xref: /linux/drivers/acpi/scan.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 #include "sleep.h"
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 void acpi_scan_lock_acquire(void)
53 {
54 	mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57 
58 void acpi_scan_lock_release(void)
59 {
60 	mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63 
64 void acpi_lock_hp_context(void)
65 {
66 	mutex_lock(&acpi_hp_context_lock);
67 }
68 
69 void acpi_unlock_hp_context(void)
70 {
71 	mutex_unlock(&acpi_hp_context_lock);
72 }
73 
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 				struct acpi_hotplug_context *hp,
76 				acpi_hp_notify notify, acpi_hp_uevent uevent)
77 {
78 	acpi_lock_hp_context();
79 	hp->notify = notify;
80 	hp->uevent = uevent;
81 	acpi_set_hp_context(adev, hp);
82 	acpi_unlock_hp_context();
83 }
84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
85 
86 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
87 {
88 	if (!handler)
89 		return -EINVAL;
90 
91 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
92 	return 0;
93 }
94 
95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
96 				       const char *hotplug_profile_name)
97 {
98 	int error;
99 
100 	error = acpi_scan_add_handler(handler);
101 	if (error)
102 		return error;
103 
104 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
105 	return 0;
106 }
107 
108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
109 {
110 	struct acpi_device_physical_node *pn;
111 	bool offline = true;
112 	char *envp[] = { "EVENT=offline", NULL };
113 
114 	/*
115 	 * acpi_container_offline() calls this for all of the container's
116 	 * children under the container's physical_node_lock lock.
117 	 */
118 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
119 
120 	list_for_each_entry(pn, &adev->physical_node_list, node)
121 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
122 			if (uevent)
123 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
124 
125 			offline = false;
126 			break;
127 		}
128 
129 	mutex_unlock(&adev->physical_node_lock);
130 	return offline;
131 }
132 
133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
134 				    void **ret_p)
135 {
136 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
137 	struct acpi_device_physical_node *pn;
138 	bool second_pass = (bool)data;
139 	acpi_status status = AE_OK;
140 
141 	if (!device)
142 		return AE_OK;
143 
144 	if (device->handler && !device->handler->hotplug.enabled) {
145 		*ret_p = &device->dev;
146 		return AE_SUPPORT;
147 	}
148 
149 	mutex_lock(&device->physical_node_lock);
150 
151 	list_for_each_entry(pn, &device->physical_node_list, node) {
152 		int ret;
153 
154 		if (second_pass) {
155 			/* Skip devices offlined by the first pass. */
156 			if (pn->put_online)
157 				continue;
158 		} else {
159 			pn->put_online = false;
160 		}
161 		ret = device_offline(pn->dev);
162 		if (ret >= 0) {
163 			pn->put_online = !ret;
164 		} else {
165 			*ret_p = pn->dev;
166 			if (second_pass) {
167 				status = AE_ERROR;
168 				break;
169 			}
170 		}
171 	}
172 
173 	mutex_unlock(&device->physical_node_lock);
174 
175 	return status;
176 }
177 
178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
179 				   void **ret_p)
180 {
181 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
182 	struct acpi_device_physical_node *pn;
183 
184 	if (!device)
185 		return AE_OK;
186 
187 	mutex_lock(&device->physical_node_lock);
188 
189 	list_for_each_entry(pn, &device->physical_node_list, node)
190 		if (pn->put_online) {
191 			device_online(pn->dev);
192 			pn->put_online = false;
193 		}
194 
195 	mutex_unlock(&device->physical_node_lock);
196 
197 	return AE_OK;
198 }
199 
200 static int acpi_scan_try_to_offline(struct acpi_device *device)
201 {
202 	acpi_handle handle = device->handle;
203 	struct device *errdev = NULL;
204 	acpi_status status;
205 
206 	/*
207 	 * Carry out two passes here and ignore errors in the first pass,
208 	 * because if the devices in question are memory blocks and
209 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
210 	 * that the other blocks depend on, but it is not known in advance which
211 	 * block holds them.
212 	 *
213 	 * If the first pass is successful, the second one isn't needed, though.
214 	 */
215 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
216 				     NULL, acpi_bus_offline, (void *)false,
217 				     (void **)&errdev);
218 	if (status == AE_SUPPORT) {
219 		dev_warn(errdev, "Offline disabled.\n");
220 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 				    acpi_bus_online, NULL, NULL, NULL);
222 		return -EPERM;
223 	}
224 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
225 	if (errdev) {
226 		errdev = NULL;
227 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
228 				    NULL, acpi_bus_offline, (void *)true,
229 				    (void **)&errdev);
230 		if (!errdev)
231 			acpi_bus_offline(handle, 0, (void *)true,
232 					 (void **)&errdev);
233 
234 		if (errdev) {
235 			dev_warn(errdev, "Offline failed.\n");
236 			acpi_bus_online(handle, 0, NULL, NULL);
237 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
238 					    ACPI_UINT32_MAX, acpi_bus_online,
239 					    NULL, NULL, NULL);
240 			return -EBUSY;
241 		}
242 	}
243 	return 0;
244 }
245 
246 #define ACPI_SCAN_CHECK_FLAG_STATUS	BIT(0)
247 #define ACPI_SCAN_CHECK_FLAG_EJECT	BIT(1)
248 
249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
250 {
251 	struct acpi_scan_handler *handler = adev->handler;
252 	uintptr_t flags = (uintptr_t)p;
253 
254 	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
255 
256 	if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
257 		acpi_bus_get_status(adev);
258 		/*
259 		 * Skip devices that are still there and take the enabled
260 		 * flag into account.
261 		 */
262 		if (acpi_device_is_enabled(adev))
263 			return 0;
264 
265 		/* Skip device that have not been enumerated. */
266 		if (!acpi_device_enumerated(adev)) {
267 			dev_dbg(&adev->dev, "Still not enumerated\n");
268 			return 0;
269 		}
270 	}
271 
272 	adev->flags.match_driver = false;
273 	if (handler) {
274 		if (handler->detach)
275 			handler->detach(adev);
276 	} else {
277 		device_release_driver(&adev->dev);
278 	}
279 	/*
280 	 * Most likely, the device is going away, so put it into D3cold before
281 	 * that.
282 	 */
283 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
284 	adev->flags.initialized = false;
285 
286 	/* For eject this is deferred to acpi_bus_post_eject() */
287 	if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
288 		adev->handler = NULL;
289 		acpi_device_clear_enumerated(adev);
290 	}
291 	return 0;
292 }
293 
294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
295 {
296 	struct acpi_scan_handler *handler = adev->handler;
297 
298 	acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
299 
300 	if (handler) {
301 		if (handler->post_eject)
302 			handler->post_eject(adev);
303 
304 		adev->handler = NULL;
305 	}
306 
307 	acpi_device_clear_enumerated(adev);
308 
309 	return 0;
310 }
311 
312 static void acpi_scan_check_subtree(struct acpi_device *adev)
313 {
314 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
315 
316 	acpi_scan_check_and_detach(adev, (void *)flags);
317 }
318 
319 static int acpi_scan_hot_remove(struct acpi_device *device)
320 {
321 	acpi_handle handle = device->handle;
322 	unsigned long long sta;
323 	acpi_status status;
324 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
325 
326 	if (device->handler && device->handler->hotplug.demand_offline) {
327 		if (!acpi_scan_is_offline(device, true))
328 			return -EBUSY;
329 	} else {
330 		int error = acpi_scan_try_to_offline(device);
331 		if (error)
332 			return error;
333 	}
334 
335 	acpi_handle_debug(handle, "Ejecting\n");
336 
337 	acpi_scan_check_and_detach(device, (void *)flags);
338 
339 	acpi_evaluate_lck(handle, 0);
340 	/*
341 	 * TBD: _EJD support.
342 	 */
343 	status = acpi_evaluate_ej0(handle);
344 	if (status == AE_NOT_FOUND)
345 		return -ENODEV;
346 	else if (ACPI_FAILURE(status))
347 		return -EIO;
348 
349 	/*
350 	 * Verify if eject was indeed successful.  If not, log an error
351 	 * message.  No need to call _OST since _EJ0 call was made OK.
352 	 */
353 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
354 	if (ACPI_FAILURE(status)) {
355 		acpi_handle_warn(handle,
356 			"Status check after eject failed (0x%x)\n", status);
357 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
358 		acpi_handle_warn(handle,
359 			"Eject incomplete - status 0x%llx\n", sta);
360 	} else {
361 		acpi_bus_post_eject(device, NULL);
362 	}
363 
364 	return 0;
365 }
366 
367 static int acpi_scan_rescan_bus(struct acpi_device *adev)
368 {
369 	struct acpi_scan_handler *handler = adev->handler;
370 	int ret;
371 
372 	if (handler && handler->hotplug.scan_dependent)
373 		ret = handler->hotplug.scan_dependent(adev);
374 	else
375 		ret = acpi_bus_scan(adev->handle);
376 
377 	if (ret)
378 		dev_info(&adev->dev, "Namespace scan failure\n");
379 
380 	return ret;
381 }
382 
383 static int acpi_scan_device_check(struct acpi_device *adev)
384 {
385 	struct acpi_device *parent;
386 
387 	acpi_scan_check_subtree(adev);
388 
389 	if (!acpi_device_is_present(adev))
390 		return 0;
391 
392 	/*
393 	 * This function is only called for device objects for which matching
394 	 * scan handlers exist.  The only situation in which the scan handler
395 	 * is not attached to this device object yet is when the device has
396 	 * just appeared (either it wasn't present at all before or it was
397 	 * removed and then added again).
