xref: /linux/drivers/acpi/processor_idle.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86 
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98 
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 
101 #else	/* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105 
106 /*
107  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108  * For now disable this. Probably a bug somewhere else.
109  *
110  * To skip this limit, boot/load with a large max_cstate limit.
111  */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 		return 0;
116 
117 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120 
121 	max_cstate = (long)id->driver_data;
122 
123 	return 0;
124 }
125 
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127    callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 	{ set_max_cstate, "IBM ThinkPad R40e", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 	{ set_max_cstate, "IBM ThinkPad R40e", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 	{ set_max_cstate, "IBM ThinkPad R40e", {
166 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 	{ set_max_cstate, "IBM ThinkPad R40e", {
169 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 	{ set_max_cstate, "IBM ThinkPad R40e", {
172 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 	{ set_max_cstate, "IBM ThinkPad R40e", {
175 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 	{ set_max_cstate, "Medion 41700", {
178 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 	{ set_max_cstate, "Clevo 5600D", {
181 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 	 (void *)2},
184 	{},
185 };
186 
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 	if (t2 >= t1)
190 		return (t2 - t1);
191 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 	else
194 		return ((0xFFFFFFFF - t1) + t2);
195 }
196 
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 	if (t2 >= t1)
200 		return PM_TIMER_TICKS_TO_US(t2 - t1);
201 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 	else
204 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206 
207 /*
208  * Callers should disable interrupts before the call and enable
209  * interrupts after return.
210  */
211 static void acpi_safe_halt(void)
212 {
213 	current_thread_info()->status &= ~TS_POLLING;
214 	/*
215 	 * TS_POLLING-cleared state must be visible before we
216 	 * test NEED_RESCHED:
217 	 */
218 	smp_mb();
219 	if (!need_resched()) {
220 		safe_halt();
221 		local_irq_disable();
222 	}
223 	current_thread_info()->status |= TS_POLLING;
224 }
225 
226 #ifndef CONFIG_CPU_IDLE
227 
228 static void
229 acpi_processor_power_activate(struct acpi_processor *pr,
230 			      struct acpi_processor_cx *new)
231 {
232 	struct acpi_processor_cx *old;
233 
234 	if (!pr || !new)
235 		return;
236 
237 	old = pr->power.state;
238 
239 	if (old)
240 		old->promotion.count = 0;
241 	new->demotion.count = 0;
242 
243 	/* Cleanup from old state. */
244 	if (old) {
245 		switch (old->type) {
246 		case ACPI_STATE_C3:
247 			/* Disable bus master reload */
248 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
249 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
250 			break;
251 		}
252 	}
253 
254 	/* Prepare to use new state. */
255 	switch (new->type) {
256 	case ACPI_STATE_C3:
257 		/* Enable bus master reload */
258 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
259 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
260 		break;
261 	}
262 
263 	pr->power.state = new;
264 
265 	return;
266 }
267 
268 static atomic_t c3_cpu_count;
269 
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
272 {
273 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
274 		/* Call into architectural FFH based C-state */
275 		acpi_processor_ffh_cstate_enter(cstate);
276 	} else {
277 		int unused;
278 		/* IO port based C-state */
279 		inb(cstate->address);
280 		/* Dummy wait op - must do something useless after P_LVL2 read
281 		   because chipsets cannot guarantee that STPCLK# signal
282 		   gets asserted in time to freeze execution properly. */
283 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
284 	}
285 }
286 #endif /* !CONFIG_CPU_IDLE */
287 
288 #ifdef ARCH_APICTIMER_STOPS_ON_C3
289 
290 /*
291  * Some BIOS implementations switch to C3 in the published C2 state.
292  * This seems to be a common problem on AMD boxen, but other vendors
293  * are affected too. We pick the most conservative approach: we assume
294  * that the local APIC stops in both C2 and C3.
295  */
296 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
297 				   struct acpi_processor_cx *cx)
298 {
299 	struct acpi_processor_power *pwr = &pr->power;
300 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
301 
302 	/*
303 	 * Check, if one of the previous states already marked the lapic
304 	 * unstable
305 	 */
306 	if (pwr->timer_broadcast_on_state < state)
307 		return;
308 
309 	if (cx->type >= type)
310 		pr->power.timer_broadcast_on_state = state;
311 }
312 
313 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
314 {
315 	unsigned long reason;
316 
317 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
318 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
319 
320 	clockevents_notify(reason, &pr->id);
321 }
322 
323 /* Power(C) State timer broadcast control */
324 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
325 				       struct acpi_processor_cx *cx,
326 				       int broadcast)
327 {
328 	int state = cx - pr->power.states;
329 
330 	if (state >= pr->power.timer_broadcast_on_state) {
331 		unsigned long reason;
332 
333 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
334 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
335 		clockevents_notify(reason, &pr->id);
336 	}
337 }
338 
339 #else
340 
341 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
342 				   struct acpi_processor_cx *cstate) { }
343 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
344 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
345 				       struct acpi_processor_cx *cx,
346 				       int broadcast)
347 {
348 }
349 
350 #endif
351 
352 /*
353  * Suspend / resume control
354  */
355 static int acpi_idle_suspend;
356 
357 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
358 {
359 	acpi_idle_suspend = 1;
360 	return 0;
361 }
362 
363 int acpi_processor_resume(struct acpi_device * device)
364 {
365 	acpi_idle_suspend = 0;
366 	return 0;
367 }
368 
369 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
370 static int tsc_halts_in_c(int state)
371 {
372 	switch (boot_cpu_data.x86_vendor) {
373 	case X86_VENDOR_AMD:
374 		/*
375 		 * AMD Fam10h TSC will tick in all
376 		 * C/P/S0/S1 states when this bit is set.
377 		 */
378 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
379 			return 0;
380 		/*FALL THROUGH*/
381 	case X86_VENDOR_INTEL:
382 		/* Several cases known where TSC halts in C2 too */
383 	default:
384 		return state > ACPI_STATE_C1;
385 	}
386 }
387 #endif
388 
389 #ifndef CONFIG_CPU_IDLE
390 static void acpi_processor_idle(void)
391 {
392 	struct acpi_processor *pr = NULL;
393 	struct acpi_processor_cx *cx = NULL;
394 	struct acpi_processor_cx *next_state = NULL;
395 	int sleep_ticks = 0;
396 	u32 t1, t2 = 0;
397 
398 	/*
399 	 * Interrupts must be disabled during bus mastering calculations and
400 	 * for C2/C3 transitions.
