1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/slab.h> 9 #include <linux/kernel.h> 10 #include <linux/acpi.h> 11 #include <linux/acpi_iort.h> 12 #include <linux/signal.h> 13 #include <linux/kthread.h> 14 #include <linux/dmi.h> 15 #include <linux/nls.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/platform_data/x86/apple.h> 18 #include <linux/pgtable.h> 19 20 #include "internal.h" 21 22 #define _COMPONENT ACPI_BUS_COMPONENT 23 ACPI_MODULE_NAME("scan"); 24 extern struct acpi_device *acpi_root; 25 26 #define ACPI_BUS_CLASS "system_bus" 27 #define ACPI_BUS_HID "LNXSYBUS" 28 #define ACPI_BUS_DEVICE_NAME "System Bus" 29 30 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 struct acpi_dep_data { 53 struct list_head node; 54 acpi_handle supplier; 55 acpi_handle consumer; 56 }; 57 58 void acpi_scan_lock_acquire(void) 59 { 60 mutex_lock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 63 64 void acpi_scan_lock_release(void) 65 { 66 mutex_unlock(&acpi_scan_lock); 67 } 68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 69 70 void acpi_lock_hp_context(void) 71 { 72 mutex_lock(&acpi_hp_context_lock); 73 } 74 75 void acpi_unlock_hp_context(void) 76 { 77 mutex_unlock(&acpi_hp_context_lock); 78 } 79 80 void acpi_initialize_hp_context(struct acpi_device *adev, 81 struct acpi_hotplug_context *hp, 82 int (*notify)(struct acpi_device *, u32), 83 void (*uevent)(struct acpi_device *, u32)) 84 { 85 acpi_lock_hp_context(); 86 hp->notify = notify; 87 hp->uevent = uevent; 88 acpi_set_hp_context(adev, hp); 89 acpi_unlock_hp_context(); 90 } 91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 92 93 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 94 { 95 if (!handler) 96 return -EINVAL; 97 98 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 99 return 0; 100 } 101 102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 103 const char *hotplug_profile_name) 104 { 105 int error; 106 107 error = acpi_scan_add_handler(handler); 108 if (error) 109 return error; 110 111 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 112 return 0; 113 } 114 115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 116 { 117 struct acpi_device_physical_node *pn; 118 bool offline = true; 119 char *envp[] = { "EVENT=offline", NULL }; 120 121 /* 122 * acpi_container_offline() calls this for all of the container's 123 * children under the container's physical_node_lock lock. 124 */ 125 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 126 127 list_for_each_entry(pn, &adev->physical_node_list, node) 128 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 129 if (uevent) 130 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 131 132 offline = false; 133 break; 134 } 135 136 mutex_unlock(&adev->physical_node_lock); 137 return offline; 138 } 139 140 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 141 void **ret_p) 142 { 143 struct acpi_device *device = NULL; 144 struct acpi_device_physical_node *pn; 145 bool second_pass = (bool)data; 146 acpi_status status = AE_OK; 147 148 if (acpi_bus_get_device(handle, &device)) 149 return AE_OK; 150 151 if (device->handler && !device->handler->hotplug.enabled) { 152 *ret_p = &device->dev; 153 return AE_SUPPORT; 154 } 155 156 mutex_lock(&device->physical_node_lock); 157 158 list_for_each_entry(pn, &device->physical_node_list, node) { 159 int ret; 160 161 if (second_pass) { 162 /* Skip devices offlined by the first pass. */ 163 if (pn->put_online) 164 continue; 165 } else { 166 pn->put_online = false; 167 } 168 ret = device_offline(pn->dev); 169 if (ret >= 0) { 170 pn->put_online = !ret; 171 } else { 172 *ret_p = pn->dev; 173 if (second_pass) { 174 status = AE_ERROR; 175 break; 176 } 177 } 178 } 179 180 mutex_unlock(&device->physical_node_lock); 181 182 return status; 183 } 184 185 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 186 void **ret_p) 187 { 188 struct acpi_device *device = NULL; 189 struct acpi_device_physical_node *pn; 190 191 if (acpi_bus_get_device(handle, &device)) 192 return AE_OK; 193 194 mutex_lock(&device->physical_node_lock); 195 196 list_for_each_entry(pn, &device->physical_node_list, node) 197 if (pn->put_online) { 198 device_online(pn->dev); 199 pn->put_online = false; 200 } 201 202 mutex_unlock(&device->physical_node_lock); 203 204 return AE_OK; 205 } 206 207 static int acpi_scan_try_to_offline(struct acpi_device *device) 208 { 209 acpi_handle handle = device->handle; 210 struct device *errdev = NULL; 211 acpi_status status; 212 213 /* 214 * Carry out two passes here and ignore errors in the first pass, 215 * because if the devices in question are memory blocks and 216 * CONFIG_MEMCG is set, one of the blocks may hold data structures 217 * that the other blocks depend on, but it is not known in advance which 218 * block holds them. 219 * 220 * If the first pass is successful, the second one isn't needed, though. 221 */ 222 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 NULL, acpi_bus_offline, (void *)false, 224 (void **)&errdev); 225 if (status == AE_SUPPORT) { 226 dev_warn(errdev, "Offline disabled.\n"); 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 acpi_bus_online, NULL, NULL, NULL); 229 return -EPERM; 230 } 231 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 232 if (errdev) { 233 errdev = NULL; 234 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 235 NULL, acpi_bus_offline, (void *)true, 236 (void **)&errdev); 237 if (!errdev) 238 acpi_bus_offline(handle, 0, (void *)true, 239 (void **)&errdev); 240 241 if (errdev) { 242 dev_warn(errdev, "Offline failed.\n"); 243 acpi_bus_online(handle, 0, NULL, NULL); 244 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 245 ACPI_UINT32_MAX, acpi_bus_online, 246 NULL, NULL, NULL); 247 return -EBUSY; 248 } 249 } 250 return 0; 251 } 252 253 static int acpi_scan_hot_remove(struct acpi_device *device) 254 { 255 acpi_handle handle = device->handle; 256 unsigned long long sta; 257 acpi_status status; 258 259 if (device->handler && device->handler->hotplug.demand_offline) { 260 if (!acpi_scan_is_offline(device, true)) 261 return -EBUSY; 262 } else { 263 int error = acpi_scan_try_to_offline(device); 264 if (error) 265 return error; 266 } 267 268 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 269 "Hot-removing device %s...\n", dev_name(&device->dev))); 270 271 acpi_bus_trim(device); 272 273 acpi_evaluate_lck(handle, 0); 274 /* 275 * TBD: _EJD support. 276 */ 277 status = acpi_evaluate_ej0(handle); 278 if (status == AE_NOT_FOUND) 279 return -ENODEV; 280 else if (ACPI_FAILURE(status)) 281 return -EIO; 282 283 /* 284 * Verify if eject was indeed successful. If not, log an error 285 * message. No need to call _OST since _EJ0 call was made OK. 286 */ 287 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 288 if (ACPI_FAILURE(status)) { 289 acpi_handle_warn(handle, 290 "Status check after eject failed (0x%x)\n", status); 291 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 292 acpi_handle_warn(handle, 293 "Eject incomplete - status 0x%llx\n", sta); 294 } 295 296 return 0; 297 } 298 299 static int acpi_scan_device_not_present(struct acpi_device *adev) 300 { 301 if (!acpi_device_enumerated(adev)) { 302 dev_warn(&adev->dev, "Still not present\n"); 303 return -EALREADY; 304 } 305 acpi_bus_trim(adev); 306 return 0; 307 } 308 309 static int acpi_scan_device_check(struct acpi_device *adev) 310 { 311 int error; 312 313 acpi_bus_get_status(adev); 314 if (adev->status.present || adev->status.functional) { 315 /* 316 * This function is only called for device objects for which 317 * matching scan handlers exist. The only situation in which 318 * the scan handler is not attached to this device object yet 319 * is when the device has just appeared (either it wasn't 320 * present at all before or it was removed and then added 321 * again). 322 */ 323 if (adev->handler) { 324 dev_warn(&adev->dev, "Already enumerated\n"); 325 return -EALREADY; 326 } 327 error = acpi_bus_scan(adev->handle); 328 if (error) { 329 dev_warn(&adev->dev, "Namespace scan failure\n"); 330 return error; 331 } 332 if (!adev->handler) { 333 dev_warn(&adev->dev, "Enumeration failure\n"); 334 error = -ENODEV; 335 } 336 } else { 337 error = acpi_scan_device_not_present(adev); 338 } 339 return error; 340 } 341 342 static int acpi_scan_bus_check(struct acpi_device *adev) 343 { 344 struct acpi_scan_handler *handler = adev->handler; 345 struct acpi_device *child; 346 int error; 347 348 acpi_bus_get_status(adev); 349 if (!