node, &acpi_dep_list);
2053 		mutex_unlock(&acpi_dep_list_lock);
2054 	}
2055 
2056 	acpi_handle_list_free(dep_devices);
2057 	return count;
2058 }
2059 
2060 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2061 {
2062 	struct acpi_hardware_id *hwid;
2063 
2064 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2065 		acpi_dock_add(adev);
2066 		return;
2067 	}
2068 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2069 		struct acpi_scan_handler *handler;
2070 
2071 		handler = acpi_scan_match_handler(hwid->id, NULL);
2072 		if (handler) {
2073 			adev->flags.hotplug_notify = true;
2074 			break;
2075 		}
2076 	}
2077 }
2078 
2079 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2080 
2081 static u32 acpi_scan_check_dep(acpi_handle handle)
2082 {
2083 	struct acpi_handle_list dep_devices;
2084 	u32 count = 0;
2085 
2086 	/*
2087 	 * Some architectures like RISC-V need to add dependencies for
2088 	 * all devices which use GSI to the interrupt controller so that
2089 	 * interrupt controller is probed before any of those devices.
2090 	 * Instead of mandating _DEP on all the devices, detect the
2091 	 * dependency and add automatically.
2092 	 */
2093 	count += arch_acpi_add_auto_dep(handle);
2094 
2095 	/*
2096 	 * Check for _HID here to avoid deferring the enumeration of:
2097 	 * 1. PCI devices.
2098 	 * 2. ACPI nodes describing USB ports.
2099 	 * Still, checking for _HID catches more then just these cases ...
2100 	 */
2101 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2102 		return count;
2103 
2104 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2105 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2106 		return count;
2107 	}
2108 
2109 	count += acpi_scan_add_dep(handle, &dep_devices);
2110 	return count;
2111 }
2112 
2113 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2114 {
2115 	acpi_mipi_check_crs_csi2(handle);
2116 	return AE_OK;
2117 }
2118 
2119 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2120 				      struct acpi_device **adev_p)
2121 {
2122 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2123 	acpi_object_type acpi_type;
2124 	int type;
2125 
2126 	if (device)
2127 		goto out;
2128 
2129 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2130 		return AE_OK;
2131 
2132 	switch (acpi_type) {
2133 	case ACPI_TYPE_DEVICE:
2134 		if (acpi_device_should_be_hidden(handle))
2135 			return AE_OK;
2136 
2137 		if (first_pass) {
2138 			acpi_mipi_check_crs_csi2(handle);
2139 
2140 			/* Bail out if there are dependencies. */
2141 			if (acpi_scan_check_dep(handle) > 0) {
2142 				/*
2143 				 * The entire CSI-2 connection graph needs to be
2144 				 * extracted before any drivers or scan handlers
2145 				 * are bound to struct device objects, so scan
2146 				 * _CRS CSI-2 resource descriptors for all
2147 				 * devices below the current handle.
2148 				 */
2149 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2150 						    ACPI_UINT32_MAX,
2151 						    acpi_scan_check_crs_csi2_cb,
2152 						    NULL, NULL, NULL);
2153 				return AE_CTRL_DEPTH;
2154 			}
2155 		}
2156 
2157 		fallthrough;
2158 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2159 		type = ACPI_BUS_TYPE_DEVICE;
2160 		break;
2161 
2162 	case ACPI_TYPE_PROCESSOR:
2163 		type = ACPI_BUS_TYPE_PROCESSOR;
2164 		break;
2165 
2166 	case ACPI_TYPE_THERMAL:
2167 		type = ACPI_BUS_TYPE_THERMAL;
2168 		break;
2169 
2170 	case ACPI_TYPE_POWER:
2171 		acpi_add_power_resource(handle);
2172 		fallthrough;
2173 	default:
2174 		return AE_OK;
2175 	}
2176 
2177 	/*
2178 	 * If first_pass is true at this point, the device has no dependencies,
2179 	 * or the creation of the device object would have been postponed above.
2180 	 */
2181 	acpi_add_single_object(&device, handle, type, !first_pass);
2182 	if (!device)
2183 		return AE_CTRL_DEPTH;
2184 
2185 	acpi_scan_init_hotplug(device);
2186 
2187 out:
2188 	if (!*adev_p)
2189 		*adev_p = device;
2190 
2191 	return AE_OK;
2192 }
2193 
2194 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2195 					void *not_used, void **ret_p)
2196 {
2197 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2198 }
2199 
2200 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2201 					void *not_used, void **ret_p)
2202 {
2203 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2204 }
2205 
2206 static void acpi_default_enumeration(struct acpi_device *device)
2207 {
2208 	/*
2209 	 * Do not enumerate devices with enumeration_by_parent flag set as
2210 	 * they will be enumerated by their respective parents.
