1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 acpi_hp_notify notify, acpi_hp_uevent uevent) 77 { 78 acpi_lock_hp_context(); 79 hp->notify = notify; 80 hp->uevent = uevent; 81 acpi_set_hp_context(adev, hp); 82 acpi_unlock_hp_context(); 83 } 84 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 85 86 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 87 { 88 if (!handler) 89 return -EINVAL; 90 91 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 92 return 0; 93 } 94 95 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 96 const char *hotplug_profile_name) 97 { 98 int error; 99 100 error = acpi_scan_add_handler(handler); 101 if (error) 102 return error; 103 104 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 105 return 0; 106 } 107 108 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 109 { 110 struct acpi_device_physical_node *pn; 111 bool offline = true; 112 char *envp[] = { "EVENT=offline", NULL }; 113 114 /* 115 * acpi_container_offline() calls this for all of the container's 116 * children under the container's physical_node_lock lock. 117 */ 118 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 119 120 list_for_each_entry(pn, &adev->physical_node_list, node) 121 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 122 if (uevent) 123 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 124 125 offline = false; 126 break; 127 } 128 129 mutex_unlock(&adev->physical_node_lock); 130 return offline; 131 } 132 133 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 134 void **ret_p) 135 { 136 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 137 struct acpi_device_physical_node *pn; 138 bool second_pass = (bool)data; 139 acpi_status status = AE_OK; 140 141 if (!device) 142 return AE_OK; 143 144 if (device->handler && !device->handler->hotplug.enabled) { 145 *ret_p = &device->dev; 146 return AE_SUPPORT; 147 } 148 149 mutex_lock(&device->physical_node_lock); 150 151 list_for_each_entry(pn, &device->physical_node_list, node) { 152 int ret; 153 154 if (second_pass) { 155 /* Skip devices offlined by the first pass. */ 156 if (pn->put_online) 157 continue; 158 } else { 159 pn->put_online = false; 160 } 161 ret = device_offline(pn->dev); 162 if (ret >= 0) { 163 pn->put_online = !ret; 164 } else { 165 *ret_p = pn->dev; 166 if (second_pass) { 167 status = AE_ERROR; 168 break; 169 } 170 } 171 } 172 173 mutex_unlock(&device->physical_node_lock); 174 175 return status; 176 } 177 178 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 179 void **ret_p) 180 { 181 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 182 struct acpi_device_physical_node *pn; 183 184 if (!device) 185 return AE_OK; 186 187 mutex_lock(&device->physical_node_lock); 188 189 list_for_each_entry(pn, &device->physical_node_list, node) 190 if (pn->put_online) { 191 device_online(pn->dev); 192 pn->put_online = false; 193 } 194 195 mutex_unlock(&device->physical_node_lock); 196 197 return AE_OK; 198 } 199 200 static int acpi_scan_try_to_offline(struct acpi_device *device) 201 { 202 acpi_handle handle = device->handle; 203 struct device *errdev = NULL; 204 acpi_status status; 205 206 /* 207 * Carry out two passes here and ignore errors in the first pass, 208 * because if the devices in question are memory blocks and 209 * CONFIG_MEMCG is set, one of the blocks may hold data structures 210 * that the other blocks depend on, but it is not known in advance which 211 * block holds them. 212 * 213 * If the first pass is successful, the second one isn't needed, though. 214 */ 215 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 216 NULL, acpi_bus_offline, (void *)false, 217 (void **)&errdev); 218 if (status == AE_SUPPORT) { 219 dev_warn(errdev, "Offline disabled.\n"); 220 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 221 acpi_bus_online, NULL, NULL, NULL); 222 return -EPERM; 223 } 224 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 225 if (errdev) { 226 errdev = NULL; 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 NULL, acpi_bus_offline, (void *)true, 229 (void **)&errdev); 230 if (!errdev) 231 acpi_bus_offline(handle, 0, (void *)true, 232 (void **)&errdev); 233 234 if (errdev) { 235 dev_warn(errdev, "Offline failed.\n"); 236 acpi_bus_online(handle, 0, NULL, NULL); 237 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 238 ACPI_UINT32_MAX, acpi_bus_online, 239 NULL, NULL, NULL); 240 return -EBUSY; 241 } 242 } 243 return 0; 244 } 245 246 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0) 247 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1) 248 249 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p) 250 { 251 struct acpi_scan_handler *handler = adev->handler; 252 uintptr_t flags = (uintptr_t)p; 253 254 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p); 255 256 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) { 257 acpi_bus_get_status(adev); 258 /* 259 * Skip devices that are still there and take the enabled 260 * flag into account. 261 */ 262 if (acpi_device_is_enabled(adev)) 263 return 0; 264 265 /* Skip device that have not been enumerated. */ 266 if (!acpi_device_enumerated(adev)) { 267 dev_dbg(&adev->dev, "Still not enumerated\n"); 268 return 0; 269 } 270 } 271 272 adev->flags.match_driver = false; 273 if (handler) { 274 if (handler->detach) 275 handler->detach(adev); 276 } else { 277 device_release_driver(&adev->dev); 278 } 279 /* 280 * Most likely, the device is going away, so put it into D3cold before 281 * that. 282 */ 283 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 284 adev->flags.initialized = false; 285 286 /* For eject this is deferred to acpi_bus_post_eject() */ 287 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) { 288 adev->handler = NULL; 289 acpi_device_clear_enumerated(adev); 290 } 291 return 0; 292 } 293 294 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used) 295 { 296 struct acpi_scan_handler *handler = adev->handler; 297 298 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL); 299 300 if (handler) { 301 if (handler->post_eject) 302 handler->post_eject(adev); 303 304 adev->handler = NULL; 305 } 306 307 acpi_device_clear_enumerated(adev); 308 309 return 0; 310 } 311 312 static void acpi_scan_check_subtree(struct acpi_device *adev) 313 { 314 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS; 315 316 acpi_scan_check_and_detach(adev, (void *)flags); 317 } 318 319 static int acpi_scan_hot_remove(struct acpi_device *device) 320 { 321 acpi_handle handle = device->handle; 322 unsigned long long sta; 323 acpi_status status; 324 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT; 325 326 if (device->handler && device->handler->hotplug.demand_offline) { 327 if (!acpi_scan_is_offline(device, true)) 328 return -EBUSY; 329 } else { 330 int error = acpi_scan_try_to_offline(device); 331 if (error) 332 return error; 333 } 334 335 acpi_handle_debug(handle, "Ejecting\n"); 336 337 acpi_scan_check_and_detach(device, (void *)flags); 338 339 acpi_evaluate_lck(handle, 0); 340 /* 341 * TBD: _EJD support. 342 */ 343 status = acpi_evaluate_ej0(handle); 344 if (status == AE_NOT_FOUND) 345 return -ENODEV; 346 else if (ACPI_FAILURE(status)) 347 return -EIO; 348 349 /* 350 * Verify if eject was indeed successful. If not, log an error 351 * message. No need to call _OST since _EJ0 call was made OK. 352 */ 353 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 354 if (ACPI_FAILURE(status)) { 355 acpi_handle_warn(handle, 356 "Status check after eject failed (0x%x)\n", status); 357 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 358 acpi_handle_warn(handle, 359 "Eject incomplete - status 0x%llx\n", sta); 360 } else { 361 acpi_bus_post_eject(device, NULL); 362 } 363 364 return 0; 365 } 366 367 static int acpi_scan_rescan_bus(struct acpi_device *adev) 368 { 369 struct acpi_scan_handler *handler = adev->handler; 370 int ret; 371 372 if (handler && handler->hotplug.scan_dependent) 373 ret = handler->hotplug.scan_dependent(adev); 374 else 375 ret = acpi_bus_scan(adev->handle); 376 377 if (ret) 378 dev_info(&adev->dev, "Namespace scan failure\n"); 379 380 return ret; 381 } 382 383 static int acpi_scan_device_check(struct acpi_device *adev) 384 { 385 struct acpi_device *parent; 386 387 acpi_scan_check_subtree(adev); 388 389 if (!acpi_device_is_present(adev)) 390 return 0; 391 392 /* 393 * This function is only called for device objects for which matching 394 * scan handlers exist. The only situation in which the scan handler 395 * is not attached to this device object yet is when the device has 396 * just appeared (either it wasn't present at all before or it was 397 * removed and then added again). 398 */ 399 if (adev->handler) { 400 dev_dbg(&adev->dev, "Already enumerated\n"); 401 return 0; 402 } 403 404 parent = acpi_dev_parent(adev); 405 if (!parent) 406 parent = adev; 407 408 return acpi_scan_rescan_bus(parent); 409 } 410 411 static int acpi_scan_bus_check(struct acpi_device *adev) 412 { 413 acpi_scan_check_subtree(adev); 414 415 return acpi_scan_rescan_bus(adev); 416 } 417 418 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 419 { 420 switch (type) { 421 case ACPI_NOTIFY_BUS_CHECK: 422 return acpi_scan_bus_check(adev); 423 case ACPI_NOTIFY_DEVICE_CHECK: 424 return acpi_scan_device_check(adev); 425 case ACPI_NOTIFY_EJECT_REQUEST: 426 case ACPI_OST_EC_OSPM_EJECT: 427 if (adev->handler && !adev->handler->hotplug.enabled) { 428 dev_info(&adev->dev, "Eject disabled\n"); 429 return -EPERM; 430 } 431 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 432 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 433 return acpi_scan_hot_remove(adev); 434 } 435 return -EINVAL; 436 } 437 438 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 439 { 440 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 441 int error = -ENODEV; 442 443 lock_device_hotplug(); 444 mutex_lock(&acpi_scan_lock); 445 446 /* 447 * The device object's ACPI handle cannot become invalid as long as we 448 * are holding acpi_scan_lock, but it might have become invalid before 449 * that lock was acquired. 