1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/slab.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/acpi.h> 39 #include <linux/dmi.h> 40 #include <linux/moduleparam.h> 41 #include <linux/sched.h> /* need_resched() */ 42 #include <linux/pm_qos_params.h> 43 #include <linux/clockchips.h> 44 #include <linux/cpuidle.h> 45 #include <linux/irqflags.h> 46 47 /* 48 * Include the apic definitions for x86 to have the APIC timer related defines 49 * available also for UP (on SMP it gets magically included via linux/smp.h). 50 * asm/acpi.h is not an option, as it would require more include magic. Also 51 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 52 */ 53 #ifdef CONFIG_X86 54 #include <asm/apic.h> 55 #endif 56 57 #include <asm/io.h> 58 #include <asm/uaccess.h> 59 60 #include <acpi/acpi_bus.h> 61 #include <acpi/processor.h> 62 #include <asm/processor.h> 63 64 #define PREFIX "ACPI: " 65 66 #define ACPI_PROCESSOR_CLASS "processor" 67 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 68 ACPI_MODULE_NAME("processor_idle"); 69 #define ACPI_PROCESSOR_FILE_POWER "power" 70 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 71 #define C2_OVERHEAD 1 /* 1us */ 72 #define C3_OVERHEAD 1 /* 1us */ 73 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 74 75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 76 module_param(max_cstate, uint, 0000); 77 static unsigned int nocst __read_mostly; 78 module_param(nocst, uint, 0000); 79 80 static unsigned int latency_factor __read_mostly = 2; 81 module_param(latency_factor, uint, 0644); 82 83 static u64 us_to_pm_timer_ticks(s64 t) 84 { 85 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); 86 } 87 /* 88 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 89 * For now disable this. Probably a bug somewhere else. 90 * 91 * To skip this limit, boot/load with a large max_cstate limit. 92 */ 93 static int set_max_cstate(const struct dmi_system_id *id) 94 { 95 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 96 return 0; 97 98 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 99 " Override with \"processor.max_cstate=%d\"\n", id->ident, 100 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 101 102 max_cstate = (long)id->driver_data; 103 104 return 0; 105 } 106 107 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 108 callers to only run once -AK */ 109 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 110 { set_max_cstate, "Clevo 5600D", { 111 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 112 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 113 (void *)2}, 114 { set_max_cstate, "Pavilion zv5000", { 115 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 116 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 117 (void *)1}, 118 { set_max_cstate, "Asus L8400B", { 119 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 120 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 121 (void *)1}, 122 {}, 123 }; 124 125 126 /* 127 * Callers should disable interrupts before the call and enable 128 * interrupts after return. 129 */ 130 static void acpi_safe_halt(void) 131 { 132 current_thread_info()->status &= ~TS_POLLING; 133 /* 134 * TS_POLLING-cleared state must be visible before we 135 * test NEED_RESCHED: 136 */ 137 smp_mb(); 138 if (!need_resched()) { 139 safe_halt(); 140 local_irq_disable(); 141 } 142 current_thread_info()->status |= TS_POLLING; 143 } 144 145 #ifdef ARCH_APICTIMER_STOPS_ON_C3 146 147 /* 148 * Some BIOS implementations switch to C3 in the published C2 state. 149 * This seems to be a common problem on AMD boxen, but other vendors 150 * are affected too. We pick the most conservative approach: we assume 151 * that the local APIC stops in both C2 and C3. 