xref: /linux/drivers/acpi/processor_idle.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86 
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98 
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 
101 #else	/* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105 
106 /*
107  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108  * For now disable this. Probably a bug somewhere else.
109  *
110  * To skip this limit, boot/load with a large max_cstate limit.
111  */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 		return 0;
116 
117 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120 
121 	max_cstate = (long)id->driver_data;
122 
123 	return 0;
124 }
125 
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127    callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 	{ set_max_cstate, "IBM ThinkPad R40e", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 	{ set_max_cstate, "IBM ThinkPad R40e", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 	{ set_max_cstate, "IBM ThinkPad R40e", {
166 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 	{ set_max_cstate, "IBM ThinkPad R40e", {
169 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 	{ set_max_cstate, "IBM ThinkPad R40e", {
172 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 	{ set_max_cstate, "IBM ThinkPad R40e", {
175 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 	{ set_max_cstate, "Medion 41700", {
178 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 	{ set_max_cstate, "Clevo 5600D", {
181 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 	 (void *)2},
184 	{},
185 };
186 
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 	if (t2 >= t1)
190 		return (t2 - t1);
191 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 	else
194 		return ((0xFFFFFFFF - t1) + t2);
195 }
196 
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 	if (t2 >= t1)
200 		return PM_TIMER_TICKS_TO_US(t2 - t1);
201 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 	else
204 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206 
207 /*
208  * Callers should disable interrupts before the call and enable
209  * interrupts after return.
210  */
211 static void acpi_safe_halt(void)
212 {
213 	current_thread_info()->status &= ~TS_POLLING;
214 	/*
215 	 * TS_POLLING-cleared state must be visible before we
216 	 * test NEED_RESCHED:
217 	 */
218 	smp_mb();
219 	if (!need_resched())
220 		safe_halt();
221 	current_thread_info()->status |= TS_POLLING;
222 }
223 
224 #ifndef CONFIG_CPU_IDLE
225 
226 static void
227 acpi_processor_power_activate(struct acpi_processor *pr,
228 			      struct acpi_processor_cx *new)
229 {
230 	struct acpi_processor_cx *old;
231 
232 	if (!pr || !new)
233 		return;
234 
235 	old = pr->power.state;
236 
237 	if (old)
238 		old->promotion.count = 0;
239 	new->demotion.count = 0;
240 
241 	/* Cleanup from old state. */
242 	if (old) {
243 		switch (old->type) {
244 		case ACPI_STATE_C3:
245 			/* Disable bus master reload */
246 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
247 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
248 			break;
249 		}
250 	}
251 
252 	/* Prepare to use new state. */
253 	switch (new->type) {
254 	case ACPI_STATE_C3:
255 		/* Enable bus master reload */
256 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
257 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
258 		break;
259 	}
260 
261 	pr->power.state = new;
262 
263 	return;
264 }
265 
266 static atomic_t c3_cpu_count;
267 
268 /* Common C-state entry for C2, C3, .. */
269 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
270 {
271 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
272 		/* Call into architectural FFH based C-state */
273 		acpi_processor_ffh_cstate_enter(cstate);
274 	} else {
275 		int unused;
276 		/* IO port based C-state */
277 		inb(cstate->address);
278 		/* Dummy wait op - must do something useless after P_LVL2 read
279 		   because chipsets cannot guarantee that STPCLK# signal
280 		   gets asserted in time to freeze execution properly. */
281 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
282 	}
283 }
284 #endif /* !CONFIG_CPU_IDLE */
285 
286 #ifdef ARCH_APICTIMER_STOPS_ON_C3
287 
288 /*
289  * Some BIOS implementations switch to C3 in the published C2 state.
290  * This seems to be a common problem on AMD boxen, but other vendors
291  * are affected too. We pick the most conservative approach: we assume
292  * that the local APIC stops in both C2 and C3.
293  */
294 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
295 				   struct acpi_processor_cx *cx)
296 {
297 	struct acpi_processor_power *pwr = &pr->power;
298 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
299 
300 	/*
301 	 * Check, if one of the previous states already marked the lapic
302 	 * unstable
303 	 */
304 	if (pwr->timer_broadcast_on_state < state)
305 		return;
306 
307 	if (cx->type >= type)
308 		pr->power.timer_broadcast_on_state = state;
309 }
310 
311 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
312 {
313 	unsigned long reason;
314 
315 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
316 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
317 
318 	clockevents_notify(reason, &pr->id);
319 }
320 
321 /* Power(C) State timer broadcast control */
322 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
323 				       struct acpi_processor_cx *cx,
324 				       int broadcast)
325 {
326 	int state = cx - pr->power.states;
327 
328 	if (state >= pr->power.timer_broadcast_on_state) {
329 		unsigned long reason;
330 
331 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
332 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
333 		clockevents_notify(reason, &pr->id);
334 	}
335 }
336 
337 #else
338 
339 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
340 				   struct acpi_processor_cx *cstate) { }
341 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
342 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
343 				       struct acpi_processor_cx *cx,
344 				       int broadcast)
345 {
346 }
347 
348 #endif
349 
350 /*
351  * Suspend / resume control
352  */
353 static int acpi_idle_suspend;
354 
355 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
356 {
357 	acpi_idle_suspend = 1;
358 	return 0;
359 }
360 
361 int acpi_processor_resume(struct acpi_device * device)
362 {
363 	acpi_idle_suspend = 0;
364 	return 0;
365 }
366 
367 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
368 static int tsc_halts_in_c(int state)
369 {
370 	switch (boot_cpu_data.x86_vendor) {
371 	case X86_VENDOR_AMD:
372 		/*
373 		 * AMD Fam10h TSC will tick in all
374 		 * C/P/S0/S1 states when this bit is set.
375 		 */
376 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
377 			return 0;
378 		/*FALL THROUGH*/
379 	case X86_VENDOR_INTEL:
380 		/* Several cases known where TSC halts in C2 too */
381 	default:
382 		return state > ACPI_STATE_C1;
383 	}
384 }
385 #endif
386 
387 #ifndef CONFIG_CPU_IDLE
388 static void acpi_processor_idle(void)
389 {
390 	struct acpi_processor *pr = NULL;
391 	struct acpi_processor_cx *cx = NULL;
392 	struct acpi_processor_cx *next_state = NULL;
393 	int sleep_ticks = 0;
394 	u32 t1, t2 = 0;
395 
396 	/*
397 	 * Interrupts must be disabled during bus mastering calculations and
398 	 * for C2/C3 transitions.
