xref: /linux/drivers/acpi/scan.c (revision 2174181019e4273e583a0f0a9795e9db38984784)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				int (*notify)(struct acpi_device *, u32),
77 				void (*uevent)(struct acpi_device *, u32))
78 {
79 	acpi_lock_hp_context();
80 	hp->notify = notify;
81 	hp->uevent = uevent;
82 	acpi_set_hp_context(adev, hp);
83 	acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86 
87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 	if (!handler)
90 		return -EINVAL;
91 
92 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 	return 0;
94 }
95 
96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 				       const char *hotplug_profile_name)
98 {
99 	int error;
100 
101 	error = acpi_scan_add_handler(handler);
102 	if (error)
103 		return error;
104 
105 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 	return 0;
107 }
108 
109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 	struct acpi_device_physical_node *pn;
112 	bool offline = true;
113 	char *envp[] = { "EVENT=offline", NULL };
114 
115 	/*
116 	 * acpi_container_offline() calls this for all of the container's
117 	 * children under the container's physical_node_lock lock.
118 	 */
119 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120 
121 	list_for_each_entry(pn, &adev->physical_node_list, node)
122 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 			if (uevent)
124 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125 
126 			offline = false;
127 			break;
128 		}
129 
130 	mutex_unlock(&adev->physical_node_lock);
131 	return offline;
132 }
133 
134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 				    void **ret_p)
136 {
137 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 	struct acpi_device_physical_node *pn;
139 	bool second_pass = (bool)data;
140 	acpi_status status = AE_OK;
141 
142 	if (!device)
143 		return AE_OK;
144 
145 	if (device->handler && !device->handler->hotplug.enabled) {
146 		*ret_p = &device->dev;
147 		return AE_SUPPORT;
148 	}
149 
150 	mutex_lock(&device->physical_node_lock);
151 
152 	list_for_each_entry(pn, &device->physical_node_list, node) {
153 		int ret;
154 
155 		if (second_pass) {
156 			/* Skip devices offlined by the first pass. */
157 			if (pn->put_online)
158 				continue;
159 		} else {
160 			pn->put_online = false;
161 		}
162 		ret = device_offline(pn->dev);
163 		if (ret >= 0) {
164 			pn->put_online = !ret;
165 		} else {
166 			*ret_p = pn->dev;
167 			if (second_pass) {
168 				status = AE_ERROR;
169 				break;
170 			}
171 		}
172 	}
173 
174 	mutex_unlock(&device->physical_node_lock);
175 
176 	return status;
177 }
178 
179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 				   void **ret_p)
181 {
182 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 	struct acpi_device_physical_node *pn;
184 
185 	if (!device)
186 		return AE_OK;
187 
188 	mutex_lock(&device->physical_node_lock);
189 
190 	list_for_each_entry(pn, &device->physical_node_list, node)
191 		if (pn->put_online) {
192 			device_online(pn->dev);
193 			pn->put_online = false;
194 		}
195 
196 	mutex_unlock(&device->physical_node_lock);
197 
198 	return AE_OK;
199 }
200 
201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 	acpi_handle handle = device->handle;
204 	struct device *errdev = NULL;
205 	acpi_status status;
206 
207 	/*
208 	 * Carry out two passes here and ignore errors in the first pass,
209 	 * because if the devices in question are memory blocks and
210 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 	 * that the other blocks depend on, but it is not known in advance which
212 	 * block holds them.
213 	 *
214 	 * If the first pass is successful, the second one isn't needed, though.
215 	 */
216 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 				     NULL, acpi_bus_offline, (void *)false,
218 				     (void **)&errdev);
219 	if (status == AE_SUPPORT) {
220 		dev_warn(errdev, "Offline disabled.\n");
221 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 				    acpi_bus_online, NULL, NULL, NULL);
223 		return -EPERM;
224 	}
225 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 	if (errdev) {
227 		errdev = NULL;
228 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 				    NULL, acpi_bus_offline, (void *)true,
230 				    (void **)&errdev);
231 		if (!errdev)
232 			acpi_bus_offline(handle, 0, (void *)true,
233 					 (void **)&errdev);
234 
235 		if (errdev) {
236 			dev_warn(errdev, "Offline failed.\n");
237 			acpi_bus_online(handle, 0, NULL, NULL);
238 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 					    ACPI_UINT32_MAX, acpi_bus_online,
240 					    NULL, NULL, NULL);
241 			return -EBUSY;
242 		}
243 	}
244 	return 0;
245 }
246 
247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 	acpi_handle handle = device->handle;
250 	unsigned long long sta;
251 	acpi_status status;
252 
253 	if (device->handler && device->handler->hotplug.demand_offline) {
254 		if (!acpi_scan_is_offline(device, true))
255 			return -EBUSY;
256 	} else {
257 		int error = acpi_scan_try_to_offline(device);
258 		if (error)
259 			return error;
260 	}
261 
262 	acpi_handle_debug(handle, "Ejecting\n");
263 
264 	acpi_bus_trim(device);
265 
266 	acpi_evaluate_lck(handle, 0);
267 	/*
268 	 * TBD: _EJD support.
269 	 */
270 	status = acpi_evaluate_ej0(handle);
271 	if (status == AE_NOT_FOUND)
272 		return -ENODEV;
273 	else if (ACPI_FAILURE(status))
274 		return -EIO;
275 
276 	/*
277 	 * Verify if eject was indeed successful.  If not, log an error
278 	 * message.  No need to call _OST since _EJ0 call was made OK.
279 	 */
280 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 	if (ACPI_FAILURE(status)) {
282 		acpi_handle_warn(handle,
283 			"Status check after eject failed (0x%x)\n", status);
284 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 		acpi_handle_warn(handle,
286 			"Eject incomplete - status 0x%llx\n", sta);
287 	}
288 
289 	return 0;
290 }
291 
292 static int acpi_scan_device_not_present(struct acpi_device *adev)
293 {
294 	if (!acpi_device_enumerated(adev)) {
295 		dev_warn(&adev->dev, "Still not present\n");
296 		return -EALREADY;
297 	}
298 	acpi_bus_trim(adev);
299 	return 0;
300 }
301 
302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 	int error;
305 
306 	acpi_bus_get_status(adev);
307 	if (adev->status.present || adev->status.functional) {
308 		/*
309 		 * This function is only called for device objects for which
310 		 * matching scan handlers exist.  The only situation in which
311 		 * the scan handler is not attached to this device object yet
312 		 * is when the device has just appeared (either it wasn't
313 		 * present at all before or it was removed and then added
314 		 * again).
315 		 */
316 		if (adev->handler) {
317 			dev_warn(&adev->dev, "Already enumerated\n");
318 			return -EALREADY;
319 		}
320 		error = acpi_bus_scan(adev->handle);
321 		if (error) {
322 			dev_warn(&adev->dev, "Namespace scan failure\n");
323 			return error;
324 		}
325 		if (!adev->handler) {
326 			dev_warn(&adev->dev, "Enumeration failure\n");
327 			error = -ENODEV;
328 		}
329 	} else {
330 		error = acpi_scan_device_not_present(adev);
331 	}
332 	return error;
333 }
334 
335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336 {
337 	struct acpi_scan_handler *handler = adev->handler;
338 	int error;
339 
340 	acpi_bus_get_status(adev);
341 	if (!(adev->status.present || adev->status.functional)) {
342 		acpi_scan_device_not_present(adev);
343 		return 0;
344 	}
345 	if (handler && handler->hotplug.scan_dependent)
346 		return handler->hotplug.scan_dependent(adev);
347 
348 	error = acpi_bus_scan(adev->handle);
349 	if (error) {
350 		dev_warn(&adev->dev, "Namespace scan failure\n");
351 		return error;
352 	}
353 	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354 }
355 
356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357 {
358 	switch (type) {
359 	case ACPI_NOTIFY_BUS_CHECK:
360 		return acpi_scan_bus_check(adev, NULL);
361 	case ACPI_NOTIFY_DEVICE_CHECK:
362 		return acpi_scan_device_check(adev);
363 	case ACPI_NOTIFY_EJECT_REQUEST:
364 	case ACPI_OST_EC_OSPM_EJECT:
365 		if (adev->handler && !adev->handler->hotplug.enabled) {
366 			dev_info(&adev->dev, "Eject disabled\n");
367 			return -EPERM;
368 		}
369 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 		return acpi_scan_hot_remove(adev);
372 	}
373 	return -EINVAL;
374 }
375 
376 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377 {
378 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 	int error = -ENODEV;
380 
381 	lock_device_hotplug();
382 	mutex_lock(&acpi_scan_lock);
383 
384 	/*
385 	 * The device object's ACPI handle cannot become invalid as long as we
386 	 * are holding acpi_scan_lock, but it might have become invalid before
387 	 * that lock was acquired.
388 	 */
389 	if (adev->handle == INVALID_ACPI_HANDLE)
390 		goto err_out;
391 
392 	if (adev->flags.is_dock_station) {
393 		error = dock_notify(adev, src);
394 	} else if (adev->flags.hotplug_notify) {
395 		error = acpi_generic_hotplug_event(adev, src);
396 	} else {
397 		int (*notify)(struct acpi_device *, u32);
398 
399 		acpi_lock_hp_context();
400 		notify = adev->hp ? adev->hp->notify : NULL;
401 		acpi_unlock_hp_context();
402 		/*
403 		 * There may be additional notify handlers for device objects
404 		 * without the .event() callback, so ignore them here.
