1 /* 2 * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $) 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * 10 * 11 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License along 24 * with this program; if not, write to the Free Software Foundation, Inc., 25 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 26 * 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/init.h> 32 #include <linux/cpufreq.h> 33 34 #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/mutex.h> 38 39 #include <asm/uaccess.h> 40 #endif 41 42 #include <acpi/acpi_bus.h> 43 #include <acpi/processor.h> 44 45 #define ACPI_PROCESSOR_COMPONENT 0x01000000 46 #define ACPI_PROCESSOR_CLASS "processor" 47 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver" 48 #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance" 49 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 50 ACPI_MODULE_NAME("acpi_processor") 51 52 static DEFINE_MUTEX(performance_mutex); 53 54 /* 55 * _PPC support is implemented as a CPUfreq policy notifier: 56 * This means each time a CPUfreq driver registered also with 57 * the ACPI core is asked to change the speed policy, the maximum 58 * value is adjusted so that it is within the platform limit. 59 * 60 * Also, when a new platform limit value is detected, the CPUfreq 61 * policy is adjusted accordingly. 62 */ 63 64 #define PPC_REGISTERED 1 65 #define PPC_IN_USE 2 66 67 static int acpi_processor_ppc_status = 0; 68 69 static int acpi_processor_ppc_notifier(struct notifier_block *nb, 70 unsigned long event, void *data) 71 { 72 struct cpufreq_policy *policy = data; 73 struct acpi_processor *pr; 74 unsigned int ppc = 0; 75 76 mutex_lock(&performance_mutex); 77 78 if (event != CPUFREQ_INCOMPATIBLE) 79 goto out; 80 81 pr = processors[policy->cpu]; 82 if (!pr || !pr->performance) 83 goto out; 84 85 ppc = (unsigned int)pr->performance_platform_limit; 86 87 if (ppc >= pr->performance->state_count) 88 goto out; 89 90 cpufreq_verify_within_limits(policy, 0, 91 pr->performance->states[ppc]. 92 core_frequency * 1000); 93 94 out: 95 mutex_unlock(&performance_mutex); 96 97 return 0; 98 } 99 100 static struct notifier_block acpi_ppc_notifier_block = { 101 .notifier_call = acpi_processor_ppc_notifier, 102 }; 103 104 static int acpi_processor_get_platform_limit(struct acpi_processor *pr) 105 { 106 acpi_status status = 0; 107 unsigned long ppc = 0; 108 109 110 if (!pr) 111 return -EINVAL; 112 113 /* 114 * _PPC indicates the maximum state currently supported by the platform 115 * (e.g. 0 = states 0..n; 1 = states 1..n; etc. 116 */ 117 status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc); 118 119 if (status != AE_NOT_FOUND) 120 acpi_processor_ppc_status |= PPC_IN_USE; 121 122 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 123 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC")); 124 return -ENODEV; 125 } 126 127 pr->performance_platform_limit = (int)ppc; 128 129 return 0; 130 } 131 132 int acpi_processor_ppc_has_changed(struct acpi_processor *pr) 133 { 134 int ret = acpi_processor_get_platform_limit(pr); 135 if (ret < 0) 136 return (ret); 137 else 138 return cpufreq_update_policy(pr->id); 139 } 140 141 void acpi_processor_ppc_init(void) 142 { 143 if (!cpufreq_register_notifier 144 (&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER)) 145 acpi_processor_ppc_status |= PPC_REGISTERED; 146 else 147 printk(KERN_DEBUG 148 "Warning: Processor Platform Limit not supported.\n"); 149 } 150 151 void acpi_processor_ppc_exit(void) 152 { 153 if (acpi_processor_ppc_status & PPC_REGISTERED) 154 cpufreq_unregister_notifier(&acpi_ppc_notifier_block, 155 CPUFREQ_POLICY_NOTIFIER); 156 157 acpi_processor_ppc_status &= ~PPC_REGISTERED; 158 } 159 160 static int acpi_processor_get_performance_control(struct acpi_processor *pr) 161 { 162 int result = 0; 163 acpi_status status = 0; 164 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 165 union acpi_object *pct = NULL; 166 union acpi_object obj = { 0 }; 167 168 169 status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); 170 if (ACPI_FAILURE(status)) { 171 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT")); 172 return -ENODEV; 173 } 174 175 pct = (union acpi_object *)buffer.pointer; 176 if (!pct || (pct->type != ACPI_TYPE_PACKAGE) 177 || (pct->package.count != 2)) { 178 printk(KERN_ERR PREFIX "Invalid _PCT data\n"); 179 result = -EFAULT; 180 goto end; 181 } 182 183 /* 184 * control_register 185 */ 186 187 obj = pct->package.elements[0]; 188 189 if ((obj.type != ACPI_TYPE_BUFFER) 190 || (obj.buffer.length < sizeof(struct acpi_pct_register)) 191 || (obj.buffer.pointer == NULL)) { 192 printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n"); 193 result = -EFAULT; 194 goto end; 195 } 196 memcpy(&pr->performance->control_register, obj.buffer.pointer, 197 sizeof(struct acpi_pct_register)); 198 199 /* 200 * status_register 201 */ 202 203 obj = pct->package.elements[1]; 204 205 if ((obj.type != ACPI_TYPE_BUFFER) 206 || (obj.buffer.length < sizeof(struct acpi_pct_register)) 207 || (obj.buffer.pointer == NULL)) { 208 printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n"); 209 result = -EFAULT; 210 goto end; 211 } 212 213 memcpy(&pr->performance->status_register, obj.buffer.pointer, 214 sizeof(struct acpi_pct_register)); 215 216 end: 217 kfree(buffer.pointer); 218 219 return result; 220 } 221 222 static int acpi_processor_get_performance_states(struct acpi_processor *pr) 223 { 224 int result = 0; 225 acpi_status status = AE_OK; 226 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 227 struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" }; 228 struct acpi_buffer state = { 0, NULL }; 229 union acpi_object *pss = NULL; 230 int i; 231 232 233 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 234 if (ACPI_FAILURE(status)) { 235 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS")); 236 return -ENODEV; 237 } 238 239 pss = buffer.pointer; 240 if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) { 241 printk(KERN_ERR PREFIX "Invalid _PSS data\n"); 242 result = -EFAULT; 243 goto end; 244 } 245 246 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n", 247 pss->package.count)); 248 249 pr->performance->state_count = pss->package.count; 250 pr->performance->states = 251 kmalloc(sizeof(struct acpi_processor_px) * pss->package.count, 252 GFP_KERNEL); 253 if (!pr->performance->states) { 254 result = -ENOMEM; 255 goto end; 256 } 257 258 for (i = 0; i < pr->performance->state_count; i++) { 259 260 struct acpi_processor_px *px = &(pr->performance->states[i]); 261 262 state.length = sizeof(struct acpi_processor_px); 263 state.pointer = px; 264 265 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i)); 266 267 status = acpi_extract_package(&(pss->package.elements[i]), 268 &format, &state); 269 if (ACPI_FAILURE(status)) { 270 ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data")); 271 result = -EFAULT; 272 kfree(pr->performance->states); 273 goto end; 274 } 275 276 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 277 "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n", 278 i, 279 (u32) px->core_frequency, 280 (u32) px->power, 281 (u32) px->transition_latency, 282 (u32) px->bus_master_latency, 283 (u32) px->control, (u32) px->status)); 284 285 if (!px->core_frequency) { 286 printk(KERN_ERR PREFIX 287 "Invalid _PSS data: freq is zero\n"); 288 result = -EFAULT; 289 kfree(pr->performance->states); 290 goto end; 291 } 292 } 293 294 end: 295 kfree(buffer.pointer); 296 297 return result; 298 } 299 300 static int acpi_processor_get_performance_info(struct acpi_processor *pr) 301 { 302 int result = 0; 303 acpi_status status = AE_OK; 304 acpi_handle handle = NULL; 305 306 307 if (!pr || !pr->performance || !pr->handle) 308 return -EINVAL; 309 310 status = acpi_get_handle(pr->handle, "_PCT", &handle); 311 if (ACPI_FAILURE(status)) { 312 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 313 "ACPI-based processor performance control unavailable\n")); 314 return -ENODEV; 315 } 316 317 result = acpi_processor_get_performance_control(pr); 318 if (result) 319 return result; 320 321 result = acpi_processor_get_performance_states(pr); 322 if (result) 323 return result; 324 325 return 0; 326 } 327 328 int acpi_processor_notify_smm(struct module *calling_module) 329 { 330 acpi_status status; 331 static int is_done = 0; 332 333 334 if (!