xref: /linux/drivers/acpi/processor_idle.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/acpi.h>
39 #include <linux/dmi.h>
40 #include <linux/moduleparam.h>
41 #include <linux/sched.h>	/* need_resched() */
42 #include <linux/pm_qos_params.h>
43 #include <linux/clockchips.h>
44 #include <linux/cpuidle.h>
45 #include <linux/irqflags.h>
46 
47 /*
48  * Include the apic definitions for x86 to have the APIC timer related defines
49  * available also for UP (on SMP it gets magically included via linux/smp.h).
50  * asm/acpi.h is not an option, as it would require more include magic. Also
51  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52  */
53 #ifdef CONFIG_X86
54 #include <asm/apic.h>
55 #endif
56 
57 #include <asm/io.h>
58 #include <asm/uaccess.h>
59 
60 #include <acpi/acpi_bus.h>
61 #include <acpi/processor.h>
62 #include <asm/processor.h>
63 
64 #define PREFIX "ACPI: "
65 
66 #define ACPI_PROCESSOR_CLASS            "processor"
67 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
68 ACPI_MODULE_NAME("processor_idle");
69 #define ACPI_PROCESSOR_FILE_POWER	"power"
70 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
71 #define C2_OVERHEAD			1	/* 1us */
72 #define C3_OVERHEAD			1	/* 1us */
73 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
74 
75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
76 module_param(max_cstate, uint, 0000);
77 static unsigned int nocst __read_mostly;
78 module_param(nocst, uint, 0000);
79 
80 static unsigned int latency_factor __read_mostly = 2;
81 module_param(latency_factor, uint, 0644);
82 
83 static u64 us_to_pm_timer_ticks(s64 t)
84 {
85 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
86 }
87 /*
88  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
89  * For now disable this. Probably a bug somewhere else.
90  *
91  * To skip this limit, boot/load with a large max_cstate limit.
92  */
93 static int set_max_cstate(const struct dmi_system_id *id)
94 {
95 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
96 		return 0;
97 
98 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
99 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
100 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
101 
102 	max_cstate = (long)id->driver_data;
103 
104 	return 0;
105 }
106 
107 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
108    callers to only run once -AK */
109 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
110 	{ set_max_cstate, "Clevo 5600D", {
111 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
112 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
113 	 (void *)2},
114 	{ set_max_cstate, "Pavilion zv5000", {
115 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
116 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
117 	 (void *)1},
118 	{ set_max_cstate, "Asus L8400B", {
119 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
120 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
121 	 (void *)1},
122 	{},
123 };
124 
125 
126 /*
127  * Callers should disable interrupts before the call and enable
128  * interrupts after return.
129  */
130 static void acpi_safe_halt(void)
131 {
132 	current_thread_info()->status &= ~TS_POLLING;
133 	/*
134 	 * TS_POLLING-cleared state must be visible before we
135 	 * test NEED_RESCHED:
136 	 */
137 	smp_mb();
138 	if (!need_resched()) {
139 		safe_halt();
140 		local_irq_disable();
141 	}
142 	current_thread_info()->status |= TS_POLLING;
143 }
144 
145 #ifdef ARCH_APICTIMER_STOPS_ON_C3
146 
147 /*
148  * Some BIOS implementations switch to C3 in the published C2 state.
149  * This seems to be a common problem on AMD boxen, but other vendors
150  * are affected too. We pick the most conservative approach: we assume
151  * that the local APIC stops in both C2 and C3.
