xref: /linux/drivers/acpi/scan.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/acpi.h>
11 #include <linux/acpi_iort.h>
12 #include <linux/signal.h>
13 #include <linux/kthread.h>
14 #include <linux/dmi.h>
15 #include <linux/nls.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/platform_data/x86/apple.h>
18 #include <linux/pgtable.h>
19 
20 #include "internal.h"
21 
22 #define _COMPONENT		ACPI_BUS_COMPONENT
23 ACPI_MODULE_NAME("scan");
24 extern struct acpi_device *acpi_root;
25 
26 #define ACPI_BUS_CLASS			"system_bus"
27 #define ACPI_BUS_HID			"LNXSYBUS"
28 #define ACPI_BUS_DEVICE_NAME		"System Bus"
29 
30 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 struct acpi_dep_data {
53 	struct list_head node;
54 	acpi_handle supplier;
55 	acpi_handle consumer;
56 };
57 
58 void acpi_scan_lock_acquire(void)
59 {
60 	mutex_lock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
63 
64 void acpi_scan_lock_release(void)
65 {
66 	mutex_unlock(&acpi_scan_lock);
67 }
68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
69 
70 void acpi_lock_hp_context(void)
71 {
72 	mutex_lock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_unlock_hp_context(void)
76 {
77 	mutex_unlock(&acpi_hp_context_lock);
78 }
79 
80 void acpi_initialize_hp_context(struct acpi_device *adev,
81 				struct acpi_hotplug_context *hp,
82 				int (*notify)(struct acpi_device *, u32),
83 				void (*uevent)(struct acpi_device *, u32))
84 {
85 	acpi_lock_hp_context();
86 	hp->notify = notify;
87 	hp->uevent = uevent;
88 	acpi_set_hp_context(adev, hp);
89 	acpi_unlock_hp_context();
90 }
91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
92 
93 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
94 {
95 	if (!handler)
96 		return -EINVAL;
97 
98 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
99 	return 0;
100 }
101 
102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
103 				       const char *hotplug_profile_name)
104 {
105 	int error;
106 
107 	error = acpi_scan_add_handler(handler);
108 	if (error)
109 		return error;
110 
111 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
112 	return 0;
113 }
114 
115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
116 {
117 	struct acpi_device_physical_node *pn;
118 	bool offline = true;
119 	char *envp[] = { "EVENT=offline", NULL };
120 
121 	/*
122 	 * acpi_container_offline() calls this for all of the container's
123 	 * children under the container's physical_node_lock lock.
124 	 */
125 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
126 
127 	list_for_each_entry(pn, &adev->physical_node_list, node)
128 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
129 			if (uevent)
130 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
131 
132 			offline = false;
133 			break;
134 		}
135 
136 	mutex_unlock(&adev->physical_node_lock);
137 	return offline;
138 }
139 
140 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
141 				    void **ret_p)
142 {
143 	struct acpi_device *device = NULL;
144 	struct acpi_device_physical_node *pn;
145 	bool second_pass = (bool)data;
146 	acpi_status status = AE_OK;
147 
148 	if (acpi_bus_get_device(handle, &device))
149 		return AE_OK;
150 
151 	if (device->handler && !device->handler->hotplug.enabled) {
152 		*ret_p = &device->dev;
153 		return AE_SUPPORT;
154 	}
155 
156 	mutex_lock(&device->physical_node_lock);
157 
158 	list_for_each_entry(pn, &device->physical_node_list, node) {
159 		int ret;
160 
161 		if (second_pass) {
162 			/* Skip devices offlined by the first pass. */
163 			if (pn->put_online)
164 				continue;
165 		} else {
166 			pn->put_online = false;
167 		}
168 		ret = device_offline(pn->dev);
169 		if (ret >= 0) {
170 			pn->put_online = !ret;
171 		} else {
172 			*ret_p = pn->dev;
173 			if (second_pass) {
174 				status = AE_ERROR;
175 				break;
176 			}
177 		}
178 	}
179 
180 	mutex_unlock(&device->physical_node_lock);
181 
182 	return status;
183 }
184 
185 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
186 				   void **ret_p)
187 {
188 	struct acpi_device *device = NULL;
189 	struct acpi_device_physical_node *pn;
190 
191 	if (acpi_bus_get_device(handle, &device))
192 		return AE_OK;
193 
194 	mutex_lock(&device->physical_node_lock);
195 
196 	list_for_each_entry(pn, &device->physical_node_list, node)
197 		if (pn->put_online) {
198 			device_online(pn->dev);
199 			pn->put_online = false;
200 		}
201 
202 	mutex_unlock(&device->physical_node_lock);
203 
204 	return AE_OK;
205 }
206 
207 static int acpi_scan_try_to_offline(struct acpi_device *device)
208 {
209 	acpi_handle handle = device->handle;
210 	struct device *errdev = NULL;
211 	acpi_status status;
212 
213 	/*
214 	 * Carry out two passes here and ignore errors in the first pass,
215 	 * because if the devices in question are memory blocks and
216 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
217 	 * that the other blocks depend on, but it is not known in advance which
218 	 * block holds them.
219 	 *
220 	 * If the first pass is successful, the second one isn't needed, though.
221 	 */
222 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				     NULL, acpi_bus_offline, (void *)false,
224 				     (void **)&errdev);
225 	if (status == AE_SUPPORT) {
226 		dev_warn(errdev, "Offline disabled.\n");
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    acpi_bus_online, NULL, NULL, NULL);
229 		return -EPERM;
230 	}
231 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
232 	if (errdev) {
233 		errdev = NULL;
234 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
235 				    NULL, acpi_bus_offline, (void *)true,
236 				    (void **)&errdev);
237 		if (!errdev)
238 			acpi_bus_offline(handle, 0, (void *)true,
239 					 (void **)&errdev);
240 
241 		if (errdev) {
242 			dev_warn(errdev, "Offline failed.\n");
243 			acpi_bus_online(handle, 0, NULL, NULL);
244 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
245 					    ACPI_UINT32_MAX, acpi_bus_online,
246 					    NULL, NULL, NULL);
247 			return -EBUSY;
248 		}
249 	}
250 	return 0;
251 }
252 
253 static int acpi_scan_hot_remove(struct acpi_device *device)
254 {
255 	acpi_handle handle = device->handle;
256 	unsigned long long sta;
257 	acpi_status status;
258 
259 	if (device->handler && device->handler->hotplug.demand_offline) {
260 		if (!acpi_scan_is_offline(device, true))
261 			return -EBUSY;
262 	} else {
263 		int error = acpi_scan_try_to_offline(device);
264 		if (error)
265 			return error;
266 	}
267 
268 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269 		"Hot-removing device %s...\n", dev_name(&device->dev)));
270 
271 	acpi_bus_trim(device);
272 
273 	acpi_evaluate_lck(handle, 0);
274 	/*
275 	 * TBD: _EJD support.
276 	 */
277 	status = acpi_evaluate_ej0(handle);
278 	if (status == AE_NOT_FOUND)
279 		return -ENODEV;
280 	else if (ACPI_FAILURE(status))
281 		return -EIO;
282 
283 	/*
284 	 * Verify if eject was indeed successful.  If not, log an error
285 	 * message.  No need to call _OST since _EJ0 call was made OK.
286 	 */
287 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
288 	if (ACPI_FAILURE(status)) {
289 		acpi_handle_warn(handle,
290 			"Status check after eject failed (0x%x)\n", status);
291 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
292 		acpi_handle_warn(handle,
293 			"Eject incomplete - status 0x%llx\n", sta);
294 	}
295 
296 	return 0;
297 }
298 
299 static int acpi_scan_device_not_present(struct acpi_device *adev)
300 {
301 	if (!acpi_device_enumerated(adev)) {
302 		dev_warn(&adev->dev, "Still not present\n");
303 		return -EALREADY;
304 	}
305 	acpi_bus_trim(adev);
306 	return 0;
307 }
308 
309 static int acpi_scan_device_check(struct acpi_device *adev)
310 {
311 	int error;
312 
313 	acpi_bus_get_status(adev);
314 	if (adev->status.present || adev->status.functional) {
315 		/*
316 		 * This function is only called for device objects for which
317 		 * matching scan handlers exist.  The only situation in which
318 		 * the scan handler is not attached to this device object yet
319 		 * is when the device has just appeared (either it wasn't
320 		 * present at all before or it was removed and then added
321 		 * again).