2211 	 */
2212 	if (!device->flags.enumeration_by_parent) {
2213 		acpi_create_platform_device(device, NULL);
2214 		acpi_device_set_enumerated(device);
2215 	} else {
2216 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2217 					     ACPI_RECONFIG_DEVICE_ADD, device);
2218 	}
2219 }
2220 
2221 static const struct acpi_device_id generic_device_ids[] = {
2222 	{ACPI_DT_NAMESPACE_HID, },
2223 	{"", },
2224 };
2225 
2226 static int acpi_generic_device_attach(struct acpi_device *adev,
2227 				      const struct acpi_device_id *not_used)
2228 {
2229 	/*
2230 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2231 	 * below can be unconditional.
2232 	 */
2233 	if (adev->data.of_compatible)
2234 		acpi_default_enumeration(adev);
2235 
2236 	return 1;
2237 }
2238 
2239 static struct acpi_scan_handler generic_device_handler = {
2240 	.ids = generic_device_ids,
2241 	.attach = acpi_generic_device_attach,
2242 };
2243 
2244 static int acpi_scan_attach_handler(struct acpi_device *device)
2245 {
2246 	struct acpi_hardware_id *hwid;
2247 	int ret = 0;
2248 
2249 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2250 		const struct acpi_device_id *devid;
2251 		struct acpi_scan_handler *handler;
2252 
2253 		handler = acpi_scan_match_handler(hwid->id, &devid);
2254 		if (handler) {
2255 			if (!handler->attach) {
2256 				device->pnp.type.platform_id = 0;
2257 				continue;
2258 			}
2259 			device->handler = handler;
2260 			ret = handler->attach(device, devid);
2261 			if (ret > 0)
2262 				break;
2263 
2264 			device->handler = NULL;
2265 			if (ret < 0)
2266 				break;
2267 		}
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2274 {
2275 	bool skip = !first_pass && device->flags.visited;
2276 	acpi_handle ejd;
2277 	int ret;
2278 
2279 	if (skip)
2280 		goto ok;
2281 
2282 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2283 		register_dock_dependent_device(device, ejd);
2284 
2285 	acpi_bus_get_status(device);
2286 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2287 	if (!acpi_dev_ready_for_enumeration(device)) {
2288 		device->flags.initialized = false;
2289 		acpi_device_clear_enumerated(device);
2290 		device->flags.power_manageable = 0;
2291 		return 0;
2292 	}
2293 	if (device->handler)
2294 		goto ok;
2295 
2296 	acpi_ec_register_opregions(device);
2297 
2298 	if (!device->flags.initialized) {
2299 		device->flags.power_manageable =
2300 			device->power.states[ACPI_STATE_D0].flags.valid;
2301 		if (acpi_bus_init_power(device))
2302 			device->flags.power_manageable = 0;
2303 
2304 		device->flags.initialized = true;
2305 	} else if (device->flags.visited) {
2306 		goto ok;
2307 	}
2308 
2309 	ret = acpi_scan_attach_handler(device);
2310 	if (ret < 0)
2311 		return 0;
2312 
2313 	device->flags.match_driver = true;
2314 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2315 		acpi_device_set_enumerated(device);
2316 		goto ok;
2317 	}
2318 
2319 	ret = device_attach(&device->dev);
2320 	if (ret < 0)
2321 		return 0;
2322 
2323 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2324 		acpi_default_enumeration(device);
2325 	else
2326 		acpi_device_set_enumerated(device);
2327 
2328 ok:
2329 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2330 
2331 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2332 		device->handler->hotplug.notify_online(device);
2333 
2334 	return 0;
2335 }
2336 
2337 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2338 {
2339 	struct acpi_device **adev_p = data;
2340 	struct acpi_device *adev = *adev_p;
2341 
2342 	/*
2343 	 * If we're passed a 'previous' consumer device then we need to skip
2344 	 * any consumers until we meet the previous one, and then NULL @data
2345 	 * so the next one can be returned.
