xref: /linux/drivers/acpi/processor_idle.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 struct cpuidle_driver acpi_idle_driver = {
66 	.name =		"acpi_idle",
67 	.owner =	THIS_MODULE,
68 };
69 
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73 
74 static int disabled_by_idle_boot_param(void)
75 {
76 	return boot_option_idle_override == IDLE_POLL ||
77 		boot_option_idle_override == IDLE_HALT;
78 }
79 
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89 		return 0;
90 
91 	pr_notice("%s detected - limiting to C%ld max_cstate."
92 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94 
95 	max_cstate = (long)id->driver_data;
96 
97 	return 0;
98 }
99 
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 	{ set_max_cstate, "Clevo 5600D", {
102 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104 	 (void *)2},
105 	{ set_max_cstate, "Pavilion zv5000", {
106 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108 	 (void *)1},
109 	{ set_max_cstate, "Asus L8400B", {
110 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112 	 (void *)1},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123 	if (!tif_need_resched()) {
124 		safe_halt();
125 		local_irq_disable();
126 	}
127 }
128 
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 				   struct acpi_processor_cx *cx)
139 {
140 	struct acpi_processor_power *pwr = &pr->power;
141 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142 
143 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144 		return;
145 
146 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 		type = ACPI_STATE_C1;
148 
149 	/*
150 	 * Check, if one of the previous states already marked the lapic
151 	 * unstable
152 	 */
153 	if (pwr->timer_broadcast_on_state < state)
154 		return;
155 
156 	if (cx->type >= type)
157 		pr->power.timer_broadcast_on_state = state;
158 }
159 
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162 	struct acpi_processor *pr = (struct acpi_processor *) arg;
163 
164 	if (pr->power.timer_broadcast_on_state < INT_MAX)
165 		tick_broadcast_enable();
166 	else
167 		tick_broadcast_disable();
168 }
169 
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 				 (void *)pr, 1);
174 }
175 
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 				       struct acpi_processor_cx *cx,
179 				       int broadcast)
180 {
181 	int state = cx - pr->power.states;
182 
183 	if (state >= pr->power.timer_broadcast_on_state) {
184 		if (broadcast)
185 			tick_broadcast_enter();
186 		else
187 			tick_broadcast_exit();
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_AMD:
209 	case X86_VENDOR_INTEL:
210 	case X86_VENDOR_CENTAUR:
211 		/*
212 		 * AMD Fam10h TSC will tick in all
213 		 * C/P/S0/S1 states when this bit is set.
214 		 */
215 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
216 			return;
217 
218 		/*FALL THROUGH*/
219 	default:
220 		/* TSC could halt in idle, so notify users */
221 		if (state > ACPI_STATE_C1)
222 			mark_tsc_unstable("TSC halts in idle");
223 	}
224 }
225 #else
226 static void tsc_check_state(int state) { return; }
227 #endif
228 
229 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
230 {
231 
232 	if (!pr->pblk)
233 		return -ENODEV;
234 
235 	/* if info is obtained from pblk/fadt, type equals state */
236 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
237 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
238 
239 #ifndef CONFIG_HOTPLUG_CPU
240 	/*
241 	 * Check for P_LVL2_UP flag before entering C2 and above on
242 	 * an SMP system.
243 	 */
244 	if ((num_online_cpus() > 1) &&
245 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
246 		return -ENODEV;
247 #endif
248 
249 	/* determine C2 and C3 address from pblk */
250 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
251 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
252 
253 	/* determine latencies from FADT */
254 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
255 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
256 
257 	/*
258 	 * FADT specified C2 latency must be less than or equal to
259 	 * 100 microseconds.
260 	 */
261 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
262 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
264 		/* invalidate C2 */
265 		pr->power.states[ACPI_STATE_C2].address = 0;
266 	}
267 
268 	/*
269 	 * FADT supplied C3 latency must be less than or equal to
270 	 * 1000 microseconds.
