1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/resource.c - ACPI device resources interpretation. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/device.h> 15 #include <linux/export.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/irq.h> 19 #include <linux/dmi.h> 20 21 #ifdef CONFIG_X86 22 #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) 23 static inline bool acpi_iospace_resource_valid(struct resource *res) 24 { 25 /* On X86 IO space is limited to the [0 - 64K] IO port range */ 26 return res->end < 0x10003; 27 } 28 #else 29 #define valid_IRQ(i) (true) 30 /* 31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical 32 * addresses mapping IO space in CPU physical address space, IO space 33 * resources can be placed anywhere in the 64-bit physical address space. 34 */ 35 static inline bool 36 acpi_iospace_resource_valid(struct resource *res) { return true; } 37 #endif 38 39 #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) 40 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 41 { 42 return ext_irq->resource_source.string_length == 0 && 43 ext_irq->producer_consumer == ACPI_CONSUMER; 44 } 45 #else 46 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 47 { 48 return true; 49 } 50 #endif 51 52 static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io) 53 { 54 u64 reslen = end - start + 1; 55 56 /* 57 * CHECKME: len might be required to check versus a minimum 58 * length as well. 1 for io is fine, but for memory it does 59 * not make any sense at all. 60 * Note: some BIOSes report incorrect length for ACPI address space 61 * descriptor, so remove check of 'reslen == len' to avoid regression. 62 */ 63 if (len && reslen && start <= end) 64 return true; 65 66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n", 67 io ? "io" : "mem", start, end, len); 68 69 return false; 70 } 71 72 static void acpi_dev_memresource_flags(struct resource *res, u64 len, 73 u8 write_protect) 74 { 75 res->flags = IORESOURCE_MEM; 76 77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false)) 78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 79 80 if (write_protect == ACPI_READ_WRITE_MEMORY) 81 res->flags |= IORESOURCE_MEM_WRITEABLE; 82 } 83 84 static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len, 85 u8 write_protect) 86 { 87 res->start = start; 88 res->end = start + len - 1; 89 acpi_dev_memresource_flags(res, len, write_protect); 90 } 91 92 /** 93 * acpi_dev_resource_memory - Extract ACPI memory resource information. 94 * @ares: Input ACPI resource object. 95 * @res: Output generic resource object. 96 * 97 * Check if the given ACPI resource object represents a memory resource and 98 * if that's the case, use the information in it to populate the generic 99 * resource object pointed to by @res. 100 * 101 * Return: 102 * 1) false with res->flags setting to zero: not the expected resource type 103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 104 * 3) true: valid assigned resource 105 */ 106 bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res) 107 { 108 struct acpi_resource_memory24 *memory24; 109 struct acpi_resource_memory32 *memory32; 110 struct acpi_resource_fixed_memory32 *fixed_memory32; 111 112 switch (ares->type) { 113 case ACPI_RESOURCE_TYPE_MEMORY24: 114 memory24 = &ares->data.memory24; 115 acpi_dev_get_memresource(res, memory24->minimum << 8, 116 memory24->address_length << 8, 117 memory24->write_protect); 118 break; 119 case ACPI_RESOURCE_TYPE_MEMORY32: 120 memory32 = &ares->data.memory32; 121 acpi_dev_get_memresource(res, memory32->minimum, 122 memory32->address_length, 123 memory32->write_protect); 124 break; 125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 126 fixed_memory32 = &ares->data.fixed_memory32; 127 acpi_dev_get_memresource(res, fixed_memory32->address, 128 fixed_memory32->address_length, 129 fixed_memory32->write_protect); 130 break; 131 default: 132 res->flags = 0; 133 return false; 134 } 135 136 return !