152  */
153 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
154 				   struct acpi_processor_cx *cx)
155 {
156 	struct acpi_processor_power *pwr = &pr->power;
157 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
158 
159 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
160 		return;
161 
162 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
163 		type = ACPI_STATE_C1;
164 
165 	/*
166 	 * Check, if one of the previous states already marked the lapic
167 	 * unstable
168 	 */
169 	if (pwr->timer_broadcast_on_state < state)
170 		return;
171 
172 	if (cx->type >= type)
173 		pr->power.timer_broadcast_on_state = state;
174 }
175 
176 static void __lapic_timer_propagate_broadcast(void *arg)
177 {
178 	struct acpi_processor *pr = (struct acpi_processor *) arg;
179 	unsigned long reason;
180 
181 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
182 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
183 
184 	clockevents_notify(reason, &pr->id);
185 }
186 
187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
188 {
189 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
190 				 (void *)pr, 1);
191 }
192 
193 /* Power(C) State timer broadcast control */
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195 				       struct acpi_processor_cx *cx,
196 				       int broadcast)
197 {
198 	int state = cx - pr->power.states;
199 
200 	if (state >= pr->power.timer_broadcast_on_state) {
201 		unsigned long reason;
202 
203 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
204 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
205 		clockevents_notify(reason, &pr->id);
206 	}
207 }
208 
209 #else
210 
211 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
212 				   struct acpi_processor_cx *cstate) { }
213 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
214 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
215 				       struct acpi_processor_cx *cx,
216 				       int broadcast)
217 {
218 }
219 
220 #endif
221 
222 /*
223  * Suspend / resume control
224  */
225 static int acpi_idle_suspend;
226 static u32 saved_bm_rld;
227 
228 static void acpi_idle_bm_rld_save(void)
229 {
230 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
231 }
232 static void acpi_idle_bm_rld_restore(void)
233 {
234 	u32 resumed_bm_rld;
235 
236 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
237 
238 	if (resumed_bm_rld != saved_bm_rld)
239 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
240 }
241 
242 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
243 {
244 	if (acpi_idle_suspend == 1)
245 		return 0;
246 
247 	acpi_idle_bm_rld_save();
248 	acpi_idle_suspend = 1;
249 	return 0;
250 }
251 
252 int acpi_processor_resume(struct acpi_device * device)
253 {
254 	if (acpi_idle_suspend == 0)
255 		return 0;
256 
257 	acpi_idle_bm_rld_restore();
258 	acpi_idle_suspend = 0;
259 	return 0;
260 }
261 
262 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
263 static void tsc_check_state(int state)
264 {
265 	switch (boot_cpu_data.x86_vendor) {
266 	case X86_VENDOR_AMD:
267 	case X86_VENDOR_INTEL:
268 		/*
269 		 * AMD Fam10h TSC will tick in all
270 		 * C/P/S0/S1 states when this bit is set.
271 		 */
272 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
273 			return;
274 
275 		/*FALL THROUGH*/
276 	default:
277 		/* TSC could halt in idle, so notify users */
278 		if (state > ACPI_STATE_C1)
279 			mark_tsc_unstable("TSC halts in idle");
280 	}
281 }
282 #else
283 static void tsc_check_state(int state) { return; }
284 #endif
285 
286 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
287 {
288 
289 	if (!pr)
290 		return -EINVAL;
291 
292 	if (!pr->pblk)
293 		return -ENODEV;
294 
295 	/* if info is obtained from pblk/fadt, type equals state */
296 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
297 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
298 
299 #ifndef CONFIG_HOTPLUG_CPU
300 	/*
301 	 * Check for P_LVL2_UP flag before entering C2 and above on
302 	 * an SMP system.
303 	 */
304 	if ((num_online_cpus() > 1) &&
305 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
306 		return -ENODEV;
307 #endif
308 
309 	/* determine C2 and C3 address from pblk */
310 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
311 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
312 
313 	/* determine latencies from FADT */
314 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
315 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
316 
317 	/*
318 	 * FADT specified C2 latency must be less than or equal to
319 	 * 100 microseconds.
320 	 */
321 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
322 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
323 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
324 		/* invalidate C2 */
325 		pr->power.states[ACPI_STATE_C2].address = 0;
326 	}
327 
328 	/*
329 	 * FADT supplied C3 latency must be less than or equal to
330 	 * 1000 microseconds.