401 	 */
402 	local_irq_disable();
403 
404 	pr = processors[smp_processor_id()];
405 	if (!pr) {
406 		local_irq_enable();
407 		return;
408 	}
409 
410 	/*
411 	 * Check whether we truly need to go idle, or should
412 	 * reschedule:
413 	 */
414 	if (unlikely(need_resched())) {
415 		local_irq_enable();
416 		return;
417 	}
418 
419 	cx = pr->power.state;
420 	if (!cx || acpi_idle_suspend) {
421 		if (pm_idle_save) {
422 			pm_idle_save(); /* enables IRQs */
423 		} else {
424 			acpi_safe_halt();
425 			local_irq_enable();
426 		}
427 
428 		return;
429 	}
430 
431 	/*
432 	 * Check BM Activity
433 	 * -----------------
434 	 * Check for bus mastering activity (if required), record, and check
435 	 * for demotion.
436 	 */
437 	if (pr->flags.bm_check) {
438 		u32 bm_status = 0;
439 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
440 
441 		if (diff > 31)
442 			diff = 31;
443 
444 		pr->power.bm_activity <<= diff;
445 
446 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
447 		if (bm_status) {
448 			pr->power.bm_activity |= 0x1;
449 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
450 		}
451 		/*
452 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
453 		 * the true state of bus mastering activity; forcing us to
454 		 * manually check the BMIDEA bit of each IDE channel.
455 		 */
456 		else if (errata.piix4.bmisx) {
457 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
458 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
459 				pr->power.bm_activity |= 0x1;
460 		}
461 
462 		pr->power.bm_check_timestamp = jiffies;
463 
464 		/*
465 		 * If bus mastering is or was active this jiffy, demote
466 		 * to avoid a faulty transition.  Note that the processor
467 		 * won't enter a low-power state during this call (to this
468 		 * function) but should upon the next.
469 		 *
470 		 * TBD: A better policy might be to fallback to the demotion
471 		 *      state (use it for this quantum only) istead of
472 		 *      demoting -- and rely on duration as our sole demotion
473 		 *      qualification.  This may, however, introduce DMA
474 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
475 		 */
476 		if ((pr->power.bm_activity & 0x1) &&
477 		    cx->demotion.threshold.bm) {
478 			local_irq_enable();
479 			next_state = cx->demotion.state;
480 			goto end;
481 		}
482 	}
483 
484 #ifdef CONFIG_HOTPLUG_CPU
485 	/*
486 	 * Check for P_LVL2_UP flag before entering C2 and above on
487 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
488 	 * detection phase, to work cleanly with logical CPU hotplug.
489 	 */
490 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
491 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
492 		cx = &pr->power.states[ACPI_STATE_C1];
493 #endif
494 
495 	/*
496 	 * Sleep:
497 	 * ------
498 	 * Invoke the current Cx state to put the processor to sleep.
499 	 */
500 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
501 		current_thread_info()->status &= ~TS_POLLING;
502 		/*
503 		 * TS_POLLING-cleared state must be visible before we
504 		 * test NEED_RESCHED:
505 		 */
506 		smp_mb();
507 		if (need_resched()) {
508 			current_thread_info()->status |= TS_POLLING;
509 			local_irq_enable();
510 			return;
511 		}
512 	}
513 
514 	switch (cx->type) {
515 
516 	case ACPI_STATE_C1:
517 		/*
518 		 * Invoke C1.
519 		 * Use the appropriate idle routine, the one that would
520 		 * be used without acpi C-states.
521 		 */
522 		if (pm_idle_save) {
523 			pm_idle_save(); /* enables IRQs */
524 		} else {
525 			acpi_safe_halt();
526 			local_irq_enable();
527 		}
528 
529 		/*
530 		 * TBD: Can't get time duration while in C1, as resumes
531 		 *      go to an ISR rather than here.  Need to instrument
532 		 *      base interrupt handler.
533 		 *
534 		 * Note: the TSC better not stop in C1, sched_clock() will
535 		 *       skew otherwise.
536 		 */
537 		sleep_ticks = 0xFFFFFFFF;
538 
539 		break;
540 
541 	case ACPI_STATE_C2:
542 		/* Get start time (ticks) */
543 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
544 		/* Tell the scheduler that we are going deep-idle: */
545 		sched_clock_idle_sleep_event();
546 		/* Invoke C2 */
547 		acpi_state_timer_broadcast(pr, cx, 1);
548 		acpi_cstate_enter(cx);
549 		/* Get end time (ticks) */
550 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
551 
552 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
553 		/* TSC halts in C2, so notify users */
554 		if (tsc_halts_in_c(ACPI_STATE_C2))
555 			mark_tsc_unstable("possible TSC halt in C2");
556 #endif
557 		/* Compute time (ticks) that we were actually asleep */
558 		sleep_ticks = ticks_elapsed(t1, t2);
559 
560 		/* Tell the scheduler how much we idled: */
561 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
562 
563 		/* Re-enable interrupts */
564 		local_irq_enable();
565 		/* Do not account our idle-switching overhead: */
566 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
567 
568 		current_thread_info()->status |= TS_POLLING;
569 		acpi_state_timer_broadcast(pr, cx, 0);
570 		break;
571 
572 	case ACPI_STATE_C3:
573 		acpi_unlazy_tlb(smp_processor_id());
574 		/*
575 		 * Must be done before busmaster disable as we might
576 		 * need to access HPET !
577 		 */
578 		acpi_state_timer_broadcast(pr, cx, 1);
579 		/*
580 		 * disable bus master
581 		 * bm_check implies we need ARB_DIS
582 		 * !bm_check implies we need cache flush
583 		 * bm_control implies whether we can do ARB_DIS
584 		 *
585 		 * That leaves a case where bm_check is set and bm_control is
586 		 * not set. In that case we cannot do much, we enter C3
587 		 * without doing anything.