(res->flags & IORESOURCE_DISABLED); 137 } 138 EXPORT_SYMBOL_GPL(acpi_dev_resource_memory); 139 140 static void acpi_dev_ioresource_flags(struct resource *res, u64 len, 141 u8 io_decode, u8 translation_type) 142 { 143 res->flags = IORESOURCE_IO; 144 145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true)) 146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 147 148 if (!acpi_iospace_resource_valid(res)) 149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 150 151 if (io_decode == ACPI_DECODE_16) 152 res->flags |= IORESOURCE_IO_16BIT_ADDR; 153 if (translation_type == ACPI_SPARSE_TRANSLATION) 154 res->flags |= IORESOURCE_IO_SPARSE; 155 } 156 157 static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len, 158 u8 io_decode) 159 { 160 res->start = start; 161 res->end = start + len - 1; 162 acpi_dev_ioresource_flags(res, len, io_decode, 0); 163 } 164 165 /** 166 * acpi_dev_resource_io - Extract ACPI I/O resource information. 167 * @ares: Input ACPI resource object. 168 * @res: Output generic resource object. 169 * 170 * Check if the given ACPI resource object represents an I/O resource and 171 * if that's the case, use the information in it to populate the generic 172 * resource object pointed to by @res. 173 * 174 * Return: 175 * 1) false with res->flags setting to zero: not the expected resource type 176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 177 * 3) true: valid assigned resource 178 */ 179 bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res) 180 { 181 struct acpi_resource_io *io; 182 struct acpi_resource_fixed_io *fixed_io; 183 184 switch (ares->type) { 185 case ACPI_RESOURCE_TYPE_IO: 186 io = &ares->data.io; 187 acpi_dev_get_ioresource(res, io->minimum, 188 io->address_length, 189 io->io_decode); 190 break; 191 case ACPI_RESOURCE_TYPE_FIXED_IO: 192 fixed_io = &ares->data.fixed_io; 193 acpi_dev_get_ioresource(res, fixed_io->address, 194 fixed_io->address_length, 195 ACPI_DECODE_10); 196 break; 197 default: 198 res->flags = 0; 199 return false; 200 } 201 202 return !(res->flags & IORESOURCE_DISABLED); 203 } 204 EXPORT_SYMBOL_GPL(acpi_dev_resource_io); 205 206 static bool acpi_decode_space(struct resource_win *win, 207 struct acpi_resource_address *addr, 208 struct acpi_address64_attribute *attr) 209 { 210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16; 211 bool wp = addr->info.mem.write_protect; 212 u64 len = attr->address_length; 213 u64 start, end, offset = 0; 214 struct resource *res = &win->res; 215 216 /* 217 * Filter out invalid descriptor according to ACPI Spec 5.0, section 218 * 6.4.3.5 Address Space Resource Descriptors. 219 */ 220 if ((addr->min_address_fixed != addr->max_address_fixed && len) || 221 (addr->min_address_fixed && addr->max_address_fixed && !len)) 222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n", 223 addr->min_address_fixed, addr->max_address_fixed, len); 224 225 /* 226 * For bridges that translate addresses across the bridge, 227 * translation_offset is the offset that must be added to the 228 * address on the secondary side to obtain the address on the 229 * primary side. Non-bridge devices must list 0 for all Address 230 * Translation offset bits. 231 */ 232 if (addr->producer_consumer == ACPI_PRODUCER) 233 offset = attr->translation_offset; 234 else if (attr->translation_offset) 235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n", 236 attr->translation_offset); 237 start = attr->minimum + offset; 238 end = attr->maximum + offset; 239 240 win->offset = offset; 241 res->start = start; 242 res->end = end; 243 if (sizeof(resource_size_t) < sizeof(u64) && 244 (offset != win->offset || start != res->start || end != res->end)) { 245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n", 246 attr->minimum, attr->maximum); 247 return false; 248 } 249 250 switch (addr->resource_type) { 251 case ACPI_MEMORY_RANGE: 252 acpi_dev_memresource_flags(res, len, wp); 253 254 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY) 255 res->flags |= IORESOURCE_PREFETCH; 256 break; 257 case ACPI_IO_RANGE: 258 acpi_dev_ioresource_flags(res, len, iodec, 259 addr->info.io.translation_type); 260 break; 261 case ACPI_BUS_NUMBER_RANGE: 262 res->flags = IORESOURCE_BUS; 263 break; 264 default: 265 return false; 266 } 267 268 if (addr->producer_consumer == ACPI_PRODUCER) 269 res->flags |= IORESOURCE_WINDOW; 270 271 return !(res->flags & IORESOURCE_DISABLED); 272 } 273 274 /** 275 * acpi_dev_resource_address_space - Extract ACPI address space information. 276 * @ares: Input ACPI resource object. 277 * @win: Output generic resource object. 