152 */ 153 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 154 struct acpi_processor_cx *cx) 155 { 156 struct acpi_processor_power *pwr = &pr->power; 157 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 158 159 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 160 return; 161 162 if (boot_cpu_has(X86_FEATURE_AMDC1E)) 163 type = ACPI_STATE_C1; 164 165 /* 166 * Check, if one of the previous states already marked the lapic 167 * unstable 168 */ 169 if (pwr->timer_broadcast_on_state < state) 170 return; 171 172 if (cx->type >= type) 173 pr->power.timer_broadcast_on_state = state; 174 } 175 176 static void __lapic_timer_propagate_broadcast(void *arg) 177 { 178 struct acpi_processor *pr = (struct acpi_processor *) arg; 179 unsigned long reason; 180 181 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 182 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 183 184 clockevents_notify(reason, &pr->id); 185 } 186 187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 188 { 189 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 190 (void *)pr, 1); 191 } 192 193 /* Power(C) State timer broadcast control */ 194 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 195 struct acpi_processor_cx *cx, 196 int broadcast) 197 { 198 int state = cx - pr->power.states; 199 200 if (state >= pr->power.timer_broadcast_on_state) { 201 unsigned long reason; 202 203 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 204 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 205 clockevents_notify(reason, &pr->id); 206 } 207 } 208 209 #else 210 211 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 212 struct acpi_processor_cx *cstate) { } 213 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 214 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 215 struct acpi_processor_cx *cx, 216 int broadcast) 217 { 218 } 219 220 #endif 221 222 /* 223 * Suspend / resume control 224 */ 225 static int acpi_idle_suspend; 226 static u32 saved_bm_rld; 227 228 static void acpi_idle_bm_rld_save(void) 229 { 230 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 231 } 232 static void acpi_idle_bm_rld_restore(void) 233 { 234 u32 resumed_bm_rld; 235 236 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 237 238 if (resumed_bm_rld != saved_bm_rld) 239 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 240 } 241 242 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 243 { 244 if (acpi_idle_suspend == 1) 245 return 0; 246 247 acpi_idle_bm_rld_save(); 248 acpi_idle_suspend = 1; 249 return 0; 250 } 251 252 int acpi_processor_resume(struct acpi_device * device) 253 { 254 if (acpi_idle_suspend == 0) 255 return 0; 256 257 acpi_idle_bm_rld_restore(); 258 acpi_idle_suspend = 0; 259 return 0; 260 } 261 262 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) 263 static void tsc_check_state(int state) 264 { 265 switch (boot_cpu_data.x86_vendor) { 266 case X86_VENDOR_AMD: 267 case X86_VENDOR_INTEL: 268 /* 269 * AMD Fam10h TSC will tick in all 270 * C/P/S0/S1 states when this bit is set. 271 */ 272 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 273 return; 274 275 /*FALL THROUGH*/ 276 default: 277 /* TSC could halt in idle, so notify users */ 278 if (state > ACPI_STATE_C1) 279 mark_tsc_unstable("TSC halts in idle"); 280 } 281 } 282 #else 283 static void tsc_check_state(int state) { return; } 284 #endif 285 286 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 287 { 288 289 if (!pr) 290 return -EINVAL; 291 292 if (!pr->pblk) 293 return -ENODEV; 294 295 /* if info is obtained from pblk/fadt, type equals state */ 296 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 297 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 298 299 #ifndef CONFIG_HOTPLUG_CPU 300 /* 301 * Check for P_LVL2_UP flag before entering C2 and above on 302 * an SMP system. 303 */ 304 if ((num_online_cpus() > 1) && 305 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 306 return -ENODEV; 307 #endif 308 309 /* determine C2 and C3 address from pblk */ 310 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 311 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 312 313 /* determine latencies from FADT */ 314 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 315 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 316 317 /* 318 * FADT specified C2 latency must be less than or equal to 319 * 100 microseconds. 