450 */ 451 if (adev->handle == INVALID_ACPI_HANDLE) 452 goto err_out; 453 454 if (adev->flags.is_dock_station) { 455 error = dock_notify(adev, src); 456 } else if (adev->flags.hotplug_notify) { 457 error = acpi_generic_hotplug_event(adev, src); 458 } else { 459 acpi_hp_notify notify; 460 461 acpi_lock_hp_context(); 462 notify = adev->hp ? adev->hp->notify : NULL; 463 acpi_unlock_hp_context(); 464 /* 465 * There may be additional notify handlers for device objects 466 * without the .event() callback, so ignore them here. 467 */ 468 if (notify) 469 error = notify(adev, src); 470 else 471 goto out; 472 } 473 switch (error) { 474 case 0: 475 ost_code = ACPI_OST_SC_SUCCESS; 476 break; 477 case -EPERM: 478 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 479 break; 480 case -EBUSY: 481 ost_code = ACPI_OST_SC_DEVICE_BUSY; 482 break; 483 default: 484 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 485 break; 486 } 487 488 err_out: 489 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 490 491 out: 492 acpi_put_acpi_dev(adev); 493 mutex_unlock(&acpi_scan_lock); 494 unlock_device_hotplug(); 495 } 496 497 static void acpi_free_power_resources_lists(struct acpi_device *device) 498 { 499 int i; 500 501 if (device->wakeup.flags.valid) 502 acpi_power_resources_list_free(&device->wakeup.resources); 503 504 if (!device->power.flags.power_resources) 505 return; 506 507 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 508 struct acpi_device_power_state *ps = &device->power.states[i]; 509 acpi_power_resources_list_free(&ps->resources); 510 } 511 } 512 513 static void acpi_device_release(struct device *dev) 514 { 515 struct acpi_device *acpi_dev = to_acpi_device(dev); 516 517 acpi_free_properties(acpi_dev); 518 acpi_free_pnp_ids(&acpi_dev->pnp); 519 acpi_free_power_resources_lists(acpi_dev); 520 kfree(acpi_dev); 521 } 522 523 static void acpi_device_del(struct acpi_device *device) 524 { 525 struct acpi_device_bus_id *acpi_device_bus_id; 526 527 mutex_lock(&acpi_device_lock); 528 529 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 530 if (!strcmp(acpi_device_bus_id->bus_id, 531 acpi_device_hid(device))) { 532 ida_free(&acpi_device_bus_id->instance_ida, 533 device->pnp.instance_no); 534 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 535 list_del(&acpi_device_bus_id->node); 536 kfree_const(acpi_device_bus_id->bus_id); 537 kfree(acpi_device_bus_id); 538 } 539 break; 540 } 541 542 list_del(&device->wakeup_list); 543 544 mutex_unlock(&acpi_device_lock); 545 546 acpi_power_add_remove_device(device, false); 547 acpi_device_remove_files(device); 548 if (device->remove) 549 device->remove(device); 550 551 device_del(&device->dev); 552 } 553 554 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 555 556 static LIST_HEAD(acpi_device_del_list); 557 static DEFINE_MUTEX(acpi_device_del_lock); 558 559 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 560 { 561 for (;;) { 562 struct acpi_device *adev; 563 564 mutex_lock(&acpi_device_del_lock); 565 566 if (list_empty(&acpi_device_del_list)) { 567 mutex_unlock(&acpi_device_del_lock); 568 break; 569 } 570 adev = list_first_entry(&acpi_device_del_list, 571 struct acpi_device, del_list); 572 list_del(&adev->del_list); 573 574 mutex_unlock(&acpi_device_del_lock); 575 576 blocking_notifier_call_chain(&acpi_reconfig_chain, 577 ACPI_RECONFIG_DEVICE_REMOVE, adev); 578 579 acpi_device_del(adev); 580 /* 581 * Drop references to all power resources that might have been 582 * used by the device. 583 */ 584 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 585 acpi_dev_put(adev); 586 } 587 } 588 589 /** 590 * acpi_scan_drop_device - Drop an ACPI device object. 591 * @handle: Handle of an ACPI namespace node, not used. 592 * @context: Address of the ACPI device object to drop. 593 * 594 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 595 * namespace node the device object pointed to by @context is attached to. 596 * 597 * The unregistration is carried out asynchronously to avoid running 598 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 599 * ensure the correct ordering (the device objects must be unregistered in the 600 * same order in which the corresponding namespace nodes are deleted). 601 */ 602 static void acpi_scan_drop_device(acpi_handle handle, void *context) 603 { 604 static DECLARE_WORK(work, acpi_device_del_work_fn); 605 struct acpi_device *adev = context; 606 607 mutex_lock(&acpi_device_del_lock); 608 609 /* 610 * Use the ACPI hotplug workqueue which is ordered, so this work item 611 * won't run after any hotplug work items submitted subsequently. That 612 * prevents attempts to register device objects identical to those being 613 * deleted from happening concurrently (such attempts result from 614 * hotplug events handled via the ACPI hotplug workqueue). It also will 615 * run after all of the work items submitted previously, which helps 616 * those work items to ensure that they are not accessing stale device 617 * objects. 618 */ 619 if (list_empty(&acpi_device_del_list)) 620 acpi_queue_hotplug_work(&work); 621 622 list_add_tail(&adev->del_list, &acpi_device_del_list); 623 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 624 adev->handle = INVALID_ACPI_HANDLE; 625 626 mutex_unlock(&acpi_device_del_lock); 627 } 628 629 static struct acpi_device *handle_to_device(acpi_handle handle, 630 void (*callback)(void *)) 631 { 632 struct acpi_device *adev = NULL; 633 acpi_status status; 634 635 status = acpi_get_data_full(handle, acpi_scan_drop_device, 636 (void **)&adev, callback); 637 if (ACPI_FAILURE(status) || !adev) { 638 acpi_handle_debug(handle, "No context!\n"); 639 return NULL; 640 } 641 return adev; 642 } 643 644 /** 645 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 646 * @handle: ACPI handle associated with the requested ACPI device object. 647 * 648 * Return a pointer to the ACPI device object associated with @handle, if 649 * present, or NULL otherwise. 650 */ 651 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 652 { 653 return handle_to_device(handle, NULL); 654 } 655 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 656 657 static void get_acpi_device(void *dev) 658 { 659 acpi_dev_get(dev); 660 } 661 662 /** 663 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 664 * @handle: ACPI handle associated with the requested ACPI device object. 665 * 666 * Return a pointer to the ACPI device object associated with @handle and bump 667 * up that object's reference counter (under the ACPI Namespace lock), if 668 * present, or return NULL otherwise. 669 * 670 * The ACPI device object reference acquired by this function needs to be 671 * dropped via acpi_dev_put(). 672 */ 673 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 674 { 675 return handle_to_device(handle, get_acpi_device); 676 } 677 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 678 679 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 680 { 681 struct acpi_device_bus_id *acpi_device_bus_id; 682 683 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 684 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 685 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 686 return acpi_device_bus_id; 687 } 688 return NULL; 689 } 690 691 static int acpi_device_set_name(struct acpi_device *device, 692 struct acpi_device_bus_id *acpi_device_bus_id) 693 { 694 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 695 int result; 696 697 result = ida_alloc(instance_ida, GFP_KERNEL); 698 if (result < 0) 699 return result; 700 701 device->pnp.instance_no = result; 702 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 703 return 0; 704 } 705 706 int acpi_tie_acpi_dev(struct acpi_device *adev) 707 { 708 acpi_handle handle = adev->handle; 709 acpi_status status; 710 711 if (!handle) 712 return 0; 713 714 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 715 if (ACPI_FAILURE(status)) { 716 acpi_handle_err(handle, "Unable to attach device data\n"); 717 return -ENODEV; 718 } 719 720 return 0; 721 } 722 723 static void acpi_store_pld_crc(struct acpi_device *adev) 724 { 725 struct acpi_pld_info *pld; 726 727 if (!acpi_get_physical_device_location(adev->handle, &pld)) 728 return; 729 730 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 731 ACPI_FREE(pld); 732 } 733 734 int acpi_device_add(struct acpi_device *device) 735 { 736 struct acpi_device_bus_id *acpi_device_bus_id; 737 int result; 738 739 /* 740 * Linkage 741 * ------- 742 * Link this device to its parent and siblings. 