398 	 */
399 	if (adev->handler) {
400 		dev_dbg(&adev->dev, "Already enumerated\n");
401 		return 0;
402 	}
403 
404 	parent = acpi_dev_parent(adev);
405 	if (!parent)
406 		parent = adev;
407 
408 	return acpi_scan_rescan_bus(parent);
409 }
410 
411 static int acpi_scan_bus_check(struct acpi_device *adev)
412 {
413 	acpi_scan_check_subtree(adev);
414 
415 	return acpi_scan_rescan_bus(adev);
416 }
417 
418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
419 {
420 	switch (type) {
421 	case ACPI_NOTIFY_BUS_CHECK:
422 		return acpi_scan_bus_check(adev);
423 	case ACPI_NOTIFY_DEVICE_CHECK:
424 		return acpi_scan_device_check(adev);
425 	case ACPI_NOTIFY_EJECT_REQUEST:
426 	case ACPI_OST_EC_OSPM_EJECT:
427 		if (adev->handler && !adev->handler->hotplug.enabled) {
428 			dev_info(&adev->dev, "Eject disabled\n");
429 			return -EPERM;
430 		}
431 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
432 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
433 		return acpi_scan_hot_remove(adev);
434 	}
435 	return -EINVAL;
436 }
437 
438 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
439 {
440 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
441 	int error = -ENODEV;
442 
443 	lock_device_hotplug();
444 	mutex_lock(&acpi_scan_lock);
445 
446 	/*
447 	 * The device object's ACPI handle cannot become invalid as long as we
448 	 * are holding acpi_scan_lock, but it might have become invalid before
449 	 * that lock was acquired.
450 	 */
451 	if (adev->handle == INVALID_ACPI_HANDLE)
452 		goto err_out;
453 
454 	if (adev->flags.is_dock_station) {
455 		error = dock_notify(adev, src);
456 	} else if (adev->flags.hotplug_notify) {
457 		error = acpi_generic_hotplug_event(adev, src);
458 	} else {
459 		acpi_hp_notify notify;
460 
461 		acpi_lock_hp_context();
462 		notify = adev->hp ? adev->hp->notify : NULL;
463 		acpi_unlock_hp_context();
464 		/*
465 		 * There may be additional notify handlers for device objects
466 		 * without the .event() callback, so ignore them here.
467 		 */
468 		if (notify)
469 			error = notify(adev, src);
470 		else
471 			goto out;
472 	}
473 	switch (error) {
474 	case 0:
475 		ost_code = ACPI_OST_SC_SUCCESS;
476 		break;
477 	case -EPERM:
478 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
479 		break;
480 	case -EBUSY:
481 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
482 		break;
483 	default:
484 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
485 		break;
486 	}
487 
488  err_out:
489 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
490 
491  out:
492 	acpi_put_acpi_dev(adev);
493 	mutex_unlock(&acpi_scan_lock);
494 	unlock_device_hotplug();
495 }
496 
497 static void acpi_free_power_resources_lists(struct acpi_device *device)
498 {
499 	int i;
500 
501 	if (device->wakeup.flags.valid)
502 		acpi_power_resources_list_free(&device->wakeup.resources);
503 
504 	if (!device->power.flags.power_resources)
505 		return;
506 
507 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
508 		struct acpi_device_power_state *ps = &device->power.states[i];
509 		acpi_power_resources_list_free(&ps->resources);
510 	}
511 }
512 
513 static void acpi_device_release(struct device *dev)
514 {
515 	struct acpi_device *acpi_dev = to_acpi_device(dev);
516 
517 	acpi_free_properties(acpi_dev);
518 	acpi_free_pnp_ids(&acpi_dev->pnp);
519 	acpi_free_power_resources_lists(acpi_dev);
520 	kfree(acpi_dev);
521 }
522 
523 static void acpi_device_del(struct acpi_device *device)
524 {
525 	struct acpi_device_bus_id *acpi_device_bus_id;
526 
527 	mutex_lock(&acpi_device_lock);
528 
529 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
530 		if (!strcmp(acpi_device_bus_id->bus_id,
531 			    acpi_device_hid(device))) {
532 			ida_free(&acpi_device_bus_id->instance_ida,
533 				 device->pnp.instance_no);
534 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
535 				list_del(&acpi_device_bus_id->node);
536 				kfree_const(acpi_device_bus_id->bus_id);
537 				kfree(acpi_device_bus_id);
538 			}
539 			break;
540 		}
541 
542 	list_del(&device->wakeup_list);
543 
544 	mutex_unlock(&acpi_device_lock);
545 
546 	acpi_power_add_remove_device(device, false);
547 	acpi_device_remove_files(device);
548 	if (device->remove)
549 		device->remove(device);
550 
551 	device_del(&device->dev);
552 }
553 
554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
555 
556 static LIST_HEAD(acpi_device_del_list);
557 static DEFINE_MUTEX(acpi_device_del_lock);
558 
559 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
560 {
561 	for (;;) {
562 		struct acpi_device *adev;
563 
564 		mutex_lock(&acpi_device_del_lock);
565 
566 		if (list_empty(&acpi_device_del_list)) {
567 			mutex_unlock(&acpi_device_del_lock);
568 			break;
569 		}
570 		adev = list_first_entry(&acpi_device_del_list,
571 					struct acpi_device, del_list);
572 		list_del(&adev->del_list);
573 
574 		mutex_unlock(&acpi_device_del_lock);
575 
576 		blocking_notifier_call_chain(&acpi_reconfig_chain,
577 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
578 
579 		acpi_device_del(adev);
580 		/*
581 		 * Drop references to all power resources that might have been
582 		 * used by the device.
583 		 */
584 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
585 		acpi_dev_put(adev);
586 	}
587 }
588 
589 /**
590  * acpi_scan_drop_device - Drop an ACPI device object.
591  * @handle: Handle of an ACPI namespace node, not used.
592  * @context: Address of the ACPI device object to drop.
593  *
594  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
595  * namespace node the device object pointed to by @context is attached to.
596  *
597  * The unregistration is carried out asynchronously to avoid running
598  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
599  * ensure the correct ordering (the device objects must be unregistered in the
600  * same order in which the corresponding namespace nodes are deleted).
601  */
602 static void acpi_scan_drop_device(acpi_handle handle, void *context)
603 {
604 	static DECLARE_WORK(work, acpi_device_del_work_fn);
605 	struct acpi_device *adev = context;
606 
607 	mutex_lock(&acpi_device_del_lock);
608 
609 	/*
610 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
611 	 * won't run after any hotplug work items submitted subsequently.  That
612 	 * prevents attempts to register device objects identical to those being
613 	 * deleted from happening concurrently (such attempts result from
614 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
615 	 * run after all of the work items submitted previously, which helps
616 	 * those work items to ensure that they are not accessing stale device
617 	 * objects.
618 	 */
619 	if (list_empty(&acpi_device_del_list))
620 		acpi_queue_hotplug_work(&work);
621 
622 	list_add_tail(&adev->del_list, &acpi_device_del_list);
623 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
624 	adev->handle = INVALID_ACPI_HANDLE;
625 
626 	mutex_unlock(&acpi_device_del_lock);
627 }
628 
629 static struct acpi_device *handle_to_device(acpi_handle handle,
630 					    void (*callback)(void *))
631 {
632 	struct acpi_device *adev = NULL;
633 	acpi_status status;
634 
635 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
636 				    (void **)&adev, callback);
637 	if (ACPI_FAILURE(status) || !adev) {
638 		acpi_handle_debug(handle, "No context!\n");
639 		return NULL;
640 	}
641 	return adev;
642 }
643 
644 /**
645  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
646  * @handle: ACPI handle associated with the requested ACPI device object.
647  *
648  * Return a pointer to the ACPI device object associated with @handle, if
649  * present, or NULL otherwise.
650  */
651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
652 {
653 	return handle_to_device(handle, NULL);
654 }
655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
656 
657 static void get_acpi_device(void *dev)
658 {
659 	acpi_dev_get(dev);
660 }
661 
662 /**
663  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
664  * @handle: ACPI handle associated with the requested ACPI device object.
665  *
666  * Return a pointer to the ACPI device object associated with @handle and bump
667  * up that object's reference counter (under the ACPI Namespace lock), if
668  * present, or return NULL otherwise.
669  *
670  * The ACPI device object reference acquired by this function needs to be
671  * dropped via acpi_dev_put().
672  */
673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
674 {
675 	return handle_to_device(handle, get_acpi_device);
676 }
677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
678 
679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
680 {
681 	struct acpi_device_bus_id *acpi_device_bus_id;
682 
683 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
684 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
685 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
686 			return acpi_device_bus_id;
687 	}
688 	return NULL;
689 }
690 
691 static int acpi_device_set_name(struct acpi_device *device,
692 				struct acpi_device_bus_id *acpi_device_bus_id)
693 {
694 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
695 	int result;
696 
697 	result = ida_alloc(instance_ida, GFP_KERNEL);
698 	if (result < 0)
699 		return result;
700 
701 	device->pnp.instance_no = result;
702 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
703 	return 0;
704 }
705 
706 int acpi_tie_acpi_dev(struct acpi_device *adev)
707 {
708 	acpi_handle handle = adev->handle;
709 	acpi_status status;
710 
711 	if (!handle)
712 		return 0;
713 
714 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
715 	if (ACPI_FAILURE(status)) {
716 		acpi_handle_err(handle, "Unable to attach device data\n");
717 		return -ENODEV;
718 	}
719 
720 	return 0;
721 }
722 
723 static void acpi_store_pld_crc(struct acpi_device *adev)
724 {
725 	struct acpi_pld_info *pld;
726 
727 	if (!acpi_get_physical_device_location(adev->handle, &pld))
728 		return;
729 
730 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
731 	ACPI_FREE(pld);
732 }
733 
734 int acpi_device_add(struct acpi_device *device)
735 {
736 	struct acpi_device_bus_id *acpi_device_bus_id;
737 	int result;
738 
739 	/*
740 	 * Linkage
741 	 * -------
742 	 * Link this device to its parent and siblings.