322 		 */
323 		if (adev->handler) {
324 			dev_warn(&adev->dev, "Already enumerated\n");
325 			return -EALREADY;
326 		}
327 		error = acpi_bus_scan(adev->handle);
328 		if (error) {
329 			dev_warn(&adev->dev, "Namespace scan failure\n");
330 			return error;
331 		}
332 		if (!adev->handler) {
333 			dev_warn(&adev->dev, "Enumeration failure\n");
334 			error = -ENODEV;
335 		}
336 	} else {
337 		error = acpi_scan_device_not_present(adev);
338 	}
339 	return error;
340 }
341 
342 static int acpi_scan_bus_check(struct acpi_device *adev)
343 {
344 	struct acpi_scan_handler *handler = adev->handler;
345 	struct acpi_device *child;
346 	int error;
347 
348 	acpi_bus_get_status(adev);
349 	if (!(adev->status.present || adev->status.functional)) {
350 		acpi_scan_device_not_present(adev);
351 		return 0;
352 	}
353 	if (handler && handler->hotplug.scan_dependent)
354 		return handler->hotplug.scan_dependent(adev);
355 
356 	error = acpi_bus_scan(adev->handle);
357 	if (error) {
358 		dev_warn(&adev->dev, "Namespace scan failure\n");
359 		return error;
360 	}
361 	list_for_each_entry(child, &adev->children, node) {
362 		error = acpi_scan_bus_check(child);
363 		if (error)
364 			return error;
365 	}
366 	return 0;
367 }
368 
369 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
370 {
371 	switch (type) {
372 	case ACPI_NOTIFY_BUS_CHECK:
373 		return acpi_scan_bus_check(adev);
374 	case ACPI_NOTIFY_DEVICE_CHECK:
375 		return acpi_scan_device_check(adev);
376 	case ACPI_NOTIFY_EJECT_REQUEST:
377 	case ACPI_OST_EC_OSPM_EJECT:
378 		if (adev->handler && !adev->handler->hotplug.enabled) {
379 			dev_info(&adev->dev, "Eject disabled\n");
380 			return -EPERM;
381 		}
382 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
383 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
384 		return acpi_scan_hot_remove(adev);
385 	}
386 	return -EINVAL;
387 }
388 
389 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
390 {
391 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
392 	int error = -ENODEV;
393 
394 	lock_device_hotplug();
395 	mutex_lock(&acpi_scan_lock);
396 
397 	/*
398 	 * The device object's ACPI handle cannot become invalid as long as we
399 	 * are holding acpi_scan_lock, but it might have become invalid before
400 	 * that lock was acquired.
401 	 */
402 	if (adev->handle == INVALID_ACPI_HANDLE)
403 		goto err_out;
404 
405 	if (adev->flags.is_dock_station) {
406 		error = dock_notify(adev, src);
407 	} else if (adev->flags.hotplug_notify) {
408 		error = acpi_generic_hotplug_event(adev, src);
409 	} else {
410 		int (*notify)(struct acpi_device *, u32);
411 
412 		acpi_lock_hp_context();
413 		notify = adev->hp ? adev->hp->notify : NULL;
414 		acpi_unlock_hp_context();
415 		/*
416 		 * There may be additional notify handlers for device objects
417 		 * without the .event() callback, so ignore them here.
418 		 */
419 		if (notify)
420 			error = notify(adev, src);
421 		else
422 			goto out;
423 	}
424 	switch (error) {
425 	case 0:
426 		ost_code = ACPI_OST_SC_SUCCESS;
427 		break;
428 	case -EPERM:
429 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
430 		break;
431 	case -EBUSY:
432 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
433 		break;
434 	default:
435 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
436 		break;
437 	}
438 
439  err_out:
440 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
441 
442  out:
443 	acpi_bus_put_acpi_device(adev);
444 	mutex_unlock(&acpi_scan_lock);
445 	unlock_device_hotplug();
446 }
447 
448 static void acpi_free_power_resources_lists(struct acpi_device *device)
449 {
450 	int i;
451 
452 	if (device->wakeup.flags.valid)
453 		acpi_power_resources_list_free(&device->wakeup.resources);
454 
455 	if (!device->power.flags.power_resources)
456 		return;
457 
458 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
459 		struct acpi_device_power_state *ps = &device->power.states[i];
460 		acpi_power_resources_list_free(&ps->resources);
461 	}
462 }
463 
464 static void acpi_device_release(struct device *dev)
465 {
466 	struct acpi_device *acpi_dev = to_acpi_device(dev);
467 
468 	acpi_free_properties(acpi_dev);
469 	acpi_free_pnp_ids(&acpi_dev->pnp);
470 	acpi_free_power_resources_lists(acpi_dev);
471 	kfree(acpi_dev);
472 }
473 
474 static void acpi_device_del(struct acpi_device *device)
475 {
476 	struct acpi_device_bus_id *acpi_device_bus_id;
477 
478 	mutex_lock(&acpi_device_lock);
479 	if (device->parent)
480 		list_del(&device->node);
481 
482 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
483 		if (!strcmp(acpi_device_bus_id->bus_id,
484 			    acpi_device_hid(device))) {
485 			if (acpi_device_bus_id->instance_no > 0)
486 				acpi_device_bus_id->instance_no--;
487 			else {
488 				list_del(&acpi_device_bus_id->node);
489 				kfree(acpi_device_bus_id);
490 			}
491 			break;
492 		}
493 
494 	list_del(&device->wakeup_list);
495 	mutex_unlock(&acpi_device_lock);
496 
497 	acpi_power_add_remove_device(device, false);
498 	acpi_device_remove_files(device);
499 	if (device->remove)
500 		device->remove(device);
501 
502 	device_del(&device->dev);
503 }
504 
505 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
506 
507 static LIST_HEAD(acpi_device_del_list);
508 static DEFINE_MUTEX(acpi_device_del_lock);
509 
510 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
511 {
512 	for (;;) {
513 		struct acpi_device *adev;
514 
515 		mutex_lock(&acpi_device_del_lock);
516 
517 		if (list_empty(&acpi_device_del_list)) {
518 			mutex_unlock(&acpi_device_del_lock);
519 			break;
520 		}
521 		adev = list_first_entry(&acpi_device_del_list,
522 					struct acpi_device, del_list);
523 		list_del(&adev->del_list);
524 
525 		mutex_unlock(&acpi_device_del_lock);
526 
527 		blocking_notifier_call_chain(&acpi_reconfig_chain,
528 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
529 
530 		acpi_device_del(adev);
531 		/*
532 		 * Drop references to all power resources that might have been
533 		 * used by the device.
534 		 */
535 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
536 		put_device(&adev->dev);
537 	}
538 }
539 
540 /**
541  * acpi_scan_drop_device - Drop an ACPI device object.
542  * @handle: Handle of an ACPI namespace node, not used.
543  * @context: Address of the ACPI device object to drop.
544  *
545  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
546  * namespace node the device object pointed to by @context is attached to.
547  *
548  * The unregistration is carried out asynchronously to avoid running
549  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
550  * ensure the correct ordering (the device objects must be unregistered in the
551  * same order in which the corresponding namespace nodes are deleted).
552  */
553 static void acpi_scan_drop_device(acpi_handle handle, void *context)
554 {
555 	static DECLARE_WORK(work, acpi_device_del_work_fn);
556 	struct acpi_device *adev = context;
557 
558 	mutex_lock(&acpi_device_del_lock);
559 
560 	/*
561 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
562 	 * won't run after any hotplug work items submitted subsequently.  That
563 	 * prevents attempts to register device objects identical to those being
564 	 * deleted from happening concurrently (such attempts result from
565 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
566 	 * run after all of the work items submitted previosuly, which helps
567 	 * those work items to ensure that they are not accessing stale device
568 	 * objects.
569 	 */
570 	if (list_empty(&acpi_device_del_list))
571 		acpi_queue_hotplug_work(&work);
572 
573 	list_add_tail(&adev->del_list, &acpi_device_del_list);
574 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
575 	adev->handle = INVALID_ACPI_HANDLE;
576 
577 	mutex_unlock(&acpi_device_del_lock);
578 }
579 
580 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device,
581 				void (*callback)(void *))
582 {
583 	acpi_status status;
584 
585 	if (!device)
586 		return -EINVAL;
587 
588 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
589 				    (void **)device, callback);
590 	if (ACPI_FAILURE(status) || !*device) {
591 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
592 				  handle));
593 		return -ENODEV;
594 	}
595 	return 0;
596 }
597 
598 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
599 {
600 	return acpi_get_device_data(handle, device, NULL);
601 }
602 EXPORT_SYMBOL(acpi_bus_get_device);
603 
604 static void get_acpi_device(void *dev)
605 {
606 	if (dev)
607 		get_device(&((struct acpi_device *)dev)->dev);
608 }
609 
610 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
611 {
612 	struct acpi_device *adev = NULL;
613 
614 	acpi_get_device_data(handle, &adev, get_acpi_device);
615 	return adev;
616 }
617 
618 void acpi_bus_put_acpi_device(struct acpi_device *adev)
619 {
620 	put_device(&adev->dev);
621 }
622 
623 int acpi_device_add(struct acpi_device *device,
624 		    void (*release)(struct device *))
625 {
626 	int result;
627 	struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
628 	int found = 0;
629 
630 	if (device->handle) {
631 		acpi_status status;
632 
633 		status = acpi_attach_data(device->handle, acpi_scan_drop_device,
634 					  device);
635 		if (ACPI_FAILURE(status)) {
636 			acpi_handle_err(device->handle,
637 					"Unable to attach device data\n");
638 			return -ENODEV;
639 		}
640 	}
641 
642 	/*
643 	 * Linkage
644 	 * -------
645 	 * Link this device to its parent and siblings.