743 */ 744 INIT_LIST_HEAD(&device->wakeup_list); 745 INIT_LIST_HEAD(&device->physical_node_list); 746 INIT_LIST_HEAD(&device->del_list); 747 mutex_init(&device->physical_node_lock); 748 749 mutex_lock(&acpi_device_lock); 750 751 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 752 if (acpi_device_bus_id) { 753 result = acpi_device_set_name(device, acpi_device_bus_id); 754 if (result) 755 goto err_unlock; 756 } else { 757 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 758 GFP_KERNEL); 759 if (!acpi_device_bus_id) { 760 result = -ENOMEM; 761 goto err_unlock; 762 } 763 acpi_device_bus_id->bus_id = 764 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 765 if (!acpi_device_bus_id->bus_id) { 766 kfree(acpi_device_bus_id); 767 result = -ENOMEM; 768 goto err_unlock; 769 } 770 771 ida_init(&acpi_device_bus_id->instance_ida); 772 773 result = acpi_device_set_name(device, acpi_device_bus_id); 774 if (result) { 775 kfree_const(acpi_device_bus_id->bus_id); 776 kfree(acpi_device_bus_id); 777 goto err_unlock; 778 } 779 780 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 781 } 782 783 if (device->wakeup.flags.valid) 784 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 785 786 acpi_store_pld_crc(device); 787 788 mutex_unlock(&acpi_device_lock); 789 790 result = device_add(&device->dev); 791 if (result) { 792 dev_err(&device->dev, "Error registering device\n"); 793 goto err; 794 } 795 796 acpi_device_setup_files(device); 797 798 return 0; 799 800 err: 801 mutex_lock(&acpi_device_lock); 802 803 list_del(&device->wakeup_list); 804 805 err_unlock: 806 mutex_unlock(&acpi_device_lock); 807 808 acpi_detach_data(device->handle, acpi_scan_drop_device); 809 810 return result; 811 } 812 813 /* -------------------------------------------------------------------------- 814 Device Enumeration 815 -------------------------------------------------------------------------- */ 816 static bool acpi_info_matches_ids(struct acpi_device_info *info, 817 const char * const ids[]) 818 { 819 struct acpi_pnp_device_id_list *cid_list = NULL; 820 int i, index; 821 822 if (!(info->valid & ACPI_VALID_HID)) 823 return false; 824 825 index = match_string(ids, -1, info->hardware_id.string); 826 if (index >= 0) 827 return true; 828 829 if (info->valid & ACPI_VALID_CID) 830 cid_list = &info->compatible_id_list; 831 832 if (!cid_list) 833 return false; 834 835 for (i = 0; i < cid_list->count; i++) { 836 index = match_string(ids, -1, cid_list->ids[i].string); 837 if (index >= 0) 838 return true; 839 } 840 841 return false; 842 } 843 844 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 845 static const char * const acpi_ignore_dep_ids[] = { 846 "PNP0D80", /* Windows-compatible System Power Management Controller */ 847 "INT33BD", /* Intel Baytrail Mailbox Device */ 848 "INTC10DE", /* Intel CVS LNL */ 849 "INTC10E0", /* Intel CVS ARL */ 850 "LATT2021", /* Lattice FW Update Client Driver */ 851 NULL 852 }; 853 854 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 855 static const char * const acpi_honor_dep_ids[] = { 856 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 857 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 858 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 859 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 860 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */ 861 "RSCV0001", /* RISC-V PLIC */ 862 "RSCV0002", /* RISC-V APLIC */ 863 "PNP0C0F", /* PCI Link Device */ 864 NULL 865 }; 866 867 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 868 { 869 struct acpi_device *adev; 870 871 /* 872 * Fixed hardware devices do not appear in the namespace and do not 873 * have handles, but we fabricate acpi_devices for them, so we have 874 * to deal with them specially. 875 */ 876 if (!handle) 877 return acpi_root; 878 879 do { 880 acpi_status status; 881 882 status = acpi_get_parent(handle, &handle); 883 if (ACPI_FAILURE(status)) { 884 if (status != AE_NULL_ENTRY) 885 return acpi_root; 886 887 return NULL; 888 } 889 adev = acpi_fetch_acpi_dev(handle); 890 } while (!adev); 891 return adev; 892 } 893 894 acpi_status 895 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 896 { 897 acpi_status status; 898 acpi_handle tmp; 899 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 900 union acpi_object *obj; 901 902 status = acpi_get_handle(handle, "_EJD", &tmp); 903 if (ACPI_FAILURE(status)) 904 return status; 905 906 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 907 if (ACPI_SUCCESS(status)) { 908 obj = buffer.pointer; 909 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 910 ejd); 911 kfree(buffer.pointer); 912 } 913 return status; 914 } 915 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 916 917 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 918 { 919 acpi_handle handle = dev->handle; 920 struct acpi_device_wakeup *wakeup = &dev->wakeup; 921 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 922 union acpi_object *package = NULL; 923 union acpi_object *element = NULL; 924 acpi_status status; 925 int err = -ENODATA; 926 927 INIT_LIST_HEAD(&wakeup->resources); 928 929 /* _PRW */ 930 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 931 if (ACPI_FAILURE(status)) { 932 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 933 acpi_format_exception(status)); 934 return err; 935 } 936 937 package = (union acpi_object *)buffer.pointer; 938 939 if (!package || package->package.count < 2) 940 goto out; 941 942 element = &(package->package.elements[0]); 943 if (!element) 944 goto out; 945 946 if (element->type == ACPI_TYPE_PACKAGE) { 947 if ((element->package.count < 2) || 948 (element->package.elements[0].type != 949 ACPI_TYPE_LOCAL_REFERENCE) 950 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 951 goto out; 952 953 wakeup->gpe_device = 954 element->package.elements[0].reference.handle; 955 wakeup->gpe_number = 956 (u32) element->package.elements[1].integer.value; 957 } else if (element->type == ACPI_TYPE_INTEGER) { 958 wakeup->gpe_device = NULL; 959 wakeup->gpe_number = element->integer.value; 960 } else { 961 goto out; 962 } 963 964 element = &(package->package.elements[1]); 965 if (element->type != ACPI_TYPE_INTEGER) 966 goto out; 967 968 wakeup->sleep_state = element->integer.value; 969 970 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 971 if (err) 972 goto out; 973 974 if (!list_empty(&wakeup->resources)) { 975 int sleep_state; 976 977 err = acpi_power_wakeup_list_init(&wakeup->resources, 978 &sleep_state); 979 if (err) { 980 acpi_handle_warn(handle, "Retrieving current states " 981 "of wakeup power resources failed\n"); 982 acpi_power_resources_list_free(&wakeup->resources); 983 goto out; 984 } 985 if (sleep_state < wakeup->sleep_state) { 986 acpi_handle_warn(handle, "Overriding _PRW sleep state " 987 "(S%d) by S%d from power resources\n", 988 (int)wakeup->sleep_state, sleep_state); 989 wakeup->sleep_state = sleep_state; 990 } 991 } 992 993 out: 994 kfree(buffer.pointer); 995 return err; 996 } 997 998 /* Do not use a button for S5 wakeup */ 999 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 1000 1001 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 1002 { 1003 static const struct acpi_device_id button_device_ids[] = { 1004 {"PNP0C0C", 0}, /* Power button */ 1005 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 1006 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 1007 {"", 0}, 1008 }; 1009 struct acpi_device_wakeup *wakeup = &device->wakeup; 1010 const struct acpi_device_id *match; 1011 acpi_status status; 1012 1013 wakeup->flags.notifier_present = 0; 1014 1015 /* Power button, Lid switch always enable wakeup */ 1016 match = acpi_match_acpi_device(button_device_ids, device); 1017 if (match) { 1018 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 1019 wakeup->sleep_state == ACPI_STATE_S5) 1020 wakeup->sleep_state = ACPI_STATE_S4; 1021 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 1022 device_set_wakeup_capable(&device->dev, true); 1023 return true; 1024 } 1025 1026 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 1027 wakeup->gpe_number); 1028 return ACPI_SUCCESS(status); 1029 } 1030 1031 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 1032 { 1033 int err; 1034 1035 /* Presence of _PRW indicates wake capable */ 1036 if (!acpi_has_method(device->handle, "_PRW")) 1037 return; 1038 1039 err = acpi_bus_extract_wakeup_device_power_package(device); 1040 if (err) { 1041 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1042 return; 1043 } 1044 1045 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1046 device->wakeup.prepare_count = 0; 1047 /* 1048 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1049 * system for the ACPI device with the _PRW object. 1050 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1051 * So it is necessary to call _DSW object first. Only when it is not 1052 * present will the _PSW object used. 1053 */ 1054 err = acpi_device_sleep_wake(device, 0, 0, 0); 1055 if (err) 1056 pr_debug("error in _DSW or _PSW evaluation\n"); 1057 } 1058 1059 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1060 { 1061 struct acpi_device_power_state *ps = &device->power.states[state]; 1062 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1063 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1064 acpi_status status; 1065 1066 INIT_LIST_HEAD(&ps->resources); 1067 1068 /* Evaluate "_PRx" to get referenced power resources */ 1069 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1070 if (ACPI_SUCCESS(status)) { 1071 union acpi_object *package = buffer.pointer; 1072 1073 if (buffer.length && package 1074 && package->type == ACPI_TYPE_PACKAGE 1075 && package->package.count) 1076 acpi_extract_power_resources(package, 0, &ps->resources); 1077 1078 ACPI_FREE(buffer.pointer); 1079 } 1080 1081 /* Evaluate "_PSx" to see if we can do explicit sets */ 1082 pathname[2] = 'S'; 1083 if (acpi_has_method(device->handle, pathname)) 1084 ps->flags.explicit_set = 1; 1085 1086 /* State is valid if there are means to put the device into it. */ 1087 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1088 ps->flags.valid = 1; 1089 1090 ps->power = -1; /* Unknown - driver assigned */ 1091 ps->latency = -1; /* Unknown - driver assigned */ 1092 } 1093 1094 static void acpi_bus_get_power_flags(struct acpi_device *device) 1095 { 1096 unsigned long long dsc = ACPI_STATE_D0; 1097 u32 i; 1098 1099 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1100 if (!acpi_has_method(device->handle, "_PS0") && 1101 !acpi_has_method(device->handle, "_PR0")) 1102 return; 1103 1104 device->flags.power_manageable = 1; 1105 1106 /* 1107 * Power Management Flags 1108 */ 1109 if (acpi_has_method(device->handle, "_PSC")) 1110 device->power.flags.explicit_get = 1; 1111 1112 if (acpi_has_method(device->handle, "_IRC")) 1113 device->power.flags.inrush_current = 1; 1114 1115 if (acpi_has_method(device->handle, "_DSW")) 1116 device->power.flags.dsw_present = 1; 1117 1118 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1119 device->power.state_for_enumeration = dsc; 1120 1121 /* 1122 * Enumerate supported power management states 1123 */ 1124 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1125 acpi_bus_init_power_state(device, i); 1126 1127 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1128 1129 /* Set the defaults for D0 and D3hot (always supported). */ 1130 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1131 device->power.states[ACPI_STATE_D0].power = 100; 1132 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1133 1134 /* 1135 * Use power resources only if the D0 list of them is populated, because 1136 * some platforms may provide _PR3 only to indicate D3cold support and 1137 * in those cases the power resources list returned by it may be bogus. 