1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 int (*notify)(struct acpi_device *, u32), 77 void (*uevent)(struct acpi_device *, u32)) 78 { 79 acpi_lock_hp_context(); 80 hp->notify = notify; 81 hp->uevent = uevent; 82 acpi_set_hp_context(adev, hp); 83 acpi_unlock_hp_context(); 84 } 85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 86 87 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 88 { 89 if (!handler) 90 return -EINVAL; 91 92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 93 return 0; 94 } 95 96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 97 const char *hotplug_profile_name) 98 { 99 int error; 100 101 error = acpi_scan_add_handler(handler); 102 if (error) 103 return error; 104 105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 106 return 0; 107 } 108 109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 110 { 111 struct acpi_device_physical_node *pn; 112 bool offline = true; 113 char *envp[] = { "EVENT=offline", NULL }; 114 115 /* 116 * acpi_container_offline() calls this for all of the container's 117 * children under the container's physical_node_lock lock. 118 */ 119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 120 121 list_for_each_entry(pn, &adev->physical_node_list, node) 122 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 123 if (uevent) 124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 125 126 offline = false; 127 break; 128 } 129 130 mutex_unlock(&adev->physical_node_lock); 131 return offline; 132 } 133 134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 135 void **ret_p) 136 { 137 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 138 struct acpi_device_physical_node *pn; 139 bool second_pass = (bool)data; 140 acpi_status status = AE_OK; 141 142 if (!device) 143 return AE_OK; 144 145 if (device->handler && !device->handler->hotplug.enabled) { 146 *ret_p = &device->dev; 147 return AE_SUPPORT; 148 } 149 150 mutex_lock(&device->physical_node_lock); 151 152 list_for_each_entry(pn, &device->physical_node_list, node) { 153 int ret; 154 155 if (second_pass) { 156 /* Skip devices offlined by the first pass. */ 157 if (pn->put_online) 158 continue; 159 } else { 160 pn->put_online = false; 161 } 162 ret = device_offline(pn->dev); 163 if (ret >= 0) { 164 pn->put_online = !ret; 165 } else { 166 *ret_p = pn->dev; 167 if (second_pass) { 168 status = AE_ERROR; 169 break; 170 } 171 } 172 } 173 174 mutex_unlock(&device->physical_node_lock); 175 176 return status; 177 } 178 179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 180 void **ret_p) 181 { 182 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 183 struct acpi_device_physical_node *pn; 184 185 if (!device) 186 return AE_OK; 187 188 mutex_lock(&device->physical_node_lock); 189 190 list_for_each_entry(pn, &device->physical_node_list, node) 191 if (pn->put_online) { 192 device_online(pn->dev); 193 pn->put_online = false; 194 } 195 196 mutex_unlock(&device->physical_node_lock); 197 198 return AE_OK; 199 } 200 201 static int acpi_scan_try_to_offline(struct acpi_device *device) 202 { 203 acpi_handle handle = device->handle; 204 struct device *errdev = NULL; 205 acpi_status status; 206 207 /* 208 * Carry out two passes here and ignore errors in the first pass, 209 * because if the devices in question are memory blocks and 210 * CONFIG_MEMCG is set, one of the blocks may hold data structures 211 * that the other blocks depend on, but it is not known in advance which 212 * block holds them. 213 * 214 * If the first pass is successful, the second one isn't needed, though. 215 */ 216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 217 NULL, acpi_bus_offline, (void *)false, 218 (void **)&errdev); 219 if (status == AE_SUPPORT) { 220 dev_warn(errdev, "Offline disabled.\n"); 221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 222 acpi_bus_online, NULL, NULL, NULL); 223 return -EPERM; 224 } 225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 226 if (errdev) { 227 errdev = NULL; 228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 229 NULL, acpi_bus_offline, (void *)true, 230 (void **)&errdev); 231 if (!errdev) 232 acpi_bus_offline(handle, 0, (void *)true, 233 (void **)&errdev); 234 235 if (errdev) { 236 dev_warn(errdev, "Offline failed.\n"); 237 acpi_bus_online(handle, 0, NULL, NULL); 238 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 239 ACPI_UINT32_MAX, acpi_bus_online, 240 NULL, NULL, NULL); 241 return -EBUSY; 242 } 243 } 244 return 0; 245 } 246 247 static int acpi_scan_hot_remove(struct acpi_device *device) 248 { 249 acpi_handle handle = device->handle; 250 unsigned long long sta; 251 acpi_status status; 252 253 if (device->handler && device->handler->hotplug.demand_offline) { 254 if (!acpi_scan_is_offline(device, true)) 255 return -EBUSY; 256 } else { 257 int error = acpi_scan_try_to_offline(device); 258 if (error) 259 return error; 260 } 261 262 acpi_handle_debug(handle, "Ejecting\n"); 263 264 acpi_bus_trim(device); 265 266 acpi_evaluate_lck(handle, 0); 267 /* 268 * TBD: _EJD support. 269 */ 270 status = acpi_evaluate_ej0(handle); 271 if (status == AE_NOT_FOUND) 272 return -ENODEV; 273 else if (ACPI_FAILURE(status)) 274 return -EIO; 275 276 /* 277 * Verify if eject was indeed successful. If not, log an error 278 * message. No need to call _OST since _EJ0 call was made OK. 279 */ 280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 281 if (ACPI_FAILURE(status)) { 282 acpi_handle_warn(handle, 283 "Status check after eject failed (0x%x)\n", status); 284 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 285 acpi_handle_warn(handle, 286 "Eject incomplete - status 0x%llx\n", sta); 287 } 288 289 return 0; 290 } 291 292 static int acpi_scan_device_not_present(struct acpi_device *adev) 293 { 294 if (!acpi_device_enumerated(adev)) { 295 dev_warn(&adev->dev, "Still not present\n"); 296 return -EALREADY; 297 } 298 acpi_bus_trim(adev); 299 return 0; 300 } 301 302 static int acpi_scan_device_check(struct acpi_device *adev) 303 { 304 int error; 305 306 acpi_bus_get_status(adev); 307 if (adev->status.present || adev->status.functional) { 308 /* 309 * This function is only called for device objects for which 310 * matching scan handlers exist. The only situation in which 311 * the scan handler is not attached to this device object yet 312 * is when the device has just appeared (either it wasn't 313 * present at all before or it was removed and then added 314 * again). 315 */ 316 if (adev->handler) { 317 dev_warn(&adev->dev, "Already enumerated\n"); 318 return -EALREADY; 319 } 320 error = acpi_bus_scan(adev->handle); 321 if (error) { 322 dev_warn(&adev->dev, "Namespace scan failure\n"); 323 return error; 324 } 325 if (!adev->handler) { 326 dev_warn(&adev->dev, "Enumeration failure\n"); 327 error = -ENODEV; 328 } 329 } else { 330 error = acpi_scan_device_not_present(adev); 331 } 332 return error; 333 } 334 335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used) 336 { 337 struct acpi_scan_handler *handler = adev->handler; 338 int error; 339 340 acpi_bus_get_status(adev); 341 if (!(adev->status.present || adev->status.functional)) { 342 acpi_scan_device_not_present(adev); 343 return 0; 344 } 345 if (handler && handler->hotplug.scan_dependent) 346 return handler->hotplug.scan_dependent(adev); 347 348 error = acpi_bus_scan(adev->handle); 349 if (error) { 350 dev_warn(&adev->dev, "Namespace scan failure\n"); 351 return error; 352 } 353 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL); 354 } 355 356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 357 { 358 switch (type) { 359 case ACPI_NOTIFY_BUS_CHECK: 360 return acpi_scan_bus_check(adev, NULL); 361 case ACPI_NOTIFY_DEVICE_CHECK: 362 return acpi_scan_device_check(adev); 363 case ACPI_NOTIFY_EJECT_REQUEST: 364 case ACPI_OST_EC_OSPM_EJECT: 365 if (adev->handler && !adev->handler->hotplug.enabled) { 366 dev_info(&adev->dev, "Eject disabled\n"); 367 return -EPERM; 368 } 369 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 370 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 371 return acpi_scan_hot_remove(adev); 372 } 373 return -EINVAL; 374 } 375 376 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 377 { 378 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 379 int error = -ENODEV; 380 381 lock_device_hotplug(); 382 mutex_lock(&acpi_scan_lock); 383 384 /* 385 * The device object's ACPI handle cannot become invalid as long as we 386 * are holding acpi_scan_lock, but it might have become invalid before 387 * that lock was acquired. 