271 	 */
272 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
273 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
274 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
275 		/* invalidate C3 */
276 		pr->power.states[ACPI_STATE_C3].address = 0;
277 	}
278 
279 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
280 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
281 			  pr->power.states[ACPI_STATE_C2].address,
282 			  pr->power.states[ACPI_STATE_C3].address));
283 
284 	return 0;
285 }
286 
287 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
288 {
289 	if (!pr->power.states[ACPI_STATE_C1].valid) {
290 		/* set the first C-State to C1 */
291 		/* all processors need to support C1 */
292 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
293 		pr->power.states[ACPI_STATE_C1].valid = 1;
294 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
295 
296 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
297 			 ACPI_CX_DESC_LEN, "ACPI HLT");
298 	}
299 	/* the C0 state only exists as a filler in our array */
300 	pr->power.states[ACPI_STATE_C0].valid = 1;
301 	return 0;
302 }
303 
304 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
305 {
306 	acpi_status status;
307 	u64 count;
308 	int current_count;
309 	int i, ret = 0;
310 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
311 	union acpi_object *cst;
312 
313 	if (nocst)
314 		return -ENODEV;
315 
316 	current_count = 0;
317 
318 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
319 	if (ACPI_FAILURE(status)) {
320 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
321 		return -ENODEV;
322 	}
323 
324 	cst = buffer.pointer;
325 
326 	/* There must be at least 2 elements */
327 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
328 		pr_err("not enough elements in _CST\n");
329 		ret = -EFAULT;
330 		goto end;
331 	}
332 
333 	count = cst->package.elements[0].integer.value;
334 
335 	/* Validate number of power states. */
336 	if (count < 1 || count != cst->package.count - 1) {
337 		pr_err("count given by _CST is not valid\n");
338 		ret = -EFAULT;
339 		goto end;
340 	}
341 
342 	/* Tell driver that at least _CST is supported. */
343 	pr->flags.has_cst = 1;
344 
345 	for (i = 1; i <= count; i++) {
346 		union acpi_object *element;
347 		union acpi_object *obj;
348 		struct acpi_power_register *reg;
349 		struct acpi_processor_cx cx;
350 
351 		memset(&cx, 0, sizeof(cx));
352 
353 		element = &(cst->package.elements[i]);
354 		if (element->type != ACPI_TYPE_PACKAGE)
355 			continue;
356 
357 		if (element->package.count != 4)
358 			continue;
359 
360 		obj = &(element->package.elements[0]);
361 
362 		if (obj->type != ACPI_TYPE_BUFFER)
363 			continue;
364 
365 		reg = (struct acpi_power_register *)obj->buffer.pointer;
366 
367 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
368 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
369 			continue;
370 
371 		/* There should be an easy way to extract an integer... */
372 		obj = &(element->package.elements[1]);
373 		if (obj->type != ACPI_TYPE_INTEGER)
374 			continue;
375 
376 		cx.type = obj->integer.value;
377 		/*
378 		 * Some buggy BIOSes won't list C1 in _CST -
379 		 * Let acpi_processor_get_power_info_default() handle them later
380 		 */
381 		if (i == 1 && cx.type != ACPI_STATE_C1)
382 			current_count++;
383 
384 		cx.address = reg->address;
385 		cx.index = current_count + 1;
386 
387 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
388 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
389 			if (acpi_processor_ffh_cstate_probe
390 					(pr->id, &cx, reg) == 0) {
391 				cx.entry_method = ACPI_CSTATE_FFH;
392 			} else if (cx.type == ACPI_STATE_C1) {
393 				/*
394 				 * C1 is a special case where FIXED_HARDWARE
395 				 * can be handled in non-MWAIT way as well.
396 				 * In that case, save this _CST entry info.
397 				 * Otherwise, ignore this info and continue.
398 				 */
399 				cx.entry_method = ACPI_CSTATE_HALT;
400 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
401 			} else {
402 				continue;
403 			}
404 			if (cx.type == ACPI_STATE_C1 &&
405 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
406 				/*
407 				 * In most cases the C1 space_id obtained from
408 				 * _CST object is FIXED_HARDWARE access mode.
409 				 * But when the option of idle=halt is added,
410 				 * the entry_method type should be changed from
411 				 * CSTATE_FFH to CSTATE_HALT.
412 				 * When the option of idle=nomwait is added,
413 				 * the C1 entry_method type should be
414 				 * CSTATE_HALT.