320 */ 321 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 322 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 323 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); 324 /* invalidate C2 */ 325 pr->power.states[ACPI_STATE_C2].address = 0; 326 } 327 328 /* 329 * FADT supplied C3 latency must be less than or equal to 330 * 1000 microseconds. 331 */ 332 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 333 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 334 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); 335 /* invalidate C3 */ 336 pr->power.states[ACPI_STATE_C3].address = 0; 337 } 338 339 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 340 "lvl2[0x%08x] lvl3[0x%08x]\n", 341 pr->power.states[ACPI_STATE_C2].address, 342 pr->power.states[ACPI_STATE_C3].address)); 343 344 return 0; 345 } 346 347 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 348 { 349 if (!pr->power.states[ACPI_STATE_C1].valid) { 350 /* set the first C-State to C1 */ 351 /* all processors need to support C1 */ 352 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 353 pr->power.states[ACPI_STATE_C1].valid = 1; 354 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 355 } 356 /* the C0 state only exists as a filler in our array */ 357 pr->power.states[ACPI_STATE_C0].valid = 1; 358 return 0; 359 } 360 361 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 362 { 363 acpi_status status = 0; 364 u64 count; 365 int current_count; 366 int i; 367 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 368 union acpi_object *cst; 369 370 371 if (nocst) 372 return -ENODEV; 373 374 current_count = 0; 375 376 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 377 if (ACPI_FAILURE(status)) { 378 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 379 return -ENODEV; 380 } 381 382 cst = buffer.pointer; 383 384 /* There must be at least 2 elements */ 385 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 386 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 387 status = -EFAULT; 388 goto end; 389 } 390 391 count = cst->package.elements[0].integer.value; 392 393 /* Validate number of power states. */ 394 if (count < 1 || count != cst->package.count - 1) { 395 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 396 status = -EFAULT; 397 goto end; 398 } 399 400 /* Tell driver that at least _CST is supported. */ 401 pr->flags.has_cst = 1; 402 403 for (i = 1; i <= count; i++) { 404 union acpi_object *element; 405 union acpi_object *obj; 406 struct acpi_power_register *reg; 407 struct acpi_processor_cx cx; 408 409 memset(&cx, 0, sizeof(cx)); 410 411 element = &(cst->package.elements[i]); 412 if (element->type != ACPI_TYPE_PACKAGE) 413 continue; 414 415 if (element->package.count != 4) 416 continue; 417 418 obj = &(element->package.elements[0]); 419 420 if (obj->type != ACPI_TYPE_BUFFER) 421 continue; 422 423 reg = (struct acpi_power_register *)obj->buffer.pointer; 424 425 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 426 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 427 continue; 428 429 /* There should be an easy way to extract an integer... */ 430 obj = &(element->package.elements[1]); 431 if (obj->type != ACPI_TYPE_INTEGER) 432 continue; 433 434 cx.type = obj->integer.value; 435 /* 436 * Some buggy BIOSes won't list C1 in _CST - 437 * Let acpi_processor_get_power_info_default() handle them later 438 */ 439 if (i == 1 && cx.type != ACPI_STATE_C1) 440 current_count++; 441 442 cx.address = reg->address; 443 cx.index = current_count + 1; 444 445 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 446 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 447 if (acpi_processor_ffh_cstate_probe 448 (pr->id, &cx, reg) == 0) { 449 cx.entry_method = ACPI_CSTATE_FFH; 450 } else if (cx.type == ACPI_STATE_C1) { 451 /* 452 * C1 is a special case where FIXED_HARDWARE 453 * can be handled in non-MWAIT way as well. 454 * In that case, save this _CST entry info. 455 * Otherwise, ignore this info and continue. 