388 */ 389 if (adev->handle == INVALID_ACPI_HANDLE) 390 goto err_out; 391 392 if (adev->flags.is_dock_station) { 393 error = dock_notify(adev, src); 394 } else if (adev->flags.hotplug_notify) { 395 error = acpi_generic_hotplug_event(adev, src); 396 } else { 397 int (*notify)(struct acpi_device *, u32); 398 399 acpi_lock_hp_context(); 400 notify = adev->hp ? adev->hp->notify : NULL; 401 acpi_unlock_hp_context(); 402 /* 403 * There may be additional notify handlers for device objects 404 * without the .event() callback, so ignore them here. 405 */ 406 if (notify) 407 error = notify(adev, src); 408 else 409 goto out; 410 } 411 switch (error) { 412 case 0: 413 ost_code = ACPI_OST_SC_SUCCESS; 414 break; 415 case -EPERM: 416 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 417 break; 418 case -EBUSY: 419 ost_code = ACPI_OST_SC_DEVICE_BUSY; 420 break; 421 default: 422 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 423 break; 424 } 425 426 err_out: 427 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 428 429 out: 430 acpi_put_acpi_dev(adev); 431 mutex_unlock(&acpi_scan_lock); 432 unlock_device_hotplug(); 433 } 434 435 static void acpi_free_power_resources_lists(struct acpi_device *device) 436 { 437 int i; 438 439 if (device->wakeup.flags.valid) 440 acpi_power_resources_list_free(&device->wakeup.resources); 441 442 if (!device->power.flags.power_resources) 443 return; 444 445 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 446 struct acpi_device_power_state *ps = &device->power.states[i]; 447 acpi_power_resources_list_free(&ps->resources); 448 } 449 } 450 451 static void acpi_device_release(struct device *dev) 452 { 453 struct acpi_device *acpi_dev = to_acpi_device(dev); 454 455 acpi_free_properties(acpi_dev); 456 acpi_free_pnp_ids(&acpi_dev->pnp); 457 acpi_free_power_resources_lists(acpi_dev); 458 kfree(acpi_dev); 459 } 460 461 static void acpi_device_del(struct acpi_device *device) 462 { 463 struct acpi_device_bus_id *acpi_device_bus_id; 464 465 mutex_lock(&acpi_device_lock); 466 467 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 468 if (!strcmp(acpi_device_bus_id->bus_id, 469 acpi_device_hid(device))) { 470 ida_free(&acpi_device_bus_id->instance_ida, 471 device->pnp.instance_no); 472 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 473 list_del(&acpi_device_bus_id->node); 474 kfree_const(acpi_device_bus_id->bus_id); 475 kfree(acpi_device_bus_id); 476 } 477 break; 478 } 479 480 list_del(&device->wakeup_list); 481 482 mutex_unlock(&acpi_device_lock); 483 484 acpi_power_add_remove_device(device, false); 485 acpi_device_remove_files(device); 486 if (device->remove) 487 device->remove(device); 488 489 device_del(&device->dev); 490 } 491 492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 493 494 static LIST_HEAD(acpi_device_del_list); 495 static DEFINE_MUTEX(acpi_device_del_lock); 496 497 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 498 { 499 for (;;) { 500 struct acpi_device *adev; 501 502 mutex_lock(&acpi_device_del_lock); 503 504 if (list_empty(&acpi_device_del_list)) { 505 mutex_unlock(&acpi_device_del_lock); 506 break; 507 } 508 adev = list_first_entry(&acpi_device_del_list, 509 struct acpi_device, del_list); 510 list_del(&adev->del_list); 511 512 mutex_unlock(&acpi_device_del_lock); 513 514 blocking_notifier_call_chain(&acpi_reconfig_chain, 515 ACPI_RECONFIG_DEVICE_REMOVE, adev); 516 517 acpi_device_del(adev); 518 /* 519 * Drop references to all power resources that might have been 520 * used by the device. 521 */ 522 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 523 acpi_dev_put(adev); 524 } 525 } 526 527 /** 528 * acpi_scan_drop_device - Drop an ACPI device object. 529 * @handle: Handle of an ACPI namespace node, not used. 530 * @context: Address of the ACPI device object to drop. 531 * 532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 533 * namespace node the device object pointed to by @context is attached to. 534 * 535 * The unregistration is carried out asynchronously to avoid running 536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 537 * ensure the correct ordering (the device objects must be unregistered in the 538 * same order in which the corresponding namespace nodes are deleted). 539 */ 540 static void acpi_scan_drop_device(acpi_handle handle, void *context) 541 { 542 static DECLARE_WORK(work, acpi_device_del_work_fn); 543 struct acpi_device *adev = context; 544 545 mutex_lock(&acpi_device_del_lock); 546 547 /* 548 * Use the ACPI hotplug workqueue which is ordered, so this work item 549 * won't run after any hotplug work items submitted subsequently. That 550 * prevents attempts to register device objects identical to those being 551 * deleted from happening concurrently (such attempts result from 552 * hotplug events handled via the ACPI hotplug workqueue). It also will 553 * run after all of the work items submitted previously, which helps 554 * those work items to ensure that they are not accessing stale device 555 * objects. 556 */ 557 if (list_empty(&acpi_device_del_list)) 558 acpi_queue_hotplug_work(&work); 559 560 list_add_tail(&adev->del_list, &acpi_device_del_list); 561 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 562 adev->handle = INVALID_ACPI_HANDLE; 563 564 mutex_unlock(&acpi_device_del_lock); 565 } 566 567 static struct acpi_device *handle_to_device(acpi_handle handle, 568 void (*callback)(void *)) 569 { 570 struct acpi_device *adev = NULL; 571 acpi_status status; 572 573 status = acpi_get_data_full(handle, acpi_scan_drop_device, 574 (void **)&adev, callback); 575 if (ACPI_FAILURE(status) || !adev) { 576 acpi_handle_debug(handle, "No context!\n"); 577 return NULL; 578 } 579 return adev; 580 } 581 582 /** 583 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 584 * @handle: ACPI handle associated with the requested ACPI device object. 585 * 586 * Return a pointer to the ACPI device object associated with @handle, if 587 * present, or NULL otherwise. 588 */ 589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 590 { 591 return handle_to_device(handle, NULL); 592 } 593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 594 595 static void get_acpi_device(void *dev) 596 { 597 acpi_dev_get(dev); 598 } 599 600 /** 601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 602 * @handle: ACPI handle associated with the requested ACPI device object. 603 * 604 * Return a pointer to the ACPI device object associated with @handle and bump 605 * up that object's reference counter (under the ACPI Namespace lock), if 606 * present, or return NULL otherwise. 607 * 608 * The ACPI device object reference acquired by this function needs to be 609 * dropped via acpi_dev_put(). 610 */ 611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 612 { 613 return handle_to_device(handle, get_acpi_device); 614 } 615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 616 617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 618 { 619 struct acpi_device_bus_id *acpi_device_bus_id; 620 621 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 622 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 623 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 624 return acpi_device_bus_id; 625 } 626 return NULL; 627 } 628 629 static int acpi_device_set_name(struct acpi_device *device, 630 struct acpi_device_bus_id *acpi_device_bus_id) 631 { 632 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 633 int result; 634 635 result = ida_alloc(instance_ida, GFP_KERNEL); 636 if (result < 0) 637 return result; 638 639 device->pnp.instance_no = result; 640 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 641 return 0; 642 } 643 644 int acpi_tie_acpi_dev(struct acpi_device *adev) 645 { 646 acpi_handle handle = adev->handle; 647 acpi_status status; 648 649 if (!handle) 650 return 0; 651 652 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 653 if (ACPI_FAILURE(status)) { 654 acpi_handle_err(handle, "Unable to attach device data\n"); 655 return -ENODEV; 656 } 657 658 return 0; 659 } 660 661 static void acpi_store_pld_crc(struct acpi_device *adev) 662 { 663 struct acpi_pld_info *pld; 664 acpi_status status; 665 666 status = acpi_get_physical_device_location(adev->handle, &pld); 667 if (ACPI_FAILURE(status)) 668 return; 669 670 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 671 ACPI_FREE(pld); 672 } 673 674 int acpi_device_add(struct acpi_device *device) 675 { 676 struct acpi_device_bus_id *acpi_device_bus_id; 677 int result; 678 679 /* 680 * Linkage 681 * ------- 682 * Link this device to its parent and siblings. 683 */ 684 INIT_LIST_HEAD(&device->wakeup_list); 685 INIT_LIST_HEAD(&device->physical_node_list); 686 INIT_LIST_HEAD(&device->del_list); 687 mutex_init(&device->physical_node_lock); 688 689 mutex_lock(&acpi_device_lock); 690 691 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 692 if (acpi_device_bus_id) { 693 result = acpi_device_set_name(device, acpi_device_bus_id); 694 if (result) 695 goto err_unlock; 696 } else { 697 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 698 GFP_KERNEL); 699 if (!acpi_device_bus_id) { 700 result = -ENOMEM; 701 goto err_unlock; 702 } 703 acpi_device_bus_id->bus_id = 704 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 705 if (!acpi_device_bus_id->bus_id) { 706 kfree(acpi_device_bus_id); 707 result = -ENOMEM; 708 goto err_unlock; 709 } 710 711 ida_init(&acpi_device_bus_id->instance_ida); 712 713 result = acpi_device_set_name(device, acpi_device_bus_id); 714 if (result) { 715 kfree_const(acpi_device_bus_id->bus_id); 716 kfree(acpi_device_bus_id); 717 goto err_unlock; 718 } 719 720 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 721 } 722 723 if (device->wakeup.flags.valid) 724 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 725 726 acpi_store_pld_crc(device); 727 728 mutex_unlock(&acpi_device_lock); 729 730 result = device_add(&device->dev); 731 if (result) { 732 dev_err(&device->dev, "Error registering device\n"); 733 goto err; 734 } 735 736 result = acpi_device_setup_files(device); 737 if (result) 738 pr_err("Error creating sysfs interface for device %s\n", 739 dev_name(&device->dev)); 740 741 return 0; 742 743 err: 744 mutex_lock(&acpi_device_lock); 745 746 list_del(&device->wakeup_list); 747 748 err_unlock: 749 mutex_unlock(&acpi_device_lock); 750 751 acpi_detach_data(device->handle, acpi_scan_drop_device); 752 753 return result; 754 } 755 756 /* -------------------------------------------------------------------------- 757 Device Enumeration 758 -------------------------------------------------------------------------- */ 759 static bool acpi_info_matches_ids(struct acpi_device_info *info, 760 const char * const ids[]) 761 { 762 struct acpi_pnp_device_id_list *cid_list = NULL; 763 int i, index; 764 765 if (!