743 	 */
744 	INIT_LIST_HEAD(&device->wakeup_list);
745 	INIT_LIST_HEAD(&device->physical_node_list);
746 	INIT_LIST_HEAD(&device->del_list);
747 	mutex_init(&device->physical_node_lock);
748 
749 	mutex_lock(&acpi_device_lock);
750 
751 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
752 	if (acpi_device_bus_id) {
753 		result = acpi_device_set_name(device, acpi_device_bus_id);
754 		if (result)
755 			goto err_unlock;
756 	} else {
757 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
758 					     GFP_KERNEL);
759 		if (!acpi_device_bus_id) {
760 			result = -ENOMEM;
761 			goto err_unlock;
762 		}
763 		acpi_device_bus_id->bus_id =
764 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
765 		if (!acpi_device_bus_id->bus_id) {
766 			kfree(acpi_device_bus_id);
767 			result = -ENOMEM;
768 			goto err_unlock;
769 		}
770 
771 		ida_init(&acpi_device_bus_id->instance_ida);
772 
773 		result = acpi_device_set_name(device, acpi_device_bus_id);
774 		if (result) {
775 			kfree_const(acpi_device_bus_id->bus_id);
776 			kfree(acpi_device_bus_id);
777 			goto err_unlock;
778 		}
779 
780 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
781 	}
782 
783 	if (device->wakeup.flags.valid)
784 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
785 
786 	acpi_store_pld_crc(device);
787 
788 	mutex_unlock(&acpi_device_lock);
789 
790 	result = device_add(&device->dev);
791 	if (result) {
792 		dev_err(&device->dev, "Error registering device\n");
793 		goto err;
794 	}
795 
796 	acpi_device_setup_files(device);
797 
798 	return 0;
799 
800 err:
801 	mutex_lock(&acpi_device_lock);
802 
803 	list_del(&device->wakeup_list);
804 
805 err_unlock:
806 	mutex_unlock(&acpi_device_lock);
807 
808 	acpi_detach_data(device->handle, acpi_scan_drop_device);
809 
810 	return result;
811 }
812 
813 /* --------------------------------------------------------------------------
814                                  Device Enumeration
815    -------------------------------------------------------------------------- */
816 static bool acpi_info_matches_ids(struct acpi_device_info *info,
817 				  const char * const ids[])
818 {
819 	struct acpi_pnp_device_id_list *cid_list = NULL;
820 	int i, index;
821 
822 	if (!(info->valid & ACPI_VALID_HID))
823 		return false;
824 
825 	index = match_string(ids, -1, info->hardware_id.string);
826 	if (index >= 0)
827 		return true;
828 
829 	if (info->valid & ACPI_VALID_CID)
830 		cid_list = &info->compatible_id_list;
831 
832 	if (!cid_list)
833 		return false;
834 
835 	for (i = 0; i < cid_list->count; i++) {
836 		index = match_string(ids, -1, cid_list->ids[i].string);
837 		if (index >= 0)
838 			return true;
839 	}
840 
841 	return false;
842 }
843 
844 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
845 static const char * const acpi_ignore_dep_ids[] = {
846 	"PNP0D80", /* Windows-compatible System Power Management Controller */
847 	"INT33BD", /* Intel Baytrail Mailbox Device */
848 	"INTC10DE", /* Intel CVS LNL */
849 	"INTC10E0", /* Intel CVS ARL */
850 	"LATT2021", /* Lattice FW Update Client Driver */
851 	NULL
852 };
853 
854 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
855 static const char * const acpi_honor_dep_ids[] = {
856 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
857 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
858 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
859 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
860 	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
861 	"RSCV0001", /* RISC-V PLIC */
862 	"RSCV0002", /* RISC-V APLIC */
863 	"PNP0C0F",  /* PCI Link Device */
864 	NULL
865 };
866 
867 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
868 {
869 	struct acpi_device *adev;
870 
871 	/*
872 	 * Fixed hardware devices do not appear in the namespace and do not
873 	 * have handles, but we fabricate acpi_devices for them, so we have
874 	 * to deal with them specially.
875 	 */
876 	if (!handle)
877 		return acpi_root;
878 
879 	do {
880 		acpi_status status;
881 
882 		status = acpi_get_parent(handle, &handle);
883 		if (ACPI_FAILURE(status)) {
884 			if (status != AE_NULL_ENTRY)
885 				return acpi_root;
886 
887 			return NULL;
888 		}
889 		adev = acpi_fetch_acpi_dev(handle);
890 	} while (!adev);
891 	return adev;
892 }
893 
894 acpi_status
895 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
896 {
897 	acpi_status status;
898 	acpi_handle tmp;
899 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
900 	union acpi_object *obj;
901 
902 	status = acpi_get_handle(handle, "_EJD", &tmp);
903 	if (ACPI_FAILURE(status))
904 		return status;
905 
906 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
907 	if (ACPI_SUCCESS(status)) {
908 		obj = buffer.pointer;
909 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
910 					 ejd);
911 		kfree(buffer.pointer);
912 	}
913 	return status;
914 }
915 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
916 
917 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
918 {
919 	acpi_handle handle = dev->handle;
920 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
921 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
922 	union acpi_object *package = NULL;
923 	union acpi_object *element = NULL;
924 	acpi_status status;
925 	int err = -ENODATA;
926 
927 	INIT_LIST_HEAD(&wakeup->resources);
928 
929 	/* _PRW */
930 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
931 	if (ACPI_FAILURE(status)) {
932 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
933 				 acpi_format_exception(status));
934 		return err;
935 	}
936 
937 	package = (union acpi_object *)buffer.pointer;
938 
939 	if (!package || package->package.count < 2)
940 		goto out;
941 
942 	element = &(package->package.elements[0]);
943 	if (!element)
944 		goto out;
945 
946 	if (element->type == ACPI_TYPE_PACKAGE) {
947 		if ((element->package.count < 2) ||
948 		    (element->package.elements[0].type !=
949 		     ACPI_TYPE_LOCAL_REFERENCE)
950 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
951 			goto out;
952 
953 		wakeup->gpe_device =
954 		    element->package.elements[0].reference.handle;
955 		wakeup->gpe_number =
956 		    (u32) element->package.elements[1].integer.value;
957 	} else if (element->type == ACPI_TYPE_INTEGER) {
958 		wakeup->gpe_device = NULL;
959 		wakeup->gpe_number = element->integer.value;
960 	} else {
961 		goto out;
962 	}
963 
964 	element = &(package->package.elements[1]);
965 	if (element->type != ACPI_TYPE_INTEGER)
966 		goto out;
967 
968 	wakeup->sleep_state = element->integer.value;
969 
970 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
971 	if (err)
972 		goto out;
973 
974 	if (!list_empty(&wakeup->resources)) {
975 		int sleep_state;
976 
977 		err = acpi_power_wakeup_list_init(&wakeup->resources,
978 						  &sleep_state);
979 		if (err) {
980 			acpi_handle_warn(handle, "Retrieving current states "
981 					 "of wakeup power resources failed\n");
982 			acpi_power_resources_list_free(&wakeup->resources);
983 			goto out;
984 		}
985 		if (sleep_state < wakeup->sleep_state) {
986 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
987 					 "(S%d) by S%d from power resources\n",
988 					 (int)wakeup->sleep_state, sleep_state);
989 			wakeup->sleep_state = sleep_state;
990 		}
991 	}
992 
993  out:
994 	kfree(buffer.pointer);
995 	return err;
996 }
997 
998 /* Do not use a button for S5 wakeup */
999 #define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
1000 
1001 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1002 {
1003 	static const struct acpi_device_id button_device_ids[] = {
1004 		{"PNP0C0C", 0},				/* Power button */
1005 		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
1006 		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
1007 		{"", 0},
1008 	};
1009 	struct acpi_device_wakeup *wakeup = &device->wakeup;
1010 	const struct acpi_device_id *match;
1011 	acpi_status status;
1012 
1013 	wakeup->flags.notifier_present = 0;
1014 
1015 	/* Power button, Lid switch always enable wakeup */
1016 	match = acpi_match_acpi_device(button_device_ids, device);
1017 	if (match) {
1018 		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
1019 		    wakeup->sleep_state == ACPI_STATE_S5)
1020 			wakeup->sleep_state = ACPI_STATE_S4;
1021 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
1022 		device_set_wakeup_capable(&device->dev, true);
1023 		return true;
1024 	}
1025 
1026 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1027 					 wakeup->gpe_number);
1028 	return ACPI_SUCCESS(status);
1029 }
1030 
1031 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1032 {
1033 	int err;
1034 
1035 	/* Presence of _PRW indicates wake capable */
1036 	if (!acpi_has_method(device->handle, "_PRW"))
1037 		return;
1038 
1039 	err = acpi_bus_extract_wakeup_device_power_package(device);
1040 	if (err) {
1041 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1042 		return;
1043 	}
1044 
1045 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1046 	device->wakeup.prepare_count = 0;
1047 	/*
1048 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1049 	 * system for the ACPI device with the _PRW object.
1050 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1051 	 * So it is necessary to call _DSW object first. Only when it is not
1052 	 * present will the _PSW object used.
1053 	 */
1054 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1055 	if (err)
1056 		pr_debug("error in _DSW or _PSW evaluation\n");
1057 }
1058 
1059 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1060 {
1061 	struct acpi_device_power_state *ps = &device->power.states[state];
1062 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1063 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1064 	acpi_status status;
1065 
1066 	INIT_LIST_HEAD(&ps->resources);
1067 
1068 	/* Evaluate "_PRx" to get referenced power resources */
1069 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1070 	if (ACPI_SUCCESS(status)) {
1071 		union acpi_object *package = buffer.pointer;
1072 
1073 		if (buffer.length && package
1074 		    && package->type == ACPI_TYPE_PACKAGE
1075 		    && package->package.count)
1076 			acpi_extract_power_resources(package, 0, &ps->resources);
1077 
1078 		ACPI_FREE(buffer.pointer);
1079 	}
1080 
1081 	/* Evaluate "_PSx" to see if we can do explicit sets */
1082 	pathname[2] = 'S';
1083 	if (acpi_has_method(device->handle, pathname))
1084 		ps->flags.explicit_set = 1;
1085 
1086 	/* State is valid if there are means to put the device into it. */
1087 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1088 		ps->flags.valid = 1;
1089 
1090 	ps->power = -1;		/* Unknown - driver assigned */
1091 	ps->latency = -1;	/* Unknown - driver assigned */
1092 }
1093 
1094 static void acpi_bus_get_power_flags(struct acpi_device *device)
1095 {
1096 	unsigned long long dsc = ACPI_STATE_D0;
1097 	u32 i;
1098 
1099 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1100 	if (!acpi_has_method(device->handle, "_PS0") &&
1101 	    !acpi_has_method(device->handle, "_PR0"))
1102 		return;
1103 
1104 	device->flags.power_manageable = 1;
1105 
1106 	/*
1107 	 * Power Management Flags
1108 	 */
1109 	if (acpi_has_method(device->handle, "_PSC"))
1110 		device->power.flags.explicit_get = 1;
1111 
1112 	if (acpi_has_method(device->handle, "_IRC"))
1113 		device->power.flags.inrush_current = 1;
1114 
1115 	if (acpi_has_method(device->handle, "_DSW"))
1116 		device->power.flags.dsw_present = 1;
1117 
1118 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1119 	device->power.state_for_enumeration = dsc;
1120 
1121 	/*
1122 	 * Enumerate supported power management states
1123 	 */
1124 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1125 		acpi_bus_init_power_state(device, i);
1126 
1127 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1128 
1129 	/* Set the defaults for D0 and D3hot (always supported). */
1130 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1131 	device->power.states[ACPI_STATE_D0].power = 100;
1132 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1133 
1134 	/*
1135 	 * Use power resources only if the D0 list of them is populated, because
1136 	 * some platforms may provide _PR3 only to indicate D3cold support and
1137 	 * in those cases the power resources list returned by it may be bogus.