646 	 */
647 	INIT_LIST_HEAD(&device->children);
648 	INIT_LIST_HEAD(&device->node);
649 	INIT_LIST_HEAD(&device->wakeup_list);
650 	INIT_LIST_HEAD(&device->physical_node_list);
651 	INIT_LIST_HEAD(&device->del_list);
652 	mutex_init(&device->physical_node_lock);
653 
654 	new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
655 	if (!new_bus_id) {
656 		pr_err(PREFIX "Memory allocation error\n");
657 		result = -ENOMEM;
658 		goto err_detach;
659 	}
660 
661 	mutex_lock(&acpi_device_lock);
662 	/*
663 	 * Find suitable bus_id and instance number in acpi_bus_id_list
664 	 * If failed, create one and link it into acpi_bus_id_list
665 	 */
666 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
667 		if (!strcmp(acpi_device_bus_id->bus_id,
668 			    acpi_device_hid(device))) {
669 			acpi_device_bus_id->instance_no++;
670 			found = 1;
671 			kfree(new_bus_id);
672 			break;
673 		}
674 	}
675 	if (!found) {
676 		acpi_device_bus_id = new_bus_id;
677 		strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
678 		acpi_device_bus_id->instance_no = 0;
679 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
680 	}
681 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
682 
683 	if (device->parent)
684 		list_add_tail(&device->node, &device->parent->children);
685 
686 	if (device->wakeup.flags.valid)
687 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
688 	mutex_unlock(&acpi_device_lock);
689 
690 	if (device->parent)
691 		device->dev.parent = &device->parent->dev;
692 	device->dev.bus = &acpi_bus_type;
693 	device->dev.release = release;
694 	result = device_add(&device->dev);
695 	if (result) {
696 		dev_err(&device->dev, "Error registering device\n");
697 		goto err;
698 	}
699 
700 	result = acpi_device_setup_files(device);
701 	if (result)
702 		printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
703 		       dev_name(&device->dev));
704 
705 	return 0;
706 
707  err:
708 	mutex_lock(&acpi_device_lock);
709 	if (device->parent)
710 		list_del(&device->node);
711 	list_del(&device->wakeup_list);
712 	mutex_unlock(&acpi_device_lock);
713 
714  err_detach:
715 	acpi_detach_data(device->handle, acpi_scan_drop_device);
716 	return result;
717 }
718 
719 /* --------------------------------------------------------------------------
720                                  Device Enumeration
721    -------------------------------------------------------------------------- */
722 static bool acpi_info_matches_ids(struct acpi_device_info *info,
723 				  const char * const ids[])
724 {
725 	struct acpi_pnp_device_id_list *cid_list = NULL;
726 	int i;
727 
728 	if (!(info->valid & ACPI_VALID_HID))
729 		return false;
730 
731 	if (info->valid & ACPI_VALID_CID)
732 		cid_list = &info->compatible_id_list;
733 
734 	for (i = 0; ids[i]; i++) {
735 		int j;
736 
737 		if (!strcmp(info->hardware_id.string, ids[i]))
738 			return true;
739 
740 		if (!cid_list)
741 			continue;
742 
743 		for (j = 0; j < cid_list->count; j++) {
744 			if (!strcmp(cid_list->ids[j].string, ids[i]))
745 				return true;
746 		}
747 	}
748 
749 	return false;
750 }
751 
752 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
753 static const char * const acpi_ignore_dep_ids[] = {
754 	"PNP0D80", /* Windows-compatible System Power Management Controller */
755 	"INT33BD", /* Intel Baytrail Mailbox Device */
756 	NULL
757 };
758 
759 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
760 {
761 	struct acpi_device *device = NULL;
762 	acpi_status status;
763 
764 	/*
765 	 * Fixed hardware devices do not appear in the namespace and do not
766 	 * have handles, but we fabricate acpi_devices for them, so we have
767 	 * to deal with them specially.
768 	 */
769 	if (!handle)
770 		return acpi_root;
771 
772 	do {
773 		status = acpi_get_parent(handle, &handle);
774 		if (ACPI_FAILURE(status))
775 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
776 	} while (acpi_bus_get_device(handle, &device));
777 	return device;
778 }
779 
780 acpi_status
781 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
782 {
783 	acpi_status status;
784 	acpi_handle tmp;
785 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
786 	union acpi_object *obj;
787 
788 	status = acpi_get_handle(handle, "_EJD", &tmp);
789 	if (ACPI_FAILURE(status))
790 		return status;
791 
792 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
793 	if (ACPI_SUCCESS(status)) {
794 		obj = buffer.pointer;
795 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
796 					 ejd);
797 		kfree(buffer.pointer);
798 	}
799 	return status;
800 }
801 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
802 
803 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
804 {
805 	acpi_handle handle = dev->handle;
806 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
807 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
808 	union acpi_object *package = NULL;
809 	union acpi_object *element = NULL;
810 	acpi_status status;
811 	int err = -ENODATA;
812 
813 	INIT_LIST_HEAD(&wakeup->resources);
814 
815 	/* _PRW */
816 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
817 	if (ACPI_FAILURE(status)) {
818 		ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
819 		return err;
820 	}
821 
822 	package = (union acpi_object *)buffer.pointer;
823 
824 	if (!package || package->package.count < 2)
825 		goto out;
826 
827 	element = &(package->package.elements[0]);
828 	if (!element)
829 		goto out;
830 
831 	if (element->type == ACPI_TYPE_PACKAGE) {
832 		if ((element->package.count < 2) ||
833 		    (element->package.elements[0].type !=
834 		     ACPI_TYPE_LOCAL_REFERENCE)
835 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
836 			goto out;
837 
838 		wakeup->gpe_device =
839 		    element->package.elements[0].reference.handle;
840 		wakeup->gpe_number =
841 		    (u32) element->package.elements[1].integer.value;
842 	} else if (element->type == ACPI_TYPE_INTEGER) {
843 		wakeup->gpe_device = NULL;
844 		wakeup->gpe_number = element->integer.value;
845 	} else {
846 		goto out;
847 	}
848 
849 	element = &(package->package.elements[1]);
850 	if (element->type != ACPI_TYPE_INTEGER)
851 		goto out;
852 
853 	wakeup->sleep_state = element->integer.value;
854 
855 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
856 	if (err)
857 		goto out;
858 
859 	if (!list_empty(&wakeup->resources)) {
860 		int sleep_state;
861 
862 		err = acpi_power_wakeup_list_init(&wakeup->resources,
863 						  &sleep_state);
864 		if (err) {
865 			acpi_handle_warn(handle, "Retrieving current states "
866 					 "of wakeup power resources failed\n");
867 			acpi_power_resources_list_free(&wakeup->resources);
868 			goto out;
869 		}
870 		if (sleep_state < wakeup->sleep_state) {
871 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
872 					 "(S%d) by S%d from power resources\n",
873 					 (int)wakeup->sleep_state, sleep_state);
874 			wakeup->sleep_state = sleep_state;
875 		}
876 	}
877 
878  out:
879 	kfree(buffer.pointer);
880 	return err;
881 }
882 
883 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
884 {
885 	static const struct acpi_device_id button_device_ids[] = {
886 		{"PNP0C0C", 0},		/* Power button */
887 		{"PNP0C0D", 0},		/* Lid */
888 		{"PNP0C0E", 0},		/* Sleep button */
889 		{"", 0},
890 	};
891 	struct acpi_device_wakeup *wakeup = &device->wakeup;
892 	acpi_status status;
893 
894 	wakeup->flags.notifier_present = 0;
895 
896 	/* Power button, Lid switch always enable wakeup */
897 	if (!acpi_match_device_ids(device, button_device_ids)) {
898 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
899 			/* Do not use Lid/sleep button for S5 wakeup */
900 			if (wakeup->sleep_state == ACPI_STATE_S5)
901 				wakeup->sleep_state = ACPI_STATE_S4;
902 		}
903 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
904 		device_set_wakeup_capable(&device->dev, true);
905 		return true;
906 	}
907 
908 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
909 					 wakeup->gpe_number);
910 	return ACPI_SUCCESS(status);
911 }
912 
913 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
914 {
915 	int err;
916 
917 	/* Presence of _PRW indicates wake capable */
918 	if (!acpi_has_method(device->handle, "_PRW"))
919 		return;
920 
921 	err = acpi_bus_extract_wakeup_device_power_package(device);
922 	if (err) {
923 		dev_err(&device->dev, "_PRW evaluation error: %d\n", err);
924 		return;
925 	}
926 
927 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
928 	device->wakeup.prepare_count = 0;
929 	/*
930 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
931 	 * system for the ACPI device with the _PRW object.
932 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
933 	 * So it is necessary to call _DSW object first. Only when it is not
934 	 * present will the _PSW object used.