405 		 */
406 		if (notify)
407 			error = notify(adev, src);
408 		else
409 			goto out;
410 	}
411 	switch (error) {
412 	case 0:
413 		ost_code = ACPI_OST_SC_SUCCESS;
414 		break;
415 	case -EPERM:
416 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 		break;
418 	case -EBUSY:
419 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 		break;
421 	default:
422 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 		break;
424 	}
425 
426  err_out:
427 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428 
429  out:
430 	acpi_put_acpi_dev(adev);
431 	mutex_unlock(&acpi_scan_lock);
432 	unlock_device_hotplug();
433 }
434 
435 static void acpi_free_power_resources_lists(struct acpi_device *device)
436 {
437 	int i;
438 
439 	if (device->wakeup.flags.valid)
440 		acpi_power_resources_list_free(&device->wakeup.resources);
441 
442 	if (!device->power.flags.power_resources)
443 		return;
444 
445 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 		struct acpi_device_power_state *ps = &device->power.states[i];
447 		acpi_power_resources_list_free(&ps->resources);
448 	}
449 }
450 
451 static void acpi_device_release(struct device *dev)
452 {
453 	struct acpi_device *acpi_dev = to_acpi_device(dev);
454 
455 	acpi_free_properties(acpi_dev);
456 	acpi_free_pnp_ids(&acpi_dev->pnp);
457 	acpi_free_power_resources_lists(acpi_dev);
458 	kfree(acpi_dev);
459 }
460 
461 static void acpi_device_del(struct acpi_device *device)
462 {
463 	struct acpi_device_bus_id *acpi_device_bus_id;
464 
465 	mutex_lock(&acpi_device_lock);
466 
467 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 		if (!strcmp(acpi_device_bus_id->bus_id,
469 			    acpi_device_hid(device))) {
470 			ida_free(&acpi_device_bus_id->instance_ida,
471 				 device->pnp.instance_no);
472 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 				list_del(&acpi_device_bus_id->node);
474 				kfree_const(acpi_device_bus_id->bus_id);
475 				kfree(acpi_device_bus_id);
476 			}
477 			break;
478 		}
479 
480 	list_del(&device->wakeup_list);
481 
482 	mutex_unlock(&acpi_device_lock);
483 
484 	acpi_power_add_remove_device(device, false);
485 	acpi_device_remove_files(device);
486 	if (device->remove)
487 		device->remove(device);
488 
489 	device_del(&device->dev);
490 }
491 
492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493 
494 static LIST_HEAD(acpi_device_del_list);
495 static DEFINE_MUTEX(acpi_device_del_lock);
496 
497 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498 {
499 	for (;;) {
500 		struct acpi_device *adev;
501 
502 		mutex_lock(&acpi_device_del_lock);
503 
504 		if (list_empty(&acpi_device_del_list)) {
505 			mutex_unlock(&acpi_device_del_lock);
506 			break;
507 		}
508 		adev = list_first_entry(&acpi_device_del_list,
509 					struct acpi_device, del_list);
510 		list_del(&adev->del_list);
511 
512 		mutex_unlock(&acpi_device_del_lock);
513 
514 		blocking_notifier_call_chain(&acpi_reconfig_chain,
515 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
516 
517 		acpi_device_del(adev);
518 		/*
519 		 * Drop references to all power resources that might have been
520 		 * used by the device.
521 		 */
522 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 		acpi_dev_put(adev);
524 	}
525 }
526 
527 /**
528  * acpi_scan_drop_device - Drop an ACPI device object.
529  * @handle: Handle of an ACPI namespace node, not used.
530  * @context: Address of the ACPI device object to drop.
531  *
532  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533  * namespace node the device object pointed to by @context is attached to.
534  *
535  * The unregistration is carried out asynchronously to avoid running
536  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537  * ensure the correct ordering (the device objects must be unregistered in the
538  * same order in which the corresponding namespace nodes are deleted).
539  */
540 static void acpi_scan_drop_device(acpi_handle handle, void *context)
541 {
542 	static DECLARE_WORK(work, acpi_device_del_work_fn);
543 	struct acpi_device *adev = context;
544 
545 	mutex_lock(&acpi_device_del_lock);
546 
547 	/*
548 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 	 * won't run after any hotplug work items submitted subsequently.  That
550 	 * prevents attempts to register device objects identical to those being
551 	 * deleted from happening concurrently (such attempts result from
552 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
553 	 * run after all of the work items submitted previously, which helps
554 	 * those work items to ensure that they are not accessing stale device
555 	 * objects.
556 	 */
557 	if (list_empty(&acpi_device_del_list))
558 		acpi_queue_hotplug_work(&work);
559 
560 	list_add_tail(&adev->del_list, &acpi_device_del_list);
561 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
562 	adev->handle = INVALID_ACPI_HANDLE;
563 
564 	mutex_unlock(&acpi_device_del_lock);
565 }
566 
567 static struct acpi_device *handle_to_device(acpi_handle handle,
568 					    void (*callback)(void *))
569 {
570 	struct acpi_device *adev = NULL;
571 	acpi_status status;
572 
573 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 				    (void **)&adev, callback);
575 	if (ACPI_FAILURE(status) || !adev) {
576 		acpi_handle_debug(handle, "No context!\n");
577 		return NULL;
578 	}
579 	return adev;
580 }
581 
582 /**
583  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584  * @handle: ACPI handle associated with the requested ACPI device object.
585  *
586  * Return a pointer to the ACPI device object associated with @handle, if
587  * present, or NULL otherwise.
588  */
589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590 {
591 	return handle_to_device(handle, NULL);
592 }
593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594 
595 static void get_acpi_device(void *dev)
596 {
597 	acpi_dev_get(dev);
598 }
599 
600 /**
601  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602  * @handle: ACPI handle associated with the requested ACPI device object.
603  *
604  * Return a pointer to the ACPI device object associated with @handle and bump
605  * up that object's reference counter (under the ACPI Namespace lock), if
606  * present, or return NULL otherwise.
607  *
608  * The ACPI device object reference acquired by this function needs to be
609  * dropped via acpi_dev_put().
610  */
611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612 {
613 	return handle_to_device(handle, get_acpi_device);
614 }
615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616 
617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618 {
619 	struct acpi_device_bus_id *acpi_device_bus_id;
620 
621 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 			return acpi_device_bus_id;
625 	}
626 	return NULL;
627 }
628 
629 static int acpi_device_set_name(struct acpi_device *device,
630 				struct acpi_device_bus_id *acpi_device_bus_id)
631 {
632 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 	int result;
634 
635 	result = ida_alloc(instance_ida, GFP_KERNEL);
636 	if (result < 0)
637 		return result;
638 
639 	device->pnp.instance_no = result;
640 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 	return 0;
642 }
643 
644 int acpi_tie_acpi_dev(struct acpi_device *adev)
645 {
646 	acpi_handle handle = adev->handle;
647 	acpi_status status;
648 
649 	if (!handle)
650 		return 0;
651 
652 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 	if (ACPI_FAILURE(status)) {
654 		acpi_handle_err(handle, "Unable to attach device data\n");
655 		return -ENODEV;
656 	}
657 
658 	return 0;
659 }
660 
661 static void acpi_store_pld_crc(struct acpi_device *adev)
662 {
663 	struct acpi_pld_info *pld;
664 	acpi_status status;
665 
666 	status = acpi_get_physical_device_location(adev->handle, &pld);
667 	if (ACPI_FAILURE(status))
668 		return;
669 
670 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 	ACPI_FREE(pld);
672 }
673 
674 int acpi_device_add(struct acpi_device *device)
675 {
676 	struct acpi_device_bus_id *acpi_device_bus_id;
677 	int result;
678 
679 	/*
680 	 * Linkage
681 	 * -------
682 	 * Link this device to its parent and siblings.
683 	 */
684 	INIT_LIST_HEAD(&device->wakeup_list);
685 	INIT_LIST_HEAD(&device->physical_node_list);
686 	INIT_LIST_HEAD(&device->del_list);
687 	mutex_init(&device->physical_node_lock);
688 
689 	mutex_lock(&acpi_device_lock);
690 
691 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 	if (acpi_device_bus_id) {
693 		result = acpi_device_set_name(device, acpi_device_bus_id);
694 		if (result)
695 			goto err_unlock;
696 	} else {
697 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 					     GFP_KERNEL);
699 		if (!acpi_device_bus_id) {
700 			result = -ENOMEM;
701 			goto err_unlock;
702 		}
703 		acpi_device_bus_id->bus_id =
704 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 		if (!acpi_device_bus_id->bus_id) {
706 			kfree(acpi_device_bus_id);
707 			result = -ENOMEM;
708 			goto err_unlock;
709 		}
710 
711 		ida_init(&acpi_device_bus_id->instance_ida);
712 
713 		result = acpi_device_set_name(device, acpi_device_bus_id);
714 		if (result) {
715 			kfree_const(acpi_device_bus_id->bus_id);
716 			kfree(acpi_device_bus_id);
717 			goto err_unlock;
718 		}
719 
720 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 	}
722 
723 	if (device->wakeup.flags.valid)
724 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725 
726 	acpi_store_pld_crc(device);
727 
728 	mutex_unlock(&acpi_device_lock);
729 
730 	result = device_add(&device->dev);
731 	if (result) {
732 		dev_err(&device->dev, "Error registering device\n");
733 		goto err;
734 	}
735 
736 	result = acpi_device_setup_files(device);
737 	if (result)
738 		pr_err("Error creating sysfs interface for device %s\n",
739 		       dev_name(&device->dev));
740 
741 	return 0;
742 
743 err:
744 	mutex_lock(&acpi_device_lock);
745 
746 	list_del(&device->wakeup_list);
747 
748 err_unlock:
749 	mutex_unlock(&acpi_device_lock);
750 
751 	acpi_detach_data(device->handle, acpi_scan_drop_device);
752 
753 	return result;
754 }
755 
756 /* --------------------------------------------------------------------------
757                                  Device Enumeration
758    -------------------------------------------------------------------------- */
759 static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 				  const char * const ids[])
761 {
762 	struct acpi_pnp_device_id_list *cid_list = NULL;
763 	int i, index;
764 
765 	if (!(info->valid & ACPI_VALID_HID))
766 		return false;
767 
768 	index = match_string(ids, -1, info->hardware_id.string);
769 	if (index >= 0)
770 		return true;
771 
772 	if (info->valid & ACPI_VALID_CID)
773 		cid_list = &info->compatible_id_list;
774 
775 	if (!cid_list)
776 		return false;
777 
778 	for (i = 0; i < cid_list->count; i++) {
779 		index = match_string(ids, -1, cid_list->ids[i].string);
780 		if (index >= 0)
781 			return true;
782 	}
783 
784 	return false;
785 }
786 
787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788 static const char * const acpi_ignore_dep_ids[] = {
789 	"PNP0D80", /* Windows-compatible System Power Management Controller */
790 	"INT33BD", /* Intel Baytrail Mailbox Device */
791 	"LATT2021", /* Lattice FW Update Client Driver */
792 	NULL
793 };
794 
795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796 static const char * const acpi_honor_dep_ids[] = {
797 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
798 	NULL
799 };
800 
801 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
802 {
803 	struct acpi_device *adev;
804 
805 	/*
806 	 * Fixed hardware devices do not appear in the namespace and do not
807 	 * have handles, but we fabricate acpi_devices for them, so we have
808 	 * to deal with them specially.