331 	 */
332 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
333 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
334 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
335 		/* invalidate C3 */
336 		pr->power.states[ACPI_STATE_C3].address = 0;
337 	}
338 
339 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
340 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
341 			  pr->power.states[ACPI_STATE_C2].address,
342 			  pr->power.states[ACPI_STATE_C3].address));
343 
344 	return 0;
345 }
346 
347 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
348 {
349 	if (!pr->power.states[ACPI_STATE_C1].valid) {
350 		/* set the first C-State to C1 */
351 		/* all processors need to support C1 */
352 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
353 		pr->power.states[ACPI_STATE_C1].valid = 1;
354 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
355 	}
356 	/* the C0 state only exists as a filler in our array */
357 	pr->power.states[ACPI_STATE_C0].valid = 1;
358 	return 0;
359 }
360 
361 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
362 {
363 	acpi_status status = 0;
364 	u64 count;
365 	int current_count;
366 	int i;
367 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
368 	union acpi_object *cst;
369 
370 
371 	if (nocst)
372 		return -ENODEV;
373 
374 	current_count = 0;
375 
376 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
377 	if (ACPI_FAILURE(status)) {
378 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
379 		return -ENODEV;
380 	}
381 
382 	cst = buffer.pointer;
383 
384 	/* There must be at least 2 elements */
385 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
386 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
387 		status = -EFAULT;
388 		goto end;
389 	}
390 
391 	count = cst->package.elements[0].integer.value;
392 
393 	/* Validate number of power states. */
394 	if (count < 1 || count != cst->package.count - 1) {
395 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
396 		status = -EFAULT;
397 		goto end;
398 	}
399 
400 	/* Tell driver that at least _CST is supported. */
401 	pr->flags.has_cst = 1;
402 
403 	for (i = 1; i <= count; i++) {
404 		union acpi_object *element;
405 		union acpi_object *obj;
406 		struct acpi_power_register *reg;
407 		struct acpi_processor_cx cx;
408 
409 		memset(&cx, 0, sizeof(cx));
410 
411 		element = &(cst->package.elements[i]);
412 		if (element->type != ACPI_TYPE_PACKAGE)
413 			continue;
414 
415 		if (element->package.count != 4)
416 			continue;
417 
418 		obj = &(element->package.elements[0]);
419 
420 		if (obj->type != ACPI_TYPE_BUFFER)
421 			continue;
422 
423 		reg = (struct acpi_power_register *)obj->buffer.pointer;
424 
425 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
426 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
427 			continue;
428 
429 		/* There should be an easy way to extract an integer... */
430 		obj = &(element->package.elements[1]);
431 		if (obj->type != ACPI_TYPE_INTEGER)
432 			continue;
433 
434 		cx.type = obj->integer.value;
435 		/*
436 		 * Some buggy BIOSes won't list C1 in _CST -
437 		 * Let acpi_processor_get_power_info_default() handle them later
438 		 */
439 		if (i == 1 && cx.type != ACPI_STATE_C1)
440 			current_count++;
441 
442 		cx.address = reg->address;
443 		cx.index = current_count + 1;
444 
445 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
446 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
447 			if (acpi_processor_ffh_cstate_probe
448 					(pr->id, &cx, reg) == 0) {
449 				cx.entry_method = ACPI_CSTATE_FFH;
450 			} else if (cx.type == ACPI_STATE_C1) {
451 				/*
452 				 * C1 is a special case where FIXED_HARDWARE
453 				 * can be handled in non-MWAIT way as well.
454 				 * In that case, save this _CST entry info.
455 				 * Otherwise, ignore this info and continue.
456 				 */
457 				cx.entry_method = ACPI_CSTATE_HALT;
458 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
459 			} else {
460 				continue;
461 			}
462 			if (cx.type == ACPI_STATE_C1 &&
463 					(idle_halt || idle_nomwait)) {
464 				/*
465 				 * In most cases the C1 space_id obtained from
466 				 * _CST object is FIXED_HARDWARE access mode.
467 				 * But when the option of idle=halt is added,
468 				 * the entry_method type should be changed from
469 				 * CSTATE_FFH to CSTATE_HALT.
470 				 * When the option of idle=nomwait is added,
471 				 * the C1 entry_method type should be
472 				 * CSTATE_HALT.
473 				 */
474 				cx.entry_method = ACPI_CSTATE_HALT;
475 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
476 			}
477 		} else {
478 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
479 				 cx.address);
480 		}
481 
482 		if (cx.type == ACPI_STATE_C1) {
483 			cx.valid = 1;
484 		}
485 
486 		obj = &(element->package.elements[2]);
487 		if (obj->type != ACPI_TYPE_INTEGER)
488 			continue;
489 
490 		cx.latency = obj->integer.value;
491 
492 		obj = &(element->package.elements[3]);
493 		if (obj->type != ACPI_TYPE_INTEGER)
494 			continue;
495 
496 		cx.power = obj->integer.value;
497 
498 		current_count++;
499 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
500 
501 		/*
502 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
503 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
504 		 */
505 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
506 			printk(KERN_WARNING
507 			       "Limiting number of power states to max (%d)\n",
508 			       ACPI_PROCESSOR_MAX_POWER);
509 			printk(KERN_WARNING
510 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
511 			break;
512 		}
513 	}
514 
515 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
516 			  current_count));
517 
518 	/* Validate number of power states discovered */
519 	if (current_count < 2)
520 		status = -EFAULT;
521 
522       end:
523 	kfree(buffer.pointer);
524 
525 	return status;
526 }
527 
528 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
529 					   struct acpi_processor_cx *cx)
530 {
531 	static int bm_check_flag = -1;
532 	static int bm_control_flag = -1;
533 
534 
535 	if (!cx->address)
536 		return;
537 
538 	/*
539 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
540 	 * DMA transfers are used by any ISA device to avoid livelock.