(adev->status.present || adev->status.functional)) { 350 acpi_scan_device_not_present(adev); 351 return 0; 352 } 353 if (handler && handler->hotplug.scan_dependent) 354 return handler->hotplug.scan_dependent(adev); 355 356 error = acpi_bus_scan(adev->handle); 357 if (error) { 358 dev_warn(&adev->dev, "Namespace scan failure\n"); 359 return error; 360 } 361 list_for_each_entry(child, &adev->children, node) { 362 error = acpi_scan_bus_check(child); 363 if (error) 364 return error; 365 } 366 return 0; 367 } 368 369 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 370 { 371 switch (type) { 372 case ACPI_NOTIFY_BUS_CHECK: 373 return acpi_scan_bus_check(adev); 374 case ACPI_NOTIFY_DEVICE_CHECK: 375 return acpi_scan_device_check(adev); 376 case ACPI_NOTIFY_EJECT_REQUEST: 377 case ACPI_OST_EC_OSPM_EJECT: 378 if (adev->handler && !adev->handler->hotplug.enabled) { 379 dev_info(&adev->dev, "Eject disabled\n"); 380 return -EPERM; 381 } 382 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 383 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 384 return acpi_scan_hot_remove(adev); 385 } 386 return -EINVAL; 387 } 388 389 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 390 { 391 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 392 int error = -ENODEV; 393 394 lock_device_hotplug(); 395 mutex_lock(&acpi_scan_lock); 396 397 /* 398 * The device object's ACPI handle cannot become invalid as long as we 399 * are holding acpi_scan_lock, but it might have become invalid before 400 * that lock was acquired. 401 */ 402 if (adev->handle == INVALID_ACPI_HANDLE) 403 goto err_out; 404 405 if (adev->flags.is_dock_station) { 406 error = dock_notify(adev, src); 407 } else if (adev->flags.hotplug_notify) { 408 error = acpi_generic_hotplug_event(adev, src); 409 } else { 410 int (*notify)(struct acpi_device *, u32); 411 412 acpi_lock_hp_context(); 413 notify = adev->hp ? adev->hp->notify : NULL; 414 acpi_unlock_hp_context(); 415 /* 416 * There may be additional notify handlers for device objects 417 * without the .event() callback, so ignore them here. 418 */ 419 if (notify) 420 error = notify(adev, src); 421 else 422 goto out; 423 } 424 switch (error) { 425 case 0: 426 ost_code = ACPI_OST_SC_SUCCESS; 427 break; 428 case -EPERM: 429 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 430 break; 431 case -EBUSY: 432 ost_code = ACPI_OST_SC_DEVICE_BUSY; 433 break; 434 default: 435 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 436 break; 437 } 438 439 err_out: 440 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 441 442 out: 443 acpi_bus_put_acpi_device(adev); 444 mutex_unlock(&acpi_scan_lock); 445 unlock_device_hotplug(); 446 } 447 448 static void acpi_free_power_resources_lists(struct acpi_device *device) 449 { 450 int i; 451 452 if (device->wakeup.flags.valid) 453 acpi_power_resources_list_free(&device->wakeup.resources); 454 455 if (!device->power.flags.power_resources) 456 return; 457 458 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 459 struct acpi_device_power_state *ps = &device->power.states[i]; 460 acpi_power_resources_list_free(&ps->resources); 461 } 462 } 463 464 static void acpi_device_release(struct device *dev) 465 { 466 struct acpi_device *acpi_dev = to_acpi_device(dev); 467 468 acpi_free_properties(acpi_dev); 469 acpi_free_pnp_ids(&acpi_dev->pnp); 470 acpi_free_power_resources_lists(acpi_dev); 471 kfree(acpi_dev); 472 } 473 474 static void acpi_device_del(struct acpi_device *device) 475 { 476 struct acpi_device_bus_id *acpi_device_bus_id; 477 478 mutex_lock(&acpi_device_lock); 479 if (device->parent) 480 list_del(&device->node); 481 482 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 483 if (!strcmp(acpi_device_bus_id->bus_id, 484 acpi_device_hid(device))) { 485 if (acpi_device_bus_id->instance_no > 0) 486 acpi_device_bus_id->instance_no--; 487 else { 488 list_del(&acpi_device_bus_id->node); 489 kfree_const(acpi_device_bus_id->bus_id); 490 kfree(acpi_device_bus_id); 491 } 492 break; 493 } 494 495 list_del(&device->wakeup_list); 496 mutex_unlock(&acpi_device_lock); 497 498 acpi_power_add_remove_device(device, false); 499 acpi_device_remove_files(device); 500 if (device->remove) 501 device->remove(device); 502 503 device_del(&device->dev); 504 } 505 506 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 507 508 static LIST_HEAD(acpi_device_del_list); 509 static DEFINE_MUTEX(acpi_device_del_lock); 510 511 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 512 { 513 for (;;) { 514 struct acpi_device *adev; 515 516 mutex_lock(&acpi_device_del_lock); 517 518 if (list_empty(&acpi_device_del_list)) { 519 mutex_unlock(&acpi_device_del_lock); 520 break; 521 } 522 adev = list_first_entry(&acpi_device_del_list, 523 struct acpi_device, del_list); 524 list_del(&adev->del_list); 525 526 mutex_unlock(&acpi_device_del_lock); 527 528 blocking_notifier_call_chain(&acpi_reconfig_chain, 529 ACPI_RECONFIG_DEVICE_REMOVE, adev); 530 531 acpi_device_del(adev); 532 /* 533 * Drop references to all power resources that might have been 534 * used by the device. 535 */ 536 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 537 put_device(&adev->dev); 538 } 539 } 540 541 /** 542 * acpi_scan_drop_device - Drop an ACPI device object. 543 * @handle: Handle of an ACPI namespace node, not used. 544 * @context: Address of the ACPI device object to drop. 545 * 546 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 547 * namespace node the device object pointed to by @context is attached to. 548 * 549 * The unregistration is carried out asynchronously to avoid running 550 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 551 * ensure the correct ordering (the device objects must be unregistered in the 552 * same order in which the corresponding namespace nodes are deleted). 553 */ 554 static void acpi_scan_drop_device(acpi_handle handle, void *context) 555 { 556 static DECLARE_WORK(work, acpi_device_del_work_fn); 557 struct acpi_device *adev = context; 558 559 mutex_lock(&acpi_device_del_lock); 560 561 /* 562 * Use the ACPI hotplug workqueue which is ordered, so this work item 563 * won't run after any hotplug work items submitted subsequently. That 564 * prevents attempts to register device objects identical to those being 565 * deleted from happening concurrently (such attempts result from 566 * hotplug events handled via the ACPI hotplug workqueue). It also will 567 * run after all of the work items submitted previosuly, which helps 568 * those work items to ensure that they are not accessing stale device 569 * objects. 570 */ 571 if (list_empty(&acpi_device_del_list)) 572 acpi_queue_hotplug_work(&work); 573 574 list_add_tail(&adev->del_list, &acpi_device_del_list); 575 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 576 adev->handle = INVALID_ACPI_HANDLE; 577 578 mutex_unlock(&acpi_device_del_lock); 579 } 580 581 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device, 582 void (*callback)(void *)) 583 { 584 acpi_status status; 585 586 if (!device) 587 return -EINVAL; 588 589 *device = NULL; 590 591 status = acpi_get_data_full(handle, acpi_scan_drop_device, 592 (void **)device, callback); 593 if (ACPI_FAILURE(status) || !*device) { 594 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n", 595 handle)); 596 return -ENODEV; 597 } 598 return 0; 599 } 600 601 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 602 { 603 return acpi_get_device_data(handle, device, NULL); 604 } 605 EXPORT_SYMBOL(acpi_bus_get_device); 606 607 static void get_acpi_device(void *dev) 608 { 609 if (dev) 610 get_device(&((struct acpi_device *)dev)->dev); 611 } 612 613 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 614 { 615 struct acpi_device *adev = NULL; 616 617 acpi_get_device_data(handle, &adev, get_acpi_device); 618 return adev; 619 } 620 621 void acpi_bus_put_acpi_device(struct acpi_device *adev) 622 { 623 put_device(&adev->dev); 624 } 625 626 int acpi_device_add(struct acpi_device *device, 627 void (*release)(struct device *)) 628 { 629 int result; 630 struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id; 631 int found = 0; 632 633 if (device->handle) { 634 acpi_status status; 635 636 status = acpi_attach_data(device->handle, acpi_scan_drop_device, 637 device); 638 if (ACPI_FAILURE(status)) { 639 acpi_handle_err(device->handle, 640 "Unable to attach device data\n"); 641 return -ENODEV; 642 } 643 } 644 645 /* 646 * Linkage 647 * ------- 648 * Link this device to its parent and siblings. 