456 */ 457 cx.entry_method = ACPI_CSTATE_HALT; 458 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 459 } else { 460 continue; 461 } 462 if (cx.type == ACPI_STATE_C1 && 463 (idle_halt || idle_nomwait)) { 464 /* 465 * In most cases the C1 space_id obtained from 466 * _CST object is FIXED_HARDWARE access mode. 467 * But when the option of idle=halt is added, 468 * the entry_method type should be changed from 469 * CSTATE_FFH to CSTATE_HALT. 470 * When the option of idle=nomwait is added, 471 * the C1 entry_method type should be 472 * CSTATE_HALT. 473 */ 474 cx.entry_method = ACPI_CSTATE_HALT; 475 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 476 } 477 } else { 478 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 479 cx.address); 480 } 481 482 if (cx.type == ACPI_STATE_C1) { 483 cx.valid = 1; 484 } 485 486 obj = &(element->package.elements[2]); 487 if (obj->type != ACPI_TYPE_INTEGER) 488 continue; 489 490 cx.latency = obj->integer.value; 491 492 obj = &(element->package.elements[3]); 493 if (obj->type != ACPI_TYPE_INTEGER) 494 continue; 495 496 cx.power = obj->integer.value; 497 498 current_count++; 499 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 500 501 /* 502 * We support total ACPI_PROCESSOR_MAX_POWER - 1 503 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 504 */ 505 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 506 printk(KERN_WARNING 507 "Limiting number of power states to max (%d)\n", 508 ACPI_PROCESSOR_MAX_POWER); 509 printk(KERN_WARNING 510 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 511 break; 512 } 513 } 514 515 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 516 current_count)); 517 518 /* Validate number of power states discovered */ 519 if (current_count < 2) 520 status = -EFAULT; 521 522 end: 523 kfree(buffer.pointer); 524 525 return status; 526 } 527 528 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 529 struct acpi_processor_cx *cx) 530 { 531 static int bm_check_flag = -1; 532 static int bm_control_flag = -1; 533 534 535 if (!cx->address) 536 return; 537 538 /* 539 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 540 * DMA transfers are used by any ISA device to avoid livelock. 541 * Note that we could disable Type-F DMA (as recommended by 542 * the erratum), but this is known to disrupt certain ISA 543 * devices thus we take the conservative approach. 544 */ 545 else if (errata.piix4.fdma) { 546 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 547 "C3 not supported on PIIX4 with Type-F DMA\n")); 548 return; 549 } 550 551 /* All the logic here assumes flags.bm_check is same across all CPUs */ 552 if (bm_check_flag == -1) { 553 /* Determine whether bm_check is needed based on CPU */ 554 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 555 bm_check_flag = pr->flags.bm_check; 556 bm_control_flag = pr->flags.bm_control; 557 } else { 558 pr->flags.bm_check = bm_check_flag; 559 pr->flags.bm_control = bm_control_flag; 560 } 561 562 if (pr->flags.bm_check) { 563 if (!pr->flags.bm_control) { 564 if (pr->flags.has_cst != 1) { 565 /* bus mastering control is necessary */ 566 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 567 "C3 support requires BM control\n")); 568 return; 569 } else { 570 /* Here we enter C3 without bus mastering */ 571 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 572 "C3 support without BM control\n")); 573 } 574 } 575 } else { 576 /* 577 * WBINVD should be set in fadt, for C3 state to be 578 * supported on when bm_check is not required. 579 */ 580 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 581 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 582 "Cache invalidation should work properly" 583 " for C3 to be enabled on SMP systems\n")); 584 return; 585 } 586 } 587 588 /* 589 * Otherwise we've met all of our C3 requirements. 