415 				 */
416 				cx.entry_method = ACPI_CSTATE_HALT;
417 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
418 			}
419 		} else {
420 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
421 				 cx.address);
422 		}
423 
424 		if (cx.type == ACPI_STATE_C1) {
425 			cx.valid = 1;
426 		}
427 
428 		obj = &(element->package.elements[2]);
429 		if (obj->type != ACPI_TYPE_INTEGER)
430 			continue;
431 
432 		cx.latency = obj->integer.value;
433 
434 		obj = &(element->package.elements[3]);
435 		if (obj->type != ACPI_TYPE_INTEGER)
436 			continue;
437 
438 		current_count++;
439 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
440 
441 		/*
442 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
443 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
444 		 */
445 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
446 			pr_warn("Limiting number of power states to max (%d)\n",
447 				ACPI_PROCESSOR_MAX_POWER);
448 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
449 			break;
450 		}
451 	}
452 
453 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
454 			  current_count));
455 
456 	/* Validate number of power states discovered */
457 	if (current_count < 2)
458 		ret = -EFAULT;
459 
460       end:
461 	kfree(buffer.pointer);
462 
463 	return ret;
464 }
465 
466 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
467 					   struct acpi_processor_cx *cx)
468 {
469 	static int bm_check_flag = -1;
470 	static int bm_control_flag = -1;
471 
472 
473 	if (!cx->address)
474 		return;
475 
476 	/*
477 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
478 	 * DMA transfers are used by any ISA device to avoid livelock.
479 	 * Note that we could disable Type-F DMA (as recommended by
480 	 * the erratum), but this is known to disrupt certain ISA
481 	 * devices thus we take the conservative approach.
482 	 */
483 	else if (errata.piix4.fdma) {
484 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
485 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
486 		return;
487 	}
488 
489 	/* All the logic here assumes flags.bm_check is same across all CPUs */
490 	if (bm_check_flag == -1) {
491 		/* Determine whether bm_check is needed based on CPU  */
492 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
493 		bm_check_flag = pr->flags.bm_check;
494 		bm_control_flag = pr->flags.bm_control;
495 	} else {
496 		pr->flags.bm_check = bm_check_flag;
497 		pr->flags.bm_control = bm_control_flag;
498 	}
499 
500 	if (pr->flags.bm_check) {
501 		if (!pr->flags.bm_control) {
502 			if (pr->flags.has_cst != 1) {
503 				/* bus mastering control is necessary */
504 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
505 					"C3 support requires BM control\n"));
506 				return;
507 			} else {
508 				/* Here we enter C3 without bus mastering */
509 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
510 					"C3 support without BM control\n"));
511 			}
512 		}
513 	} else {
514 		/*
515 		 * WBINVD should be set in fadt, for C3 state to be
516 		 * supported on when bm_check is not required.
517 		 */
518 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
519 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
520 					  "Cache invalidation should work properly"
521 					  " for C3 to be enabled on SMP systems\n"));
522 			return;
523 		}
524 	}
525 
526 	/*
527 	 * Otherwise we've met all of our C3 requirements.
528 	 * Normalize the C3 latency to expidite policy.  Enable
529 	 * checking of bus mastering status (bm_check) so we can
530 	 * use this in our C3 policy
531 	 */
532 	cx->valid = 1;
533 
534 	/*
535 	 * On older chipsets, BM_RLD needs to be set
536 	 * in order for Bus Master activity to wake the
537 	 * system from C3.  Newer chipsets handle DMA
538 	 * during C3 automatically and BM_RLD is a NOP.
539 	 * In either case, the proper way to
540 	 * handle BM_RLD is to set it and leave it set.
541 	 */
542 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
543 
544 	return;
545 }
546 
547 static int acpi_processor_power_verify(struct acpi_processor *pr)
548 {
549 	unsigned int i;
550 	unsigned int working = 0;
551 
552 	pr->power.timer_broadcast_on_state = INT_MAX;
553 
554 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
555 		struct acpi_processor_cx *cx = &pr->power.states[i];
556 
557 		switch (cx->type) {
558 		case ACPI_STATE_C1:
559 			cx->valid = 1;
560 			break;
561 
562 		case ACPI_STATE_C2:
563 			if (!cx->address)
564 				break;
565 			cx->valid = 1;
566 			break;
567 
568 		case ACPI_STATE_C3:
569 			acpi_processor_power_verify_c3(pr, cx);
570 			break;
571 		}
572 		if (!cx->valid)
573 			continue;
574 
575 		lapic_timer_check_state(i, pr, cx);
576 		tsc_check_state(cx->type);
577 		working++;
578 	}
579 
580 	lapic_timer_propagate_broadcast(pr);
581 
582 	return (working);
583 }
584 
585 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
586 {
587 	unsigned int i;
588 	int result;
589 
590 
591 	/* NOTE: the idle thread may not be running while calling
592 	 * this function */
593 
594 	/* Zero initialize all the C-states info. */
595 	memset(pr->power.states, 0, sizeof(pr->power.states));
596 
597 	result = acpi_processor_get_power_info_cst(pr);
598 	if (result == -ENODEV)
599 		result = acpi_processor_get_power_info_fadt(pr);
600 
601 	if (result)
602 		return result;
603 
604 	acpi_processor_get_power_info_default(pr);
605 
606 	pr->power.count = acpi_processor_power_verify(pr);
607 
608 	/*
609 	 * if one state of type C2 or C3 is available, mark this
610 	 * CPU as being "idle manageable"
611 	 */
612 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
613 		if (pr->power.states[i].valid) {
614 			pr->power.count = i;
615 			if (pr->power.states[i].type >= ACPI_STATE_C2)
616 				pr->flags.power = 1;
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 /**
624  * acpi_idle_bm_check - checks if bus master activity was detected
625  */
626 static int acpi_idle_bm_check(void)
627 {
628 	u32 bm_status = 0;
629 
630 	if (bm_check_disable)
631 		return 0;
632 
633 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
634 	if (bm_status)
635 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
636 	/*
637 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
638 	 * the true state of bus mastering activity; forcing us to
639 	 * manually check the BMIDEA bit of each IDE channel.