399 	 */
400 	local_irq_disable();
401 
402 	pr = processors[smp_processor_id()];
403 	if (!pr) {
404 		local_irq_enable();
405 		return;
406 	}
407 
408 	/*
409 	 * Check whether we truly need to go idle, or should
410 	 * reschedule:
411 	 */
412 	if (unlikely(need_resched())) {
413 		local_irq_enable();
414 		return;
415 	}
416 
417 	cx = pr->power.state;
418 	if (!cx || acpi_idle_suspend) {
419 		if (pm_idle_save)
420 			pm_idle_save();
421 		else
422 			acpi_safe_halt();
423 
424 		local_irq_enable();
425 		return;
426 	}
427 
428 	/*
429 	 * Check BM Activity
430 	 * -----------------
431 	 * Check for bus mastering activity (if required), record, and check
432 	 * for demotion.
433 	 */
434 	if (pr->flags.bm_check) {
435 		u32 bm_status = 0;
436 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
437 
438 		if (diff > 31)
439 			diff = 31;
440 
441 		pr->power.bm_activity <<= diff;
442 
443 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
444 		if (bm_status) {
445 			pr->power.bm_activity |= 0x1;
446 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
447 		}
448 		/*
449 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
450 		 * the true state of bus mastering activity; forcing us to
451 		 * manually check the BMIDEA bit of each IDE channel.
452 		 */
453 		else if (errata.piix4.bmisx) {
454 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
455 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
456 				pr->power.bm_activity |= 0x1;
457 		}
458 
459 		pr->power.bm_check_timestamp = jiffies;
460 
461 		/*
462 		 * If bus mastering is or was active this jiffy, demote
463 		 * to avoid a faulty transition.  Note that the processor
464 		 * won't enter a low-power state during this call (to this
465 		 * function) but should upon the next.
466 		 *
467 		 * TBD: A better policy might be to fallback to the demotion
468 		 *      state (use it for this quantum only) istead of
469 		 *      demoting -- and rely on duration as our sole demotion
470 		 *      qualification.  This may, however, introduce DMA
471 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
472 		 */
473 		if ((pr->power.bm_activity & 0x1) &&
474 		    cx->demotion.threshold.bm) {
475 			local_irq_enable();
476 			next_state = cx->demotion.state;
477 			goto end;
478 		}
479 	}
480 
481 #ifdef CONFIG_HOTPLUG_CPU
482 	/*
483 	 * Check for P_LVL2_UP flag before entering C2 and above on
484 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
485 	 * detection phase, to work cleanly with logical CPU hotplug.
486 	 */
487 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
488 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
489 		cx = &pr->power.states[ACPI_STATE_C1];
490 #endif
491 
492 	/*
493 	 * Sleep:
494 	 * ------
495 	 * Invoke the current Cx state to put the processor to sleep.
496 	 */
497 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
498 		current_thread_info()->status &= ~TS_POLLING;
499 		/*
500 		 * TS_POLLING-cleared state must be visible before we
501 		 * test NEED_RESCHED:
502 		 */
503 		smp_mb();
504 		if (need_resched()) {
505 			current_thread_info()->status |= TS_POLLING;
506 			local_irq_enable();
507 			return;
508 		}
509 	}
510 
511 	switch (cx->type) {
512 
513 	case ACPI_STATE_C1:
514 		/*
515 		 * Invoke C1.
516 		 * Use the appropriate idle routine, the one that would
517 		 * be used without acpi C-states.
518 		 */
519 		if (pm_idle_save)
520 			pm_idle_save();
521 		else
522 			acpi_safe_halt();
523 
524 		/*
525 		 * TBD: Can't get time duration while in C1, as resumes
526 		 *      go to an ISR rather than here.  Need to instrument
527 		 *      base interrupt handler.
528 		 *
529 		 * Note: the TSC better not stop in C1, sched_clock() will
530 		 *       skew otherwise.
531 		 */
532 		sleep_ticks = 0xFFFFFFFF;
533 		local_irq_enable();
534 		break;
535 
536 	case ACPI_STATE_C2:
537 		/* Get start time (ticks) */
538 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
539 		/* Tell the scheduler that we are going deep-idle: */
540 		sched_clock_idle_sleep_event();
541 		/* Invoke C2 */
542 		acpi_state_timer_broadcast(pr, cx, 1);
543 		acpi_cstate_enter(cx);
544 		/* Get end time (ticks) */
545 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
546 
547 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
548 		/* TSC halts in C2, so notify users */
549 		if (tsc_halts_in_c(ACPI_STATE_C2))
550 			mark_tsc_unstable("possible TSC halt in C2");
551 #endif
552 		/* Compute time (ticks) that we were actually asleep */
553 		sleep_ticks = ticks_elapsed(t1, t2);
554 
555 		/* Tell the scheduler how much we idled: */
556 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
557 
558 		/* Re-enable interrupts */
559 		local_irq_enable();
560 		/* Do not account our idle-switching overhead: */
561 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
562 
563 		current_thread_info()->status |= TS_POLLING;
564 		acpi_state_timer_broadcast(pr, cx, 0);
565 		break;
566 
567 	case ACPI_STATE_C3:
568 		acpi_unlazy_tlb(smp_processor_id());
569 		/*
570 		 * Must be done before busmaster disable as we might
571 		 * need to access HPET !
572 		 */
573 		acpi_state_timer_broadcast(pr, cx, 1);
574 		/*
575 		 * disable bus master
576 		 * bm_check implies we need ARB_DIS
577 		 * !bm_check implies we need cache flush
578 		 * bm_control implies whether we can do ARB_DIS
579 		 *
580 		 * That leaves a case where bm_check is set and bm_control is
581 		 * not set. In that case we cannot do much, we enter C3
582 		 * without doing anything.