1138 */ 1139 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1140 device->power.flags.power_resources = 1; 1141 /* 1142 * D3cold is supported if the D3hot list of power resources is 1143 * not empty. 1144 */ 1145 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1146 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1147 } 1148 1149 if (acpi_bus_init_power(device)) 1150 device->flags.power_manageable = 0; 1151 } 1152 1153 static void acpi_bus_get_flags(struct acpi_device *device) 1154 { 1155 /* Presence of _STA indicates 'dynamic_status' */ 1156 if (acpi_has_method(device->handle, "_STA")) 1157 device->flags.dynamic_status = 1; 1158 1159 /* Presence of _RMV indicates 'removable' */ 1160 if (acpi_has_method(device->handle, "_RMV")) 1161 device->flags.removable = 1; 1162 1163 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1164 if (acpi_has_method(device->handle, "_EJD") || 1165 acpi_has_method(device->handle, "_EJ0")) 1166 device->flags.ejectable = 1; 1167 } 1168 1169 static void acpi_device_get_busid(struct acpi_device *device) 1170 { 1171 char bus_id[5] = { '?', 0 }; 1172 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1173 int i = 0; 1174 1175 /* 1176 * Bus ID 1177 * ------ 1178 * The device's Bus ID is simply the object name. 1179 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1180 */ 1181 if (!acpi_dev_parent(device)) { 1182 strscpy(device->pnp.bus_id, "ACPI"); 1183 return; 1184 } 1185 1186 switch (device->device_type) { 1187 case ACPI_BUS_TYPE_POWER_BUTTON: 1188 strscpy(device->pnp.bus_id, "PWRF"); 1189 break; 1190 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1191 strscpy(device->pnp.bus_id, "SLPF"); 1192 break; 1193 case ACPI_BUS_TYPE_ECDT_EC: 1194 strscpy(device->pnp.bus_id, "ECDT"); 1195 break; 1196 default: 1197 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1198 /* Clean up trailing underscores (if any) */ 1199 for (i = 3; i > 1; i--) { 1200 if (bus_id[i] == '_') 1201 bus_id[i] = '\0'; 1202 else 1203 break; 1204 } 1205 strscpy(device->pnp.bus_id, bus_id); 1206 break; 1207 } 1208 } 1209 1210 /* 1211 * acpi_ata_match - see if an acpi object is an ATA device 1212 * 1213 * If an acpi object has one of the ACPI ATA methods defined, 1214 * then we can safely call it an ATA device. 1215 */ 1216 bool acpi_ata_match(acpi_handle handle) 1217 { 1218 return acpi_has_method(handle, "_GTF") || 1219 acpi_has_method(handle, "_GTM") || 1220 acpi_has_method(handle, "_STM") || 1221 acpi_has_method(handle, "_SDD"); 1222 } 1223 1224 /* 1225 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1226 * 1227 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1228 * then we can safely call it an ejectable drive bay 1229 */ 1230 bool acpi_bay_match(acpi_handle handle) 1231 { 1232 acpi_handle phandle; 1233 1234 if (!acpi_has_method(handle, "_EJ0")) 1235 return false; 1236 if (acpi_ata_match(handle)) 1237 return true; 1238 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1239 return false; 1240 1241 return acpi_ata_match(phandle); 1242 } 1243 1244 bool acpi_device_is_battery(struct acpi_device *adev) 1245 { 1246 struct acpi_hardware_id *hwid; 1247 1248 list_for_each_entry(hwid, &adev->pnp.ids, list) 1249 if (!strcmp("PNP0C0A", hwid->id)) 1250 return true; 1251 1252 return false; 1253 } 1254 1255 static bool is_ejectable_bay(struct acpi_device *adev) 1256 { 1257 acpi_handle handle = adev->handle; 1258 1259 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1260 return true; 1261 1262 return acpi_bay_match(handle); 1263 } 1264 1265 /* 1266 * acpi_dock_match - see if an acpi object has a _DCK method 1267 */ 1268 bool acpi_dock_match(acpi_handle handle) 1269 { 1270 return acpi_has_method(handle, "_DCK"); 1271 } 1272 1273 static acpi_status 1274 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1275 void **return_value) 1276 { 1277 long *cap = context; 1278 1279 if (acpi_has_method(handle, "_BCM") && 1280 acpi_has_method(handle, "_BCL")) { 1281 acpi_handle_debug(handle, "Found generic backlight support\n"); 1282 *cap |= ACPI_VIDEO_BACKLIGHT; 1283 /* We have backlight support, no need to scan further */ 1284 return AE_CTRL_TERMINATE; 1285 } 1286 return 0; 1287 } 1288 1289 /* Returns true if the ACPI object is a video device which can be 1290 * handled by video.ko. 1291 * The device will get a Linux specific CID added in scan.c to 1292 * identify the device as an ACPI graphics device 1293 * Be aware that the graphics device may not be physically present 1294 * Use acpi_video_get_capabilities() to detect general ACPI video 1295 * capabilities of present cards 1296 */ 1297 long acpi_is_video_device(acpi_handle handle) 1298 { 1299 long video_caps = 0; 1300 1301 /* Is this device able to support video switching ? */ 1302 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1303 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1304 1305 /* Is this device able to retrieve a video ROM ? */ 1306 if (acpi_has_method(handle, "_ROM")) 1307 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1308 1309 /* Is this device able to configure which video head to be POSTed ? */ 1310 if (acpi_has_method(handle, "_VPO") && 1311 acpi_has_method(handle, "_GPD") && 1312 acpi_has_method(handle, "_SPD")) 1313 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1314 1315 /* Only check for backlight functionality if one of the above hit. */ 1316 if (video_caps) 1317 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1318 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1319 &video_caps, NULL); 1320 1321 return video_caps; 1322 } 1323 EXPORT_SYMBOL(acpi_is_video_device); 1324 1325 const char *acpi_device_hid(struct acpi_device *device) 1326 { 1327 struct acpi_hardware_id *hid; 1328 1329 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list); 1330 if (!hid) 1331 return dummy_hid; 1332 1333 return hid->id; 1334 } 1335 EXPORT_SYMBOL(acpi_device_hid); 1336 1337 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1338 { 1339 struct acpi_hardware_id *id; 1340 1341 id = kmalloc(sizeof(*id), GFP_KERNEL); 1342 if (!id) 1343 return; 1344 1345 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1346 if (!id->id) { 1347 kfree(id); 1348 return; 1349 } 1350 1351 list_add_tail(&id->list, &pnp->ids); 1352 pnp->type.hardware_id = 1; 1353 } 1354 1355 /* 1356 * Old IBM workstations have a DSDT bug wherein the SMBus object 1357 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1358 * prefix. Work around this. 1359 */ 1360 static bool acpi_ibm_smbus_match(acpi_handle handle) 1361 { 1362 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1363 struct acpi_buffer path = { sizeof(node_name), node_name }; 1364 1365 if (!dmi_name_in_vendors("IBM")) 1366 return false; 1367 1368 /* Look for SMBS object */ 1369 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1370 strcmp("SMBS", path.pointer)) 1371 return false; 1372 1373 /* Does it have the necessary (but misnamed) methods? */ 1374 if (acpi_has_method(handle, "SBI") && 1375 acpi_has_method(handle, "SBR") && 1376 acpi_has_method(handle, "SBW")) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 static bool acpi_object_is_system_bus(acpi_handle handle) 1383 { 1384 acpi_handle tmp; 1385 1386 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1387 tmp == handle) 1388 return true; 1389 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1390 tmp == handle) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1397 int device_type) 1398 { 1399 struct acpi_device_info *info = NULL; 1400 struct acpi_pnp_device_id_list *cid_list; 1401 int i; 1402 1403 switch (device_type) { 1404 case ACPI_BUS_TYPE_DEVICE: 1405 if (handle == ACPI_ROOT_OBJECT) { 1406 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1407 break; 1408 } 1409 1410 acpi_get_object_info(handle, &info); 1411 if (!info) { 1412 pr_err("%s: Error reading device info\n", __func__); 1413 return; 1414 } 1415 1416 if (info->valid & ACPI_VALID_HID) { 1417 acpi_add_id(pnp, info->hardware_id.string); 1418 pnp->type.platform_id = 1; 1419 } 1420 if (info->valid & ACPI_VALID_CID) { 1421 cid_list = &info->compatible_id_list; 1422 for (i = 0; i < cid_list->count; i++) 1423 acpi_add_id(pnp, cid_list->ids[i].string); 1424 } 1425 if (info->valid & ACPI_VALID_ADR) { 1426 pnp->bus_address = info->address; 1427 pnp->type.bus_address = 1; 1428 } 1429 if (info->valid & ACPI_VALID_UID) 1430 pnp->unique_id = kstrdup(info->unique_id.string, 1431 GFP_KERNEL); 1432 if (info->valid & ACPI_VALID_CLS) 1433 acpi_add_id(pnp, info->class_code.string); 1434 1435 kfree(info); 1436 1437 /* 1438 * Some devices don't reliably have _HIDs & _CIDs, so add 1439 * synthetic HIDs to make sure drivers can find them. 1440 */ 1441 if (acpi_is_video_device(handle)) { 1442 acpi_add_id(pnp, ACPI_VIDEO_HID); 1443 pnp->type.backlight = 1; 1444 break; 1445 } 1446 if (acpi_bay_match(handle)) 1447 acpi_add_id(pnp, ACPI_BAY_HID); 1448 else if (acpi_dock_match(handle)) 1449 acpi_add_id(pnp, ACPI_DOCK_HID); 1450 else if (acpi_ibm_smbus_match(handle)) 1451 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1452 else if (list_empty(&pnp->ids) && 1453 acpi_object_is_system_bus(handle)) { 1454 /* \_SB, \_TZ, LNXSYBUS */ 1455 acpi_add_id(pnp, ACPI_BUS_HID); 1456 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1457 strscpy(pnp->device_class, ACPI_BUS_CLASS); 1458 } 1459 1460 break; 1461 case ACPI_BUS_TYPE_POWER: 1462 acpi_add_id(pnp, ACPI_POWER_HID); 1463 break; 1464 case ACPI_BUS_TYPE_PROCESSOR: 1465 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1466 break; 1467 case ACPI_BUS_TYPE_THERMAL: 1468 acpi_add_id(pnp, ACPI_THERMAL_HID); 1469 break; 1470 case ACPI_BUS_TYPE_POWER_BUTTON: 1471 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1472 break; 1473 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1474 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1475 break; 1476 case ACPI_BUS_TYPE_ECDT_EC: 1477 acpi_add_id(pnp, ACPI_ECDT_HID); 1478 break; 1479 } 1480 } 1481 1482 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1483 { 1484 struct acpi_hardware_id *id, *tmp; 1485 1486 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1487 kfree_const(id->id); 1488 kfree(id); 1489 } 1490 kfree(pnp->unique_id); 1491 } 1492 1493 /** 1494 * acpi_dma_supported - Check DMA support for the specified device. 1495 * @adev: The pointer to acpi device 1496 * 1497 * Return false if DMA is not supported. Otherwise, return true 1498 */ 1499 bool acpi_dma_supported(const struct acpi_device *adev) 1500 { 1501 if (!adev) 1502 return false; 1503 1504 if (adev->flags.cca_seen) 1505 return true; 1506 1507 /* 1508 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1509 * DMA on "Intel platforms". Presumably that includes all x86 and 1510 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1511 */ 1512 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1513 return true; 1514 1515 return false; 1516 } 1517 1518 /** 1519 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1520 * @adev: The pointer to acpi device 1521 * 1522 * Return enum dev_dma_attr. 1523 */ 1524 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1525 { 1526 if (!acpi_dma_supported(adev)) 1527 return DEV_DMA_NOT_SUPPORTED; 1528 1529 if (adev->flags.coherent_dma) 1530 return DEV_DMA_COHERENT; 1531 else 1532 return DEV_DMA_NON_COHERENT; 1533 } 1534 1535 /** 1536 * acpi_dma_get_range() - Get device DMA parameters. 1537 * 1538 * @dev: device to configure 1539 * @map: pointer to DMA ranges result 1540 * 1541 * Evaluate DMA regions and return pointer to DMA regions on 1542 * parsing success; it does not update the passed in values on failure. 1543 * 1544 * Return 0 on success, < 0 on failure. 1545 */ 1546 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1547 { 1548 struct acpi_device *adev; 1549 LIST_HEAD(list); 1550 struct resource_entry *rentry; 1551 int ret; 1552 struct device *dma_dev = dev; 1553 struct bus_dma_region *r; 1554 1555 /* 1556 * Walk the device tree chasing an ACPI companion with a _DMA 1557 * object while we go. Stop if we find a device with an ACPI 1558 * companion containing a _DMA method. 1559 */ 1560 do { 1561 adev = ACPI_COMPANION(dma_dev); 1562 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1563 break; 1564 1565 dma_dev = dma_dev->parent; 1566 } while (dma_dev); 1567 1568 if (!dma_dev) 1569 return -ENODEV; 1570 1571 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1572 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1573 return -EINVAL; 1574 } 1575 1576 ret = acpi_dev_get_dma_resources(adev, &list); 1577 if (ret > 0) { 1578 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1579 if (!r) { 1580 ret = -ENOMEM; 1581 goto out; 1582 } 1583 1584 *map = r; 1585 1586 list_for_each_entry(rentry, &list, node) { 1587 if (rentry->res->start >= rentry->res->end) { 1588 kfree(*map); 1589 *map = NULL; 1590 ret = -EINVAL; 1591 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1592 goto out; 1593 } 1594 1595 r->cpu_start = rentry->res->start; 1596 r->dma_start = rentry->res->start - rentry->offset; 1597 r->size = resource_size(rentry->res); 1598 r++; 1599 } 1600 } 1601 out: 1602 acpi_dev_free_resource_list(&list); 1603 1604 return ret >= 0 ? 0 : ret; 1605 } 1606 1607 #ifdef CONFIG_IOMMU_API 1608 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1609 struct fwnode_handle *fwnode) 1610 { 1611 int ret; 1612 1613 ret = iommu_fwspec_init(dev, fwnode); 1614 if (ret) 1615 return ret; 1616 1617 return iommu_fwspec_add_ids(dev, &id, 1); 1618 } 1619 1620 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1621 { 1622 int err; 1623 1624 /* Serialise to make dev->iommu stable under our potential fwspec */ 1625 mutex_lock(&iommu_probe_device_lock); 1626 /* If we already translated the fwspec there is nothing left to do */ 1627 if (dev_iommu_fwspec_get(dev)) { 1628 mutex_unlock(&iommu_probe_device_lock); 1629 return 0; 1630 } 1631 1632 err = iort_iommu_configure_id(dev, id_in); 1633 if (err && err != -EPROBE_DEFER) 1634 err = viot_iommu_configure(dev); 1635 mutex_unlock(&iommu_probe_device_lock); 1636 1637 return err; 1638 } 1639 1640 #else /* !CONFIG_IOMMU_API */ 1641 1642 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1643 struct fwnode_handle *fwnode) 1644 { 1645 return -ENODEV; 1646 } 1647 1648 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in) 1649 { 1650 return -ENODEV; 1651 } 1652 1653 #endif /* !CONFIG_IOMMU_API */ 1654 1655 /** 1656 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1657 * @dev: The pointer to the device 1658 * @attr: device dma attributes 1659 * @input_id: input device id const value pointer 1660 */ 1661 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1662 const u32 *input_id) 1663 { 1664 int ret; 1665 1666 if (attr == DEV_DMA_NOT_SUPPORTED) { 1667 set_dma_ops(dev, &dma_dummy_ops); 1668 return 0; 1669 } 1670 1671 acpi_arch_dma_setup(dev); 1672 1673 /* Ignore all other errors apart from EPROBE_DEFER */ 1674 ret = acpi_iommu_configure_id(dev, input_id); 1675 if (ret == -EPROBE_DEFER) 1676 return -EPROBE_DEFER; 1677 if (ret) 1678 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret); 1679 1680 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT); 1681 1682 return 0; 1683 } 1684 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1685 1686 static void acpi_init_coherency(struct acpi_device *adev) 1687 { 1688 unsigned long long cca = 0; 1689 acpi_status status; 1690 struct acpi_device *parent = acpi_dev_parent(adev); 1691 1692 if (parent && parent->flags.cca_seen) { 1693 /* 1694 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1695 * already saw one. 1696 */ 1697 adev->flags.cca_seen = 1; 1698 cca = parent->flags.coherent_dma; 1699 } else { 1700 status = acpi_evaluate_integer(adev->handle, "_CCA", 1701 NULL, &cca); 1702 if (ACPI_SUCCESS(status)) 1703 adev->flags.cca_seen = 1; 1704 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1705 /* 1706 * If architecture does not specify that _CCA is 1707 * required for DMA-able devices (e.g. x86), 1708 * we default to _CCA=1. 1709 */ 1710 cca = 1; 1711 else 1712 acpi_handle_debug(adev->handle, 1713 "ACPI device is missing _CCA.\n"); 1714 } 1715 1716 adev->flags.coherent_dma = cca; 1717 } 1718 1719 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1720 { 1721 bool *is_serial_bus_slave_p = data; 1722 1723 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1724 return 1; 1725 1726 *is_serial_bus_slave_p = true; 1727 1728 /* no need to do more checking */ 1729 return -1; 1730 } 1731 1732 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1733 { 1734 struct acpi_device *parent = acpi_dev_parent(device); 1735 static const struct acpi_device_id indirect_io_hosts[] = { 1736 {"HISI0191", 0}, 1737 {} 1738 }; 1739 1740 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1741 } 1742 1743 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1744 { 1745 struct list_head resource_list; 1746 bool is_serial_bus_slave = false; 1747 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1748 /* 1749 * These devices have multiple SerialBus resources and a client 1750 * device must be instantiated for each of them, each with 1751 * its own device id. 1752 * Normally we only instantiate one client device for the first 1753 * resource, using the ACPI HID as id. These special cases are handled 1754 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1755 * knows which client device id to use for each resource. 1756 */ 1757 {"BSG1160", }, 1758 {"BSG2150", }, 1759 {"CSC3551", }, 1760 {"CSC3554", }, 1761 {"CSC3556", }, 1762 {"CSC3557", }, 1763 {"INT33FE", }, 1764 {"INT3515", }, 1765 {"TXNW2781", }, 1766 /* Non-conforming _HID for Cirrus Logic already released */ 1767 {"CLSA0100", }, 1768 {"CLSA0101", }, 1769 /* 1770 * Some ACPI devs contain SerialBus resources even though they are not 1771 * attached to a serial bus at all. 1772 */ 1773 {ACPI_VIDEO_HID, }, 1774 {"MSHW0028", }, 1775 /* 1776 * HIDs of device with an UartSerialBusV2 resource for which userspace 1777 * expects a regular tty cdev to be created (instead of the in kernel 1778 * serdev) and which have a kernel driver which expects a platform_dev 1779 * such as the rfkill-gpio driver. 