1138 	 */
1139 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1140 		device->power.flags.power_resources = 1;
1141 		/*
1142 		 * D3cold is supported if the D3hot list of power resources is
1143 		 * not empty.
1144 		 */
1145 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1146 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1147 	}
1148 
1149 	if (acpi_bus_init_power(device))
1150 		device->flags.power_manageable = 0;
1151 }
1152 
1153 static void acpi_bus_get_flags(struct acpi_device *device)
1154 {
1155 	/* Presence of _STA indicates 'dynamic_status' */
1156 	if (acpi_has_method(device->handle, "_STA"))
1157 		device->flags.dynamic_status = 1;
1158 
1159 	/* Presence of _RMV indicates 'removable' */
1160 	if (acpi_has_method(device->handle, "_RMV"))
1161 		device->flags.removable = 1;
1162 
1163 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1164 	if (acpi_has_method(device->handle, "_EJD") ||
1165 	    acpi_has_method(device->handle, "_EJ0"))
1166 		device->flags.ejectable = 1;
1167 }
1168 
1169 static void acpi_device_get_busid(struct acpi_device *device)
1170 {
1171 	char bus_id[5] = { '?', 0 };
1172 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1173 	int i = 0;
1174 
1175 	/*
1176 	 * Bus ID
1177 	 * ------
1178 	 * The device's Bus ID is simply the object name.
1179 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1180 	 */
1181 	if (!acpi_dev_parent(device)) {
1182 		strscpy(device->pnp.bus_id, "ACPI");
1183 		return;
1184 	}
1185 
1186 	switch (device->device_type) {
1187 	case ACPI_BUS_TYPE_POWER_BUTTON:
1188 		strscpy(device->pnp.bus_id, "PWRF");
1189 		break;
1190 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1191 		strscpy(device->pnp.bus_id, "SLPF");
1192 		break;
1193 	case ACPI_BUS_TYPE_ECDT_EC:
1194 		strscpy(device->pnp.bus_id, "ECDT");
1195 		break;
1196 	default:
1197 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1198 		/* Clean up trailing underscores (if any) */
1199 		for (i = 3; i > 1; i--) {
1200 			if (bus_id[i] == '_')
1201 				bus_id[i] = '\0';
1202 			else
1203 				break;
1204 		}
1205 		strscpy(device->pnp.bus_id, bus_id);
1206 		break;
1207 	}
1208 }
1209 
1210 /*
1211  * acpi_ata_match - see if an acpi object is an ATA device
1212  *
1213  * If an acpi object has one of the ACPI ATA methods defined,
1214  * then we can safely call it an ATA device.
1215  */
1216 bool acpi_ata_match(acpi_handle handle)
1217 {
1218 	return acpi_has_method(handle, "_GTF") ||
1219 	       acpi_has_method(handle, "_GTM") ||
1220 	       acpi_has_method(handle, "_STM") ||
1221 	       acpi_has_method(handle, "_SDD");
1222 }
1223 
1224 /*
1225  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1226  *
1227  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1228  * then we can safely call it an ejectable drive bay
1229  */
1230 bool acpi_bay_match(acpi_handle handle)
1231 {
1232 	acpi_handle phandle;
1233 
1234 	if (!acpi_has_method(handle, "_EJ0"))
1235 		return false;
1236 	if (acpi_ata_match(handle))
1237 		return true;
1238 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1239 		return false;
1240 
1241 	return acpi_ata_match(phandle);
1242 }
1243 
1244 bool acpi_device_is_battery(struct acpi_device *adev)
1245 {
1246 	struct acpi_hardware_id *hwid;
1247 
1248 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1249 		if (!strcmp("PNP0C0A", hwid->id))
1250 			return true;
1251 
1252 	return false;
1253 }
1254 
1255 static bool is_ejectable_bay(struct acpi_device *adev)
1256 {
1257 	acpi_handle handle = adev->handle;
1258 
1259 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1260 		return true;
1261 
1262 	return acpi_bay_match(handle);
1263 }
1264 
1265 /*
1266  * acpi_dock_match - see if an acpi object has a _DCK method
1267  */
1268 bool acpi_dock_match(acpi_handle handle)
1269 {
1270 	return acpi_has_method(handle, "_DCK");
1271 }
1272 
1273 static acpi_status
1274 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1275 			  void **return_value)
1276 {
1277 	long *cap = context;
1278 
1279 	if (acpi_has_method(handle, "_BCM") &&
1280 	    acpi_has_method(handle, "_BCL")) {
1281 		acpi_handle_debug(handle, "Found generic backlight support\n");
1282 		*cap |= ACPI_VIDEO_BACKLIGHT;
1283 		/* We have backlight support, no need to scan further */
1284 		return AE_CTRL_TERMINATE;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /* Returns true if the ACPI object is a video device which can be
1290  * handled by video.ko.
1291  * The device will get a Linux specific CID added in scan.c to
1292  * identify the device as an ACPI graphics device
1293  * Be aware that the graphics device may not be physically present
1294  * Use acpi_video_get_capabilities() to detect general ACPI video
1295  * capabilities of present cards
1296  */
1297 long acpi_is_video_device(acpi_handle handle)
1298 {
1299 	long video_caps = 0;
1300 
1301 	/* Is this device able to support video switching ? */
1302 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1303 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1304 
1305 	/* Is this device able to retrieve a video ROM ? */
1306 	if (acpi_has_method(handle, "_ROM"))
1307 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1308 
1309 	/* Is this device able to configure which video head to be POSTed ? */
1310 	if (acpi_has_method(handle, "_VPO") &&
1311 	    acpi_has_method(handle, "_GPD") &&
1312 	    acpi_has_method(handle, "_SPD"))
1313 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1314 
1315 	/* Only check for backlight functionality if one of the above hit. */
1316 	if (video_caps)
1317 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1318 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1319 				    &video_caps, NULL);
1320 
1321 	return video_caps;
1322 }
1323 EXPORT_SYMBOL(acpi_is_video_device);
1324 
1325 const char *acpi_device_hid(struct acpi_device *device)
1326 {
1327 	struct acpi_hardware_id *hid;
1328 
1329 	hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1330 	if (!hid)
1331 		return dummy_hid;
1332 
1333 	return hid->id;
1334 }
1335 EXPORT_SYMBOL(acpi_device_hid);
1336 
1337 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1338 {
1339 	struct acpi_hardware_id *id;
1340 
1341 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1342 	if (!id)
1343 		return;
1344 
1345 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1346 	if (!id->id) {
1347 		kfree(id);
1348 		return;
1349 	}
1350 
1351 	list_add_tail(&id->list, &pnp->ids);
1352 	pnp->type.hardware_id = 1;
1353 }
1354 
1355 /*
1356  * Old IBM workstations have a DSDT bug wherein the SMBus object
1357  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1358  * prefix.  Work around this.
1359  */
1360 static bool acpi_ibm_smbus_match(acpi_handle handle)
1361 {
1362 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1363 	struct acpi_buffer path = { sizeof(node_name), node_name };
1364 
1365 	if (!dmi_name_in_vendors("IBM"))
1366 		return false;
1367 
1368 	/* Look for SMBS object */
1369 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1370 	    strcmp("SMBS", path.pointer))
1371 		return false;
1372 
1373 	/* Does it have the necessary (but misnamed) methods? */
1374 	if (acpi_has_method(handle, "SBI") &&
1375 	    acpi_has_method(handle, "SBR") &&
1376 	    acpi_has_method(handle, "SBW"))
1377 		return true;
1378 
1379 	return false;
1380 }
1381 
1382 static bool acpi_object_is_system_bus(acpi_handle handle)
1383 {
1384 	acpi_handle tmp;
1385 
1386 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1387 	    tmp == handle)
1388 		return true;
1389 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1390 	    tmp == handle)
1391 		return true;
1392 
1393 	return false;
1394 }
1395 
1396 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1397 			     int device_type)
1398 {
1399 	struct acpi_device_info *info = NULL;
1400 	struct acpi_pnp_device_id_list *cid_list;
1401 	int i;
1402 
1403 	switch (device_type) {
1404 	case ACPI_BUS_TYPE_DEVICE:
1405 		if (handle == ACPI_ROOT_OBJECT) {
1406 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1407 			break;
1408 		}
1409 
1410 		acpi_get_object_info(handle, &info);
1411 		if (!info) {
1412 			pr_err("%s: Error reading device info\n", __func__);
1413 			return;
1414 		}
1415 
1416 		if (info->valid & ACPI_VALID_HID) {
1417 			acpi_add_id(pnp, info->hardware_id.string);
1418 			pnp->type.platform_id = 1;
1419 		}
1420 		if (info->valid & ACPI_VALID_CID) {
1421 			cid_list = &info->compatible_id_list;
1422 			for (i = 0; i < cid_list->count; i++)
1423 				acpi_add_id(pnp, cid_list->ids[i].string);
1424 		}
1425 		if (info->valid & ACPI_VALID_ADR) {
1426 			pnp->bus_address = info->address;
1427 			pnp->type.bus_address = 1;
1428 		}
1429 		if (info->valid & ACPI_VALID_UID)
1430 			pnp->unique_id = kstrdup(info->unique_id.string,
1431 							GFP_KERNEL);
1432 		if (info->valid & ACPI_VALID_CLS)
1433 			acpi_add_id(pnp, info->class_code.string);
1434 
1435 		kfree(info);
1436 
1437 		/*
1438 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1439 		 * synthetic HIDs to make sure drivers can find them.
