xref: /linux/drivers/acpi/scan.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				int (*notify)(struct acpi_device *, u32),
77 				void (*uevent)(struct acpi_device *, u32))
78 {
79 	acpi_lock_hp_context();
80 	hp->notify = notify;
81 	hp->uevent = uevent;
82 	acpi_set_hp_context(adev, hp);
83 	acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86 
87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 	if (!handler)
90 		return -EINVAL;
91 
92 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 	return 0;
94 }
95 
96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 				       const char *hotplug_profile_name)
98 {
99 	int error;
100 
101 	error = acpi_scan_add_handler(handler);
102 	if (error)
103 		return error;
104 
105 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 	return 0;
107 }
108 
109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 	struct acpi_device_physical_node *pn;
112 	bool offline = true;
113 	char *envp[] = { "EVENT=offline", NULL };
114 
115 	/*
116 	 * acpi_container_offline() calls this for all of the container's
117 	 * children under the container's physical_node_lock lock.
118 	 */
119 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120 
121 	list_for_each_entry(pn, &adev->physical_node_list, node)
122 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 			if (uevent)
124 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125 
126 			offline = false;
127 			break;
128 		}
129 
130 	mutex_unlock(&adev->physical_node_lock);
131 	return offline;
132 }
133 
134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 				    void **ret_p)
136 {
137 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 	struct acpi_device_physical_node *pn;
139 	bool second_pass = (bool)data;
140 	acpi_status status = AE_OK;
141 
142 	if (!device)
143 		return AE_OK;
144 
145 	if (device->handler && !device->handler->hotplug.enabled) {
146 		*ret_p = &device->dev;
147 		return AE_SUPPORT;
148 	}
149 
150 	mutex_lock(&device->physical_node_lock);
151 
152 	list_for_each_entry(pn, &device->physical_node_list, node) {
153 		int ret;
154 
155 		if (second_pass) {
156 			/* Skip devices offlined by the first pass. */
157 			if (pn->put_online)
158 				continue;
159 		} else {
160 			pn->put_online = false;
161 		}
162 		ret = device_offline(pn->dev);
163 		if (ret >= 0) {
164 			pn->put_online = !ret;
165 		} else {
166 			*ret_p = pn->dev;
167 			if (second_pass) {
168 				status = AE_ERROR;
169 				break;
170 			}
171 		}
172 	}
173 
174 	mutex_unlock(&device->physical_node_lock);
175 
176 	return status;
177 }
178 
179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 				   void **ret_p)
181 {
182 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 	struct acpi_device_physical_node *pn;
184 
185 	if (!device)
186 		return AE_OK;
187 
188 	mutex_lock(&device->physical_node_lock);
189 
190 	list_for_each_entry(pn, &device->physical_node_list, node)
191 		if (pn->put_online) {
192 			device_online(pn->dev);
193 			pn->put_online = false;
194 		}
195 
196 	mutex_unlock(&device->physical_node_lock);
197 
198 	return AE_OK;
199 }
200 
201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 	acpi_handle handle = device->handle;
204 	struct device *errdev = NULL;
205 	acpi_status status;
206 
207 	/*
208 	 * Carry out two passes here and ignore errors in the first pass,
209 	 * because if the devices in question are memory blocks and
210 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 	 * that the other blocks depend on, but it is not known in advance which
212 	 * block holds them.
213 	 *
214 	 * If the first pass is successful, the second one isn't needed, though.
215 	 */
216 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 				     NULL, acpi_bus_offline, (void *)false,
218 				     (void **)&errdev);
219 	if (status == AE_SUPPORT) {
220 		dev_warn(errdev, "Offline disabled.\n");
221 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 				    acpi_bus_online, NULL, NULL, NULL);
223 		return -EPERM;
224 	}
225 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 	if (errdev) {
227 		errdev = NULL;
228 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 				    NULL, acpi_bus_offline, (void *)true,
230 				    (void **)&errdev);
231 		if (!errdev)
232 			acpi_bus_offline(handle, 0, (void *)true,
233 					 (void **)&errdev);
234 
235 		if (errdev) {
236 			dev_warn(errdev, "Offline failed.\n");
237 			acpi_bus_online(handle, 0, NULL, NULL);
238 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 					    ACPI_UINT32_MAX, acpi_bus_online,
240 					    NULL, NULL, NULL);
241 			return -EBUSY;
242 		}
243 	}
244 	return 0;
245 }
246 
247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 	acpi_handle handle = device->handle;
250 	unsigned long long sta;
251 	acpi_status status;
252 
253 	if (device->handler && device->handler->hotplug.demand_offline) {
254 		if (!acpi_scan_is_offline(device, true))
255 			return -EBUSY;
256 	} else {
257 		int error = acpi_scan_try_to_offline(device);
258 		if (error)
259 			return error;
260 	}
261 
262 	acpi_handle_debug(handle, "Ejecting\n");
263 
264 	acpi_bus_trim(device);
265 
266 	acpi_evaluate_lck(handle, 0);
267 	/*
268 	 * TBD: _EJD support.
269 	 */
270 	status = acpi_evaluate_ej0(handle);
271 	if (status == AE_NOT_FOUND)
272 		return -ENODEV;
273 	else if (ACPI_FAILURE(status))
274 		return -EIO;
275 
276 	/*
277 	 * Verify if eject was indeed successful.  If not, log an error
278 	 * message.  No need to call _OST since _EJ0 call was made OK.
279 	 */
280 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 	if (ACPI_FAILURE(status)) {
282 		acpi_handle_warn(handle,
283 			"Status check after eject failed (0x%x)\n", status);
284 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 		acpi_handle_warn(handle,
286 			"Eject incomplete - status 0x%llx\n", sta);
287 	}
288 
289 	return 0;
290 }
291 
292 static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
293 {
294 	if (!acpi_device_enumerated(adev)) {
295 		dev_warn(&adev->dev, "Still not enumerated\n");
296 		return -EALREADY;
297 	}
298 	acpi_bus_trim(adev);
299 	return 0;
300 }
301 
302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 	int error;
305 
306 	acpi_bus_get_status(adev);
307 	if (acpi_device_is_present(adev)) {
308 		/*
309 		 * This function is only called for device objects for which
310 		 * matching scan handlers exist.  The only situation in which
311 		 * the scan handler is not attached to this device object yet
312 		 * is when the device has just appeared (either it wasn't
313 		 * present at all before or it was removed and then added
314 		 * again).
315 		 */
316 		if (adev->handler) {
317 			dev_warn(&adev->dev, "Already enumerated\n");
318 			return -EALREADY;
319 		}
320 		error = acpi_bus_scan(adev->handle);
321 		if (error) {
322 			dev_warn(&adev->dev, "Namespace scan failure\n");
323 			return error;
324 		}
325 		if (!adev->handler) {
326 			dev_warn(&adev->dev, "Enumeration failure\n");
327 			error = -ENODEV;
328 		}
329 	} else {
330 		error = acpi_scan_device_not_enumerated(adev);
331 	}
332 	return error;
333 }
334 
335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336 {
337 	struct acpi_scan_handler *handler = adev->handler;
338 	int error;
339 
340 	acpi_bus_get_status(adev);
341 	if (!acpi_device_is_present(adev)) {
342 		acpi_scan_device_not_enumerated(adev);
343 		return 0;
344 	}
345 	if (handler && handler->hotplug.scan_dependent)
346 		return handler->hotplug.scan_dependent(adev);
347 
348 	error = acpi_bus_scan(adev->handle);
349 	if (error) {
350 		dev_warn(&adev->dev, "Namespace scan failure\n");
351 		return error;
352 	}
353 	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354 }
355 
356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357 {
358 	switch (type) {
359 	case ACPI_NOTIFY_BUS_CHECK:
360 		return acpi_scan_bus_check(adev, NULL);
361 	case ACPI_NOTIFY_DEVICE_CHECK:
362 		return acpi_scan_device_check(adev);
363 	case ACPI_NOTIFY_EJECT_REQUEST:
364 	case ACPI_OST_EC_OSPM_EJECT:
365 		if (adev->handler && !adev->handler->hotplug.enabled) {
366 			dev_info(&adev->dev, "Eject disabled\n");
367 			return -EPERM;
368 		}
369 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 		return acpi_scan_hot_remove(adev);
372 	}
373 	return -EINVAL;
374 }
375 
376 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377 {
378 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 	int error = -ENODEV;
380 
381 	lock_device_hotplug();
382 	mutex_lock(&acpi_scan_lock);
383 
384 	/*
385 	 * The device object's ACPI handle cannot become invalid as long as we
386 	 * are holding acpi_scan_lock, but it might have become invalid before
387 	 * that lock was acquired.
388 	 */
389 	if (adev->handle == INVALID_ACPI_HANDLE)
390 		goto err_out;
391 
392 	if (adev->flags.is_dock_station) {
393 		error = dock_notify(adev, src);
394 	} else if (adev->flags.hotplug_notify) {
395 		error = acpi_generic_hotplug_event(adev, src);
396 	} else {
397 		int (*notify)(struct acpi_device *, u32);
398 
399 		acpi_lock_hp_context();
400 		notify = adev->hp ? adev->hp->notify : NULL;
401 		acpi_unlock_hp_context();
402 		/*
403 		 * There may be additional notify handlers for device objects
404 		 * without the .event() callback, so ignore them here.