588 		 */
589 		if (pr->flags.bm_check && pr->flags.bm_control) {
590 			if (atomic_inc_return(&c3_cpu_count) ==
591 			    num_online_cpus()) {
592 				/*
593 				 * All CPUs are trying to go to C3
594 				 * Disable bus master arbitration
595 				 */
596 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
597 			}
598 		} else if (!pr->flags.bm_check) {
599 			/* SMP with no shared cache... Invalidate cache  */
600 			ACPI_FLUSH_CPU_CACHE();
601 		}
602 
603 		/* Get start time (ticks) */
604 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
605 		/* Invoke C3 */
606 		/* Tell the scheduler that we are going deep-idle: */
607 		sched_clock_idle_sleep_event();
608 		acpi_cstate_enter(cx);
609 		/* Get end time (ticks) */
610 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
611 		if (pr->flags.bm_check && pr->flags.bm_control) {
612 			/* Enable bus master arbitration */
613 			atomic_dec(&c3_cpu_count);
614 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
615 		}
616 
617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
618 		/* TSC halts in C3, so notify users */
619 		if (tsc_halts_in_c(ACPI_STATE_C3))
620 			mark_tsc_unstable("TSC halts in C3");
621 #endif
622 		/* Compute time (ticks) that we were actually asleep */
623 		sleep_ticks = ticks_elapsed(t1, t2);
624 		/* Tell the scheduler how much we idled: */
625 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
626 
627 		/* Re-enable interrupts */
628 		local_irq_enable();
629 		/* Do not account our idle-switching overhead: */
630 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
631 
632 		current_thread_info()->status |= TS_POLLING;
633 		acpi_state_timer_broadcast(pr, cx, 0);
634 		break;
635 
636 	default:
637 		local_irq_enable();
638 		return;
639 	}
640 	cx->usage++;
641 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
642 		cx->time += sleep_ticks;
643 
644 	next_state = pr->power.state;
645 
646 #ifdef CONFIG_HOTPLUG_CPU
647 	/* Don't do promotion/demotion */
648 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
649 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
650 		next_state = cx;
651 		goto end;
652 	}
653 #endif
654 
655 	/*
656 	 * Promotion?
657 	 * ----------
658 	 * Track the number of longs (time asleep is greater than threshold)
659 	 * and promote when the count threshold is reached.  Note that bus
660 	 * mastering activity may prevent promotions.
661 	 * Do not promote above max_cstate.
662 	 */
663 	if (cx->promotion.state &&
664 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
665 		if (sleep_ticks > cx->promotion.threshold.ticks &&
666 		  cx->promotion.state->latency <=
667 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
668 			cx->promotion.count++;
669 			cx->demotion.count = 0;
670 			if (cx->promotion.count >=
671 			    cx->promotion.threshold.count) {
672 				if (pr->flags.bm_check) {
673 					if (!
674 					    (pr->power.bm_activity & cx->
675 					     promotion.threshold.bm)) {
676 						next_state =
677 						    cx->promotion.state;
678 						goto end;
679 					}
680 				} else {
681 					next_state = cx->promotion.state;
682 					goto end;
683 				}
684 			}
685 		}
686 	}
687 
688 	/*
689 	 * Demotion?
690 	 * ---------
691 	 * Track the number of shorts (time asleep is less than time threshold)
692 	 * and demote when the usage threshold is reached.
693 	 */
694 	if (cx->demotion.state) {
695 		if (sleep_ticks < cx->demotion.threshold.ticks) {
696 			cx->demotion.count++;
697 			cx->promotion.count = 0;
698 			if (cx->demotion.count >= cx->demotion.threshold.count) {
699 				next_state = cx->demotion.state;
700 				goto end;
701 			}
702 		}
703 	}
704 
705       end:
706 	/*
707 	 * Demote if current state exceeds max_cstate
708 	 * or if the latency of the current state is unacceptable
709 	 */
710 	if ((pr->power.state - pr->power.states) > max_cstate ||
711 		pr->power.state->latency >
712 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
713 		if (cx->demotion.state)
714 			next_state = cx->demotion.state;
715 	}
716 
717 	/*
718 	 * New Cx State?
719 	 * -------------
720 	 * If we're going to start using a new Cx state we must clean up
721 	 * from the previous and prepare to use the new.
722 	 */
723 	if (next_state != pr->power.state)
724 		acpi_processor_power_activate(pr, next_state);
725 }
726 
727 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
728 {
729 	unsigned int i;
730 	unsigned int state_is_set = 0;
731 	struct acpi_processor_cx *lower = NULL;
732 	struct acpi_processor_cx *higher = NULL;
733 	struct acpi_processor_cx *cx;
734 
735 
736 	if (!pr)
737 		return -EINVAL;
738 
739 	/*
740 	 * This function sets the default Cx state policy (OS idle handler).
741 	 * Our scheme is to promote quickly to C2 but more conservatively
742 	 * to C3.  We're favoring C2  for its characteristics of low latency
743 	 * (quick response), good power savings, and ability to allow bus
744 	 * mastering activity.  Note that the Cx state policy is completely
745 	 * customizable and can be altered dynamically.
746 	 */
747 
748 	/* startup state */
749 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
750 		cx = &pr->power.states[i];
751 		if (!cx->valid)
752 			continue;
753 
754 		if (!state_is_set)
755 			pr->power.state = cx;
756 		state_is_set++;
757 		break;
758 	}
759 
760 	if (!state_is_set)
761 		return -ENODEV;
762 
763 	/* demotion */
764 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
765 		cx = &pr->power.states[i];
766 		if (!cx->valid)
767 			continue;
768 
769 		if (lower) {
770 			cx->demotion.state = lower;
771 			cx->demotion.threshold.ticks = cx->latency_ticks;
772 			cx->demotion.threshold.count = 1;
773 			if (cx->type == ACPI_STATE_C3)
774 				cx->demotion.threshold.bm = bm_history;
775 		}
776 
777 		lower = cx;
778 	}
779 
780 	/* promotion */
781 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
782 		cx = &pr->power.states[i];
783 		if (!cx->valid)
784 			continue;
785 
786 		if (higher) {
787 			cx->promotion.state = higher;
788 			cx->promotion.threshold.ticks = cx->latency_ticks;
789 			if (cx->type >= ACPI_STATE_C2)
790 				cx->promotion.threshold.count = 4;
791 			else
792 				cx->promotion.threshold.count = 10;
793 			if (higher->type == ACPI_STATE_C3)
794 				cx->promotion.threshold.bm = bm_history;
795 		}
796 
797 		higher = cx;
798 	}
799 
800 	return 0;
801 }
802 #endif /* !CONFIG_CPU_IDLE */
803 
804 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
805 {
806 
807 	if (!pr)
808 		return -EINVAL;
809 
810 	if (!pr->pblk)
811 		return -ENODEV;
812 
813 	/* if info is obtained from pblk/fadt, type equals state */
814 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
815 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
816 
817 #ifndef CONFIG_HOTPLUG_CPU
818 	/*
819 	 * Check for P_LVL2_UP flag before entering C2 and above on
820 	 * an SMP system.