1440 		 */
1441 		if (acpi_is_video_device(handle)) {
1442 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1443 			pnp->type.backlight = 1;
1444 			break;
1445 		}
1446 		if (acpi_bay_match(handle))
1447 			acpi_add_id(pnp, ACPI_BAY_HID);
1448 		else if (acpi_dock_match(handle))
1449 			acpi_add_id(pnp, ACPI_DOCK_HID);
1450 		else if (acpi_ibm_smbus_match(handle))
1451 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1452 		else if (list_empty(&pnp->ids) &&
1453 			 acpi_object_is_system_bus(handle)) {
1454 			/* \_SB, \_TZ, LNXSYBUS */
1455 			acpi_add_id(pnp, ACPI_BUS_HID);
1456 			strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1457 			strscpy(pnp->device_class, ACPI_BUS_CLASS);
1458 		}
1459 
1460 		break;
1461 	case ACPI_BUS_TYPE_POWER:
1462 		acpi_add_id(pnp, ACPI_POWER_HID);
1463 		break;
1464 	case ACPI_BUS_TYPE_PROCESSOR:
1465 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1466 		break;
1467 	case ACPI_BUS_TYPE_THERMAL:
1468 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1469 		break;
1470 	case ACPI_BUS_TYPE_POWER_BUTTON:
1471 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1472 		break;
1473 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1474 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1475 		break;
1476 	case ACPI_BUS_TYPE_ECDT_EC:
1477 		acpi_add_id(pnp, ACPI_ECDT_HID);
1478 		break;
1479 	}
1480 }
1481 
1482 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1483 {
1484 	struct acpi_hardware_id *id, *tmp;
1485 
1486 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1487 		kfree_const(id->id);
1488 		kfree(id);
1489 	}
1490 	kfree(pnp->unique_id);
1491 }
1492 
1493 /**
1494  * acpi_dma_supported - Check DMA support for the specified device.
1495  * @adev: The pointer to acpi device
1496  *
1497  * Return false if DMA is not supported. Otherwise, return true
1498  */
1499 bool acpi_dma_supported(const struct acpi_device *adev)
1500 {
1501 	if (!adev)
1502 		return false;
1503 
1504 	if (adev->flags.cca_seen)
1505 		return true;
1506 
1507 	/*
1508 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1509 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1510 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1511 	*/
1512 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1513 		return true;
1514 
1515 	return false;
1516 }
1517 
1518 /**
1519  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1520  * @adev: The pointer to acpi device
1521  *
1522  * Return enum dev_dma_attr.
1523  */
1524 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1525 {
1526 	if (!acpi_dma_supported(adev))
1527 		return DEV_DMA_NOT_SUPPORTED;
1528 
1529 	if (adev->flags.coherent_dma)
1530 		return DEV_DMA_COHERENT;
1531 	else
1532 		return DEV_DMA_NON_COHERENT;
1533 }
1534 
1535 /**
1536  * acpi_dma_get_range() - Get device DMA parameters.
1537  *
1538  * @dev: device to configure
1539  * @map: pointer to DMA ranges result
1540  *
1541  * Evaluate DMA regions and return pointer to DMA regions on
1542  * parsing success; it does not update the passed in values on failure.
1543  *
1544  * Return 0 on success, < 0 on failure.
1545  */
1546 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1547 {
1548 	struct acpi_device *adev;
1549 	LIST_HEAD(list);
1550 	struct resource_entry *rentry;
1551 	int ret;
1552 	struct device *dma_dev = dev;
1553 	struct bus_dma_region *r;
1554 
1555 	/*
1556 	 * Walk the device tree chasing an ACPI companion with a _DMA
1557 	 * object while we go. Stop if we find a device with an ACPI
1558 	 * companion containing a _DMA method.
1559 	 */
1560 	do {
1561 		adev = ACPI_COMPANION(dma_dev);
1562 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1563 			break;
1564 
1565 		dma_dev = dma_dev->parent;
1566 	} while (dma_dev);
1567 
1568 	if (!dma_dev)
1569 		return -ENODEV;
1570 
1571 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1572 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	ret = acpi_dev_get_dma_resources(adev, &list);
1577 	if (ret > 0) {
1578 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1579 		if (!r) {
1580 			ret = -ENOMEM;
1581 			goto out;
1582 		}
1583 
1584 		*map = r;
1585 
1586 		list_for_each_entry(rentry, &list, node) {
1587 			if (rentry->res->start >= rentry->res->end) {
1588 				kfree(*map);
1589 				*map = NULL;
1590 				ret = -EINVAL;
1591 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1592 				goto out;
1593 			}
1594 
1595 			r->cpu_start = rentry->res->start;
1596 			r->dma_start = rentry->res->start - rentry->offset;
1597 			r->size = resource_size(rentry->res);
1598 			r++;
1599 		}
1600 	}
1601  out:
1602 	acpi_dev_free_resource_list(&list);
1603 
1604 	return ret >= 0 ? 0 : ret;
1605 }
1606 
1607 #ifdef CONFIG_IOMMU_API
1608 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1609 			   struct fwnode_handle *fwnode)
1610 {
1611 	int ret;
1612 
1613 	ret = iommu_fwspec_init(dev, fwnode);
1614 	if (ret)
1615 		return ret;
1616 
1617 	return iommu_fwspec_add_ids(dev, &id, 1);
1618 }
1619 
1620 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1621 {
1622 	int err;
1623 
1624 	/* Serialise to make dev->iommu stable under our potential fwspec */
1625 	mutex_lock(&iommu_probe_device_lock);
1626 	/* If we already translated the fwspec there is nothing left to do */
1627 	if (dev_iommu_fwspec_get(dev)) {
1628 		mutex_unlock(&iommu_probe_device_lock);
1629 		return 0;
1630 	}
1631 
1632 	err = iort_iommu_configure_id(dev, id_in);
1633 	if (err && err != -EPROBE_DEFER)
1634 		err = viot_iommu_configure(dev);
1635 	mutex_unlock(&iommu_probe_device_lock);
1636 
1637 	return err;
1638 }
1639 
1640 #else /* !CONFIG_IOMMU_API */
1641 
1642 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1643 			   struct fwnode_handle *fwnode)
1644 {
1645 	return -ENODEV;
1646 }
1647 
1648 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1649 {
1650 	return -ENODEV;
1651 }
1652 
1653 #endif /* !CONFIG_IOMMU_API */
1654 
1655 /**
1656  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1657  * @dev: The pointer to the device
1658  * @attr: device dma attributes
1659  * @input_id: input device id const value pointer
1660  */
1661 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1662 			  const u32 *input_id)
1663 {
1664 	int ret;
1665 
1666 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1667 		set_dma_ops(dev, &dma_dummy_ops);
1668 		return 0;
1669 	}
1670 
1671 	acpi_arch_dma_setup(dev);
1672 
1673 	/* Ignore all other errors apart from EPROBE_DEFER */
1674 	ret = acpi_iommu_configure_id(dev, input_id);
1675 	if (ret == -EPROBE_DEFER)
1676 		return -EPROBE_DEFER;
1677 	if (ret)
1678 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1679 
1680 	arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1681 
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1685 
1686 static void acpi_init_coherency(struct acpi_device *adev)
1687 {
1688 	unsigned long long cca = 0;
1689 	acpi_status status;
1690 	struct acpi_device *parent = acpi_dev_parent(adev);
1691 
1692 	if (parent && parent->flags.cca_seen) {
1693 		/*
1694 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1695 		 * already saw one.
1696 		 */
1697 		adev->flags.cca_seen = 1;
1698 		cca = parent->flags.coherent_dma;
1699 	} else {
1700 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1701 					       NULL, &cca);
1702 		if (ACPI_SUCCESS(status))
1703 			adev->flags.cca_seen = 1;
1704 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1705 			/*
1706 			 * If architecture does not specify that _CCA is
1707 			 * required for DMA-able devices (e.g. x86),
1708 			 * we default to _CCA=1.
1709 			 */
1710 			cca = 1;
1711 		else
1712 			acpi_handle_debug(adev->handle,
1713 					  "ACPI device is missing _CCA.\n");
1714 	}
1715 
1716 	adev->flags.coherent_dma = cca;
1717 }
1718 
1719 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1720 {
1721 	bool *is_serial_bus_slave_p = data;
1722 
1723 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1724 		return 1;
1725 
1726 	*is_serial_bus_slave_p = true;
1727 
1728 	 /* no need to do more checking */
1729 	return -1;
1730 }
1731 
1732 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1733 {
1734 	struct acpi_device *parent = acpi_dev_parent(device);
1735 	static const struct acpi_device_id indirect_io_hosts[] = {
1736 		{"HISI0191", 0},
1737 		{}
1738 	};
1739 
1740 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1741 }
1742 
1743 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1744 {
1745 	struct list_head resource_list;
1746 	bool is_serial_bus_slave = false;
1747 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1748 	/*
1749 	 * These devices have multiple SerialBus resources and a client
1750 	 * device must be instantiated for each of them, each with
1751 	 * its own device id.
1752 	 * Normally we only instantiate one client device for the first
1753 	 * resource, using the ACPI HID as id. These special cases are handled
1754 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1755 	 * knows which client device id to use for each resource.
1756 	 */
1757 		{"BSG1160", },
1758 		{"BSG2150", },
1759 		{"CSC3551", },
1760 		{"CSC3554", },
1761 		{"CSC3556", },
1762 		{"CSC3557", },
1763 		{"INT33FE", },
1764 		{"INT3515", },
1765 		{"TXNW2781", },
1766 		/* Non-conforming _HID for Cirrus Logic already released */
1767 		{"CLSA0100", },
1768 		{"CLSA0101", },
1769 	/*
1770 	 * Some ACPI devs contain SerialBus resources even though they are not
1771 	 * attached to a serial bus at all.
1772 	 */
1773 		{ACPI_VIDEO_HID, },
1774 		{"MSHW0028", },
1775 	/*
1776 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1777 	 * expects a regular tty cdev to be created (instead of the in kernel
1778 	 * serdev) and which have a kernel driver which expects a platform_dev
1779 	 * such as the rfkill-gpio driver.