278 * 279 * Check if the given ACPI resource object represents an address space resource 280 * and if that's the case, use the information in it to populate the generic 281 * resource object pointed to by @win. 282 * 283 * Return: 284 * 1) false with win->res.flags setting to zero: not the expected resource type 285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 286 * resource 287 * 3) true: valid assigned resource 288 */ 289 bool acpi_dev_resource_address_space(struct acpi_resource *ares, 290 struct resource_win *win) 291 { 292 struct acpi_resource_address64 addr; 293 294 win->res.flags = 0; 295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr))) 296 return false; 297 298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr, 299 &addr.address); 300 } 301 EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space); 302 303 /** 304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information. 305 * @ares: Input ACPI resource object. 306 * @win: Output generic resource object. 307 * 308 * Check if the given ACPI resource object represents an extended address space 309 * resource and if that's the case, use the information in it to populate the 310 * generic resource object pointed to by @win. 311 * 312 * Return: 313 * 1) false with win->res.flags setting to zero: not the expected resource type 314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 315 * resource 316 * 3) true: valid assigned resource 317 */ 318 bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, 319 struct resource_win *win) 320 { 321 struct acpi_resource_extended_address64 *ext_addr; 322 323 win->res.flags = 0; 324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64) 325 return false; 326 327 ext_addr = &ares->data.ext_address64; 328 329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr, 330 &ext_addr->address); 331 } 332 EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space); 333 334 /** 335 * acpi_dev_irq_flags - Determine IRQ resource flags. 336 * @triggering: Triggering type as provided by ACPI. 337 * @polarity: Interrupt polarity as provided by ACPI. 338 * @shareable: Whether or not the interrupt is shareable. 339 * @wake_capable: Wake capability as provided by ACPI. 340 */ 341 unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable) 342 { 343 unsigned long flags; 344 345 if (triggering == ACPI_LEVEL_SENSITIVE) 346 flags = polarity == ACPI_ACTIVE_LOW ? 347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL; 348 else 349 flags = polarity == ACPI_ACTIVE_LOW ? 350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE; 351 352 if (shareable == ACPI_SHARED) 353 flags |= IORESOURCE_IRQ_SHAREABLE; 354 355 if (wake_capable == ACPI_WAKE_CAPABLE) 356 flags |= IORESOURCE_IRQ_WAKECAPABLE; 357 358 return flags | IORESOURCE_IRQ; 359 } 360 EXPORT_SYMBOL_GPL(acpi_dev_irq_flags); 361 362 /** 363 * acpi_dev_get_irq_type - Determine irq type. 364 * @triggering: Triggering type as provided by ACPI. 365 * @polarity: Interrupt polarity as provided by ACPI. 366 */ 367 unsigned int acpi_dev_get_irq_type(int triggering, int polarity) 368 { 369 switch (polarity) { 370 case ACPI_ACTIVE_LOW: 371 return triggering == ACPI_EDGE_SENSITIVE ? 372 IRQ_TYPE_EDGE_FALLING : 373 IRQ_TYPE_LEVEL_LOW; 374 case ACPI_ACTIVE_HIGH: 375 return triggering == ACPI_EDGE_SENSITIVE ? 376 IRQ_TYPE_EDGE_RISING : 377 IRQ_TYPE_LEVEL_HIGH; 378 case ACPI_ACTIVE_BOTH: 379 if (triggering == ACPI_EDGE_SENSITIVE) 380 return IRQ_TYPE_EDGE_BOTH; 381 fallthrough; 382 default: 383 return IRQ_TYPE_NONE; 384 } 385 } 386 EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type); 387 388 /* 389 * DMI matches for boards where the DSDT specifies the kbd IRQ as 390 * level active-low and using the override changes this to rising edge, 391 * stopping the keyboard from working. 