405 		 */
406 		if (notify)
407 			error = notify(adev, src);
408 		else
409 			goto out;
410 	}
411 	switch (error) {
412 	case 0:
413 		ost_code = ACPI_OST_SC_SUCCESS;
414 		break;
415 	case -EPERM:
416 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 		break;
418 	case -EBUSY:
419 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 		break;
421 	default:
422 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 		break;
424 	}
425 
426  err_out:
427 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428 
429  out:
430 	acpi_put_acpi_dev(adev);
431 	mutex_unlock(&acpi_scan_lock);
432 	unlock_device_hotplug();
433 }
434 
435 static void acpi_free_power_resources_lists(struct acpi_device *device)
436 {
437 	int i;
438 
439 	if (device->wakeup.flags.valid)
440 		acpi_power_resources_list_free(&device->wakeup.resources);
441 
442 	if (!device->power.flags.power_resources)
443 		return;
444 
445 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 		struct acpi_device_power_state *ps = &device->power.states[i];
447 		acpi_power_resources_list_free(&ps->resources);
448 	}
449 }
450 
451 static void acpi_device_release(struct device *dev)
452 {
453 	struct acpi_device *acpi_dev = to_acpi_device(dev);
454 
455 	acpi_free_properties(acpi_dev);
456 	acpi_free_pnp_ids(&acpi_dev->pnp);
457 	acpi_free_power_resources_lists(acpi_dev);
458 	kfree(acpi_dev);
459 }
460 
461 static void acpi_device_del(struct acpi_device *device)
462 {
463 	struct acpi_device_bus_id *acpi_device_bus_id;
464 
465 	mutex_lock(&acpi_device_lock);
466 
467 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 		if (!strcmp(acpi_device_bus_id->bus_id,
469 			    acpi_device_hid(device))) {
470 			ida_free(&acpi_device_bus_id->instance_ida,
471 				 device->pnp.instance_no);
472 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 				list_del(&acpi_device_bus_id->node);
474 				kfree_const(acpi_device_bus_id->bus_id);
475 				kfree(acpi_device_bus_id);
476 			}
477 			break;
478 		}
479 
480 	list_del(&device->wakeup_list);
481 
482 	mutex_unlock(&acpi_device_lock);
483 
484 	acpi_power_add_remove_device(device, false);
485 	acpi_device_remove_files(device);
486 	if (device->remove)
487 		device->remove(device);
488 
489 	device_del(&device->dev);
490 }
491 
492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493 
494 static LIST_HEAD(acpi_device_del_list);
495 static DEFINE_MUTEX(acpi_device_del_lock);
496 
497 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498 {
499 	for (;;) {
500 		struct acpi_device *adev;
501 
502 		mutex_lock(&acpi_device_del_lock);
503 
504 		if (list_empty(&acpi_device_del_list)) {
505 			mutex_unlock(&acpi_device_del_lock);
506 			break;
507 		}
508 		adev = list_first_entry(&acpi_device_del_list,
509 					struct acpi_device, del_list);
510 		list_del(&adev->del_list);
511 
512 		mutex_unlock(&acpi_device_del_lock);
513 
514 		blocking_notifier_call_chain(&acpi_reconfig_chain,
515 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
516 
517 		acpi_device_del(adev);
518 		/*
519 		 * Drop references to all power resources that might have been
520 		 * used by the device.
521 		 */
522 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 		acpi_dev_put(adev);
524 	}
525 }
526 
527 /**
528  * acpi_scan_drop_device - Drop an ACPI device object.
529  * @handle: Handle of an ACPI namespace node, not used.
530  * @context: Address of the ACPI device object to drop.
531  *
532  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533  * namespace node the device object pointed to by @context is attached to.
534  *
535  * The unregistration is carried out asynchronously to avoid running
536  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537  * ensure the correct ordering (the device objects must be unregistered in the
538  * same order in which the corresponding namespace nodes are deleted).
539  */
540 static void acpi_scan_drop_device(acpi_handle handle, void *context)
541 {
542 	static DECLARE_WORK(work, acpi_device_del_work_fn);
543 	struct acpi_device *adev = context;
544 
545 	mutex_lock(&acpi_device_del_lock);
546 
547 	/*
548 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 	 * won't run after any hotplug work items submitted subsequently.  That
550 	 * prevents attempts to register device objects identical to those being
551 	 * deleted from happening concurrently (such attempts result from
552 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
553 	 * run after all of the work items submitted previously, which helps
554 	 * those work items to ensure that they are not accessing stale device
555 	 * objects.
556 	 */
557 	if (list_empty(&acpi_device_del_list))
558 		acpi_queue_hotplug_work(&work);
559 
560 	list_add_tail(&adev->del_list, &acpi_device_del_list);
561 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
562 	adev->handle = INVALID_ACPI_HANDLE;
563 
564 	mutex_unlock(&acpi_device_del_lock);
565 }
566 
567 static struct acpi_device *handle_to_device(acpi_handle handle,
568 					    void (*callback)(void *))
569 {
570 	struct acpi_device *adev = NULL;
571 	acpi_status status;
572 
573 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 				    (void **)&adev, callback);
575 	if (ACPI_FAILURE(status) || !adev) {
576 		acpi_handle_debug(handle, "No context!\n");
577 		return NULL;
578 	}
579 	return adev;
580 }
581 
582 /**
583  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584  * @handle: ACPI handle associated with the requested ACPI device object.
585  *
586  * Return a pointer to the ACPI device object associated with @handle, if
587  * present, or NULL otherwise.
588  */
589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590 {
591 	return handle_to_device(handle, NULL);
592 }
593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594 
595 static void get_acpi_device(void *dev)
596 {
597 	acpi_dev_get(dev);
598 }
599 
600 /**
601  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602  * @handle: ACPI handle associated with the requested ACPI device object.
603  *
604  * Return a pointer to the ACPI device object associated with @handle and bump
605  * up that object's reference counter (under the ACPI Namespace lock), if
606  * present, or return NULL otherwise.
607  *
608  * The ACPI device object reference acquired by this function needs to be
609  * dropped via acpi_dev_put().
610  */
611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612 {
613 	return handle_to_device(handle, get_acpi_device);
614 }
615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616 
617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618 {
619 	struct acpi_device_bus_id *acpi_device_bus_id;
620 
621 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 			return acpi_device_bus_id;
625 	}
626 	return NULL;
627 }
628 
629 static int acpi_device_set_name(struct acpi_device *device,
630 				struct acpi_device_bus_id *acpi_device_bus_id)
631 {
632 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 	int result;
634 
635 	result = ida_alloc(instance_ida, GFP_KERNEL);
636 	if (result < 0)
637 		return result;
638 
639 	device->pnp.instance_no = result;
640 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 	return 0;
642 }
643 
644 int acpi_tie_acpi_dev(struct acpi_device *adev)
645 {
646 	acpi_handle handle = adev->handle;
647 	acpi_status status;
648 
649 	if (!handle)
650 		return 0;
651 
652 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 	if (ACPI_FAILURE(status)) {
654 		acpi_handle_err(handle, "Unable to attach device data\n");
655 		return -ENODEV;
656 	}
657 
658 	return 0;
659 }
660 
661 static void acpi_store_pld_crc(struct acpi_device *adev)
662 {
663 	struct acpi_pld_info *pld;
664 	acpi_status status;
665 
666 	status = acpi_get_physical_device_location(adev->handle, &pld);
667 	if (ACPI_FAILURE(status))
668 		return;
669 
670 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 	ACPI_FREE(pld);
672 }
673 
674 int acpi_device_add(struct acpi_device *device)
675 {
676 	struct acpi_device_bus_id *acpi_device_bus_id;
677 	int result;
678 
679 	/*
680 	 * Linkage
681 	 * -------
682 	 * Link this device to its parent and siblings.
683 	 */
684 	INIT_LIST_HEAD(&device->wakeup_list);
685 	INIT_LIST_HEAD(&device->physical_node_list);
686 	INIT_LIST_HEAD(&device->del_list);
687 	mutex_init(&device->physical_node_lock);
688 
689 	mutex_lock(&acpi_device_lock);
690 
691 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 	if (acpi_device_bus_id) {
693 		result = acpi_device_set_name(device, acpi_device_bus_id);
694 		if (result)
695 			goto err_unlock;
696 	} else {
697 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 					     GFP_KERNEL);
699 		if (!acpi_device_bus_id) {
700 			result = -ENOMEM;
701 			goto err_unlock;
702 		}
703 		acpi_device_bus_id->bus_id =
704 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 		if (!acpi_device_bus_id->bus_id) {
706 			kfree(acpi_device_bus_id);
707 			result = -ENOMEM;
708 			goto err_unlock;
709 		}
710 
711 		ida_init(&acpi_device_bus_id->instance_ida);
712 
713 		result = acpi_device_set_name(device, acpi_device_bus_id);
714 		if (result) {
715 			kfree_const(acpi_device_bus_id->bus_id);
716 			kfree(acpi_device_bus_id);
717 			goto err_unlock;
718 		}
719 
720 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 	}
722 
723 	if (device->wakeup.flags.valid)
724 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725 
726 	acpi_store_pld_crc(device);
727 
728 	mutex_unlock(&acpi_device_lock);
729 
730 	result = device_add(&device->dev);
731 	if (result) {
732 		dev_err(&device->dev, "Error registering device\n");
733 		goto err;
734 	}
735 
736 	result = acpi_device_setup_files(device);
737 	if (result)
738 		pr_err("Error creating sysfs interface for device %s\n",
739 		       dev_name(&device->dev));
740 
741 	return 0;
742 
743 err:
744 	mutex_lock(&acpi_device_lock);
745 
746 	list_del(&device->wakeup_list);
747 
748 err_unlock:
749 	mutex_unlock(&acpi_device_lock);
750 
751 	acpi_detach_data(device->handle, acpi_scan_drop_device);
752 
753 	return result;
754 }
755 
756 /* --------------------------------------------------------------------------
757                                  Device Enumeration
758    -------------------------------------------------------------------------- */
759 static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 				  const char * const ids[])
761 {
762 	struct acpi_pnp_device_id_list *cid_list = NULL;
763 	int i, index;
764 
765 	if (!(info->valid & ACPI_VALID_HID))
766 		return false;
767 
768 	index = match_string(ids, -1, info->hardware_id.string);
769 	if (index >= 0)
770 		return true;
771 
772 	if (info->valid & ACPI_VALID_CID)
773 		cid_list = &info->compatible_id_list;
774 
775 	if (!cid_list)
776 		return false;
777 
778 	for (i = 0; i < cid_list->count; i++) {
779 		index = match_string(ids, -1, cid_list->ids[i].string);
780 		if (index >= 0)
781 			return true;
782 	}
783 
784 	return false;
785 }
786 
787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788 static const char * const acpi_ignore_dep_ids[] = {
789 	"PNP0D80", /* Windows-compatible System Power Management Controller */
790 	"INT33BD", /* Intel Baytrail Mailbox Device */
791 	"LATT2021", /* Lattice FW Update Client Driver */
792 	NULL
793 };
794 
795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796 static const char * const acpi_honor_dep_ids[] = {
797 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
798 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 	NULL
802 };
803 
804 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805 {
806 	struct acpi_device *adev;
807 
808 	/*
809 	 * Fixed hardware devices do not appear in the namespace and do not
810 	 * have handles, but we fabricate acpi_devices for them, so we have
811 	 * to deal with them specially.