1780 	 */
1781 		{"BCM4752", },
1782 		{"LNV4752", },
1783 		{}
1784 	};
1785 
1786 	if (acpi_is_indirect_io_slave(device))
1787 		return true;
1788 
1789 	/* Macs use device properties in lieu of _CRS resources */
1790 	if (x86_apple_machine &&
1791 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1792 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1793 	     fwnode_property_present(&device->fwnode, "baud")))
1794 		return true;
1795 
1796 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1797 		return false;
1798 
1799 	INIT_LIST_HEAD(&resource_list);
1800 	acpi_dev_get_resources(device, &resource_list,
1801 			       acpi_check_serial_bus_slave,
1802 			       &is_serial_bus_slave);
1803 	acpi_dev_free_resource_list(&resource_list);
1804 
1805 	return is_serial_bus_slave;
1806 }
1807 
1808 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1809 			     int type, void (*release)(struct device *))
1810 {
1811 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1812 
1813 	INIT_LIST_HEAD(&device->pnp.ids);
1814 	device->device_type = type;
1815 	device->handle = handle;
1816 	device->dev.parent = parent ? &parent->dev : NULL;
1817 	device->dev.release = release;
1818 	device->dev.bus = &acpi_bus_type;
1819 	device->dev.groups = acpi_groups;
1820 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1821 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1822 	acpi_device_get_busid(device);
1823 	acpi_set_pnp_ids(handle, &device->pnp, type);
1824 	acpi_init_properties(device);
1825 	acpi_bus_get_flags(device);
1826 	device->flags.match_driver = false;
1827 	device->flags.initialized = true;
1828 	device->flags.enumeration_by_parent =
1829 		acpi_device_enumeration_by_parent(device);
1830 	acpi_device_clear_enumerated(device);
1831 	device_initialize(&device->dev);
1832 	dev_set_uevent_suppress(&device->dev, true);
1833 	acpi_init_coherency(device);
1834 }
1835 
1836 static void acpi_scan_dep_init(struct acpi_device *adev)
1837 {
1838 	struct acpi_dep_data *dep;
1839 
1840 	list_for_each_entry(dep, &acpi_dep_list, node) {
1841 		if (dep->consumer == adev->handle) {
1842 			if (dep->honor_dep)
1843 				adev->flags.honor_deps = 1;
1844 
1845 			if (!dep->met)
1846 				adev->dep_unmet++;
1847 		}
1848 	}
1849 }
1850 
1851 void acpi_device_add_finalize(struct acpi_device *device)
1852 {
1853 	dev_set_uevent_suppress(&device->dev, false);
1854 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1855 }
1856 
1857 static void acpi_scan_init_status(struct acpi_device *adev)
1858 {
1859 	if (acpi_bus_get_status(adev))
1860 		acpi_set_device_status(adev, 0);
1861 }
1862 
1863 static int acpi_add_single_object(struct acpi_device **child,
1864 				  acpi_handle handle, int type, bool dep_init)
1865 {
1866 	struct acpi_device *device;
1867 	bool release_dep_lock = false;
1868 	int result;
1869 
1870 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1871 	if (!device)
1872 		return -ENOMEM;
1873 
1874 	acpi_init_device_object(device, handle, type, acpi_device_release);
1875 	/*
1876 	 * Getting the status is delayed till here so that we can call
1877 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1878 	 * this must be done before the get power-/wakeup_dev-flags calls.
1879 	 */
1880 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1881 		if (dep_init) {
1882 			mutex_lock(&acpi_dep_list_lock);
1883 			/*
1884 			 * Hold the lock until the acpi_tie_acpi_dev() call
1885 			 * below to prevent concurrent acpi_scan_clear_dep()
1886 			 * from deleting a dependency list entry without
1887 			 * updating dep_unmet for the device.
1888 			 */
1889 			release_dep_lock = true;
1890 			acpi_scan_dep_init(device);
1891 		}
1892 		acpi_scan_init_status(device);
1893 	}
1894 
1895 	acpi_bus_get_power_flags(device);
1896 	acpi_bus_get_wakeup_device_flags(device);
1897 
1898 	result = acpi_tie_acpi_dev(device);
1899 
1900 	if (release_dep_lock)
1901 		mutex_unlock(&acpi_dep_list_lock);
1902 
1903 	if (!result)
1904 		result = acpi_device_add(device);
1905 
1906 	if (result) {
1907 		acpi_device_release(&device->dev);
1908 		return result;
1909 	}
1910 
1911 	acpi_power_add_remove_device(device, true);
1912 	acpi_device_add_finalize(device);
1913 
1914 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1915 			  dev_name(&device->dev), device->dev.parent ?
1916 				dev_name(device->dev.parent) : "(null)");
1917 
1918 	*child = device;
1919 	return 0;
1920 }
1921 
1922 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1923 					    void *context)
1924 {
1925 	struct resource *res = context;
1926 
1927 	if (acpi_dev_resource_memory(ares, res))
1928 		return AE_CTRL_TERMINATE;
1929 
1930 	return AE_OK;
1931 }
1932 
1933 static bool acpi_device_should_be_hidden(acpi_handle handle)
1934 {
1935 	acpi_status status;
1936 	struct resource res;
1937 
1938 	/* Check if it should ignore the UART device */
1939 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1940 		return false;
1941 
1942 	/*
1943 	 * The UART device described in SPCR table is assumed to have only one
1944 	 * memory resource present. So we only look for the first one here.
1945 	 */
1946 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1947 				     acpi_get_resource_memory, &res);
1948 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1949 		return false;
1950 
1951 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1952 			 &res.start);
1953 
1954 	return true;
1955 }
1956 
1957 bool acpi_device_is_present(const struct acpi_device *adev)
1958 {
1959 	return adev->status.present || adev->status.functional;
1960 }
1961 
1962 bool acpi_device_is_enabled(const struct acpi_device *adev)
1963 {
1964 	return adev->status.enabled;
1965 }
1966 
1967 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1968 				       const char *idstr,
1969 				       const struct acpi_device_id **matchid)
1970 {
1971 	const struct acpi_device_id *devid;
1972 
1973 	if (handler->match)
1974 		return handler->match(idstr, matchid);
1975 
1976 	for (devid = handler->ids; devid->id[0]; devid++)
1977 		if (!strcmp((char *)devid->id, idstr)) {
1978 			if (matchid)
1979 				*matchid = devid;
1980 
1981 			return true;
1982 		}
1983 
1984 	return false;
1985 }
1986 
1987 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1988 					const struct acpi_device_id **matchid)
1989 {
1990 	struct acpi_scan_handler *handler;
1991 
1992 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1993 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1994 			return handler;
1995 
1996 	return NULL;
1997 }
1998 
1999 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2000 {
2001 	if (!!hotplug->enabled == !!val)
2002 		return;
2003 
2004 	mutex_lock(&acpi_scan_lock);
2005 
2006 	hotplug->enabled = val;
2007 
2008 	mutex_unlock(&acpi_scan_lock);
2009 }
2010 
2011 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2012 {
2013 	u32 count;
2014 	int i;
2015 
2016 	for (count = 0, i = 0; i < dep_devices->count; i++) {
2017 		struct acpi_device_info *info;
2018 		struct acpi_dep_data *dep;
2019 		bool skip, honor_dep;
2020 		acpi_status status;
2021 
2022 		status = acpi_get_object_info(dep_devices->handles[i], &info);
2023 		if (ACPI_FAILURE(status)) {
2024 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2025 			continue;
2026 		}
2027 
2028 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2029 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2030 		kfree(info);
2031 
2032 		if (skip)
2033 			continue;
2034 
2035 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2036 		if (!dep)
2037 			continue;
2038 
2039 		count++;
2040 
2041 		dep->supplier = dep_devices->handles[i];
2042 		dep->consumer = handle;
2043 		dep->honor_dep = honor_dep;
2044 
2045 		mutex_lock(&acpi_dep_list_lock);
2046 		list_add_tail(&dep->node, &acpi_dep_list);
2047 		mutex_unlock(&acpi_dep_list_lock);
2048 	}
2049 
2050 	acpi_handle_list_free(dep_devices);
2051 	return count;
2052 }
2053 
2054 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2055 {
2056 	struct acpi_hardware_id *hwid;
2057 
2058 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2059 		acpi_dock_add(adev);
2060 		return;
2061 	}
2062 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2063 		struct acpi_scan_handler *handler;
2064 
2065 		handler = acpi_scan_match_handler(hwid->id, NULL);
2066 		if (handler) {
2067 			adev->flags.hotplug_notify = true;
2068 			break;
2069 		}
2070 	}
2071 }
2072 
2073 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2074 
2075 static u32 acpi_scan_check_dep(acpi_handle handle)
2076 {
2077 	struct acpi_handle_list dep_devices;
2078 	u32 count = 0;
2079 
2080 	/*
2081 	 * Some architectures like RISC-V need to add dependencies for
2082 	 * all devices which use GSI to the interrupt controller so that
2083 	 * interrupt controller is probed before any of those devices.
2084 	 * Instead of mandating _DEP on all the devices, detect the
2085 	 * dependency and add automatically.
2086 	 */
2087 	count += arch_acpi_add_auto_dep(handle);
2088 
2089 	/*
2090 	 * Check for _HID here to avoid deferring the enumeration of:
2091 	 * 1. PCI devices.
2092 	 * 2. ACPI nodes describing USB ports.
2093 	 * Still, checking for _HID catches more then just these cases ...
2094 	 */
2095 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2096 		return count;
2097 
2098 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2099 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2100 		return count;
2101 	}
2102 
2103 	count += acpi_scan_add_dep(handle, &dep_devices);
2104 	return count;
2105 }
2106 
2107 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2108 {
2109 	acpi_mipi_check_crs_csi2(handle);
2110 	return AE_OK;
2111 }
2112 
2113 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2114 				      struct acpi_device **adev_p)
2115 {
2116 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2117 	acpi_object_type acpi_type;
2118 	int type;
2119 
2120 	if (device)
2121 		goto out;
2122 
2123 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2124 		return AE_OK;
2125 
2126 	switch (acpi_type) {
2127 	case ACPI_TYPE_DEVICE:
2128 		if (acpi_device_should_be_hidden(handle))
2129 			return AE_OK;
2130 
2131 		if (first_pass) {
2132 			acpi_mipi_check_crs_csi2(handle);
2133 
2134 			/* Bail out if there are dependencies. */
2135 			if (acpi_scan_check_dep(handle) > 0) {
2136 				/*
2137 				 * The entire CSI-2 connection graph needs to be
2138 				 * extracted before any drivers or scan handlers
2139 				 * are bound to struct device objects, so scan
2140 				 * _CRS CSI-2 resource descriptors for all
2141 				 * devices below the current handle.