821 	 */
822 	if ((num_online_cpus() > 1) &&
823 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
824 		return -ENODEV;
825 #endif
826 
827 	/* determine C2 and C3 address from pblk */
828 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
829 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
830 
831 	/* determine latencies from FADT */
832 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
833 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
834 
835 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
836 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
837 			  pr->power.states[ACPI_STATE_C2].address,
838 			  pr->power.states[ACPI_STATE_C3].address));
839 
840 	return 0;
841 }
842 
843 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
844 {
845 	if (!pr->power.states[ACPI_STATE_C1].valid) {
846 		/* set the first C-State to C1 */
847 		/* all processors need to support C1 */
848 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
849 		pr->power.states[ACPI_STATE_C1].valid = 1;
850 	}
851 	/* the C0 state only exists as a filler in our array */
852 	pr->power.states[ACPI_STATE_C0].valid = 1;
853 	return 0;
854 }
855 
856 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
857 {
858 	acpi_status status = 0;
859 	acpi_integer count;
860 	int current_count;
861 	int i;
862 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
863 	union acpi_object *cst;
864 
865 
866 	if (nocst)
867 		return -ENODEV;
868 
869 	current_count = 0;
870 
871 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
872 	if (ACPI_FAILURE(status)) {
873 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
874 		return -ENODEV;
875 	}
876 
877 	cst = buffer.pointer;
878 
879 	/* There must be at least 2 elements */
880 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
881 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
882 		status = -EFAULT;
883 		goto end;
884 	}
885 
886 	count = cst->package.elements[0].integer.value;
887 
888 	/* Validate number of power states. */
889 	if (count < 1 || count != cst->package.count - 1) {
890 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
891 		status = -EFAULT;
892 		goto end;
893 	}
894 
895 	/* Tell driver that at least _CST is supported. */
896 	pr->flags.has_cst = 1;
897 
898 	for (i = 1; i <= count; i++) {
899 		union acpi_object *element;
900 		union acpi_object *obj;
901 		struct acpi_power_register *reg;
902 		struct acpi_processor_cx cx;
903 
904 		memset(&cx, 0, sizeof(cx));
905 
906 		element = &(cst->package.elements[i]);
907 		if (element->type != ACPI_TYPE_PACKAGE)
908 			continue;
909 
910 		if (element->package.count != 4)
911 			continue;
912 
913 		obj = &(element->package.elements[0]);
914 
915 		if (obj->type != ACPI_TYPE_BUFFER)
916 			continue;
917 
918 		reg = (struct acpi_power_register *)obj->buffer.pointer;
919 
920 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
921 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
922 			continue;
923 
924 		/* There should be an easy way to extract an integer... */
925 		obj = &(element->package.elements[1]);
926 		if (obj->type != ACPI_TYPE_INTEGER)
927 			continue;
928 
929 		cx.type = obj->integer.value;
930 		/*
931 		 * Some buggy BIOSes won't list C1 in _CST -
932 		 * Let acpi_processor_get_power_info_default() handle them later
933 		 */
934 		if (i == 1 && cx.type != ACPI_STATE_C1)
935 			current_count++;
936 
937 		cx.address = reg->address;
938 		cx.index = current_count + 1;
939 
940 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
941 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
942 			if (acpi_processor_ffh_cstate_probe
943 					(pr->id, &cx, reg) == 0) {
944 				cx.entry_method = ACPI_CSTATE_FFH;
945 			} else if (cx.type == ACPI_STATE_C1) {
946 				/*
947 				 * C1 is a special case where FIXED_HARDWARE
948 				 * can be handled in non-MWAIT way as well.
949 				 * In that case, save this _CST entry info.
950 				 * Otherwise, ignore this info and continue.
951 				 */
952 				cx.entry_method = ACPI_CSTATE_HALT;
953 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
954 			} else {
955 				continue;
956 			}
957 		} else {
958 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
959 				 cx.address);
960 		}
961 
962 
963 		obj = &(element->package.elements[2]);
964 		if (obj->type != ACPI_TYPE_INTEGER)
965 			continue;
966 
967 		cx.latency = obj->integer.value;
968 
969 		obj = &(element->package.elements[3]);
970 		if (obj->type != ACPI_TYPE_INTEGER)
971 			continue;
972 
973 		cx.power = obj->integer.value;
974 
975 		current_count++;
976 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
977 
978 		/*
979 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
980 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
981 		 */
982 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
983 			printk(KERN_WARNING
984 			       "Limiting number of power states to max (%d)\n",
985 			       ACPI_PROCESSOR_MAX_POWER);
986 			printk(KERN_WARNING
987 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
988 			break;
989 		}
990 	}
991 
992 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
993 			  current_count));
994 
995 	/* Validate number of power states discovered */
996 	if (current_count < 2)
997 		status = -EFAULT;
998 
999       end:
1000 	kfree(buffer.pointer);
1001 
1002 	return status;
1003 }
1004 
1005 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1006 {
1007 
1008 	if (!cx->address)
1009 		return;
1010 
1011 	/*
1012 	 * C2 latency must be less than or equal to 100
1013 	 * microseconds.
1014 	 */
1015 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1016 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1017 				  "latency too large [%d]\n", cx->latency));
1018 		return;
1019 	}
1020 
1021 	/*
1022 	 * Otherwise we've met all of our C2 requirements.
1023 	 * Normalize the C2 latency to expidite policy
1024 	 */
1025 	cx->valid = 1;
1026 
1027 #ifndef CONFIG_CPU_IDLE
1028 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1029 #else
1030 	cx->latency_ticks = cx->latency;
1031 #endif
1032 
1033 	return;
1034 }
1035 
1036 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1037 					   struct acpi_processor_cx *cx)
1038 {
1039 	static int bm_check_flag;
1040 
1041 
1042 	if (!cx->address)
1043 		return;
1044 
1045 	/*
1046 	 * C3 latency must be less than or equal to 1000
1047 	 * microseconds.