590 * Normalize the C3 latency to expidite policy. Enable 591 * checking of bus mastering status (bm_check) so we can 592 * use this in our C3 policy 593 */ 594 cx->valid = 1; 595 596 cx->latency_ticks = cx->latency; 597 /* 598 * On older chipsets, BM_RLD needs to be set 599 * in order for Bus Master activity to wake the 600 * system from C3. Newer chipsets handle DMA 601 * during C3 automatically and BM_RLD is a NOP. 602 * In either case, the proper way to 603 * handle BM_RLD is to set it and leave it set. 604 */ 605 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 606 607 return; 608 } 609 610 static int acpi_processor_power_verify(struct acpi_processor *pr) 611 { 612 unsigned int i; 613 unsigned int working = 0; 614 615 pr->power.timer_broadcast_on_state = INT_MAX; 616 617 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 618 struct acpi_processor_cx *cx = &pr->power.states[i]; 619 620 switch (cx->type) { 621 case ACPI_STATE_C1: 622 cx->valid = 1; 623 break; 624 625 case ACPI_STATE_C2: 626 if (!cx->address) 627 break; 628 cx->valid = 1; 629 cx->latency_ticks = cx->latency; /* Normalize latency */ 630 break; 631 632 case ACPI_STATE_C3: 633 acpi_processor_power_verify_c3(pr, cx); 634 break; 635 } 636 if (!cx->valid) 637 continue; 638 639 lapic_timer_check_state(i, pr, cx); 640 tsc_check_state(cx->type); 641 working++; 642 } 643 644 lapic_timer_propagate_broadcast(pr); 645 646 return (working); 647 } 648 649 static int acpi_processor_get_power_info(struct acpi_processor *pr) 650 { 651 unsigned int i; 652 int result; 653 654 655 /* NOTE: the idle thread may not be running while calling 656 * this function */ 657 658 /* Zero initialize all the C-states info. */ 659 memset(pr->power.states, 0, sizeof(pr->power.states)); 660 661 result = acpi_processor_get_power_info_cst(pr); 662 if (result == -ENODEV) 663 result = acpi_processor_get_power_info_fadt(pr); 664 665 if (result) 666 return result; 667 668 acpi_processor_get_power_info_default(pr); 669 670 pr->power.count = acpi_processor_power_verify(pr); 671 672 /* 673 * if one state of type C2 or C3 is available, mark this 674 * CPU as being "idle manageable" 675 */ 676 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 677 if (pr->power.states[i].valid) { 678 pr->power.count = i; 679 if (pr->power.states[i].type >= ACPI_STATE_C2) 680 pr->flags.power = 1; 681 } 682 } 683 684 return 0; 685 } 686 687 #ifdef CONFIG_ACPI_PROCFS 688 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 689 { 690 struct acpi_processor *pr = seq->private; 691 unsigned int i; 692 693 694 if (!pr) 695 goto end; 696 697 seq_printf(seq, "active state: C%zd\n" 698 "max_cstate: C%d\n" 699 "maximum allowed latency: %d usec\n", 700 pr->power.state ? pr->power.state - pr->power.states : 0, 701 max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY)); 702 703 seq_puts(seq, "states:\n"); 704 705 for (i = 1; i <= pr->power.count; i++) { 706 seq_printf(seq, " %cC%d: ", 707 (&pr->power.states[i] == 708 pr->power.state ? '*' : ' '), i); 709 710 if (!pr->power.states[i].valid) { 711 seq_puts(seq, "<not supported>\n"); 712 continue; 713 } 714 715 switch (pr->power.states[i].type) { 716 case ACPI_STATE_C1: 717 seq_printf(seq, "type[C1] "); 718 break; 719 case ACPI_STATE_C2: 720 seq_printf(seq, "type[C2] "); 721 break; 722 case ACPI_STATE_C3: 723 seq_printf(seq, "type[C3] "); 724 break; 725 default: 726 seq_printf(seq, "type[--] "); 727 break; 728 } 729 730 seq_puts(seq, "promotion[--] "); 731 732 seq_puts(seq, "demotion[--] "); 733 734 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020Lu]\n", 735 pr->power.states[i].latency, 736 pr->power.states[i].usage, 737 us_to_pm_timer_ticks(pr->power.states[i].time)); 738 } 739 740 end: 741 return 0; 742 } 743 744 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 745 { 746 return single_open(file, acpi_processor_power_seq_show, 747 PDE(inode)->data); 748 } 749 750 static const struct file_operations acpi_processor_power_fops = { 751 .owner = THIS_MODULE, 752 .open = acpi_processor_power_open_fs, 753 .read = seq_read, 754 .llseek = seq_lseek, 755 .release = single_release, 756 }; 757 #endif 758 759 /** 760 * acpi_idle_bm_check - checks if bus master activity was detected 761 */ 762 static int acpi_idle_bm_check(void) 763 { 764 u32 bm_status = 0; 765 766 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 767 if (bm_status) 768 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 769 /* 770 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 771 * the true state of bus mastering activity; forcing us to 772 * manually check the BMIDEA bit of each IDE channel. 