392 */ 393 static const struct dmi_system_id irq1_level_low_skip_override[] = { 394 { 395 /* MEDION P15651 */ 396 .matches = { 397 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 398 DMI_MATCH(DMI_BOARD_NAME, "M15T"), 399 }, 400 }, 401 { 402 /* MEDION S17405 */ 403 .matches = { 404 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 405 DMI_MATCH(DMI_BOARD_NAME, "M17T"), 406 }, 407 }, 408 { 409 /* MEDION S17413 */ 410 .matches = { 411 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 412 DMI_MATCH(DMI_BOARD_NAME, "M1xA"), 413 }, 414 }, 415 { 416 /* Asus Vivobook K3402ZA */ 417 .matches = { 418 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 419 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"), 420 }, 421 }, 422 { 423 /* Asus Vivobook K3502ZA */ 424 .matches = { 425 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 426 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"), 427 }, 428 }, 429 { 430 /* Asus Vivobook S5402ZA */ 431 .matches = { 432 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 433 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"), 434 }, 435 }, 436 { 437 /* Asus Vivobook S5602ZA */ 438 .matches = { 439 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 440 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"), 441 }, 442 }, 443 { 444 /* Asus Vivobook X1504VAP */ 445 .matches = { 446 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 447 DMI_MATCH(DMI_BOARD_NAME, "X1504VAP"), 448 }, 449 }, 450 { 451 /* Asus Vivobook X1704VAP */ 452 .matches = { 453 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 454 DMI_MATCH(DMI_BOARD_NAME, "X1704VAP"), 455 }, 456 }, 457 { 458 /* Asus ExpertBook B1402C* */ 459 .matches = { 460 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 461 DMI_MATCH(DMI_BOARD_NAME, "B1402C"), 462 }, 463 }, 464 { 465 /* Asus ExpertBook B1502C* */ 466 .matches = { 467 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 468 DMI_MATCH(DMI_BOARD_NAME, "B1502C"), 469 }, 470 }, 471 { 472 /* Asus ExpertBook B2402 (B2402CBA / B2402FBA / B2402CVA / B2402FVA) */ 473 .matches = { 474 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 475 DMI_MATCH(DMI_BOARD_NAME, "B2402"), 476 }, 477 }, 478 { 479 /* Asus ExpertBook B2502 (B2502CBA / B2502FBA / B2502CVA / B2502FVA) */ 480 .matches = { 481 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 482 DMI_MATCH(DMI_BOARD_NAME, "B2502"), 483 }, 484 }, 485 { 486 /* Asus Vivobook Go E1404GA* */ 487 .matches = { 488 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 489 DMI_MATCH(DMI_BOARD_NAME, "E1404GA"), 490 }, 491 }, 492 { 493 /* Asus Vivobook E1504GA* */ 494 .matches = { 495 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 496 DMI_MATCH(DMI_BOARD_NAME, "E1504GA"), 497 }, 498 }, 499 { 500 /* Asus Vivobook Pro N6506M* */ 501 .matches = { 502 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 503 DMI_MATCH(DMI_BOARD_NAME, "N6506M"), 504 }, 505 }, 506 { 507 /* LG Electronics 17U70P */ 508 .matches = { 509 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"), 510 DMI_MATCH(DMI_BOARD_NAME, "17U70P"), 511 }, 512 }, 513 { 514 /* LG Electronics 16T90SP */ 515 .matches = { 516 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"), 517 DMI_MATCH(DMI_BOARD_NAME, "16T90SP"), 518 }, 519 }, 520 { } 521 }; 522 523 /* 524 * DMI matches for AMD Zen boards where the DSDT specifies the kbd IRQ 525 * as falling edge and this must be overridden to rising edge, 526 * to have a working keyboard. 527 */ 528 static const struct dmi_system_id irq1_edge_low_force_override[] = { 529 { 530 /* MECHREV Jiaolong17KS Series GM7XG0M */ 531 .matches = { 532 DMI_MATCH(DMI_BOARD_NAME, "GM7XG0M"), 533 }, 534 }, 535 { 536 /* XMG APEX 17 (M23) */ 537 .matches = { 538 DMI_MATCH(DMI_BOARD_NAME, "GMxBGxx"), 539 }, 540 }, 541 { 542 /* TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD */ 543 .matches = { 544 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"), 545 }, 546 }, 547 { 548 /* TongFang GMxXGxx/TUXEDO Polaris 15 Gen5 AMD */ 549 .matches = { 550 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxx"), 551 }, 552 }, 553 { 554 /* TongFang GMxXGxX/TUXEDO Polaris 15 Gen5 AMD */ 555 .matches = { 556 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxX"), 557 }, 558 }, 559 { 560 /* TongFang GMxXGxx sold as Eluktronics Inc. RP-15 */ 561 .matches = { 562 DMI_MATCH(DMI_SYS_VENDOR, "Eluktronics Inc."), 563 DMI_MATCH(DMI_BOARD_NAME, "RP-15"), 564 }, 565 }, 566 { 567 /* TongFang GM6XGxX/TUXEDO Stellaris 16 Gen5 AMD */ 568 .matches = { 569 DMI_MATCH(DMI_BOARD_NAME, "GM6XGxX"), 570 }, 571 }, 572 { 573 /* MAINGEAR Vector Pro 2 15 */ 574 .matches = { 575 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 576 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"), 577 } 578 }, 579 { 580 /* MAINGEAR Vector Pro 2 17 */ 581 .matches = { 582 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 583 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"), 584 }, 585 }, 586 { 587 /* TongFang GM6BGEQ / PCSpecialist Elimina Pro 16 M, RTX 3050 */ 588 .matches = { 589 DMI_MATCH(DMI_BOARD_NAME, "GM6BGEQ"), 590 }, 591 }, 592 { 593 /* TongFang GM6BG5Q, RTX 4050 */ 594 .matches = { 595 DMI_MATCH(DMI_BOARD_NAME, "GM6BG5Q"), 596 }, 597 }, 598 { 599 /* TongFang GM6BG0Q / PCSpecialist Elimina Pro 16 M, RTX 4060 */ 600 .matches = { 601 DMI_MATCH(DMI_BOARD_NAME, "GM6BG0Q"), 602 }, 603 }, 604 { 605 /* Infinity E15-5A165-BM */ 606 .matches = { 607 DMI_MATCH(DMI_BOARD_NAME, "GM5RG1E0009COM"), 608 }, 609 }, 610 { 611 /* Infinity E15-5A305-1M */ 612 .matches = { 613 DMI_MATCH(DMI_BOARD_NAME, "GM5RGEE0016COM"), 614 }, 615 }, 616 { 617 /* Lunnen Ground 15 / AMD Ryzen 5 5500U */ 618 .matches = { 619 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"), 620 DMI_MATCH(DMI_BOARD_NAME, "LLL5DAW"), 621 }, 622 }, 623 { 624 /* Lunnen Ground 16 / AMD Ryzen 7 5800U */ 625 .matches = { 626 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"), 627 DMI_MATCH(DMI_BOARD_NAME, "LL6FA"), 628 }, 629 }, 630 { 631 /* MAIBENBEN X577 */ 632 .matches = { 633 DMI_MATCH(DMI_SYS_VENDOR, "MAIBENBEN"), 634 DMI_MATCH(DMI_BOARD_NAME, "X577"), 635 }, 636 }, 637 { 638 /* Maibenben X565 */ 639 .matches = { 640 DMI_MATCH(DMI_SYS_VENDOR, "MAIBENBEN"), 641 DMI_MATCH(DMI_BOARD_NAME, "X565"), 642 }, 643 }, 644 { 645 /* TongFang GXxHRXx/TUXEDO InfinityBook Pro Gen9 AMD */ 646 .matches = { 647 DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"), 648 }, 649 }, 650 { 651 /* TongFang GMxHGxx/TUXEDO Stellaris Slim Gen1 AMD */ 652 .matches = { 653 DMI_MATCH(DMI_BOARD_NAME, "GMxHGxx"), 654 }, 655 }, 656 { 657 /* 658 * TongFang GM5HG0A in case of the SKIKK Vanaheim relabel the 659 * board-name is changed, so check OEM strings instead. Note 660 * OEM string matches are always exact matches. 661 * https://bugzilla.kernel.org/show_bug.cgi?id=219614 662 */ 663 .matches = { 664 DMI_EXACT_MATCH(DMI_OEM_STRING, "GM5HG0A"), 665 }, 666 }, 667 { } 668 }; 669 670 struct irq_override_cmp { 671 const struct dmi_system_id *system; 672 unsigned char irq; 673 unsigned char triggering; 674 unsigned char polarity; 675 unsigned char shareable; 676 bool override; 677 }; 678 679 static const struct irq_override_cmp override_table[] = { 680 { irq1_level_low_skip_override, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 681 { irq1_edge_low_force_override, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 682 }; 683 684 static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity, 685 u8 shareable) 686 { 687 int i; 688 689 for (i = 0; i < ARRAY_SIZE(override_table); i++) { 690 const struct irq_override_cmp *entry = &override_table[i]; 691 692 if (entry->irq == gsi && 693 entry->triggering == triggering && 694 entry->polarity == polarity && 695 entry->shareable == shareable && 696 dmi_check_system(entry->system)) 697 return entry->override; 698 } 699 700 #ifdef CONFIG_X86 701 /* 702 * Always use the MADT override info, except for the i8042 PS/2 ctrl 703 * IRQs (1 and 12). For these the DSDT IRQ settings should sometimes 704 * be used otherwise PS/2 keyboards / mice will not work. 705 */ 706 if (gsi != 1 && gsi != 12) 707 return true; 708 709 /* If the override comes from an INT_SRC_OVR MADT entry, honor it. */ 710 if (acpi_int_src_ovr[gsi]) 711 return true; 712 713 /* 714 * IRQ override isn't needed on modern AMD Zen systems and 715 * this override breaks active low IRQs on AMD Ryzen 6000 and 716 * newer systems. Skip it. 717 */ 718 if (boot_cpu_has(X86_FEATURE_ZEN)) 719 return false; 720 #endif 721 722 return true; 723 } 724 725 static void acpi_dev_get_irqresource(struct resource *res, u32 gsi, 726 u8 triggering, u8 polarity, u8 shareable, 727 u8 wake_capable, bool check_override) 728 { 729 int irq, p, t; 730 731 if (!valid_IRQ(gsi)) { 732 irqresource_disabled(res, gsi); 733 return; 734 } 735 736 /* 737 * In IO-APIC mode, use overridden attribute. Two reasons: 738 * 1. BIOS bug in DSDT 739 * 2. BIOS uses IO-APIC mode Interrupt Source Override 740 * 741 * We do this only if we are dealing with IRQ() or IRQNoFlags() 742 * resource (the legacy ISA resources). With modern ACPI 5 devices 743 * using extended IRQ descriptors we take the IRQ configuration 744 * from _CRS directly. 