1048 	 */
1049 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1050 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1051 				  "latency too large [%d]\n", cx->latency));
1052 		return;
1053 	}
1054 
1055 	/*
1056 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1057 	 * DMA transfers are used by any ISA device to avoid livelock.
1058 	 * Note that we could disable Type-F DMA (as recommended by
1059 	 * the erratum), but this is known to disrupt certain ISA
1060 	 * devices thus we take the conservative approach.
1061 	 */
1062 	else if (errata.piix4.fdma) {
1063 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1064 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1065 		return;
1066 	}
1067 
1068 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1069 	if (!bm_check_flag) {
1070 		/* Determine whether bm_check is needed based on CPU  */
1071 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1072 		bm_check_flag = pr->flags.bm_check;
1073 	} else {
1074 		pr->flags.bm_check = bm_check_flag;
1075 	}
1076 
1077 	if (pr->flags.bm_check) {
1078 		if (!pr->flags.bm_control) {
1079 			if (pr->flags.has_cst != 1) {
1080 				/* bus mastering control is necessary */
1081 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082 					"C3 support requires BM control\n"));
1083 				return;
1084 			} else {
1085 				/* Here we enter C3 without bus mastering */
1086 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1087 					"C3 support without BM control\n"));
1088 			}
1089 		}
1090 	} else {
1091 		/*
1092 		 * WBINVD should be set in fadt, for C3 state to be
1093 		 * supported on when bm_check is not required.
1094 		 */
1095 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1096 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1097 					  "Cache invalidation should work properly"
1098 					  " for C3 to be enabled on SMP systems\n"));
1099 			return;
1100 		}
1101 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1102 	}
1103 
1104 	/*
1105 	 * Otherwise we've met all of our C3 requirements.
1106 	 * Normalize the C3 latency to expidite policy.  Enable
1107 	 * checking of bus mastering status (bm_check) so we can
1108 	 * use this in our C3 policy
1109 	 */
1110 	cx->valid = 1;
1111 
1112 #ifndef CONFIG_CPU_IDLE
1113 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1114 #else
1115 	cx->latency_ticks = cx->latency;
1116 #endif
1117 
1118 	return;
1119 }
1120 
1121 static int acpi_processor_power_verify(struct acpi_processor *pr)
1122 {
1123 	unsigned int i;
1124 	unsigned int working = 0;
1125 
1126 	pr->power.timer_broadcast_on_state = INT_MAX;
1127 
1128 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1129 		struct acpi_processor_cx *cx = &pr->power.states[i];
1130 
1131 		switch (cx->type) {
1132 		case ACPI_STATE_C1:
1133 			cx->valid = 1;
1134 			break;
1135 
1136 		case ACPI_STATE_C2:
1137 			acpi_processor_power_verify_c2(cx);
1138 			if (cx->valid)
1139 				acpi_timer_check_state(i, pr, cx);
1140 			break;
1141 
1142 		case ACPI_STATE_C3:
1143 			acpi_processor_power_verify_c3(pr, cx);
1144 			if (cx->valid)
1145 				acpi_timer_check_state(i, pr, cx);
1146 			break;
1147 		}
1148 
1149 		if (cx->valid)
1150 			working++;
1151 	}
1152 
1153 	acpi_propagate_timer_broadcast(pr);
1154 
1155 	return (working);
1156 }
1157 
1158 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1159 {
1160 	unsigned int i;
1161 	int result;
1162 
1163 
1164 	/* NOTE: the idle thread may not be running while calling
1165 	 * this function */
1166 
1167 	/* Zero initialize all the C-states info. */
1168 	memset(pr->power.states, 0, sizeof(pr->power.states));
1169 
1170 	result = acpi_processor_get_power_info_cst(pr);
1171 	if (result == -ENODEV)
1172 		result = acpi_processor_get_power_info_fadt(pr);
1173 
1174 	if (result)
1175 		return result;
1176 
1177 	acpi_processor_get_power_info_default(pr);
1178 
1179 	pr->power.count = acpi_processor_power_verify(pr);
1180 
1181 #ifndef CONFIG_CPU_IDLE
1182 	/*
1183 	 * Set Default Policy
1184 	 * ------------------
1185 	 * Now that we know which states are supported, set the default
1186 	 * policy.  Note that this policy can be changed dynamically
1187 	 * (e.g. encourage deeper sleeps to conserve battery life when
1188 	 * not on AC).
1189 	 */
1190 	result = acpi_processor_set_power_policy(pr);
1191 	if (result)
1192 		return result;
1193 #endif
1194 
1195 	/*
1196 	 * if one state of type C2 or C3 is available, mark this
1197 	 * CPU as being "idle manageable"
1198 	 */
1199 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1200 		if (pr->power.states[i].valid) {
1201 			pr->power.count = i;
1202 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1203 				pr->flags.power = 1;
1204 		}
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1211 {
1212 	struct acpi_processor *pr = seq->private;
1213 	unsigned int i;
1214 
1215 
1216 	if (!pr)
1217 		goto end;
1218 
1219 	seq_printf(seq, "active state:            C%zd\n"
1220 		   "max_cstate:              C%d\n"
1221 		   "bus master activity:     %08x\n"
1222 		   "maximum allowed latency: %d usec\n",
1223 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1224 		   max_cstate, (unsigned)pr->power.bm_activity,
1225 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1226 
1227 	seq_puts(seq, "states:\n");
1228 
1229 	for (i = 1; i <= pr->power.count; i++) {
1230 		seq_printf(seq, "   %cC%d:                  ",
1231 			   (&pr->power.states[i] ==
1232 			    pr->power.state ? '*' : ' '), i);
1233 
1234 		if (!pr->power.states[i].valid) {
1235 			seq_puts(seq, "<not supported>\n");
1236 			continue;
1237 		}
1238 
1239 		switch (pr->power.states[i].type) {
1240 		case ACPI_STATE_C1:
1241 			seq_printf(seq, "type[C1] ");
1242 			break;
1243 		case ACPI_STATE_C2:
1244 			seq_printf(seq, "type[C2] ");
1245 			break;
1246 		case ACPI_STATE_C3:
1247 			seq_printf(seq, "type[C3] ");
1248 			break;
1249 		default:
1250 			seq_printf(seq, "type[--] ");
1251 			break;
1252 		}
1253 
1254 		if (pr->power.states[i].promotion.state)
1255 			seq_printf(seq, "promotion[C%zd] ",
1256 				   (pr->power.states[i].promotion.state -
1257 				    pr->power.states));
1258 		else
1259 			seq_puts(seq, "promotion[--] ");
1260 
1261 		if (pr->power.states[i].demotion.state)
1262 			seq_printf(seq, "demotion[C%zd] ",
1263 				   (pr->power.states[i].demotion.state -
1264 				    pr->power.states));
1265 		else