773 */ 774 else if (errata.piix4.bmisx) { 775 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 776 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 777 bm_status = 1; 778 } 779 return bm_status; 780 } 781 782 /** 783 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 784 * @cx: cstate data 785 * 786 * Caller disables interrupt before call and enables interrupt after return. 787 */ 788 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 789 { 790 /* Don't trace irqs off for idle */ 791 stop_critical_timings(); 792 if (cx->entry_method == ACPI_CSTATE_FFH) { 793 /* Call into architectural FFH based C-state */ 794 acpi_processor_ffh_cstate_enter(cx); 795 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 796 acpi_safe_halt(); 797 } else { 798 int unused; 799 /* IO port based C-state */ 800 inb(cx->address); 801 /* Dummy wait op - must do something useless after P_LVL2 read 802 because chipsets cannot guarantee that STPCLK# signal 803 gets asserted in time to freeze execution properly. */ 804 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 805 } 806 start_critical_timings(); 807 } 808 809 /** 810 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 811 * @dev: the target CPU 812 * @state: the state data 813 * 814 * This is equivalent to the HALT instruction. 815 */ 816 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 817 struct cpuidle_state *state) 818 { 819 ktime_t kt1, kt2; 820 s64 idle_time; 821 struct acpi_processor *pr; 822 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 823 824 pr = __get_cpu_var(processors); 825 826 if (unlikely(!pr)) 827 return 0; 828 829 local_irq_disable(); 830 831 /* Do not access any ACPI IO ports in suspend path */ 832 if (acpi_idle_suspend) { 833 local_irq_enable(); 834 cpu_relax(); 835 return 0; 836 } 837 838 lapic_timer_state_broadcast(pr, cx, 1); 839 kt1 = ktime_get_real(); 840 acpi_idle_do_entry(cx); 841 kt2 = ktime_get_real(); 842 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 843 844 local_irq_enable(); 845 cx->usage++; 846 lapic_timer_state_broadcast(pr, cx, 0); 847 848 return idle_time; 849 } 850 851 /** 852 * acpi_idle_enter_simple - enters an ACPI state without BM handling 853 * @dev: the target CPU 854 * @state: the state data 855 */ 856 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 857 struct cpuidle_state *state) 858 { 859 struct acpi_processor *pr; 860 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 861 ktime_t kt1, kt2; 862 s64 idle_time_ns; 863 s64 idle_time; 864 865 pr = __get_cpu_var(processors); 866 867 if (unlikely(!pr)) 868 return 0; 869 870 if (acpi_idle_suspend) 871 return(acpi_idle_enter_c1(dev, state)); 872 873 local_irq_disable(); 874 875 if (cx->entry_method != ACPI_CSTATE_FFH) { 876 current_thread_info()->status &= ~TS_POLLING; 877 /* 878 * TS_POLLING-cleared state must be visible before we test 879 * NEED_RESCHED: 880 */ 881 smp_mb(); 882 883 if (unlikely(need_resched())) { 884 current_thread_info()->status |= TS_POLLING; 885 local_irq_enable(); 886 return 0; 887 } 888 } 889 890 /* 891 * Must be done before busmaster disable as we might need to 892 * access HPET ! 893 */ 894 lapic_timer_state_broadcast(pr, cx, 1); 895 896 if (cx->type == ACPI_STATE_C3) 897 ACPI_FLUSH_CPU_CACHE(); 898 899 kt1 = ktime_get_real(); 900 /* Tell the scheduler that we are going deep-idle: */ 901 sched_clock_idle_sleep_event(); 902 acpi_idle_do_entry(cx); 903 kt2 = ktime_get_real(); 904 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 905 idle_time = idle_time_ns; 906 do_div(idle_time, NSEC_PER_USEC); 907 908 /* Tell the scheduler how much we idled: */ 909 sched_clock_idle_wakeup_event(idle_time_ns); 910 911 local_irq_enable(); 912 if (cx->entry_method != ACPI_CSTATE_FFH) 913 current_thread_info()->status |= TS_POLLING; 914 915 cx->usage++; 916 917 lapic_timer_state_broadcast(pr, cx, 0); 918 cx->time += idle_time; 919 return idle_time; 920 } 921 922 static int c3_cpu_count; 923 static DEFINE_SPINLOCK(c3_lock); 924 925 /** 926 * acpi_idle_enter_bm - enters C3 with proper BM handling 927 * @dev: the target CPU 928 * @state: the state data 929 * 930 * If BM is detected, the deepest non-C3 idle state is entered instead. 