2346 	 */
2347 	if (adev) {
2348 		if (dep->consumer == adev->handle)
2349 			*adev_p = NULL;
2350 
2351 		return 0;
2352 	}
2353 
2354 	adev = acpi_get_acpi_dev(dep->consumer);
2355 	if (adev) {
2356 		*(struct acpi_device **)data = adev;
2357 		return 1;
2358 	}
2359 	/* Continue parsing if the device object is not present. */
2360 	return 0;
2361 }
2362 
2363 struct acpi_scan_clear_dep_work {
2364 	struct work_struct work;
2365 	struct acpi_device *adev;
2366 };
2367 
2368 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2369 {
2370 	struct acpi_scan_clear_dep_work *cdw;
2371 
2372 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2373 
2374 	acpi_scan_lock_acquire();
2375 	acpi_bus_attach(cdw->adev, (void *)true);
2376 	acpi_scan_lock_release();
2377 
2378 	acpi_dev_put(cdw->adev);
2379 	kfree(cdw);
2380 }
2381 
2382 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2383 {
2384 	struct acpi_scan_clear_dep_work *cdw;
2385 
2386 	if (adev->dep_unmet)
2387 		return false;
2388 
2389 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2390 	if (!cdw)
2391 		return false;
2392 
2393 	cdw->adev = adev;
2394 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2395 	/*
2396 	 * Since the work function may block on the lock until the entire
2397 	 * initial enumeration of devices is complete, put it into the unbound
2398 	 * workqueue.
2399 	 */
2400 	queue_work(system_unbound_wq, &cdw->work);
2401 
2402 	return true;
2403 }
2404 
2405 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2406 {
2407 	list_del(&dep->node);
2408 	kfree(dep);
2409 }
2410 
2411 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2412 {
2413 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2414 
2415 	if (adev) {
2416 		adev->dep_unmet--;
2417 		if (!acpi_scan_clear_dep_queue(adev))
2418 			acpi_dev_put(adev);
2419 	}
2420 
2421 	if (dep->free_when_met)
2422 		acpi_scan_delete_dep_data(dep);
2423 	else
2424 		dep->met = true;
2425 
2426 	return 0;
2427 }
2428 
2429 /**
2430  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2431  * @handle:	The ACPI handle of the supplier device
2432  * @callback:	Pointer to the callback function to apply
2433  * @data:	Pointer to some data to pass to the callback
2434  *
2435  * The return value of the callback determines this function's behaviour. If 0
2436  * is returned we continue to iterate over acpi_dep_list. If a positive value
2437  * is returned then the loop is broken but this function returns 0. If a
2438  * negative value is returned by the callback then the loop is broken and that
2439  * value is returned as the final error.
2440  */
2441 static int acpi_walk_dep_device_list(acpi_handle handle,
2442 				int (*callback)(struct acpi_dep_data *, void *),
2443 				void *data)
2444 {
2445 	struct acpi_dep_data *dep, *tmp;
2446 	int ret = 0;
2447 
2448 	mutex_lock(&acpi_dep_list_lock);
2449 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2450 		if (dep->supplier == handle) {
2451 			ret = callback(dep, data);
2452 			if (ret)
2453 				break;
2454 		}
2455 	}
2456 	mutex_unlock(&acpi_dep_list_lock);
2457 
2458 	return ret > 0 ? 0 : ret;
2459 }
2460 
2461 /**
2462  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2463  * @supplier: Pointer to the supplier &struct acpi_device
2464  *
2465  * Clear dependencies on the given device.
2466  */
2467 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2468 {
2469 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2470 }
2471 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2472 
2473 /**
2474  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2475  * @device: Pointer to the &struct acpi_device to check
2476  *
2477  * Check if the device is present and has no unmet dependencies.
2478  *
2479  * Return true if the device is ready for enumeratino. Otherwise, return false.
2480  */
2481 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2482 {
2483 	if (device->flags.honor_deps && device->dep_unmet)
2484 		return false;
2485 
2486 	return acpi_device_is_present(device);
2487 }
2488 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2489 
2490 /**
2491  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2492  * @supplier: Pointer to the dependee device
2493  * @start: Pointer to the current dependent device
2494  *
2495  * Returns the next &struct acpi_device which declares itself dependent on
2496  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2497  *
2498  * If the returned adev is not passed as @start to this function, the caller is
2499  * responsible for putting the reference to adev when it is no longer needed.
2500  */
2501 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2502 						   struct acpi_device *start)
2503 {
2504 	struct acpi_device *adev = start;
2505 
2506 	acpi_walk_dep_device_list(supplier->handle,
2507 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2508 
2509 	acpi_dev_put(start);
2510 
2511 	if (adev == start)
2512 		return NULL;
2513 
2514 	return adev;
2515 }
2516 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2517 
2518 static void acpi_scan_postponed_branch(acpi_handle handle)
2519 {
2520 	struct acpi_device *adev = NULL;
2521 
2522 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2523 		return;
2524 
2525 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2526 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2527 
2528 	/*
2529 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2530 	 * have been added above.