583 		 */
584 		if (pr->flags.bm_check && pr->flags.bm_control) {
585 			if (atomic_inc_return(&c3_cpu_count) ==
586 			    num_online_cpus()) {
587 				/*
588 				 * All CPUs are trying to go to C3
589 				 * Disable bus master arbitration
590 				 */
591 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
592 			}
593 		} else if (!pr->flags.bm_check) {
594 			/* SMP with no shared cache... Invalidate cache  */
595 			ACPI_FLUSH_CPU_CACHE();
596 		}
597 
598 		/* Get start time (ticks) */
599 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
600 		/* Invoke C3 */
601 		/* Tell the scheduler that we are going deep-idle: */
602 		sched_clock_idle_sleep_event();
603 		acpi_cstate_enter(cx);
604 		/* Get end time (ticks) */
605 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
606 		if (pr->flags.bm_check && pr->flags.bm_control) {
607 			/* Enable bus master arbitration */
608 			atomic_dec(&c3_cpu_count);
609 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
610 		}
611 
612 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
613 		/* TSC halts in C3, so notify users */
614 		if (tsc_halts_in_c(ACPI_STATE_C3))
615 			mark_tsc_unstable("TSC halts in C3");
616 #endif
617 		/* Compute time (ticks) that we were actually asleep */
618 		sleep_ticks = ticks_elapsed(t1, t2);
619 		/* Tell the scheduler how much we idled: */
620 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
621 
622 		/* Re-enable interrupts */
623 		local_irq_enable();
624 		/* Do not account our idle-switching overhead: */
625 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
626 
627 		current_thread_info()->status |= TS_POLLING;
628 		acpi_state_timer_broadcast(pr, cx, 0);
629 		break;
630 
631 	default:
632 		local_irq_enable();
633 		return;
634 	}
635 	cx->usage++;
636 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
637 		cx->time += sleep_ticks;
638 
639 	next_state = pr->power.state;
640 
641 #ifdef CONFIG_HOTPLUG_CPU
642 	/* Don't do promotion/demotion */
643 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
644 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
645 		next_state = cx;
646 		goto end;
647 	}
648 #endif
649 
650 	/*
651 	 * Promotion?
652 	 * ----------
653 	 * Track the number of longs (time asleep is greater than threshold)
654 	 * and promote when the count threshold is reached.  Note that bus
655 	 * mastering activity may prevent promotions.
656 	 * Do not promote above max_cstate.
657 	 */
658 	if (cx->promotion.state &&
659 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
660 		if (sleep_ticks > cx->promotion.threshold.ticks &&
661 		  cx->promotion.state->latency <=
662 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
663 			cx->promotion.count++;
664 			cx->demotion.count = 0;
665 			if (cx->promotion.count >=
666 			    cx->promotion.threshold.count) {
667 				if (pr->flags.bm_check) {
668 					if (!
669 					    (pr->power.bm_activity & cx->
670 					     promotion.threshold.bm)) {
671 						next_state =
672 						    cx->promotion.state;
673 						goto end;
674 					}
675 				} else {
676 					next_state = cx->promotion.state;
677 					goto end;
678 				}
679 			}
680 		}
681 	}
682 
683 	/*
684 	 * Demotion?
685 	 * ---------
686 	 * Track the number of shorts (time asleep is less than time threshold)
687 	 * and demote when the usage threshold is reached.
688 	 */
689 	if (cx->demotion.state) {
690 		if (sleep_ticks < cx->demotion.threshold.ticks) {
691 			cx->demotion.count++;
692 			cx->promotion.count = 0;
693 			if (cx->demotion.count >= cx->demotion.threshold.count) {
694 				next_state = cx->demotion.state;
695 				goto end;
696 			}
697 		}
698 	}
699 
700       end:
701 	/*
702 	 * Demote if current state exceeds max_cstate
703 	 * or if the latency of the current state is unacceptable
704 	 */
705 	if ((pr->power.state - pr->power.states) > max_cstate ||
706 		pr->power.state->latency >
707 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
708 		if (cx->demotion.state)
709 			next_state = cx->demotion.state;
710 	}
711 
712 	/*
713 	 * New Cx State?
714 	 * -------------
715 	 * If we're going to start using a new Cx state we must clean up
716 	 * from the previous and prepare to use the new.
717 	 */
718 	if (next_state != pr->power.state)
719 		acpi_processor_power_activate(pr, next_state);
720 }
721 
722 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
723 {
724 	unsigned int i;
725 	unsigned int state_is_set = 0;
726 	struct acpi_processor_cx *lower = NULL;
727 	struct acpi_processor_cx *higher = NULL;
728 	struct acpi_processor_cx *cx;
729 
730 
731 	if (!pr)
732 		return -EINVAL;
733 
734 	/*
735 	 * This function sets the default Cx state policy (OS idle handler).
736 	 * Our scheme is to promote quickly to C2 but more conservatively
737 	 * to C3.  We're favoring C2  for its characteristics of low latency
738 	 * (quick response), good power savings, and ability to allow bus
739 	 * mastering activity.  Note that the Cx state policy is completely
740 	 * customizable and can be altered dynamically.
741 	 */
742 
743 	/* startup state */
744 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
745 		cx = &pr->power.states[i];
746 		if (!cx->valid)
747 			continue;
748 
749 		if (!state_is_set)
750 			pr->power.state = cx;
751 		state_is_set++;
752 		break;
753 	}
754 
755 	if (!state_is_set)
756 		return -ENODEV;
757 
758 	/* demotion */
759 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
760 		cx = &pr->power.states[i];
761 		if (!cx->valid)
762 			continue;
763 
764 		if (lower) {
765 			cx->demotion.state = lower;
766 			cx->demotion.threshold.ticks = cx->latency_ticks;
767 			cx->demotion.threshold.count = 1;
768 			if (cx->type == ACPI_STATE_C3)
769 				cx->demotion.threshold.bm = bm_history;
770 		}
771 
772 		lower = cx;
773 	}
774 
775 	/* promotion */
776 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
777 		cx = &pr->power.states[i];
778 		if (!cx->valid)
779 			continue;
780 
781 		if (higher) {
782 			cx->promotion.state = higher;
783 			cx->promotion.threshold.ticks = cx->latency_ticks;
784 			if (cx->type >= ACPI_STATE_C2)
785 				cx->promotion.threshold.count = 4;
786 			else
787 				cx->promotion.threshold.count = 10;
788 			if (higher->type == ACPI_STATE_C3)
789 				cx->promotion.threshold.bm = bm_history;
790 		}
791 
792 		higher = cx;
793 	}
794 
795 	return 0;
796 }
797 #endif /* !CONFIG_CPU_IDLE */
798 
799 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
800 {
801 
802 	if (!pr)
803 		return -EINVAL;
804 
805 	if (!pr->pblk)
806 		return -ENODEV;
807 
808 	/* if info is obtained from pblk/fadt, type equals state */
809 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
810 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
811 
812 #ifndef CONFIG_HOTPLUG_CPU
813 	/*
814 	 * Check for P_LVL2_UP flag before entering C2 and above on
815 	 * an SMP system.