809 	 */
810 	if (!handle)
811 		return acpi_root;
812 
813 	do {
814 		acpi_status status;
815 
816 		status = acpi_get_parent(handle, &handle);
817 		if (ACPI_FAILURE(status)) {
818 			if (status != AE_NULL_ENTRY)
819 				return acpi_root;
820 
821 			return NULL;
822 		}
823 		adev = acpi_fetch_acpi_dev(handle);
824 	} while (!adev);
825 	return adev;
826 }
827 
828 acpi_status
829 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
830 {
831 	acpi_status status;
832 	acpi_handle tmp;
833 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
834 	union acpi_object *obj;
835 
836 	status = acpi_get_handle(handle, "_EJD", &tmp);
837 	if (ACPI_FAILURE(status))
838 		return status;
839 
840 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
841 	if (ACPI_SUCCESS(status)) {
842 		obj = buffer.pointer;
843 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
844 					 ejd);
845 		kfree(buffer.pointer);
846 	}
847 	return status;
848 }
849 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
850 
851 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
852 {
853 	acpi_handle handle = dev->handle;
854 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
855 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
856 	union acpi_object *package = NULL;
857 	union acpi_object *element = NULL;
858 	acpi_status status;
859 	int err = -ENODATA;
860 
861 	INIT_LIST_HEAD(&wakeup->resources);
862 
863 	/* _PRW */
864 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
865 	if (ACPI_FAILURE(status)) {
866 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
867 				 acpi_format_exception(status));
868 		return err;
869 	}
870 
871 	package = (union acpi_object *)buffer.pointer;
872 
873 	if (!package || package->package.count < 2)
874 		goto out;
875 
876 	element = &(package->package.elements[0]);
877 	if (!element)
878 		goto out;
879 
880 	if (element->type == ACPI_TYPE_PACKAGE) {
881 		if ((element->package.count < 2) ||
882 		    (element->package.elements[0].type !=
883 		     ACPI_TYPE_LOCAL_REFERENCE)
884 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
885 			goto out;
886 
887 		wakeup->gpe_device =
888 		    element->package.elements[0].reference.handle;
889 		wakeup->gpe_number =
890 		    (u32) element->package.elements[1].integer.value;
891 	} else if (element->type == ACPI_TYPE_INTEGER) {
892 		wakeup->gpe_device = NULL;
893 		wakeup->gpe_number = element->integer.value;
894 	} else {
895 		goto out;
896 	}
897 
898 	element = &(package->package.elements[1]);
899 	if (element->type != ACPI_TYPE_INTEGER)
900 		goto out;
901 
902 	wakeup->sleep_state = element->integer.value;
903 
904 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
905 	if (err)
906 		goto out;
907 
908 	if (!list_empty(&wakeup->resources)) {
909 		int sleep_state;
910 
911 		err = acpi_power_wakeup_list_init(&wakeup->resources,
912 						  &sleep_state);
913 		if (err) {
914 			acpi_handle_warn(handle, "Retrieving current states "
915 					 "of wakeup power resources failed\n");
916 			acpi_power_resources_list_free(&wakeup->resources);
917 			goto out;
918 		}
919 		if (sleep_state < wakeup->sleep_state) {
920 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
921 					 "(S%d) by S%d from power resources\n",
922 					 (int)wakeup->sleep_state, sleep_state);
923 			wakeup->sleep_state = sleep_state;
924 		}
925 	}
926 
927  out:
928 	kfree(buffer.pointer);
929 	return err;
930 }
931 
932 /* Do not use a button for S5 wakeup */
933 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
934 
935 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
936 {
937 	static const struct acpi_device_id button_device_ids[] = {
938 		{"PNP0C0C", 0},				/* Power button */
939 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
940 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
941 		{"", 0},
942 	};
943 	struct acpi_device_wakeup *wakeup = &device->wakeup;
944 	const struct acpi_device_id *match;
945 	acpi_status status;
946 
947 	wakeup->flags.notifier_present = 0;
948 
949 	/* Power button, Lid switch always enable wakeup */
950 	match = acpi_match_acpi_device(button_device_ids, device);
951 	if (match) {
952 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
953 		    wakeup->sleep_state == ACPI_STATE_S5)
954 			wakeup->sleep_state = ACPI_STATE_S4;
955 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
956 		device_set_wakeup_capable(&device->dev, true);
957 		return true;
958 	}
959 
960 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
961 					 wakeup->gpe_number);
962 	return ACPI_SUCCESS(status);
963 }
964 
965 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
966 {
967 	int err;
968 
969 	/* Presence of _PRW indicates wake capable */
970 	if (!acpi_has_method(device->handle, "_PRW"))
971 		return;
972 
973 	err = acpi_bus_extract_wakeup_device_power_package(device);
974 	if (err) {
975 		dev_err(&device->dev, "Unable to extract wakeup power resources");
976 		return;
977 	}
978 
979 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
980 	device->wakeup.prepare_count = 0;
981 	/*
982 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
983 	 * system for the ACPI device with the _PRW object.
984 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
985 	 * So it is necessary to call _DSW object first. Only when it is not
986 	 * present will the _PSW object used.
987 	 */
988 	err = acpi_device_sleep_wake(device, 0, 0, 0);
989 	if (err)
990 		pr_debug("error in _DSW or _PSW evaluation\n");
991 }
992 
993 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
994 {
995 	struct acpi_device_power_state *ps = &device->power.states[state];
996 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
997 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
998 	acpi_status status;
999 
1000 	INIT_LIST_HEAD(&ps->resources);
1001 
1002 	/* Evaluate "_PRx" to get referenced power resources */
1003 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1004 	if (ACPI_SUCCESS(status)) {
1005 		union acpi_object *package = buffer.pointer;
1006 
1007 		if (buffer.length && package
1008 		    && package->type == ACPI_TYPE_PACKAGE
1009 		    && package->package.count)
1010 			acpi_extract_power_resources(package, 0, &ps->resources);
1011 
1012 		ACPI_FREE(buffer.pointer);
1013 	}
1014 
1015 	/* Evaluate "_PSx" to see if we can do explicit sets */
1016 	pathname[2] = 'S';
1017 	if (acpi_has_method(device->handle, pathname))
1018 		ps->flags.explicit_set = 1;
1019 
1020 	/* State is valid if there are means to put the device into it. */
1021 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1022 		ps->flags.valid = 1;
1023 
1024 	ps->power = -1;		/* Unknown - driver assigned */
1025 	ps->latency = -1;	/* Unknown - driver assigned */
1026 }
1027 
1028 static void acpi_bus_get_power_flags(struct acpi_device *device)
1029 {
1030 	unsigned long long dsc = ACPI_STATE_D0;
1031 	u32 i;
1032 
1033 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1034 	if (!acpi_has_method(device->handle, "_PS0") &&
1035 	    !acpi_has_method(device->handle, "_PR0"))
1036 		return;
1037 
1038 	device->flags.power_manageable = 1;
1039 
1040 	/*
1041 	 * Power Management Flags
1042 	 */
1043 	if (acpi_has_method(device->handle, "_PSC"))
1044 		device->power.flags.explicit_get = 1;
1045 
1046 	if (acpi_has_method(device->handle, "_IRC"))
1047 		device->power.flags.inrush_current = 1;
1048 
1049 	if (acpi_has_method(device->handle, "_DSW"))
1050 		device->power.flags.dsw_present = 1;
1051 
1052 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1053 	device->power.state_for_enumeration = dsc;
1054 
1055 	/*
1056 	 * Enumerate supported power management states
1057 	 */
1058 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1059 		acpi_bus_init_power_state(device, i);
1060 
1061 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1062 
1063 	/* Set the defaults for D0 and D3hot (always supported). */
1064 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1065 	device->power.states[ACPI_STATE_D0].power = 100;
1066 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1067 
1068 	/*
1069 	 * Use power resources only if the D0 list of them is populated, because
1070 	 * some platforms may provide _PR3 only to indicate D3cold support and
1071 	 * in those cases the power resources list returned by it may be bogus.
1072 	 */
1073 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1074 		device->power.flags.power_resources = 1;
1075 		/*
1076 		 * D3cold is supported if the D3hot list of power resources is
1077 		 * not empty.