812 	 */
813 	if (!handle)
814 		return acpi_root;
815 
816 	do {
817 		acpi_status status;
818 
819 		status = acpi_get_parent(handle, &handle);
820 		if (ACPI_FAILURE(status)) {
821 			if (status != AE_NULL_ENTRY)
822 				return acpi_root;
823 
824 			return NULL;
825 		}
826 		adev = acpi_fetch_acpi_dev(handle);
827 	} while (!adev);
828 	return adev;
829 }
830 
831 acpi_status
832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834 	acpi_status status;
835 	acpi_handle tmp;
836 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 	union acpi_object *obj;
838 
839 	status = acpi_get_handle(handle, "_EJD", &tmp);
840 	if (ACPI_FAILURE(status))
841 		return status;
842 
843 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 	if (ACPI_SUCCESS(status)) {
845 		obj = buffer.pointer;
846 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 					 ejd);
848 		kfree(buffer.pointer);
849 	}
850 	return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853 
854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856 	acpi_handle handle = dev->handle;
857 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 	union acpi_object *package = NULL;
860 	union acpi_object *element = NULL;
861 	acpi_status status;
862 	int err = -ENODATA;
863 
864 	INIT_LIST_HEAD(&wakeup->resources);
865 
866 	/* _PRW */
867 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 	if (ACPI_FAILURE(status)) {
869 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 				 acpi_format_exception(status));
871 		return err;
872 	}
873 
874 	package = (union acpi_object *)buffer.pointer;
875 
876 	if (!package || package->package.count < 2)
877 		goto out;
878 
879 	element = &(package->package.elements[0]);
880 	if (!element)
881 		goto out;
882 
883 	if (element->type == ACPI_TYPE_PACKAGE) {
884 		if ((element->package.count < 2) ||
885 		    (element->package.elements[0].type !=
886 		     ACPI_TYPE_LOCAL_REFERENCE)
887 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 			goto out;
889 
890 		wakeup->gpe_device =
891 		    element->package.elements[0].reference.handle;
892 		wakeup->gpe_number =
893 		    (u32) element->package.elements[1].integer.value;
894 	} else if (element->type == ACPI_TYPE_INTEGER) {
895 		wakeup->gpe_device = NULL;
896 		wakeup->gpe_number = element->integer.value;
897 	} else {
898 		goto out;
899 	}
900 
901 	element = &(package->package.elements[1]);
902 	if (element->type != ACPI_TYPE_INTEGER)
903 		goto out;
904 
905 	wakeup->sleep_state = element->integer.value;
906 
907 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 	if (err)
909 		goto out;
910 
911 	if (!list_empty(&wakeup->resources)) {
912 		int sleep_state;
913 
914 		err = acpi_power_wakeup_list_init(&wakeup->resources,
915 						  &sleep_state);
916 		if (err) {
917 			acpi_handle_warn(handle, "Retrieving current states "
918 					 "of wakeup power resources failed\n");
919 			acpi_power_resources_list_free(&wakeup->resources);
920 			goto out;
921 		}
922 		if (sleep_state < wakeup->sleep_state) {
923 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 					 "(S%d) by S%d from power resources\n",
925 					 (int)wakeup->sleep_state, sleep_state);
926 			wakeup->sleep_state = sleep_state;
927 		}
928 	}
929 
930  out:
931 	kfree(buffer.pointer);
932 	return err;
933 }
934 
935 /* Do not use a button for S5 wakeup */
936 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
937 
938 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939 {
940 	static const struct acpi_device_id button_device_ids[] = {
941 		{"PNP0C0C", 0},				/* Power button */
942 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
943 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
944 		{"", 0},
945 	};
946 	struct acpi_device_wakeup *wakeup = &device->wakeup;
947 	const struct acpi_device_id *match;
948 	acpi_status status;
949 
950 	wakeup->flags.notifier_present = 0;
951 
952 	/* Power button, Lid switch always enable wakeup */
953 	match = acpi_match_acpi_device(button_device_ids, device);
954 	if (match) {
955 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 		    wakeup->sleep_state == ACPI_STATE_S5)
957 			wakeup->sleep_state = ACPI_STATE_S4;
958 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 		device_set_wakeup_capable(&device->dev, true);
960 		return true;
961 	}
962 
963 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 					 wakeup->gpe_number);
965 	return ACPI_SUCCESS(status);
966 }
967 
968 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969 {
970 	int err;
971 
972 	/* Presence of _PRW indicates wake capable */
973 	if (!acpi_has_method(device->handle, "_PRW"))
974 		return;
975 
976 	err = acpi_bus_extract_wakeup_device_power_package(device);
977 	if (err) {
978 		dev_err(&device->dev, "Unable to extract wakeup power resources");
979 		return;
980 	}
981 
982 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 	device->wakeup.prepare_count = 0;
984 	/*
985 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 	 * system for the ACPI device with the _PRW object.
987 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 	 * So it is necessary to call _DSW object first. Only when it is not
989 	 * present will the _PSW object used.
990 	 */
991 	err = acpi_device_sleep_wake(device, 0, 0, 0);
992 	if (err)
993 		pr_debug("error in _DSW or _PSW evaluation\n");
994 }
995 
996 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997 {
998 	struct acpi_device_power_state *ps = &device->power.states[state];
999 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 	acpi_status status;
1002 
1003 	INIT_LIST_HEAD(&ps->resources);
1004 
1005 	/* Evaluate "_PRx" to get referenced power resources */
1006 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 	if (ACPI_SUCCESS(status)) {
1008 		union acpi_object *package = buffer.pointer;
1009 
1010 		if (buffer.length && package
1011 		    && package->type == ACPI_TYPE_PACKAGE
1012 		    && package->package.count)
1013 			acpi_extract_power_resources(package, 0, &ps->resources);
1014 
1015 		ACPI_FREE(buffer.pointer);
1016 	}
1017 
1018 	/* Evaluate "_PSx" to see if we can do explicit sets */
1019 	pathname[2] = 'S';
1020 	if (acpi_has_method(device->handle, pathname))
1021 		ps->flags.explicit_set = 1;
1022 
1023 	/* State is valid if there are means to put the device into it. */
1024 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 		ps->flags.valid = 1;
1026 
1027 	ps->power = -1;		/* Unknown - driver assigned */
1028 	ps->latency = -1;	/* Unknown - driver assigned */
1029 }
1030 
1031 static void acpi_bus_get_power_flags(struct acpi_device *device)
1032 {
1033 	unsigned long long dsc = ACPI_STATE_D0;
1034 	u32 i;
1035 
1036 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 	if (!acpi_has_method(device->handle, "_PS0") &&
1038 	    !acpi_has_method(device->handle, "_PR0"))
1039 		return;
1040 
1041 	device->flags.power_manageable = 1;
1042 
1043 	/*
1044 	 * Power Management Flags
1045 	 */
1046 	if (acpi_has_method(device->handle, "_PSC"))
1047 		device->power.flags.explicit_get = 1;
1048 
1049 	if (acpi_has_method(device->handle, "_IRC"))
1050 		device->power.flags.inrush_current = 1;
1051 
1052 	if (acpi_has_method(device->handle, "_DSW"))
1053 		device->power.flags.dsw_present = 1;
1054 
1055 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 	device->power.state_for_enumeration = dsc;
1057 
1058 	/*
1059 	 * Enumerate supported power management states
1060 	 */
1061 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 		acpi_bus_init_power_state(device, i);
1063 
1064 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065 
1066 	/* Set the defaults for D0 and D3hot (always supported). */
1067 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 	device->power.states[ACPI_STATE_D0].power = 100;
1069 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070 
1071 	/*
1072 	 * Use power resources only if the D0 list of them is populated, because
1073 	 * some platforms may provide _PR3 only to indicate D3cold support and
1074 	 * in those cases the power resources list returned by it may be bogus.
1075 	 */
1076 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 		device->power.flags.power_resources = 1;
1078 		/*
1079 		 * D3cold is supported if the D3hot list of power resources is
1080 		 * not empty.