745 */ 746 if (check_override && 747 acpi_dev_irq_override(gsi, triggering, polarity, shareable) && 748 !acpi_get_override_irq(gsi, &t, &p)) { 749 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; 750 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; 751 752 if (triggering != trig || polarity != pol) { 753 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi, 754 t ? "level" : "edge", 755 trig == triggering ? "" : "(!)", 756 p ? "low" : "high", 757 pol == polarity ? "" : "(!)"); 758 triggering = trig; 759 polarity = pol; 760 } 761 } 762 763 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable); 764 irq = acpi_register_gsi(NULL, gsi, triggering, polarity); 765 if (irq >= 0) { 766 res->start = irq; 767 res->end = irq; 768 } else { 769 irqresource_disabled(res, gsi); 770 } 771 } 772 773 /** 774 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information. 775 * @ares: Input ACPI resource object. 776 * @index: Index into the array of GSIs represented by the resource. 777 * @res: Output generic resource object. 778 * 779 * Check if the given ACPI resource object represents an interrupt resource 780 * and @index does not exceed the resource's interrupt count (true is returned 781 * in that case regardless of the results of the other checks)). If that's the 782 * case, register the GSI corresponding to @index from the array of interrupts 783 * represented by the resource and populate the generic resource object pointed 784 * to by @res accordingly. If the registration of the GSI is not successful, 785 * IORESOURCE_DISABLED will be set it that object's flags. 786 * 787 * Return: 788 * 1) false with res->flags setting to zero: not the expected resource type 789 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 790 * 3) true: valid assigned resource 791 */ 792 bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, 793 struct resource *res) 794 { 795 struct acpi_resource_irq *irq; 796 struct acpi_resource_extended_irq *ext_irq; 797 798 switch (ares->type) { 799 case ACPI_RESOURCE_TYPE_IRQ: 800 /* 801 * Per spec, only one interrupt per descriptor is allowed in 802 * _CRS, but some firmware violates this, so parse them all. 803 */ 804 irq = &ares->data.irq; 805 if (index >= irq->interrupt_count) { 806 irqresource_disabled(res, 0); 807 return false; 808 } 809 acpi_dev_get_irqresource(res, irq->interrupts[index], 810 irq->triggering, irq->polarity, 811 irq->shareable, irq->wake_capable, 812 true); 813 break; 814 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 815 ext_irq = &ares->data.extended_irq; 816 if (index >= ext_irq->interrupt_count) { 817 irqresource_disabled(res, 0); 818 return false; 819 } 820 if (is_gsi(ext_irq)) 821 acpi_dev_get_irqresource(res, ext_irq->interrupts[index], 822 ext_irq->triggering, ext_irq->polarity, 823 ext_irq->shareable, ext_irq->wake_capable, 824 false); 825 else 826 irqresource_disabled(res, 0); 827 break; 828 default: 829 res->flags = 0; 830 return false; 831 } 832 833 return true; 834 } 835 EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt); 836 837 /** 838 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources(). 839 * @list: The head of the resource list to free. 840 */ 841 void acpi_dev_free_resource_list(struct list_head *list) 842 { 843 resource_list_free(list); 844 } 845 EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list); 846 847 struct res_proc_context { 848 struct list_head *list; 849 int (*preproc)(struct acpi_resource *, void *); 850 void *preproc_data; 851 int count; 852 int error; 853 }; 854 855 static acpi_status acpi_dev_new_resource_entry(struct resource_win *win, 856 struct res_proc_context *c) 857 { 858 struct resource_entry *rentry; 859 860 rentry = resource_list_create_entry(NULL, 0); 861 if (!rentry) { 862 c->error = -ENOMEM; 863 return AE_NO_MEMORY; 864 } 865 *rentry->res = win->res; 866 rentry->offset = win->offset; 867 resource_list_add_tail(rentry, c->list); 868 c->count++; 869 return AE_OK; 870 } 871 872 static acpi_status acpi_dev_process_resource(struct acpi_resource *ares, 873 void *context) 874 { 875 struct res_proc_context *c = context; 876 struct resource_win win; 877 struct resource *res = &win.res; 878 int i; 879 