640 	 */
641 	else if (errata.piix4.bmisx) {
642 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
643 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
644 			bm_status = 1;
645 	}
646 	return bm_status;
647 }
648 
649 /**
650  * acpi_idle_do_entry - enter idle state using the appropriate method
651  * @cx: cstate data
652  *
653  * Caller disables interrupt before call and enables interrupt after return.
654  */
655 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
656 {
657 	if (cx->entry_method == ACPI_CSTATE_FFH) {
658 		/* Call into architectural FFH based C-state */
659 		acpi_processor_ffh_cstate_enter(cx);
660 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
661 		acpi_safe_halt();
662 	} else {
663 		/* IO port based C-state */
664 		inb(cx->address);
665 		/* Dummy wait op - must do something useless after P_LVL2 read
666 		   because chipsets cannot guarantee that STPCLK# signal
667 		   gets asserted in time to freeze execution properly. */
668 		inl(acpi_gbl_FADT.xpm_timer_block.address);
669 	}
670 }
671 
672 /**
673  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
674  * @dev: the target CPU
675  * @index: the index of suggested state
676  */
677 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
678 {
679 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
680 
681 	ACPI_FLUSH_CPU_CACHE();
682 
683 	while (1) {
684 
685 		if (cx->entry_method == ACPI_CSTATE_HALT)
686 			safe_halt();
687 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
688 			inb(cx->address);
689 			/* See comment in acpi_idle_do_entry() */
690 			inl(acpi_gbl_FADT.xpm_timer_block.address);
691 		} else
692 			return -ENODEV;
693 	}
694 
695 	/* Never reached */
696 	return 0;
697 }
698 
699 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
700 {
701 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
702 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
703 }
704 
705 static int c3_cpu_count;
706 static DEFINE_RAW_SPINLOCK(c3_lock);
707 
708 /**
709  * acpi_idle_enter_bm - enters C3 with proper BM handling
710  * @pr: Target processor
711  * @cx: Target state context
712  * @timer_bc: Whether or not to change timer mode to broadcast
713  */
714 static void acpi_idle_enter_bm(struct acpi_processor *pr,
715 			       struct acpi_processor_cx *cx, bool timer_bc)
716 {
717 	acpi_unlazy_tlb(smp_processor_id());
718 
719 	/*
720 	 * Must be done before busmaster disable as we might need to
721 	 * access HPET !
722 	 */
723 	if (timer_bc)
724 		lapic_timer_state_broadcast(pr, cx, 1);
725 
726 	/*
727 	 * disable bus master
728 	 * bm_check implies we need ARB_DIS
729 	 * bm_control implies whether we can do ARB_DIS
730 	 *
731 	 * That leaves a case where bm_check is set and bm_control is
732 	 * not set. In that case we cannot do much, we enter C3
733 	 * without doing anything.