2142 				 */
2143 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2144 						    ACPI_UINT32_MAX,
2145 						    acpi_scan_check_crs_csi2_cb,
2146 						    NULL, NULL, NULL);
2147 				return AE_CTRL_DEPTH;
2148 			}
2149 		}
2150 
2151 		fallthrough;
2152 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2153 		type = ACPI_BUS_TYPE_DEVICE;
2154 		break;
2155 
2156 	case ACPI_TYPE_PROCESSOR:
2157 		type = ACPI_BUS_TYPE_PROCESSOR;
2158 		break;
2159 
2160 	case ACPI_TYPE_THERMAL:
2161 		type = ACPI_BUS_TYPE_THERMAL;
2162 		break;
2163 
2164 	case ACPI_TYPE_POWER:
2165 		acpi_add_power_resource(handle);
2166 		fallthrough;
2167 	default:
2168 		return AE_OK;
2169 	}
2170 
2171 	/*
2172 	 * If first_pass is true at this point, the device has no dependencies,
2173 	 * or the creation of the device object would have been postponed above.
2174 	 */
2175 	acpi_add_single_object(&device, handle, type, !first_pass);
2176 	if (!device)
2177 		return AE_CTRL_DEPTH;
2178 
2179 	acpi_scan_init_hotplug(device);
2180 
2181 out:
2182 	if (!*adev_p)
2183 		*adev_p = device;
2184 
2185 	return AE_OK;
2186 }
2187 
2188 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2189 					void *not_used, void **ret_p)
2190 {
2191 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2192 }
2193 
2194 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2195 					void *not_used, void **ret_p)
2196 {
2197 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2198 }
2199 
2200 static void acpi_default_enumeration(struct acpi_device *device)
2201 {
2202 	/*
2203 	 * Do not enumerate devices with enumeration_by_parent flag set as
2204 	 * they will be enumerated by their respective parents.
2205 	 */
2206 	if (!device->flags.enumeration_by_parent) {
2207 		acpi_create_platform_device(device, NULL);
2208 		acpi_device_set_enumerated(device);
2209 	} else {
2210 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2211 					     ACPI_RECONFIG_DEVICE_ADD, device);
2212 	}
2213 }
2214 
2215 static const struct acpi_device_id generic_device_ids[] = {
2216 	{ACPI_DT_NAMESPACE_HID, },
2217 	{"", },
2218 };
2219 
2220 static int acpi_generic_device_attach(struct acpi_device *adev,
2221 				      const struct acpi_device_id *not_used)
2222 {
2223 	/*
2224 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2225 	 * below can be unconditional.
2226 	 */
2227 	if (adev->data.of_compatible)
2228 		acpi_default_enumeration(adev);
2229 
2230 	return 1;
2231 }
2232 
2233 static struct acpi_scan_handler generic_device_handler = {
2234 	.ids = generic_device_ids,
2235 	.attach = acpi_generic_device_attach,
2236 };
2237 
2238 static int acpi_scan_attach_handler(struct acpi_device *device)
2239 {
2240 	struct acpi_hardware_id *hwid;
2241 	int ret = 0;
2242 
2243 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2244 		const struct acpi_device_id *devid;
2245 		struct acpi_scan_handler *handler;
2246 
2247 		handler = acpi_scan_match_handler(hwid->id, &devid);
2248 		if (handler) {
2249 			if (!handler->attach) {
2250 				device->pnp.type.platform_id = 0;
2251 				continue;
2252 			}
2253 			device->handler = handler;
2254 			ret = handler->attach(device, devid);
2255 			if (ret > 0)
2256 				break;
2257 
2258 			device->handler = NULL;
2259 			if (ret < 0)
2260 				break;
2261 		}
2262 	}
2263 
2264 	return ret;
2265 }
2266 
2267 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2268 {
2269 	bool skip = !first_pass && device->flags.visited;
2270 	acpi_handle ejd;
2271 	int ret;
2272 
2273 	if (skip)
2274 		goto ok;
2275 
2276 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2277 		register_dock_dependent_device(device, ejd);
2278 
2279 	acpi_bus_get_status(device);
2280 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2281 	if (!acpi_dev_ready_for_enumeration(device)) {
2282 		device->flags.initialized = false;
2283 		acpi_device_clear_enumerated(device);
2284 		device->flags.power_manageable = 0;
2285 		return 0;
2286 	}
2287 	if (device->handler)
2288 		goto ok;
2289 
2290 	acpi_ec_register_opregions(device);
2291 
2292 	if (!device->flags.initialized) {
2293 		device->flags.power_manageable =
2294 			device->power.states[ACPI_STATE_D0].flags.valid;
2295 		if (acpi_bus_init_power(device))
2296 			device->flags.power_manageable = 0;
2297 
2298 		device->flags.initialized = true;
2299 	} else if (device->flags.visited) {
2300 		goto ok;
2301 	}
2302 
2303 	ret = acpi_scan_attach_handler(device);
2304 	if (ret < 0)
2305 		return 0;
2306 
2307 	device->flags.match_driver = true;
2308 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2309 		acpi_device_set_enumerated(device);
2310 		goto ok;
2311 	}
2312 
2313 	ret = device_attach(&device->dev);
2314 	if (ret < 0)
2315 		return 0;
2316 
2317 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2318 		acpi_default_enumeration(device);
2319 	else
2320 		acpi_device_set_enumerated(device);
2321 
2322 ok:
2323 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2324 
2325 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2326 		device->handler->hotplug.notify_online(device);
2327 
2328 	return 0;
2329 }
2330 
2331 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2332 {
2333 	struct acpi_device **adev_p = data;
2334 	struct acpi_device *adev = *adev_p;
2335 
2336 	/*
2337 	 * If we're passed a 'previous' consumer device then we need to skip
2338 	 * any consumers until we meet the previous one, and then NULL @data
2339 	 * so the next one can be returned.
2340 	 */
2341 	if (adev) {
2342 		if (dep->consumer == adev->handle)
2343 			*adev_p = NULL;
2344 
2345 		return 0;
2346 	}
2347 
2348 	adev = acpi_get_acpi_dev(dep->consumer);
2349 	if (adev) {
2350 		*(struct acpi_device **)data = adev;
2351 		return 1;
2352 	}
2353 	/* Continue parsing if the device object is not present. */
2354 	return 0;
2355 }
2356 
2357 struct acpi_scan_clear_dep_work {
2358 	struct work_struct work;
2359 	struct acpi_device *adev;
2360 };
2361 
2362 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2363 {
2364 	struct acpi_scan_clear_dep_work *cdw;
2365 
2366 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2367 
2368 	acpi_scan_lock_acquire();
2369 	acpi_bus_attach(cdw->adev, (void *)true);
2370 	acpi_scan_lock_release();
2371 
2372 	acpi_dev_put(cdw->adev);
2373 	kfree(cdw);
2374 }
2375 
2376 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2377 {
2378 	struct acpi_scan_clear_dep_work *cdw;
2379 
2380 	if (adev->dep_unmet)
2381 		return false;
2382 
2383 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2384 	if (!cdw)
2385 		return false;
2386 
2387 	cdw->adev = adev;
2388 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2389 	/*
2390 	 * Since the work function may block on the lock until the entire
2391 	 * initial enumeration of devices is complete, put it into the unbound
2392 	 * workqueue.
2393 	 */
2394 	queue_work(system_unbound_wq, &cdw->work);
2395 
2396 	return true;
2397 }
2398 
2399 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2400 {
2401 	list_del(&dep->node);
2402 	kfree(dep);
2403 }
2404 
2405 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2406 {
2407 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2408 
2409 	if (adev) {
2410 		adev->dep_unmet--;
2411 		if (!acpi_scan_clear_dep_queue(adev))
2412 			acpi_dev_put(adev);
2413 	}
2414 
2415 	if (dep->free_when_met)
2416 		acpi_scan_delete_dep_data(dep);
2417 	else
2418 		dep->met = true;
2419 
2420 	return 0;
2421 }
2422 
2423 /**
2424  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2425  * @handle:	The ACPI handle of the supplier device
2426  * @callback:	Pointer to the callback function to apply
2427  * @data:	Pointer to some data to pass to the callback
2428  *
2429  * The return value of the callback determines this function's behaviour. If 0
2430  * is returned we continue to iterate over acpi_dep_list. If a positive value
2431  * is returned then the loop is broken but this function returns 0. If a
2432  * negative value is returned by the callback then the loop is broken and that
2433  * value is returned as the final error.
2434  */
2435 static int acpi_walk_dep_device_list(acpi_handle handle,
2436 				int (*callback)(struct acpi_dep_data *, void *),
2437 				void *data)
2438 {
2439 	struct acpi_dep_data *dep, *tmp;
2440 	int ret = 0;
2441 
2442 	mutex_lock(&acpi_dep_list_lock);
2443 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2444 		if (dep->supplier == handle) {
2445 			ret = callback(dep, data);
2446 			if (ret)
2447 				break;
2448 		}
2449 	}
2450 	mutex_unlock(&acpi_dep_list_lock);
2451 
2452 	return ret > 0 ? 0 : ret;
2453 }
2454 
2455 /**
2456  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2457  * @supplier: Pointer to the supplier &struct acpi_device
2458  *
2459  * Clear dependencies on the given device.
2460  */
2461 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2462 {
2463 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2464 }
2465 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2466 
2467 /**
2468  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2469  * @device: Pointer to the &struct acpi_device to check
2470  *
2471  * Check if the device is present and has no unmet dependencies.
2472  *
2473  * Return true if the device is ready for enumeratino. Otherwise, return false.