880 if (c->preproc) { 881 int ret; 882 883 ret = c->preproc(ares, c->preproc_data); 884 if (ret < 0) { 885 c->error = ret; 886 return AE_ABORT_METHOD; 887 } else if (ret > 0) { 888 return AE_OK; 889 } 890 } 891 892 memset(&win, 0, sizeof(win)); 893 894 if (acpi_dev_resource_memory(ares, res) 895 || acpi_dev_resource_io(ares, res) 896 || acpi_dev_resource_address_space(ares, &win) 897 || acpi_dev_resource_ext_address_space(ares, &win)) 898 return acpi_dev_new_resource_entry(&win, c); 899 900 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) { 901 acpi_status status; 902 903 status = acpi_dev_new_resource_entry(&win, c); 904 if (ACPI_FAILURE(status)) 905 return status; 906 } 907 908 return AE_OK; 909 } 910 911 static int __acpi_dev_get_resources(struct acpi_device *adev, 912 struct list_head *list, 913 int (*preproc)(struct acpi_resource *, void *), 914 void *preproc_data, char *method) 915 { 916 struct res_proc_context c; 917 acpi_status status; 918 919 if (!adev || !adev->handle || !list_empty(list)) 920 return -EINVAL; 921 922 if (!acpi_has_method(adev->handle, method)) 923 return 0; 924 925 c.list = list; 926 c.preproc = preproc; 927 c.preproc_data = preproc_data; 928 c.count = 0; 929 c.error = 0; 930 status = acpi_walk_resources(adev->handle, method, 931 acpi_dev_process_resource, &c); 932 if (ACPI_FAILURE(status)) { 933 acpi_dev_free_resource_list(list); 934 return c.error ? c.error : -EIO; 935 } 936 937 return c.count; 938 } 939 940 /** 941 * acpi_dev_get_resources - Get current resources of a device. 942 * @adev: ACPI device node to get the resources for. 943 * @list: Head of the resultant list of resources (must be empty). 944 * @preproc: The caller's preprocessing routine. 945 * @preproc_data: Pointer passed to the caller's preprocessing routine. 946 * 947 * Evaluate the _CRS method for the given device node and process its output by 948 * (1) executing the @preproc() routine provided by the caller, passing the 949 * resource pointer and @preproc_data to it as arguments, for each ACPI resource 950 * returned and (2) converting all of the returned ACPI resources into struct 951 * resource objects if possible. If the return value of @preproc() in step (1) 952 * is different from 0, step (2) is not applied to the given ACPI resource and 953 * if that value is negative, the whole processing is aborted and that value is 954 * returned as the final error code. 955 * 956 * The resultant struct resource objects are put on the list pointed to by 957 * @list, that must be empty initially, as members of struct resource_entry 958 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to 959 * free that list. 960 * 961 * The number of resources in the output list is returned on success, an error 962 * code reflecting the error condition is returned otherwise. 963 */ 964 int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, 965 int (*preproc)(struct acpi_resource *, void *), 966 void *preproc_data) 967 { 968 return __acpi_dev_get_resources(adev, list, preproc, preproc_data, 969 METHOD_NAME__CRS); 970 } 971 EXPORT_SYMBOL_GPL(acpi_dev_get_resources); 972 973 static int is_memory(struct acpi_resource *ares, void *not_used) 974 { 975 struct resource_win win; 976 struct resource *res = &win.res; 977 978 memset(&win, 0, sizeof(win)); 979 980 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM)) 981 return 1; 982 983 return !(acpi_dev_resource_memory(ares, res) 984 || acpi_dev_resource_address_space(ares, &win) 985 || acpi_dev_resource_ext_address_space(ares, &win)); 986 } 987 988 /** 989 * acpi_dev_get_dma_resources - Get current DMA resources of a device. 990 * @adev: ACPI device node to get the resources for. 991 * @list: Head of the resultant list of resources (must be empty). 992 * 993 * Evaluate the _DMA method for the given device node and process its 994 * output. 995 * 996 * The resultant struct resource objects are put on the list pointed to 997 * by @list, that must be empty initially, as members of struct 998 * resource_entry objects. Callers of this routine should use 999 * %acpi_dev_free_resource_list() to free that list. 1000 * 1001 * The number of resources in the output list is returned on success, 1002 * an error code reflecting the error condition is returned otherwise. 