1081 		 */
1082 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 	}
1085 
1086 	if (acpi_bus_init_power(device))
1087 		device->flags.power_manageable = 0;
1088 }
1089 
1090 static void acpi_bus_get_flags(struct acpi_device *device)
1091 {
1092 	/* Presence of _STA indicates 'dynamic_status' */
1093 	if (acpi_has_method(device->handle, "_STA"))
1094 		device->flags.dynamic_status = 1;
1095 
1096 	/* Presence of _RMV indicates 'removable' */
1097 	if (acpi_has_method(device->handle, "_RMV"))
1098 		device->flags.removable = 1;
1099 
1100 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 	if (acpi_has_method(device->handle, "_EJD") ||
1102 	    acpi_has_method(device->handle, "_EJ0"))
1103 		device->flags.ejectable = 1;
1104 }
1105 
1106 static void acpi_device_get_busid(struct acpi_device *device)
1107 {
1108 	char bus_id[5] = { '?', 0 };
1109 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 	int i = 0;
1111 
1112 	/*
1113 	 * Bus ID
1114 	 * ------
1115 	 * The device's Bus ID is simply the object name.
1116 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 	 */
1118 	if (!acpi_dev_parent(device)) {
1119 		strcpy(device->pnp.bus_id, "ACPI");
1120 		return;
1121 	}
1122 
1123 	switch (device->device_type) {
1124 	case ACPI_BUS_TYPE_POWER_BUTTON:
1125 		strcpy(device->pnp.bus_id, "PWRF");
1126 		break;
1127 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 		strcpy(device->pnp.bus_id, "SLPF");
1129 		break;
1130 	case ACPI_BUS_TYPE_ECDT_EC:
1131 		strcpy(device->pnp.bus_id, "ECDT");
1132 		break;
1133 	default:
1134 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 		/* Clean up trailing underscores (if any) */
1136 		for (i = 3; i > 1; i--) {
1137 			if (bus_id[i] == '_')
1138 				bus_id[i] = '\0';
1139 			else
1140 				break;
1141 		}
1142 		strcpy(device->pnp.bus_id, bus_id);
1143 		break;
1144 	}
1145 }
1146 
1147 /*
1148  * acpi_ata_match - see if an acpi object is an ATA device
1149  *
1150  * If an acpi object has one of the ACPI ATA methods defined,
1151  * then we can safely call it an ATA device.
1152  */
1153 bool acpi_ata_match(acpi_handle handle)
1154 {
1155 	return acpi_has_method(handle, "_GTF") ||
1156 	       acpi_has_method(handle, "_GTM") ||
1157 	       acpi_has_method(handle, "_STM") ||
1158 	       acpi_has_method(handle, "_SDD");
1159 }
1160 
1161 /*
1162  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163  *
1164  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165  * then we can safely call it an ejectable drive bay
1166  */
1167 bool acpi_bay_match(acpi_handle handle)
1168 {
1169 	acpi_handle phandle;
1170 
1171 	if (!acpi_has_method(handle, "_EJ0"))
1172 		return false;
1173 	if (acpi_ata_match(handle))
1174 		return true;
1175 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 		return false;
1177 
1178 	return acpi_ata_match(phandle);
1179 }
1180 
1181 bool acpi_device_is_battery(struct acpi_device *adev)
1182 {
1183 	struct acpi_hardware_id *hwid;
1184 
1185 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 		if (!strcmp("PNP0C0A", hwid->id))
1187 			return true;
1188 
1189 	return false;
1190 }
1191 
1192 static bool is_ejectable_bay(struct acpi_device *adev)
1193 {
1194 	acpi_handle handle = adev->handle;
1195 
1196 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 		return true;
1198 
1199 	return acpi_bay_match(handle);
1200 }
1201 
1202 /*
1203  * acpi_dock_match - see if an acpi object has a _DCK method
1204  */
1205 bool acpi_dock_match(acpi_handle handle)
1206 {
1207 	return acpi_has_method(handle, "_DCK");
1208 }
1209 
1210 static acpi_status
1211 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 			  void **return_value)
1213 {
1214 	long *cap = context;
1215 
1216 	if (acpi_has_method(handle, "_BCM") &&
1217 	    acpi_has_method(handle, "_BCL")) {
1218 		acpi_handle_debug(handle, "Found generic backlight support\n");
1219 		*cap |= ACPI_VIDEO_BACKLIGHT;
1220 		/* We have backlight support, no need to scan further */
1221 		return AE_CTRL_TERMINATE;
1222 	}
1223 	return 0;
1224 }
1225 
1226 /* Returns true if the ACPI object is a video device which can be
1227  * handled by video.ko.
1228  * The device will get a Linux specific CID added in scan.c to
1229  * identify the device as an ACPI graphics device
1230  * Be aware that the graphics device may not be physically present
1231  * Use acpi_video_get_capabilities() to detect general ACPI video
1232  * capabilities of present cards
1233  */
1234 long acpi_is_video_device(acpi_handle handle)
1235 {
1236 	long video_caps = 0;
1237 
1238 	/* Is this device able to support video switching ? */
1239 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241 
1242 	/* Is this device able to retrieve a video ROM ? */
1243 	if (acpi_has_method(handle, "_ROM"))
1244 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245 
1246 	/* Is this device able to configure which video head to be POSTed ? */
1247 	if (acpi_has_method(handle, "_VPO") &&
1248 	    acpi_has_method(handle, "_GPD") &&
1249 	    acpi_has_method(handle, "_SPD"))
1250 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251 
1252 	/* Only check for backlight functionality if one of the above hit. */
1253 	if (video_caps)
1254 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 				    &video_caps, NULL);
1257 
1258 	return video_caps;
1259 }
1260 EXPORT_SYMBOL(acpi_is_video_device);
1261 
1262 const char *acpi_device_hid(struct acpi_device *device)
1263 {
1264 	struct acpi_hardware_id *hid;
1265 
1266 	if (list_empty(&device->pnp.ids))
1267 		return dummy_hid;
1268 
1269 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 	return hid->id;
1271 }
1272 EXPORT_SYMBOL(acpi_device_hid);
1273 
1274 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275 {
1276 	struct acpi_hardware_id *id;
1277 
1278 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 	if (!id)
1280 		return;
1281 
1282 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 	if (!id->id) {
1284 		kfree(id);
1285 		return;
1286 	}
1287 
1288 	list_add_tail(&id->list, &pnp->ids);
1289 	pnp->type.hardware_id = 1;
1290 }
1291 
1292 /*
1293  * Old IBM workstations have a DSDT bug wherein the SMBus object
1294  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295  * prefix.  Work around this.
1296  */
1297 static bool acpi_ibm_smbus_match(acpi_handle handle)
1298 {
1299 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 	struct acpi_buffer path = { sizeof(node_name), node_name };
1301 
1302 	if (!dmi_name_in_vendors("IBM"))
1303 		return false;
1304 
1305 	/* Look for SMBS object */
1306 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 	    strcmp("SMBS", path.pointer))
1308 		return false;
1309 
1310 	/* Does it have the necessary (but misnamed) methods? */
1311 	if (acpi_has_method(handle, "SBI") &&
1312 	    acpi_has_method(handle, "SBR") &&
1313 	    acpi_has_method(handle, "SBW"))
1314 		return true;
1315 
1316 	return false;
1317 }
1318 
1319 static bool acpi_object_is_system_bus(acpi_handle handle)
1320 {
1321 	acpi_handle tmp;
1322 
1323 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 	    tmp == handle)
1325 		return true;
1326 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 	    tmp == handle)
1328 		return true;
1329 
1330 	return false;
1331 }
1332 
1333 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 			     int device_type)
1335 {
1336 	struct acpi_device_info *info = NULL;
1337 	struct acpi_pnp_device_id_list *cid_list;
1338 	int i;
1339 
1340 	switch (device_type) {
1341 	case ACPI_BUS_TYPE_DEVICE:
1342 		if (handle == ACPI_ROOT_OBJECT) {
1343 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 			break;
1345 		}
1346 
1347 		acpi_get_object_info(handle, &info);
1348 		if (!info) {
1349 			pr_err("%s: Error reading device info\n", __func__);
1350 			return;
1351 		}
1352 
1353 		if (info->valid & ACPI_VALID_HID) {
1354 			acpi_add_id(pnp, info->hardware_id.string);
1355 			pnp->type.platform_id = 1;
1356 		}
1357 		if (info->valid & ACPI_VALID_CID) {
1358 			cid_list = &info->compatible_id_list;
1359 			for (i = 0; i < cid_list->count; i++)
1360 				acpi_add_id(pnp, cid_list->ids[i].string);
1361 		}
1362 		if (info->valid & ACPI_VALID_ADR) {
1363 			pnp->bus_address = info->address;
1364 			pnp->type.bus_address = 1;
1365 		}
1366 		if (info->valid & ACPI_VALID_UID)
1367 			pnp->unique_id = kstrdup(info->unique_id.string,
1368 							GFP_KERNEL);
1369 		if (info->valid & ACPI_VALID_CLS)
1370 			acpi_add_id(pnp, info->class_code.string);
1371 
1372 		kfree(info);
1373 
1374 		/*
1375 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 		 * synthetic HIDs to make sure drivers can find them.