1078 		 */
1079 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1080 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1081 	}
1082 
1083 	if (acpi_bus_init_power(device))
1084 		device->flags.power_manageable = 0;
1085 }
1086 
1087 static void acpi_bus_get_flags(struct acpi_device *device)
1088 {
1089 	/* Presence of _STA indicates 'dynamic_status' */
1090 	if (acpi_has_method(device->handle, "_STA"))
1091 		device->flags.dynamic_status = 1;
1092 
1093 	/* Presence of _RMV indicates 'removable' */
1094 	if (acpi_has_method(device->handle, "_RMV"))
1095 		device->flags.removable = 1;
1096 
1097 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1098 	if (acpi_has_method(device->handle, "_EJD") ||
1099 	    acpi_has_method(device->handle, "_EJ0"))
1100 		device->flags.ejectable = 1;
1101 }
1102 
1103 static void acpi_device_get_busid(struct acpi_device *device)
1104 {
1105 	char bus_id[5] = { '?', 0 };
1106 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1107 	int i = 0;
1108 
1109 	/*
1110 	 * Bus ID
1111 	 * ------
1112 	 * The device's Bus ID is simply the object name.
1113 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1114 	 */
1115 	if (!acpi_dev_parent(device)) {
1116 		strcpy(device->pnp.bus_id, "ACPI");
1117 		return;
1118 	}
1119 
1120 	switch (device->device_type) {
1121 	case ACPI_BUS_TYPE_POWER_BUTTON:
1122 		strcpy(device->pnp.bus_id, "PWRF");
1123 		break;
1124 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1125 		strcpy(device->pnp.bus_id, "SLPF");
1126 		break;
1127 	case ACPI_BUS_TYPE_ECDT_EC:
1128 		strcpy(device->pnp.bus_id, "ECDT");
1129 		break;
1130 	default:
1131 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1132 		/* Clean up trailing underscores (if any) */
1133 		for (i = 3; i > 1; i--) {
1134 			if (bus_id[i] == '_')
1135 				bus_id[i] = '\0';
1136 			else
1137 				break;
1138 		}
1139 		strcpy(device->pnp.bus_id, bus_id);
1140 		break;
1141 	}
1142 }
1143 
1144 /*
1145  * acpi_ata_match - see if an acpi object is an ATA device
1146  *
1147  * If an acpi object has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ATA device.
1149  */
1150 bool acpi_ata_match(acpi_handle handle)
1151 {
1152 	return acpi_has_method(handle, "_GTF") ||
1153 	       acpi_has_method(handle, "_GTM") ||
1154 	       acpi_has_method(handle, "_STM") ||
1155 	       acpi_has_method(handle, "_SDD");
1156 }
1157 
1158 /*
1159  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1160  *
1161  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1162  * then we can safely call it an ejectable drive bay
1163  */
1164 bool acpi_bay_match(acpi_handle handle)
1165 {
1166 	acpi_handle phandle;
1167 
1168 	if (!acpi_has_method(handle, "_EJ0"))
1169 		return false;
1170 	if (acpi_ata_match(handle))
1171 		return true;
1172 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1173 		return false;
1174 
1175 	return acpi_ata_match(phandle);
1176 }
1177 
1178 bool acpi_device_is_battery(struct acpi_device *adev)
1179 {
1180 	struct acpi_hardware_id *hwid;
1181 
1182 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1183 		if (!strcmp("PNP0C0A", hwid->id))
1184 			return true;
1185 
1186 	return false;
1187 }
1188 
1189 static bool is_ejectable_bay(struct acpi_device *adev)
1190 {
1191 	acpi_handle handle = adev->handle;
1192 
1193 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1194 		return true;
1195 
1196 	return acpi_bay_match(handle);
1197 }
1198 
1199 /*
1200  * acpi_dock_match - see if an acpi object has a _DCK method
1201  */
1202 bool acpi_dock_match(acpi_handle handle)
1203 {
1204 	return acpi_has_method(handle, "_DCK");
1205 }
1206 
1207 static acpi_status
1208 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1209 			  void **return_value)
1210 {
1211 	long *cap = context;
1212 
1213 	if (acpi_has_method(handle, "_BCM") &&
1214 	    acpi_has_method(handle, "_BCL")) {
1215 		acpi_handle_debug(handle, "Found generic backlight support\n");
1216 		*cap |= ACPI_VIDEO_BACKLIGHT;
1217 		/* We have backlight support, no need to scan further */
1218 		return AE_CTRL_TERMINATE;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /* Returns true if the ACPI object is a video device which can be
1224  * handled by video.ko.
1225  * The device will get a Linux specific CID added in scan.c to
1226  * identify the device as an ACPI graphics device
1227  * Be aware that the graphics device may not be physically present
1228  * Use acpi_video_get_capabilities() to detect general ACPI video
1229  * capabilities of present cards
1230  */
1231 long acpi_is_video_device(acpi_handle handle)
1232 {
1233 	long video_caps = 0;
1234 
1235 	/* Is this device able to support video switching ? */
1236 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1237 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1238 
1239 	/* Is this device able to retrieve a video ROM ? */
1240 	if (acpi_has_method(handle, "_ROM"))
1241 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1242 
1243 	/* Is this device able to configure which video head to be POSTed ? */
1244 	if (acpi_has_method(handle, "_VPO") &&
1245 	    acpi_has_method(handle, "_GPD") &&
1246 	    acpi_has_method(handle, "_SPD"))
1247 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1248 
1249 	/* Only check for backlight functionality if one of the above hit. */
1250 	if (video_caps)
1251 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1252 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1253 				    &video_caps, NULL);
1254 
1255 	return video_caps;
1256 }
1257 EXPORT_SYMBOL(acpi_is_video_device);
1258 
1259 const char *acpi_device_hid(struct acpi_device *device)
1260 {
1261 	struct acpi_hardware_id *hid;
1262 
1263 	if (list_empty(&device->pnp.ids))
1264 		return dummy_hid;
1265 
1266 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1267 	return hid->id;
1268 }
1269 EXPORT_SYMBOL(acpi_device_hid);
1270 
1271 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1272 {
1273 	struct acpi_hardware_id *id;
1274 
1275 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1276 	if (!id)
1277 		return;
1278 
1279 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1280 	if (!id->id) {
1281 		kfree(id);
1282 		return;
1283 	}
1284 
1285 	list_add_tail(&id->list, &pnp->ids);
1286 	pnp->type.hardware_id = 1;
1287 }
1288 
1289 /*
1290  * Old IBM workstations have a DSDT bug wherein the SMBus object
1291  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1292  * prefix.  Work around this.
1293  */
1294 static bool acpi_ibm_smbus_match(acpi_handle handle)
1295 {
1296 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1297 	struct acpi_buffer path = { sizeof(node_name), node_name };
1298 
1299 	if (!dmi_name_in_vendors("IBM"))
1300 		return false;
1301 
1302 	/* Look for SMBS object */
1303 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1304 	    strcmp("SMBS", path.pointer))
1305 		return false;
1306 
1307 	/* Does it have the necessary (but misnamed) methods? */
1308 	if (acpi_has_method(handle, "SBI") &&
1309 	    acpi_has_method(handle, "SBR") &&
1310 	    acpi_has_method(handle, "SBW"))
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
1316 static bool acpi_object_is_system_bus(acpi_handle handle)
1317 {
1318 	acpi_handle tmp;
1319 
1320 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1321 	    tmp == handle)
1322 		return true;
1323 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1324 	    tmp == handle)
1325 		return true;
1326 
1327 	return false;
1328 }
1329 
1330 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1331 			     int device_type)
1332 {
1333 	struct acpi_device_info *info = NULL;
1334 	struct acpi_pnp_device_id_list *cid_list;
1335 	int i;
1336 
1337 	switch (device_type) {
1338 	case ACPI_BUS_TYPE_DEVICE:
1339 		if (handle == ACPI_ROOT_OBJECT) {
1340 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1341 			break;
1342 		}
1343 
1344 		acpi_get_object_info(handle, &info);
1345 		if (!info) {
1346 			pr_err("%s: Error reading device info\n", __func__);
1347 			return;
1348 		}
1349 
1350 		if (info->valid & ACPI_VALID_HID) {
1351 			acpi_add_id(pnp, info->hardware_id.string);
1352 			pnp->type.platform_id = 1;
1353 		}
1354 		if (info->valid & ACPI_VALID_CID) {
1355 			cid_list = &info->compatible_id_list;
1356 			for (i = 0; i < cid_list->count; i++)
1357 				acpi_add_id(pnp, cid_list->ids[i].string);
1358 		}
1359 		if (info->valid & ACPI_VALID_ADR) {
1360 			pnp->bus_address = info->address;
1361 			pnp->type.bus_address = 1;
1362 		}
1363 		if (info->valid & ACPI_VALID_UID)
1364 			pnp->unique_id = kstrdup(info->unique_id.string,
1365 							GFP_KERNEL);
1366 		if (info->valid & ACPI_VALID_CLS)
1367 			acpi_add_id(pnp, info->class_code.string);
1368 
1369 		kfree(info);
1370 
1371 		/*
1372 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1373 		 * synthetic HIDs to make sure drivers can find them.