649 */ 650 INIT_LIST_HEAD(&device->children); 651 INIT_LIST_HEAD(&device->node); 652 INIT_LIST_HEAD(&device->wakeup_list); 653 INIT_LIST_HEAD(&device->physical_node_list); 654 INIT_LIST_HEAD(&device->del_list); 655 mutex_init(&device->physical_node_lock); 656 657 new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL); 658 if (!new_bus_id) { 659 pr_err(PREFIX "Memory allocation error\n"); 660 result = -ENOMEM; 661 goto err_detach; 662 } 663 664 mutex_lock(&acpi_device_lock); 665 /* 666 * Find suitable bus_id and instance number in acpi_bus_id_list 667 * If failed, create one and link it into acpi_bus_id_list 668 */ 669 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 670 if (!strcmp(acpi_device_bus_id->bus_id, 671 acpi_device_hid(device))) { 672 acpi_device_bus_id->instance_no++; 673 found = 1; 674 kfree(new_bus_id); 675 break; 676 } 677 } 678 if (!found) { 679 acpi_device_bus_id = new_bus_id; 680 acpi_device_bus_id->bus_id = 681 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 682 if (!acpi_device_bus_id->bus_id) { 683 pr_err(PREFIX "Memory allocation error for bus id\n"); 684 result = -ENOMEM; 685 goto err_free_new_bus_id; 686 } 687 688 acpi_device_bus_id->instance_no = 0; 689 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 690 } 691 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no); 692 693 if (device->parent) 694 list_add_tail(&device->node, &device->parent->children); 695 696 if (device->wakeup.flags.valid) 697 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 698 mutex_unlock(&acpi_device_lock); 699 700 if (device->parent) 701 device->dev.parent = &device->parent->dev; 702 device->dev.bus = &acpi_bus_type; 703 device->dev.release = release; 704 result = device_add(&device->dev); 705 if (result) { 706 dev_err(&device->dev, "Error registering device\n"); 707 goto err; 708 } 709 710 result = acpi_device_setup_files(device); 711 if (result) 712 printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n", 713 dev_name(&device->dev)); 714 715 return 0; 716 717 err: 718 mutex_lock(&acpi_device_lock); 719 if (device->parent) 720 list_del(&device->node); 721 list_del(&device->wakeup_list); 722 723 err_free_new_bus_id: 724 if (!found) 725 kfree(new_bus_id); 726 727 mutex_unlock(&acpi_device_lock); 728 729 err_detach: 730 acpi_detach_data(device->handle, acpi_scan_drop_device); 731 return result; 732 } 733 734 /* -------------------------------------------------------------------------- 735 Device Enumeration 736 -------------------------------------------------------------------------- */ 737 static bool acpi_info_matches_ids(struct acpi_device_info *info, 738 const char * const ids[]) 739 { 740 struct acpi_pnp_device_id_list *cid_list = NULL; 741 int i; 742 743 if (!(info->valid & ACPI_VALID_HID)) 744 return false; 745 746 if (info->valid & ACPI_VALID_CID) 747 cid_list = &info->compatible_id_list; 748 749 for (i = 0; ids[i]; i++) { 750 int j; 751 752 if (!strcmp(info->hardware_id.string, ids[i])) 753 return true; 754 755 if (!cid_list) 756 continue; 757 758 for (j = 0; j < cid_list->count; j++) { 759 if (!strcmp(cid_list->ids[j].string, ids[i])) 760 return true; 761 } 762 } 763 764 return false; 765 } 766 767 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 768 static const char * const acpi_ignore_dep_ids[] = { 769 "PNP0D80", /* Windows-compatible System Power Management Controller */ 770 "INT33BD", /* Intel Baytrail Mailbox Device */ 771 NULL 772 }; 773 774 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 775 { 776 struct acpi_device *device = NULL; 777 acpi_status status; 778 779 /* 780 * Fixed hardware devices do not appear in the namespace and do not 781 * have handles, but we fabricate acpi_devices for them, so we have 782 * to deal with them specially. 783 */ 784 if (!handle) 785 return acpi_root; 786 787 do { 788 status = acpi_get_parent(handle, &handle); 789 if (ACPI_FAILURE(status)) 790 return status == AE_NULL_ENTRY ? NULL : acpi_root; 791 } while (acpi_bus_get_device(handle, &device)); 792 return device; 793 } 794 795 acpi_status 796 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 797 { 798 acpi_status status; 799 acpi_handle tmp; 800 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 801 union acpi_object *obj; 802 803 status = acpi_get_handle(handle, "_EJD", &tmp); 804 if (ACPI_FAILURE(status)) 805 return status; 806 807 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 808 if (ACPI_SUCCESS(status)) { 809 obj = buffer.pointer; 810 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 811 ejd); 812 kfree(buffer.pointer); 813 } 814 return status; 815 } 816 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 817 818 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 819 { 820 acpi_handle handle = dev->handle; 821 struct acpi_device_wakeup *wakeup = &dev->wakeup; 822 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 823 union acpi_object *package = NULL; 824 union acpi_object *element = NULL; 825 acpi_status status; 826 int err = -ENODATA; 827 828 INIT_LIST_HEAD(&wakeup->resources); 829 830 /* _PRW */ 831 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 832 if (ACPI_FAILURE(status)) { 833 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW")); 834 return err; 835 } 836 837 package = (union acpi_object *)buffer.pointer; 838 839 if (!package || package->package.count < 2) 840 goto out; 841 842 element = &(package->package.elements[0]); 843 if (!element) 844 goto out; 845 846 if (element->type == ACPI_TYPE_PACKAGE) { 847 if ((element->package.count < 2) || 848 (element->package.elements[0].type != 849 ACPI_TYPE_LOCAL_REFERENCE) 850 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 851 goto out; 852 853 wakeup->gpe_device = 854 element->package.elements[0].reference.handle; 855 wakeup->gpe_number = 856 (u32) element->package.elements[1].integer.value; 857 } else if (element->type == ACPI_TYPE_INTEGER) { 858 wakeup->gpe_device = NULL; 859 wakeup->gpe_number = element->integer.value; 860 } else { 861 goto out; 862 } 863 864 element = &(package->package.elements[1]); 865 if (element->type != ACPI_TYPE_INTEGER) 866 goto out; 867 868 wakeup->sleep_state = element->integer.value; 869 870 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 871 if (err) 872 goto out; 873 874 if (!list_empty(&wakeup->resources)) { 875 int sleep_state; 876 877 err = acpi_power_wakeup_list_init(&wakeup->resources, 878 &sleep_state); 879 if (err) { 880 acpi_handle_warn(handle, "Retrieving current states " 881 "of wakeup power resources failed\n"); 882 acpi_power_resources_list_free(&wakeup->resources); 883 goto out; 884 } 885 if (sleep_state < wakeup->sleep_state) { 886 acpi_handle_warn(handle, "Overriding _PRW sleep state " 887 "(S%d) by S%d from power resources\n", 888 (int)wakeup->sleep_state, sleep_state); 889 wakeup->sleep_state = sleep_state; 890 } 891 } 892 893 out: 894 kfree(buffer.pointer); 895 return err; 896 } 897 898 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 899 { 900 static const struct acpi_device_id button_device_ids[] = { 901 {"PNP0C0C", 0}, /* Power button */ 902 {"PNP0C0D", 0}, /* Lid */ 903 {"PNP0C0E", 0}, /* Sleep button */ 904 {"", 0}, 905 }; 906 struct acpi_device_wakeup *wakeup = &device->wakeup; 907 acpi_status status; 908 909 wakeup->flags.notifier_present = 0; 910 911 /* Power button, Lid switch always enable wakeup */ 912 if (!acpi_match_device_ids(device, button_device_ids)) { 913 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 914 /* Do not use Lid/sleep button for S5 wakeup */ 915 if (wakeup->sleep_state == ACPI_STATE_S5) 916 wakeup->sleep_state = ACPI_STATE_S4; 917 } 918 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 919 device_set_wakeup_capable(&device->dev, true); 920 return true; 921 } 922 923 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 924 wakeup->gpe_number); 925 return ACPI_SUCCESS(status); 926 } 927 928 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 929 { 930 int err; 931 932 /* Presence of _PRW indicates wake capable */ 933 if (!acpi_has_method(device->handle, "_PRW")) 934 return; 935 936 err = acpi_bus_extract_wakeup_device_power_package(device); 937 if (err) { 938 dev_err(&device->dev, "_PRW evaluation error: %d\n", err); 939 return; 940 } 941 942 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 943 device->wakeup.prepare_count = 0; 944 /* 945 * Call _PSW/_DSW object to disable its ability to wake the sleeping 946 * system for the ACPI device with the _PRW object. 