1780 */ 1781 {"BCM4752", }, 1782 {"LNV4752", }, 1783 {} 1784 }; 1785 1786 if (acpi_is_indirect_io_slave(device)) 1787 return true; 1788 1789 /* Macs use device properties in lieu of _CRS resources */ 1790 if (x86_apple_machine && 1791 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1792 fwnode_property_present(&device->fwnode, "i2cAddress") || 1793 fwnode_property_present(&device->fwnode, "baud"))) 1794 return true; 1795 1796 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1797 return false; 1798 1799 INIT_LIST_HEAD(&resource_list); 1800 acpi_dev_get_resources(device, &resource_list, 1801 acpi_check_serial_bus_slave, 1802 &is_serial_bus_slave); 1803 acpi_dev_free_resource_list(&resource_list); 1804 1805 return is_serial_bus_slave; 1806 } 1807 1808 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1809 int type, void (*release)(struct device *)) 1810 { 1811 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1812 1813 INIT_LIST_HEAD(&device->pnp.ids); 1814 device->device_type = type; 1815 device->handle = handle; 1816 device->dev.parent = parent ? &parent->dev : NULL; 1817 device->dev.release = release; 1818 device->dev.bus = &acpi_bus_type; 1819 device->dev.groups = acpi_groups; 1820 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1821 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1822 acpi_device_get_busid(device); 1823 acpi_set_pnp_ids(handle, &device->pnp, type); 1824 acpi_init_properties(device); 1825 acpi_bus_get_flags(device); 1826 device->flags.match_driver = false; 1827 device->flags.initialized = true; 1828 device->flags.enumeration_by_parent = 1829 acpi_device_enumeration_by_parent(device); 1830 acpi_device_clear_enumerated(device); 1831 device_initialize(&device->dev); 1832 dev_set_uevent_suppress(&device->dev, true); 1833 acpi_init_coherency(device); 1834 } 1835 1836 static void acpi_scan_dep_init(struct acpi_device *adev) 1837 { 1838 struct acpi_dep_data *dep; 1839 1840 list_for_each_entry(dep, &acpi_dep_list, node) { 1841 if (dep->consumer == adev->handle) { 1842 if (dep->honor_dep) 1843 adev->flags.honor_deps = 1; 1844 1845 if (!dep->met) 1846 adev->dep_unmet++; 1847 } 1848 } 1849 } 1850 1851 void acpi_device_add_finalize(struct acpi_device *device) 1852 { 1853 dev_set_uevent_suppress(&device->dev, false); 1854 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1855 } 1856 1857 static void acpi_scan_init_status(struct acpi_device *adev) 1858 { 1859 if (acpi_bus_get_status(adev)) 1860 acpi_set_device_status(adev, 0); 1861 } 1862 1863 static int acpi_add_single_object(struct acpi_device **child, 1864 acpi_handle handle, int type, bool dep_init) 1865 { 1866 struct acpi_device *device; 1867 bool release_dep_lock = false; 1868 int result; 1869 1870 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1871 if (!device) 1872 return -ENOMEM; 1873 1874 acpi_init_device_object(device, handle, type, acpi_device_release); 1875 /* 1876 * Getting the status is delayed till here so that we can call 1877 * acpi_bus_get_status() and use its quirk handling. Note that 1878 * this must be done before the get power-/wakeup_dev-flags calls. 1879 */ 1880 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1881 if (dep_init) { 1882 mutex_lock(&acpi_dep_list_lock); 1883 /* 1884 * Hold the lock until the acpi_tie_acpi_dev() call 1885 * below to prevent concurrent acpi_scan_clear_dep() 1886 * from deleting a dependency list entry without 1887 * updating dep_unmet for the device. 1888 */ 1889 release_dep_lock = true; 1890 acpi_scan_dep_init(device); 1891 } 1892 acpi_scan_init_status(device); 1893 } 1894 1895 acpi_bus_get_power_flags(device); 1896 acpi_bus_get_wakeup_device_flags(device); 1897 1898 result = acpi_tie_acpi_dev(device); 1899 1900 if (release_dep_lock) 1901 mutex_unlock(&acpi_dep_list_lock); 1902 1903 if (!result) 1904 result = acpi_device_add(device); 1905 1906 if (result) { 1907 acpi_device_release(&device->dev); 1908 return result; 1909 } 1910 1911 acpi_power_add_remove_device(device, true); 1912 acpi_device_add_finalize(device); 1913 1914 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1915 dev_name(&device->dev), device->dev.parent ? 1916 dev_name(device->dev.parent) : "(null)"); 1917 1918 *child = device; 1919 return 0; 1920 } 1921 1922 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1923 void *context) 1924 { 1925 struct resource *res = context; 1926 1927 if (acpi_dev_resource_memory(ares, res)) 1928 return AE_CTRL_TERMINATE; 1929 1930 return AE_OK; 1931 } 1932 1933 static bool acpi_device_should_be_hidden(acpi_handle handle) 1934 { 1935 acpi_status status; 1936 struct resource res; 1937 1938 /* Check if it should ignore the UART device */ 1939 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1940 return false; 1941 1942 /* 1943 * The UART device described in SPCR table is assumed to have only one 1944 * memory resource present. So we only look for the first one here. 1945 */ 1946 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1947 acpi_get_resource_memory, &res); 1948 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1949 return false; 1950 1951 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1952 &res.start); 1953 1954 return true; 1955 } 1956 1957 bool acpi_device_is_present(const struct acpi_device *adev) 1958 { 1959 return adev->status.present || adev->status.functional; 1960 } 1961 1962 bool acpi_device_is_enabled(const struct acpi_device *adev) 1963 { 1964 return adev->status.enabled; 1965 } 1966 1967 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1968 const char *idstr, 1969 const struct acpi_device_id **matchid) 1970 { 1971 const struct acpi_device_id *devid; 1972 1973 if (handler->match) 1974 return handler->match(idstr, matchid); 1975 1976 for (devid = handler->ids; devid->id[0]; devid++) 1977 if (!strcmp((char *)devid->id, idstr)) { 1978 if (matchid) 1979 *matchid = devid; 1980 1981 return true; 1982 } 1983 1984 return false; 1985 } 1986 1987 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1988 const struct acpi_device_id **matchid) 1989 { 1990 struct acpi_scan_handler *handler; 1991 1992 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1993 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1994 return handler; 1995 1996 return NULL; 1997 } 1998 1999 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 2000 { 2001 if (!!hotplug->enabled == !!val) 2002 return; 2003 2004 mutex_lock(&acpi_scan_lock); 2005 2006 hotplug->enabled = val; 2007 2008 mutex_unlock(&acpi_scan_lock); 2009 } 2010 2011 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices) 2012 { 2013 u32 count; 2014 int i; 2015 2016 for (count = 0, i = 0; i < dep_devices->count; i++) { 2017 struct acpi_device_info *info; 2018 struct acpi_dep_data *dep; 2019 bool skip, honor_dep; 2020 acpi_status status; 2021 2022 status = acpi_get_object_info(dep_devices->handles[i], &info); 2023 if (ACPI_FAILURE(status)) { 2024 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2025 continue; 2026 } 2027 2028 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2029 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2030 kfree(info); 2031 2032 if (skip) 2033 continue; 2034 2035 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2036 if (!dep) 2037 continue; 2038 2039 count++; 2040 2041 dep->supplier = dep_devices->handles[i]; 2042 dep->consumer = handle; 2043 dep->honor_dep = honor_dep; 2044 2045 mutex_lock(&acpi_dep_list_lock); 2046 list_add_tail(&dep->node, &acpi_dep_list); 2047 mutex_unlock(&acpi_dep_list_lock); 2048 } 2049 2050 acpi_handle_list_free(dep_devices); 2051 return count; 2052 } 2053 2054 static void acpi_scan_init_hotplug(struct acpi_device *adev) 2055 { 2056 struct acpi_hardware_id *hwid; 2057 2058 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 2059 acpi_dock_add(adev); 2060 return; 2061 } 2062 list_for_each_entry(hwid, &adev->pnp.ids, list) { 2063 struct acpi_scan_handler *handler; 2064 2065 handler = acpi_scan_match_handler(hwid->id, NULL); 2066 if (handler) { 2067 adev->flags.hotplug_notify = true; 2068 break; 2069 } 2070 } 2071 } 2072 2073 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; } 2074 2075 static u32 acpi_scan_check_dep(acpi_handle handle) 2076 { 2077 struct acpi_handle_list dep_devices; 2078 u32 count = 0; 2079 2080 /* 2081 * Some architectures like RISC-V need to add dependencies for 2082 * all devices which use GSI to the interrupt controller so that 2083 * interrupt controller is probed before any of those devices. 2084 * Instead of mandating _DEP on all the devices, detect the 2085 * dependency and add automatically. 2086 */ 2087 count += arch_acpi_add_auto_dep(handle); 2088 2089 /* 2090 * Check for _HID here to avoid deferring the enumeration of: 2091 * 1. PCI devices. 2092 * 2. ACPI nodes describing USB ports. 2093 * Still, checking for _HID catches more then just these cases ... 2094 */ 2095 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 2096 return count; 2097 2098 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) { 2099 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2100 return count; 2101 } 2102 2103 count += acpi_scan_add_dep(handle, &dep_devices); 2104 return count; 2105 } 2106 2107 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c) 2108 { 2109 acpi_mipi_check_crs_csi2(handle); 2110 return AE_OK; 2111 } 2112 2113 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass, 2114 struct acpi_device **adev_p) 2115 { 2116 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2117 acpi_object_type acpi_type; 2118 int type; 2119 2120 if (device) 2121 goto out; 2122 2123 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2124 return AE_OK; 2125 2126 switch (acpi_type) { 2127 case ACPI_TYPE_DEVICE: 2128 if (acpi_device_should_be_hidden(handle)) 2129 return AE_OK; 2130 2131 if (first_pass) { 2132 acpi_mipi_check_crs_csi2(handle); 2133 2134 /* Bail out if there are dependencies. */ 2135 if (acpi_scan_check_dep(handle) > 0) { 2136 /* 2137 * The entire CSI-2 connection graph needs to be 2138 * extracted before any drivers or scan handlers 2139 * are bound to struct device objects, so scan 2140 * _CRS CSI-2 resource descriptors for all 2141 * devices below the current handle. 