1374 		 */
1375 		if (acpi_is_video_device(handle)) {
1376 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1377 			pnp->type.backlight = 1;
1378 			break;
1379 		}
1380 		if (acpi_bay_match(handle))
1381 			acpi_add_id(pnp, ACPI_BAY_HID);
1382 		else if (acpi_dock_match(handle))
1383 			acpi_add_id(pnp, ACPI_DOCK_HID);
1384 		else if (acpi_ibm_smbus_match(handle))
1385 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1386 		else if (list_empty(&pnp->ids) &&
1387 			 acpi_object_is_system_bus(handle)) {
1388 			/* \_SB, \_TZ, LNXSYBUS */
1389 			acpi_add_id(pnp, ACPI_BUS_HID);
1390 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1391 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1392 		}
1393 
1394 		break;
1395 	case ACPI_BUS_TYPE_POWER:
1396 		acpi_add_id(pnp, ACPI_POWER_HID);
1397 		break;
1398 	case ACPI_BUS_TYPE_PROCESSOR:
1399 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1400 		break;
1401 	case ACPI_BUS_TYPE_THERMAL:
1402 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1403 		break;
1404 	case ACPI_BUS_TYPE_POWER_BUTTON:
1405 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1406 		break;
1407 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1408 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1409 		break;
1410 	case ACPI_BUS_TYPE_ECDT_EC:
1411 		acpi_add_id(pnp, ACPI_ECDT_HID);
1412 		break;
1413 	}
1414 }
1415 
1416 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1417 {
1418 	struct acpi_hardware_id *id, *tmp;
1419 
1420 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1421 		kfree_const(id->id);
1422 		kfree(id);
1423 	}
1424 	kfree(pnp->unique_id);
1425 }
1426 
1427 /**
1428  * acpi_dma_supported - Check DMA support for the specified device.
1429  * @adev: The pointer to acpi device
1430  *
1431  * Return false if DMA is not supported. Otherwise, return true
1432  */
1433 bool acpi_dma_supported(const struct acpi_device *adev)
1434 {
1435 	if (!adev)
1436 		return false;
1437 
1438 	if (adev->flags.cca_seen)
1439 		return true;
1440 
1441 	/*
1442 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1443 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1444 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1445 	*/
1446 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1447 		return true;
1448 
1449 	return false;
1450 }
1451 
1452 /**
1453  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1454  * @adev: The pointer to acpi device
1455  *
1456  * Return enum dev_dma_attr.
1457  */
1458 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1459 {
1460 	if (!acpi_dma_supported(adev))
1461 		return DEV_DMA_NOT_SUPPORTED;
1462 
1463 	if (adev->flags.coherent_dma)
1464 		return DEV_DMA_COHERENT;
1465 	else
1466 		return DEV_DMA_NON_COHERENT;
1467 }
1468 
1469 /**
1470  * acpi_dma_get_range() - Get device DMA parameters.
1471  *
1472  * @dev: device to configure
1473  * @map: pointer to DMA ranges result
1474  *
1475  * Evaluate DMA regions and return pointer to DMA regions on
1476  * parsing success; it does not update the passed in values on failure.
1477  *
1478  * Return 0 on success, < 0 on failure.
1479  */
1480 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1481 {
1482 	struct acpi_device *adev;
1483 	LIST_HEAD(list);
1484 	struct resource_entry *rentry;
1485 	int ret;
1486 	struct device *dma_dev = dev;
1487 	struct bus_dma_region *r;
1488 
1489 	/*
1490 	 * Walk the device tree chasing an ACPI companion with a _DMA
1491 	 * object while we go. Stop if we find a device with an ACPI
1492 	 * companion containing a _DMA method.
1493 	 */
1494 	do {
1495 		adev = ACPI_COMPANION(dma_dev);
1496 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1497 			break;
1498 
1499 		dma_dev = dma_dev->parent;
1500 	} while (dma_dev);
1501 
1502 	if (!dma_dev)
1503 		return -ENODEV;
1504 
1505 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1506 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1507 		return -EINVAL;
1508 	}
1509 
1510 	ret = acpi_dev_get_dma_resources(adev, &list);
1511 	if (ret > 0) {
1512 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1513 		if (!r) {
1514 			ret = -ENOMEM;
1515 			goto out;
1516 		}
1517 
1518 		*map = r;
1519 
1520 		list_for_each_entry(rentry, &list, node) {
1521 			if (rentry->res->start >= rentry->res->end) {
1522 				kfree(*map);
1523 				*map = NULL;
1524 				ret = -EINVAL;
1525 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1526 				goto out;
1527 			}
1528 
1529 			r->cpu_start = rentry->res->start;
1530 			r->dma_start = rentry->res->start - rentry->offset;
1531 			r->size = resource_size(rentry->res);
1532 			r->offset = rentry->offset;
1533 			r++;
1534 		}
1535 	}
1536  out:
1537 	acpi_dev_free_resource_list(&list);
1538 
1539 	return ret >= 0 ? 0 : ret;
1540 }
1541 
1542 #ifdef CONFIG_IOMMU_API
1543 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1544 			   struct fwnode_handle *fwnode,
1545 			   const struct iommu_ops *ops)
1546 {
1547 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1548 
1549 	if (!ret)
1550 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1551 
1552 	return ret;
1553 }
1554 
1555 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1556 {
1557 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1558 
1559 	return fwspec ? fwspec->ops : NULL;
1560 }
1561 
1562 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1563 						       const u32 *id_in)
1564 {
1565 	int err;
1566 	const struct iommu_ops *ops;
1567 
1568 	/*
1569 	 * If we already translated the fwspec there is nothing left to do,
1570 	 * return the iommu_ops.
1571 	 */
1572 	ops = acpi_iommu_fwspec_ops(dev);
1573 	if (ops)
1574 		return ops;
1575 
1576 	err = iort_iommu_configure_id(dev, id_in);
1577 	if (err && err != -EPROBE_DEFER)
1578 		err = viot_iommu_configure(dev);
1579 
1580 	/*
1581 	 * If we have reason to believe the IOMMU driver missed the initial
1582 	 * iommu_probe_device() call for dev, replay it to get things in order.
1583 	 */
1584 	if (!err && dev->bus && !device_iommu_mapped(dev))
1585 		err = iommu_probe_device(dev);
1586 
1587 	/* Ignore all other errors apart from EPROBE_DEFER */
1588 	if (err == -EPROBE_DEFER) {
1589 		return ERR_PTR(err);
1590 	} else if (err) {
1591 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1592 		return NULL;
1593 	}
1594 	return acpi_iommu_fwspec_ops(dev);
1595 }
1596 
1597 #else /* !CONFIG_IOMMU_API */
1598 
1599 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1600 			   struct fwnode_handle *fwnode,
1601 			   const struct iommu_ops *ops)
1602 {
1603 	return -ENODEV;
1604 }
1605 
1606 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1607 						       const u32 *id_in)
1608 {
1609 	return NULL;
1610 }
1611 
1612 #endif /* !CONFIG_IOMMU_API */
1613 
1614 /**
1615  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1616  * @dev: The pointer to the device
1617  * @attr: device dma attributes
1618  * @input_id: input device id const value pointer
1619  */
1620 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1621 			  const u32 *input_id)
1622 {
1623 	const struct iommu_ops *iommu;
1624 
1625 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1626 		set_dma_ops(dev, &dma_dummy_ops);
1627 		return 0;
1628 	}
1629 
1630 	acpi_arch_dma_setup(dev);
1631 
1632 	iommu = acpi_iommu_configure_id(dev, input_id);
1633 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1634 		return -EPROBE_DEFER;
1635 
1636 	arch_setup_dma_ops(dev, 0, U64_MAX,
1637 				iommu, attr == DEV_DMA_COHERENT);
1638 
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1642 
1643 static void acpi_init_coherency(struct acpi_device *adev)
1644 {
1645 	unsigned long long cca = 0;
1646 	acpi_status status;
1647 	struct acpi_device *parent = acpi_dev_parent(adev);
1648 
1649 	if (parent && parent->flags.cca_seen) {
1650 		/*
1651 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1652 		 * already saw one.
1653 		 */
1654 		adev->flags.cca_seen = 1;
1655 		cca = parent->flags.coherent_dma;
1656 	} else {
1657 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1658 					       NULL, &cca);
1659 		if (ACPI_SUCCESS(status))
1660 			adev->flags.cca_seen = 1;
1661 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1662 			/*
1663 			 * If architecture does not specify that _CCA is
1664 			 * required for DMA-able devices (e.g. x86),
1665 			 * we default to _CCA=1.
1666 			 */
1667 			cca = 1;
1668 		else
1669 			acpi_handle_debug(adev->handle,
1670 					  "ACPI device is missing _CCA.\n");
1671 	}
1672 
1673 	adev->flags.coherent_dma = cca;
1674 }
1675 
1676 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1677 {
1678 	bool *is_serial_bus_slave_p = data;
1679 
1680 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1681 		return 1;
1682 
1683 	*is_serial_bus_slave_p = true;
1684 
1685 	 /* no need to do more checking */
1686 	return -1;
1687 }
1688 
1689 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1690 {
1691 	struct acpi_device *parent = acpi_dev_parent(device);
1692 	static const struct acpi_device_id indirect_io_hosts[] = {
1693 		{"HISI0191", 0},
1694 		{}
1695 	};
1696 
1697 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1698 }
1699 
1700 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1701 {
1702 	struct list_head resource_list;
1703 	bool is_serial_bus_slave = false;
1704 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1705 	/*
1706 	 * These devices have multiple SerialBus resources and a client
1707 	 * device must be instantiated for each of them, each with
1708 	 * its own device id.
1709 	 * Normally we only instantiate one client device for the first
1710 	 * resource, using the ACPI HID as id. These special cases are handled
1711 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1712 	 * knows which client device id to use for each resource.
1713 	 */
1714 		{"BSG1160", },
1715 		{"BSG2150", },
1716 		{"CSC3551", },
1717 		{"CSC3556", },
1718 		{"INT33FE", },
1719 		{"INT3515", },
1720 		/* Non-conforming _HID for Cirrus Logic already released */
1721 		{"CLSA0100", },
1722 		{"CLSA0101", },
1723 	/*
1724 	 * Some ACPI devs contain SerialBus resources even though they are not
1725 	 * attached to a serial bus at all.