947 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 948 * So it is necessary to call _DSW object first. Only when it is not 949 * present will the _PSW object used. 950 */ 951 err = acpi_device_sleep_wake(device, 0, 0, 0); 952 if (err) 953 pr_debug("error in _DSW or _PSW evaluation\n"); 954 } 955 956 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 957 { 958 struct acpi_device_power_state *ps = &device->power.states[state]; 959 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 960 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 961 acpi_status status; 962 963 INIT_LIST_HEAD(&ps->resources); 964 965 /* Evaluate "_PRx" to get referenced power resources */ 966 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 967 if (ACPI_SUCCESS(status)) { 968 union acpi_object *package = buffer.pointer; 969 970 if (buffer.length && package 971 && package->type == ACPI_TYPE_PACKAGE 972 && package->package.count) 973 acpi_extract_power_resources(package, 0, &ps->resources); 974 975 ACPI_FREE(buffer.pointer); 976 } 977 978 /* Evaluate "_PSx" to see if we can do explicit sets */ 979 pathname[2] = 'S'; 980 if (acpi_has_method(device->handle, pathname)) 981 ps->flags.explicit_set = 1; 982 983 /* State is valid if there are means to put the device into it. */ 984 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 985 ps->flags.valid = 1; 986 987 ps->power = -1; /* Unknown - driver assigned */ 988 ps->latency = -1; /* Unknown - driver assigned */ 989 } 990 991 static void acpi_bus_get_power_flags(struct acpi_device *device) 992 { 993 u32 i; 994 995 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 996 if (!acpi_has_method(device->handle, "_PS0") && 997 !acpi_has_method(device->handle, "_PR0")) 998 return; 999 1000 device->flags.power_manageable = 1; 1001 1002 /* 1003 * Power Management Flags 1004 */ 1005 if (acpi_has_method(device->handle, "_PSC")) 1006 device->power.flags.explicit_get = 1; 1007 1008 if (acpi_has_method(device->handle, "_IRC")) 1009 device->power.flags.inrush_current = 1; 1010 1011 if (acpi_has_method(device->handle, "_DSW")) 1012 device->power.flags.dsw_present = 1; 1013 1014 /* 1015 * Enumerate supported power management states 1016 */ 1017 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1018 acpi_bus_init_power_state(device, i); 1019 1020 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1021 1022 /* Set the defaults for D0 and D3hot (always supported). */ 1023 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1024 device->power.states[ACPI_STATE_D0].power = 100; 1025 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1026 1027 /* 1028 * Use power resources only if the D0 list of them is populated, because 1029 * some platforms may provide _PR3 only to indicate D3cold support and 1030 * in those cases the power resources list returned by it may be bogus. 1031 */ 1032 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1033 device->power.flags.power_resources = 1; 1034 /* 1035 * D3cold is supported if the D3hot list of power resources is 1036 * not empty. 1037 */ 1038 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1039 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1040 } 1041 1042 if (acpi_bus_init_power(device)) 1043 device->flags.power_manageable = 0; 1044 } 1045 1046 static void acpi_bus_get_flags(struct acpi_device *device) 1047 { 1048 /* Presence of _STA indicates 'dynamic_status' */ 1049 if (acpi_has_method(device->handle, "_STA")) 1050 device->flags.dynamic_status = 1; 1051 1052 /* Presence of _RMV indicates 'removable' */ 1053 if (acpi_has_method(device->handle, "_RMV")) 1054 device->flags.removable = 1; 1055 1056 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1057 if (acpi_has_method(device->handle, "_EJD") || 1058 acpi_has_method(device->handle, "_EJ0")) 1059 device->flags.ejectable = 1; 1060 } 1061 1062 static void acpi_device_get_busid(struct acpi_device *device) 1063 { 1064 char bus_id[5] = { '?', 0 }; 1065 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1066 int i = 0; 1067 1068 /* 1069 * Bus ID 1070 * ------ 1071 * The device's Bus ID is simply the object name. 1072 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1073 */ 1074 if (ACPI_IS_ROOT_DEVICE(device)) { 1075 strcpy(device->pnp.bus_id, "ACPI"); 1076 return; 1077 } 1078 1079 switch (device->device_type) { 1080 case ACPI_BUS_TYPE_POWER_BUTTON: 1081 strcpy(device->pnp.bus_id, "PWRF"); 1082 break; 1083 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1084 strcpy(device->pnp.bus_id, "SLPF"); 1085 break; 1086 case ACPI_BUS_TYPE_ECDT_EC: 1087 strcpy(device->pnp.bus_id, "ECDT"); 1088 break; 1089 default: 1090 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1091 /* Clean up trailing underscores (if any) */ 1092 for (i = 3; i > 1; i--) { 1093 if (bus_id[i] == '_') 1094 bus_id[i] = '\0'; 1095 else 1096 break; 1097 } 1098 strcpy(device->pnp.bus_id, bus_id); 1099 break; 1100 } 1101 } 1102 1103 /* 1104 * acpi_ata_match - see if an acpi object is an ATA device 1105 * 1106 * If an acpi object has one of the ACPI ATA methods defined, 1107 * then we can safely call it an ATA device. 1108 */ 1109 bool acpi_ata_match(acpi_handle handle) 1110 { 1111 return acpi_has_method(handle, "_GTF") || 1112 acpi_has_method(handle, "_GTM") || 1113 acpi_has_method(handle, "_STM") || 1114 acpi_has_method(handle, "_SDD"); 1115 } 1116 1117 /* 1118 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1119 * 1120 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1121 * then we can safely call it an ejectable drive bay 1122 */ 1123 bool acpi_bay_match(acpi_handle handle) 1124 { 1125 acpi_handle phandle; 1126 1127 if (!acpi_has_method(handle, "_EJ0")) 1128 return false; 1129 if (acpi_ata_match(handle)) 1130 return true; 1131 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1132 return false; 1133 1134 return acpi_ata_match(phandle); 1135 } 1136 1137 bool acpi_device_is_battery(struct acpi_device *adev) 1138 { 1139 struct acpi_hardware_id *hwid; 1140 1141 list_for_each_entry(hwid, &adev->pnp.ids, list) 1142 if (!strcmp("PNP0C0A", hwid->id)) 1143 return true; 1144 1145 return false; 1146 } 1147 1148 static bool is_ejectable_bay(struct acpi_device *adev) 1149 { 1150 acpi_handle handle = adev->handle; 1151 1152 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1153 return true; 1154 1155 return acpi_bay_match(handle); 1156 } 1157 1158 /* 1159 * acpi_dock_match - see if an acpi object has a _DCK method 1160 */ 1161 bool acpi_dock_match(acpi_handle handle) 1162 { 1163 return acpi_has_method(handle, "_DCK"); 1164 } 1165 1166 static acpi_status 1167 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1168 void **return_value) 1169 { 1170 long *cap = context; 1171 1172 if (acpi_has_method(handle, "_BCM") && 1173 acpi_has_method(handle, "_BCL")) { 1174 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight " 1175 "support\n")); 1176 *cap |= ACPI_VIDEO_BACKLIGHT; 1177 /* We have backlight support, no need to scan further */ 1178 return AE_CTRL_TERMINATE; 1179 } 1180 return 0; 1181 } 1182 1183 /* Returns true if the ACPI object is a video device which can be 1184 * handled by video.ko. 1185 * The device will get a Linux specific CID added in scan.c to 1186 * identify the device as an ACPI graphics device 1187 * Be aware that the graphics device may not be physically present 1188 * Use acpi_video_get_capabilities() to detect general ACPI video 1189 * capabilities of present cards 1190 */ 1191 long acpi_is_video_device(acpi_handle handle) 1192 { 1193 long video_caps = 0; 1194 1195 /* Is this device able to support video switching ? */ 1196 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1197 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1198 1199 /* Is this device able to retrieve a video ROM ? */ 1200 if (acpi_has_method(handle, "_ROM")) 1201 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1202 1203 /* Is this device able to configure which video head to be POSTed ? */ 1204 if (acpi_has_method(handle, "_VPO") && 1205 acpi_has_method(handle, "_GPD") && 1206 acpi_has_method(handle, "_SPD")) 1207 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1208 1209 /* Only check for backlight functionality if one of the above hit. */ 1210 if (video_caps) 1211 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1212 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1213 &video_caps, NULL); 1214 1215 return video_caps; 1216 } 1217 EXPORT_SYMBOL(acpi_is_video_device); 1218 1219 const char *acpi_device_hid(struct acpi_device *device) 1220 { 1221 struct acpi_hardware_id *hid; 1222 1223 if (list_empty(&device->pnp.ids)) 1224 return dummy_hid; 1225 1226 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1227 