935 	 */
936 	err = acpi_device_sleep_wake(device, 0, 0, 0);
937 	if (err)
938 		pr_debug("error in _DSW or _PSW evaluation\n");
939 }
940 
941 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
942 {
943 	struct acpi_device_power_state *ps = &device->power.states[state];
944 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
945 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
946 	acpi_status status;
947 
948 	INIT_LIST_HEAD(&ps->resources);
949 
950 	/* Evaluate "_PRx" to get referenced power resources */
951 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
952 	if (ACPI_SUCCESS(status)) {
953 		union acpi_object *package = buffer.pointer;
954 
955 		if (buffer.length && package
956 		    && package->type == ACPI_TYPE_PACKAGE
957 		    && package->package.count)
958 			acpi_extract_power_resources(package, 0, &ps->resources);
959 
960 		ACPI_FREE(buffer.pointer);
961 	}
962 
963 	/* Evaluate "_PSx" to see if we can do explicit sets */
964 	pathname[2] = 'S';
965 	if (acpi_has_method(device->handle, pathname))
966 		ps->flags.explicit_set = 1;
967 
968 	/* State is valid if there are means to put the device into it. */
969 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
970 		ps->flags.valid = 1;
971 
972 	ps->power = -1;		/* Unknown - driver assigned */
973 	ps->latency = -1;	/* Unknown - driver assigned */
974 }
975 
976 static void acpi_bus_get_power_flags(struct acpi_device *device)
977 {
978 	u32 i;
979 
980 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
981 	if (!acpi_has_method(device->handle, "_PS0") &&
982 	    !acpi_has_method(device->handle, "_PR0"))
983 		return;
984 
985 	device->flags.power_manageable = 1;
986 
987 	/*
988 	 * Power Management Flags
989 	 */
990 	if (acpi_has_method(device->handle, "_PSC"))
991 		device->power.flags.explicit_get = 1;
992 
993 	if (acpi_has_method(device->handle, "_IRC"))
994 		device->power.flags.inrush_current = 1;
995 
996 	if (acpi_has_method(device->handle, "_DSW"))
997 		device->power.flags.dsw_present = 1;
998 
999 	/*
1000 	 * Enumerate supported power management states
1001 	 */
1002 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1003 		acpi_bus_init_power_state(device, i);
1004 
1005 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1006 
1007 	/* Set the defaults for D0 and D3hot (always supported). */
1008 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1009 	device->power.states[ACPI_STATE_D0].power = 100;
1010 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1011 
1012 	/*
1013 	 * Use power resources only if the D0 list of them is populated, because
1014 	 * some platforms may provide _PR3 only to indicate D3cold support and
1015 	 * in those cases the power resources list returned by it may be bogus.
1016 	 */
1017 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1018 		device->power.flags.power_resources = 1;
1019 		/*
1020 		 * D3cold is supported if the D3hot list of power resources is
1021 		 * not empty.
1022 		 */
1023 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1024 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1025 	}
1026 
1027 	if (acpi_bus_init_power(device))
1028 		device->flags.power_manageable = 0;
1029 }
1030 
1031 static void acpi_bus_get_flags(struct acpi_device *device)
1032 {
1033 	/* Presence of _STA indicates 'dynamic_status' */
1034 	if (acpi_has_method(device->handle, "_STA"))
1035 		device->flags.dynamic_status = 1;
1036 
1037 	/* Presence of _RMV indicates 'removable' */
1038 	if (acpi_has_method(device->handle, "_RMV"))
1039 		device->flags.removable = 1;
1040 
1041 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1042 	if (acpi_has_method(device->handle, "_EJD") ||
1043 	    acpi_has_method(device->handle, "_EJ0"))
1044 		device->flags.ejectable = 1;
1045 }
1046 
1047 static void acpi_device_get_busid(struct acpi_device *device)
1048 {
1049 	char bus_id[5] = { '?', 0 };
1050 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1051 	int i = 0;
1052 
1053 	/*
1054 	 * Bus ID
1055 	 * ------
1056 	 * The device's Bus ID is simply the object name.
1057 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1058 	 */
1059 	if (ACPI_IS_ROOT_DEVICE(device)) {
1060 		strcpy(device->pnp.bus_id, "ACPI");
1061 		return;
1062 	}
1063 
1064 	switch (device->device_type) {
1065 	case ACPI_BUS_TYPE_POWER_BUTTON:
1066 		strcpy(device->pnp.bus_id, "PWRF");
1067 		break;
1068 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1069 		strcpy(device->pnp.bus_id, "SLPF");
1070 		break;
1071 	case ACPI_BUS_TYPE_ECDT_EC:
1072 		strcpy(device->pnp.bus_id, "ECDT");
1073 		break;
1074 	default:
1075 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1076 		/* Clean up trailing underscores (if any) */
1077 		for (i = 3; i > 1; i--) {
1078 			if (bus_id[i] == '_')
1079 				bus_id[i] = '\0';
1080 			else
1081 				break;
1082 		}
1083 		strcpy(device->pnp.bus_id, bus_id);
1084 		break;
1085 	}
1086 }
1087 
1088 /*
1089  * acpi_ata_match - see if an acpi object is an ATA device
1090  *
1091  * If an acpi object has one of the ACPI ATA methods defined,
1092  * then we can safely call it an ATA device.
1093  */
1094 bool acpi_ata_match(acpi_handle handle)
1095 {
1096 	return acpi_has_method(handle, "_GTF") ||
1097 	       acpi_has_method(handle, "_GTM") ||
1098 	       acpi_has_method(handle, "_STM") ||
1099 	       acpi_has_method(handle, "_SDD");
1100 }
1101 
1102 /*
1103  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1104  *
1105  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1106  * then we can safely call it an ejectable drive bay
1107  */
1108 bool acpi_bay_match(acpi_handle handle)
1109 {
1110 	acpi_handle phandle;
1111 
1112 	if (!acpi_has_method(handle, "_EJ0"))
1113 		return false;
1114 	if (acpi_ata_match(handle))
1115 		return true;
1116 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1117 		return false;
1118 
1119 	return acpi_ata_match(phandle);
1120 }
1121 
1122 bool acpi_device_is_battery(struct acpi_device *adev)
1123 {
1124 	struct acpi_hardware_id *hwid;
1125 
1126 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1127 		if (!strcmp("PNP0C0A", hwid->id))
1128 			return true;
1129 
1130 	return false;
1131 }
1132 
1133 static bool is_ejectable_bay(struct acpi_device *adev)
1134 {
1135 	acpi_handle handle = adev->handle;
1136 
1137 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1138 		return true;
1139 
1140 	return acpi_bay_match(handle);
1141 }
1142 
1143 /*
1144  * acpi_dock_match - see if an acpi object has a _DCK method
1145  */
1146 bool acpi_dock_match(acpi_handle handle)
1147 {
1148 	return acpi_has_method(handle, "_DCK");
1149 }
1150 
1151 static acpi_status
1152 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1153 			  void **return_value)
1154 {
1155 	long *cap = context;
1156 
1157 	if (acpi_has_method(handle, "_BCM") &&
1158 	    acpi_has_method(handle, "_BCL")) {
1159 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight "
1160 				  "support\n"));
1161 		*cap |= ACPI_VIDEO_BACKLIGHT;
1162 		/* We have backlight support, no need to scan further */
1163 		return AE_CTRL_TERMINATE;
1164 	}
1165 	return 0;
1166 }
1167 
1168 /* Returns true if the ACPI object is a video device which can be
1169  * handled by video.ko.
1170  * The device will get a Linux specific CID added in scan.c to
1171  * identify the device as an ACPI graphics device
1172  * Be aware that the graphics device may not be physically present
1173  * Use acpi_video_get_capabilities() to detect general ACPI video
1174  * capabilities of present cards
1175  */
1176 long acpi_is_video_device(acpi_handle handle)
1177 {
1178 	long video_caps = 0;
1179 
1180 	/* Is this device able to support video switching ? */
1181 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1182 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1183 
1184 	/* Is this device able to retrieve a video ROM ? */
1185 	if (acpi_has_method(handle, "_ROM"))
1186 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1187 
1188 	/* Is this device able to configure which video head to be POSTed ? */
1189 	if (acpi_has_method(handle, "_VPO") &&
1190 	    acpi_has_method(handle, "_GPD") &&
1191 	    acpi_has_method(handle, "_SPD"))
1192 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1193 
1194 	/* Only check for backlight functionality if one of the above hit. */
1195 	if (video_caps)
1196 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1197 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1198 				    &video_caps, NULL);
1199 
1200 	return video_caps;
1201 }
1202 EXPORT_SYMBOL(acpi_is_video_device);
1203 
1204 const char *acpi_device_hid(struct acpi_device *device)
1205 {
1206 	struct acpi_hardware_id *hid;
1207 
1208 	if (list_empty(&device->pnp.ids))
1209 		return dummy_hid;
1210 
1211 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1212 	return hid->id;
1213 }
1214 EXPORT_SYMBOL(acpi_device_hid);
1215 
1216 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1217 {
1218 	struct acpi_hardware_id *id;
1219 
1220 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1221 	if (!id)
1222 		return;
1223 
1224 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1225 	if (!id->id) {
1226 		kfree(id);
1227 		return;
1228 	}
1229 
1230 	list_add_tail(&id->list, &pnp->ids);
1231 	pnp->type.hardware_id = 1;
1232 }
1233 
1234 /*
1235  * Old IBM workstations have a DSDT bug wherein the SMBus object
1236  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1237  * prefix.  Work around this.