(info->valid & ACPI_VALID_HID)) 766 return false; 767 768 index = match_string(ids, -1, info->hardware_id.string); 769 if (index >= 0) 770 return true; 771 772 if (info->valid & ACPI_VALID_CID) 773 cid_list = &info->compatible_id_list; 774 775 if (!cid_list) 776 return false; 777 778 for (i = 0; i < cid_list->count; i++) { 779 index = match_string(ids, -1, cid_list->ids[i].string); 780 if (index >= 0) 781 return true; 782 } 783 784 return false; 785 } 786 787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 788 static const char * const acpi_ignore_dep_ids[] = { 789 "PNP0D80", /* Windows-compatible System Power Management Controller */ 790 "INT33BD", /* Intel Baytrail Mailbox Device */ 791 "LATT2021", /* Lattice FW Update Client Driver */ 792 NULL 793 }; 794 795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 796 static const char * const acpi_honor_dep_ids[] = { 797 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 798 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 799 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 800 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 801 NULL 802 }; 803 804 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 805 { 806 struct acpi_device *adev; 807 808 /* 809 * Fixed hardware devices do not appear in the namespace and do not 810 * have handles, but we fabricate acpi_devices for them, so we have 811 * to deal with them specially. 812 */ 813 if (!handle) 814 return acpi_root; 815 816 do { 817 acpi_status status; 818 819 status = acpi_get_parent(handle, &handle); 820 if (ACPI_FAILURE(status)) { 821 if (status != AE_NULL_ENTRY) 822 return acpi_root; 823 824 return NULL; 825 } 826 adev = acpi_fetch_acpi_dev(handle); 827 } while (!adev); 828 return adev; 829 } 830 831 acpi_status 832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 833 { 834 acpi_status status; 835 acpi_handle tmp; 836 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 837 union acpi_object *obj; 838 839 status = acpi_get_handle(handle, "_EJD", &tmp); 840 if (ACPI_FAILURE(status)) 841 return status; 842 843 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 844 if (ACPI_SUCCESS(status)) { 845 obj = buffer.pointer; 846 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 847 ejd); 848 kfree(buffer.pointer); 849 } 850 return status; 851 } 852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 853 854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 855 { 856 acpi_handle handle = dev->handle; 857 struct acpi_device_wakeup *wakeup = &dev->wakeup; 858 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 859 union acpi_object *package = NULL; 860 union acpi_object *element = NULL; 861 acpi_status status; 862 int err = -ENODATA; 863 864 INIT_LIST_HEAD(&wakeup->resources); 865 866 /* _PRW */ 867 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 868 if (ACPI_FAILURE(status)) { 869 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 870 acpi_format_exception(status)); 871 return err; 872 } 873 874 package = (union acpi_object *)buffer.pointer; 875 876 if (!package || package->package.count < 2) 877 goto out; 878 879 element = &(package->package.elements[0]); 880 if (!element) 881 goto out; 882 883 if (element->type == ACPI_TYPE_PACKAGE) { 884 if ((element->package.count < 2) || 885 (element->package.elements[0].type != 886 ACPI_TYPE_LOCAL_REFERENCE) 887 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 888 goto out; 889 890 wakeup->gpe_device = 891 element->package.elements[0].reference.handle; 892 wakeup->gpe_number = 893 (u32) element->package.elements[1].integer.value; 894 } else if (element->type == ACPI_TYPE_INTEGER) { 895 wakeup->gpe_device = NULL; 896 wakeup->gpe_number = element->integer.value; 897 } else { 898 goto out; 899 } 900 901 element = &(package->package.elements[1]); 902 if (element->type != ACPI_TYPE_INTEGER) 903 goto out; 904 905 wakeup->sleep_state = element->integer.value; 906 907 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 908 if (err) 909 goto out; 910 911 if (!list_empty(&wakeup->resources)) { 912 int sleep_state; 913 914 err = acpi_power_wakeup_list_init(&wakeup->resources, 915 &sleep_state); 916 if (err) { 917 acpi_handle_warn(handle, "Retrieving current states " 918 "of wakeup power resources failed\n"); 919 acpi_power_resources_list_free(&wakeup->resources); 920 goto out; 921 } 922 if (sleep_state < wakeup->sleep_state) { 923 acpi_handle_warn(handle, "Overriding _PRW sleep state " 924 "(S%d) by S%d from power resources\n", 925 (int)wakeup->sleep_state, sleep_state); 926 wakeup->sleep_state = sleep_state; 927 } 928 } 929 930 out: 931 kfree(buffer.pointer); 932 return err; 933 } 934 935 /* Do not use a button for S5 wakeup */ 936 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 937 938 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 939 { 940 static const struct acpi_device_id button_device_ids[] = { 941 {"PNP0C0C", 0}, /* Power button */ 942 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 943 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 944 {"", 0}, 945 }; 946 struct acpi_device_wakeup *wakeup = &device->wakeup; 947 const struct acpi_device_id *match; 948 acpi_status status; 949 950 wakeup->flags.notifier_present = 0; 951 952 /* Power button, Lid switch always enable wakeup */ 953 match = acpi_match_acpi_device(button_device_ids, device); 954 if (match) { 955 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 956 wakeup->sleep_state == ACPI_STATE_S5) 957 wakeup->sleep_state = ACPI_STATE_S4; 958 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 959 device_set_wakeup_capable(&device->dev, true); 960 return true; 961 } 962 963 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 964 wakeup->gpe_number); 965 return ACPI_SUCCESS(status); 966 } 967 968 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 969 { 970 int err; 971 972 /* Presence of _PRW indicates wake capable */ 973 if (!acpi_has_method(device->handle, "_PRW")) 974 return; 975 976 err = acpi_bus_extract_wakeup_device_power_package(device); 977 if (err) { 978 dev_err(&device->dev, "Unable to extract wakeup power resources"); 979 return; 980 } 981 982 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 983 device->wakeup.prepare_count = 0; 984 /* 985 * Call _PSW/_DSW object to disable its ability to wake the sleeping 986 * system for the ACPI device with the _PRW object. 987 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 988 * So it is necessary to call _DSW object first. Only when it is not 989 * present will the _PSW object used. 990 */ 991 err = acpi_device_sleep_wake(device, 0, 0, 0); 992 if (err) 993 pr_debug("error in _DSW or _PSW evaluation\n"); 994 } 995 996 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 997 { 998 struct acpi_device_power_state *ps = &device->power.states[state]; 999 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1000 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1001 acpi_status status; 1002 1003 INIT_LIST_HEAD(&ps->resources); 1004 1005 /* Evaluate "_PRx" to get referenced power resources */ 1006 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1007 if (ACPI_SUCCESS(status)) { 1008 union acpi_object *package = buffer.pointer; 1009 1010 if (buffer.length && package 1011 && package->type == ACPI_TYPE_PACKAGE 1012 && package->package.count) 1013 acpi_extract_power_resources(package, 0, &ps->resources); 1014 1015 ACPI_FREE(buffer.pointer); 1016 } 1017 1018 /* Evaluate "_PSx" to see if we can do explicit sets */ 1019 pathname[2] = 'S'; 1020 if (acpi_has_method(device->handle, pathname)) 1021 ps->flags.explicit_set = 1; 1022 1023 /* State is valid if there are means to put the device into it. */ 1024 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1025 ps->flags.valid = 1; 1026 1027 ps->power = -1; /* Unknown - driver assigned */ 1028 ps->latency = -1; /* Unknown - driver assigned */ 1029 } 1030 1031 static void acpi_bus_get_power_flags(struct acpi_device *device) 1032 { 1033 unsigned long long dsc = ACPI_STATE_D0; 1034 u32 i; 1035 1036 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1037 if (!acpi_has_method(device->handle, "_PS0") && 1038 !acpi_has_method(device->handle, "_PR0")) 1039 return; 1040 1041 device->flags.power_manageable = 1; 1042 1043 /* 1044 * Power Management Flags 1045 */ 1046 if (acpi_has_method(device->handle, "_PSC")) 1047 device->power.flags.explicit_get = 1; 1048 1049 if (acpi_has_method(device->handle, "_IRC")) 1050 device->power.flags.inrush_current = 1; 1051 1052 if (acpi_has_method(device->handle, "_DSW")) 1053 device->power.flags.dsw_present = 1; 1054 1055 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1056 device->power.state_for_enumeration = dsc; 1057 1058 /* 1059 * Enumerate supported power management states 1060 */ 1061 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1062 acpi_bus_init_power_state(device, i); 1063 1064 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1065 1066 /* Set the defaults for D0 and D3hot (always supported). */ 1067 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1068 device->power.states[ACPI_STATE_D0].power = 100; 1069 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1070 1071 /* 1072 * Use power resources only if the D0 list of them is populated, because 1073 * some platforms may provide _PR3 only to indicate D3cold support and 1074 * in those cases the power resources list returned by it may be bogus. 