541 	 * Note that we could disable Type-F DMA (as recommended by
542 	 * the erratum), but this is known to disrupt certain ISA
543 	 * devices thus we take the conservative approach.
544 	 */
545 	else if (errata.piix4.fdma) {
546 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
547 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
548 		return;
549 	}
550 
551 	/* All the logic here assumes flags.bm_check is same across all CPUs */
552 	if (bm_check_flag == -1) {
553 		/* Determine whether bm_check is needed based on CPU  */
554 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
555 		bm_check_flag = pr->flags.bm_check;
556 		bm_control_flag = pr->flags.bm_control;
557 	} else {
558 		pr->flags.bm_check = bm_check_flag;
559 		pr->flags.bm_control = bm_control_flag;
560 	}
561 
562 	if (pr->flags.bm_check) {
563 		if (!pr->flags.bm_control) {
564 			if (pr->flags.has_cst != 1) {
565 				/* bus mastering control is necessary */
566 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
567 					"C3 support requires BM control\n"));
568 				return;
569 			} else {
570 				/* Here we enter C3 without bus mastering */
571 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 					"C3 support without BM control\n"));
573 			}
574 		}
575 	} else {
576 		/*
577 		 * WBINVD should be set in fadt, for C3 state to be
578 		 * supported on when bm_check is not required.
579 		 */
580 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
581 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
582 					  "Cache invalidation should work properly"
583 					  " for C3 to be enabled on SMP systems\n"));
584 			return;
585 		}
586 	}
587 
588 	/*
589 	 * Otherwise we've met all of our C3 requirements.
590 	 * Normalize the C3 latency to expidite policy.  Enable
591 	 * checking of bus mastering status (bm_check) so we can
592 	 * use this in our C3 policy
593 	 */
594 	cx->valid = 1;
595 
596 	cx->latency_ticks = cx->latency;
597 	/*
598 	 * On older chipsets, BM_RLD needs to be set
599 	 * in order for Bus Master activity to wake the
600 	 * system from C3.  Newer chipsets handle DMA
601 	 * during C3 automatically and BM_RLD is a NOP.
602 	 * In either case, the proper way to
603 	 * handle BM_RLD is to set it and leave it set.
604 	 */
605 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
606 
607 	return;
608 }
609 
610 static int acpi_processor_power_verify(struct acpi_processor *pr)
611 {
612 	unsigned int i;
613 	unsigned int working = 0;
614 
615 	pr->power.timer_broadcast_on_state = INT_MAX;
616 
617 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
618 		struct acpi_processor_cx *cx = &pr->power.states[i];
619 
620 		switch (cx->type) {
621 		case ACPI_STATE_C1:
622 			cx->valid = 1;
623 			break;
624 
625 		case ACPI_STATE_C2:
626 			if (!cx->address)
627 				break;
628 			cx->valid = 1;
629 			cx->latency_ticks = cx->latency; /* Normalize latency */
630 			break;
631 
632 		case ACPI_STATE_C3:
633 			acpi_processor_power_verify_c3(pr, cx);
634 			break;
635 		}
636 		if (!cx->valid)
637 			continue;
638 
639 		lapic_timer_check_state(i, pr, cx);
640 		tsc_check_state(cx->type);
641 		working++;
642 	}
643 
644 	lapic_timer_propagate_broadcast(pr);
645 
646 	return (working);
647 }
648 
649 static int acpi_processor_get_power_info(struct acpi_processor *pr)
650 {
651 	unsigned int i;
652 	int result;
653 
654 
655 	/* NOTE: the idle thread may not be running while calling
656 	 * this function */
657 
658 	/* Zero initialize all the C-states info. */
659 	memset(pr->power.states, 0, sizeof(pr->power.states));
660 
661 	result = acpi_processor_get_power_info_cst(pr);
662 	if (result == -ENODEV)
663 		result = acpi_processor_get_power_info_fadt(pr);
664 
665 	if (result)
666 		return result;
667 
668 	acpi_processor_get_power_info_default(pr);
669 
670 	pr->power.count = acpi_processor_power_verify(pr);
671 
672 	/*
673 	 * if one state of type C2 or C3 is available, mark this
674 	 * CPU as being "idle manageable"
675 	 */