(acpi_processor_ppc_status & PPC_REGISTERED)) 335 return -EBUSY; 336 337 if (!try_module_get(calling_module)) 338 return -EINVAL; 339 340 /* is_done is set to negative if an error occured, 341 * and to postitive if _no_ error occured, but SMM 342 * was already notified. This avoids double notification 343 * which might lead to unexpected results... 344 */ 345 if (is_done > 0) { 346 module_put(calling_module); 347 return 0; 348 } else if (is_done < 0) { 349 module_put(calling_module); 350 return is_done; 351 } 352 353 is_done = -EIO; 354 355 /* Can't write pstate_control to smi_command if either value is zero */ 356 if ((!acpi_gbl_FADT.smi_command) || (!acpi_gbl_FADT.pstate_control)) { 357 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_control\n")); 358 module_put(calling_module); 359 return 0; 360 } 361 362 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 363 "Writing pstate_control [0x%x] to smi_command [0x%x]\n", 364 acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); 365 366 status = acpi_os_write_port(acpi_gbl_FADT.smi_command, 367 (u32) acpi_gbl_FADT.pstate_control, 8); 368 if (ACPI_FAILURE(status)) { 369 ACPI_EXCEPTION((AE_INFO, status, 370 "Failed to write pstate_control [0x%x] to " 371 "smi_command [0x%x]", acpi_gbl_FADT.pstate_control, 372 acpi_gbl_FADT.smi_command)); 373 module_put(calling_module); 374 return status; 375 } 376 377 /* Success. If there's no _PPC, we need to fear nothing, so 378 * we can allow the cpufreq driver to be rmmod'ed. */ 379 is_done = 1; 380 381 if (!(acpi_processor_ppc_status & PPC_IN_USE)) 382 module_put(calling_module); 383 384 return 0; 385 } 386 387 EXPORT_SYMBOL(acpi_processor_notify_smm); 388 389 #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF 390 /* /proc/acpi/processor/../performance interface (DEPRECATED) */ 391 392 static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file); 393 static struct file_operations acpi_processor_perf_fops = { 394 .open = acpi_processor_perf_open_fs, 395 .read = seq_read, 396 .llseek = seq_lseek, 397 .release = single_release, 398 }; 399 400 static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset) 401 { 402 struct acpi_processor *pr = seq->private; 403 int i; 404 405 406 if (!pr) 407 goto end; 408 409 if (!pr->performance) { 410 seq_puts(seq, "<not supported>\n"); 411 goto end; 412 } 413 414 seq_printf(seq, "state count: %d\n" 415 "active state: P%d\n", 416 pr->performance->state_count, pr->performance->state); 417 418 seq_puts(seq, "states:\n"); 419 for (i = 0; i < pr->performance->state_count; i++) 420 seq_printf(seq, 421 " %cP%d: %d MHz, %d mW, %d uS\n", 422 (i == pr->performance->state ? '*' : ' '), i, 423 (u32) pr->performance->states[i].core_frequency, 424 (u32) pr->performance->states[i].power, 425 (u32) pr->performance->states[i].transition_latency); 426 427 end: 428 return 0; 429 } 430 431 static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file) 432 { 433 return single_open(file, acpi_processor_perf_seq_show, 434 PDE(inode)->data); 435 } 436 437 static ssize_t 438 acpi_processor_write_performance(struct file *file, 439 const char __user * buffer, 440 size_t count, loff_t * data) 441 { 442 int result = 0; 443 struct seq_file *m = file->private_data; 444 struct acpi_processor *pr = m->private; 445 struct acpi_processor_performance *perf; 446 char state_string[12] = { '\0' }; 447 unsigned int new_state = 0; 448 struct cpufreq_policy policy; 449 450 451 if (!pr || (count > sizeof(state_string) - 1)) 452 return -EINVAL; 453 454 perf = pr->performance; 455 if (!perf) 456 return -EINVAL; 457 458 if (copy_from_user(state_string, buffer, count)) 459 return -EFAULT; 460 461 state_string[count] = '\0'; 462 new_state = simple_strtoul(state_string, NULL, 0); 463 464 if (new_state >= perf->state_count) 465 return -EINVAL; 466 467 cpufreq_get_policy(&policy, pr->id); 468 469 policy.cpu = pr->id; 470 policy.min = perf->states[new_state].core_frequency * 1000; 471 policy.max = perf->states[new_state].core_frequency * 1000; 472 473 result = cpufreq_set_policy(&policy); 474 if (result) 475 return result; 476 477 return count; 478 } 479 480 static