816 	 */
817 	if ((num_online_cpus() > 1) &&
818 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
819 		return -ENODEV;
820 #endif
821 
822 	/* determine C2 and C3 address from pblk */
823 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
824 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
825 
826 	/* determine latencies from FADT */
827 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
828 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
829 
830 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
831 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
832 			  pr->power.states[ACPI_STATE_C2].address,
833 			  pr->power.states[ACPI_STATE_C3].address));
834 
835 	return 0;
836 }
837 
838 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
839 {
840 	if (!pr->power.states[ACPI_STATE_C1].valid) {
841 		/* set the first C-State to C1 */
842 		/* all processors need to support C1 */
843 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
844 		pr->power.states[ACPI_STATE_C1].valid = 1;
845 	}
846 	/* the C0 state only exists as a filler in our array */
847 	pr->power.states[ACPI_STATE_C0].valid = 1;
848 	return 0;
849 }
850 
851 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
852 {
853 	acpi_status status = 0;
854 	acpi_integer count;
855 	int current_count;
856 	int i;
857 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
858 	union acpi_object *cst;
859 
860 
861 	if (nocst)
862 		return -ENODEV;
863 
864 	current_count = 0;
865 
866 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
867 	if (ACPI_FAILURE(status)) {
868 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
869 		return -ENODEV;
870 	}
871 
872 	cst = buffer.pointer;
873 
874 	/* There must be at least 2 elements */
875 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
876 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
877 		status = -EFAULT;
878 		goto end;
879 	}
880 
881 	count = cst->package.elements[0].integer.value;
882 
883 	/* Validate number of power states. */
884 	if (count < 1 || count != cst->package.count - 1) {
885 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
886 		status = -EFAULT;
887 		goto end;
888 	}
889 
890 	/* Tell driver that at least _CST is supported. */
891 	pr->flags.has_cst = 1;
892 
893 	for (i = 1; i <= count; i++) {
894 		union acpi_object *element;
895 		union acpi_object *obj;
896 		struct acpi_power_register *reg;
897 		struct acpi_processor_cx cx;
898 
899 		memset(&cx, 0, sizeof(cx));
900 
901 		element = &(cst->package.elements[i]);
902 		if (element->type != ACPI_TYPE_PACKAGE)
903 			continue;
904 
905 		if (element->package.count != 4)
906 			continue;
907 
908 		obj = &(element->package.elements[0]);
909 
910 		if (obj->type != ACPI_TYPE_BUFFER)
911 			continue;
912 
913 		reg = (struct acpi_power_register *)obj->buffer.pointer;
914 
915 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
916 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
917 			continue;
918 
919 		/* There should be an easy way to extract an integer... */
920 		obj = &(element->package.elements[1]);
921 		if (obj->type != ACPI_TYPE_INTEGER)
922 			continue;
923 
924 		cx.type = obj->integer.value;
925 		/*
926 		 * Some buggy BIOSes won't list C1 in _CST -
927 		 * Let acpi_processor_get_power_info_default() handle them later
928 		 */
929 		if (i == 1 && cx.type != ACPI_STATE_C1)
930 			current_count++;
931 
932 		cx.address = reg->address;
933 		cx.index = current_count + 1;
934 
935 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
936 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
937 			if (acpi_processor_ffh_cstate_probe
938 					(pr->id, &cx, reg) == 0) {
939 				cx.entry_method = ACPI_CSTATE_FFH;
940 			} else if (cx.type == ACPI_STATE_C1) {
941 				/*
942 				 * C1 is a special case where FIXED_HARDWARE
943 				 * can be handled in non-MWAIT way as well.
944 				 * In that case, save this _CST entry info.
945 				 * Otherwise, ignore this info and continue.
946 				 */
947 				cx.entry_method = ACPI_CSTATE_HALT;
948 			} else {
949 				continue;
950 			}
951 		}
952 
953 		obj = &(element->package.elements[2]);
954 		if (obj->type != ACPI_TYPE_INTEGER)
955 			continue;
956 
957 		cx.latency = obj->integer.value;
958 
959 		obj = &(element->package.elements[3]);
960 		if (obj->type != ACPI_TYPE_INTEGER)
961 			continue;
962 
963 		cx.power = obj->integer.value;
964 
965 		current_count++;
966 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
967 
968 		/*
969 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
970 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
971 		 */
972 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
973 			printk(KERN_WARNING
974 			       "Limiting number of power states to max (%d)\n",
975 			       ACPI_PROCESSOR_MAX_POWER);
976 			printk(KERN_WARNING
977 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
978 			break;
979 		}
980 	}
981 
982 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
983 			  current_count));
984 
985 	/* Validate number of power states discovered */
986 	if (current_count < 2)
987 		status = -EFAULT;
988 
989       end:
990 	kfree(buffer.pointer);
991 
992 	return status;
993 }
994 
995 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
996 {
997 
998 	if (!cx->address)
999 		return;
1000 
1001 	/*
1002 	 * C2 latency must be less than or equal to 100
1003 	 * microseconds.
1004 	 */
1005 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1006 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1007 				  "latency too large [%d]\n", cx->latency));
1008 		return;
1009 	}
1010 
1011 	/*
1012 	 * Otherwise we've met all of our C2 requirements.
1013 	 * Normalize the C2 latency to expidite policy
1014 	 */
1015 	cx->valid = 1;
1016 
1017 #ifndef CONFIG_CPU_IDLE
1018 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1019 #else
1020 	cx->latency_ticks = cx->latency;
1021 #endif
1022 
1023 	return;
1024 }
1025 
1026 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1027 					   struct acpi_processor_cx *cx)
1028 {
1029 	static int bm_check_flag;
1030 
1031 
1032 	if (!cx->address)
1033 		return;
1034 
1035 	/*
1036 	 * C3 latency must be less than or equal to 1000
1037 	 * microseconds.