1266 			seq_puts(seq, "demotion[--] ");
1267 
1268 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1269 			   pr->power.states[i].latency,
1270 			   pr->power.states[i].usage,
1271 			   (unsigned long long)pr->power.states[i].time);
1272 	}
1273 
1274       end:
1275 	return 0;
1276 }
1277 
1278 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1279 {
1280 	return single_open(file, acpi_processor_power_seq_show,
1281 			   PDE(inode)->data);
1282 }
1283 
1284 static const struct file_operations acpi_processor_power_fops = {
1285 	.owner = THIS_MODULE,
1286 	.open = acpi_processor_power_open_fs,
1287 	.read = seq_read,
1288 	.llseek = seq_lseek,
1289 	.release = single_release,
1290 };
1291 
1292 #ifndef CONFIG_CPU_IDLE
1293 
1294 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1295 {
1296 	int result = 0;
1297 
1298 
1299 	if (!pr)
1300 		return -EINVAL;
1301 
1302 	if (nocst) {
1303 		return -ENODEV;
1304 	}
1305 
1306 	if (!pr->flags.power_setup_done)
1307 		return -ENODEV;
1308 
1309 	/* Fall back to the default idle loop */
1310 	pm_idle = pm_idle_save;
1311 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1312 
1313 	pr->flags.power = 0;
1314 	result = acpi_processor_get_power_info(pr);
1315 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1316 		pm_idle = acpi_processor_idle;
1317 
1318 	return result;
1319 }
1320 
1321 #ifdef CONFIG_SMP
1322 static void smp_callback(void *v)
1323 {
1324 	/* we already woke the CPU up, nothing more to do */
1325 }
1326 
1327 /*
1328  * This function gets called when a part of the kernel has a new latency
1329  * requirement.  This means we need to get all processors out of their C-state,
1330  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1331  * wakes them all right up.
1332  */
1333 static int acpi_processor_latency_notify(struct notifier_block *b,
1334 		unsigned long l, void *v)
1335 {
1336 	smp_call_function(smp_callback, NULL, 0, 1);
1337 	return NOTIFY_OK;
1338 }
1339 
1340 static struct notifier_block acpi_processor_latency_notifier = {
1341 	.notifier_call = acpi_processor_latency_notify,
1342 };
1343 
1344 #endif
1345 
1346 #else /* CONFIG_CPU_IDLE */
1347 
1348 /**
1349  * acpi_idle_bm_check - checks if bus master activity was detected
1350  */
1351 static int acpi_idle_bm_check(void)
1352 {
1353 	u32 bm_status = 0;
1354 
1355 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1356 	if (bm_status)
1357 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1358 	/*
1359 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1360 	 * the true state of bus mastering activity; forcing us to
1361 	 * manually check the BMIDEA bit of each IDE channel.
1362 	 */
1363 	else if (errata.piix4.bmisx) {
1364 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1365 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1366 			bm_status = 1;
1367 	}
1368 	return bm_status;
1369 }
1370 
1371 /**
1372  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1373  * @pr: the processor
1374  * @target: the new target state
1375  */
1376 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1377 					   struct acpi_processor_cx *target)
1378 {
1379 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1380 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1381 		pr->flags.bm_rld_set = 0;
1382 	}
1383 
1384 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1385 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1386 		pr->flags.bm_rld_set = 1;
1387 	}
1388 }
1389 
1390 /**
1391  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1392  * @cx: cstate data
1393  *
1394  * Caller disables interrupt before call and enables interrupt after return.
1395  */
1396 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1397 {
1398 	if (cx->entry_method == ACPI_CSTATE_FFH) {
1399 		/* Call into architectural FFH based C-state */
1400 		acpi_processor_ffh_cstate_enter(cx);
1401 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
1402 		acpi_safe_halt();
1403 	} else {
1404 		int unused;
1405 		/* IO port based C-state */
1406 		inb(cx->address);
1407 		/* Dummy wait op - must do something useless after P_LVL2 read
1408 		   because chipsets cannot guarantee that STPCLK# signal
1409 		   gets asserted in time to freeze execution properly. */
1410 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1411 	}
1412 }
1413 
1414 /**
1415  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1416  * @dev: the target CPU
1417  * @state: the state data
1418  *
1419  * This is equivalent to the HALT instruction.
1420  */
1421 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1422 			      struct cpuidle_state *state)
1423 {
1424 	u32 t1, t2;
1425 	struct acpi_processor *pr;
1426 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1427 
1428 	pr = processors[smp_processor_id()];
1429 
1430 	if (unlikely(!pr))
1431 		return 0;
1432 
1433 	local_irq_disable();
1434 
1435 	/* Do not access any ACPI IO ports in suspend path */
1436 	if (acpi_idle_suspend) {
1437 		acpi_safe_halt();
1438 		local_irq_enable();
1439 		return 0;
1440 	}
1441 
1442 	if (pr->flags.bm_check)
1443 		acpi_idle_update_bm_rld(pr, cx);
1444 
1445 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1446 	acpi_idle_do_entry(cx);
1447 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1448 
1449 	local_irq_enable();
1450 	cx->usage++;
1451 
1452 	return ticks_elapsed_in_us(t1, t2);
1453 }
1454 
1455 /**
1456  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1457  * @dev: the target CPU
1458  * @state: the state data
1459  */
1460 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1461 				  struct cpuidle_state *state)
1462 {
1463 	struct acpi_processor *pr;
1464 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1465 	u32 t1, t2;
1466 	int sleep_ticks = 0;
1467 
1468 	pr = processors[smp_processor_id()];
1469 
1470 	if (unlikely(!pr))
1471 		return 0;
1472 
1473 	if (acpi_idle_suspend)
1474 		return(acpi_idle_enter_c1(dev, state));
1475 
1476 	local_irq_disable();
1477 	current_thread_info()->status &= ~TS_POLLING;
1478 	/*
1479 	 * TS_POLLING-cleared state must be visible before we test
1480 	 * NEED_RESCHED:
1481 	 */
1482 	smp_mb();
1483 
1484 	if (unlikely(need_resched())) {
1485 		current_thread_info()->status |= TS_POLLING;
1486 		local_irq_enable();
1487 		return 0;
1488 	}
1489 
1490 	/*
1491 	 * Must be done before busmaster disable as we might need to
1492 	 * access HPET !