1377 		 */
1378 		if (acpi_is_video_device(handle)) {
1379 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 			pnp->type.backlight = 1;
1381 			break;
1382 		}
1383 		if (acpi_bay_match(handle))
1384 			acpi_add_id(pnp, ACPI_BAY_HID);
1385 		else if (acpi_dock_match(handle))
1386 			acpi_add_id(pnp, ACPI_DOCK_HID);
1387 		else if (acpi_ibm_smbus_match(handle))
1388 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 		else if (list_empty(&pnp->ids) &&
1390 			 acpi_object_is_system_bus(handle)) {
1391 			/* \_SB, \_TZ, LNXSYBUS */
1392 			acpi_add_id(pnp, ACPI_BUS_HID);
1393 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 		}
1396 
1397 		break;
1398 	case ACPI_BUS_TYPE_POWER:
1399 		acpi_add_id(pnp, ACPI_POWER_HID);
1400 		break;
1401 	case ACPI_BUS_TYPE_PROCESSOR:
1402 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 		break;
1404 	case ACPI_BUS_TYPE_THERMAL:
1405 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 		break;
1407 	case ACPI_BUS_TYPE_POWER_BUTTON:
1408 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 		break;
1410 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 		break;
1413 	case ACPI_BUS_TYPE_ECDT_EC:
1414 		acpi_add_id(pnp, ACPI_ECDT_HID);
1415 		break;
1416 	}
1417 }
1418 
1419 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420 {
1421 	struct acpi_hardware_id *id, *tmp;
1422 
1423 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 		kfree_const(id->id);
1425 		kfree(id);
1426 	}
1427 	kfree(pnp->unique_id);
1428 }
1429 
1430 /**
1431  * acpi_dma_supported - Check DMA support for the specified device.
1432  * @adev: The pointer to acpi device
1433  *
1434  * Return false if DMA is not supported. Otherwise, return true
1435  */
1436 bool acpi_dma_supported(const struct acpi_device *adev)
1437 {
1438 	if (!adev)
1439 		return false;
1440 
1441 	if (adev->flags.cca_seen)
1442 		return true;
1443 
1444 	/*
1445 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1447 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 	*/
1449 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 		return true;
1451 
1452 	return false;
1453 }
1454 
1455 /**
1456  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457  * @adev: The pointer to acpi device
1458  *
1459  * Return enum dev_dma_attr.
1460  */
1461 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462 {
1463 	if (!acpi_dma_supported(adev))
1464 		return DEV_DMA_NOT_SUPPORTED;
1465 
1466 	if (adev->flags.coherent_dma)
1467 		return DEV_DMA_COHERENT;
1468 	else
1469 		return DEV_DMA_NON_COHERENT;
1470 }
1471 
1472 /**
1473  * acpi_dma_get_range() - Get device DMA parameters.
1474  *
1475  * @dev: device to configure
1476  * @map: pointer to DMA ranges result
1477  *
1478  * Evaluate DMA regions and return pointer to DMA regions on
1479  * parsing success; it does not update the passed in values on failure.
1480  *
1481  * Return 0 on success, < 0 on failure.
1482  */
1483 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484 {
1485 	struct acpi_device *adev;
1486 	LIST_HEAD(list);
1487 	struct resource_entry *rentry;
1488 	int ret;
1489 	struct device *dma_dev = dev;
1490 	struct bus_dma_region *r;
1491 
1492 	/*
1493 	 * Walk the device tree chasing an ACPI companion with a _DMA
1494 	 * object while we go. Stop if we find a device with an ACPI
1495 	 * companion containing a _DMA method.
1496 	 */
1497 	do {
1498 		adev = ACPI_COMPANION(dma_dev);
1499 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 			break;
1501 
1502 		dma_dev = dma_dev->parent;
1503 	} while (dma_dev);
1504 
1505 	if (!dma_dev)
1506 		return -ENODEV;
1507 
1508 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 		return -EINVAL;
1511 	}
1512 
1513 	ret = acpi_dev_get_dma_resources(adev, &list);
1514 	if (ret > 0) {
1515 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 		if (!r) {
1517 			ret = -ENOMEM;
1518 			goto out;
1519 		}
1520 
1521 		*map = r;
1522 
1523 		list_for_each_entry(rentry, &list, node) {
1524 			if (rentry->res->start >= rentry->res->end) {
1525 				kfree(*map);
1526 				*map = NULL;
1527 				ret = -EINVAL;
1528 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 				goto out;
1530 			}
1531 
1532 			r->cpu_start = rentry->res->start;
1533 			r->dma_start = rentry->res->start - rentry->offset;
1534 			r->size = resource_size(rentry->res);
1535 			r->offset = rentry->offset;
1536 			r++;
1537 		}
1538 	}
1539  out:
1540 	acpi_dev_free_resource_list(&list);
1541 
1542 	return ret >= 0 ? 0 : ret;
1543 }
1544 
1545 #ifdef CONFIG_IOMMU_API
1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1547 			   struct fwnode_handle *fwnode,
1548 			   const struct iommu_ops *ops)
1549 {
1550 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1551 
1552 	if (!ret)
1553 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1554 
1555 	return ret;
1556 }
1557 
1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1559 {
1560 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1561 
1562 	return fwspec ? fwspec->ops : NULL;
1563 }
1564 
1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1566 						       const u32 *id_in)
1567 {
1568 	int err;
1569 	const struct iommu_ops *ops;
1570 
1571 	/*
1572 	 * If we already translated the fwspec there is nothing left to do,
1573 	 * return the iommu_ops.
1574 	 */
1575 	ops = acpi_iommu_fwspec_ops(dev);
1576 	if (ops)
1577 		return ops;
1578 
1579 	err = iort_iommu_configure_id(dev, id_in);
1580 	if (err && err != -EPROBE_DEFER)
1581 		err = viot_iommu_configure(dev);
1582 
1583 	/*
1584 	 * If we have reason to believe the IOMMU driver missed the initial
1585 	 * iommu_probe_device() call for dev, replay it to get things in order.
1586 	 */
1587 	if (!err && dev->bus)
1588 		err = iommu_probe_device(dev);
1589 
1590 	/* Ignore all other errors apart from EPROBE_DEFER */
1591 	if (err == -EPROBE_DEFER) {
1592 		return ERR_PTR(err);
1593 	} else if (err) {
1594 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1595 		return NULL;
1596 	}
1597 	return acpi_iommu_fwspec_ops(dev);
1598 }
1599 
1600 #else /* !CONFIG_IOMMU_API */
1601 
1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1603 			   struct fwnode_handle *fwnode,
1604 			   const struct iommu_ops *ops)
1605 {
1606 	return -ENODEV;
1607 }
1608 
1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1610 						       const u32 *id_in)
1611 {
1612 	return NULL;
1613 }
1614 
1615 #endif /* !CONFIG_IOMMU_API */
1616 
1617 /**
1618  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1619  * @dev: The pointer to the device
1620  * @attr: device dma attributes
1621  * @input_id: input device id const value pointer
1622  */
1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1624 			  const u32 *input_id)
1625 {
1626 	const struct iommu_ops *iommu;
1627 
1628 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1629 		set_dma_ops(dev, &dma_dummy_ops);
1630 		return 0;
1631 	}
1632 
1633 	acpi_arch_dma_setup(dev);
1634 
1635 	iommu = acpi_iommu_configure_id(dev, input_id);
1636 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1637 		return -EPROBE_DEFER;
1638 
1639 	arch_setup_dma_ops(dev, 0, U64_MAX,
1640 				iommu, attr == DEV_DMA_COHERENT);
1641 
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1645 
1646 static void acpi_init_coherency(struct acpi_device *adev)
1647 {
1648 	unsigned long long cca = 0;
1649 	acpi_status status;
1650 	struct acpi_device *parent = acpi_dev_parent(adev);
1651 
1652 	if (parent && parent->flags.cca_seen) {
1653 		/*
1654 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1655 		 * already saw one.
1656 		 */
1657 		adev->flags.cca_seen = 1;
1658 		cca = parent->flags.coherent_dma;
1659 	} else {
1660 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1661 					       NULL, &cca);
1662 		if (ACPI_SUCCESS(status))
1663 			adev->flags.cca_seen = 1;
1664 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1665 			/*
1666 			 * If architecture does not specify that _CCA is
1667 			 * required for DMA-able devices (e.g. x86),
1668 			 * we default to _CCA=1.
1669 			 */
1670 			cca = 1;
1671 		else
1672 			acpi_handle_debug(adev->handle,
1673 					  "ACPI device is missing _CCA.\n");
1674 	}
1675 
1676 	adev->flags.coherent_dma = cca;
1677 }
1678 
1679 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1680 {
1681 	bool *is_serial_bus_slave_p = data;
1682 
1683 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1684 		return 1;
1685 
1686 	*is_serial_bus_slave_p = true;
1687 
1688 	 /* no need to do more checking */
1689 	return -1;
1690 }
1691 
1692 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1693 {
1694 	struct acpi_device *parent = acpi_dev_parent(device);
1695 	static const struct acpi_device_id indirect_io_hosts[] = {
1696 		{"HISI0191", 0},
1697 		{}
1698 	};
1699 
1700 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1701 }
1702 
1703 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1704 {
1705 	struct list_head resource_list;
1706 	bool is_serial_bus_slave = false;
1707 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1708 	/*
1709 	 * These devices have multiple SerialBus resources and a client
1710 	 * device must be instantiated for each of them, each with
1711 	 * its own device id.
1712 	 * Normally we only instantiate one client device for the first
1713 	 * resource, using the ACPI HID as id. These special cases are handled
1714 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1715 	 * knows which client device id to use for each resource.
1716 	 */
1717 		{"BSG1160", },
1718 		{"BSG2150", },
1719 		{"CSC3551", },
1720 		{"CSC3556", },
1721 		{"INT33FE", },
1722 		{"INT3515", },
1723 		/* Non-conforming _HID for Cirrus Logic already released */
1724 		{"CLSA0100", },
1725 		{"CLSA0101", },
1726 	/*
1727 	 * Some ACPI devs contain SerialBus resources even though they are not
1728 	 * attached to a serial bus at all.
1729 	 */
1730 		{"MSHW0028", },
1731 	/*
1732 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1733 	 * expects a regular tty cdev to be created (instead of the in kernel
1734 	 * serdev) and which have a kernel driver which expects a platform_dev
1735 	 * such as the rfkill-gpio driver.