return hid->id; 1228 } 1229 EXPORT_SYMBOL(acpi_device_hid); 1230 1231 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1232 { 1233 struct acpi_hardware_id *id; 1234 1235 id = kmalloc(sizeof(*id), GFP_KERNEL); 1236 if (!id) 1237 return; 1238 1239 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1240 if (!id->id) { 1241 kfree(id); 1242 return; 1243 } 1244 1245 list_add_tail(&id->list, &pnp->ids); 1246 pnp->type.hardware_id = 1; 1247 } 1248 1249 /* 1250 * Old IBM workstations have a DSDT bug wherein the SMBus object 1251 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1252 * prefix. Work around this. 1253 */ 1254 static bool acpi_ibm_smbus_match(acpi_handle handle) 1255 { 1256 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1257 struct acpi_buffer path = { sizeof(node_name), node_name }; 1258 1259 if (!dmi_name_in_vendors("IBM")) 1260 return false; 1261 1262 /* Look for SMBS object */ 1263 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1264 strcmp("SMBS", path.pointer)) 1265 return false; 1266 1267 /* Does it have the necessary (but misnamed) methods? */ 1268 if (acpi_has_method(handle, "SBI") && 1269 acpi_has_method(handle, "SBR") && 1270 acpi_has_method(handle, "SBW")) 1271 return true; 1272 1273 return false; 1274 } 1275 1276 static bool acpi_object_is_system_bus(acpi_handle handle) 1277 { 1278 acpi_handle tmp; 1279 1280 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1281 tmp == handle) 1282 return true; 1283 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1284 tmp == handle) 1285 return true; 1286 1287 return false; 1288 } 1289 1290 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1291 int device_type, struct acpi_device_info *info) 1292 { 1293 struct acpi_pnp_device_id_list *cid_list; 1294 int i; 1295 1296 switch (device_type) { 1297 case ACPI_BUS_TYPE_DEVICE: 1298 if (handle == ACPI_ROOT_OBJECT) { 1299 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1300 break; 1301 } 1302 1303 if (!info) { 1304 pr_err(PREFIX "%s: Error reading device info\n", 1305 __func__); 1306 return; 1307 } 1308 1309 if (info->valid & ACPI_VALID_HID) { 1310 acpi_add_id(pnp, info->hardware_id.string); 1311 pnp->type.platform_id = 1; 1312 } 1313 if (info->valid & ACPI_VALID_CID) { 1314 cid_list = &info->compatible_id_list; 1315 for (i = 0; i < cid_list->count; i++) 1316 acpi_add_id(pnp, cid_list->ids[i].string); 1317 } 1318 if (info->valid & ACPI_VALID_ADR) { 1319 pnp->bus_address = info->address; 1320 pnp->type.bus_address = 1; 1321 } 1322 if (info->valid & ACPI_VALID_UID) 1323 pnp->unique_id = kstrdup(info->unique_id.string, 1324 GFP_KERNEL); 1325 if (info->valid & ACPI_VALID_CLS) 1326 acpi_add_id(pnp, info->class_code.string); 1327 1328 /* 1329 * Some devices don't reliably have _HIDs & _CIDs, so add 1330 * synthetic HIDs to make sure drivers can find them. 1331 */ 1332 if (acpi_is_video_device(handle)) 1333 acpi_add_id(pnp, ACPI_VIDEO_HID); 1334 else if (acpi_bay_match(handle)) 1335 acpi_add_id(pnp, ACPI_BAY_HID); 1336 else if (acpi_dock_match(handle)) 1337 acpi_add_id(pnp, ACPI_DOCK_HID); 1338 else if (acpi_ibm_smbus_match(handle)) 1339 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1340 else if (list_empty(&pnp->ids) && 1341 acpi_object_is_system_bus(handle)) { 1342 /* \_SB, \_TZ, LNXSYBUS */ 1343 acpi_add_id(pnp, ACPI_BUS_HID); 1344 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1345 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1346 } 1347 1348 break; 1349 case ACPI_BUS_TYPE_POWER: 1350 acpi_add_id(pnp, ACPI_POWER_HID); 1351 break; 1352 case ACPI_BUS_TYPE_PROCESSOR: 1353 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1354 break; 1355 case ACPI_BUS_TYPE_THERMAL: 1356 acpi_add_id(pnp, ACPI_THERMAL_HID); 1357 break; 1358 case ACPI_BUS_TYPE_POWER_BUTTON: 1359 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1360 break; 1361 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1362 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1363 break; 1364 case ACPI_BUS_TYPE_ECDT_EC: 1365 acpi_add_id(pnp, ACPI_ECDT_HID); 1366 break; 1367 } 1368 } 1369 1370 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1371 { 1372 struct acpi_hardware_id *id, *tmp; 1373 1374 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1375 kfree_const(id->id); 1376 kfree(id); 1377 } 1378 kfree(pnp->unique_id); 1379 } 1380 1381 /** 1382 * acpi_dma_supported - Check DMA support for the specified device. 1383 * @adev: The pointer to acpi device 1384 * 1385 * Return false if DMA is not supported. Otherwise, return true 1386 */ 1387 bool acpi_dma_supported(struct acpi_device *adev) 1388 { 1389 if (!adev) 1390 return false; 1391 1392 if (adev->flags.cca_seen) 1393 return true; 1394 1395 /* 1396 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1397 * DMA on "Intel platforms". Presumably that includes all x86 and 1398 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1399 */ 1400 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 /** 1407 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1408 * @adev: The pointer to acpi device 1409 * 1410 * Return enum dev_dma_attr. 1411 */ 1412 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1413 { 1414 if (!acpi_dma_supported(adev)) 1415 return DEV_DMA_NOT_SUPPORTED; 1416 1417 if (adev->flags.coherent_dma) 1418 return DEV_DMA_COHERENT; 1419 else 1420 return DEV_DMA_NON_COHERENT; 1421 } 1422 1423 /** 1424 * acpi_dma_get_range() - Get device DMA parameters. 1425 * 1426 * @dev: device to configure 1427 * @dma_addr: pointer device DMA address result 1428 * @offset: pointer to the DMA offset result 1429 * @size: pointer to DMA range size result 1430 * 1431 * Evaluate DMA regions and return respectively DMA region start, offset 1432 * and size in dma_addr, offset and size on parsing success; it does not 1433 * update the passed in values on failure. 1434 * 1435 * Return 0 on success, < 0 on failure. 1436 */ 1437 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1438 u64 *size) 1439 { 1440 struct acpi_device *adev; 1441 LIST_HEAD(list); 1442 struct resource_entry *rentry; 1443 int ret; 1444 struct device *dma_dev = dev; 1445 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1446 1447 /* 1448 * Walk the device tree chasing an ACPI companion with a _DMA 1449 * object while we go. Stop if we find a device with an ACPI 1450 * companion containing a _DMA method. 1451 */ 1452 do { 1453 adev = ACPI_COMPANION(dma_dev); 1454 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1455 break; 1456 1457 dma_dev = dma_dev->parent; 1458 } while (dma_dev); 1459 1460 if (!dma_dev) 1461 return -ENODEV; 1462 1463 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1464 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1465 return -EINVAL; 1466 } 1467 1468 ret = acpi_dev_get_dma_resources(adev, &list); 1469 if (ret > 0) { 1470 list_for_each_entry(rentry, &list, node) { 1471 if (dma_offset && rentry->offset != dma_offset) { 1472 ret = -EINVAL; 1473 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1474 goto out; 1475 } 1476 dma_offset = rentry->offset; 1477 1478 /* Take lower and upper limits */ 1479 if (rentry->res->start < dma_start) 1480 dma_start = rentry->res->start; 1481 if (rentry->res->end > dma_end) 1482 dma_end = rentry->res->end; 1483 } 1484 1485 if (dma_start >= dma_end) { 1486 ret = -EINVAL; 1487 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1488 goto out; 1489 } 1490 1491 *dma_addr = dma_start - dma_offset; 1492 len = dma_end - dma_start; 1493 *size = max(len, len + 1); 1494 *offset = dma_offset; 1495 } 1496 out: 1497 acpi_dev_free_resource_list(&list); 1498 1499 return ret >= 0 ? 0 : ret; 1500 } 1501 1502 /** 1503 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1504 * @dev: The pointer to the device 1505 * @attr: device dma attributes 1506 * @input_id: input device id const value pointer 1507 */ 1508 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1509 const u32 *input_id) 1510 { 1511 const struct iommu_ops *iommu; 1512 u64 dma_addr = 0, size = 0; 1513 1514 if (attr == DEV_DMA_NOT_SUPPORTED) { 1515 set_dma_ops(dev, &dma_dummy_ops); 1516 return 0; 1517 } 1518 1519 iort_dma_setup(dev, &dma_addr, &size); 1520 1521 iommu = iort_iommu_configure_id(dev, input_id); 1522 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1523 return -EPROBE_DEFER; 1524 1525 arch_setup_dma_ops(dev, dma_addr, size, 1526 iommu, attr == DEV_DMA_COHERENT); 1527 1528 return 0; 1529 } 1530 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1531 1532 static void acpi_init_coherency(struct acpi_device *adev) 1533 { 1534 unsigned long long cca = 0; 1535 acpi_status status; 1536 struct acpi_device *parent = adev->parent; 1537 1538 if (parent && parent->flags.cca_seen) { 1539 /* 1540 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1541 * already saw one. 1542 */ 1543 adev->flags.cca_seen = 1; 1544 cca = parent->flags.coherent_dma; 1545 } else { 1546 status = acpi_evaluate_integer(adev->handle, "_CCA", 1547 NULL, &cca); 1548 if (ACPI_SUCCESS(status)) 1549 adev->flags.cca_seen = 1; 1550 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1551 /* 1552 * If architecture does not specify that _CCA is 1553 * required for DMA-able devices (e.g. x86), 1554 * we default to _CCA=1. 