1726 	 */
1727 		{"MSHW0028", },
1728 	/*
1729 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1730 	 * expects a regular tty cdev to be created (instead of the in kernel
1731 	 * serdev) and which have a kernel driver which expects a platform_dev
1732 	 * such as the rfkill-gpio driver.
1733 	 */
1734 		{"BCM4752", },
1735 		{"LNV4752", },
1736 		{}
1737 	};
1738 
1739 	if (acpi_is_indirect_io_slave(device))
1740 		return true;
1741 
1742 	/* Macs use device properties in lieu of _CRS resources */
1743 	if (x86_apple_machine &&
1744 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1745 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1746 	     fwnode_property_present(&device->fwnode, "baud")))
1747 		return true;
1748 
1749 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1750 		return false;
1751 
1752 	INIT_LIST_HEAD(&resource_list);
1753 	acpi_dev_get_resources(device, &resource_list,
1754 			       acpi_check_serial_bus_slave,
1755 			       &is_serial_bus_slave);
1756 	acpi_dev_free_resource_list(&resource_list);
1757 
1758 	return is_serial_bus_slave;
1759 }
1760 
1761 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1762 			     int type, void (*release)(struct device *))
1763 {
1764 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1765 
1766 	INIT_LIST_HEAD(&device->pnp.ids);
1767 	device->device_type = type;
1768 	device->handle = handle;
1769 	device->dev.parent = parent ? &parent->dev : NULL;
1770 	device->dev.release = release;
1771 	device->dev.bus = &acpi_bus_type;
1772 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1773 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1774 	acpi_device_get_busid(device);
1775 	acpi_set_pnp_ids(handle, &device->pnp, type);
1776 	acpi_init_properties(device);
1777 	acpi_bus_get_flags(device);
1778 	device->flags.match_driver = false;
1779 	device->flags.initialized = true;
1780 	device->flags.enumeration_by_parent =
1781 		acpi_device_enumeration_by_parent(device);
1782 	acpi_device_clear_enumerated(device);
1783 	device_initialize(&device->dev);
1784 	dev_set_uevent_suppress(&device->dev, true);
1785 	acpi_init_coherency(device);
1786 }
1787 
1788 static void acpi_scan_dep_init(struct acpi_device *adev)
1789 {
1790 	struct acpi_dep_data *dep;
1791 
1792 	list_for_each_entry(dep, &acpi_dep_list, node) {
1793 		if (dep->consumer == adev->handle) {
1794 			if (dep->honor_dep)
1795 				adev->flags.honor_deps = 1;
1796 
1797 			adev->dep_unmet++;
1798 		}
1799 	}
1800 }
1801 
1802 void acpi_device_add_finalize(struct acpi_device *device)
1803 {
1804 	dev_set_uevent_suppress(&device->dev, false);
1805 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1806 }
1807 
1808 static void acpi_scan_init_status(struct acpi_device *adev)
1809 {
1810 	if (acpi_bus_get_status(adev))
1811 		acpi_set_device_status(adev, 0);
1812 }
1813 
1814 static int acpi_add_single_object(struct acpi_device **child,
1815 				  acpi_handle handle, int type, bool dep_init)
1816 {
1817 	struct acpi_device *device;
1818 	bool release_dep_lock = false;
1819 	int result;
1820 
1821 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1822 	if (!device)
1823 		return -ENOMEM;
1824 
1825 	acpi_init_device_object(device, handle, type, acpi_device_release);
1826 	/*
1827 	 * Getting the status is delayed till here so that we can call
1828 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1829 	 * this must be done before the get power-/wakeup_dev-flags calls.
1830 	 */
1831 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1832 		if (dep_init) {
1833 			mutex_lock(&acpi_dep_list_lock);
1834 			/*
1835 			 * Hold the lock until the acpi_tie_acpi_dev() call
1836 			 * below to prevent concurrent acpi_scan_clear_dep()
1837 			 * from deleting a dependency list entry without
1838 			 * updating dep_unmet for the device.
1839 			 */
1840 			release_dep_lock = true;
1841 			acpi_scan_dep_init(device);
1842 		}
1843 		acpi_scan_init_status(device);
1844 	}
1845 
1846 	acpi_bus_get_power_flags(device);
1847 	acpi_bus_get_wakeup_device_flags(device);
1848 
1849 	result = acpi_tie_acpi_dev(device);
1850 
1851 	if (release_dep_lock)
1852 		mutex_unlock(&acpi_dep_list_lock);
1853 
1854 	if (!result)
1855 		result = acpi_device_add(device);
1856 
1857 	if (result) {
1858 		acpi_device_release(&device->dev);
1859 		return result;
1860 	}
1861 
1862 	acpi_power_add_remove_device(device, true);
1863 	acpi_device_add_finalize(device);
1864 
1865 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1866 			  dev_name(&device->dev), device->dev.parent ?
1867 				dev_name(device->dev.parent) : "(null)");
1868 
1869 	*child = device;
1870 	return 0;
1871 }
1872 
1873 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1874 					    void *context)
1875 {
1876 	struct resource *res = context;
1877 
1878 	if (acpi_dev_resource_memory(ares, res))
1879 		return AE_CTRL_TERMINATE;
1880 
1881 	return AE_OK;
1882 }
1883 
1884 static bool acpi_device_should_be_hidden(acpi_handle handle)
1885 {
1886 	acpi_status status;
1887 	struct resource res;
1888 
1889 	/* Check if it should ignore the UART device */
1890 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1891 		return false;
1892 
1893 	/*
1894 	 * The UART device described in SPCR table is assumed to have only one
1895 	 * memory resource present. So we only look for the first one here.
1896 	 */
1897 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1898 				     acpi_get_resource_memory, &res);
1899 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1900 		return false;
1901 
1902 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1903 			 &res.start);
1904 
1905 	return true;
1906 }
1907 
1908 bool acpi_device_is_present(const struct acpi_device *adev)
1909 {
1910 	return adev->status.present || adev->status.functional;
1911 }
1912 
1913 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1914 				       const char *idstr,
1915 				       const struct acpi_device_id **matchid)
1916 {
1917 	const struct acpi_device_id *devid;
1918 
1919 	if (handler->match)
1920 		return handler->match(idstr, matchid);
1921 
1922 	for (devid = handler->ids; devid->id[0]; devid++)
1923 		if (!strcmp((char *)devid->id, idstr)) {
1924 			if (matchid)
1925 				*matchid = devid;
1926 
1927 			return true;
1928 		}
1929 
1930 	return false;
1931 }
1932 
1933 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1934 					const struct acpi_device_id **matchid)
1935 {
1936 	struct acpi_scan_handler *handler;
1937 
1938 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1939 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1940 			return handler;
1941 
1942 	return NULL;
1943 }
1944 
1945 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1946 {
1947 	if (!!hotplug->enabled == !!val)
1948 		return;
1949 
1950 	mutex_lock(&acpi_scan_lock);
1951 
1952 	hotplug->enabled = val;
1953 
1954 	mutex_unlock(&acpi_scan_lock);
1955 }
1956 
1957 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1958 {
1959 	struct acpi_hardware_id *hwid;
1960 
1961 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1962 		acpi_dock_add(adev);
1963 		return;
1964 	}
1965 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1966 		struct acpi_scan_handler *handler;
1967 
1968 		handler = acpi_scan_match_handler(hwid->id, NULL);
1969 		if (handler) {
1970 			adev->flags.hotplug_notify = true;
1971 			break;
1972 		}
1973 	}
1974 }
1975 
1976 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1977 {
1978 	struct acpi_handle_list dep_devices;
1979 	acpi_status status;
1980 	u32 count;
1981 	int i;
1982 
1983 	/*
1984 	 * Check for _HID here to avoid deferring the enumeration of:
1985 	 * 1. PCI devices.
1986 	 * 2. ACPI nodes describing USB ports.
1987 	 * Still, checking for _HID catches more then just these cases ...
1988 	 */
1989 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1990 	    !acpi_has_method(handle, "_HID"))
1991 		return 0;
1992 
1993 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1994 	if (ACPI_FAILURE(status)) {
1995 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1996 		return 0;
1997 	}
1998 
1999 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2000 		struct acpi_device_info *info;
2001 		struct acpi_dep_data *dep;
2002 		bool skip, honor_dep;
2003 
2004 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2005 		if (ACPI_FAILURE(status)) {
2006 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2007 			continue;
2008 		}
2009 
2010 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2011 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2012 		kfree(info);
2013 
2014 		if (skip)
2015 			continue;
2016 
2017 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2018 		if (!dep)
2019 			continue;
2020 
2021 		count++;
2022 
2023 		dep->supplier = dep_devices.handles[i];
2024 		dep->consumer = handle;
2025 		dep->honor_dep = honor_dep;
2026 
2027 		mutex_lock(&acpi_dep_list_lock);
2028 		list_add_tail(&dep->node , &acpi_dep_list);
2029 		mutex_unlock(&acpi_dep_list_lock);
2030 	}
2031 
2032 	return count;
2033 }
2034 
2035 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2036 				      struct acpi_device **adev_p)
2037 {
2038 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2039 	acpi_object_type acpi_type;
2040 	int type;
2041 
2042 	if (device)
2043 		goto out;
2044 
2045 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2046 		return AE_OK;
2047 
2048 	switch (acpi_type) {
2049 	case ACPI_TYPE_DEVICE:
2050 		if (acpi_device_should_be_hidden(handle))
2051 			return AE_OK;
2052 
2053 		/* Bail out if there are dependencies. */
2054 		if (acpi_scan_check_dep(handle, check_dep) > 0)
2055 			return AE_CTRL_DEPTH;
2056 
2057 		fallthrough;
2058 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2059 		type = ACPI_BUS_TYPE_DEVICE;
2060 		break;
2061 
2062 	case ACPI_TYPE_PROCESSOR:
2063 		type = ACPI_BUS_TYPE_PROCESSOR;
2064 		break;
2065 
2066 	case ACPI_TYPE_THERMAL:
2067 		type = ACPI_BUS_TYPE_THERMAL;
2068 		break;
2069 
2070 	case ACPI_TYPE_POWER:
2071 		acpi_add_power_resource(handle);
2072 		fallthrough;
2073 	default:
2074 		return AE_OK;
2075 	}
2076 
2077 	/*
2078 	 * If check_dep is true at this point, the device has no dependencies,
2079 	 * or the creation of the device object would have been postponed above.