1493 	 */
1494 	acpi_state_timer_broadcast(pr, cx, 1);
1495 
1496 	if (pr->flags.bm_check)
1497 		acpi_idle_update_bm_rld(pr, cx);
1498 
1499 	if (cx->type == ACPI_STATE_C3)
1500 		ACPI_FLUSH_CPU_CACHE();
1501 
1502 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1503 	/* Tell the scheduler that we are going deep-idle: */
1504 	sched_clock_idle_sleep_event();
1505 	acpi_idle_do_entry(cx);
1506 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1507 
1508 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1509 	/* TSC could halt in idle, so notify users */
1510 	if (tsc_halts_in_c(cx->type))
1511 		mark_tsc_unstable("TSC halts in idle");;
1512 #endif
1513 	sleep_ticks = ticks_elapsed(t1, t2);
1514 
1515 	/* Tell the scheduler how much we idled: */
1516 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1517 
1518 	local_irq_enable();
1519 	current_thread_info()->status |= TS_POLLING;
1520 
1521 	cx->usage++;
1522 
1523 	acpi_state_timer_broadcast(pr, cx, 0);
1524 	cx->time += sleep_ticks;
1525 	return ticks_elapsed_in_us(t1, t2);
1526 }
1527 
1528 static int c3_cpu_count;
1529 static DEFINE_SPINLOCK(c3_lock);
1530 
1531 /**
1532  * acpi_idle_enter_bm - enters C3 with proper BM handling
1533  * @dev: the target CPU
1534  * @state: the state data
1535  *
1536  * If BM is detected, the deepest non-C3 idle state is entered instead.
1537  */
1538 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1539 			      struct cpuidle_state *state)
1540 {
1541 	struct acpi_processor *pr;
1542 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1543 	u32 t1, t2;
1544 	int sleep_ticks = 0;
1545 
1546 	pr = processors[smp_processor_id()];
1547 
1548 	if (unlikely(!pr))
1549 		return 0;
1550 
1551 	if (acpi_idle_suspend)
1552 		return(acpi_idle_enter_c1(dev, state));
1553 
1554 	if (acpi_idle_bm_check()) {
1555 		if (dev->safe_state) {
1556 			return dev->safe_state->enter(dev, dev->safe_state);
1557 		} else {
1558 			local_irq_disable();
1559 			acpi_safe_halt();
1560 			local_irq_enable();
1561 			return 0;
1562 		}
1563 	}
1564 
1565 	local_irq_disable();
1566 	current_thread_info()->status &= ~TS_POLLING;
1567 	/*
1568 	 * TS_POLLING-cleared state must be visible before we test
1569 	 * NEED_RESCHED:
1570 	 */
1571 	smp_mb();
1572 
1573 	if (unlikely(need_resched())) {
1574 		current_thread_info()->status |= TS_POLLING;
1575 		local_irq_enable();
1576 		return 0;
1577 	}
1578 
1579 	acpi_unlazy_tlb(smp_processor_id());
1580 
1581 	/* Tell the scheduler that we are going deep-idle: */
1582 	sched_clock_idle_sleep_event();
1583 	/*
1584 	 * Must be done before busmaster disable as we might need to
1585 	 * access HPET !
1586 	 */
1587 	acpi_state_timer_broadcast(pr, cx, 1);
1588 
1589 	acpi_idle_update_bm_rld(pr, cx);
1590 
1591 	/*
1592 	 * disable bus master
1593 	 * bm_check implies we need ARB_DIS
1594 	 * !bm_check implies we need cache flush
1595 	 * bm_control implies whether we can do ARB_DIS
1596 	 *
1597 	 * That leaves a case where bm_check is set and bm_control is
1598 	 * not set. In that case we cannot do much, we enter C3
1599 	 * without doing anything.
1600 	 */
1601 	if (pr->flags.bm_check && pr->flags.bm_control) {
1602 		spin_lock(&c3_lock);
1603 		c3_cpu_count++;
1604 		/* Disable bus master arbitration when all CPUs are in C3 */
1605 		if (c3_cpu_count == num_online_cpus())
1606 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1607 		spin_unlock(&c3_lock);
1608 	} else if (!pr->flags.bm_check) {
1609 		ACPI_FLUSH_CPU_CACHE();
1610 	}
1611 
1612 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1613 	acpi_idle_do_entry(cx);
1614 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1615 
1616 	/* Re-enable bus master arbitration */
1617 	if (pr->flags.bm_check && pr->flags.bm_control) {
1618 		spin_lock(&c3_lock);
1619 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1620 		c3_cpu_count--;
1621 		spin_unlock(&c3_lock);
1622 	}
1623 
1624 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1625 	/* TSC could halt in idle, so notify users */
1626 	if (tsc_halts_in_c(ACPI_STATE_C3))
1627 		mark_tsc_unstable("TSC halts in idle");
1628 #endif
1629 	sleep_ticks = ticks_elapsed(t1, t2);
1630 	/* Tell the scheduler how much we idled: */
1631 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1632 
1633 	local_irq_enable();
1634 	current_thread_info()->status |= TS_POLLING;
1635 
1636 	cx->usage++;
1637 
1638 	acpi_state_timer_broadcast(pr, cx, 0);
1639 	cx->time += sleep_ticks;
1640 	return ticks_elapsed_in_us(t1, t2);
1641 }
1642 
1643 struct cpuidle_driver acpi_idle_driver = {
1644 	.name =		"acpi_idle",
1645 	.owner =	THIS_MODULE,
1646 };
1647 
1648 /**
1649  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1650  * @pr: the ACPI processor
1651  */
1652 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1653 {
1654 	int i, count = CPUIDLE_DRIVER_STATE_START;
1655 	struct acpi_processor_cx *cx;
1656 	struct cpuidle_state *state;
1657 	struct cpuidle_device *dev = &pr->power.dev;
1658 
1659 	if (!pr->flags.power_setup_done)
1660 		return -EINVAL;
1661 
1662 	if (pr->flags.power == 0) {
1663 		return -EINVAL;
1664 	}
1665 
1666 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1667 		dev->states[i].name[0] = '\0';
1668 		dev->states[i].desc[0] = '\0';
1669 	}
1670 
1671 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1672 		cx = &pr->power.states[i];
1673 		state = &dev->states[count];
1674 
1675 		if (!cx->valid)
1676 			continue;
1677 
1678 #ifdef CONFIG_HOTPLUG_CPU
1679 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1680 		    !pr->flags.has_cst &&
1681 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1682 			continue;
1683 #endif
1684 		cpuidle_set_statedata(state, cx);
1685 
1686 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1687 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1688 		state->exit_latency = cx->latency;
1689 		state->target_residency = cx->latency * latency_factor;
1690 		state->power_usage = cx->power;
1691 
1692 		state->flags = 0;
1693 		switch (cx->type) {
1694 			case ACPI_STATE_C1:
1695 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1696 			if (cx->entry_method == ACPI_CSTATE_FFH)
1697 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1698 
1699 			state->enter = acpi_idle_enter_c1;
1700 			dev->safe_state = state;
1701 			break;
1702 
1703 			case ACPI_STATE_C2:
1704 			state->flags |= CPUIDLE_FLAG_BALANCED;
1705 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1706 			state->enter = acpi_idle_enter_simple;
1707 			dev->safe_state = state;
1708 			break;
1709 
1710 			case ACPI_STATE_C3:
1711 			state->flags |= CPUIDLE_FLAG_DEEP;
1712 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1713 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1714 			state->enter = pr->flags.bm_check ?