2531 	 */
2532 	acpi_mipi_init_crs_csi2_swnodes();
2533 
2534 	acpi_bus_attach(adev, NULL);
2535 }
2536 
2537 static void acpi_scan_postponed(void)
2538 {
2539 	struct acpi_dep_data *dep, *tmp;
2540 
2541 	mutex_lock(&acpi_dep_list_lock);
2542 
2543 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2544 		acpi_handle handle = dep->consumer;
2545 
2546 		/*
2547 		 * In case there are multiple acpi_dep_list entries with the
2548 		 * same consumer, skip the current entry if the consumer device
2549 		 * object corresponding to it is present already.
2550 		 */
2551 		if (!acpi_fetch_acpi_dev(handle)) {
2552 			/*
2553 			 * Even though the lock is released here, tmp is
2554 			 * guaranteed to be valid, because none of the list
2555 			 * entries following dep is marked as "free when met"
2556 			 * and so they cannot be deleted.
2557 			 */
2558 			mutex_unlock(&acpi_dep_list_lock);
2559 
2560 			acpi_scan_postponed_branch(handle);
2561 
2562 			mutex_lock(&acpi_dep_list_lock);
2563 		}
2564 
2565 		if (dep->met)
2566 			acpi_scan_delete_dep_data(dep);
2567 		else
2568 			dep->free_when_met = true;
2569 	}
2570 
2571 	mutex_unlock(&acpi_dep_list_lock);
2572 }
2573 
2574 /**
2575  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2576  * @handle: Root of the namespace scope to scan.
2577  *
2578  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2579  * found devices.
2580  *
2581  * If no devices were found, -ENODEV is returned, but it does not mean that
2582  * there has been a real error.  There just have been no suitable ACPI objects
2583  * in the table trunk from which the kernel could create a device and add an
2584  * appropriate driver.
2585  *
2586  * Must be called under acpi_scan_lock.
2587  */
2588 int acpi_bus_scan(acpi_handle handle)
2589 {
2590 	struct acpi_device *device = NULL;
2591 
2592 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2593 
2594 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2595 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2596 				    acpi_bus_check_add_1, NULL, NULL,
2597 				    (void **)&device);
2598 
2599 	if (!device)
2600 		return -ENODEV;
2601 
2602 	/*
2603 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2604 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2605 	 * walk above and MIPI DisCo for Imaging device properties.
2606 	 */
2607 	acpi_mipi_scan_crs_csi2();
2608 	acpi_mipi_init_crs_csi2_swnodes();
2609 
2610 	acpi_bus_attach(device, (void *)true);
2611 
2612 	/* Pass 2: Enumerate all of the remaining devices. */
2613 
2614 	acpi_scan_postponed();
2615 
2616 	acpi_mipi_crs_csi2_cleanup();
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(acpi_bus_scan);
2621 
2622 /**
2623  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2624  * @adev: Root of the ACPI namespace scope to walk.
2625  *
2626  * Must be called under acpi_scan_lock.
2627  */
2628 void acpi_bus_trim(struct acpi_device *adev)
2629 {
2630 	uintptr_t flags = 0;
2631 
2632 	acpi_scan_check_and_detach(adev, (void *)flags);
2633 }
2634 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2635 
2636 int acpi_bus_register_early_device(int type)
2637 {
2638 	struct acpi_device *device = NULL;
2639 	int result;
2640 
2641 	result = acpi_add_single_object(&device, NULL, type, false);
2642 	if (result)
2643 		return result;
2644 
2645 	device->flags.match_driver = true;
2646 	return device_attach(&device->dev);
2647 }
2648 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2649 
2650 static void acpi_bus_scan_fixed(void)
2651 {
2652 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2653 		struct acpi_device *adev = NULL;
2654 
2655 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2656 				       false);
2657 		if (adev) {
2658 			adev->flags.match_driver = true;
2659 			if (device_attach(&adev->dev) >= 0)
2660 				device_init_wakeup(&adev->dev, true);
2661 			else
2662 				dev_dbg(&adev->dev, "No driver\n");
2663 		}
2664 	}
2665 
2666 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2667 		struct acpi_device *adev = NULL;
2668 
2669 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2670 				       false);
2671 		if (adev) {
2672 			adev->flags.match_driver = true;
2673 			if (device_attach(&adev->dev) < 0)
2674 				dev_dbg(&adev->dev, "No driver\n");
2675 		}
2676 	}
2677 }
2678 
2679 static void __init acpi_get_spcr_uart_addr(void)
2680 {
2681 	acpi_status status;
2682 	struct acpi_table_spcr *spcr_ptr;
2683 
2684 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2685 				(struct acpi_table_header **)&spcr_ptr);
2686 	if (ACPI_FAILURE(status)) {
2687 		pr_warn("STAO table present, but SPCR is missing\n");
2688 		return;
2689 	}
2690 
2691 	spcr_uart_addr = spcr_ptr->serial_port.address;
2692 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2693 }
2694 
2695 static bool acpi_scan_initialized;
2696 
2697 void __init acpi_scan_init(void)
2698 {
2699 	acpi_status status;
2700 	struct acpi_table_stao *stao_ptr;
2701 
2702 	acpi_pci_root_init();
2703 	acpi_pci_link_init();
2704 	acpi_processor_init();
2705 	acpi_platform_init();
2706 	acpi_lpss_init();
2707 	acpi_apd_init();
2708 	acpi_cmos_rtc_init();
2709 	acpi_container_init();
2710 	acpi_memory_hotplug_init();
2711 	acpi_watchdog_init();
2712 	acpi_pnp_init();
2713 	acpi_int340x_thermal_init();
2714 	acpi_init_lpit();
2715 
2716 	acpi_scan_add_handler(&generic_device_handler);
2717 
2718 	/*
2719 	 * If there is STAO table, check whether it needs to ignore the UART
2720 	 * device in SPCR table.