void acpi_cpufreq_add_file(struct acpi_processor *pr) 481 { 482 struct proc_dir_entry *entry = NULL; 483 struct acpi_device *device = NULL; 484 485 486 if (acpi_bus_get_device(pr->handle, &device)) 487 return; 488 489 /* add file 'performance' [R/W] */ 490 entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, 491 S_IFREG | S_IRUGO | S_IWUSR, 492 acpi_device_dir(device)); 493 if (entry){ 494 acpi_processor_perf_fops.write = acpi_processor_write_performance; 495 entry->proc_fops = &acpi_processor_perf_fops; 496 entry->data = acpi_driver_data(device); 497 entry->owner = THIS_MODULE; 498 } 499 return; 500 } 501 502 static void acpi_cpufreq_remove_file(struct acpi_processor *pr) 503 { 504 struct acpi_device *device = NULL; 505 506 507 if (acpi_bus_get_device(pr->handle, &device)) 508 return; 509 510 /* remove file 'performance' */ 511 remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, 512 acpi_device_dir(device)); 513 514 return; 515 } 516 517 #else 518 static void acpi_cpufreq_add_file(struct acpi_processor *pr) 519 { 520 return; 521 } 522 static void acpi_cpufreq_remove_file(struct acpi_processor *pr) 523 { 524 return; 525 } 526 #endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */ 527 528 static int acpi_processor_get_psd(struct acpi_processor *pr) 529 { 530 int result = 0; 531 acpi_status status = AE_OK; 532 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 533 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 534 struct acpi_buffer state = {0, NULL}; 535 union acpi_object *psd = NULL; 536 struct acpi_psd_package *pdomain; 537 538 status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer); 539 if (ACPI_FAILURE(status)) { 540 return -ENODEV; 541 } 542 543 psd = buffer.pointer; 544 if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) { 545 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); 546 result = -EFAULT; 547 goto end; 548 } 549 550 if (psd->package.count != 1) { 551 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); 552 result = -EFAULT; 553 goto end; 554 } 555 556 pdomain = &(pr->performance->domain_info); 557 558 state.length = sizeof(struct acpi_psd_package); 559 state.pointer = pdomain; 560 561 status = acpi_extract_package(&(psd->package.elements[0]), 562 &format, &state); 563 if (ACPI_FAILURE(status)) { 564 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); 565 result = -EFAULT; 566 goto end; 567 } 568 569 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 570 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:num_entries\n")); 571 result = -EFAULT; 572 goto end; 573 } 574 575 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 576 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:revision\n")); 577 result = -EFAULT; 578 goto end; 579 } 580 581 end: 582 kfree(buffer.pointer); 583 return result; 584 } 585 586 int acpi_processor_preregister_performance( 587 struct acpi_processor_performance **performance) 588 { 589 int count, count_target; 590 int retval = 0; 591 unsigned int i, j; 592 cpumask_t covered_cpus; 593 struct acpi_processor *pr; 594 struct acpi_psd_package *pdomain; 595 struct acpi_processor *match_pr; 596 struct acpi_psd_package *match_pdomain; 597 598 mutex_lock(&performance_mutex); 599 600 retval = 0; 601 602 /* Call _PSD for all CPUs */ 603 for_each_possible_cpu(i) { 604 pr = processors[i]; 605 if (!pr) { 606 /* Look only at processors in ACPI namespace */ 607 continue; 608 } 609 610 if (pr->performance) { 611 retval = -EBUSY; 612 continue; 613 } 614 615 if (!performance || !performance[i]) { 616 retval = -EINVAL; 617 continue; 618 } 619 620 pr->performance = performance[i]; 621 cpu_set(i, pr->performance->shared_cpu_map); 622 if (acpi_processor_get_psd(pr)) { 623 retval = -EINVAL; 624 continue; 625 } 626 } 627 if (retval) 628 goto err_ret; 629 630 /* 631 * Now that we have _PSD data from all CPUs, lets setup P-state 632 * domain info. 633 */ 634 for_each_possible_cpu(i) { 635 pr = processors[i]; 636 if (!pr) 637 continue; 638 639 /* Basic validity check for domain info */ 640 pdomain = &(pr->performance->domain_info); 641 if ((pdomain->revision != ACPI_PSD_REV0_REVISION) || 642 (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES)) { 643 retval = -EINVAL; 644 goto err_ret; 645 } 646 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 647 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 648 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 649 retval = -EINVAL; 650 goto err_ret; 651 } 652 } 653 654 cpus_clear(covered_cpus); 655 for_each_possible_cpu(i) { 656 pr = processors[i]; 657 if (!pr) 658 continue; 659 660 if (cpu_isset(i, covered_cpus)) 661 continue; 662 663 pdomain = &(pr->performance->domain_info); 664 cpu_set(i, pr->performance->shared_cpu_map); 665 cpu_set(i, covered_cpus); 666 if (pdomain->num_processors <= 1) 667 continue; 668 669 /* Validate the Domain info */ 670 count_target = pdomain->num_processors; 671 count = 1; 672 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 673 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; 674 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 675 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW; 676 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 677 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY; 678 679 for_each_possible_cpu(j) { 680 if (i == j) 681 continue; 682 683 match_pr = processors[j]; 684 if (!match_pr) 685 continue; 686 687 match_pdomain = &(match_pr->performance->domain_info); 688 if (match_pdomain->domain != pdomain->domain) 689 continue; 690 691 /* Here i and j are in the same domain */ 692 693 if (match_pdomain->num_processors != count_target) { 694 retval = -EINVAL; 695 goto err_ret; 696 } 697 698 if (pdomain->coord_type != match_pdomain->coord_type) { 699 retval = -EINVAL; 700 goto err_ret; 701 } 702 703 cpu_set(j, covered_cpus); 704 cpu_set(j, pr->performance->shared_cpu_map); 705 count++; 706 } 707 708 for_each_possible_cpu(j) { 709 if (i == j) 710 continue; 711 712 match_pr = processors[j]; 713 if (!match_pr) 714 continue; 715 716 match_pdomain = &(match_pr->performance->domain_info); 717 if (match_pdomain->domain != pdomain->domain) 718 continue; 719 720 match_pr->performance->shared_type = 721 pr->performance->shared_type; 722 match_pr->performance->shared_cpu_map = 723 pr->performance->shared_cpu_map; 724 } 725 } 726 727 err_ret: 728 for_each_possible_cpu(i) { 729 pr = processors[i]; 730 if (!pr || !pr->performance) 731 continue; 732 733 /* Assume no coordination on any error parsing domain info */ 734 if (retval) { 735 cpus_clear(pr->performance->shared_cpu_map); 736 cpu_set(i, pr->performance->shared_cpu_map); 737 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; 738 } 739 pr->performance = NULL; /* Will be set for real in register */ 740 } 741 742 mutex_unlock(&performance_mutex); 743 return retval; 744 } 745 EXPORT_SYMBOL(acpi_processor_preregister_performance); 746 747 748 int 749 acpi_processor_register_performance(struct acpi_processor_performance 750 *performance, unsigned int cpu) 751 { 752 struct acpi_processor *pr; 753 754 755 if (!(acpi_processor_ppc_status & PPC_REGISTERED)) 756 return -EINVAL; 757 758 mutex_lock(&performance_mutex); 759 760 pr = processors[cpu]; 761 if (!pr) { 762 mutex_unlock(&performance_mutex); 763 return -ENODEV; 764 } 765 766 if (pr->performance) { 767 mutex_unlock(&performance_mutex); 768 return -EBUSY; 769 } 770 771 WARN_ON(!performance); 772 773 pr->performance = performance; 774 775 if (acpi_processor_get_performance_info(pr)) { 776 pr->performance = NULL; 777 mutex_unlock(&performance_mutex); 778 return -EIO; 779 } 780 781 acpi_cpufreq_add_file(pr); 782 783 mutex_unlock(&performance_mutex); 784 return 0; 785 } 786 787 EXPORT_SYMBOL(acpi_processor_register_performance); 788 789 void 790 acpi_processor_unregister_performance(struct acpi_processor_performance 791 *performance, unsigned int cpu) 792 { 793 struct acpi_processor *pr; 794 795 796 mutex_lock(&performance_mutex); 797 798 pr = processors[cpu]; 799 if (!pr) { 800 mutex_unlock(&performance_mutex); 801 return; 802 } 803 804 if (pr->performance) 805 kfree(pr->performance->states); 806 pr->performance = NULL; 807 808 acpi_cpufreq_remove_file(pr); 809 810 mutex_unlock(&performance_mutex); 811 812 return; 813 } 814 815 EXPORT_SYMBOL(acpi_processor_unregister_performance); 816