931 */ 932 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 933 struct cpuidle_state *state) 934 { 935 struct acpi_processor *pr; 936 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 937 ktime_t kt1, kt2; 938 s64 idle_time_ns; 939 s64 idle_time; 940 941 942 pr = __get_cpu_var(processors); 943 944 if (unlikely(!pr)) 945 return 0; 946 947 if (acpi_idle_suspend) 948 return(acpi_idle_enter_c1(dev, state)); 949 950 if (acpi_idle_bm_check()) { 951 if (dev->safe_state) { 952 dev->last_state = dev->safe_state; 953 return dev->safe_state->enter(dev, dev->safe_state); 954 } else { 955 local_irq_disable(); 956 acpi_safe_halt(); 957 local_irq_enable(); 958 return 0; 959 } 960 } 961 962 local_irq_disable(); 963 964 if (cx->entry_method != ACPI_CSTATE_FFH) { 965 current_thread_info()->status &= ~TS_POLLING; 966 /* 967 * TS_POLLING-cleared state must be visible before we test 968 * NEED_RESCHED: 969 */ 970 smp_mb(); 971 972 if (unlikely(need_resched())) { 973 current_thread_info()->status |= TS_POLLING; 974 local_irq_enable(); 975 return 0; 976 } 977 } 978 979 acpi_unlazy_tlb(smp_processor_id()); 980 981 /* Tell the scheduler that we are going deep-idle: */ 982 sched_clock_idle_sleep_event(); 983 /* 984 * Must be done before busmaster disable as we might need to 985 * access HPET ! 986 */ 987 lapic_timer_state_broadcast(pr, cx, 1); 988 989 kt1 = ktime_get_real(); 990 /* 991 * disable bus master 992 * bm_check implies we need ARB_DIS 993 * !bm_check implies we need cache flush 994 * bm_control implies whether we can do ARB_DIS 995 * 996 * That leaves a case where bm_check is set and bm_control is 997 * not set. In that case we cannot do much, we enter C3 998 * without doing anything. 999 */ 1000 if (pr->flags.bm_check && pr->flags.bm_control) { 1001 spin_lock(&c3_lock); 1002 c3_cpu_count++; 1003 /* Disable bus master arbitration when all CPUs are in C3 */ 1004 if (c3_cpu_count == num_online_cpus()) 1005 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 1006 spin_unlock(&c3_lock); 1007 } else if (!pr->flags.bm_check) { 1008 ACPI_FLUSH_CPU_CACHE(); 1009 } 1010 1011 acpi_idle_do_entry(cx); 1012 1013 /* Re-enable bus master arbitration */ 1014 if (pr->flags.bm_check && pr->flags.bm_control) { 1015 spin_lock(&c3_lock); 1016 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 1017 c3_cpu_count--; 1018 spin_unlock(&c3_lock); 1019 } 1020 kt2 = ktime_get_real(); 1021 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 1022 idle_time = idle_time_ns; 1023 do_div(idle_time, NSEC_PER_USEC); 1024 1025 /* Tell the scheduler how much we idled: */ 1026 sched_clock_idle_wakeup_event(idle_time_ns); 1027 1028 local_irq_enable(); 1029 if (cx->entry_method != ACPI_CSTATE_FFH) 1030 current_thread_info()->status |= TS_POLLING; 1031 1032 cx->usage++; 1033 1034 lapic_timer_state_broadcast(pr, cx, 0); 1035 cx->time += idle_time; 1036 return idle_time; 1037 } 1038 1039 struct cpuidle_driver acpi_idle_driver = { 1040 .name = "acpi_idle", 1041 .owner = THIS_MODULE, 1042 }; 1043 1044 /** 1045 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE 1046 * @pr: the ACPI processor 1047 */ 1048 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) 1049 { 1050 int i, count = CPUIDLE_DRIVER_STATE_START; 1051 struct acpi_processor_cx *cx; 1052 struct cpuidle_state *state; 1053 struct cpuidle_device *dev = &pr->power.dev; 1054 1055 if (!pr->flags.power_setup_done) 1056 return -EINVAL; 1057 1058 if (pr->flags.power == 0) { 1059 return -EINVAL; 1060 } 1061 1062 dev->cpu = pr->id; 1063 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1064 dev->states[i].name[0] = '\0'; 1065 dev->states[i].desc[0] = '\0'; 1066 } 1067 1068 if (max_cstate == 0) 1069 max_cstate = 1; 1070 1071 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1072 cx = &pr->power.states[i]; 1073 state = &dev->states[count]; 1074 1075 if (!cx->valid) 1076 continue; 1077 1078 #ifdef CONFIG_HOTPLUG_CPU 1079 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1080 !pr->flags.has_cst && 1081 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1082 continue; 1083 #endif 1084 cpuidle_set_statedata(state, cx); 1085 1086 