2142 */ 2143 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2144 ACPI_UINT32_MAX, 2145 acpi_scan_check_crs_csi2_cb, 2146 NULL, NULL, NULL); 2147 return AE_CTRL_DEPTH; 2148 } 2149 } 2150 2151 fallthrough; 2152 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2153 type = ACPI_BUS_TYPE_DEVICE; 2154 break; 2155 2156 case ACPI_TYPE_PROCESSOR: 2157 type = ACPI_BUS_TYPE_PROCESSOR; 2158 break; 2159 2160 case ACPI_TYPE_THERMAL: 2161 type = ACPI_BUS_TYPE_THERMAL; 2162 break; 2163 2164 case ACPI_TYPE_POWER: 2165 acpi_add_power_resource(handle); 2166 fallthrough; 2167 default: 2168 return AE_OK; 2169 } 2170 2171 /* 2172 * If first_pass is true at this point, the device has no dependencies, 2173 * or the creation of the device object would have been postponed above. 2174 */ 2175 acpi_add_single_object(&device, handle, type, !first_pass); 2176 if (!device) 2177 return AE_CTRL_DEPTH; 2178 2179 acpi_scan_init_hotplug(device); 2180 2181 out: 2182 if (!*adev_p) 2183 *adev_p = device; 2184 2185 return AE_OK; 2186 } 2187 2188 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2189 void *not_used, void **ret_p) 2190 { 2191 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2192 } 2193 2194 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2195 void *not_used, void **ret_p) 2196 { 2197 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2198 } 2199 2200 static void acpi_default_enumeration(struct acpi_device *device) 2201 { 2202 /* 2203 * Do not enumerate devices with enumeration_by_parent flag set as 2204 * they will be enumerated by their respective parents. 2205 */ 2206 if (!device->flags.enumeration_by_parent) { 2207 acpi_create_platform_device(device, NULL); 2208 acpi_device_set_enumerated(device); 2209 } else { 2210 blocking_notifier_call_chain(&acpi_reconfig_chain, 2211 ACPI_RECONFIG_DEVICE_ADD, device); 2212 } 2213 } 2214 2215 static const struct acpi_device_id generic_device_ids[] = { 2216 {ACPI_DT_NAMESPACE_HID, }, 2217 {"", }, 2218 }; 2219 2220 static int acpi_generic_device_attach(struct acpi_device *adev, 2221 const struct acpi_device_id *not_used) 2222 { 2223 /* 2224 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2225 * below can be unconditional. 2226 */ 2227 if (adev->data.of_compatible) 2228 acpi_default_enumeration(adev); 2229 2230 return 1; 2231 } 2232 2233 static struct acpi_scan_handler generic_device_handler = { 2234 .ids = generic_device_ids, 2235 .attach = acpi_generic_device_attach, 2236 }; 2237 2238 static int acpi_scan_attach_handler(struct acpi_device *device) 2239 { 2240 struct acpi_hardware_id *hwid; 2241 int ret = 0; 2242 2243 list_for_each_entry(hwid, &device->pnp.ids, list) { 2244 const struct acpi_device_id *devid; 2245 struct acpi_scan_handler *handler; 2246 2247 handler = acpi_scan_match_handler(hwid->id, &devid); 2248 if (handler) { 2249 if (!handler->attach) { 2250 device->pnp.type.platform_id = 0; 2251 continue; 2252 } 2253 device->handler = handler; 2254 ret = handler->attach(device, devid); 2255 if (ret > 0) 2256 break; 2257 2258 device->handler = NULL; 2259 if (ret < 0) 2260 break; 2261 } 2262 } 2263 2264 return ret; 2265 } 2266 2267 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2268 { 2269 bool skip = !first_pass && device->flags.visited; 2270 acpi_handle ejd; 2271 int ret; 2272 2273 if (skip) 2274 goto ok; 2275 2276 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2277 register_dock_dependent_device(device, ejd); 2278 2279 acpi_bus_get_status(device); 2280 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2281 if (!acpi_dev_ready_for_enumeration(device)) { 2282 device->flags.initialized = false; 2283 acpi_device_clear_enumerated(device); 2284 device->flags.power_manageable = 0; 2285 return 0; 2286 } 2287 if (device->handler) 2288 goto ok; 2289 2290 acpi_ec_register_opregions(device); 2291 2292 if (!device->flags.initialized) { 2293 device->flags.power_manageable = 2294 device->power.states[ACPI_STATE_D0].flags.valid; 2295 if (acpi_bus_init_power(device)) 2296 device->flags.power_manageable = 0; 2297 2298 device->flags.initialized = true; 2299 } else if (device->flags.visited) { 2300 goto ok; 2301 } 2302 2303 ret = acpi_scan_attach_handler(device); 2304 if (ret < 0) 2305 return 0; 2306 2307 device->flags.match_driver = true; 2308 if (ret > 0 && !device->flags.enumeration_by_parent) { 2309 acpi_device_set_enumerated(device); 2310 goto ok; 2311 } 2312 2313 ret = device_attach(&device->dev); 2314 if (ret < 0) 2315 return 0; 2316 2317 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2318 acpi_default_enumeration(device); 2319 else 2320 acpi_device_set_enumerated(device); 2321 2322 ok: 2323 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2324 2325 if (!skip && device->handler && device->handler->hotplug.notify_online) 2326 device->handler->hotplug.notify_online(device); 2327 2328 return 0; 2329 } 2330 2331 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2332 { 2333 struct acpi_device **adev_p = data; 2334 struct acpi_device *adev = *adev_p; 2335 2336 /* 2337 * If we're passed a 'previous' consumer device then we need to skip 2338 * any consumers until we meet the previous one, and then NULL @data 2339 * so the next one can be returned. 2340 */ 2341 if (adev) { 2342 if (dep->consumer == adev->handle) 2343 *adev_p = NULL; 2344 2345 return 0; 2346 } 2347 2348 adev = acpi_get_acpi_dev(dep->consumer); 2349 if (adev) { 2350 *(struct acpi_device **)data = adev; 2351 return 1; 2352 } 2353 /* Continue parsing if the device object is not present. */ 2354 return 0; 2355 } 2356 2357 struct acpi_scan_clear_dep_work { 2358 struct work_struct work; 2359 struct acpi_device *adev; 2360 }; 2361 2362 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2363 { 2364 struct acpi_scan_clear_dep_work *cdw; 2365 2366 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2367 2368 acpi_scan_lock_acquire(); 2369 acpi_bus_attach(cdw->adev, (void *)true); 2370 acpi_scan_lock_release(); 2371 2372 acpi_dev_put(cdw->adev); 2373 kfree(cdw); 2374 } 2375 2376 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2377 { 2378 struct acpi_scan_clear_dep_work *cdw; 2379 2380 if (adev->dep_unmet) 2381 return false; 2382 2383 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2384 if (!cdw) 2385 return false; 2386 2387 cdw->adev = adev; 2388 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2389 /* 2390 * Since the work function may block on the lock until the entire 2391 * initial enumeration of devices is complete, put it into the unbound 2392 * workqueue. 2393 */ 2394 queue_work(system_unbound_wq, &cdw->work); 2395 2396 return true; 2397 } 2398 2399 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2400 { 2401 list_del(&dep->node); 2402 kfree(dep); 2403 } 2404 2405 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2406 { 2407 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2408 2409 if (adev) { 2410 adev->dep_unmet--; 2411 if (!acpi_scan_clear_dep_queue(adev)) 2412 acpi_dev_put(adev); 2413 } 2414 2415 if (dep->free_when_met) 2416 acpi_scan_delete_dep_data(dep); 2417 else 2418 dep->met = true; 2419 2420 return 0; 2421 } 2422 2423 /** 2424 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2425 * @handle: The ACPI handle of the supplier device 2426 * @callback: Pointer to the callback function to apply 2427 * @data: Pointer to some data to pass to the callback 2428 * 2429 * The return value of the callback determines this function's behaviour. If 0 2430 * is returned we continue to iterate over acpi_dep_list. If a positive value 2431 * is returned then the loop is broken but this function returns 0. If a 2432 * negative value is returned by the callback then the loop is broken and that 2433 * value is returned as the final error. 2434 */ 2435 static int acpi_walk_dep_device_list(acpi_handle handle, 2436 int (*callback)(struct acpi_dep_data *, void *), 2437 void *data) 2438 { 2439 struct acpi_dep_data *dep, *tmp; 2440 int ret = 0; 2441 2442 mutex_lock(&acpi_dep_list_lock); 2443 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2444 if (dep->supplier == handle) { 2445 ret = callback(dep, data); 2446 if (ret) 2447 break; 2448 } 2449 } 2450 mutex_unlock(&acpi_dep_list_lock); 2451 2452 return ret > 0 ? 0 : ret; 2453 } 2454 2455 /** 2456 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2457 * @supplier: Pointer to the supplier &struct acpi_device 2458 * 2459 * Clear dependencies on the given device. 2460 */ 2461 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2462 { 2463 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2464 } 2465 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2466 2467 /** 2468 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2469 * @device: Pointer to the &struct acpi_device to check 2470 * 2471 * Check if the device is present and has no unmet dependencies. 2472 * 2473 * Return true if the device is ready for enumeratino. Otherwise, return false. 2474 */ 2475 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2476 { 2477 if (device->flags.honor_deps && device->dep_unmet) 2478 return false; 2479 2480 return acpi_device_is_present(device); 2481 } 2482 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2483 2484 /** 2485 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2486 * @supplier: Pointer to the dependee device 2487 * @start: Pointer to the current dependent device 2488 * 2489 * Returns the next &struct acpi_device which declares itself dependent on 2490 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2491 * 2492 * If the returned adev is not passed as @start to this function, the caller is 2493 * responsible for putting the reference to adev when it is no longer needed. 