1038 	 */
1039 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1040 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1041 				  "latency too large [%d]\n", cx->latency));
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1047 	 * DMA transfers are used by any ISA device to avoid livelock.
1048 	 * Note that we could disable Type-F DMA (as recommended by
1049 	 * the erratum), but this is known to disrupt certain ISA
1050 	 * devices thus we take the conservative approach.
1051 	 */
1052 	else if (errata.piix4.fdma) {
1053 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1054 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1055 		return;
1056 	}
1057 
1058 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1059 	if (!bm_check_flag) {
1060 		/* Determine whether bm_check is needed based on CPU  */
1061 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1062 		bm_check_flag = pr->flags.bm_check;
1063 	} else {
1064 		pr->flags.bm_check = bm_check_flag;
1065 	}
1066 
1067 	if (pr->flags.bm_check) {
1068 		if (!pr->flags.bm_control) {
1069 			if (pr->flags.has_cst != 1) {
1070 				/* bus mastering control is necessary */
1071 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1072 					"C3 support requires BM control\n"));
1073 				return;
1074 			} else {
1075 				/* Here we enter C3 without bus mastering */
1076 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1077 					"C3 support without BM control\n"));
1078 			}
1079 		}
1080 	} else {
1081 		/*
1082 		 * WBINVD should be set in fadt, for C3 state to be
1083 		 * supported on when bm_check is not required.
1084 		 */
1085 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1086 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1087 					  "Cache invalidation should work properly"
1088 					  " for C3 to be enabled on SMP systems\n"));
1089 			return;
1090 		}
1091 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1092 	}
1093 
1094 	/*
1095 	 * Otherwise we've met all of our C3 requirements.
1096 	 * Normalize the C3 latency to expidite policy.  Enable
1097 	 * checking of bus mastering status (bm_check) so we can
1098 	 * use this in our C3 policy
1099 	 */
1100 	cx->valid = 1;
1101 
1102 #ifndef CONFIG_CPU_IDLE
1103 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1104 #else
1105 	cx->latency_ticks = cx->latency;
1106 #endif
1107 
1108 	return;
1109 }
1110 
1111 static int acpi_processor_power_verify(struct acpi_processor *pr)
1112 {
1113 	unsigned int i;
1114 	unsigned int working = 0;
1115 
1116 	pr->power.timer_broadcast_on_state = INT_MAX;
1117 
1118 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1119 		struct acpi_processor_cx *cx = &pr->power.states[i];
1120 
1121 		switch (cx->type) {
1122 		case ACPI_STATE_C1:
1123 			cx->valid = 1;
1124 			break;
1125 
1126 		case ACPI_STATE_C2:
1127 			acpi_processor_power_verify_c2(cx);
1128 			if (cx->valid)
1129 				acpi_timer_check_state(i, pr, cx);
1130 			break;
1131 
1132 		case ACPI_STATE_C3:
1133 			acpi_processor_power_verify_c3(pr, cx);
1134 			if (cx->valid)
1135 				acpi_timer_check_state(i, pr, cx);
1136 			break;
1137 		}
1138 
1139 		if (cx->valid)
1140 			working++;
1141 	}
1142 
1143 	acpi_propagate_timer_broadcast(pr);
1144 
1145 	return (working);
1146 }
1147 
1148 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1149 {
1150 	unsigned int i;
1151 	int result;
1152 
1153 
1154 	/* NOTE: the idle thread may not be running while calling
1155 	 * this function */
1156 
1157 	/* Zero initialize all the C-states info. */
1158 	memset(pr->power.states, 0, sizeof(pr->power.states));
1159 
1160 	result = acpi_processor_get_power_info_cst(pr);
1161 	if (result == -ENODEV)
1162 		result = acpi_processor_get_power_info_fadt(pr);
1163 
1164 	if (result)
1165 		return result;
1166 
1167 	acpi_processor_get_power_info_default(pr);
1168 
1169 	pr->power.count = acpi_processor_power_verify(pr);
1170 
1171 #ifndef CONFIG_CPU_IDLE
1172 	/*
1173 	 * Set Default Policy
1174 	 * ------------------
1175 	 * Now that we know which states are supported, set the default
1176 	 * policy.  Note that this policy can be changed dynamically
1177 	 * (e.g. encourage deeper sleeps to conserve battery life when
1178 	 * not on AC).
1179 	 */
1180 	result = acpi_processor_set_power_policy(pr);
1181 	if (result)
1182 		return result;
1183 #endif
1184 
1185 	/*
1186 	 * if one state of type C2 or C3 is available, mark this
1187 	 * CPU as being "idle manageable"
1188 	 */
1189 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1190 		if (pr->power.states[i].valid) {
1191 			pr->power.count = i;
1192 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1193 				pr->flags.power = 1;
1194 		}
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1201 {
1202 	struct acpi_processor *pr = seq->private;
1203 	unsigned int i;
1204 
1205 
1206 	if (!pr)
1207 		goto end;
1208 
1209 	seq_printf(seq, "active state:            C%zd\n"
1210 		   "max_cstate:              C%d\n"
1211 		   "bus master activity:     %08x\n"
1212 		   "maximum allowed latency: %d usec\n",
1213 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1214 		   max_cstate, (unsigned)pr->power.bm_activity,
1215 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1216 
1217 	seq_puts(seq, "states:\n");
1218 
1219 	for (i = 1; i <= pr->power.count; i++) {
1220 		seq_printf(seq, "   %cC%d:                  ",
1221 			   (&pr->power.states[i] ==
1222 			    pr->power.state ? '*' : ' '), i);
1223 
1224 		if (!pr->power.states[i].valid) {
1225 			seq_puts(seq, "<not supported>\n");
1226 			continue;
1227 		}
1228 
1229 		switch (pr->power.states[i].type) {
1230 		case ACPI_STATE_C1:
1231 			seq_printf(seq, "type[C1] ");
1232 			break;
1233 		case ACPI_STATE_C2:
1234 			seq_printf(seq, "type[C2] ");
1235 			break;
1236 		case ACPI_STATE_C3:
1237 			seq_printf(seq, "type[C3] ");
1238 			break;
1239 		default:
1240 			seq_printf(seq, "type[--] ");
1241 			break;
1242 		}
1243 
1244 		if (pr->power.states[i].promotion.state)
1245 			seq_printf(seq, "promotion[C%zd] ",
1246 				   (pr->power.states[i].promotion.state -
1247 				    pr->power.states));
1248 		else
1249 			seq_puts(seq, "promotion[--] ");
1250 
1251 		if (pr->power.states[i].demotion.state)
1252 			seq_printf(seq, "demotion[C%zd] ",
1253 				   (pr->power.states[i].demotion.state -