734 	 */
735 	if (pr->flags.bm_control) {
736 		raw_spin_lock(&c3_lock);
737 		c3_cpu_count++;
738 		/* Disable bus master arbitration when all CPUs are in C3 */
739 		if (c3_cpu_count == num_online_cpus())
740 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
741 		raw_spin_unlock(&c3_lock);
742 	}
743 
744 	acpi_idle_do_entry(cx);
745 
746 	/* Re-enable bus master arbitration */
747 	if (pr->flags.bm_control) {
748 		raw_spin_lock(&c3_lock);
749 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
750 		c3_cpu_count--;
751 		raw_spin_unlock(&c3_lock);
752 	}
753 
754 	if (timer_bc)
755 		lapic_timer_state_broadcast(pr, cx, 0);
756 }
757 
758 static int acpi_idle_enter(struct cpuidle_device *dev,
759 			   struct cpuidle_driver *drv, int index)
760 {
761 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
762 	struct acpi_processor *pr;
763 
764 	pr = __this_cpu_read(processors);
765 	if (unlikely(!pr))
766 		return -EINVAL;
767 
768 	if (cx->type != ACPI_STATE_C1) {
769 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
770 			index = ACPI_IDLE_STATE_START;
771 			cx = per_cpu(acpi_cstate[index], dev->cpu);
772 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
773 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
774 				acpi_idle_enter_bm(pr, cx, true);
775 				return index;
776 			} else if (drv->safe_state_index >= 0) {
777 				index = drv->safe_state_index;
778 				cx = per_cpu(acpi_cstate[index], dev->cpu);
779 			} else {
780 				acpi_safe_halt();
781 				return -EBUSY;
782 			}
783 		}
784 	}
785 
786 	lapic_timer_state_broadcast(pr, cx, 1);
787 
788 	if (cx->type == ACPI_STATE_C3)
789 		ACPI_FLUSH_CPU_CACHE();
790 
791 	acpi_idle_do_entry(cx);
792 
793 	lapic_timer_state_broadcast(pr, cx, 0);
794 
795 	return index;
796 }
797 
798 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
799 				   struct cpuidle_driver *drv, int index)
800 {
801 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
802 
803 	if (cx->type == ACPI_STATE_C3) {
804 		struct acpi_processor *pr = __this_cpu_read(processors);
805 
806 		if (unlikely(!pr))
807 			return;
808 
809 		if (pr->flags.bm_check) {
810 			acpi_idle_enter_bm(pr, cx, false);
811 			return;
812 		} else {
813 			ACPI_FLUSH_CPU_CACHE();
814 		}
815 	}
816 	acpi_idle_do_entry(cx);
817 }
818 
819 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
820 					   struct cpuidle_device *dev)
821 {
822 	int i, count = ACPI_IDLE_STATE_START;
823 	struct acpi_processor_cx *cx;
824 
825 	if (max_cstate == 0)
826 		max_cstate = 1;
827 
828 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
829 		cx = &pr->power.states[i];
830 
831 		if (!cx->valid)
832 			continue;
833 
834 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
835 
836 		count++;
837 		if (count == CPUIDLE_STATE_MAX)
838 			break;
839 	}
840 
841 	if (!count)
842 		return -EINVAL;
843 
844 	return 0;
845 }
846 
847 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
848 {
849 	int i, count;
850 	struct acpi_processor_cx *cx;
851 	struct cpuidle_state *state;
852 	struct cpuidle_driver *drv = &acpi_idle_driver;
853 
854 	if (max_cstate == 0)
855 		max_cstate = 1;
856 
857 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
858 		cpuidle_poll_state_init(drv);
859 		count = 1;
860 	} else {
861 		count = 0;
862 	}
863 
864 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
865 		cx = &pr->power.states[i];
866 
867 		if (!cx->valid)
868 			continue;
869 
870 		state = &drv->states[count];
871 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
872 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
873 		state->exit_latency = cx->latency;
874 		state->target_residency = cx->latency * latency_factor;
875 		state->enter = acpi_idle_enter;
876 
877 		state->flags = 0;
878 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
879 			state->enter_dead = acpi_idle_play_dead;
880 			drv->safe_state_index = count;
881 		}
882 		/*
883 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
884 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
885 		 * particularly interesting from the suspend-to-idle angle, so
886 		 * avoid C1 and the situations in which we may need to fall back
887 		 * to it altogether.