1075 */ 1076 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1077 device->power.flags.power_resources = 1; 1078 /* 1079 * D3cold is supported if the D3hot list of power resources is 1080 * not empty. 1081 */ 1082 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1083 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1084 } 1085 1086 if (acpi_bus_init_power(device)) 1087 device->flags.power_manageable = 0; 1088 } 1089 1090 static void acpi_bus_get_flags(struct acpi_device *device) 1091 { 1092 /* Presence of _STA indicates 'dynamic_status' */ 1093 if (acpi_has_method(device->handle, "_STA")) 1094 device->flags.dynamic_status = 1; 1095 1096 /* Presence of _RMV indicates 'removable' */ 1097 if (acpi_has_method(device->handle, "_RMV")) 1098 device->flags.removable = 1; 1099 1100 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1101 if (acpi_has_method(device->handle, "_EJD") || 1102 acpi_has_method(device->handle, "_EJ0")) 1103 device->flags.ejectable = 1; 1104 } 1105 1106 static void acpi_device_get_busid(struct acpi_device *device) 1107 { 1108 char bus_id[5] = { '?', 0 }; 1109 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1110 int i = 0; 1111 1112 /* 1113 * Bus ID 1114 * ------ 1115 * The device's Bus ID is simply the object name. 1116 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1117 */ 1118 if (!acpi_dev_parent(device)) { 1119 strcpy(device->pnp.bus_id, "ACPI"); 1120 return; 1121 } 1122 1123 switch (device->device_type) { 1124 case ACPI_BUS_TYPE_POWER_BUTTON: 1125 strcpy(device->pnp.bus_id, "PWRF"); 1126 break; 1127 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1128 strcpy(device->pnp.bus_id, "SLPF"); 1129 break; 1130 case ACPI_BUS_TYPE_ECDT_EC: 1131 strcpy(device->pnp.bus_id, "ECDT"); 1132 break; 1133 default: 1134 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1135 /* Clean up trailing underscores (if any) */ 1136 for (i = 3; i > 1; i--) { 1137 if (bus_id[i] == '_') 1138 bus_id[i] = '\0'; 1139 else 1140 break; 1141 } 1142 strcpy(device->pnp.bus_id, bus_id); 1143 break; 1144 } 1145 } 1146 1147 /* 1148 * acpi_ata_match - see if an acpi object is an ATA device 1149 * 1150 * If an acpi object has one of the ACPI ATA methods defined, 1151 * then we can safely call it an ATA device. 1152 */ 1153 bool acpi_ata_match(acpi_handle handle) 1154 { 1155 return acpi_has_method(handle, "_GTF") || 1156 acpi_has_method(handle, "_GTM") || 1157 acpi_has_method(handle, "_STM") || 1158 acpi_has_method(handle, "_SDD"); 1159 } 1160 1161 /* 1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1163 * 1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1165 * then we can safely call it an ejectable drive bay 1166 */ 1167 bool acpi_bay_match(acpi_handle handle) 1168 { 1169 acpi_handle phandle; 1170 1171 if (!acpi_has_method(handle, "_EJ0")) 1172 return false; 1173 if (acpi_ata_match(handle)) 1174 return true; 1175 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1176 return false; 1177 1178 return acpi_ata_match(phandle); 1179 } 1180 1181 bool acpi_device_is_battery(struct acpi_device *adev) 1182 { 1183 struct acpi_hardware_id *hwid; 1184 1185 list_for_each_entry(hwid, &adev->pnp.ids, list) 1186 if (!strcmp("PNP0C0A", hwid->id)) 1187 return true; 1188 1189 return false; 1190 } 1191 1192 static bool is_ejectable_bay(struct acpi_device *adev) 1193 { 1194 acpi_handle handle = adev->handle; 1195 1196 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1197 return true; 1198 1199 return acpi_bay_match(handle); 1200 } 1201 1202 /* 1203 * acpi_dock_match - see if an acpi object has a _DCK method 1204 */ 1205 bool acpi_dock_match(acpi_handle handle) 1206 { 1207 return acpi_has_method(handle, "_DCK"); 1208 } 1209 1210 static acpi_status 1211 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1212 void **return_value) 1213 { 1214 long *cap = context; 1215 1216 if (acpi_has_method(handle, "_BCM") && 1217 acpi_has_method(handle, "_BCL")) { 1218 acpi_handle_debug(handle, "Found generic backlight support\n"); 1219 *cap |= ACPI_VIDEO_BACKLIGHT; 1220 /* We have backlight support, no need to scan further */ 1221 return AE_CTRL_TERMINATE; 1222 } 1223 return 0; 1224 } 1225 1226 /* Returns true if the ACPI object is a video device which can be 1227 * handled by video.ko. 1228 * The device will get a Linux specific CID added in scan.c to 1229 * identify the device as an ACPI graphics device 1230 * Be aware that the graphics device may not be physically present 1231 * Use acpi_video_get_capabilities() to detect general ACPI video 1232 * capabilities of present cards 1233 */ 1234 long acpi_is_video_device(acpi_handle handle) 1235 { 1236 long video_caps = 0; 1237 1238 /* Is this device able to support video switching ? */ 1239 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1240 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1241 1242 /* Is this device able to retrieve a video ROM ? */ 1243 if (acpi_has_method(handle, "_ROM")) 1244 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1245 1246 /* Is this device able to configure which video head to be POSTed ? */ 1247 if (acpi_has_method(handle, "_VPO") && 1248 acpi_has_method(handle, "_GPD") && 1249 acpi_has_method(handle, "_SPD")) 1250 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1251 1252 /* Only check for backlight functionality if one of the above hit. */ 1253 if (video_caps) 1254 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1255 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1256 &video_caps, NULL); 1257 1258 return video_caps; 1259 } 1260 EXPORT_SYMBOL(acpi_is_video_device); 1261 1262 const char *acpi_device_hid(struct acpi_device *device) 1263 { 1264 struct acpi_hardware_id *hid; 1265 1266 if (list_empty(&device->pnp.ids)) 1267 return dummy_hid; 1268 1269 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1270 return hid->id; 1271 } 1272 EXPORT_SYMBOL(acpi_device_hid); 1273 1274 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1275 { 1276 struct acpi_hardware_id *id; 1277 1278 id = kmalloc(sizeof(*id), GFP_KERNEL); 1279 if (!id) 1280 return; 1281 1282 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1283 if (!id->id) { 1284 kfree(id); 1285 return; 1286 } 1287 1288 list_add_tail(&id->list, &pnp->ids); 1289 pnp->type.hardware_id = 1; 1290 } 1291 1292 /* 1293 * Old IBM workstations have a DSDT bug wherein the SMBus object 1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1295 * prefix. Work around this. 1296 */ 1297 static bool acpi_ibm_smbus_match(acpi_handle handle) 1298 { 1299 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1300 struct acpi_buffer path = { sizeof(node_name), node_name }; 1301 1302 if (!dmi_name_in_vendors("IBM")) 1303 return false; 1304 1305 /* Look for SMBS object */ 1306 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1307 strcmp("SMBS", path.pointer)) 1308 return false; 1309 1310 /* Does it have the necessary (but misnamed) methods? */ 1311 if (acpi_has_method(handle, "SBI") && 1312 acpi_has_method(handle, "SBR") && 1313 acpi_has_method(handle, "SBW")) 1314 return true; 1315 1316 return false; 1317 } 1318 1319 static bool acpi_object_is_system_bus(acpi_handle handle) 1320 { 1321 acpi_handle tmp; 1322 1323 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1324 tmp == handle) 1325 return true; 1326 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1327 tmp == handle) 1328 return true; 1329 1330 return false; 1331 } 1332 1333 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1334 int device_type) 1335 { 1336 struct acpi_device_info *info = NULL; 1337 struct acpi_pnp_device_id_list *cid_list; 1338 int i; 1339 1340 switch (device_type) { 1341 case ACPI_BUS_TYPE_DEVICE: 1342 if (handle == ACPI_ROOT_OBJECT) { 1343 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1344 break; 1345 } 1346 1347 acpi_get_object_info(handle, &info); 1348 if (!info) { 1349 pr_err("%s: Error reading device info\n", __func__); 1350 return; 1351 } 1352 1353 if (info->valid & ACPI_VALID_HID) { 1354 acpi_add_id(pnp, info->hardware_id.string); 1355 pnp->type.platform_id = 1; 1356 } 1357 if (info->valid & ACPI_VALID_CID) { 1358 cid_list = &info->compatible_id_list; 1359 for (i = 0; i < cid_list->count; i++) 1360 acpi_add_id(pnp, cid_list->ids[i].string); 1361 } 1362 if (info->valid & ACPI_VALID_ADR) { 1363 pnp->bus_address = info->address; 1364 pnp->type.bus_address = 1; 1365 } 1366 if (info->valid & ACPI_VALID_UID) 1367 pnp->unique_id = kstrdup(info->unique_id.string, 1368 GFP_KERNEL); 1369 if (info->valid & ACPI_VALID_CLS) 1370 acpi_add_id(pnp, info->class_code.string); 1371 1372 kfree(info); 1373 1374 /* 1375 * Some devices don't reliably have _HIDs & _CIDs, so add 1376 * synthetic HIDs to make sure drivers can find them. 1377 */ 1378 if (acpi_is_video_device(handle)) { 1379 acpi_add_id(pnp, ACPI_VIDEO_HID); 1380 pnp->type.backlight = 1; 1381 break; 1382 } 