1254 				    pr->power.states));
1255 		else
1256 			seq_puts(seq, "demotion[--] ");
1257 
1258 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1259 			   pr->power.states[i].latency,
1260 			   pr->power.states[i].usage,
1261 			   (unsigned long long)pr->power.states[i].time);
1262 	}
1263 
1264       end:
1265 	return 0;
1266 }
1267 
1268 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1269 {
1270 	return single_open(file, acpi_processor_power_seq_show,
1271 			   PDE(inode)->data);
1272 }
1273 
1274 static const struct file_operations acpi_processor_power_fops = {
1275 	.open = acpi_processor_power_open_fs,
1276 	.read = seq_read,
1277 	.llseek = seq_lseek,
1278 	.release = single_release,
1279 };
1280 
1281 #ifndef CONFIG_CPU_IDLE
1282 
1283 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1284 {
1285 	int result = 0;
1286 
1287 
1288 	if (!pr)
1289 		return -EINVAL;
1290 
1291 	if (nocst) {
1292 		return -ENODEV;
1293 	}
1294 
1295 	if (!pr->flags.power_setup_done)
1296 		return -ENODEV;
1297 
1298 	/* Fall back to the default idle loop */
1299 	pm_idle = pm_idle_save;
1300 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1301 
1302 	pr->flags.power = 0;
1303 	result = acpi_processor_get_power_info(pr);
1304 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1305 		pm_idle = acpi_processor_idle;
1306 
1307 	return result;
1308 }
1309 
1310 #ifdef CONFIG_SMP
1311 static void smp_callback(void *v)
1312 {
1313 	/* we already woke the CPU up, nothing more to do */
1314 }
1315 
1316 /*
1317  * This function gets called when a part of the kernel has a new latency
1318  * requirement.  This means we need to get all processors out of their C-state,
1319  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1320  * wakes them all right up.
1321  */
1322 static int acpi_processor_latency_notify(struct notifier_block *b,
1323 		unsigned long l, void *v)
1324 {
1325 	smp_call_function(smp_callback, NULL, 0, 1);
1326 	return NOTIFY_OK;
1327 }
1328 
1329 static struct notifier_block acpi_processor_latency_notifier = {
1330 	.notifier_call = acpi_processor_latency_notify,
1331 };
1332 
1333 #endif
1334 
1335 #else /* CONFIG_CPU_IDLE */
1336 
1337 /**
1338  * acpi_idle_bm_check - checks if bus master activity was detected
1339  */
1340 static int acpi_idle_bm_check(void)
1341 {
1342 	u32 bm_status = 0;
1343 
1344 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1345 	if (bm_status)
1346 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1347 	/*
1348 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1349 	 * the true state of bus mastering activity; forcing us to
1350 	 * manually check the BMIDEA bit of each IDE channel.
1351 	 */
1352 	else if (errata.piix4.bmisx) {
1353 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1354 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1355 			bm_status = 1;
1356 	}
1357 	return bm_status;
1358 }
1359 
1360 /**
1361  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1362  * @pr: the processor
1363  * @target: the new target state
1364  */
1365 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1366 					   struct acpi_processor_cx *target)
1367 {
1368 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1369 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1370 		pr->flags.bm_rld_set = 0;
1371 	}
1372 
1373 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1374 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1375 		pr->flags.bm_rld_set = 1;
1376 	}
1377 }
1378 
1379 /**
1380  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1381  * @cx: cstate data
1382  *
1383  * Caller disables interrupt before call and enables interrupt after return.
1384  */
1385 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1386 {
1387 	if (cx->entry_method == ACPI_CSTATE_FFH) {
1388 		/* Call into architectural FFH based C-state */
1389 		acpi_processor_ffh_cstate_enter(cx);
1390 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
1391 		acpi_safe_halt();
1392 	} else {
1393 		int unused;
1394 		/* IO port based C-state */
1395 		inb(cx->address);
1396 		/* Dummy wait op - must do something useless after P_LVL2 read
1397 		   because chipsets cannot guarantee that STPCLK# signal
1398 		   gets asserted in time to freeze execution properly. */
1399 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1400 	}
1401 }
1402 
1403 /**
1404  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1405  * @dev: the target CPU
1406  * @state: the state data
1407  *
1408  * This is equivalent to the HALT instruction.
1409  */
1410 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1411 			      struct cpuidle_state *state)
1412 {
1413 	u32 t1, t2;
1414 	struct acpi_processor *pr;
1415 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1416 
1417 	pr = processors[smp_processor_id()];
1418 
1419 	if (unlikely(!pr))
1420 		return 0;
1421 
1422 	local_irq_disable();
1423 	if (pr->flags.bm_check)
1424 		acpi_idle_update_bm_rld(pr, cx);
1425 
1426 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1427 	acpi_idle_do_entry(cx);
1428 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1429 
1430 	local_irq_enable();
1431 	cx->usage++;
1432 
1433 	return ticks_elapsed_in_us(t1, t2);
1434 }
1435 
1436 /**
1437  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1438  * @dev: the target CPU
1439  * @state: the state data
1440  */
1441 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1442 				  struct cpuidle_state *state)
1443 {
1444 	struct acpi_processor *pr;
1445 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1446 	u32 t1, t2;
1447 	int sleep_ticks = 0;
1448 
1449 	pr = processors[smp_processor_id()];
1450 
1451 	if (unlikely(!pr))
1452 		return 0;
1453 
1454 	if (acpi_idle_suspend)
1455 		return(acpi_idle_enter_c1(dev, state));
1456 
1457 	local_irq_disable();
1458 	current_thread_info()->status &= ~TS_POLLING;
1459 	/*
1460 	 * TS_POLLING-cleared state must be visible before we test
1461 	 * NEED_RESCHED:
1462 	 */
1463 	smp_mb();
1464 
1465 	if (unlikely(need_resched())) {
1466 		current_thread_info()->status |= TS_POLLING;
1467 		local_irq_enable();
1468 		return 0;
1469 	}
1470 
1471 	acpi_unlazy_tlb(smp_processor_id());
1472 	/*
1473 	 * Must be done before busmaster disable as we might need to
1474 	 * access HPET !