888 		 */
889 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
890 			state->enter_s2idle = acpi_idle_enter_s2idle;
891 
892 		count++;
893 		if (count == CPUIDLE_STATE_MAX)
894 			break;
895 	}
896 
897 	drv->state_count = count;
898 
899 	if (!count)
900 		return -EINVAL;
901 
902 	return 0;
903 }
904 
905 static inline void acpi_processor_cstate_first_run_checks(void)
906 {
907 	acpi_status status;
908 	static int first_run;
909 
910 	if (first_run)
911 		return;
912 	dmi_check_system(processor_power_dmi_table);
913 	max_cstate = acpi_processor_cstate_check(max_cstate);
914 	if (max_cstate < ACPI_C_STATES_MAX)
915 		pr_notice("ACPI: processor limited to max C-state %d\n",
916 			  max_cstate);
917 	first_run++;
918 
919 	if (acpi_gbl_FADT.cst_control && !nocst) {
920 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
921 					    acpi_gbl_FADT.cst_control, 8);
922 		if (ACPI_FAILURE(status))
923 			ACPI_EXCEPTION((AE_INFO, status,
924 					"Notifying BIOS of _CST ability failed"));
925 	}
926 }
927 #else
928 
929 static inline int disabled_by_idle_boot_param(void) { return 0; }
930 static inline void acpi_processor_cstate_first_run_checks(void) { }
931 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
932 {
933 	return -ENODEV;
934 }
935 
936 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
937 					   struct cpuidle_device *dev)
938 {
939 	return -EINVAL;
940 }
941 
942 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
943 {
944 	return -EINVAL;
945 }
946 
947 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
948 
949 struct acpi_lpi_states_array {
950 	unsigned int size;
951 	unsigned int composite_states_size;
952 	struct acpi_lpi_state *entries;
953 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
954 };
955 
956 static int obj_get_integer(union acpi_object *obj, u32 *value)
957 {
958 	if (obj->type != ACPI_TYPE_INTEGER)
959 		return -EINVAL;
960 
961 	*value = obj->integer.value;
962 	return 0;
963 }
964 
965 static int acpi_processor_evaluate_lpi(acpi_handle handle,
966 				       struct acpi_lpi_states_array *info)
967 {
968 	acpi_status status;
969 	int ret = 0;
970 	int pkg_count, state_idx = 1, loop;
971 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
972 	union acpi_object *lpi_data;
973 	struct acpi_lpi_state *lpi_state;
974 
975 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
976 	if (ACPI_FAILURE(status)) {
977 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
978 		return -ENODEV;
979 	}
980 
981 	lpi_data = buffer.pointer;
982 
983 	/* There must be at least 4 elements = 3 elements + 1 package */
984 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
985 	    lpi_data->package.count < 4) {
986 		pr_debug("not enough elements in _LPI\n");
987 		ret = -ENODATA;
988 		goto end;
989 	}
990 
991 	pkg_count = lpi_data->package.elements[2].integer.value;
992 
993 	/* Validate number of power states. */
994 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
995 		pr_debug("count given by _LPI is not valid\n");
996 		ret = -ENODATA;
997 		goto end;
998 	}
999 
1000 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1001 	if (!lpi_state) {
1002 		ret = -ENOMEM;
1003 		goto end;
1004 	}
1005 
1006 	info->size = pkg_count;
1007 	info->entries = lpi_state;
1008 
1009 	/* LPI States start at index 3 */
1010 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1011 		union acpi_object *element, *pkg_elem, *obj;
1012 
1013 		element = &lpi_data->package.elements[loop];
1014 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1015 			continue;
1016 
1017 		pkg_elem = element->package.elements;
1018 
1019 		obj = pkg_elem + 6;
1020 		if (obj->type == ACPI_TYPE_BUFFER) {
1021 			struct acpi_power_register *reg;
1022 
1023 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1024 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1025 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1026 				continue;
1027 
1028 			lpi_state->address = reg->address;
1029 			lpi_state->entry_method =
1030 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1031 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1032 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1033 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1034 			lpi_state->address = obj->integer.value;
1035 		} else {
1036 			continue;
1037 		}
1038 
1039 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1040 
1041 		obj = pkg_elem + 9;
1042 		if (obj->type == ACPI_TYPE_STRING)
1043 			strlcpy(lpi_state->desc, obj->string.pointer,
1044 				ACPI_CX_DESC_LEN);
1045 
1046 		lpi_state->index = state_idx;