1238  */
1239 static bool acpi_ibm_smbus_match(acpi_handle handle)
1240 {
1241 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1242 	struct acpi_buffer path = { sizeof(node_name), node_name };
1243 
1244 	if (!dmi_name_in_vendors("IBM"))
1245 		return false;
1246 
1247 	/* Look for SMBS object */
1248 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1249 	    strcmp("SMBS", path.pointer))
1250 		return false;
1251 
1252 	/* Does it have the necessary (but misnamed) methods? */
1253 	if (acpi_has_method(handle, "SBI") &&
1254 	    acpi_has_method(handle, "SBR") &&
1255 	    acpi_has_method(handle, "SBW"))
1256 		return true;
1257 
1258 	return false;
1259 }
1260 
1261 static bool acpi_object_is_system_bus(acpi_handle handle)
1262 {
1263 	acpi_handle tmp;
1264 
1265 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1266 	    tmp == handle)
1267 		return true;
1268 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1269 	    tmp == handle)
1270 		return true;
1271 
1272 	return false;
1273 }
1274 
1275 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1276 				int device_type, struct acpi_device_info *info)
1277 {
1278 	struct acpi_pnp_device_id_list *cid_list;
1279 	int i;
1280 
1281 	switch (device_type) {
1282 	case ACPI_BUS_TYPE_DEVICE:
1283 		if (handle == ACPI_ROOT_OBJECT) {
1284 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1285 			break;
1286 		}
1287 
1288 		if (!info) {
1289 			pr_err(PREFIX "%s: Error reading device info\n",
1290 					__func__);
1291 			return;
1292 		}
1293 
1294 		if (info->valid & ACPI_VALID_HID) {
1295 			acpi_add_id(pnp, info->hardware_id.string);
1296 			pnp->type.platform_id = 1;
1297 		}
1298 		if (info->valid & ACPI_VALID_CID) {
1299 			cid_list = &info->compatible_id_list;
1300 			for (i = 0; i < cid_list->count; i++)
1301 				acpi_add_id(pnp, cid_list->ids[i].string);
1302 		}
1303 		if (info->valid & ACPI_VALID_ADR) {
1304 			pnp->bus_address = info->address;
1305 			pnp->type.bus_address = 1;
1306 		}
1307 		if (info->valid & ACPI_VALID_UID)
1308 			pnp->unique_id = kstrdup(info->unique_id.string,
1309 							GFP_KERNEL);
1310 		if (info->valid & ACPI_VALID_CLS)
1311 			acpi_add_id(pnp, info->class_code.string);
1312 
1313 		/*
1314 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1315 		 * synthetic HIDs to make sure drivers can find them.
1316 		 */
1317 		if (acpi_is_video_device(handle))
1318 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1319 		else if (acpi_bay_match(handle))
1320 			acpi_add_id(pnp, ACPI_BAY_HID);
1321 		else if (acpi_dock_match(handle))
1322 			acpi_add_id(pnp, ACPI_DOCK_HID);
1323 		else if (acpi_ibm_smbus_match(handle))
1324 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1325 		else if (list_empty(&pnp->ids) &&
1326 			 acpi_object_is_system_bus(handle)) {
1327 			/* \_SB, \_TZ, LNXSYBUS */
1328 			acpi_add_id(pnp, ACPI_BUS_HID);
1329 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1330 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1331 		}
1332 
1333 		break;
1334 	case ACPI_BUS_TYPE_POWER:
1335 		acpi_add_id(pnp, ACPI_POWER_HID);
1336 		break;
1337 	case ACPI_BUS_TYPE_PROCESSOR:
1338 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1339 		break;
1340 	case ACPI_BUS_TYPE_THERMAL:
1341 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1342 		break;
1343 	case ACPI_BUS_TYPE_POWER_BUTTON:
1344 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1345 		break;
1346 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1347 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1348 		break;
1349 	case ACPI_BUS_TYPE_ECDT_EC:
1350 		acpi_add_id(pnp, ACPI_ECDT_HID);
1351 		break;
1352 	}
1353 }
1354 
1355 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1356 {
1357 	struct acpi_hardware_id *id, *tmp;
1358 
1359 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1360 		kfree_const(id->id);
1361 		kfree(id);
1362 	}
1363 	kfree(pnp->unique_id);
1364 }
1365 
1366 /**
1367  * acpi_dma_supported - Check DMA support for the specified device.
1368  * @adev: The pointer to acpi device
1369  *
1370  * Return false if DMA is not supported. Otherwise, return true
1371  */
1372 bool acpi_dma_supported(struct acpi_device *adev)
1373 {
1374 	if (!adev)
1375 		return false;
1376 
1377 	if (adev->flags.cca_seen)
1378 		return true;
1379 
1380 	/*
1381 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1382 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1383 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1384 	*/
1385 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1386 		return true;
1387 
1388 	return false;
1389 }
1390 
1391 /**
1392  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1393  * @adev: The pointer to acpi device
1394  *
1395  * Return enum dev_dma_attr.
1396  */
1397 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1398 {
1399 	if (!acpi_dma_supported(adev))
1400 		return DEV_DMA_NOT_SUPPORTED;
1401 
1402 	if (adev->flags.coherent_dma)
1403 		return DEV_DMA_COHERENT;
1404 	else
1405 		return DEV_DMA_NON_COHERENT;
1406 }
1407 
1408 /**
1409  * acpi_dma_get_range() - Get device DMA parameters.
1410  *
1411  * @dev: device to configure
1412  * @dma_addr: pointer device DMA address result
1413  * @offset: pointer to the DMA offset result
1414  * @size: pointer to DMA range size result
1415  *
1416  * Evaluate DMA regions and return respectively DMA region start, offset
1417  * and size in dma_addr, offset and size on parsing success; it does not
1418  * update the passed in values on failure.
1419  *
1420  * Return 0 on success, < 0 on failure.
1421  */
1422 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1423 		       u64 *size)
1424 {
1425 	struct acpi_device *adev;
1426 	LIST_HEAD(list);
1427 	struct resource_entry *rentry;
1428 	int ret;
1429 	struct device *dma_dev = dev;
1430 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1431 
1432 	/*
1433 	 * Walk the device tree chasing an ACPI companion with a _DMA
1434 	 * object while we go. Stop if we find a device with an ACPI
1435 	 * companion containing a _DMA method.
1436 	 */
1437 	do {
1438 		adev = ACPI_COMPANION(dma_dev);
1439 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1440 			break;
1441 
1442 		dma_dev = dma_dev->parent;
1443 	} while (dma_dev);
1444 
1445 	if (!dma_dev)
1446 		return -ENODEV;
1447 
1448 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1449 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1450 		return -EINVAL;
1451 	}
1452 
1453 	ret = acpi_dev_get_dma_resources(adev, &list);
1454 	if (ret > 0) {
1455 		list_for_each_entry(rentry, &list, node) {
1456 			if (dma_offset && rentry->offset != dma_offset) {
1457 				ret = -EINVAL;
1458 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1459 				goto out;
1460 			}
1461 			dma_offset = rentry->offset;
1462 
1463 			/* Take lower and upper limits */
1464 			if (rentry->res->start < dma_start)
1465 				dma_start = rentry->res->start;
1466 			if (rentry->res->end > dma_end)
1467 				dma_end = rentry->res->end;
1468 		}
1469 
1470 		if (dma_start >= dma_end) {
1471 			ret = -EINVAL;
1472 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1473 			goto out;
1474 		}
1475 
1476 		*dma_addr = dma_start - dma_offset;
1477 		len = dma_end - dma_start;
1478 		*size = max(len, len + 1);
1479 		*offset = dma_offset;
1480 	}
1481  out:
1482 	acpi_dev_free_resource_list(&list);
1483 
1484 	return ret >= 0 ? 0 : ret;
1485 }
1486 
1487 /**
1488  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1489  * @dev: The pointer to the device
1490  * @attr: device dma attributes
1491  * @input_id: input device id const value pointer
1492  */
1493 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1494 			  const u32 *input_id)
1495 {
1496 	const struct iommu_ops *iommu;
1497 	u64 dma_addr = 0, size = 0;
1498 
1499 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1500 		set_dma_ops(dev, &dma_dummy_ops);
1501 		return 0;
1502 	}
1503 
1504 	iort_dma_setup(dev, &dma_addr, &size);
1505 
1506 	iommu = iort_iommu_configure_id(dev, input_id);
1507 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1508 		return -EPROBE_DEFER;
1509 
1510 	arch_setup_dma_ops(dev, dma_addr, size,
1511 				iommu, attr == DEV_DMA_COHERENT);
1512 
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1516 
1517 static void acpi_init_coherency(struct acpi_device *adev)
1518 {
1519 	unsigned long long cca = 0;
1520 	acpi_status status;
1521 	struct acpi_device *parent = adev->parent;
1522 
1523 	if (parent && parent->flags.cca_seen) {
1524 		/*
1525 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1526 		 * already saw one.
1527 		 */
1528 		adev->flags.cca_seen = 1;
1529 		cca = parent->flags.coherent_dma;
1530 	} else {
1531 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1532 					       NULL, &cca);
1533 		if (ACPI_SUCCESS(status))
1534 			adev->flags.cca_seen = 1;
1535 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1536 			/*
1537 			 * If architecture does not specify that _CCA is
1538 			 * required for DMA-able devices (e.g. x86),
1539 			 * we default to _CCA=1.