1475 	 */
1476 	acpi_state_timer_broadcast(pr, cx, 1);
1477 
1478 	if (pr->flags.bm_check)
1479 		acpi_idle_update_bm_rld(pr, cx);
1480 
1481 	if (cx->type == ACPI_STATE_C3)
1482 		ACPI_FLUSH_CPU_CACHE();
1483 
1484 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1485 	/* Tell the scheduler that we are going deep-idle: */
1486 	sched_clock_idle_sleep_event();
1487 	acpi_idle_do_entry(cx);
1488 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1489 
1490 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1491 	/* TSC could halt in idle, so notify users */
1492 	if (tsc_halts_in_c(cx->type))
1493 		mark_tsc_unstable("TSC halts in idle");;
1494 #endif
1495 	sleep_ticks = ticks_elapsed(t1, t2);
1496 
1497 	/* Tell the scheduler how much we idled: */
1498 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1499 
1500 	local_irq_enable();
1501 	current_thread_info()->status |= TS_POLLING;
1502 
1503 	cx->usage++;
1504 
1505 	acpi_state_timer_broadcast(pr, cx, 0);
1506 	cx->time += sleep_ticks;
1507 	return ticks_elapsed_in_us(t1, t2);
1508 }
1509 
1510 static int c3_cpu_count;
1511 static DEFINE_SPINLOCK(c3_lock);
1512 
1513 /**
1514  * acpi_idle_enter_bm - enters C3 with proper BM handling
1515  * @dev: the target CPU
1516  * @state: the state data
1517  *
1518  * If BM is detected, the deepest non-C3 idle state is entered instead.
1519  */
1520 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1521 			      struct cpuidle_state *state)
1522 {
1523 	struct acpi_processor *pr;
1524 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1525 	u32 t1, t2;
1526 	int sleep_ticks = 0;
1527 
1528 	pr = processors[smp_processor_id()];
1529 
1530 	if (unlikely(!pr))
1531 		return 0;
1532 
1533 	if (acpi_idle_suspend)
1534 		return(acpi_idle_enter_c1(dev, state));
1535 
1536 	if (acpi_idle_bm_check()) {
1537 		if (dev->safe_state) {
1538 			return dev->safe_state->enter(dev, dev->safe_state);
1539 		} else {
1540 			local_irq_disable();
1541 			acpi_safe_halt();
1542 			local_irq_enable();
1543 			return 0;
1544 		}
1545 	}
1546 
1547 	local_irq_disable();
1548 	current_thread_info()->status &= ~TS_POLLING;
1549 	/*
1550 	 * TS_POLLING-cleared state must be visible before we test
1551 	 * NEED_RESCHED:
1552 	 */
1553 	smp_mb();
1554 
1555 	if (unlikely(need_resched())) {
1556 		current_thread_info()->status |= TS_POLLING;
1557 		local_irq_enable();
1558 		return 0;
1559 	}
1560 
1561 	/* Tell the scheduler that we are going deep-idle: */
1562 	sched_clock_idle_sleep_event();
1563 	/*
1564 	 * Must be done before busmaster disable as we might need to
1565 	 * access HPET !
1566 	 */
1567 	acpi_state_timer_broadcast(pr, cx, 1);
1568 
1569 	acpi_idle_update_bm_rld(pr, cx);
1570 
1571 	/*
1572 	 * disable bus master
1573 	 * bm_check implies we need ARB_DIS
1574 	 * !bm_check implies we need cache flush
1575 	 * bm_control implies whether we can do ARB_DIS
1576 	 *
1577 	 * That leaves a case where bm_check is set and bm_control is
1578 	 * not set. In that case we cannot do much, we enter C3
1579 	 * without doing anything.
1580 	 */
1581 	if (pr->flags.bm_check && pr->flags.bm_control) {
1582 		spin_lock(&c3_lock);
1583 		c3_cpu_count++;
1584 		/* Disable bus master arbitration when all CPUs are in C3 */
1585 		if (c3_cpu_count == num_online_cpus())
1586 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1587 		spin_unlock(&c3_lock);
1588 	} else if (!pr->flags.bm_check) {
1589 		ACPI_FLUSH_CPU_CACHE();
1590 	}
1591 
1592 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1593 	acpi_idle_do_entry(cx);
1594 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1595 
1596 	/* Re-enable bus master arbitration */
1597 	if (pr->flags.bm_check && pr->flags.bm_control) {
1598 		spin_lock(&c3_lock);
1599 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1600 		c3_cpu_count--;
1601 		spin_unlock(&c3_lock);
1602 	}
1603 
1604 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1605 	/* TSC could halt in idle, so notify users */
1606 	if (tsc_halts_in_c(ACPI_STATE_C3))
1607 		mark_tsc_unstable("TSC halts in idle");
1608 #endif
1609 	sleep_ticks = ticks_elapsed(t1, t2);
1610 	/* Tell the scheduler how much we idled: */
1611 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1612 
1613 	local_irq_enable();
1614 	current_thread_info()->status |= TS_POLLING;
1615 
1616 	cx->usage++;
1617 
1618 	acpi_state_timer_broadcast(pr, cx, 0);
1619 	cx->time += sleep_ticks;
1620 	return ticks_elapsed_in_us(t1, t2);
1621 }
1622 
1623 struct cpuidle_driver acpi_idle_driver = {
1624 	.name =		"acpi_idle",
1625 	.owner =	THIS_MODULE,
1626 };
1627 
1628 /**
1629  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1630  * @pr: the ACPI processor
1631  */
1632 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1633 {
1634 	int i, count = CPUIDLE_DRIVER_STATE_START;
1635 	struct acpi_processor_cx *cx;
1636 	struct cpuidle_state *state;
1637 	struct cpuidle_device *dev = &pr->power.dev;
1638 
1639 	if (!pr->flags.power_setup_done)
1640 		return -EINVAL;
1641 
1642 	if (pr->flags.power == 0) {
1643 		return -EINVAL;
1644 	}
1645 
1646 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1647 		cx = &pr->power.states[i];
1648 		state = &dev->states[count];
1649 
1650 		if (!cx->valid)
1651 			continue;
1652 
1653 #ifdef CONFIG_HOTPLUG_CPU
1654 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1655 		    !pr->flags.has_cst &&
1656 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1657 			continue;
1658 #endif
1659 		cpuidle_set_statedata(state, cx);
1660 
1661 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1662 		state->exit_latency = cx->latency;
1663 		state->target_residency = cx->latency * latency_factor;
1664 		state->power_usage = cx->power;
1665 
1666 		state->flags = 0;
1667 		switch (cx->type) {
1668 			case ACPI_STATE_C1:
1669 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1670 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1671 			state->enter = acpi_idle_enter_c1;
1672 			dev->safe_state = state;
1673 			break;
1674 
1675 			case ACPI_STATE_C2:
1676 			state->flags |= CPUIDLE_FLAG_BALANCED;
1677 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1678 			state->enter = acpi_idle_enter_simple;
1679 			dev->safe_state = state;
1680 			break;
1681 
1682 			case ACPI_STATE_C3:
1683 			state->flags |= CPUIDLE_FLAG_DEEP;
1684 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1685 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1686 			state->enter = pr->flags.bm_check ?