1003 */ 1004 int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list) 1005 { 1006 return __acpi_dev_get_resources(adev, list, is_memory, NULL, 1007 METHOD_NAME__DMA); 1008 } 1009 EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources); 1010 1011 /** 1012 * acpi_dev_get_memory_resources - Get current memory resources of a device. 1013 * @adev: ACPI device node to get the resources for. 1014 * @list: Head of the resultant list of resources (must be empty). 1015 * 1016 * This is a helper function that locates all memory type resources of @adev 1017 * with acpi_dev_get_resources(). 1018 * 1019 * The number of resources in the output list is returned on success, an error 1020 * code reflecting the error condition is returned otherwise. 1021 */ 1022 int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list) 1023 { 1024 return acpi_dev_get_resources(adev, list, is_memory, NULL); 1025 } 1026 EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources); 1027 1028 /** 1029 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource 1030 * types 1031 * @ares: Input ACPI resource object. 1032 * @types: Valid resource types of IORESOURCE_XXX 1033 * 1034 * This is a helper function to support acpi_dev_get_resources(), which filters 1035 * ACPI resource objects according to resource types. 1036 */ 1037 int acpi_dev_filter_resource_type(struct acpi_resource *ares, 1038 unsigned long types) 1039 { 1040 unsigned long type = 0; 1041 1042 switch (ares->type) { 1043 case ACPI_RESOURCE_TYPE_MEMORY24: 1044 case ACPI_RESOURCE_TYPE_MEMORY32: 1045 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 1046 type = IORESOURCE_MEM; 1047 break; 1048 case ACPI_RESOURCE_TYPE_IO: 1049 case ACPI_RESOURCE_TYPE_FIXED_IO: 1050 type = IORESOURCE_IO; 1051 break; 1052 case ACPI_RESOURCE_TYPE_IRQ: 1053 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 1054 type = IORESOURCE_IRQ; 1055 break; 1056 case ACPI_RESOURCE_TYPE_DMA: 1057 case ACPI_RESOURCE_TYPE_FIXED_DMA: 1058 type = IORESOURCE_DMA; 1059 break; 1060 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: 1061 type = IORESOURCE_REG; 1062 break; 1063 case ACPI_RESOURCE_TYPE_ADDRESS16: 1064 case ACPI_RESOURCE_TYPE_ADDRESS32: 1065 case ACPI_RESOURCE_TYPE_ADDRESS64: 1066 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: 1067 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE) 1068 type = IORESOURCE_MEM; 1069 else if (ares->data.address.resource_type == ACPI_IO_RANGE) 1070 type = IORESOURCE_IO; 1071 else if (ares->data.address.resource_type == 1072 ACPI_BUS_NUMBER_RANGE) 1073 type = IORESOURCE_BUS; 1074 break; 1075 default: 1076 break; 1077 } 1078 1079 return (type & types) ? 0 : 1; 1080 } 1081 EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type); 1082 1083 static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res) 1084 { 1085 struct list_head resource_list; 1086 struct resource_entry *rentry; 1087 int ret, found = 0; 1088 1089 INIT_LIST_HEAD(&resource_list); 1090 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); 1091 if (ret < 0) 1092 return 0; 1093 1094 list_for_each_entry(rentry, &resource_list, node) { 1095 if (resource_contains(rentry->res, res)) { 1096 found = 1; 1097 break; 1098 } 1099 1100 } 1101 1102 acpi_dev_free_resource_list(&resource_list); 1103 return found; 1104 } 1105 1106 static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth, 1107 void *context, void **ret) 1108 { 1109 struct resource *res = context; 1110 struct acpi_device **consumer = (struct acpi_device **) ret; 1111 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 1112 1113 if (!adev) 1114 return AE_OK; 1115 1116 if (acpi_dev_consumes_res(adev, res)) { 1117 *consumer = adev; 1118 return AE_CTRL_TERMINATE; 1119 } 1120 1121 return AE_OK; 1122 } 1123 1124 /** 1125 * acpi_resource_consumer - Find the ACPI device that consumes @res. 1126 * @res: Resource to search for. 1127 * 1128 * Search the current resource settings (_CRS) of every ACPI device node 1129 * for @res. If we find an ACPI device whose _CRS includes @res, return 1130 * it. Otherwise, return NULL. 1131 */ 1132 struct acpi_device *acpi_resource_consumer(struct resource *res) 1133 { 1134 struct acpi_device *consumer = NULL; 1135 1136 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer); 1137 return consumer; 1138 } 1139