1715 					acpi_idle_enter_bm :
1716 					acpi_idle_enter_simple;
1717 			break;
1718 		}
1719 
1720 		count++;
1721 		if (count == CPUIDLE_STATE_MAX)
1722 			break;
1723 	}
1724 
1725 	dev->state_count = count;
1726 
1727 	if (!count)
1728 		return -EINVAL;
1729 
1730 	return 0;
1731 }
1732 
1733 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1734 {
1735 	int ret;
1736 
1737 	if (!pr)
1738 		return -EINVAL;
1739 
1740 	if (nocst) {
1741 		return -ENODEV;
1742 	}
1743 
1744 	if (!pr->flags.power_setup_done)
1745 		return -ENODEV;
1746 
1747 	cpuidle_pause_and_lock();
1748 	cpuidle_disable_device(&pr->power.dev);
1749 	acpi_processor_get_power_info(pr);
1750 	acpi_processor_setup_cpuidle(pr);
1751 	ret = cpuidle_enable_device(&pr->power.dev);
1752 	cpuidle_resume_and_unlock();
1753 
1754 	return ret;
1755 }
1756 
1757 #endif /* CONFIG_CPU_IDLE */
1758 
1759 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1760 			      struct acpi_device *device)
1761 {
1762 	acpi_status status = 0;
1763 	static int first_run;
1764 	struct proc_dir_entry *entry = NULL;
1765 	unsigned int i;
1766 
1767 
1768 	if (!first_run) {
1769 		dmi_check_system(processor_power_dmi_table);
1770 		max_cstate = acpi_processor_cstate_check(max_cstate);
1771 		if (max_cstate < ACPI_C_STATES_MAX)
1772 			printk(KERN_NOTICE
1773 			       "ACPI: processor limited to max C-state %d\n",
1774 			       max_cstate);
1775 		first_run++;
1776 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1777 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1778 				&acpi_processor_latency_notifier);
1779 #endif
1780 	}
1781 
1782 	if (!pr)
1783 		return -EINVAL;
1784 
1785 	if (acpi_gbl_FADT.cst_control && !nocst) {
1786 		status =
1787 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1788 		if (ACPI_FAILURE(status)) {
1789 			ACPI_EXCEPTION((AE_INFO, status,
1790 					"Notifying BIOS of _CST ability failed"));
1791 		}
1792 	}
1793 
1794 	acpi_processor_get_power_info(pr);
1795 	pr->flags.power_setup_done = 1;
1796 
1797 	/*
1798 	 * Install the idle handler if processor power management is supported.
1799 	 * Note that we use previously set idle handler will be used on
1800 	 * platforms that only support C1.
1801 	 */
1802 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1803 #ifdef CONFIG_CPU_IDLE
1804 		acpi_processor_setup_cpuidle(pr);
1805 		pr->power.dev.cpu = pr->id;
1806 		if (cpuidle_register_device(&pr->power.dev))
1807 			return -EIO;
1808 #endif
1809 
1810 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1811 		for (i = 1; i <= pr->power.count; i++)
1812 			if (pr->power.states[i].valid)
1813 				printk(" C%d[C%d]", i,
1814 				       pr->power.states[i].type);
1815 		printk(")\n");
1816 
1817 #ifndef CONFIG_CPU_IDLE
1818 		if (pr->id == 0) {
1819 			pm_idle_save = pm_idle;
1820 			pm_idle = acpi_processor_idle;
1821 		}
1822 #endif
1823 	}
1824 
1825 	/* 'power' [R] */
1826 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1827 				 S_IRUGO, acpi_device_dir(device),
1828 				 &acpi_processor_power_fops,
1829 				 acpi_driver_data(device));
1830 	if (!entry)
1831 		return -EIO;
1832 	return 0;
1833 }
1834 
1835 int acpi_processor_power_exit(struct acpi_processor *pr,
1836 			      struct acpi_device *device)
1837 {
1838 #ifdef CONFIG_CPU_IDLE
1839 	if ((pr->flags.power) && (!boot_option_idle_override))
1840 		cpuidle_unregister_device(&pr->power.dev);
1841 #endif
1842 	pr->flags.power_setup_done = 0;
1843 
1844 	if (acpi_device_dir(device))
1845 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1846 				  acpi_device_dir(device));
1847 
1848 #ifndef CONFIG_CPU_IDLE
1849 
1850 	/* Unregister the idle handler when processor #0 is removed. */
1851 	if (pr->id == 0) {
1852 		pm_idle = pm_idle_save;
1853 
1854 		/*
1855 		 * We are about to unload the current idle thread pm callback
1856 		 * (pm_idle), Wait for all processors to update cached/local
1857 		 * copies of pm_idle before proceeding.
1858 		 */
1859 		cpu_idle_wait();
1860 #ifdef CONFIG_SMP
1861 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1862 				&acpi_processor_latency_notifier);
1863 #endif
1864 	}
1865 #endif
1866 
1867 	return 0;
1868 }
1869