2080 	 */
2081 	acpi_add_single_object(&device, handle, type, !check_dep);
2082 	if (!device)
2083 		return AE_CTRL_DEPTH;
2084 
2085 	acpi_scan_init_hotplug(device);
2086 
2087 out:
2088 	if (!*adev_p)
2089 		*adev_p = device;
2090 
2091 	return AE_OK;
2092 }
2093 
2094 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2095 					void *not_used, void **ret_p)
2096 {
2097 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2098 }
2099 
2100 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2101 					void *not_used, void **ret_p)
2102 {
2103 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2104 }
2105 
2106 static void acpi_default_enumeration(struct acpi_device *device)
2107 {
2108 	/*
2109 	 * Do not enumerate devices with enumeration_by_parent flag set as
2110 	 * they will be enumerated by their respective parents.
2111 	 */
2112 	if (!device->flags.enumeration_by_parent) {
2113 		acpi_create_platform_device(device, NULL);
2114 		acpi_device_set_enumerated(device);
2115 	} else {
2116 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2117 					     ACPI_RECONFIG_DEVICE_ADD, device);
2118 	}
2119 }
2120 
2121 static const struct acpi_device_id generic_device_ids[] = {
2122 	{ACPI_DT_NAMESPACE_HID, },
2123 	{"", },
2124 };
2125 
2126 static int acpi_generic_device_attach(struct acpi_device *adev,
2127 				      const struct acpi_device_id *not_used)
2128 {
2129 	/*
2130 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2131 	 * below can be unconditional.
2132 	 */
2133 	if (adev->data.of_compatible)
2134 		acpi_default_enumeration(adev);
2135 
2136 	return 1;
2137 }
2138 
2139 static struct acpi_scan_handler generic_device_handler = {
2140 	.ids = generic_device_ids,
2141 	.attach = acpi_generic_device_attach,
2142 };
2143 
2144 static int acpi_scan_attach_handler(struct acpi_device *device)
2145 {
2146 	struct acpi_hardware_id *hwid;
2147 	int ret = 0;
2148 
2149 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2150 		const struct acpi_device_id *devid;
2151 		struct acpi_scan_handler *handler;
2152 
2153 		handler = acpi_scan_match_handler(hwid->id, &devid);
2154 		if (handler) {
2155 			if (!handler->attach) {
2156 				device->pnp.type.platform_id = 0;
2157 				continue;
2158 			}
2159 			device->handler = handler;
2160 			ret = handler->attach(device, devid);
2161 			if (ret > 0)
2162 				break;
2163 
2164 			device->handler = NULL;
2165 			if (ret < 0)
2166 				break;
2167 		}
2168 	}
2169 
2170 	return ret;
2171 }
2172 
2173 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2174 {
2175 	bool skip = !first_pass && device->flags.visited;
2176 	acpi_handle ejd;
2177 	int ret;
2178 
2179 	if (skip)
2180 		goto ok;
2181 
2182 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2183 		register_dock_dependent_device(device, ejd);
2184 
2185 	acpi_bus_get_status(device);
2186 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2187 	if (!acpi_dev_ready_for_enumeration(device)) {
2188 		device->flags.initialized = false;
2189 		acpi_device_clear_enumerated(device);
2190 		device->flags.power_manageable = 0;
2191 		return 0;
2192 	}
2193 	if (device->handler)
2194 		goto ok;
2195 
2196 	if (!device->flags.initialized) {
2197 		device->flags.power_manageable =
2198 			device->power.states[ACPI_STATE_D0].flags.valid;
2199 		if (acpi_bus_init_power(device))
2200 			device->flags.power_manageable = 0;
2201 
2202 		device->flags.initialized = true;
2203 	} else if (device->flags.visited) {
2204 		goto ok;
2205 	}
2206 
2207 	ret = acpi_scan_attach_handler(device);
2208 	if (ret < 0)
2209 		return 0;
2210 
2211 	device->flags.match_driver = true;
2212 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2213 		acpi_device_set_enumerated(device);
2214 		goto ok;
2215 	}
2216 
2217 	ret = device_attach(&device->dev);
2218 	if (ret < 0)
2219 		return 0;
2220 
2221 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2222 		acpi_default_enumeration(device);
2223 	else
2224 		acpi_device_set_enumerated(device);
2225 
2226 ok:
2227 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2228 
2229 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2230 		device->handler->hotplug.notify_online(device);
2231 
2232 	return 0;
2233 }
2234 
2235 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2236 {
2237 	struct acpi_device **adev_p = data;
2238 	struct acpi_device *adev = *adev_p;
2239 
2240 	/*
2241 	 * If we're passed a 'previous' consumer device then we need to skip
2242 	 * any consumers until we meet the previous one, and then NULL @data
2243 	 * so the next one can be returned.
2244 	 */
2245 	if (adev) {
2246 		if (dep->consumer == adev->handle)
2247 			*adev_p = NULL;
2248 
2249 		return 0;
2250 	}
2251 
2252 	adev = acpi_get_acpi_dev(dep->consumer);
2253 	if (adev) {
2254 		*(struct acpi_device **)data = adev;
2255 		return 1;
2256 	}
2257 	/* Continue parsing if the device object is not present. */
2258 	return 0;
2259 }
2260 
2261 struct acpi_scan_clear_dep_work {
2262 	struct work_struct work;
2263 	struct acpi_device *adev;
2264 };
2265 
2266 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2267 {
2268 	struct acpi_scan_clear_dep_work *cdw;
2269 
2270 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2271 
2272 	acpi_scan_lock_acquire();
2273 	acpi_bus_attach(cdw->adev, (void *)true);
2274 	acpi_scan_lock_release();
2275 
2276 	acpi_dev_put(cdw->adev);
2277 	kfree(cdw);
2278 }
2279 
2280 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2281 {
2282 	struct acpi_scan_clear_dep_work *cdw;
2283 
2284 	if (adev->dep_unmet)
2285 		return false;
2286 
2287 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2288 	if (!cdw)
2289 		return false;
2290 
2291 	cdw->adev = adev;
2292 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2293 	/*
2294 	 * Since the work function may block on the lock until the entire
2295 	 * initial enumeration of devices is complete, put it into the unbound
2296 	 * workqueue.
2297 	 */
2298 	queue_work(system_unbound_wq, &cdw->work);
2299 
2300 	return true;
2301 }
2302 
2303 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2304 {
2305 	list_del(&dep->node);
2306 	kfree(dep);
2307 }
2308 
2309 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2310 {
2311 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2312 
2313 	if (adev) {
2314 		adev->dep_unmet--;
2315 		if (!acpi_scan_clear_dep_queue(adev))
2316 			acpi_dev_put(adev);
2317 	}
2318 
2319 	if (dep->free_when_met)
2320 		acpi_scan_delete_dep_data(dep);
2321 	else
2322 		dep->met = true;
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2329  * @handle:	The ACPI handle of the supplier device
2330  * @callback:	Pointer to the callback function to apply
2331  * @data:	Pointer to some data to pass to the callback
2332  *
2333  * The return value of the callback determines this function's behaviour. If 0
2334  * is returned we continue to iterate over acpi_dep_list. If a positive value
2335  * is returned then the loop is broken but this function returns 0. If a
2336  * negative value is returned by the callback then the loop is broken and that
2337  * value is returned as the final error.
2338  */
2339 static int acpi_walk_dep_device_list(acpi_handle handle,
2340 				int (*callback)(struct acpi_dep_data *, void *),
2341 				void *data)
2342 {
2343 	struct acpi_dep_data *dep, *tmp;
2344 	int ret = 0;
2345 
2346 	mutex_lock(&acpi_dep_list_lock);
2347 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2348 		if (dep->supplier == handle) {
2349 			ret = callback(dep, data);
2350 			if (ret)
2351 				break;
2352 		}
2353 	}
2354 	mutex_unlock(&acpi_dep_list_lock);
2355 
2356 	return ret > 0 ? 0 : ret;
2357 }
2358 
2359 /**
2360  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2361  * @supplier: Pointer to the supplier &struct acpi_device
2362  *
2363  * Clear dependencies on the given device.
2364  */
2365 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2366 {
2367 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2368 }
2369 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2370 
2371 /**
2372  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2373  * @device: Pointer to the &struct acpi_device to check
2374  *
2375  * Check if the device is present and has no unmet dependencies.
2376  *
2377  * Return true if the device is ready for enumeratino. Otherwise, return false.
2378  */
2379 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2380 {
2381 	if (device->flags.honor_deps && device->dep_unmet)
2382 		return false;
2383 
2384 	return acpi_device_is_present(device);
2385 }
2386 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2387 
2388 /**
2389  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2390  * @supplier: Pointer to the dependee device
2391  * @start: Pointer to the current dependent device
2392  *
2393  * Returns the next &struct acpi_device which declares itself dependent on
2394  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2395  *
2396  * If the returned adev is not passed as @start to this function, the caller is
2397  * responsible for putting the reference to adev when it is no longer needed.