1736 	 */
1737 		{"BCM4752", },
1738 		{"LNV4752", },
1739 		{}
1740 	};
1741 
1742 	if (acpi_is_indirect_io_slave(device))
1743 		return true;
1744 
1745 	/* Macs use device properties in lieu of _CRS resources */
1746 	if (x86_apple_machine &&
1747 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1748 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1749 	     fwnode_property_present(&device->fwnode, "baud")))
1750 		return true;
1751 
1752 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1753 		return false;
1754 
1755 	INIT_LIST_HEAD(&resource_list);
1756 	acpi_dev_get_resources(device, &resource_list,
1757 			       acpi_check_serial_bus_slave,
1758 			       &is_serial_bus_slave);
1759 	acpi_dev_free_resource_list(&resource_list);
1760 
1761 	return is_serial_bus_slave;
1762 }
1763 
1764 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1765 			     int type, void (*release)(struct device *))
1766 {
1767 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1768 
1769 	INIT_LIST_HEAD(&device->pnp.ids);
1770 	device->device_type = type;
1771 	device->handle = handle;
1772 	device->dev.parent = parent ? &parent->dev : NULL;
1773 	device->dev.release = release;
1774 	device->dev.bus = &acpi_bus_type;
1775 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1776 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1777 	acpi_device_get_busid(device);
1778 	acpi_set_pnp_ids(handle, &device->pnp, type);
1779 	acpi_init_properties(device);
1780 	acpi_bus_get_flags(device);
1781 	device->flags.match_driver = false;
1782 	device->flags.initialized = true;
1783 	device->flags.enumeration_by_parent =
1784 		acpi_device_enumeration_by_parent(device);
1785 	acpi_device_clear_enumerated(device);
1786 	device_initialize(&device->dev);
1787 	dev_set_uevent_suppress(&device->dev, true);
1788 	acpi_init_coherency(device);
1789 }
1790 
1791 static void acpi_scan_dep_init(struct acpi_device *adev)
1792 {
1793 	struct acpi_dep_data *dep;
1794 
1795 	list_for_each_entry(dep, &acpi_dep_list, node) {
1796 		if (dep->consumer == adev->handle) {
1797 			if (dep->honor_dep)
1798 				adev->flags.honor_deps = 1;
1799 
1800 			adev->dep_unmet++;
1801 		}
1802 	}
1803 }
1804 
1805 void acpi_device_add_finalize(struct acpi_device *device)
1806 {
1807 	dev_set_uevent_suppress(&device->dev, false);
1808 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1809 }
1810 
1811 static void acpi_scan_init_status(struct acpi_device *adev)
1812 {
1813 	if (acpi_bus_get_status(adev))
1814 		acpi_set_device_status(adev, 0);
1815 }
1816 
1817 static int acpi_add_single_object(struct acpi_device **child,
1818 				  acpi_handle handle, int type, bool dep_init)
1819 {
1820 	struct acpi_device *device;
1821 	bool release_dep_lock = false;
1822 	int result;
1823 
1824 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1825 	if (!device)
1826 		return -ENOMEM;
1827 
1828 	acpi_init_device_object(device, handle, type, acpi_device_release);
1829 	/*
1830 	 * Getting the status is delayed till here so that we can call
1831 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1832 	 * this must be done before the get power-/wakeup_dev-flags calls.
1833 	 */
1834 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1835 		if (dep_init) {
1836 			mutex_lock(&acpi_dep_list_lock);
1837 			/*
1838 			 * Hold the lock until the acpi_tie_acpi_dev() call
1839 			 * below to prevent concurrent acpi_scan_clear_dep()
1840 			 * from deleting a dependency list entry without
1841 			 * updating dep_unmet for the device.
1842 			 */
1843 			release_dep_lock = true;
1844 			acpi_scan_dep_init(device);
1845 		}
1846 		acpi_scan_init_status(device);
1847 	}
1848 
1849 	acpi_bus_get_power_flags(device);
1850 	acpi_bus_get_wakeup_device_flags(device);
1851 
1852 	result = acpi_tie_acpi_dev(device);
1853 
1854 	if (release_dep_lock)
1855 		mutex_unlock(&acpi_dep_list_lock);
1856 
1857 	if (!result)
1858 		result = acpi_device_add(device);
1859 
1860 	if (result) {
1861 		acpi_device_release(&device->dev);
1862 		return result;
1863 	}
1864 
1865 	acpi_power_add_remove_device(device, true);
1866 	acpi_device_add_finalize(device);
1867 
1868 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1869 			  dev_name(&device->dev), device->dev.parent ?
1870 				dev_name(device->dev.parent) : "(null)");
1871 
1872 	*child = device;
1873 	return 0;
1874 }
1875 
1876 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1877 					    void *context)
1878 {
1879 	struct resource *res = context;
1880 
1881 	if (acpi_dev_resource_memory(ares, res))
1882 		return AE_CTRL_TERMINATE;
1883 
1884 	return AE_OK;
1885 }
1886 
1887 static bool acpi_device_should_be_hidden(acpi_handle handle)
1888 {
1889 	acpi_status status;
1890 	struct resource res;
1891 
1892 	/* Check if it should ignore the UART device */
1893 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1894 		return false;
1895 
1896 	/*
1897 	 * The UART device described in SPCR table is assumed to have only one
1898 	 * memory resource present. So we only look for the first one here.
1899 	 */
1900 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1901 				     acpi_get_resource_memory, &res);
1902 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1903 		return false;
1904 
1905 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1906 			 &res.start);
1907 
1908 	return true;
1909 }
1910 
1911 bool acpi_device_is_present(const struct acpi_device *adev)
1912 {
1913 	return adev->status.present || adev->status.functional;
1914 }
1915 
1916 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1917 				       const char *idstr,
1918 				       const struct acpi_device_id **matchid)
1919 {
1920 	const struct acpi_device_id *devid;
1921 
1922 	if (handler->match)
1923 		return handler->match(idstr, matchid);
1924 
1925 	for (devid = handler->ids; devid->id[0]; devid++)
1926 		if (!strcmp((char *)devid->id, idstr)) {
1927 			if (matchid)
1928 				*matchid = devid;
1929 
1930 			return true;
1931 		}
1932 
1933 	return false;
1934 }
1935 
1936 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1937 					const struct acpi_device_id **matchid)
1938 {
1939 	struct acpi_scan_handler *handler;
1940 
1941 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1942 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1943 			return handler;
1944 
1945 	return NULL;
1946 }
1947 
1948 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1949 {
1950 	if (!!hotplug->enabled == !!val)
1951 		return;
1952 
1953 	mutex_lock(&acpi_scan_lock);
1954 
1955 	hotplug->enabled = val;
1956 
1957 	mutex_unlock(&acpi_scan_lock);
1958 }
1959 
1960 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1961 {
1962 	struct acpi_hardware_id *hwid;
1963 
1964 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1965 		acpi_dock_add(adev);
1966 		return;
1967 	}
1968 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1969 		struct acpi_scan_handler *handler;
1970 
1971 		handler = acpi_scan_match_handler(hwid->id, NULL);
1972 		if (handler) {
1973 			adev->flags.hotplug_notify = true;
1974 			break;
1975 		}
1976 	}
1977 }
1978 
1979 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1980 {
1981 	struct acpi_handle_list dep_devices;
1982 	acpi_status status;
1983 	u32 count;
1984 	int i;
1985 
1986 	/*
1987 	 * Check for _HID here to avoid deferring the enumeration of:
1988 	 * 1. PCI devices.
1989 	 * 2. ACPI nodes describing USB ports.
1990 	 * Still, checking for _HID catches more then just these cases ...
1991 	 */
1992 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1993 	    !acpi_has_method(handle, "_HID"))
1994 		return 0;
1995 
1996 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1997 	if (ACPI_FAILURE(status)) {
1998 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1999 		return 0;
2000 	}
2001 
2002 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2003 		struct acpi_device_info *info;
2004 		struct acpi_dep_data *dep;
2005 		bool skip, honor_dep;
2006 
2007 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2008 		if (ACPI_FAILURE(status)) {
2009 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2010 			continue;
2011 		}
2012 
2013 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2014 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2015 		kfree(info);
2016 
2017 		if (skip)
2018 			continue;
2019 
2020 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2021 		if (!dep)
2022 			continue;
2023 
2024 		count++;
2025 
2026 		dep->supplier = dep_devices.handles[i];
2027 		dep->consumer = handle;
2028 		dep->honor_dep = honor_dep;
2029 
2030 		mutex_lock(&acpi_dep_list_lock);
2031 		list_add_tail(&dep->node , &acpi_dep_list);
2032 		mutex_unlock(&acpi_dep_list_lock);
2033 	}
2034 
2035 	acpi_handle_list_free(&dep_devices);
2036 	return count;
2037 }
2038 
2039 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2040 				      struct acpi_device **adev_p)
2041 {
2042 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2043 	acpi_object_type acpi_type;
2044 	int type;
2045 
2046 	if (device)
2047 		goto out;
2048 
2049 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2050 		return AE_OK;
2051 
2052 	switch (acpi_type) {
2053 	case ACPI_TYPE_DEVICE:
2054 		if (acpi_device_should_be_hidden(handle))
2055 			return AE_OK;
2056 
2057 		/* Bail out if there are dependencies. */
2058 		if (acpi_scan_check_dep(handle, check_dep) > 0)
2059 			return AE_CTRL_DEPTH;
2060 
2061 		fallthrough;
2062 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2063 		type = ACPI_BUS_TYPE_DEVICE;
2064 		break;
2065 
2066 	case ACPI_TYPE_PROCESSOR:
2067 		type = ACPI_BUS_TYPE_PROCESSOR;
2068 		break;
2069 
2070 	case ACPI_TYPE_THERMAL:
2071 		type = ACPI_BUS_TYPE_THERMAL;
2072 		break;
2073 
2074 	case ACPI_TYPE_POWER:
2075 		acpi_add_power_resource(handle);
2076 		fallthrough;
2077 	default:
2078 		return AE_OK;
2079 	}
2080 
2081 	/*
2082 	 * If check_dep is true at this point, the device has no dependencies,
2083 	 * or the creation of the device object would have been postponed above.