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1087 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1088 state->exit_latency = cx->latency; 1089 state->target_residency = cx->latency * latency_factor; 1090 state->power_usage = cx->power; 1091 1092 state->flags = 0; 1093 switch (cx->type) { 1094 case ACPI_STATE_C1: 1095 state->flags |= CPUIDLE_FLAG_SHALLOW; 1096 if (cx->entry_method == ACPI_CSTATE_FFH) 1097 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1098 1099 state->enter = acpi_idle_enter_c1; 1100 dev->safe_state = state; 1101 break; 1102 1103 case ACPI_STATE_C2: 1104 state->flags |= CPUIDLE_FLAG_BALANCED; 1105 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1106 state->enter = acpi_idle_enter_simple; 1107 dev->safe_state = state; 1108 break; 1109 1110 case ACPI_STATE_C3: 1111 state->flags |= CPUIDLE_FLAG_DEEP; 1112 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1113 state->flags |= CPUIDLE_FLAG_CHECK_BM; 1114 state->enter = pr->flags.bm_check ? 1115 acpi_idle_enter_bm : 1116 acpi_idle_enter_simple; 1117 break; 1118 } 1119 1120 count++; 1121 if (count == CPUIDLE_STATE_MAX) 1122 break; 1123 } 1124 1125 dev->state_count = count; 1126 1127 if (!count) 1128 return -EINVAL; 1129 1130 return 0; 1131 } 1132 1133 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1134 { 1135 int ret = 0; 1136 1137 if (boot_option_idle_override) 1138 return 0; 1139 1140 if (!pr) 1141 return -EINVAL; 1142 1143 if (nocst) { 1144 return -ENODEV; 1145 } 1146 1147 if (!pr->flags.power_setup_done) 1148 return -ENODEV; 1149 1150 cpuidle_pause_and_lock(); 1151 cpuidle_disable_device(&pr->power.dev); 1152 acpi_processor_get_power_info(pr); 1153 if (pr->flags.power) { 1154 acpi_processor_setup_cpuidle(pr); 1155 ret = cpuidle_enable_device(&pr->power.dev); 1156 } 1157 cpuidle_resume_and_unlock(); 1158 1159 return ret; 1160 } 1161 1162 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1163 struct acpi_device *device) 1164 { 1165 acpi_status status = 0; 1166 static int first_run; 1167 #ifdef CONFIG_ACPI_PROCFS 1168 struct proc_dir_entry *entry = NULL; 1169 #endif 1170 1171 if (boot_option_idle_override) 1172 return 0; 1173 1174 if (!first_run) { 1175 if (idle_halt) { 1176 /* 1177 * When the boot option of "idle=halt" is added, halt 1178 * is used for CPU IDLE. 1179 * In such case C2/C3 is meaningless. So the max_cstate 1180 * is set to one. 1181 */ 1182 max_cstate = 1; 1183 } 1184 dmi_check_system(processor_power_dmi_table); 1185 max_cstate = acpi_processor_cstate_check(max_cstate); 1186 if (max_cstate < ACPI_C_STATES_MAX) 1187 printk(KERN_NOTICE 1188 "ACPI: processor limited to max C-state %d\n", 1189 max_cstate); 1190 first_run++; 1191 } 1192 1193 if (!pr) 1194 return -EINVAL; 1195 1196 if (acpi_gbl_FADT.cst_control && !nocst) { 1197 status = 1198 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1199 if (ACPI_FAILURE(status)) { 1200 ACPI_EXCEPTION((AE_INFO, status, 1201 "Notifying BIOS of _CST ability failed")); 1202 } 1203 } 1204 1205 acpi_processor_get_power_info(pr); 1206 pr->flags.power_setup_done = 1; 1207 1208 /* 1209 * Install the idle handler if processor power management is supported. 1210 * Note that we use previously set idle handler will be used on 1211 * platforms that only support C1. 1212 */ 1213 if (pr->flags.power) { 1214 acpi_processor_setup_cpuidle(pr); 1215 if (cpuidle_register_device(&pr->power.dev)) 1216 return -EIO; 1217 } 1218 #ifdef CONFIG_ACPI_PROCFS 1219 /* 'power' [R] */ 1220 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, 1221 S_IRUGO, acpi_device_dir(device), 1222 &acpi_processor_power_fops, 1223 acpi_driver_data(device)); 1224 if (!entry) 1225 return -EIO; 1226 #endif 1227 return 0; 1228 } 1229 1230 int acpi_processor_power_exit(struct acpi_processor *pr, 1231 struct acpi_device *device) 1232 { 1233 if (boot_option_idle_override) 1234 return 0; 1235 1236 cpuidle_unregister_device(&pr->power.dev); 1237 pr->flags.power_setup_done = 0; 1238 1239 #ifdef CONFIG_ACPI_PROCFS 1240 if (acpi_device_dir(device)) 1241 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1242 acpi_device_dir(device)); 1243 #endif 1244 1245 return 0; 1246 } 1247