676 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
677 		if (pr->power.states[i].valid) {
678 			pr->power.count = i;
679 			if (pr->power.states[i].type >= ACPI_STATE_C2)
680 				pr->flags.power = 1;
681 		}
682 	}
683 
684 	return 0;
685 }
686 
687 #ifdef CONFIG_ACPI_PROCFS
688 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
689 {
690 	struct acpi_processor *pr = seq->private;
691 	unsigned int i;
692 
693 
694 	if (!pr)
695 		goto end;
696 
697 	seq_printf(seq, "active state:            C%zd\n"
698 		   "max_cstate:              C%d\n"
699 		   "maximum allowed latency: %d usec\n",
700 		   pr->power.state ? pr->power.state - pr->power.states : 0,
701 		   max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY));
702 
703 	seq_puts(seq, "states:\n");
704 
705 	for (i = 1; i <= pr->power.count; i++) {
706 		seq_printf(seq, "   %cC%d:                  ",
707 			   (&pr->power.states[i] ==
708 			    pr->power.state ? '*' : ' '), i);
709 
710 		if (!pr->power.states[i].valid) {
711 			seq_puts(seq, "<not supported>\n");
712 			continue;
713 		}
714 
715 		switch (pr->power.states[i].type) {
716 		case ACPI_STATE_C1:
717 			seq_printf(seq, "type[C1] ");
718 			break;
719 		case ACPI_STATE_C2:
720 			seq_printf(seq, "type[C2] ");
721 			break;
722 		case ACPI_STATE_C3:
723 			seq_printf(seq, "type[C3] ");
724 			break;
725 		default:
726 			seq_printf(seq, "type[--] ");
727 			break;
728 		}
729 
730 		seq_puts(seq, "promotion[--] ");
731 
732 		seq_puts(seq, "demotion[--] ");
733 
734 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020Lu]\n",
735 			   pr->power.states[i].latency,
736 			   pr->power.states[i].usage,
737 			   us_to_pm_timer_ticks(pr->power.states[i].time));
738 	}
739 
740       end:
741 	return 0;
742 }
743 
744 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
745 {
746 	return single_open(file, acpi_processor_power_seq_show,
747 			   PDE(inode)->data);
748 }
749 
750 static const struct file_operations acpi_processor_power_fops = {
751 	.owner = THIS_MODULE,
752 	.open = acpi_processor_power_open_fs,
753 	.read = seq_read,
754 	.llseek = seq_lseek,
755 	.release = single_release,
756 };
757 #endif
758 
759 /**
760  * acpi_idle_bm_check - checks if bus master activity was detected
761  */
762 static int acpi_idle_bm_check(void)
763 {
764 	u32 bm_status = 0;
765 
766 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
767 	if (bm_status)
768 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
769 	/*
770 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
771 	 * the true state of bus mastering activity; forcing us to
772 	 * manually check the BMIDEA bit of each IDE channel.
773 	 */
774 	else if (errata.piix4.bmisx) {
775 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
776 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
777 			bm_status = 1;
778 	}
779 	return bm_status;
780 }
781 
782 /**
783  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
784  * @cx: cstate data
785  *
786  * Caller disables interrupt before call and enables interrupt after return.
787  */
788 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
789 {
790 	/* Don't trace irqs off for idle */
791 	stop_critical_timings();
792 	if (cx->entry_method == ACPI_CSTATE_FFH) {
793 		/* Call into architectural FFH based C-state */
794 		acpi_processor_ffh_cstate_enter(cx);
795 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
796 		acpi_safe_halt();
797 	} else {
798 		int unused;
799 		/* IO port based C-state */
800 		inb(cx->address);
801 		/* Dummy wait op - must do something useless after P_LVL2 read
802 		   because chipsets cannot guarantee that STPCLK# signal
803 		   gets asserted in time to freeze execution properly. */
804 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
805 	}
806 	start_critical_timings();
807 }
808 
809 /**
810  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
811  * @dev: the target CPU
812  * @state: the state data
813  *
814  * This is equivalent to the HALT instruction.