1540 			 */
1541 			cca = 1;
1542 		else
1543 			acpi_handle_debug(adev->handle,
1544 					  "ACPI device is missing _CCA.\n");
1545 	}
1546 
1547 	adev->flags.coherent_dma = cca;
1548 }
1549 
1550 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1551 {
1552 	bool *is_serial_bus_slave_p = data;
1553 
1554 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1555 		return 1;
1556 
1557 	*is_serial_bus_slave_p = true;
1558 
1559 	 /* no need to do more checking */
1560 	return -1;
1561 }
1562 
1563 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1564 {
1565 	struct acpi_device *parent = device->parent;
1566 	static const struct acpi_device_id indirect_io_hosts[] = {
1567 		{"HISI0191", 0},
1568 		{}
1569 	};
1570 
1571 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1572 }
1573 
1574 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1575 {
1576 	struct list_head resource_list;
1577 	bool is_serial_bus_slave = false;
1578 	/*
1579 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1580 	 * must be instantiated for each, each with its own i2c_device_id.
1581 	 * Normally we only instantiate an i2c-client for the first resource,
1582 	 * using the ACPI HID as id. These special cases are handled by the
1583 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1584 	 * which i2c_device_id to use for each resource.
1585 	 */
1586 	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1587 		{"BSG1160", },
1588 		{"BSG2150", },
1589 		{"INT33FE", },
1590 		{"INT3515", },
1591 		{}
1592 	};
1593 
1594 	if (acpi_is_indirect_io_slave(device))
1595 		return true;
1596 
1597 	/* Macs use device properties in lieu of _CRS resources */
1598 	if (x86_apple_machine &&
1599 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1600 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1601 	     fwnode_property_present(&device->fwnode, "baud")))
1602 		return true;
1603 
1604 	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1605 	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1606 		return false;
1607 
1608 	INIT_LIST_HEAD(&resource_list);
1609 	acpi_dev_get_resources(device, &resource_list,
1610 			       acpi_check_serial_bus_slave,
1611 			       &is_serial_bus_slave);
1612 	acpi_dev_free_resource_list(&resource_list);
1613 
1614 	return is_serial_bus_slave;
1615 }
1616 
1617 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1618 			     int type, unsigned long long sta,
1619 			     struct acpi_device_info *info)
1620 {
1621 	INIT_LIST_HEAD(&device->pnp.ids);
1622 	device->device_type = type;
1623 	device->handle = handle;
1624 	device->parent = acpi_bus_get_parent(handle);
1625 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1626 	acpi_set_device_status(device, sta);
1627 	acpi_device_get_busid(device);
1628 	acpi_set_pnp_ids(handle, &device->pnp, type, info);
1629 	acpi_init_properties(device);
1630 	acpi_bus_get_flags(device);
1631 	device->flags.match_driver = false;
1632 	device->flags.initialized = true;
1633 	device->flags.enumeration_by_parent =
1634 		acpi_device_enumeration_by_parent(device);
1635 	acpi_device_clear_enumerated(device);
1636 	device_initialize(&device->dev);
1637 	dev_set_uevent_suppress(&device->dev, true);
1638 	acpi_init_coherency(device);
1639 }
1640 
1641 void acpi_device_add_finalize(struct acpi_device *device)
1642 {
1643 	dev_set_uevent_suppress(&device->dev, false);
1644 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1645 }
1646 
1647 static int acpi_add_single_object(struct acpi_device **child,
1648 				  acpi_handle handle, int type,
1649 				  unsigned long long sta)
1650 {
1651 	int result;
1652 	struct acpi_device *device;
1653 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1654 	struct acpi_device_info *info = NULL;
1655 
1656 	if (handle != ACPI_ROOT_OBJECT && type == ACPI_BUS_TYPE_DEVICE)
1657 		acpi_get_object_info(handle, &info);
1658 
1659 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1660 	if (!device) {
1661 		printk(KERN_ERR PREFIX "Memory allocation error\n");
1662 		kfree(info);
1663 		return -ENOMEM;
1664 	}
1665 
1666 	acpi_init_device_object(device, handle, type, sta, info);
1667 	kfree(info);
1668 	/*
1669 	 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so
1670 	 * that we can call acpi_bus_get_status() and use its quirk handling.
1671 	 * Note this must be done before the get power-/wakeup_dev-flags calls.
1672 	 */
1673 	if (type == ACPI_BUS_TYPE_DEVICE)
1674 		if (acpi_bus_get_status(device) < 0)
1675 			acpi_set_device_status(device, 0);
1676 
1677 	acpi_bus_get_power_flags(device);
1678 	acpi_bus_get_wakeup_device_flags(device);
1679 
1680 	result = acpi_device_add(device, acpi_device_release);
1681 	if (result) {
1682 		acpi_device_release(&device->dev);
1683 		return result;
1684 	}
1685 
1686 	acpi_power_add_remove_device(device, true);
1687 	acpi_device_add_finalize(device);
1688 	acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
1689 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n",
1690 		dev_name(&device->dev), (char *) buffer.pointer,
1691 		device->parent ? dev_name(&device->parent->dev) : "(null)"));
1692 	kfree(buffer.pointer);
1693 	*child = device;
1694 	return 0;
1695 }
1696 
1697 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1698 					    void *context)
1699 {
1700 	struct resource *res = context;
1701 
1702 	if (acpi_dev_resource_memory(ares, res))
1703 		return AE_CTRL_TERMINATE;
1704 
1705 	return AE_OK;
1706 }
1707 
1708 static bool acpi_device_should_be_hidden(acpi_handle handle)
1709 {
1710 	acpi_status status;
1711 	struct resource res;
1712 
1713 	/* Check if it should ignore the UART device */
1714 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1715 		return false;
1716 
1717 	/*
1718 	 * The UART device described in SPCR table is assumed to have only one
1719 	 * memory resource present. So we only look for the first one here.
1720 	 */
1721 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1722 				     acpi_get_resource_memory, &res);
1723 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1724 		return false;
1725 
1726 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1727 			 &res.start);
1728 
1729 	return true;
1730 }
1731 
1732 static int acpi_bus_type_and_status(acpi_handle handle, int *type,
1733 				    unsigned long long *sta)
1734 {
1735 	acpi_status status;
1736 	acpi_object_type acpi_type;
1737 
1738 	status = acpi_get_type(handle, &acpi_type);
1739 	if (ACPI_FAILURE(status))
1740 		return -ENODEV;
1741 
1742 	switch (acpi_type) {
1743 	case ACPI_TYPE_ANY:		/* for ACPI_ROOT_OBJECT */
1744 	case ACPI_TYPE_DEVICE:
1745 		if (acpi_device_should_be_hidden(handle))
1746 			return -ENODEV;
1747 
1748 		*type = ACPI_BUS_TYPE_DEVICE;
1749 		/*
1750 		 * acpi_add_single_object updates this once we've an acpi_device
1751 		 * so that acpi_bus_get_status' quirk handling can be used.
1752 		 */
1753 		*sta = ACPI_STA_DEFAULT;
1754 		break;
1755 	case ACPI_TYPE_PROCESSOR:
1756 		*type = ACPI_BUS_TYPE_PROCESSOR;
1757 		status = acpi_bus_get_status_handle(handle, sta);
1758 		if (ACPI_FAILURE(status))
1759 			return -ENODEV;
1760 		break;
1761 	case ACPI_TYPE_THERMAL:
1762 		*type = ACPI_BUS_TYPE_THERMAL;
1763 		*sta = ACPI_STA_DEFAULT;
1764 		break;
1765 	case ACPI_TYPE_POWER:
1766 		*type = ACPI_BUS_TYPE_POWER;
1767 		*sta = ACPI_STA_DEFAULT;
1768 		break;
1769 	default:
1770 		return -ENODEV;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 bool acpi_device_is_present(const struct acpi_device *adev)
1777 {
1778 	return adev->status.present || adev->status.functional;
1779 }
1780 
1781 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1782 				       const char *idstr,
1783 				       const struct acpi_device_id **matchid)
1784 {
1785 	const struct acpi_device_id *devid;
1786 
1787 	if (handler->match)
1788 		return handler->match(idstr, matchid);
1789 
1790 	for (devid = handler->ids; devid->id[0]; devid++)
1791 		if (!strcmp((char *)devid->id, idstr)) {
1792 			if (matchid)
1793 				*matchid = devid;
1794 
1795 			return true;
1796 		}
1797 
1798 	return false;
1799 }
1800 
1801 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1802 					const struct acpi_device_id **matchid)
1803 {
1804 	struct acpi_scan_handler *handler;
1805 
1806 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1807 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1808 			return handler;
1809 
1810 	return NULL;
1811 }
1812 
1813 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1814 {
1815 	if (!!hotplug->enabled == !!val)
1816 		return;
1817 
1818 	mutex_lock(&acpi_scan_lock);
1819 
1820 	hotplug->enabled = val;
1821 
1822 	mutex_unlock(&acpi_scan_lock);
1823 }
1824 
1825 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1826 {
1827 	struct acpi_hardware_id *hwid;
1828 
1829 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1830 		acpi_dock_add(adev);
1831 		return;
1832 	}
1833 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1834 		struct acpi_scan_handler *handler;
1835 
1836 		handler = acpi_scan_match_handler(hwid->id, NULL);
1837 		if (handler) {
1838 			adev->flags.hotplug_notify = true;
1839 			break;
1840 		}
1841 	}
1842 }
1843 
1844 static u32 acpi_scan_check_dep(acpi_handle handle)
1845 {
1846 	struct acpi_handle_list dep_devices;
1847 	acpi_status status;
1848 	u32 count;
1849 	int i;
1850 
1851 	/*
1852 	 * Check for _HID here to avoid deferring the enumeration of:
1853 	 * 1. PCI devices.