1687 					acpi_idle_enter_bm :
1688 					acpi_idle_enter_simple;
1689 			break;
1690 		}
1691 
1692 		count++;
1693 		if (count == CPUIDLE_STATE_MAX)
1694 			break;
1695 	}
1696 
1697 	dev->state_count = count;
1698 
1699 	if (!count)
1700 		return -EINVAL;
1701 
1702 	return 0;
1703 }
1704 
1705 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1706 {
1707 	int ret;
1708 
1709 	if (!pr)
1710 		return -EINVAL;
1711 
1712 	if (nocst) {
1713 		return -ENODEV;
1714 	}
1715 
1716 	if (!pr->flags.power_setup_done)
1717 		return -ENODEV;
1718 
1719 	cpuidle_pause_and_lock();
1720 	cpuidle_disable_device(&pr->power.dev);
1721 	acpi_processor_get_power_info(pr);
1722 	acpi_processor_setup_cpuidle(pr);
1723 	ret = cpuidle_enable_device(&pr->power.dev);
1724 	cpuidle_resume_and_unlock();
1725 
1726 	return ret;
1727 }
1728 
1729 #endif /* CONFIG_CPU_IDLE */
1730 
1731 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1732 			      struct acpi_device *device)
1733 {
1734 	acpi_status status = 0;
1735 	static int first_run;
1736 	struct proc_dir_entry *entry = NULL;
1737 	unsigned int i;
1738 
1739 
1740 	if (!first_run) {
1741 		dmi_check_system(processor_power_dmi_table);
1742 		max_cstate = acpi_processor_cstate_check(max_cstate);
1743 		if (max_cstate < ACPI_C_STATES_MAX)
1744 			printk(KERN_NOTICE
1745 			       "ACPI: processor limited to max C-state %d\n",
1746 			       max_cstate);
1747 		first_run++;
1748 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1749 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1750 				&acpi_processor_latency_notifier);
1751 #endif
1752 	}
1753 
1754 	if (!pr)
1755 		return -EINVAL;
1756 
1757 	if (acpi_gbl_FADT.cst_control && !nocst) {
1758 		status =
1759 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1760 		if (ACPI_FAILURE(status)) {
1761 			ACPI_EXCEPTION((AE_INFO, status,
1762 					"Notifying BIOS of _CST ability failed"));
1763 		}
1764 	}
1765 
1766 	acpi_processor_get_power_info(pr);
1767 	pr->flags.power_setup_done = 1;
1768 
1769 	/*
1770 	 * Install the idle handler if processor power management is supported.
1771 	 * Note that we use previously set idle handler will be used on
1772 	 * platforms that only support C1.
1773 	 */
1774 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1775 #ifdef CONFIG_CPU_IDLE
1776 		acpi_processor_setup_cpuidle(pr);
1777 		pr->power.dev.cpu = pr->id;
1778 		if (cpuidle_register_device(&pr->power.dev))
1779 			return -EIO;
1780 #endif
1781 
1782 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1783 		for (i = 1; i <= pr->power.count; i++)
1784 			if (pr->power.states[i].valid)
1785 				printk(" C%d[C%d]", i,
1786 				       pr->power.states[i].type);
1787 		printk(")\n");
1788 
1789 #ifndef CONFIG_CPU_IDLE
1790 		if (pr->id == 0) {
1791 			pm_idle_save = pm_idle;
1792 			pm_idle = acpi_processor_idle;
1793 		}
1794 #endif
1795 	}
1796 
1797 	/* 'power' [R] */
1798 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1799 				  S_IRUGO, acpi_device_dir(device));
1800 	if (!entry)
1801 		return -EIO;
1802 	else {
1803 		entry->proc_fops = &acpi_processor_power_fops;
1804 		entry->data = acpi_driver_data(device);
1805 		entry->owner = THIS_MODULE;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 int acpi_processor_power_exit(struct acpi_processor *pr,
1812 			      struct acpi_device *device)
1813 {
1814 #ifdef CONFIG_CPU_IDLE
1815 	if ((pr->flags.power) && (!boot_option_idle_override))
1816 		cpuidle_unregister_device(&pr->power.dev);
1817 #endif
1818 	pr->flags.power_setup_done = 0;
1819 
1820 	if (acpi_device_dir(device))
1821 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1822 				  acpi_device_dir(device));
1823 
1824 #ifndef CONFIG_CPU_IDLE
1825 
1826 	/* Unregister the idle handler when processor #0 is removed. */
1827 	if (pr->id == 0) {
1828 		pm_idle = pm_idle_save;
1829 
1830 		/*
1831 		 * We are about to unload the current idle thread pm callback
1832 		 * (pm_idle), Wait for all processors to update cached/local
1833 		 * copies of pm_idle before proceeding.
1834 		 */
1835 		cpu_idle_wait();
1836 #ifdef CONFIG_SMP
1837 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1838 				&acpi_processor_latency_notifier);
1839 #endif
1840 	}
1841 #endif
1842 
1843 	return 0;
1844 }
1845