2398  */
2399 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2400 						   struct acpi_device *start)
2401 {
2402 	struct acpi_device *adev = start;
2403 
2404 	acpi_walk_dep_device_list(supplier->handle,
2405 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2406 
2407 	acpi_dev_put(start);
2408 
2409 	if (adev == start)
2410 		return NULL;
2411 
2412 	return adev;
2413 }
2414 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2415 
2416 static void acpi_scan_postponed_branch(acpi_handle handle)
2417 {
2418 	struct acpi_device *adev = NULL;
2419 
2420 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2421 		return;
2422 
2423 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2424 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2425 	acpi_bus_attach(adev, NULL);
2426 }
2427 
2428 static void acpi_scan_postponed(void)
2429 {
2430 	struct acpi_dep_data *dep, *tmp;
2431 
2432 	mutex_lock(&acpi_dep_list_lock);
2433 
2434 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2435 		acpi_handle handle = dep->consumer;
2436 
2437 		/*
2438 		 * In case there are multiple acpi_dep_list entries with the
2439 		 * same consumer, skip the current entry if the consumer device
2440 		 * object corresponding to it is present already.
2441 		 */
2442 		if (!acpi_fetch_acpi_dev(handle)) {
2443 			/*
2444 			 * Even though the lock is released here, tmp is
2445 			 * guaranteed to be valid, because none of the list
2446 			 * entries following dep is marked as "free when met"
2447 			 * and so they cannot be deleted.
2448 			 */
2449 			mutex_unlock(&acpi_dep_list_lock);
2450 
2451 			acpi_scan_postponed_branch(handle);
2452 
2453 			mutex_lock(&acpi_dep_list_lock);
2454 		}
2455 
2456 		if (dep->met)
2457 			acpi_scan_delete_dep_data(dep);
2458 		else
2459 			dep->free_when_met = true;
2460 	}
2461 
2462 	mutex_unlock(&acpi_dep_list_lock);
2463 }
2464 
2465 /**
2466  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2467  * @handle: Root of the namespace scope to scan.
2468  *
2469  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2470  * found devices.
2471  *
2472  * If no devices were found, -ENODEV is returned, but it does not mean that
2473  * there has been a real error.  There just have been no suitable ACPI objects
2474  * in the table trunk from which the kernel could create a device and add an
2475  * appropriate driver.
2476  *
2477  * Must be called under acpi_scan_lock.
2478  */
2479 int acpi_bus_scan(acpi_handle handle)
2480 {
2481 	struct acpi_device *device = NULL;
2482 
2483 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2484 
2485 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2486 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2487 				    acpi_bus_check_add_1, NULL, NULL,
2488 				    (void **)&device);
2489 
2490 	if (!device)
2491 		return -ENODEV;
2492 
2493 	acpi_bus_attach(device, (void *)true);
2494 
2495 	/* Pass 2: Enumerate all of the remaining devices. */
2496 
2497 	acpi_scan_postponed();
2498 
2499 	return 0;
2500 }
2501 EXPORT_SYMBOL(acpi_bus_scan);
2502 
2503 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2504 {
2505 	struct acpi_scan_handler *handler = adev->handler;
2506 
2507 	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2508 
2509 	adev->flags.match_driver = false;
2510 	if (handler) {
2511 		if (handler->detach)
2512 			handler->detach(adev);
2513 
2514 		adev->handler = NULL;
2515 	} else {
2516 		device_release_driver(&adev->dev);
2517 	}
2518 	/*
2519 	 * Most likely, the device is going away, so put it into D3cold before
2520 	 * that.
2521 	 */
2522 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2523 	adev->flags.initialized = false;
2524 	acpi_device_clear_enumerated(adev);
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2531  * @adev: Root of the ACPI namespace scope to walk.
2532  *
2533  * Must be called under acpi_scan_lock.
2534  */
2535 void acpi_bus_trim(struct acpi_device *adev)
2536 {
2537 	acpi_bus_trim_one(adev, NULL);
2538 }
2539 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2540 
2541 int acpi_bus_register_early_device(int type)
2542 {
2543 	struct acpi_device *device = NULL;
2544 	int result;
2545 
2546 	result = acpi_add_single_object(&device, NULL, type, false);
2547 	if (result)
2548 		return result;
2549 
2550 	device->flags.match_driver = true;
2551 	return device_attach(&device->dev);
2552 }
2553 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2554 
2555 static void acpi_bus_scan_fixed(void)
2556 {
2557 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2558 		struct acpi_device *adev = NULL;
2559 
2560 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2561 				       false);
2562 		if (adev) {
2563 			adev->flags.match_driver = true;
2564 			if (device_attach(&adev->dev) >= 0)
2565 				device_init_wakeup(&adev->dev, true);
2566 			else
2567 				dev_dbg(&adev->dev, "No driver\n");
2568 		}
2569 	}
2570 
2571 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2572 		struct acpi_device *adev = NULL;
2573 
2574 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2575 				       false);
2576 		if (adev) {
2577 			adev->flags.match_driver = true;
2578 			if (device_attach(&adev->dev) < 0)
2579 				dev_dbg(&adev->dev, "No driver\n");
2580 		}
2581 	}
2582 }
2583 
2584 static void __init acpi_get_spcr_uart_addr(void)
2585 {
2586 	acpi_status status;
2587 	struct acpi_table_spcr *spcr_ptr;
2588 
2589 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2590 				(struct acpi_table_header **)&spcr_ptr);
2591 	if (ACPI_FAILURE(status)) {
2592 		pr_warn("STAO table present, but SPCR is missing\n");
2593 		return;
2594 	}
2595 
2596 	spcr_uart_addr = spcr_ptr->serial_port.address;
2597 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2598 }
2599 
2600 static bool acpi_scan_initialized;
2601 
2602 void __init acpi_scan_init(void)
2603 {
2604 	acpi_status status;
2605 	struct acpi_table_stao *stao_ptr;
2606 
2607 	acpi_pci_root_init();
2608 	acpi_pci_link_init();
2609 	acpi_processor_init();
2610 	acpi_platform_init();
2611 	acpi_lpss_init();
2612 	acpi_apd_init();
2613 	acpi_cmos_rtc_init();
2614 	acpi_container_init();
2615 	acpi_memory_hotplug_init();
2616 	acpi_watchdog_init();
2617 	acpi_pnp_init();
2618 	acpi_int340x_thermal_init();
2619 	acpi_amba_init();
2620 	acpi_init_lpit();
2621 
2622 	acpi_scan_add_handler(&generic_device_handler);
2623 
2624 	/*
2625 	 * If there is STAO table, check whether it needs to ignore the UART
2626 	 * device in SPCR table.
2627 	 */
2628 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2629 				(struct acpi_table_header **)&stao_ptr);
2630 	if (ACPI_SUCCESS(status)) {
2631 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2632 			pr_info("STAO Name List not yet supported.\n");
2633 
2634 		if (stao_ptr->ignore_uart)
2635 			acpi_get_spcr_uart_addr();
2636 
2637 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2638 	}
2639 
2640 	acpi_gpe_apply_masked_gpes();
2641 	acpi_update_all_gpes();
2642 
2643 	/*
2644 	 * Although we call __add_memory() that is documented to require the
2645 	 * device_hotplug_lock, it is not necessary here because this is an
2646 	 * early code when userspace or any other code path cannot trigger
2647 	 * hotplug/hotunplug operations.
2648 	 */
2649 	mutex_lock(&acpi_scan_lock);
2650 	/*
2651 	 * Enumerate devices in the ACPI namespace.
2652 	 */
2653 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2654 		goto unlock;
2655 
2656 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2657 	if (!acpi_root)
2658 		goto unlock;
2659 
2660 	/* Fixed feature devices do not exist on HW-reduced platform */
2661 	if (!acpi_gbl_reduced_hardware)
2662 		acpi_bus_scan_fixed();
2663 
2664 	acpi_turn_off_unused_power_resources();
2665 
2666 	acpi_scan_initialized = true;
2667 
2668 unlock:
2669 	mutex_unlock(&acpi_scan_lock);
2670 }
2671 
2672 static struct acpi_probe_entry *ape;
2673 static int acpi_probe_count;
2674 static DEFINE_MUTEX(acpi_probe_mutex);
2675 
2676 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2677 				  const unsigned long end)
2678 {
2679 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2680 		if (!ape->probe_subtbl(header, end))
2681 			acpi_probe_count++;
2682 
2683 	return 0;
2684 }
2685 
2686 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2687 {
2688 	int count = 0;
2689 
2690 	if (acpi_disabled)
2691 		return 0;
2692 
2693 	mutex_lock(&acpi_probe_mutex);
2694 	for (ape = ap_head; nr; ape++, nr--) {
2695 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2696 			acpi_probe_count = 0;
2697 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2698 			count += acpi_probe_count;
2699 		} else {
2700 			int res;
2701 			res = acpi_table_parse(ape->id, ape->probe_table);
2702 			if (!res)
2703 				count++;
2704 		}
2705 	}
2706 	mutex_unlock(&acpi_probe_mutex);
2707 
2708 	return count;
2709 }
2710 
2711 static void acpi_table_events_fn(struct work_struct *work)
2712 {
2713 	acpi_scan_lock_acquire();
2714 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2715 	acpi_scan_lock_release();
2716 
2717 	kfree(work);
2718 }
2719 
2720 void acpi_scan_table_notify(void)
2721 {
2722 	struct work_struct *work;
2723 
2724 	if (!acpi_scan_initialized)
2725 		return;
2726 
2727 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2728 	if (!work)
2729 		return;
2730 
2731 	INIT_WORK(work, acpi_table_events_fn);
2732 	schedule_work(work);
2733 }
2734 
2735 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2736 {
2737 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2738 }
2739 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2740 
2741 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2742 {
2743 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2744 }
2745 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2746