2084 	 */
2085 	acpi_add_single_object(&device, handle, type, !check_dep);
2086 	if (!device)
2087 		return AE_CTRL_DEPTH;
2088 
2089 	acpi_scan_init_hotplug(device);
2090 
2091 out:
2092 	if (!*adev_p)
2093 		*adev_p = device;
2094 
2095 	return AE_OK;
2096 }
2097 
2098 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2099 					void *not_used, void **ret_p)
2100 {
2101 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2102 }
2103 
2104 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2105 					void *not_used, void **ret_p)
2106 {
2107 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2108 }
2109 
2110 static void acpi_default_enumeration(struct acpi_device *device)
2111 {
2112 	/*
2113 	 * Do not enumerate devices with enumeration_by_parent flag set as
2114 	 * they will be enumerated by their respective parents.
2115 	 */
2116 	if (!device->flags.enumeration_by_parent) {
2117 		acpi_create_platform_device(device, NULL);
2118 		acpi_device_set_enumerated(device);
2119 	} else {
2120 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2121 					     ACPI_RECONFIG_DEVICE_ADD, device);
2122 	}
2123 }
2124 
2125 static const struct acpi_device_id generic_device_ids[] = {
2126 	{ACPI_DT_NAMESPACE_HID, },
2127 	{"", },
2128 };
2129 
2130 static int acpi_generic_device_attach(struct acpi_device *adev,
2131 				      const struct acpi_device_id *not_used)
2132 {
2133 	/*
2134 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2135 	 * below can be unconditional.
2136 	 */
2137 	if (adev->data.of_compatible)
2138 		acpi_default_enumeration(adev);
2139 
2140 	return 1;
2141 }
2142 
2143 static struct acpi_scan_handler generic_device_handler = {
2144 	.ids = generic_device_ids,
2145 	.attach = acpi_generic_device_attach,
2146 };
2147 
2148 static int acpi_scan_attach_handler(struct acpi_device *device)
2149 {
2150 	struct acpi_hardware_id *hwid;
2151 	int ret = 0;
2152 
2153 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2154 		const struct acpi_device_id *devid;
2155 		struct acpi_scan_handler *handler;
2156 
2157 		handler = acpi_scan_match_handler(hwid->id, &devid);
2158 		if (handler) {
2159 			if (!handler->attach) {
2160 				device->pnp.type.platform_id = 0;
2161 				continue;
2162 			}
2163 			device->handler = handler;
2164 			ret = handler->attach(device, devid);
2165 			if (ret > 0)
2166 				break;
2167 
2168 			device->handler = NULL;
2169 			if (ret < 0)
2170 				break;
2171 		}
2172 	}
2173 
2174 	return ret;
2175 }
2176 
2177 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2178 {
2179 	bool skip = !first_pass && device->flags.visited;
2180 	acpi_handle ejd;
2181 	int ret;
2182 
2183 	if (skip)
2184 		goto ok;
2185 
2186 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2187 		register_dock_dependent_device(device, ejd);
2188 
2189 	acpi_bus_get_status(device);
2190 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2191 	if (!acpi_dev_ready_for_enumeration(device)) {
2192 		device->flags.initialized = false;
2193 		acpi_device_clear_enumerated(device);
2194 		device->flags.power_manageable = 0;
2195 		return 0;
2196 	}
2197 	if (device->handler)
2198 		goto ok;
2199 
2200 	if (!device->flags.initialized) {
2201 		device->flags.power_manageable =
2202 			device->power.states[ACPI_STATE_D0].flags.valid;
2203 		if (acpi_bus_init_power(device))
2204 			device->flags.power_manageable = 0;
2205 
2206 		device->flags.initialized = true;
2207 	} else if (device->flags.visited) {
2208 		goto ok;
2209 	}
2210 
2211 	ret = acpi_scan_attach_handler(device);
2212 	if (ret < 0)
2213 		return 0;
2214 
2215 	device->flags.match_driver = true;
2216 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2217 		acpi_device_set_enumerated(device);
2218 		goto ok;
2219 	}
2220 
2221 	ret = device_attach(&device->dev);
2222 	if (ret < 0)
2223 		return 0;
2224 
2225 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2226 		acpi_default_enumeration(device);
2227 	else
2228 		acpi_device_set_enumerated(device);
2229 
2230 ok:
2231 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2232 
2233 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2234 		device->handler->hotplug.notify_online(device);
2235 
2236 	return 0;
2237 }
2238 
2239 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2240 {
2241 	struct acpi_device **adev_p = data;
2242 	struct acpi_device *adev = *adev_p;
2243 
2244 	/*
2245 	 * If we're passed a 'previous' consumer device then we need to skip
2246 	 * any consumers until we meet the previous one, and then NULL @data
2247 	 * so the next one can be returned.
2248 	 */
2249 	if (adev) {
2250 		if (dep->consumer == adev->handle)
2251 			*adev_p = NULL;
2252 
2253 		return 0;
2254 	}
2255 
2256 	adev = acpi_get_acpi_dev(dep->consumer);
2257 	if (adev) {
2258 		*(struct acpi_device **)data = adev;
2259 		return 1;
2260 	}
2261 	/* Continue parsing if the device object is not present. */
2262 	return 0;
2263 }
2264 
2265 struct acpi_scan_clear_dep_work {
2266 	struct work_struct work;
2267 	struct acpi_device *adev;
2268 };
2269 
2270 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2271 {
2272 	struct acpi_scan_clear_dep_work *cdw;
2273 
2274 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2275 
2276 	acpi_scan_lock_acquire();
2277 	acpi_bus_attach(cdw->adev, (void *)true);
2278 	acpi_scan_lock_release();
2279 
2280 	acpi_dev_put(cdw->adev);
2281 	kfree(cdw);
2282 }
2283 
2284 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2285 {
2286 	struct acpi_scan_clear_dep_work *cdw;
2287 
2288 	if (adev->dep_unmet)
2289 		return false;
2290 
2291 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2292 	if (!cdw)
2293 		return false;
2294 
2295 	cdw->adev = adev;
2296 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2297 	/*
2298 	 * Since the work function may block on the lock until the entire
2299 	 * initial enumeration of devices is complete, put it into the unbound
2300 	 * workqueue.
2301 	 */
2302 	queue_work(system_unbound_wq, &cdw->work);
2303 
2304 	return true;
2305 }
2306 
2307 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2308 {
2309 	list_del(&dep->node);
2310 	kfree(dep);
2311 }
2312 
2313 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2314 {
2315 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2316 
2317 	if (adev) {
2318 		adev->dep_unmet--;
2319 		if (!acpi_scan_clear_dep_queue(adev))
2320 			acpi_dev_put(adev);
2321 	}
2322 
2323 	if (dep->free_when_met)
2324 		acpi_scan_delete_dep_data(dep);
2325 	else
2326 		dep->met = true;
2327 
2328 	return 0;
2329 }
2330 
2331 /**
2332  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2333  * @handle:	The ACPI handle of the supplier device
2334  * @callback:	Pointer to the callback function to apply
2335  * @data:	Pointer to some data to pass to the callback
2336  *
2337  * The return value of the callback determines this function's behaviour. If 0
2338  * is returned we continue to iterate over acpi_dep_list. If a positive value
2339  * is returned then the loop is broken but this function returns 0. If a
2340  * negative value is returned by the callback then the loop is broken and that
2341  * value is returned as the final error.
2342  */
2343 static int acpi_walk_dep_device_list(acpi_handle handle,
2344 				int (*callback)(struct acpi_dep_data *, void *),
2345 				void *data)
2346 {
2347 	struct acpi_dep_data *dep, *tmp;
2348 	int ret = 0;
2349 
2350 	mutex_lock(&acpi_dep_list_lock);
2351 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2352 		if (dep->supplier == handle) {
2353 			ret = callback(dep, data);
2354 			if (ret)
2355 				break;
2356 		}
2357 	}
2358 	mutex_unlock(&acpi_dep_list_lock);
2359 
2360 	return ret > 0 ? 0 : ret;
2361 }
2362 
2363 /**
2364  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2365  * @supplier: Pointer to the supplier &struct acpi_device
2366  *
2367  * Clear dependencies on the given device.
2368  */
2369 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2370 {
2371 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2372 }
2373 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2374 
2375 /**
2376  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2377  * @device: Pointer to the &struct acpi_device to check
2378  *
2379  * Check if the device is present and has no unmet dependencies.
2380  *
2381  * Return true if the device is ready for enumeratino. Otherwise, return false.
2382  */
2383 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2384 {
2385 	if (device->flags.honor_deps && device->dep_unmet)
2386 		return false;
2387 
2388 	return acpi_device_is_present(device);
2389 }
2390 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2391 
2392 /**
2393  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2394  * @supplier: Pointer to the dependee device
2395  * @start: Pointer to the current dependent device
2396  *
2397  * Returns the next &struct acpi_device which declares itself dependent on
2398  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2399  *
2400  * If the returned adev is not passed as @start to this function, the caller is
2401  * responsible for putting the reference to adev when it is no longer needed.