815  */
816 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
817 			      struct cpuidle_state *state)
818 {
819 	ktime_t  kt1, kt2;
820 	s64 idle_time;
821 	struct acpi_processor *pr;
822 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
823 
824 	pr = __get_cpu_var(processors);
825 
826 	if (unlikely(!pr))
827 		return 0;
828 
829 	local_irq_disable();
830 
831 	/* Do not access any ACPI IO ports in suspend path */
832 	if (acpi_idle_suspend) {
833 		local_irq_enable();
834 		cpu_relax();
835 		return 0;
836 	}
837 
838 	lapic_timer_state_broadcast(pr, cx, 1);
839 	kt1 = ktime_get_real();
840 	acpi_idle_do_entry(cx);
841 	kt2 = ktime_get_real();
842 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
843 
844 	local_irq_enable();
845 	cx->usage++;
846 	lapic_timer_state_broadcast(pr, cx, 0);
847 
848 	return idle_time;
849 }
850 
851 /**
852  * acpi_idle_enter_simple - enters an ACPI state without BM handling
853  * @dev: the target CPU
854  * @state: the state data
855  */
856 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
857 				  struct cpuidle_state *state)
858 {
859 	struct acpi_processor *pr;
860 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
861 	ktime_t  kt1, kt2;
862 	s64 idle_time_ns;
863 	s64 idle_time;
864 
865 	pr = __get_cpu_var(processors);
866 
867 	if (unlikely(!pr))
868 		return 0;
869 
870 	if (acpi_idle_suspend)
871 		return(acpi_idle_enter_c1(dev, state));
872 
873 	local_irq_disable();
874 
875 	if (cx->entry_method != ACPI_CSTATE_FFH) {
876 		current_thread_info()->status &= ~TS_POLLING;
877 		/*
878 		 * TS_POLLING-cleared state must be visible before we test
879 		 * NEED_RESCHED:
880 		 */
881 		smp_mb();
882 
883 		if (unlikely(need_resched())) {
884 			current_thread_info()->status |= TS_POLLING;
885 			local_irq_enable();
886 			return 0;
887 		}
888 	}
889 
890 	/*
891 	 * Must be done before busmaster disable as we might need to
892 	 * access HPET !
893 	 */
894 	lapic_timer_state_broadcast(pr, cx, 1);
895 
896 	if (cx->type == ACPI_STATE_C3)
897 		ACPI_FLUSH_CPU_CACHE();
898 
899 	kt1 = ktime_get_real();
900 	/* Tell the scheduler that we are going deep-idle: */
901 	sched_clock_idle_sleep_event();
902 	acpi_idle_do_entry(cx);
903 	kt2 = ktime_get_real();
904 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
905 	idle_time = idle_time_ns;
906 	do_div(idle_time, NSEC_PER_USEC);
907 
908 	/* Tell the scheduler how much we idled: */
909 	sched_clock_idle_wakeup_event(idle_time_ns);
910 
911 	local_irq_enable();
912 	if (cx->entry_method != ACPI_CSTATE_FFH)
913 		current_thread_info()->status |= TS_POLLING;
914 
915 	cx->usage++;
916 
917 	lapic_timer_state_broadcast(pr, cx, 0);
918 	cx->time += idle_time;
919 	return idle_time;
920 }
921 
922 static int c3_cpu_count;
923 static DEFINE_SPINLOCK(c3_lock);
924 
925 /**
926  * acpi_idle_enter_bm - enters C3 with proper BM handling
927  * @dev: the target CPU
928  * @state: the state data
929  *
930  * If BM is detected, the deepest non-C3 idle state is entered instead.
931  */
932 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
933 			      struct cpuidle_state *state)
934 {
935 	struct acpi_processor *pr;
936 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
937 	ktime_t  kt1, kt2;
938 	s64 idle_time_ns;
939 	s64 idle_time;
940 
941 
942 	pr = __get_cpu_var(processors);
943 
944 	if (unlikely(!pr))
945 		return 0;
946 
947 	if (acpi_idle_suspend)
948 		return(acpi_idle_enter_c1(dev, state));
949 
950 	if (acpi_idle_bm_check()) {
951 		if (dev->safe_state) {
952 			dev->last_state = dev->safe_state;
953 			return dev->safe_state->enter(dev, dev->safe_state);
954 		} else {
955 			local_irq_disable();
956 			acpi_safe_halt();
957 			local_irq_enable();
958 			return 0;
959 		}
960 	}
961 
962 	local_irq_disable();
963 
964 	if (cx->entry_method != ACPI_CSTATE_FFH) {
965 		current_thread_info()->status &= ~TS_POLLING;
966 		/*
967 		 * TS_POLLING-cleared state must be visible before we test
968 		 * NEED_RESCHED:
969 		 */
970 		smp_mb();
971 
972 		if (unlikely(need_resched())) {
973 			current_thread_info()->status |= TS_POLLING;
974 			local_irq_enable();
975 			return 0;
976 		}
977 	}
978 
979 	acpi_unlazy_tlb(smp_processor_id());
980 
981 	/* Tell the scheduler that we are going deep-idle: */
982 	sched_clock_idle_sleep_event();
983 	/*
984 	 * Must be done before busmaster disable as we might need to
985 	 * access HPET !