1047 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1048 			pr_debug("No min. residency found, assuming 10 us\n");
1049 			lpi_state->min_residency = 10;
1050 		}
1051 
1052 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1053 			pr_debug("No wakeup residency found, assuming 10 us\n");
1054 			lpi_state->wake_latency = 10;
1055 		}
1056 
1057 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1058 			lpi_state->flags = 0;
1059 
1060 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1061 			lpi_state->arch_flags = 0;
1062 
1063 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1064 			lpi_state->res_cnt_freq = 1;
1065 
1066 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1067 			lpi_state->enable_parent_state = 0;
1068 	}
1069 
1070 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1071 end:
1072 	kfree(buffer.pointer);
1073 	return ret;
1074 }
1075 
1076 /*
1077  * flat_state_cnt - the number of composite LPI states after the process of flattening
1078  */
1079 static int flat_state_cnt;
1080 
1081 /**
1082  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1083  *
1084  * @local: local LPI state
1085  * @parent: parent LPI state
1086  * @result: composite LPI state
1087  */
1088 static bool combine_lpi_states(struct acpi_lpi_state *local,
1089 			       struct acpi_lpi_state *parent,
1090 			       struct acpi_lpi_state *result)
1091 {
1092 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1093 		if (!parent->address) /* 0 means autopromotable */
1094 			return false;
1095 		result->address = local->address + parent->address;
1096 	} else {
1097 		result->address = parent->address;
1098 	}
1099 
1100 	result->min_residency = max(local->min_residency, parent->min_residency);
1101 	result->wake_latency = local->wake_latency + parent->wake_latency;
1102 	result->enable_parent_state = parent->enable_parent_state;
1103 	result->entry_method = local->entry_method;
1104 
1105 	result->flags = parent->flags;
1106 	result->arch_flags = parent->arch_flags;
1107 	result->index = parent->index;
1108 
1109 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1110 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1111 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1112 	return true;
1113 }
1114 
1115 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1116 
1117 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1118 				  struct acpi_lpi_state *t)
1119 {
1120 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1121 }
1122 
1123 static int flatten_lpi_states(struct acpi_processor *pr,
1124 			      struct acpi_lpi_states_array *curr_level,
1125 			      struct acpi_lpi_states_array *prev_level)
1126 {
1127 	int i, j, state_count = curr_level->size;
1128 	struct acpi_lpi_state *p, *t = curr_level->entries;
1129 
1130 	curr_level->composite_states_size = 0;
1131 	for (j = 0; j < state_count; j++, t++) {
1132 		struct acpi_lpi_state *flpi;
1133 
1134 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1135 			continue;
1136 
1137 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1138 			pr_warn("Limiting number of LPI states to max (%d)\n",
1139 				ACPI_PROCESSOR_MAX_POWER);
1140 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1141 			break;
1142 		}
1143 
1144 		flpi = &pr->power.lpi_states[flat_state_cnt];
1145 
1146 		if (!prev_level) { /* leaf/processor node */
1147 			memcpy(flpi, t, sizeof(*t));
1148 			stash_composite_state(curr_level, flpi);
1149 			flat_state_cnt++;
1150 			continue;
1151 		}
1152 
1153 		for (i = 0; i < prev_level->composite_states_size; i++) {
1154 			p = prev_level->composite_states[i];
1155 			if (t->index <= p->enable_parent_state &&
1156 			    combine_lpi_states(p, t, flpi)) {
1157 				stash_composite_state(curr_level, flpi);
1158 				flat_state_cnt++;
1159 				flpi++;
1160 			}
1161 		}
1162 	}
1163 
1164 	kfree(curr_level->entries);
1165 	return 0;
1166 }
1167 
1168 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1169 {
1170 	int ret, i;
1171 	acpi_status status;
1172 	acpi_handle handle = pr->handle, pr_ahandle;
1173 	struct acpi_device *d = NULL;
1174 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1175 
1176 	if (!osc_pc_lpi_support_confirmed)
1177 		return -EOPNOTSUPP;
1178 
1179 	if (!acpi_has_method(handle, "_LPI"))
1180 		return -EINVAL;
1181 
1182 	flat_state_cnt = 0;
1183 	prev = &info[0];
1184 	curr = &info[1];
1185 	handle = pr->handle;
1186 	ret = acpi_processor_evaluate_lpi(handle, prev);
1187 	if (ret)
1188 		return ret;
1189 	flatten_lpi_states(pr, prev, NULL);
1190 
1191 	status = acpi_get_parent(handle, &pr_ahandle);
1192 	while (ACPI_SUCCESS(status)) {