1383 if (acpi_bay_match(handle)) 1384 acpi_add_id(pnp, ACPI_BAY_HID); 1385 else if (acpi_dock_match(handle)) 1386 acpi_add_id(pnp, ACPI_DOCK_HID); 1387 else if (acpi_ibm_smbus_match(handle)) 1388 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1389 else if (list_empty(&pnp->ids) && 1390 acpi_object_is_system_bus(handle)) { 1391 /* \_SB, \_TZ, LNXSYBUS */ 1392 acpi_add_id(pnp, ACPI_BUS_HID); 1393 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1394 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1395 } 1396 1397 break; 1398 case ACPI_BUS_TYPE_POWER: 1399 acpi_add_id(pnp, ACPI_POWER_HID); 1400 break; 1401 case ACPI_BUS_TYPE_PROCESSOR: 1402 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1403 break; 1404 case ACPI_BUS_TYPE_THERMAL: 1405 acpi_add_id(pnp, ACPI_THERMAL_HID); 1406 break; 1407 case ACPI_BUS_TYPE_POWER_BUTTON: 1408 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1409 break; 1410 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1411 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1412 break; 1413 case ACPI_BUS_TYPE_ECDT_EC: 1414 acpi_add_id(pnp, ACPI_ECDT_HID); 1415 break; 1416 } 1417 } 1418 1419 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1420 { 1421 struct acpi_hardware_id *id, *tmp; 1422 1423 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1424 kfree_const(id->id); 1425 kfree(id); 1426 } 1427 kfree(pnp->unique_id); 1428 } 1429 1430 /** 1431 * acpi_dma_supported - Check DMA support for the specified device. 1432 * @adev: The pointer to acpi device 1433 * 1434 * Return false if DMA is not supported. Otherwise, return true 1435 */ 1436 bool acpi_dma_supported(const struct acpi_device *adev) 1437 { 1438 if (!adev) 1439 return false; 1440 1441 if (adev->flags.cca_seen) 1442 return true; 1443 1444 /* 1445 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1446 * DMA on "Intel platforms". Presumably that includes all x86 and 1447 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1448 */ 1449 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1450 return true; 1451 1452 return false; 1453 } 1454 1455 /** 1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1457 * @adev: The pointer to acpi device 1458 * 1459 * Return enum dev_dma_attr. 1460 */ 1461 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1462 { 1463 if (!acpi_dma_supported(adev)) 1464 return DEV_DMA_NOT_SUPPORTED; 1465 1466 if (adev->flags.coherent_dma) 1467 return DEV_DMA_COHERENT; 1468 else 1469 return DEV_DMA_NON_COHERENT; 1470 } 1471 1472 /** 1473 * acpi_dma_get_range() - Get device DMA parameters. 1474 * 1475 * @dev: device to configure 1476 * @map: pointer to DMA ranges result 1477 * 1478 * Evaluate DMA regions and return pointer to DMA regions on 1479 * parsing success; it does not update the passed in values on failure. 1480 * 1481 * Return 0 on success, < 0 on failure. 1482 */ 1483 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1484 { 1485 struct acpi_device *adev; 1486 LIST_HEAD(list); 1487 struct resource_entry *rentry; 1488 int ret; 1489 struct device *dma_dev = dev; 1490 struct bus_dma_region *r; 1491 1492 /* 1493 * Walk the device tree chasing an ACPI companion with a _DMA 1494 * object while we go. Stop if we find a device with an ACPI 1495 * companion containing a _DMA method. 1496 */ 1497 do { 1498 adev = ACPI_COMPANION(dma_dev); 1499 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1500 break; 1501 1502 dma_dev = dma_dev->parent; 1503 } while (dma_dev); 1504 1505 if (!dma_dev) 1506 return -ENODEV; 1507 1508 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1509 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1510 return -EINVAL; 1511 } 1512 1513 ret = acpi_dev_get_dma_resources(adev, &list); 1514 if (ret > 0) { 1515 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1516 if (!r) { 1517 ret = -ENOMEM; 1518 goto out; 1519 } 1520 1521 *map = r; 1522 1523 list_for_each_entry(rentry, &list, node) { 1524 if (rentry->res->start >= rentry->res->end) { 1525 kfree(*map); 1526 *map = NULL; 1527 ret = -EINVAL; 1528 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1529 goto out; 1530 } 1531 1532 r->cpu_start = rentry->res->start; 1533 r->dma_start = rentry->res->start - rentry->offset; 1534 r->size = resource_size(rentry->res); 1535 r->offset = rentry->offset; 1536 r++; 1537 } 1538 } 1539 out: 1540 acpi_dev_free_resource_list(&list); 1541 1542 return ret >= 0 ? 0 : ret; 1543 } 1544 1545 #ifdef CONFIG_IOMMU_API 1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1547 struct fwnode_handle *fwnode, 1548 const struct iommu_ops *ops) 1549 { 1550 int ret = iommu_fwspec_init(dev, fwnode, ops); 1551 1552 if (!ret) 1553 ret = iommu_fwspec_add_ids(dev, &id, 1); 1554 1555 return ret; 1556 } 1557 1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1559 { 1560 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1561 1562 return fwspec ? fwspec->ops : NULL; 1563 } 1564 1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1566 const u32 *id_in) 1567 { 1568 int err; 1569 const struct iommu_ops *ops; 1570 1571 /* 1572 * If we already translated the fwspec there is nothing left to do, 1573 * return the iommu_ops. 1574 */ 1575 ops = acpi_iommu_fwspec_ops(dev); 1576 if (ops) 1577 return ops; 1578 1579 err = iort_iommu_configure_id(dev, id_in); 1580 if (err && err != -EPROBE_DEFER) 1581 err = viot_iommu_configure(dev); 1582 1583 /* 1584 * If we have reason to believe the IOMMU driver missed the initial 1585 * iommu_probe_device() call for dev, replay it to get things in order. 1586 */ 1587 if (!err && dev->bus) 1588 err = iommu_probe_device(dev); 1589 1590 /* Ignore all other errors apart from EPROBE_DEFER */ 1591 if (err == -EPROBE_DEFER) { 1592 return ERR_PTR(err); 1593 } else if (err) { 1594 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1595 return NULL; 1596 } 1597 return acpi_iommu_fwspec_ops(dev); 1598 } 1599 1600 #else /* !CONFIG_IOMMU_API */ 1601 1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1603 struct fwnode_handle *fwnode, 1604 const struct iommu_ops *ops) 1605 { 1606 return -ENODEV; 1607 } 1608 1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1610 const u32 *id_in) 1611 { 1612 return NULL; 1613 } 1614 1615 #endif /* !CONFIG_IOMMU_API */ 1616 1617 /** 1618 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1619 * @dev: The pointer to the device 1620 * @attr: device dma attributes 1621 * @input_id: input device id const value pointer 1622 */ 1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1624 const u32 *input_id) 1625 { 1626 const struct iommu_ops *iommu; 1627 1628 if (attr == DEV_DMA_NOT_SUPPORTED) { 1629 set_dma_ops(dev, &dma_dummy_ops); 1630 return 0; 1631 } 1632 1633 acpi_arch_dma_setup(dev); 1634 1635 iommu = acpi_iommu_configure_id(dev, input_id); 1636 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1637 return -EPROBE_DEFER; 1638 1639 arch_setup_dma_ops(dev, 0, U64_MAX, 1640 iommu, attr == DEV_DMA_COHERENT); 1641 1642 return 0; 1643 } 1644 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1645 1646 static void acpi_init_coherency(struct acpi_device *adev) 1647 { 1648 unsigned long long cca = 0; 1649 acpi_status status; 1650 struct acpi_device *parent = acpi_dev_parent(adev); 1651 1652 if (parent && parent->flags.cca_seen) { 1653 /* 1654 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1655 * already saw one. 1656 */ 1657 adev->flags.cca_seen = 1; 1658 cca = parent->flags.coherent_dma; 1659 } else { 1660 status = acpi_evaluate_integer(adev->handle, "_CCA", 1661 NULL, &cca); 1662 if (ACPI_SUCCESS(status)) 1663 adev->flags.cca_seen = 1; 1664 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1665 /* 1666 * If architecture does not specify that _CCA is 1667 * required for DMA-able devices (e.g. x86), 1668 * we default to _CCA=1. 1669 */ 1670 cca = 1; 1671 else 1672 acpi_handle_debug(adev->handle, 1673 "ACPI device is missing _CCA.\n"); 1674 } 1675 1676 adev->flags.coherent_dma = cca; 1677 } 1678 1679 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1680 { 1681 bool *is_serial_bus_slave_p = data; 1682 1683 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1684 return 1; 1685 1686 *is_serial_bus_slave_p = true; 1687 1688 /* no need to do more checking */ 1689 return -1; 1690 } 1691 1692 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1693 { 1694 struct acpi_device *parent = acpi_dev_parent(device); 1695 static const struct acpi_device_id indirect_io_hosts[] = { 1696 {"HISI0191", 0}, 1697 {} 1698 }; 1699 1700 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1701 } 1702 1703 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1704 { 1705 struct list_head resource_list; 1706 bool is_serial_bus_slave = false; 1707 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1708 /* 1709 * These devices have multiple SerialBus resources and a client 1710 * device must be instantiated for each of them, each with 1711 * its own device id. 1712 * Normally we only instantiate one client device for the first 1713 * resource, using the ACPI HID as id. These special cases are handled 1714 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1715 * knows which client device id to use for each resource. 