2494 */ 2495 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2496 struct acpi_device *start) 2497 { 2498 struct acpi_device *adev = start; 2499 2500 acpi_walk_dep_device_list(supplier->handle, 2501 acpi_dev_get_next_consumer_dev_cb, &adev); 2502 2503 acpi_dev_put(start); 2504 2505 if (adev == start) 2506 return NULL; 2507 2508 return adev; 2509 } 2510 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2511 2512 static void acpi_scan_postponed_branch(acpi_handle handle) 2513 { 2514 struct acpi_device *adev = NULL; 2515 2516 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2517 return; 2518 2519 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2520 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2521 2522 /* 2523 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that 2524 * have been added above. 2525 */ 2526 acpi_mipi_init_crs_csi2_swnodes(); 2527 2528 acpi_bus_attach(adev, NULL); 2529 } 2530 2531 static void acpi_scan_postponed(void) 2532 { 2533 struct acpi_dep_data *dep, *tmp; 2534 2535 mutex_lock(&acpi_dep_list_lock); 2536 2537 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2538 acpi_handle handle = dep->consumer; 2539 2540 /* 2541 * In case there are multiple acpi_dep_list entries with the 2542 * same consumer, skip the current entry if the consumer device 2543 * object corresponding to it is present already. 2544 */ 2545 if (!acpi_fetch_acpi_dev(handle)) { 2546 /* 2547 * Even though the lock is released here, tmp is 2548 * guaranteed to be valid, because none of the list 2549 * entries following dep is marked as "free when met" 2550 * and so they cannot be deleted. 2551 */ 2552 mutex_unlock(&acpi_dep_list_lock); 2553 2554 acpi_scan_postponed_branch(handle); 2555 2556 mutex_lock(&acpi_dep_list_lock); 2557 } 2558 2559 if (dep->met) 2560 acpi_scan_delete_dep_data(dep); 2561 else 2562 dep->free_when_met = true; 2563 } 2564 2565 mutex_unlock(&acpi_dep_list_lock); 2566 } 2567 2568 /** 2569 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2570 * @handle: Root of the namespace scope to scan. 2571 * 2572 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2573 * found devices. 2574 * 2575 * If no devices were found, -ENODEV is returned, but it does not mean that 2576 * there has been a real error. There just have been no suitable ACPI objects 2577 * in the table trunk from which the kernel could create a device and add an 2578 * appropriate driver. 2579 * 2580 * Must be called under acpi_scan_lock. 2581 */ 2582 int acpi_bus_scan(acpi_handle handle) 2583 { 2584 struct acpi_device *device = NULL; 2585 2586 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2587 2588 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2589 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2590 acpi_bus_check_add_1, NULL, NULL, 2591 (void **)&device); 2592 2593 if (!device) 2594 return -ENODEV; 2595 2596 /* 2597 * Set up ACPI _CRS CSI-2 software nodes using information extracted 2598 * from the _CRS CSI-2 resource descriptors during the ACPI namespace 2599 * walk above and MIPI DisCo for Imaging device properties. 2600 */ 2601 acpi_mipi_scan_crs_csi2(); 2602 acpi_mipi_init_crs_csi2_swnodes(); 2603 2604 acpi_bus_attach(device, (void *)true); 2605 2606 /* Pass 2: Enumerate all of the remaining devices. */ 2607 2608 acpi_scan_postponed(); 2609 2610 acpi_mipi_crs_csi2_cleanup(); 2611 2612 return 0; 2613 } 2614 EXPORT_SYMBOL(acpi_bus_scan); 2615 2616 /** 2617 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2618 * @adev: Root of the ACPI namespace scope to walk. 2619 * 2620 * Must be called under acpi_scan_lock. 2621 */ 2622 void acpi_bus_trim(struct acpi_device *adev) 2623 { 2624 uintptr_t flags = 0; 2625 2626 acpi_scan_check_and_detach(adev, (void *)flags); 2627 } 2628 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2629 2630 int acpi_bus_register_early_device(int type) 2631 { 2632 struct acpi_device *device = NULL; 2633 int result; 2634 2635 result = acpi_add_single_object(&device, NULL, type, false); 2636 if (result) 2637 return result; 2638 2639 device->flags.match_driver = true; 2640 return device_attach(&device->dev); 2641 } 2642 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2643 2644 static void acpi_bus_scan_fixed(void) 2645 { 2646 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2647 struct acpi_device *adev = NULL; 2648 2649 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2650 false); 2651 if (adev) { 2652 adev->flags.match_driver = true; 2653 if (device_attach(&adev->dev) >= 0) 2654 device_init_wakeup(&adev->dev, true); 2655 else 2656 dev_dbg(&adev->dev, "No driver\n"); 2657 } 2658 } 2659 2660 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2661 struct acpi_device *adev = NULL; 2662 2663 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2664 false); 2665 if (adev) { 2666 adev->flags.match_driver = true; 2667 if (device_attach(&adev->dev) < 0) 2668 dev_dbg(&adev->dev, "No driver\n"); 2669 } 2670 } 2671 } 2672 2673 static void __init acpi_get_spcr_uart_addr(void) 2674 { 2675 acpi_status status; 2676 struct acpi_table_spcr *spcr_ptr; 2677 2678 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2679 (struct acpi_table_header **)&spcr_ptr); 2680 if (ACPI_FAILURE(status)) { 2681 pr_warn("STAO table present, but SPCR is missing\n"); 2682 return; 2683 } 2684 2685 spcr_uart_addr = spcr_ptr->serial_port.address; 2686 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2687 } 2688 2689 static bool acpi_scan_initialized; 2690 2691 void __init acpi_scan_init(void) 2692 { 2693 acpi_status status; 2694 struct acpi_table_stao *stao_ptr; 2695 2696 acpi_pci_root_init(); 2697 acpi_pci_link_init(); 2698 acpi_processor_init(); 2699 acpi_platform_init(); 2700 acpi_lpss_init(); 2701 acpi_apd_init(); 2702 acpi_cmos_rtc_init(); 2703 acpi_container_init(); 2704 acpi_memory_hotplug_init(); 2705 acpi_watchdog_init(); 2706 acpi_pnp_init(); 2707 acpi_power_resources_init(); 2708 acpi_int340x_thermal_init(); 2709 acpi_init_lpit(); 2710 2711 acpi_scan_add_handler(&generic_device_handler); 2712 2713 /* 2714 * If there is STAO table, check whether it needs to ignore the UART 2715 * device in SPCR table. 2716 */ 2717 status = acpi_get_table(ACPI_SIG_STAO, 0, 2718 (struct acpi_table_header **)&stao_ptr); 2719 if (ACPI_SUCCESS(status)) { 2720 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2721 pr_info("STAO Name List not yet supported.\n"); 2722 2723 if (stao_ptr->ignore_uart) 2724 acpi_get_spcr_uart_addr(); 2725 2726 acpi_put_table((struct acpi_table_header *)stao_ptr); 2727 } 2728 2729 acpi_gpe_apply_masked_gpes(); 2730 acpi_update_all_gpes(); 2731 2732 /* 2733 * Although we call __add_memory() that is documented to require the 2734 * device_hotplug_lock, it is not necessary here because this is an 2735 * early code when userspace or any other code path cannot trigger 2736 * hotplug/hotunplug operations. 2737 */ 2738 mutex_lock(&acpi_scan_lock); 2739 /* 2740 * Enumerate devices in the ACPI namespace. 2741 */ 2742 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2743 goto unlock; 2744 2745 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2746 if (!acpi_root) 2747 goto unlock; 2748 2749 /* Fixed feature devices do not exist on HW-reduced platform */ 2750 if (!acpi_gbl_reduced_hardware) 2751 acpi_bus_scan_fixed(); 2752 2753 acpi_turn_off_unused_power_resources(); 2754 2755 acpi_scan_initialized = true; 2756 2757 unlock: 2758 mutex_unlock(&acpi_scan_lock); 2759 } 2760 2761 static struct acpi_probe_entry *ape; 2762 static int acpi_probe_count; 2763 static DEFINE_MUTEX(acpi_probe_mutex); 2764 2765 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2766 const unsigned long end) 2767 { 2768 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2769 if (!ape->probe_subtbl(header, end)) 2770 acpi_probe_count++; 2771 2772 return 0; 2773 } 2774 2775 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { } 2776 2777 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2778 { 2779 int count = 0; 2780 2781 if (acpi_disabled) 2782 return 0; 2783 2784 mutex_lock(&acpi_probe_mutex); 2785 arch_sort_irqchip_probe(ap_head, nr); 2786 for (ape = ap_head; nr; ape++, nr--) { 2787 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2788 acpi_probe_count = 0; 2789 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2790 count += acpi_probe_count; 2791 } else { 2792 int res; 2793 res = acpi_table_parse(ape->id, ape->probe_table); 2794 if (!res) 2795 count++; 2796 } 2797 } 2798 mutex_unlock(&acpi_probe_mutex); 2799 2800 return count; 2801 } 2802 2803 static void acpi_table_events_fn(struct work_struct *work) 2804 { 2805 acpi_scan_lock_acquire(); 2806 acpi_bus_scan(ACPI_ROOT_OBJECT); 2807 acpi_scan_lock_release(); 2808 2809 kfree(work); 2810 } 2811 2812 void acpi_scan_table_notify(void) 2813 { 2814 struct work_struct *work; 2815 2816 if (!acpi_scan_initialized) 2817 return; 2818 2819 work = kmalloc(sizeof(*work), GFP_KERNEL); 2820 if (!work) 2821 return; 2822 2823 INIT_WORK(work, acpi_table_events_fn); 2824 schedule_work(work); 2825 } 2826 2827 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2828 { 2829 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2830 } 2831 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2832 2833 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2834 { 2835 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2836 } 2837 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2838