1854 	 * 2. ACPI nodes describing USB ports.
1855 	 * Still, checking for _HID catches more then just these cases ...
1856 	 */
1857 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
1858 		return 0;
1859 
1860 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1861 	if (ACPI_FAILURE(status)) {
1862 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1863 		return 0;
1864 	}
1865 
1866 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1867 		struct acpi_device_info *info;
1868 		struct acpi_dep_data *dep;
1869 		bool skip;
1870 
1871 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1872 		if (ACPI_FAILURE(status)) {
1873 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1874 			continue;
1875 		}
1876 
1877 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1878 		kfree(info);
1879 
1880 		if (skip)
1881 			continue;
1882 
1883 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1884 		if (!dep)
1885 			continue;
1886 
1887 		count++;
1888 
1889 		dep->supplier = dep_devices.handles[i];
1890 		dep->consumer = handle;
1891 
1892 		mutex_lock(&acpi_dep_list_lock);
1893 		list_add_tail(&dep->node , &acpi_dep_list);
1894 		mutex_unlock(&acpi_dep_list_lock);
1895 	}
1896 
1897 	return count;
1898 }
1899 
1900 static void acpi_scan_dep_init(struct acpi_device *adev)
1901 {
1902 	struct acpi_dep_data *dep;
1903 
1904 	mutex_lock(&acpi_dep_list_lock);
1905 
1906 	list_for_each_entry(dep, &acpi_dep_list, node) {
1907 		if (dep->consumer == adev->handle)
1908 			adev->dep_unmet++;
1909 	}
1910 
1911 	mutex_unlock(&acpi_dep_list_lock);
1912 }
1913 
1914 static bool acpi_bus_scan_second_pass;
1915 
1916 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
1917 				      struct acpi_device **adev_p)
1918 {
1919 	struct acpi_device *device = NULL;
1920 	unsigned long long sta;
1921 	int type;
1922 	int result;
1923 
1924 	acpi_bus_get_device(handle, &device);
1925 	if (device)
1926 		goto out;
1927 
1928 	result = acpi_bus_type_and_status(handle, &type, &sta);
1929 	if (result)
1930 		return AE_OK;
1931 
1932 	if (type == ACPI_BUS_TYPE_POWER) {
1933 		acpi_add_power_resource(handle);
1934 		return AE_OK;
1935 	}
1936 
1937 	if (type == ACPI_BUS_TYPE_DEVICE && check_dep) {
1938 		u32 count = acpi_scan_check_dep(handle);
1939 		/* Bail out if the number of recorded dependencies is not 0. */
1940 		if (count > 0) {
1941 			acpi_bus_scan_second_pass = true;
1942 			return AE_CTRL_DEPTH;
1943 		}
1944 	}
1945 
1946 	acpi_add_single_object(&device, handle, type, sta);
1947 	if (!device)
1948 		return AE_CTRL_DEPTH;
1949 
1950 	acpi_scan_init_hotplug(device);
1951 	if (!check_dep)
1952 		acpi_scan_dep_init(device);
1953 
1954 out:
1955 	if (!*adev_p)
1956 		*adev_p = device;
1957 
1958 	return AE_OK;
1959 }
1960 
1961 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
1962 					void *not_used, void **ret_p)
1963 {
1964 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
1965 }
1966 
1967 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
1968 					void *not_used, void **ret_p)
1969 {
1970 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
1971 }
1972 
1973 static void acpi_default_enumeration(struct acpi_device *device)
1974 {
1975 	/*
1976 	 * Do not enumerate devices with enumeration_by_parent flag set as
1977 	 * they will be enumerated by their respective parents.
1978 	 */
1979 	if (!device->flags.enumeration_by_parent) {
1980 		acpi_create_platform_device(device, NULL);
1981 		acpi_device_set_enumerated(device);
1982 	} else {
1983 		blocking_notifier_call_chain(&acpi_reconfig_chain,
1984 					     ACPI_RECONFIG_DEVICE_ADD, device);
1985 	}
1986 }
1987 
1988 static const struct acpi_device_id generic_device_ids[] = {
1989 	{ACPI_DT_NAMESPACE_HID, },
1990 	{"", },
1991 };
1992 
1993 static int acpi_generic_device_attach(struct acpi_device *adev,
1994 				      const struct acpi_device_id *not_used)
1995 {
1996 	/*
1997 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
1998 	 * below can be unconditional.
1999 	 */
2000 	if (adev->data.of_compatible)
2001 		acpi_default_enumeration(adev);
2002 
2003 	return 1;
2004 }
2005 
2006 static struct acpi_scan_handler generic_device_handler = {
2007 	.ids = generic_device_ids,
2008 	.attach = acpi_generic_device_attach,
2009 };
2010 
2011 static int acpi_scan_attach_handler(struct acpi_device *device)
2012 {
2013 	struct acpi_hardware_id *hwid;
2014 	int ret = 0;
2015 
2016 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2017 		const struct acpi_device_id *devid;
2018 		struct acpi_scan_handler *handler;
2019 
2020 		handler = acpi_scan_match_handler(hwid->id, &devid);
2021 		if (handler) {
2022 			if (!handler->attach) {
2023 				device->pnp.type.platform_id = 0;
2024 				continue;
2025 			}
2026 			device->handler = handler;
2027 			ret = handler->attach(device, devid);
2028 			if (ret > 0)
2029 				break;
2030 
2031 			device->handler = NULL;
2032 			if (ret < 0)
2033 				break;
2034 		}
2035 	}
2036 
2037 	return ret;
2038 }
2039 
2040 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2041 {
2042 	struct acpi_device *child;
2043 	bool skip = !first_pass && device->flags.visited;
2044 	acpi_handle ejd;
2045 	int ret;
2046 
2047 	if (skip)
2048 		goto ok;
2049 
2050 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2051 		register_dock_dependent_device(device, ejd);
2052 
2053 	acpi_bus_get_status(device);
2054 	/* Skip devices that are not present. */
2055 	if (!acpi_device_is_present(device)) {
2056 		device->flags.initialized = false;
2057 		acpi_device_clear_enumerated(device);
2058 		device->flags.power_manageable = 0;
2059 		return;
2060 	}
2061 	if (device->handler)
2062 		goto ok;
2063 
2064 	if (!device->flags.initialized) {
2065 		device->flags.power_manageable =
2066 			device->power.states[ACPI_STATE_D0].flags.valid;
2067 		if (acpi_bus_init_power(device))
2068 			device->flags.power_manageable = 0;
2069 
2070 		device->flags.initialized = true;
2071 	} else if (device->flags.visited) {
2072 		goto ok;
2073 	}
2074 
2075 	ret = acpi_scan_attach_handler(device);
2076 	if (ret < 0)
2077 		return;
2078 
2079 	device->flags.match_driver = true;
2080 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2081 		acpi_device_set_enumerated(device);
2082 		goto ok;
2083 	}
2084 
2085 	ret = device_attach(&device->dev);
2086 	if (ret < 0)
2087 		return;
2088 
2089 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2090 		acpi_default_enumeration(device);
2091 	else
2092 		acpi_device_set_enumerated(device);
2093 
2094  ok:
2095 	list_for_each_entry(child, &device->children, node)
2096 		acpi_bus_attach(child, first_pass);
2097 
2098 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2099 		device->handler->hotplug.notify_online(device);
2100 }
2101 
2102 void acpi_walk_dep_device_list(acpi_handle handle)
2103 {
2104 	struct acpi_dep_data *dep, *tmp;
2105 	struct acpi_device *adev;
2106 
2107 	mutex_lock(&acpi_dep_list_lock);
2108 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2109 		if (dep->supplier == handle) {
2110 			acpi_bus_get_device(dep->consumer, &adev);
2111 			if (!adev)
2112 				continue;
2113 
2114 			adev->dep_unmet--;
2115 			if (!adev->dep_unmet)
2116 				acpi_bus_attach(adev, true);
2117 
2118 			list_del(&dep->node);
2119 			kfree(dep);
2120 		}
2121 	}
2122 	mutex_unlock(&acpi_dep_list_lock);
2123 }
2124 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2125 
2126 /**
2127  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2128  * @handle: Root of the namespace scope to scan.
2129  *
2130  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2131  * found devices.
2132  *
2133  * If no devices were found, -ENODEV is returned, but it does not mean that
2134  * there has been a real error.  There just have been no suitable ACPI objects
2135  * in the table trunk from which the kernel could create a device and add an
2136  * appropriate driver.