1716 */ 1717 {"BSG1160", }, 1718 {"BSG2150", }, 1719 {"CSC3551", }, 1720 {"CSC3556", }, 1721 {"INT33FE", }, 1722 {"INT3515", }, 1723 /* Non-conforming _HID for Cirrus Logic already released */ 1724 {"CLSA0100", }, 1725 {"CLSA0101", }, 1726 /* 1727 * Some ACPI devs contain SerialBus resources even though they are not 1728 * attached to a serial bus at all. 1729 */ 1730 {"MSHW0028", }, 1731 /* 1732 * HIDs of device with an UartSerialBusV2 resource for which userspace 1733 * expects a regular tty cdev to be created (instead of the in kernel 1734 * serdev) and which have a kernel driver which expects a platform_dev 1735 * such as the rfkill-gpio driver. 1736 */ 1737 {"BCM4752", }, 1738 {"LNV4752", }, 1739 {} 1740 }; 1741 1742 if (acpi_is_indirect_io_slave(device)) 1743 return true; 1744 1745 /* Macs use device properties in lieu of _CRS resources */ 1746 if (x86_apple_machine && 1747 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1748 fwnode_property_present(&device->fwnode, "i2cAddress") || 1749 fwnode_property_present(&device->fwnode, "baud"))) 1750 return true; 1751 1752 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1753 return false; 1754 1755 INIT_LIST_HEAD(&resource_list); 1756 acpi_dev_get_resources(device, &resource_list, 1757 acpi_check_serial_bus_slave, 1758 &is_serial_bus_slave); 1759 acpi_dev_free_resource_list(&resource_list); 1760 1761 return is_serial_bus_slave; 1762 } 1763 1764 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1765 int type, void (*release)(struct device *)) 1766 { 1767 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1768 1769 INIT_LIST_HEAD(&device->pnp.ids); 1770 device->device_type = type; 1771 device->handle = handle; 1772 device->dev.parent = parent ? &parent->dev : NULL; 1773 device->dev.release = release; 1774 device->dev.bus = &acpi_bus_type; 1775 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1776 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1777 acpi_device_get_busid(device); 1778 acpi_set_pnp_ids(handle, &device->pnp, type); 1779 acpi_init_properties(device); 1780 acpi_bus_get_flags(device); 1781 device->flags.match_driver = false; 1782 device->flags.initialized = true; 1783 device->flags.enumeration_by_parent = 1784 acpi_device_enumeration_by_parent(device); 1785 acpi_device_clear_enumerated(device); 1786 device_initialize(&device->dev); 1787 dev_set_uevent_suppress(&device->dev, true); 1788 acpi_init_coherency(device); 1789 } 1790 1791 static void acpi_scan_dep_init(struct acpi_device *adev) 1792 { 1793 struct acpi_dep_data *dep; 1794 1795 list_for_each_entry(dep, &acpi_dep_list, node) { 1796 if (dep->consumer == adev->handle) { 1797 if (dep->honor_dep) 1798 adev->flags.honor_deps = 1; 1799 1800 adev->dep_unmet++; 1801 } 1802 } 1803 } 1804 1805 void acpi_device_add_finalize(struct acpi_device *device) 1806 { 1807 dev_set_uevent_suppress(&device->dev, false); 1808 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1809 } 1810 1811 static void acpi_scan_init_status(struct acpi_device *adev) 1812 { 1813 if (acpi_bus_get_status(adev)) 1814 acpi_set_device_status(adev, 0); 1815 } 1816 1817 static int acpi_add_single_object(struct acpi_device **child, 1818 acpi_handle handle, int type, bool dep_init) 1819 { 1820 struct acpi_device *device; 1821 bool release_dep_lock = false; 1822 int result; 1823 1824 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1825 if (!device) 1826 return -ENOMEM; 1827 1828 acpi_init_device_object(device, handle, type, acpi_device_release); 1829 /* 1830 * Getting the status is delayed till here so that we can call 1831 * acpi_bus_get_status() and use its quirk handling. Note that 1832 * this must be done before the get power-/wakeup_dev-flags calls. 1833 */ 1834 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1835 if (dep_init) { 1836 mutex_lock(&acpi_dep_list_lock); 1837 /* 1838 * Hold the lock until the acpi_tie_acpi_dev() call 1839 * below to prevent concurrent acpi_scan_clear_dep() 1840 * from deleting a dependency list entry without 1841 * updating dep_unmet for the device. 1842 */ 1843 release_dep_lock = true; 1844 acpi_scan_dep_init(device); 1845 } 1846 acpi_scan_init_status(device); 1847 } 1848 1849 acpi_bus_get_power_flags(device); 1850 acpi_bus_get_wakeup_device_flags(device); 1851 1852 result = acpi_tie_acpi_dev(device); 1853 1854 if (release_dep_lock) 1855 mutex_unlock(&acpi_dep_list_lock); 1856 1857 if (!result) 1858 result = acpi_device_add(device); 1859 1860 if (result) { 1861 acpi_device_release(&device->dev); 1862 return result; 1863 } 1864 1865 acpi_power_add_remove_device(device, true); 1866 acpi_device_add_finalize(device); 1867 1868 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1869 dev_name(&device->dev), device->dev.parent ? 1870 dev_name(device->dev.parent) : "(null)"); 1871 1872 *child = device; 1873 return 0; 1874 } 1875 1876 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1877 void *context) 1878 { 1879 struct resource *res = context; 1880 1881 if (acpi_dev_resource_memory(ares, res)) 1882 return AE_CTRL_TERMINATE; 1883 1884 return AE_OK; 1885 } 1886 1887 static bool acpi_device_should_be_hidden(acpi_handle handle) 1888 { 1889 acpi_status status; 1890 struct resource res; 1891 1892 /* Check if it should ignore the UART device */ 1893 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1894 return false; 1895 1896 /* 1897 * The UART device described in SPCR table is assumed to have only one 1898 * memory resource present. So we only look for the first one here. 1899 */ 1900 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1901 acpi_get_resource_memory, &res); 1902 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1903 return false; 1904 1905 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1906 &res.start); 1907 1908 return true; 1909 } 1910 1911 bool acpi_device_is_present(const struct acpi_device *adev) 1912 { 1913 return adev->status.present || adev->status.functional; 1914 } 1915 1916 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1917 const char *idstr, 1918 const struct acpi_device_id **matchid) 1919 { 1920 const struct acpi_device_id *devid; 1921 1922 if (handler->match) 1923 return handler->match(idstr, matchid); 1924 1925 for (devid = handler->ids; devid->id[0]; devid++) 1926 if (!strcmp((char *)devid->id, idstr)) { 1927 if (matchid) 1928 *matchid = devid; 1929 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1937 const struct acpi_device_id **matchid) 1938 { 1939 struct acpi_scan_handler *handler; 1940 1941 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1942 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1943 return handler; 1944 1945 return NULL; 1946 } 1947 1948 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1949 { 1950 if (!!hotplug->enabled == !!val) 1951 return; 1952 1953 mutex_lock(&acpi_scan_lock); 1954 1955 hotplug->enabled = val; 1956 1957 mutex_unlock(&acpi_scan_lock); 1958 } 1959 1960 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1961 { 1962 struct acpi_hardware_id *hwid; 1963 1964 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1965 acpi_dock_add(adev); 1966 return; 1967 } 1968 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1969 struct acpi_scan_handler *handler; 1970 1971 handler = acpi_scan_match_handler(hwid->id, NULL); 1972 if (handler) { 1973 adev->flags.hotplug_notify = true; 1974 break; 1975 } 1976 } 1977 } 1978 1979 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1980 { 1981 struct acpi_handle_list dep_devices; 1982 acpi_status status; 1983 u32 count; 1984 int i; 1985 1986 /* 1987 * Check for _HID here to avoid deferring the enumeration of: 1988 * 1. PCI devices. 1989 * 2. ACPI nodes describing USB ports. 1990 * Still, checking for _HID catches more then just these cases ... 1991 */ 1992 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1993 !acpi_has_method(handle, "_HID")) 1994 return 0; 1995 1996 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1997 if (ACPI_FAILURE(status)) { 1998 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1999 return 0; 2000 } 2001 2002 for (count = 0, i = 0; i < dep_devices.count; i++) { 2003 struct acpi_device_info *info; 2004 struct acpi_dep_data *dep; 2005 bool skip, honor_dep; 2006 2007 status = acpi_get_object_info(dep_devices.handles[i], &info); 2008 if (ACPI_FAILURE(status)) { 2009 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2010 continue; 2011 } 2012 2013 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2014 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2015 kfree(info); 2016 2017 if (skip) 2018 continue; 2019 2020 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2021 if (!dep) 2022 continue; 2023 2024 count++; 2025 2026 dep->supplier = dep_devices.handles[i]; 2027 dep->consumer = handle; 2028 dep->honor_dep = honor_dep; 2029 2030 mutex_lock(&acpi_dep_list_lock); 2031 list_add_tail(&dep->node , &acpi_dep_list); 2032 mutex_unlock(&acpi_dep_list_lock); 2033 } 2034 2035 return count; 2036 } 2037 2038 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2039 struct acpi_device **adev_p) 2040 { 2041 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2042 acpi_object_type acpi_type; 2043 int type; 2044 2045 if (device) 2046 goto out; 2047 2048 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2049 return AE_OK; 2050 2051 switch (acpi_type) { 2052 case ACPI_TYPE_DEVICE: 2053 if (acpi_device_should_be_hidden(handle)) 2054 return AE_OK; 2055 2056 /* Bail out if there are dependencies. */ 2057 if (acpi_scan_check_dep(handle, check_dep) > 0) 2058 return AE_CTRL_DEPTH; 2059 2060 fallthrough; 2061 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2062 type = ACPI_BUS_TYPE_DEVICE; 2063 break; 2064 2065 case ACPI_TYPE_PROCESSOR: 2066 type = ACPI_BUS_TYPE_PROCESSOR; 2067 break; 2068 2069 case ACPI_TYPE_THERMAL: 2070 type = ACPI_BUS_TYPE_THERMAL; 2071 break; 2072 2073 case ACPI_TYPE_POWER: 2074 acpi_add_power_resource(handle); 2075 fallthrough; 2076 default: 2077 return AE_OK; 2078 } 2079 2080 /* 2081 * If check_dep is true at this point, the device has no dependencies, 2082 * or the creation of the device object would have been postponed above. 