1555 */ 1556 cca = 1; 1557 else 1558 acpi_handle_debug(adev->handle, 1559 "ACPI device is missing _CCA.\n"); 1560 } 1561 1562 adev->flags.coherent_dma = cca; 1563 } 1564 1565 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1566 { 1567 bool *is_serial_bus_slave_p = data; 1568 1569 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1570 return 1; 1571 1572 *is_serial_bus_slave_p = true; 1573 1574 /* no need to do more checking */ 1575 return -1; 1576 } 1577 1578 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1579 { 1580 struct acpi_device *parent = device->parent; 1581 static const struct acpi_device_id indirect_io_hosts[] = { 1582 {"HISI0191", 0}, 1583 {} 1584 }; 1585 1586 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1587 } 1588 1589 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1590 { 1591 struct list_head resource_list; 1592 bool is_serial_bus_slave = false; 1593 /* 1594 * These devices have multiple I2cSerialBus resources and an i2c-client 1595 * must be instantiated for each, each with its own i2c_device_id. 1596 * Normally we only instantiate an i2c-client for the first resource, 1597 * using the ACPI HID as id. These special cases are handled by the 1598 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1599 * which i2c_device_id to use for each resource. 1600 */ 1601 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1602 {"BSG1160", }, 1603 {"BSG2150", }, 1604 {"INT33FE", }, 1605 {"INT3515", }, 1606 {} 1607 }; 1608 1609 if (acpi_is_indirect_io_slave(device)) 1610 return true; 1611 1612 /* Macs use device properties in lieu of _CRS resources */ 1613 if (x86_apple_machine && 1614 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1615 fwnode_property_present(&device->fwnode, "i2cAddress") || 1616 fwnode_property_present(&device->fwnode, "baud"))) 1617 return true; 1618 1619 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1620 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1621 return false; 1622 1623 INIT_LIST_HEAD(&resource_list); 1624 acpi_dev_get_resources(device, &resource_list, 1625 acpi_check_serial_bus_slave, 1626 &is_serial_bus_slave); 1627 acpi_dev_free_resource_list(&resource_list); 1628 1629 return is_serial_bus_slave; 1630 } 1631 1632 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1633 int type, unsigned long long sta, 1634 struct acpi_device_info *info) 1635 { 1636 INIT_LIST_HEAD(&device->pnp.ids); 1637 device->device_type = type; 1638 device->handle = handle; 1639 device->parent = acpi_bus_get_parent(handle); 1640 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1641 acpi_set_device_status(device, sta); 1642 acpi_device_get_busid(device); 1643 acpi_set_pnp_ids(handle, &device->pnp, type, info); 1644 acpi_init_properties(device); 1645 acpi_bus_get_flags(device); 1646 device->flags.match_driver = false; 1647 device->flags.initialized = true; 1648 device->flags.enumeration_by_parent = 1649 acpi_device_enumeration_by_parent(device); 1650 acpi_device_clear_enumerated(device); 1651 device_initialize(&device->dev); 1652 dev_set_uevent_suppress(&device->dev, true); 1653 acpi_init_coherency(device); 1654 } 1655 1656 void acpi_device_add_finalize(struct acpi_device *device) 1657 { 1658 dev_set_uevent_suppress(&device->dev, false); 1659 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1660 } 1661 1662 static int acpi_add_single_object(struct acpi_device **child, 1663 acpi_handle handle, int type, 1664 unsigned long long sta) 1665 { 1666 int result; 1667 struct acpi_device *device; 1668 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1669 struct acpi_device_info *info = NULL; 1670 1671 if (handle != ACPI_ROOT_OBJECT && type == ACPI_BUS_TYPE_DEVICE) 1672 acpi_get_object_info(handle, &info); 1673 1674 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1675 if (!device) { 1676 printk(KERN_ERR PREFIX "Memory allocation error\n"); 1677 kfree(info); 1678 return -ENOMEM; 1679 } 1680 1681 acpi_init_device_object(device, handle, type, sta, info); 1682 kfree(info); 1683 /* 1684 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so 1685 * that we can call acpi_bus_get_status() and use its quirk handling. 1686 * Note this must be done before the get power-/wakeup_dev-flags calls. 1687 */ 1688 if (type == ACPI_BUS_TYPE_DEVICE) 1689 if (acpi_bus_get_status(device) < 0) 1690 acpi_set_device_status(device, 0); 1691 1692 acpi_bus_get_power_flags(device); 1693 acpi_bus_get_wakeup_device_flags(device); 1694 1695 result = acpi_device_add(device, acpi_device_release); 1696 if (result) { 1697 acpi_device_release(&device->dev); 1698 return result; 1699 } 1700 1701 acpi_power_add_remove_device(device, true); 1702 acpi_device_add_finalize(device); 1703 acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); 1704 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n", 1705 dev_name(&device->dev), (char *) buffer.pointer, 1706 device->parent ? dev_name(&device->parent->dev) : "(null)")); 1707 kfree(buffer.pointer); 1708 *child = device; 1709 return 0; 1710 } 1711 1712 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1713 void *context) 1714 { 1715 struct resource *res = context; 1716 1717 if (acpi_dev_resource_memory(ares, res)) 1718 return AE_CTRL_TERMINATE; 1719 1720 return AE_OK; 1721 } 1722 1723 static bool acpi_device_should_be_hidden(acpi_handle handle) 1724 { 1725 acpi_status status; 1726 struct resource res; 1727 1728 /* Check if it should ignore the UART device */ 1729 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1730 return false; 1731 1732 /* 1733 * The UART device described in SPCR table is assumed to have only one 1734 * memory resource present. So we only look for the first one here. 1735 */ 1736 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1737 acpi_get_resource_memory, &res); 1738 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1739 return false; 1740 1741 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1742 &res.start); 1743 1744 return true; 1745 } 1746 1747 static int acpi_bus_type_and_status(acpi_handle handle, int *type, 1748 unsigned long long *sta) 1749 { 1750 acpi_status status; 1751 acpi_object_type acpi_type; 1752 1753 status = acpi_get_type(handle, &acpi_type); 1754 if (ACPI_FAILURE(status)) 1755 return -ENODEV; 1756 1757 switch (acpi_type) { 1758 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 1759 case ACPI_TYPE_DEVICE: 1760 if (acpi_device_should_be_hidden(handle)) 1761 return -ENODEV; 1762 1763 *type = ACPI_BUS_TYPE_DEVICE; 1764 /* 1765 * acpi_add_single_object updates this once we've an acpi_device 1766 * so that acpi_bus_get_status' quirk handling can be used. 1767 */ 1768 *sta = ACPI_STA_DEFAULT; 1769 break; 1770 case ACPI_TYPE_PROCESSOR: 1771 *type = ACPI_BUS_TYPE_PROCESSOR; 1772 status = acpi_bus_get_status_handle(handle, sta); 1773 if (ACPI_FAILURE(status)) 1774 return -ENODEV; 1775 break; 1776 case ACPI_TYPE_THERMAL: 1777 *type = ACPI_BUS_TYPE_THERMAL; 1778 *sta = ACPI_STA_DEFAULT; 1779 break; 1780 case ACPI_TYPE_POWER: 1781 *type = ACPI_BUS_TYPE_POWER; 1782 *sta = ACPI_STA_DEFAULT; 1783 break; 1784 default: 1785 return -ENODEV; 1786 } 1787 1788 return 0; 1789 } 1790 1791 bool acpi_device_is_present(const struct acpi_device *adev) 1792 { 1793 return adev->status.present || adev->status.functional; 1794 } 1795 1796 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1797 const char *idstr, 1798 const struct acpi_device_id **matchid) 1799 { 1800 const struct acpi_device_id *devid; 1801 1802 if (handler->match) 1803 return handler->match(idstr, matchid); 1804 1805 for (devid = handler->ids; devid->id[0]; devid++) 1806 if (!strcmp((char *)devid->id, idstr)) { 1807 if (matchid) 1808 *matchid = devid; 1809 1810 return true; 1811 } 1812 1813 return false; 1814 } 1815 1816 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1817 const struct acpi_device_id **matchid) 1818 { 1819 struct acpi_scan_handler *handler; 1820 1821 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1822 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1823 return handler; 1824 1825 return NULL; 1826 } 1827 1828 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1829 { 1830 if (!!hotplug->enabled == !!val) 1831 return; 1832 1833 mutex_lock(&acpi_scan_lock); 1834 1835 hotplug->enabled = val; 1836 1837 mutex_unlock(&acpi_scan_lock); 1838 } 1839 1840 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1841 { 1842 struct acpi_hardware_id *hwid; 1843 1844 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1845 acpi_dock_add(adev); 1846 return; 1847 } 1848 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1849 struct acpi_scan_handler *handler; 1850 1851 handler = acpi_scan_match_handler(hwid->id, NULL); 1852 if (handler) { 1853 adev->flags.hotplug_notify = true; 1854 break; 1855 } 1856 } 1857 } 1858 1859 static u32 acpi_scan_check_dep(acpi_handle handle) 1860 { 1861 struct acpi_handle_list dep_devices; 1862 acpi_status status; 1863 u32 count; 1864 int i; 1865 1866 /* 1867 * Check for _HID here to avoid deferring the enumeration of: 1868 * 1. PCI devices. 