2137  *
2138  * Must be called under acpi_scan_lock.
2139  */
2140 int acpi_bus_scan(acpi_handle handle)
2141 {
2142 	struct acpi_device *device = NULL;
2143 
2144 	acpi_bus_scan_second_pass = false;
2145 
2146 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2147 
2148 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2149 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2150 				    acpi_bus_check_add_1, NULL, NULL,
2151 				    (void **)&device);
2152 
2153 	if (!device)
2154 		return -ENODEV;
2155 
2156 	acpi_bus_attach(device, true);
2157 
2158 	if (!acpi_bus_scan_second_pass)
2159 		return 0;
2160 
2161 	/* Pass 2: Enumerate all of the remaining devices. */
2162 
2163 	device = NULL;
2164 
2165 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2166 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2167 				    acpi_bus_check_add_2, NULL, NULL,
2168 				    (void **)&device);
2169 
2170 	acpi_bus_attach(device, false);
2171 
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL(acpi_bus_scan);
2175 
2176 /**
2177  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2178  * @adev: Root of the ACPI namespace scope to walk.
2179  *
2180  * Must be called under acpi_scan_lock.
2181  */
2182 void acpi_bus_trim(struct acpi_device *adev)
2183 {
2184 	struct acpi_scan_handler *handler = adev->handler;
2185 	struct acpi_device *child;
2186 
2187 	list_for_each_entry_reverse(child, &adev->children, node)
2188 		acpi_bus_trim(child);
2189 
2190 	adev->flags.match_driver = false;
2191 	if (handler) {
2192 		if (handler->detach)
2193 			handler->detach(adev);
2194 
2195 		adev->handler = NULL;
2196 	} else {
2197 		device_release_driver(&adev->dev);
2198 	}
2199 	/*
2200 	 * Most likely, the device is going away, so put it into D3cold before
2201 	 * that.
2202 	 */
2203 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2204 	adev->flags.initialized = false;
2205 	acpi_device_clear_enumerated(adev);
2206 }
2207 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2208 
2209 int acpi_bus_register_early_device(int type)
2210 {
2211 	struct acpi_device *device = NULL;
2212 	int result;
2213 
2214 	result = acpi_add_single_object(&device, NULL,
2215 					type, ACPI_STA_DEFAULT);
2216 	if (result)
2217 		return result;
2218 
2219 	device->flags.match_driver = true;
2220 	return device_attach(&device->dev);
2221 }
2222 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2223 
2224 static int acpi_bus_scan_fixed(void)
2225 {
2226 	int result = 0;
2227 
2228 	/*
2229 	 * Enumerate all fixed-feature devices.
2230 	 */
2231 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2232 		struct acpi_device *device = NULL;
2233 
2234 		result = acpi_add_single_object(&device, NULL,
2235 						ACPI_BUS_TYPE_POWER_BUTTON,
2236 						ACPI_STA_DEFAULT);
2237 		if (result)
2238 			return result;
2239 
2240 		device->flags.match_driver = true;
2241 		result = device_attach(&device->dev);
2242 		if (result < 0)
2243 			return result;
2244 
2245 		device_init_wakeup(&device->dev, true);
2246 	}
2247 
2248 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2249 		struct acpi_device *device = NULL;
2250 
2251 		result = acpi_add_single_object(&device, NULL,
2252 						ACPI_BUS_TYPE_SLEEP_BUTTON,
2253 						ACPI_STA_DEFAULT);
2254 		if (result)
2255 			return result;
2256 
2257 		device->flags.match_driver = true;
2258 		result = device_attach(&device->dev);
2259 	}
2260 
2261 	return result < 0 ? result : 0;
2262 }
2263 
2264 static void __init acpi_get_spcr_uart_addr(void)
2265 {
2266 	acpi_status status;
2267 	struct acpi_table_spcr *spcr_ptr;
2268 
2269 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2270 				(struct acpi_table_header **)&spcr_ptr);
2271 	if (ACPI_FAILURE(status)) {
2272 		pr_warn(PREFIX "STAO table present, but SPCR is missing\n");
2273 		return;
2274 	}
2275 
2276 	spcr_uart_addr = spcr_ptr->serial_port.address;
2277 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2278 }
2279 
2280 static bool acpi_scan_initialized;
2281 
2282 int __init acpi_scan_init(void)
2283 {
2284 	int result;
2285 	acpi_status status;
2286 	struct acpi_table_stao *stao_ptr;
2287 
2288 	acpi_pci_root_init();
2289 	acpi_pci_link_init();
2290 	acpi_processor_init();
2291 	acpi_platform_init();
2292 	acpi_lpss_init();
2293 	acpi_apd_init();
2294 	acpi_cmos_rtc_init();
2295 	acpi_container_init();
2296 	acpi_memory_hotplug_init();
2297 	acpi_watchdog_init();
2298 	acpi_pnp_init();
2299 	acpi_int340x_thermal_init();
2300 	acpi_amba_init();
2301 	acpi_init_lpit();
2302 
2303 	acpi_scan_add_handler(&generic_device_handler);
2304 
2305 	/*
2306 	 * If there is STAO table, check whether it needs to ignore the UART
2307 	 * device in SPCR table.
2308 	 */
2309 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2310 				(struct acpi_table_header **)&stao_ptr);
2311 	if (ACPI_SUCCESS(status)) {
2312 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2313 			pr_info(PREFIX "STAO Name List not yet supported.\n");
2314 
2315 		if (stao_ptr->ignore_uart)
2316 			acpi_get_spcr_uart_addr();
2317 
2318 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2319 	}
2320 
2321 	acpi_gpe_apply_masked_gpes();
2322 	acpi_update_all_gpes();
2323 
2324 	/*
2325 	 * Although we call __add_memory() that is documented to require the
2326 	 * device_hotplug_lock, it is not necessary here because this is an
2327 	 * early code when userspace or any other code path cannot trigger
2328 	 * hotplug/hotunplug operations.
2329 	 */
2330 	mutex_lock(&acpi_scan_lock);
2331 	/*
2332 	 * Enumerate devices in the ACPI namespace.
2333 	 */
2334 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2335 	if (result)
2336 		goto out;
2337 
2338 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2339 	if (result)
2340 		goto out;
2341 
2342 	/* Fixed feature devices do not exist on HW-reduced platform */
2343 	if (!acpi_gbl_reduced_hardware) {
2344 		result = acpi_bus_scan_fixed();
2345 		if (result) {
2346 			acpi_detach_data(acpi_root->handle,
2347 					 acpi_scan_drop_device);
2348 			acpi_device_del(acpi_root);
2349 			put_device(&acpi_root->dev);
2350 			goto out;
2351 		}
2352 	}
2353 
2354 	acpi_scan_initialized = true;
2355 
2356  out:
2357 	mutex_unlock(&acpi_scan_lock);
2358 	return result;
2359 }
2360 
2361 static struct acpi_probe_entry *ape;
2362 static int acpi_probe_count;
2363 static DEFINE_MUTEX(acpi_probe_mutex);
2364 
2365 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2366 				  const unsigned long end)
2367 {
2368 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2369 		if (!ape->probe_subtbl(header, end))
2370 			acpi_probe_count++;
2371 
2372 	return 0;
2373 }
2374 
2375 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2376 {
2377 	int count = 0;
2378 
2379 	if (acpi_disabled)
2380 		return 0;
2381 
2382 	mutex_lock(&acpi_probe_mutex);
2383 	for (ape = ap_head; nr; ape++, nr--) {
2384 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2385 			acpi_probe_count = 0;
2386 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2387 			count += acpi_probe_count;
2388 		} else {
2389 			int res;
2390 			res = acpi_table_parse(ape->id, ape->probe_table);
2391 			if (!res)
2392 				count++;
2393 		}
2394 	}
2395 	mutex_unlock(&acpi_probe_mutex);
2396 
2397 	return count;
2398 }
2399 
2400 struct acpi_table_events_work {
2401 	struct work_struct work;
2402 	void *table;
2403 	u32 event;
2404 };
2405 
2406 static void acpi_table_events_fn(struct work_struct *work)
2407 {
2408 	struct acpi_table_events_work *tew;
2409 
2410 	tew = container_of(work, struct acpi_table_events_work, work);
2411 
2412 	if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2413 		acpi_scan_lock_acquire();
2414 		acpi_bus_scan(ACPI_ROOT_OBJECT);
2415 		acpi_scan_lock_release();
2416 	}
2417 
2418 	kfree(tew);
2419 }
2420 
2421 void acpi_scan_table_handler(u32 event, void *table, void *context)
2422 {
2423 	struct acpi_table_events_work *tew;
2424 
2425 	if (!acpi_scan_initialized)
2426 		return;
2427 
2428 	if (event != ACPI_TABLE_EVENT_LOAD)
2429 		return;
2430 
2431 	tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2432 	if (!tew)
2433 		return;
2434 
2435 	INIT_WORK(&tew->work, acpi_table_events_fn);
2436 	tew->table = table;
2437 	tew->event = event;
2438 
2439 	schedule_work(&tew->work);
2440 }
2441 
2442 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2443 {
2444 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2445 }
2446 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2447 
2448 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2449 {
2450 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2451 }
2452 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2453