2474  */
2475 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2476 {
2477 	if (device->flags.honor_deps && device->dep_unmet)
2478 		return false;
2479 
2480 	return acpi_device_is_present(device);
2481 }
2482 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2483 
2484 /**
2485  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2486  * @supplier: Pointer to the dependee device
2487  * @start: Pointer to the current dependent device
2488  *
2489  * Returns the next &struct acpi_device which declares itself dependent on
2490  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2491  *
2492  * If the returned adev is not passed as @start to this function, the caller is
2493  * responsible for putting the reference to adev when it is no longer needed.
2494  */
2495 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2496 						   struct acpi_device *start)
2497 {
2498 	struct acpi_device *adev = start;
2499 
2500 	acpi_walk_dep_device_list(supplier->handle,
2501 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2502 
2503 	acpi_dev_put(start);
2504 
2505 	if (adev == start)
2506 		return NULL;
2507 
2508 	return adev;
2509 }
2510 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2511 
2512 static void acpi_scan_postponed_branch(acpi_handle handle)
2513 {
2514 	struct acpi_device *adev = NULL;
2515 
2516 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2517 		return;
2518 
2519 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2520 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2521 
2522 	/*
2523 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2524 	 * have been added above.
2525 	 */
2526 	acpi_mipi_init_crs_csi2_swnodes();
2527 
2528 	acpi_bus_attach(adev, NULL);
2529 }
2530 
2531 static void acpi_scan_postponed(void)
2532 {
2533 	struct acpi_dep_data *dep, *tmp;
2534 
2535 	mutex_lock(&acpi_dep_list_lock);
2536 
2537 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2538 		acpi_handle handle = dep->consumer;
2539 
2540 		/*
2541 		 * In case there are multiple acpi_dep_list entries with the
2542 		 * same consumer, skip the current entry if the consumer device
2543 		 * object corresponding to it is present already.
2544 		 */
2545 		if (!acpi_fetch_acpi_dev(handle)) {
2546 			/*
2547 			 * Even though the lock is released here, tmp is
2548 			 * guaranteed to be valid, because none of the list
2549 			 * entries following dep is marked as "free when met"
2550 			 * and so they cannot be deleted.
2551 			 */
2552 			mutex_unlock(&acpi_dep_list_lock);
2553 
2554 			acpi_scan_postponed_branch(handle);
2555 
2556 			mutex_lock(&acpi_dep_list_lock);
2557 		}
2558 
2559 		if (dep->met)
2560 			acpi_scan_delete_dep_data(dep);
2561 		else
2562 			dep->free_when_met = true;
2563 	}
2564 
2565 	mutex_unlock(&acpi_dep_list_lock);
2566 }
2567 
2568 /**
2569  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2570  * @handle: Root of the namespace scope to scan.
2571  *
2572  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2573  * found devices.
2574  *
2575  * If no devices were found, -ENODEV is returned, but it does not mean that
2576  * there has been a real error.  There just have been no suitable ACPI objects
2577  * in the table trunk from which the kernel could create a device and add an
2578  * appropriate driver.
2579  *
2580  * Must be called under acpi_scan_lock.
2581  */
2582 int acpi_bus_scan(acpi_handle handle)
2583 {
2584 	struct acpi_device *device = NULL;
2585 
2586 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2587 
2588 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2589 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2590 				    acpi_bus_check_add_1, NULL, NULL,
2591 				    (void **)&device);
2592 
2593 	if (!device)
2594 		return -ENODEV;
2595 
2596 	/*
2597 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2598 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2599 	 * walk above and MIPI DisCo for Imaging device properties.
2600 	 */
2601 	acpi_mipi_scan_crs_csi2();
2602 	acpi_mipi_init_crs_csi2_swnodes();
2603 
2604 	acpi_bus_attach(device, (void *)true);
2605 
2606 	/* Pass 2: Enumerate all of the remaining devices. */
2607 
2608 	acpi_scan_postponed();
2609 
2610 	acpi_mipi_crs_csi2_cleanup();
2611 
2612 	return 0;
2613 }
2614 EXPORT_SYMBOL(acpi_bus_scan);
2615 
2616 /**
2617  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2618  * @adev: Root of the ACPI namespace scope to walk.
2619  *
2620  * Must be called under acpi_scan_lock.
2621  */
2622 void acpi_bus_trim(struct acpi_device *adev)
2623 {
2624 	uintptr_t flags = 0;
2625 
2626 	acpi_scan_check_and_detach(adev, (void *)flags);
2627 }
2628 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2629 
2630 int acpi_bus_register_early_device(int type)
2631 {
2632 	struct acpi_device *device = NULL;
2633 	int result;
2634 
2635 	result = acpi_add_single_object(&device, NULL, type, false);
2636 	if (result)
2637 		return result;
2638 
2639 	device->flags.match_driver = true;
2640 	return device_attach(&device->dev);
2641 }
2642 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2643 
2644 static void acpi_bus_scan_fixed(void)
2645 {
2646 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2647 		struct acpi_device *adev = NULL;
2648 
2649 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2650 				       false);
2651 		if (adev) {
2652 			adev->flags.match_driver = true;
2653 			if (device_attach(&adev->dev) >= 0)
2654 				device_init_wakeup(&adev->dev, true);
2655 			else
2656 				dev_dbg(&adev->dev, "No driver\n");
2657 		}
2658 	}
2659 
2660 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2661 		struct acpi_device *adev = NULL;
2662 
2663 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2664 				       false);
2665 		if (adev) {
2666 			adev->flags.match_driver = true;
2667 			if (device_attach(&adev->dev) < 0)
2668 				dev_dbg(&adev->dev, "No driver\n");
2669 		}
2670 	}
2671 }
2672 
2673 static void __init acpi_get_spcr_uart_addr(void)
2674 {
2675 	acpi_status status;
2676 	struct acpi_table_spcr *spcr_ptr;
2677 
2678 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2679 				(struct acpi_table_header **)&spcr_ptr);
2680 	if (ACPI_FAILURE(status)) {
2681 		pr_warn("STAO table present, but SPCR is missing\n");
2682 		return;
2683 	}
2684 
2685 	spcr_uart_addr = spcr_ptr->serial_port.address;
2686 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2687 }
2688 
2689 static bool acpi_scan_initialized;
2690 
2691 void __init acpi_scan_init(void)
2692 {
2693 	acpi_status status;
2694 	struct acpi_table_stao *stao_ptr;
2695 
2696 	acpi_pci_root_init();
2697 	acpi_pci_link_init();
2698 	acpi_processor_init();
2699 	acpi_platform_init();
2700 	acpi_lpss_init();
2701 	acpi_apd_init();
2702 	acpi_cmos_rtc_init();
2703 	acpi_container_init();
2704 	acpi_memory_hotplug_init();
2705 	acpi_watchdog_init();
2706 	acpi_pnp_init();
2707 	acpi_power_resources_init();
2708 	acpi_int340x_thermal_init();
2709 	acpi_init_lpit();
2710 
2711 	acpi_scan_add_handler(&generic_device_handler);
2712 
2713 	/*
2714 	 * If there is STAO table, check whether it needs to ignore the UART
2715 	 * device in SPCR table.
2716 	 */
2717 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2718 				(struct acpi_table_header **)&stao_ptr);
2719 	if (ACPI_SUCCESS(status)) {
2720 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2721 			pr_info("STAO Name List not yet supported.\n");
2722 
2723 		if (stao_ptr->ignore_uart)
2724 			acpi_get_spcr_uart_addr();
2725 
2726 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2727 	}
2728 
2729 	acpi_gpe_apply_masked_gpes();
2730 	acpi_update_all_gpes();
2731 
2732 	/*
2733 	 * Although we call __add_memory() that is documented to require the
2734 	 * device_hotplug_lock, it is not necessary here because this is an
2735 	 * early code when userspace or any other code path cannot trigger
2736 	 * hotplug/hotunplug operations.
2737 	 */
2738 	mutex_lock(&acpi_scan_lock);
2739 	/*
2740 	 * Enumerate devices in the ACPI namespace.
2741 	 */
2742 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2743 		goto unlock;
2744 
2745 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2746 	if (!acpi_root)
2747 		goto unlock;
2748 
2749 	/* Fixed feature devices do not exist on HW-reduced platform */
2750 	if (!acpi_gbl_reduced_hardware)
2751 		acpi_bus_scan_fixed();
2752 
2753 	acpi_turn_off_unused_power_resources();
2754 
2755 	acpi_scan_initialized = true;
2756 
2757 unlock:
2758 	mutex_unlock(&acpi_scan_lock);
2759 }
2760 
2761 static struct acpi_probe_entry *ape;
2762 static int acpi_probe_count;
2763 static DEFINE_MUTEX(acpi_probe_mutex);
2764 
2765 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2766 				  const unsigned long end)
2767 {
2768 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2769 		if (!ape->probe_subtbl(header, end))
2770 			acpi_probe_count++;
2771 
2772 	return 0;
2773 }
2774 
2775 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2776 
2777 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2778 {
2779 	int count = 0;
2780 
2781 	if (acpi_disabled)
2782 		return 0;
2783 
2784 	mutex_lock(&acpi_probe_mutex);
2785 	arch_sort_irqchip_probe(ap_head, nr);
2786 	for (ape = ap_head; nr; ape++, nr--) {
2787 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2788 			acpi_probe_count = 0;
2789 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2790 			count += acpi_probe_count;
2791 		} else {
2792 			int res;
2793 			res = acpi_table_parse(ape->id, ape->probe_table);
2794 			if (!res)
2795 				count++;
2796 		}
2797 	}
2798 	mutex_unlock(&acpi_probe_mutex);
2799 
2800 	return count;
2801 }
2802 
2803 static void acpi_table_events_fn(struct work_struct *work)
2804 {
2805 	acpi_scan_lock_acquire();
2806 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2807 	acpi_scan_lock_release();
2808 
2809 	kfree(work);
2810 }
2811 
2812 void acpi_scan_table_notify(void)
2813 {
2814 	struct work_struct *work;
2815 
2816 	if (!acpi_scan_initialized)
2817 		return;
2818 
2819 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2820 	if (!work)
2821 		return;
2822 
2823 	INIT_WORK(work, acpi_table_events_fn);
2824 	schedule_work(work);
2825 }
2826 
2827 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2828 {
2829 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2830 }
2831 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2832 
2833 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2834 {
2835 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2836 }
2837 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2838