1869 * 2. ACPI nodes describing USB ports. 1870 * Still, checking for _HID catches more then just these cases ... 1871 */ 1872 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 1873 return 0; 1874 1875 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1876 if (ACPI_FAILURE(status)) { 1877 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1878 return 0; 1879 } 1880 1881 for (count = 0, i = 0; i < dep_devices.count; i++) { 1882 struct acpi_device_info *info; 1883 struct acpi_dep_data *dep; 1884 bool skip; 1885 1886 status = acpi_get_object_info(dep_devices.handles[i], &info); 1887 if (ACPI_FAILURE(status)) { 1888 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1889 continue; 1890 } 1891 1892 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1893 kfree(info); 1894 1895 if (skip) 1896 continue; 1897 1898 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1899 if (!dep) 1900 continue; 1901 1902 count++; 1903 1904 dep->supplier = dep_devices.handles[i]; 1905 dep->consumer = handle; 1906 1907 mutex_lock(&acpi_dep_list_lock); 1908 list_add_tail(&dep->node , &acpi_dep_list); 1909 mutex_unlock(&acpi_dep_list_lock); 1910 } 1911 1912 return count; 1913 } 1914 1915 static void acpi_scan_dep_init(struct acpi_device *adev) 1916 { 1917 struct acpi_dep_data *dep; 1918 1919 mutex_lock(&acpi_dep_list_lock); 1920 1921 list_for_each_entry(dep, &acpi_dep_list, node) { 1922 if (dep->consumer == adev->handle) 1923 adev->dep_unmet++; 1924 } 1925 1926 mutex_unlock(&acpi_dep_list_lock); 1927 } 1928 1929 static bool acpi_bus_scan_second_pass; 1930 1931 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 1932 struct acpi_device **adev_p) 1933 { 1934 struct acpi_device *device = NULL; 1935 unsigned long long sta; 1936 int type; 1937 int result; 1938 1939 acpi_bus_get_device(handle, &device); 1940 if (device) 1941 goto out; 1942 1943 result = acpi_bus_type_and_status(handle, &type, &sta); 1944 if (result) 1945 return AE_OK; 1946 1947 if (type == ACPI_BUS_TYPE_POWER) { 1948 acpi_add_power_resource(handle); 1949 return AE_OK; 1950 } 1951 1952 if (type == ACPI_BUS_TYPE_DEVICE && check_dep) { 1953 u32 count = acpi_scan_check_dep(handle); 1954 /* Bail out if the number of recorded dependencies is not 0. */ 1955 if (count > 0) { 1956 acpi_bus_scan_second_pass = true; 1957 return AE_CTRL_DEPTH; 1958 } 1959 } 1960 1961 acpi_add_single_object(&device, handle, type, sta); 1962 if (!device) 1963 return AE_CTRL_DEPTH; 1964 1965 acpi_scan_init_hotplug(device); 1966 if (!check_dep) 1967 acpi_scan_dep_init(device); 1968 1969 out: 1970 if (!*adev_p) 1971 *adev_p = device; 1972 1973 return AE_OK; 1974 } 1975 1976 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 1977 void *not_used, void **ret_p) 1978 { 1979 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 1980 } 1981 1982 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 1983 void *not_used, void **ret_p) 1984 { 1985 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 1986 } 1987 1988 static void acpi_default_enumeration(struct acpi_device *device) 1989 { 1990 /* 1991 * Do not enumerate devices with enumeration_by_parent flag set as 1992 * they will be enumerated by their respective parents. 1993 */ 1994 if (!device->flags.enumeration_by_parent) { 1995 acpi_create_platform_device(device, NULL); 1996 acpi_device_set_enumerated(device); 1997 } else { 1998 blocking_notifier_call_chain(&acpi_reconfig_chain, 1999 ACPI_RECONFIG_DEVICE_ADD, device); 2000 } 2001 } 2002 2003 static const struct acpi_device_id generic_device_ids[] = { 2004 {ACPI_DT_NAMESPACE_HID, }, 2005 {"", }, 2006 }; 2007 2008 static int acpi_generic_device_attach(struct acpi_device *adev, 2009 const struct acpi_device_id *not_used) 2010 { 2011 /* 2012 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2013 * below can be unconditional. 2014 */ 2015 if (adev->data.of_compatible) 2016 acpi_default_enumeration(adev); 2017 2018 return 1; 2019 } 2020 2021 static struct acpi_scan_handler generic_device_handler = { 2022 .ids = generic_device_ids, 2023 .attach = acpi_generic_device_attach, 2024 }; 2025 2026 static int acpi_scan_attach_handler(struct acpi_device *device) 2027 { 2028 struct acpi_hardware_id *hwid; 2029 int ret = 0; 2030 2031 list_for_each_entry(hwid, &device->pnp.ids, list) { 2032 const struct acpi_device_id *devid; 2033 struct acpi_scan_handler *handler; 2034 2035 handler = acpi_scan_match_handler(hwid->id, &devid); 2036 if (handler) { 2037 if (!handler->attach) { 2038 device->pnp.type.platform_id = 0; 2039 continue; 2040 } 2041 device->handler = handler; 2042 ret = handler->attach(device, devid); 2043 if (ret > 0) 2044 break; 2045 2046 device->handler = NULL; 2047 if (ret < 0) 2048 break; 2049 } 2050 } 2051 2052 return ret; 2053 } 2054 2055 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2056 { 2057 struct acpi_device *child; 2058 bool skip = !first_pass && device->flags.visited; 2059 acpi_handle ejd; 2060 int ret; 2061 2062 if (skip) 2063 goto ok; 2064 2065 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2066 register_dock_dependent_device(device, ejd); 2067 2068 acpi_bus_get_status(device); 2069 /* Skip devices that are not present. */ 2070 if (!acpi_device_is_present(device)) { 2071 device->flags.initialized = false; 2072 acpi_device_clear_enumerated(device); 2073 device->flags.power_manageable = 0; 2074 return; 2075 } 2076 if (device->handler) 2077 goto ok; 2078 2079 if (!device->flags.initialized) { 2080 device->flags.power_manageable = 2081 device->power.states[ACPI_STATE_D0].flags.valid; 2082 if (acpi_bus_init_power(device)) 2083 device->flags.power_manageable = 0; 2084 2085 device->flags.initialized = true; 2086 } else if (device->flags.visited) { 2087 goto ok; 2088 } 2089 2090 ret = acpi_scan_attach_handler(device); 2091 if (ret < 0) 2092 return; 2093 2094 device->flags.match_driver = true; 2095 if (ret > 0 && !device->flags.enumeration_by_parent) { 2096 acpi_device_set_enumerated(device); 2097 goto ok; 2098 } 2099 2100 ret = device_attach(&device->dev); 2101 if (ret < 0) 2102 return; 2103 2104 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2105 acpi_default_enumeration(device); 2106 else 2107 acpi_device_set_enumerated(device); 2108 2109 ok: 2110 list_for_each_entry(child, &device->children, node) 2111 acpi_bus_attach(child, first_pass); 2112 2113 if (!skip && device->handler && device->handler->hotplug.notify_online) 2114 device->handler->hotplug.notify_online(device); 2115 } 2116 2117 void acpi_walk_dep_device_list(acpi_handle handle) 2118 { 2119 struct acpi_dep_data *dep, *tmp; 2120 struct acpi_device *adev; 2121 2122 mutex_lock(&acpi_dep_list_lock); 2123 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2124 if (dep->supplier == handle) { 2125 acpi_bus_get_device(dep->consumer, &adev); 2126 if (!adev) 2127 continue; 2128 2129 adev->dep_unmet--; 2130 if (!adev->dep_unmet) 2131 acpi_bus_attach(adev, true); 2132 2133 list_del(&dep->node); 2134 kfree(dep); 2135 } 2136 } 2137 mutex_unlock(&acpi_dep_list_lock); 2138 } 2139 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list); 2140 2141 /** 2142 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2143 * @handle: Root of the namespace scope to scan. 2144 * 2145 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2146 * found devices. 