2083 */ 2084 acpi_add_single_object(&device, handle, type, !check_dep); 2085 if (!device) 2086 return AE_CTRL_DEPTH; 2087 2088 acpi_scan_init_hotplug(device); 2089 2090 out: 2091 if (!*adev_p) 2092 *adev_p = device; 2093 2094 return AE_OK; 2095 } 2096 2097 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2098 void *not_used, void **ret_p) 2099 { 2100 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2101 } 2102 2103 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2104 void *not_used, void **ret_p) 2105 { 2106 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2107 } 2108 2109 static void acpi_default_enumeration(struct acpi_device *device) 2110 { 2111 /* 2112 * Do not enumerate devices with enumeration_by_parent flag set as 2113 * they will be enumerated by their respective parents. 2114 */ 2115 if (!device->flags.enumeration_by_parent) { 2116 acpi_create_platform_device(device, NULL); 2117 acpi_device_set_enumerated(device); 2118 } else { 2119 blocking_notifier_call_chain(&acpi_reconfig_chain, 2120 ACPI_RECONFIG_DEVICE_ADD, device); 2121 } 2122 } 2123 2124 static const struct acpi_device_id generic_device_ids[] = { 2125 {ACPI_DT_NAMESPACE_HID, }, 2126 {"", }, 2127 }; 2128 2129 static int acpi_generic_device_attach(struct acpi_device *adev, 2130 const struct acpi_device_id *not_used) 2131 { 2132 /* 2133 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2134 * below can be unconditional. 2135 */ 2136 if (adev->data.of_compatible) 2137 acpi_default_enumeration(adev); 2138 2139 return 1; 2140 } 2141 2142 static struct acpi_scan_handler generic_device_handler = { 2143 .ids = generic_device_ids, 2144 .attach = acpi_generic_device_attach, 2145 }; 2146 2147 static int acpi_scan_attach_handler(struct acpi_device *device) 2148 { 2149 struct acpi_hardware_id *hwid; 2150 int ret = 0; 2151 2152 list_for_each_entry(hwid, &device->pnp.ids, list) { 2153 const struct acpi_device_id *devid; 2154 struct acpi_scan_handler *handler; 2155 2156 handler = acpi_scan_match_handler(hwid->id, &devid); 2157 if (handler) { 2158 if (!handler->attach) { 2159 device->pnp.type.platform_id = 0; 2160 continue; 2161 } 2162 device->handler = handler; 2163 ret = handler->attach(device, devid); 2164 if (ret > 0) 2165 break; 2166 2167 device->handler = NULL; 2168 if (ret < 0) 2169 break; 2170 } 2171 } 2172 2173 return ret; 2174 } 2175 2176 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2177 { 2178 bool skip = !first_pass && device->flags.visited; 2179 acpi_handle ejd; 2180 int ret; 2181 2182 if (skip) 2183 goto ok; 2184 2185 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2186 register_dock_dependent_device(device, ejd); 2187 2188 acpi_bus_get_status(device); 2189 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2190 if (!acpi_dev_ready_for_enumeration(device)) { 2191 device->flags.initialized = false; 2192 acpi_device_clear_enumerated(device); 2193 device->flags.power_manageable = 0; 2194 return 0; 2195 } 2196 if (device->handler) 2197 goto ok; 2198 2199 if (!device->flags.initialized) { 2200 device->flags.power_manageable = 2201 device->power.states[ACPI_STATE_D0].flags.valid; 2202 if (acpi_bus_init_power(device)) 2203 device->flags.power_manageable = 0; 2204 2205 device->flags.initialized = true; 2206 } else if (device->flags.visited) { 2207 goto ok; 2208 } 2209 2210 ret = acpi_scan_attach_handler(device); 2211 if (ret < 0) 2212 return 0; 2213 2214 device->flags.match_driver = true; 2215 if (ret > 0 && !device->flags.enumeration_by_parent) { 2216 acpi_device_set_enumerated(device); 2217 goto ok; 2218 } 2219 2220 ret = device_attach(&device->dev); 2221 if (ret < 0) 2222 return 0; 2223 2224 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2225 acpi_default_enumeration(device); 2226 else 2227 acpi_device_set_enumerated(device); 2228 2229 ok: 2230 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2231 2232 if (!skip && device->handler && device->handler->hotplug.notify_online) 2233 device->handler->hotplug.notify_online(device); 2234 2235 return 0; 2236 } 2237 2238 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2239 { 2240 struct acpi_device **adev_p = data; 2241 struct acpi_device *adev = *adev_p; 2242 2243 /* 2244 * If we're passed a 'previous' consumer device then we need to skip 2245 * any consumers until we meet the previous one, and then NULL @data 2246 * so the next one can be returned. 2247 */ 2248 if (adev) { 2249 if (dep->consumer == adev->handle) 2250 *adev_p = NULL; 2251 2252 return 0; 2253 } 2254 2255 adev = acpi_get_acpi_dev(dep->consumer); 2256 if (adev) { 2257 *(struct acpi_device **)data = adev; 2258 return 1; 2259 } 2260 /* Continue parsing if the device object is not present. */ 2261 return 0; 2262 } 2263 2264 struct acpi_scan_clear_dep_work { 2265 struct work_struct work; 2266 struct acpi_device *adev; 2267 }; 2268 2269 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2270 { 2271 struct acpi_scan_clear_dep_work *cdw; 2272 2273 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2274 2275 acpi_scan_lock_acquire(); 2276 acpi_bus_attach(cdw->adev, (void *)true); 2277 acpi_scan_lock_release(); 2278 2279 acpi_dev_put(cdw->adev); 2280 kfree(cdw); 2281 } 2282 2283 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2284 { 2285 struct acpi_scan_clear_dep_work *cdw; 2286 2287 if (adev->dep_unmet) 2288 return false; 2289 2290 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2291 if (!cdw) 2292 return false; 2293 2294 cdw->adev = adev; 2295 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2296 /* 2297 * Since the work function may block on the lock until the entire 2298 * initial enumeration of devices is complete, put it into the unbound 2299 * workqueue. 2300 */ 2301 queue_work(system_unbound_wq, &cdw->work); 2302 2303 return true; 2304 } 2305 2306 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2307 { 2308 list_del(&dep->node); 2309 kfree(dep); 2310 } 2311 2312 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2313 { 2314 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2315 2316 if (adev) { 2317 adev->dep_unmet--; 2318 if (!acpi_scan_clear_dep_queue(adev)) 2319 acpi_dev_put(adev); 2320 } 2321 2322 if (dep->free_when_met) 2323 acpi_scan_delete_dep_data(dep); 2324 else 2325 dep->met = true; 2326 2327 return 0; 2328 } 2329 2330 /** 2331 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2332 * @handle: The ACPI handle of the supplier device 2333 * @callback: Pointer to the callback function to apply 2334 * @data: Pointer to some data to pass to the callback 2335 * 2336 * The return value of the callback determines this function's behaviour. If 0 2337 * is returned we continue to iterate over acpi_dep_list. If a positive value 2338 * is returned then the loop is broken but this function returns 0. If a 2339 * negative value is returned by the callback then the loop is broken and that 2340 * value is returned as the final error. 2341 */ 2342 static int acpi_walk_dep_device_list(acpi_handle handle, 2343 int (*callback)(struct acpi_dep_data *, void *), 2344 void *data) 2345 { 2346 struct acpi_dep_data *dep, *tmp; 2347 int ret = 0; 2348 2349 mutex_lock(&acpi_dep_list_lock); 2350 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2351 if (dep->supplier == handle) { 2352 ret = callback(dep, data); 2353 if (ret) 2354 break; 2355 } 2356 } 2357 mutex_unlock(&acpi_dep_list_lock); 2358 2359 return ret > 0 ? 0 : ret; 2360 } 2361 2362 /** 2363 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2364 * @supplier: Pointer to the supplier &struct acpi_device 2365 * 2366 * Clear dependencies on the given device. 2367 */ 2368 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2369 { 2370 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2371 } 2372 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2373 2374 /** 2375 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2376 * @device: Pointer to the &struct acpi_device to check 2377 * 2378 * Check if the device is present and has no unmet dependencies. 2379 * 2380 * Return true if the device is ready for enumeratino. Otherwise, return false. 2381 */ 2382 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2383 { 2384 if (device->flags.honor_deps && device->dep_unmet) 2385 return false; 2386 2387 return acpi_device_is_present(device); 2388 } 2389 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2390 2391 /** 2392 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2393 * @supplier: Pointer to the dependee device 2394 * @start: Pointer to the current dependent device 2395 * 2396 * Returns the next &struct acpi_device which declares itself dependent on 2397 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2398 * 2399 * If the returned adev is not passed as @start to this function, the caller is 2400 * responsible for putting the reference to adev when it is no longer needed. 