2402  */
2403 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2404 						   struct acpi_device *start)
2405 {
2406 	struct acpi_device *adev = start;
2407 
2408 	acpi_walk_dep_device_list(supplier->handle,
2409 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2410 
2411 	acpi_dev_put(start);
2412 
2413 	if (adev == start)
2414 		return NULL;
2415 
2416 	return adev;
2417 }
2418 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2419 
2420 static void acpi_scan_postponed_branch(acpi_handle handle)
2421 {
2422 	struct acpi_device *adev = NULL;
2423 
2424 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2425 		return;
2426 
2427 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2428 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2429 	acpi_bus_attach(adev, NULL);
2430 }
2431 
2432 static void acpi_scan_postponed(void)
2433 {
2434 	struct acpi_dep_data *dep, *tmp;
2435 
2436 	mutex_lock(&acpi_dep_list_lock);
2437 
2438 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2439 		acpi_handle handle = dep->consumer;
2440 
2441 		/*
2442 		 * In case there are multiple acpi_dep_list entries with the
2443 		 * same consumer, skip the current entry if the consumer device
2444 		 * object corresponding to it is present already.
2445 		 */
2446 		if (!acpi_fetch_acpi_dev(handle)) {
2447 			/*
2448 			 * Even though the lock is released here, tmp is
2449 			 * guaranteed to be valid, because none of the list
2450 			 * entries following dep is marked as "free when met"
2451 			 * and so they cannot be deleted.
2452 			 */
2453 			mutex_unlock(&acpi_dep_list_lock);
2454 
2455 			acpi_scan_postponed_branch(handle);
2456 
2457 			mutex_lock(&acpi_dep_list_lock);
2458 		}
2459 
2460 		if (dep->met)
2461 			acpi_scan_delete_dep_data(dep);
2462 		else
2463 			dep->free_when_met = true;
2464 	}
2465 
2466 	mutex_unlock(&acpi_dep_list_lock);
2467 }
2468 
2469 /**
2470  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2471  * @handle: Root of the namespace scope to scan.
2472  *
2473  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2474  * found devices.
2475  *
2476  * If no devices were found, -ENODEV is returned, but it does not mean that
2477  * there has been a real error.  There just have been no suitable ACPI objects
2478  * in the table trunk from which the kernel could create a device and add an
2479  * appropriate driver.
2480  *
2481  * Must be called under acpi_scan_lock.
2482  */
2483 int acpi_bus_scan(acpi_handle handle)
2484 {
2485 	struct acpi_device *device = NULL;
2486 
2487 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2488 
2489 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2490 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2491 				    acpi_bus_check_add_1, NULL, NULL,
2492 				    (void **)&device);
2493 
2494 	if (!device)
2495 		return -ENODEV;
2496 
2497 	acpi_bus_attach(device, (void *)true);
2498 
2499 	/* Pass 2: Enumerate all of the remaining devices. */
2500 
2501 	acpi_scan_postponed();
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL(acpi_bus_scan);
2506 
2507 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2508 {
2509 	struct acpi_scan_handler *handler = adev->handler;
2510 
2511 	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2512 
2513 	adev->flags.match_driver = false;
2514 	if (handler) {
2515 		if (handler->detach)
2516 			handler->detach(adev);
2517 
2518 		adev->handler = NULL;
2519 	} else {
2520 		device_release_driver(&adev->dev);
2521 	}
2522 	/*
2523 	 * Most likely, the device is going away, so put it into D3cold before
2524 	 * that.
2525 	 */
2526 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2527 	adev->flags.initialized = false;
2528 	acpi_device_clear_enumerated(adev);
2529 
2530 	return 0;
2531 }
2532 
2533 /**
2534  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2535  * @adev: Root of the ACPI namespace scope to walk.
2536  *
2537  * Must be called under acpi_scan_lock.
2538  */
2539 void acpi_bus_trim(struct acpi_device *adev)
2540 {
2541 	acpi_bus_trim_one(adev, NULL);
2542 }
2543 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2544 
2545 int acpi_bus_register_early_device(int type)
2546 {
2547 	struct acpi_device *device = NULL;
2548 	int result;
2549 
2550 	result = acpi_add_single_object(&device, NULL, type, false);
2551 	if (result)
2552 		return result;
2553 
2554 	device->flags.match_driver = true;
2555 	return device_attach(&device->dev);
2556 }
2557 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2558 
2559 static void acpi_bus_scan_fixed(void)
2560 {
2561 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2562 		struct acpi_device *adev = NULL;
2563 
2564 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2565 				       false);
2566 		if (adev) {
2567 			adev->flags.match_driver = true;
2568 			if (device_attach(&adev->dev) >= 0)
2569 				device_init_wakeup(&adev->dev, true);
2570 			else
2571 				dev_dbg(&adev->dev, "No driver\n");
2572 		}
2573 	}
2574 
2575 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2576 		struct acpi_device *adev = NULL;
2577 
2578 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2579 				       false);
2580 		if (adev) {
2581 			adev->flags.match_driver = true;
2582 			if (device_attach(&adev->dev) < 0)
2583 				dev_dbg(&adev->dev, "No driver\n");
2584 		}
2585 	}
2586 }
2587 
2588 static void __init acpi_get_spcr_uart_addr(void)
2589 {
2590 	acpi_status status;
2591 	struct acpi_table_spcr *spcr_ptr;
2592 
2593 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2594 				(struct acpi_table_header **)&spcr_ptr);
2595 	if (ACPI_FAILURE(status)) {
2596 		pr_warn("STAO table present, but SPCR is missing\n");
2597 		return;
2598 	}
2599 
2600 	spcr_uart_addr = spcr_ptr->serial_port.address;
2601 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2602 }
2603 
2604 static bool acpi_scan_initialized;
2605 
2606 void __init acpi_scan_init(void)
2607 {
2608 	acpi_status status;
2609 	struct acpi_table_stao *stao_ptr;
2610 
2611 	acpi_pci_root_init();
2612 	acpi_pci_link_init();
2613 	acpi_processor_init();
2614 	acpi_platform_init();
2615 	acpi_lpss_init();
2616 	acpi_apd_init();
2617 	acpi_cmos_rtc_init();
2618 	acpi_container_init();
2619 	acpi_memory_hotplug_init();
2620 	acpi_watchdog_init();
2621 	acpi_pnp_init();
2622 	acpi_int340x_thermal_init();
2623 	acpi_init_lpit();
2624 
2625 	acpi_scan_add_handler(&generic_device_handler);
2626 
2627 	/*
2628 	 * If there is STAO table, check whether it needs to ignore the UART
2629 	 * device in SPCR table.
2630 	 */
2631 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2632 				(struct acpi_table_header **)&stao_ptr);
2633 	if (ACPI_SUCCESS(status)) {
2634 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2635 			pr_info("STAO Name List not yet supported.\n");
2636 
2637 		if (stao_ptr->ignore_uart)
2638 			acpi_get_spcr_uart_addr();
2639 
2640 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2641 	}
2642 
2643 	acpi_gpe_apply_masked_gpes();
2644 	acpi_update_all_gpes();
2645 
2646 	/*
2647 	 * Although we call __add_memory() that is documented to require the
2648 	 * device_hotplug_lock, it is not necessary here because this is an
2649 	 * early code when userspace or any other code path cannot trigger
2650 	 * hotplug/hotunplug operations.
2651 	 */
2652 	mutex_lock(&acpi_scan_lock);
2653 	/*
2654 	 * Enumerate devices in the ACPI namespace.
2655 	 */
2656 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2657 		goto unlock;
2658 
2659 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2660 	if (!acpi_root)
2661 		goto unlock;
2662 
2663 	/* Fixed feature devices do not exist on HW-reduced platform */
2664 	if (!acpi_gbl_reduced_hardware)
2665 		acpi_bus_scan_fixed();
2666 
2667 	acpi_turn_off_unused_power_resources();
2668 
2669 	acpi_scan_initialized = true;
2670 
2671 unlock:
2672 	mutex_unlock(&acpi_scan_lock);
2673 }
2674 
2675 static struct acpi_probe_entry *ape;
2676 static int acpi_probe_count;
2677 static DEFINE_MUTEX(acpi_probe_mutex);
2678 
2679 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2680 				  const unsigned long end)
2681 {
2682 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2683 		if (!ape->probe_subtbl(header, end))
2684 			acpi_probe_count++;
2685 
2686 	return 0;
2687 }
2688 
2689 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2690 {
2691 	int count = 0;
2692 
2693 	if (acpi_disabled)
2694 		return 0;
2695 
2696 	mutex_lock(&acpi_probe_mutex);
2697 	for (ape = ap_head; nr; ape++, nr--) {
2698 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2699 			acpi_probe_count = 0;
2700 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2701 			count += acpi_probe_count;
2702 		} else {
2703 			int res;
2704 			res = acpi_table_parse(ape->id, ape->probe_table);
2705 			if (!res)
2706 				count++;
2707 		}
2708 	}
2709 	mutex_unlock(&acpi_probe_mutex);
2710 
2711 	return count;
2712 }
2713 
2714 static void acpi_table_events_fn(struct work_struct *work)
2715 {
2716 	acpi_scan_lock_acquire();
2717 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2718 	acpi_scan_lock_release();
2719 
2720 	kfree(work);
2721 }
2722 
2723 void acpi_scan_table_notify(void)
2724 {
2725 	struct work_struct *work;
2726 
2727 	if (!acpi_scan_initialized)
2728 		return;
2729 
2730 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2731 	if (!work)
2732 		return;
2733 
2734 	INIT_WORK(work, acpi_table_events_fn);
2735 	schedule_work(work);
2736 }
2737 
2738 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2739 {
2740 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2741 }
2742 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2743 
2744 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2745 {
2746 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2747 }
2748 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2749