2721 	 */
2722 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2723 				(struct acpi_table_header **)&stao_ptr);
2724 	if (ACPI_SUCCESS(status)) {
2725 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2726 			pr_info("STAO Name List not yet supported.\n");
2727 
2728 		if (stao_ptr->ignore_uart)
2729 			acpi_get_spcr_uart_addr();
2730 
2731 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2732 	}
2733 
2734 	acpi_gpe_apply_masked_gpes();
2735 	acpi_update_all_gpes();
2736 
2737 	/*
2738 	 * Although we call __add_memory() that is documented to require the
2739 	 * device_hotplug_lock, it is not necessary here because this is an
2740 	 * early code when userspace or any other code path cannot trigger
2741 	 * hotplug/hotunplug operations.
2742 	 */
2743 	mutex_lock(&acpi_scan_lock);
2744 	/*
2745 	 * Enumerate devices in the ACPI namespace.
2746 	 */
2747 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2748 		goto unlock;
2749 
2750 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2751 	if (!acpi_root)
2752 		goto unlock;
2753 
2754 	/* Fixed feature devices do not exist on HW-reduced platform */
2755 	if (!acpi_gbl_reduced_hardware)
2756 		acpi_bus_scan_fixed();
2757 
2758 	acpi_turn_off_unused_power_resources();
2759 
2760 	acpi_scan_initialized = true;
2761 
2762 unlock:
2763 	mutex_unlock(&acpi_scan_lock);
2764 }
2765 
2766 static struct acpi_probe_entry *ape;
2767 static int acpi_probe_count;
2768 static DEFINE_MUTEX(acpi_probe_mutex);
2769 
2770 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2771 				  const unsigned long end)
2772 {
2773 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2774 		if (!ape->probe_subtbl(header, end))
2775 			acpi_probe_count++;
2776 
2777 	return 0;
2778 }
2779 
2780 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2781 
2782 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2783 {
2784 	int count = 0;
2785 
2786 	if (acpi_disabled)
2787 		return 0;
2788 
2789 	mutex_lock(&acpi_probe_mutex);
2790 	arch_sort_irqchip_probe(ap_head, nr);
2791 	for (ape = ap_head; nr; ape++, nr--) {
2792 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2793 			acpi_probe_count = 0;
2794 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2795 			count += acpi_probe_count;
2796 		} else {
2797 			int res;
2798 			res = acpi_table_parse(ape->id, ape->probe_table);
2799 			if (!res)
2800 				count++;
2801 		}
2802 	}
2803 	mutex_unlock(&acpi_probe_mutex);
2804 
2805 	return count;
2806 }
2807 
2808 static void acpi_table_events_fn(struct work_struct *work)
2809 {
2810 	acpi_scan_lock_acquire();
2811 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2812 	acpi_scan_lock_release();
2813 
2814 	kfree(work);
2815 }
2816 
2817 void acpi_scan_table_notify(void)
2818 {
2819 	struct work_struct *work;
2820 
2821 	if (!acpi_scan_initialized)
2822 		return;
2823 
2824 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2825 	if (!work)
2826 		return;
2827 
2828 	INIT_WORK(work, acpi_table_events_fn);
2829 	schedule_work(work);
2830 }
2831 
2832 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2833 {
2834 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2835 }
2836 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2837 
2838 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2839 {
2840 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2841 }
2842 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2843