2401 */ 2402 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2403 struct acpi_device *start) 2404 { 2405 struct acpi_device *adev = start; 2406 2407 acpi_walk_dep_device_list(supplier->handle, 2408 acpi_dev_get_next_consumer_dev_cb, &adev); 2409 2410 acpi_dev_put(start); 2411 2412 if (adev == start) 2413 return NULL; 2414 2415 return adev; 2416 } 2417 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2418 2419 static void acpi_scan_postponed_branch(acpi_handle handle) 2420 { 2421 struct acpi_device *adev = NULL; 2422 2423 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2424 return; 2425 2426 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2427 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2428 acpi_bus_attach(adev, NULL); 2429 } 2430 2431 static void acpi_scan_postponed(void) 2432 { 2433 struct acpi_dep_data *dep, *tmp; 2434 2435 mutex_lock(&acpi_dep_list_lock); 2436 2437 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2438 acpi_handle handle = dep->consumer; 2439 2440 /* 2441 * In case there are multiple acpi_dep_list entries with the 2442 * same consumer, skip the current entry if the consumer device 2443 * object corresponding to it is present already. 2444 */ 2445 if (!acpi_fetch_acpi_dev(handle)) { 2446 /* 2447 * Even though the lock is released here, tmp is 2448 * guaranteed to be valid, because none of the list 2449 * entries following dep is marked as "free when met" 2450 * and so they cannot be deleted. 2451 */ 2452 mutex_unlock(&acpi_dep_list_lock); 2453 2454 acpi_scan_postponed_branch(handle); 2455 2456 mutex_lock(&acpi_dep_list_lock); 2457 } 2458 2459 if (dep->met) 2460 acpi_scan_delete_dep_data(dep); 2461 else 2462 dep->free_when_met = true; 2463 } 2464 2465 mutex_unlock(&acpi_dep_list_lock); 2466 } 2467 2468 /** 2469 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2470 * @handle: Root of the namespace scope to scan. 2471 * 2472 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2473 * found devices. 2474 * 2475 * If no devices were found, -ENODEV is returned, but it does not mean that 2476 * there has been a real error. There just have been no suitable ACPI objects 2477 * in the table trunk from which the kernel could create a device and add an 2478 * appropriate driver. 2479 * 2480 * Must be called under acpi_scan_lock. 2481 */ 2482 int acpi_bus_scan(acpi_handle handle) 2483 { 2484 struct acpi_device *device = NULL; 2485 2486 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2487 2488 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2489 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2490 acpi_bus_check_add_1, NULL, NULL, 2491 (void **)&device); 2492 2493 if (!device) 2494 return -ENODEV; 2495 2496 acpi_bus_attach(device, (void *)true); 2497 2498 /* Pass 2: Enumerate all of the remaining devices. */ 2499 2500 acpi_scan_postponed(); 2501 2502 return 0; 2503 } 2504 EXPORT_SYMBOL(acpi_bus_scan); 2505 2506 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used) 2507 { 2508 struct acpi_scan_handler *handler = adev->handler; 2509 2510 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL); 2511 2512 adev->flags.match_driver = false; 2513 if (handler) { 2514 if (handler->detach) 2515 handler->detach(adev); 2516 2517 adev->handler = NULL; 2518 } else { 2519 device_release_driver(&adev->dev); 2520 } 2521 /* 2522 * Most likely, the device is going away, so put it into D3cold before 2523 * that. 2524 */ 2525 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2526 adev->flags.initialized = false; 2527 acpi_device_clear_enumerated(adev); 2528 2529 return 0; 2530 } 2531 2532 /** 2533 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2534 * @adev: Root of the ACPI namespace scope to walk. 2535 * 2536 * Must be called under acpi_scan_lock. 2537 */ 2538 void acpi_bus_trim(struct acpi_device *adev) 2539 { 2540 acpi_bus_trim_one(adev, NULL); 2541 } 2542 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2543 2544 int acpi_bus_register_early_device(int type) 2545 { 2546 struct acpi_device *device = NULL; 2547 int result; 2548 2549 result = acpi_add_single_object(&device, NULL, type, false); 2550 if (result) 2551 return result; 2552 2553 device->flags.match_driver = true; 2554 return device_attach(&device->dev); 2555 } 2556 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2557 2558 static void acpi_bus_scan_fixed(void) 2559 { 2560 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2561 struct acpi_device *adev = NULL; 2562 2563 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2564 false); 2565 if (adev) { 2566 adev->flags.match_driver = true; 2567 if (device_attach(&adev->dev) >= 0) 2568 device_init_wakeup(&adev->dev, true); 2569 else 2570 dev_dbg(&adev->dev, "No driver\n"); 2571 } 2572 } 2573 2574 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2575 struct acpi_device *adev = NULL; 2576 2577 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2578 false); 2579 if (adev) { 2580 adev->flags.match_driver = true; 2581 if (device_attach(&adev->dev) < 0) 2582 dev_dbg(&adev->dev, "No driver\n"); 2583 } 2584 } 2585 } 2586 2587 static void __init acpi_get_spcr_uart_addr(void) 2588 { 2589 acpi_status status; 2590 struct acpi_table_spcr *spcr_ptr; 2591 2592 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2593 (struct acpi_table_header **)&spcr_ptr); 2594 if (ACPI_FAILURE(status)) { 2595 pr_warn("STAO table present, but SPCR is missing\n"); 2596 return; 2597 } 2598 2599 spcr_uart_addr = spcr_ptr->serial_port.address; 2600 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2601 } 2602 2603 static bool acpi_scan_initialized; 2604 2605 void __init acpi_scan_init(void) 2606 { 2607 acpi_status status; 2608 struct acpi_table_stao *stao_ptr; 2609 2610 acpi_pci_root_init(); 2611 acpi_pci_link_init(); 2612 acpi_processor_init(); 2613 acpi_platform_init(); 2614 acpi_lpss_init(); 2615 acpi_apd_init(); 2616 acpi_cmos_rtc_init(); 2617 acpi_container_init(); 2618 acpi_memory_hotplug_init(); 2619 acpi_watchdog_init(); 2620 acpi_pnp_init(); 2621 acpi_int340x_thermal_init(); 2622 acpi_init_lpit(); 2623 2624 acpi_scan_add_handler(&generic_device_handler); 2625 2626 /* 2627 * If there is STAO table, check whether it needs to ignore the UART 2628 * device in SPCR table. 2629 */ 2630 status = acpi_get_table(ACPI_SIG_STAO, 0, 2631 (struct acpi_table_header **)&stao_ptr); 2632 if (ACPI_SUCCESS(status)) { 2633 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2634 pr_info("STAO Name List not yet supported.\n"); 2635 2636 if (stao_ptr->ignore_uart) 2637 acpi_get_spcr_uart_addr(); 2638 2639 acpi_put_table((struct acpi_table_header *)stao_ptr); 2640 } 2641 2642 acpi_gpe_apply_masked_gpes(); 2643 acpi_update_all_gpes(); 2644 2645 /* 2646 * Although we call __add_memory() that is documented to require the 2647 * device_hotplug_lock, it is not necessary here because this is an 2648 * early code when userspace or any other code path cannot trigger 2649 * hotplug/hotunplug operations. 2650 */ 2651 mutex_lock(&acpi_scan_lock); 2652 /* 2653 * Enumerate devices in the ACPI namespace. 2654 */ 2655 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2656 goto unlock; 2657 2658 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2659 if (!acpi_root) 2660 goto unlock; 2661 2662 /* Fixed feature devices do not exist on HW-reduced platform */ 2663 if (!acpi_gbl_reduced_hardware) 2664 acpi_bus_scan_fixed(); 2665 2666 acpi_turn_off_unused_power_resources(); 2667 2668 acpi_scan_initialized = true; 2669 2670 unlock: 2671 mutex_unlock(&acpi_scan_lock); 2672 } 2673 2674 static struct acpi_probe_entry *ape; 2675 static int acpi_probe_count; 2676 static DEFINE_MUTEX(acpi_probe_mutex); 2677 2678 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2679 const unsigned long end) 2680 { 2681 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2682 if (!ape->probe_subtbl(header, end)) 2683 acpi_probe_count++; 2684 2685 return 0; 2686 } 2687 2688 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2689 { 2690 int count = 0; 2691 2692 if (acpi_disabled) 2693 return 0; 2694 2695 mutex_lock(&acpi_probe_mutex); 2696 for (ape = ap_head; nr; ape++, nr--) { 2697 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2698 acpi_probe_count = 0; 2699 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2700 count += acpi_probe_count; 2701 } else { 2702 int res; 2703 res = acpi_table_parse(ape->id, ape->probe_table); 2704 if (!res) 2705 count++; 2706 } 2707 } 2708 mutex_unlock(&acpi_probe_mutex); 2709 2710 return count; 2711 } 2712 2713 static void acpi_table_events_fn(struct work_struct *work) 2714 { 2715 acpi_scan_lock_acquire(); 2716 acpi_bus_scan(ACPI_ROOT_OBJECT); 2717 acpi_scan_lock_release(); 2718 2719 kfree(work); 2720 } 2721 2722 void acpi_scan_table_notify(void) 2723 { 2724 struct work_struct *work; 2725 2726 if (!acpi_scan_initialized) 2727 return; 2728 2729 work = kmalloc(sizeof(*work), GFP_KERNEL); 2730 if (!work) 2731 return; 2732 2733 INIT_WORK(work, acpi_table_events_fn); 2734 schedule_work(work); 2735 } 2736 2737 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2738 { 2739 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2740 } 2741 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2742 2743 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2744 { 2745 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2746 } 2747 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2748