986 	 */
987 	lapic_timer_state_broadcast(pr, cx, 1);
988 
989 	kt1 = ktime_get_real();
990 	/*
991 	 * disable bus master
992 	 * bm_check implies we need ARB_DIS
993 	 * !bm_check implies we need cache flush
994 	 * bm_control implies whether we can do ARB_DIS
995 	 *
996 	 * That leaves a case where bm_check is set and bm_control is
997 	 * not set. In that case we cannot do much, we enter C3
998 	 * without doing anything.
999 	 */
1000 	if (pr->flags.bm_check && pr->flags.bm_control) {
1001 		spin_lock(&c3_lock);
1002 		c3_cpu_count++;
1003 		/* Disable bus master arbitration when all CPUs are in C3 */
1004 		if (c3_cpu_count == num_online_cpus())
1005 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1006 		spin_unlock(&c3_lock);
1007 	} else if (!pr->flags.bm_check) {
1008 		ACPI_FLUSH_CPU_CACHE();
1009 	}
1010 
1011 	acpi_idle_do_entry(cx);
1012 
1013 	/* Re-enable bus master arbitration */
1014 	if (pr->flags.bm_check && pr->flags.bm_control) {
1015 		spin_lock(&c3_lock);
1016 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1017 		c3_cpu_count--;
1018 		spin_unlock(&c3_lock);
1019 	}
1020 	kt2 = ktime_get_real();
1021 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
1022 	idle_time = idle_time_ns;
1023 	do_div(idle_time, NSEC_PER_USEC);
1024 
1025 	/* Tell the scheduler how much we idled: */
1026 	sched_clock_idle_wakeup_event(idle_time_ns);
1027 
1028 	local_irq_enable();
1029 	if (cx->entry_method != ACPI_CSTATE_FFH)
1030 		current_thread_info()->status |= TS_POLLING;
1031 
1032 	cx->usage++;
1033 
1034 	lapic_timer_state_broadcast(pr, cx, 0);
1035 	cx->time += idle_time;
1036 	return idle_time;
1037 }
1038 
1039 struct cpuidle_driver acpi_idle_driver = {
1040 	.name =		"acpi_idle",
1041 	.owner =	THIS_MODULE,
1042 };
1043 
1044 /**
1045  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1046  * @pr: the ACPI processor
1047  */
1048 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1049 {
1050 	int i, count = CPUIDLE_DRIVER_STATE_START;
1051 	struct acpi_processor_cx *cx;
1052 	struct cpuidle_state *state;
1053 	struct cpuidle_device *dev = &pr->power.dev;
1054 
1055 	if (!pr->flags.power_setup_done)
1056 		return -EINVAL;
1057 
1058 	if (pr->flags.power == 0) {
1059 		return -EINVAL;
1060 	}
1061 
1062 	dev->cpu = pr->id;
1063 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1064 		dev->states[i].name[0] = '\0';
1065 		dev->states[i].desc[0] = '\0';
1066 	}
1067 
1068 	if (max_cstate == 0)
1069 		max_cstate = 1;
1070 
1071 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1072 		cx = &pr->power.states[i];
1073 		state = &dev->states[count];
1074 
1075 		if (!cx->valid)
1076 			continue;
1077 
1078 #ifdef CONFIG_HOTPLUG_CPU
1079 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1080 		    !pr->flags.has_cst &&
1081 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1082 			continue;
1083 #endif
1084 		cpuidle_set_statedata(state, cx);
1085 
1086 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1087 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1088 		state->exit_latency = cx->latency;
1089 		state->target_residency = cx->latency * latency_factor;
1090 		state->power_usage = cx->power;
1091 
1092 		state->flags = 0;
1093 		switch (cx->type) {
1094 			case ACPI_STATE_C1:
1095 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1096 			if (cx->entry_method == ACPI_CSTATE_FFH)
1097 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1098 
1099 			state->enter = acpi_idle_enter_c1;
1100 			dev->safe_state = state;
1101 			break;
1102 
1103 			case ACPI_STATE_C2:
1104 			state->flags |= CPUIDLE_FLAG_BALANCED;
1105 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1106 			state->enter = acpi_idle_enter_simple;
1107 			dev->safe_state = state;
1108 			break;
1109 
1110 			case ACPI_STATE_C3:
1111 			state->flags |= CPUIDLE_FLAG_DEEP;
1112 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1113 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1114 			state->enter = pr->flags.bm_check ?