2147 * 2148 * If no devices were found, -ENODEV is returned, but it does not mean that 2149 * there has been a real error. There just have been no suitable ACPI objects 2150 * in the table trunk from which the kernel could create a device and add an 2151 * appropriate driver. 2152 * 2153 * Must be called under acpi_scan_lock. 2154 */ 2155 int acpi_bus_scan(acpi_handle handle) 2156 { 2157 struct acpi_device *device = NULL; 2158 2159 acpi_bus_scan_second_pass = false; 2160 2161 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2162 2163 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2164 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2165 acpi_bus_check_add_1, NULL, NULL, 2166 (void **)&device); 2167 2168 if (!device) 2169 return -ENODEV; 2170 2171 acpi_bus_attach(device, true); 2172 2173 if (!acpi_bus_scan_second_pass) 2174 return 0; 2175 2176 /* Pass 2: Enumerate all of the remaining devices. */ 2177 2178 device = NULL; 2179 2180 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2181 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2182 acpi_bus_check_add_2, NULL, NULL, 2183 (void **)&device); 2184 2185 acpi_bus_attach(device, false); 2186 2187 return 0; 2188 } 2189 EXPORT_SYMBOL(acpi_bus_scan); 2190 2191 /** 2192 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2193 * @adev: Root of the ACPI namespace scope to walk. 2194 * 2195 * Must be called under acpi_scan_lock. 2196 */ 2197 void acpi_bus_trim(struct acpi_device *adev) 2198 { 2199 struct acpi_scan_handler *handler = adev->handler; 2200 struct acpi_device *child; 2201 2202 list_for_each_entry_reverse(child, &adev->children, node) 2203 acpi_bus_trim(child); 2204 2205 adev->flags.match_driver = false; 2206 if (handler) { 2207 if (handler->detach) 2208 handler->detach(adev); 2209 2210 adev->handler = NULL; 2211 } else { 2212 device_release_driver(&adev->dev); 2213 } 2214 /* 2215 * Most likely, the device is going away, so put it into D3cold before 2216 * that. 2217 */ 2218 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2219 adev->flags.initialized = false; 2220 acpi_device_clear_enumerated(adev); 2221 } 2222 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2223 2224 int acpi_bus_register_early_device(int type) 2225 { 2226 struct acpi_device *device = NULL; 2227 int result; 2228 2229 result = acpi_add_single_object(&device, NULL, 2230 type, ACPI_STA_DEFAULT); 2231 if (result) 2232 return result; 2233 2234 device->flags.match_driver = true; 2235 return device_attach(&device->dev); 2236 } 2237 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2238 2239 static int acpi_bus_scan_fixed(void) 2240 { 2241 int result = 0; 2242 2243 /* 2244 * Enumerate all fixed-feature devices. 2245 */ 2246 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2247 struct acpi_device *device = NULL; 2248 2249 result = acpi_add_single_object(&device, NULL, 2250 ACPI_BUS_TYPE_POWER_BUTTON, 2251 ACPI_STA_DEFAULT); 2252 if (result) 2253 return result; 2254 2255 device->flags.match_driver = true; 2256 result = device_attach(&device->dev); 2257 if (result < 0) 2258 return result; 2259 2260 device_init_wakeup(&device->dev, true); 2261 } 2262 2263 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2264 struct acpi_device *device = NULL; 2265 2266 result = acpi_add_single_object(&device, NULL, 2267 ACPI_BUS_TYPE_SLEEP_BUTTON, 2268 ACPI_STA_DEFAULT); 2269 if (result) 2270 return result; 2271 2272 device->flags.match_driver = true; 2273 result = device_attach(&device->dev); 2274 } 2275 2276 return result < 0 ? result : 0; 2277 } 2278 2279 static void __init acpi_get_spcr_uart_addr(void) 2280 { 2281 acpi_status status; 2282 struct acpi_table_spcr *spcr_ptr; 2283 2284 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2285 (struct acpi_table_header **)&spcr_ptr); 2286 if (ACPI_FAILURE(status)) { 2287 pr_warn(PREFIX "STAO table present, but SPCR is missing\n"); 2288 return; 2289 } 2290 2291 spcr_uart_addr = spcr_ptr->serial_port.address; 2292 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2293 } 2294 2295 static bool acpi_scan_initialized; 2296 2297 int __init acpi_scan_init(void) 2298 { 2299 int result; 2300 acpi_status status; 2301 struct acpi_table_stao *stao_ptr; 2302 2303 acpi_pci_root_init(); 2304 acpi_pci_link_init(); 2305 acpi_processor_init(); 2306 acpi_platform_init(); 2307 acpi_lpss_init(); 2308 acpi_apd_init(); 2309 acpi_cmos_rtc_init(); 2310 acpi_container_init(); 2311 acpi_memory_hotplug_init(); 2312 acpi_watchdog_init(); 2313 acpi_pnp_init(); 2314 acpi_int340x_thermal_init(); 2315 acpi_amba_init(); 2316 acpi_init_lpit(); 2317 2318 acpi_scan_add_handler(&generic_device_handler); 2319 2320 /* 2321 * If there is STAO table, check whether it needs to ignore the UART 2322 * device in SPCR table. 2323 */ 2324 status = acpi_get_table(ACPI_SIG_STAO, 0, 2325 (struct acpi_table_header **)&stao_ptr); 2326 if (ACPI_SUCCESS(status)) { 2327 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2328 pr_info(PREFIX "STAO Name List not yet supported.\n"); 2329 2330 if (stao_ptr->ignore_uart) 2331 acpi_get_spcr_uart_addr(); 2332 2333 acpi_put_table((struct acpi_table_header *)stao_ptr); 2334 } 2335 2336 acpi_gpe_apply_masked_gpes(); 2337 acpi_update_all_gpes(); 2338 2339 /* 2340 * Although we call __add_memory() that is documented to require the 2341 * device_hotplug_lock, it is not necessary here because this is an 2342 * early code when userspace or any other code path cannot trigger 2343 * hotplug/hotunplug operations. 2344 */ 2345 mutex_lock(&acpi_scan_lock); 2346 /* 2347 * Enumerate devices in the ACPI namespace. 2348 */ 2349 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2350 if (result) 2351 goto out; 2352 2353 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2354 if (result) 2355 goto out; 2356 2357 /* Fixed feature devices do not exist on HW-reduced platform */ 2358 if (!acpi_gbl_reduced_hardware) { 2359 result = acpi_bus_scan_fixed(); 2360 if (result) { 2361 acpi_detach_data(acpi_root->handle, 2362 acpi_scan_drop_device); 2363 acpi_device_del(acpi_root); 2364 put_device(&acpi_root->dev); 2365 goto out; 2366 } 2367 } 2368 2369 acpi_scan_initialized = true; 2370 2371 out: 2372 mutex_unlock(&acpi_scan_lock); 2373 return result; 2374 } 2375 2376 static struct acpi_probe_entry *ape; 2377 static int acpi_probe_count; 2378 static DEFINE_MUTEX(acpi_probe_mutex); 2379 2380 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2381 const unsigned long end) 2382 { 2383 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2384 if (!ape->probe_subtbl(header, end)) 2385 acpi_probe_count++; 2386 2387 return 0; 2388 } 2389 2390 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2391 { 2392 int count = 0; 2393 2394 if (acpi_disabled) 2395 return 0; 2396 2397 mutex_lock(&acpi_probe_mutex); 2398 for (ape = ap_head; nr; ape++, nr--) { 2399 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2400 acpi_probe_count = 0; 2401 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2402 count += acpi_probe_count; 2403 } else { 2404 int res; 2405 res = acpi_table_parse(ape->id, ape->probe_table); 2406 if (!res) 2407 count++; 2408 } 2409 } 2410 mutex_unlock(&acpi_probe_mutex); 2411 2412 return count; 2413 } 2414 2415 struct acpi_table_events_work { 2416 struct work_struct work; 2417 void *table; 2418 u32 event; 2419 }; 2420 2421 static void acpi_table_events_fn(struct work_struct *work) 2422 { 2423 struct acpi_table_events_work *tew; 2424 2425 tew = container_of(work, struct acpi_table_events_work, work); 2426 2427 if (tew->event == ACPI_TABLE_EVENT_LOAD) { 2428 acpi_scan_lock_acquire(); 2429 acpi_bus_scan(ACPI_ROOT_OBJECT); 2430 acpi_scan_lock_release(); 2431 } 2432 2433 kfree(tew); 2434 } 2435 2436 void acpi_scan_table_handler(u32 event, void *table, void *context) 2437 { 2438 struct acpi_table_events_work *tew; 2439 2440 if (!acpi_scan_initialized) 2441 return; 2442 2443 if (event != ACPI_TABLE_EVENT_LOAD) 2444 return; 2445 2446 tew = kmalloc(sizeof(*tew), GFP_KERNEL); 2447 if (!tew) 2448 return; 2449 2450 INIT_WORK(&tew->work, acpi_table_events_fn); 2451 tew->table = table; 2452 tew->event = event; 2453 2454 schedule_work(&tew->work); 2455 } 2456 2457 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2458 { 2459 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2460 } 2461 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2462 2463 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2464 { 2465 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2466 } 2467 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2468