1115 					acpi_idle_enter_bm :
1116 					acpi_idle_enter_simple;
1117 			break;
1118 		}
1119 
1120 		count++;
1121 		if (count == CPUIDLE_STATE_MAX)
1122 			break;
1123 	}
1124 
1125 	dev->state_count = count;
1126 
1127 	if (!count)
1128 		return -EINVAL;
1129 
1130 	return 0;
1131 }
1132 
1133 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1134 {
1135 	int ret = 0;
1136 
1137 	if (boot_option_idle_override)
1138 		return 0;
1139 
1140 	if (!pr)
1141 		return -EINVAL;
1142 
1143 	if (nocst) {
1144 		return -ENODEV;
1145 	}
1146 
1147 	if (!pr->flags.power_setup_done)
1148 		return -ENODEV;
1149 
1150 	cpuidle_pause_and_lock();
1151 	cpuidle_disable_device(&pr->power.dev);
1152 	acpi_processor_get_power_info(pr);
1153 	if (pr->flags.power) {
1154 		acpi_processor_setup_cpuidle(pr);
1155 		ret = cpuidle_enable_device(&pr->power.dev);
1156 	}
1157 	cpuidle_resume_and_unlock();
1158 
1159 	return ret;
1160 }
1161 
1162 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1163 			      struct acpi_device *device)
1164 {
1165 	acpi_status status = 0;
1166 	static int first_run;
1167 #ifdef CONFIG_ACPI_PROCFS
1168 	struct proc_dir_entry *entry = NULL;
1169 #endif
1170 
1171 	if (boot_option_idle_override)
1172 		return 0;
1173 
1174 	if (!first_run) {
1175 		if (idle_halt) {
1176 			/*
1177 			 * When the boot option of "idle=halt" is added, halt
1178 			 * is used for CPU IDLE.
1179 			 * In such case C2/C3 is meaningless. So the max_cstate
1180 			 * is set to one.
1181 			 */
1182 			max_cstate = 1;
1183 		}
1184 		dmi_check_system(processor_power_dmi_table);
1185 		max_cstate = acpi_processor_cstate_check(max_cstate);
1186 		if (max_cstate < ACPI_C_STATES_MAX)
1187 			printk(KERN_NOTICE
1188 			       "ACPI: processor limited to max C-state %d\n",
1189 			       max_cstate);
1190 		first_run++;
1191 	}
1192 
1193 	if (!pr)
1194 		return -EINVAL;
1195 
1196 	if (acpi_gbl_FADT.cst_control && !nocst) {
1197 		status =
1198 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1199 		if (ACPI_FAILURE(status)) {
1200 			ACPI_EXCEPTION((AE_INFO, status,
1201 					"Notifying BIOS of _CST ability failed"));
1202 		}
1203 	}
1204 
1205 	acpi_processor_get_power_info(pr);
1206 	pr->flags.power_setup_done = 1;
1207 
1208 	/*
1209 	 * Install the idle handler if processor power management is supported.
1210 	 * Note that we use previously set idle handler will be used on
1211 	 * platforms that only support C1.
1212 	 */
1213 	if (pr->flags.power) {
1214 		acpi_processor_setup_cpuidle(pr);
1215 		if (cpuidle_register_device(&pr->power.dev))
1216 			return -EIO;
1217 	}
1218 #ifdef CONFIG_ACPI_PROCFS
1219 	/* 'power' [R] */
1220 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1221 				 S_IRUGO, acpi_device_dir(device),
1222 				 &acpi_processor_power_fops,
1223 				 acpi_driver_data(device));
1224 	if (!entry)
1225 		return -EIO;
1226 #endif
1227 	return 0;
1228 }
1229 
1230 int acpi_processor_power_exit(struct acpi_processor *pr,
1231 			      struct acpi_device *device)
1232 {
1233 	if (boot_option_idle_override)
1234 		return 0;
1235 
1236 	cpuidle_unregister_device(&pr->power.dev);
1237 	pr->flags.power_setup_done = 0;
1238 
1239 #ifdef CONFIG_ACPI_PROCFS
1240 	if (acpi_device_dir(device))
1241 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1242 				  acpi_device_dir(device));
1243 #endif
1244 
1245 	return 0;
1246 }
1247