1193 		acpi_bus_get_device(pr_ahandle, &d);
1194 		handle = pr_ahandle;
1195 
1196 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1197 			break;
1198 
1199 		/* can be optional ? */
1200 		if (!acpi_has_method(handle, "_LPI"))
1201 			break;
1202 
1203 		ret = acpi_processor_evaluate_lpi(handle, curr);
1204 		if (ret)
1205 			break;
1206 
1207 		/* flatten all the LPI states in this level of hierarchy */
1208 		flatten_lpi_states(pr, curr, prev);
1209 
1210 		tmp = prev, prev = curr, curr = tmp;
1211 
1212 		status = acpi_get_parent(handle, &pr_ahandle);
1213 	}
1214 
1215 	pr->power.count = flat_state_cnt;
1216 	/* reset the index after flattening */
1217 	for (i = 0; i < pr->power.count; i++)
1218 		pr->power.lpi_states[i].index = i;
1219 
1220 	/* Tell driver that _LPI is supported. */
1221 	pr->flags.has_lpi = 1;
1222 	pr->flags.power = 1;
1223 
1224 	return 0;
1225 }
1226 
1227 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1228 {
1229 	return -ENODEV;
1230 }
1231 
1232 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1233 {
1234 	return -ENODEV;
1235 }
1236 
1237 /**
1238  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1239  * @dev: the target CPU
1240  * @drv: cpuidle driver containing cpuidle state info
1241  * @index: index of target state
1242  *
1243  * Return: 0 for success or negative value for error
1244  */
1245 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1246 			       struct cpuidle_driver *drv, int index)
1247 {
1248 	struct acpi_processor *pr;
1249 	struct acpi_lpi_state *lpi;
1250 
1251 	pr = __this_cpu_read(processors);
1252 
1253 	if (unlikely(!pr))
1254 		return -EINVAL;
1255 
1256 	lpi = &pr->power.lpi_states[index];
1257 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1258 		return acpi_processor_ffh_lpi_enter(lpi);
1259 
1260 	return -EINVAL;
1261 }
1262 
1263 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1264 {
1265 	int i;
1266 	struct acpi_lpi_state *lpi;
1267 	struct cpuidle_state *state;
1268 	struct cpuidle_driver *drv = &acpi_idle_driver;
1269 
1270 	if (!pr->flags.has_lpi)
1271 		return -EOPNOTSUPP;
1272 
1273 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1274 		lpi = &pr->power.lpi_states[i];
1275 
1276 		state = &drv->states[i];
1277 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1278 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1279 		state->exit_latency = lpi->wake_latency;
1280 		state->target_residency = lpi->min_residency;
1281 		if (lpi->arch_flags)
1282 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1283 		state->enter = acpi_idle_lpi_enter;
1284 		drv->safe_state_index = i;
1285 	}
1286 
1287 	drv->state_count = i;
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1294  * global state data i.e. idle routines
1295  *
1296  * @pr: the ACPI processor
1297  */
1298 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1299 {
1300 	int i;
1301 	struct cpuidle_driver *drv = &acpi_idle_driver;
1302 
1303 	if (!pr->flags.power_setup_done || !pr->flags.power)
1304 		return -EINVAL;
1305 
1306 	drv->safe_state_index = -1;
1307 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1308 		drv->states[i].name[0] = '\0';
1309 		drv->states[i].desc[0] = '\0';
1310 	}
1311 
1312 	if (pr->flags.has_lpi)
1313 		return acpi_processor_setup_lpi_states(pr);
1314 
1315 	return acpi_processor_setup_cstates(pr);
1316 }
1317 
1318 /**
1319  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1320  * device i.e. per-cpu data
1321  *
1322  * @pr: the ACPI processor
1323  * @dev : the cpuidle device
1324  */
1325 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1326 					    struct cpuidle_device *dev)
1327 {
1328 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1329 		return -EINVAL;
1330 
1331 	dev->cpu = pr->id;
1332 	if (pr->flags.has_lpi)
1333 		return acpi_processor_ffh_lpi_probe(pr->id);
1334 
1335 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1336 }
1337 
1338 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1339 {
1340 	int ret;
1341 
1342 	ret = acpi_processor_get_lpi_info(pr);
1343 	if (ret)
1344 		ret = acpi_processor_get_cstate_info(pr);
1345 
1346 	return ret;
1347 }
1348 
1349 int acpi_processor_hotplug(struct acpi_processor *pr)
1350 {
1351 	int ret = 0;
1352 	struct cpuidle_device *dev;
1353 
1354 	if (disabled_by_idle_boot_param())
1355 		return 0;
1356 
1357 	if (!pr->flags.power_setup_done)
1358 		return -ENODEV;
1359 
1360 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1361 	cpuidle_pause_and_lock();
1362 	cpuidle_disable_device(dev);
1363 	ret = acpi_processor_get_power_info(pr);
1364 	if (!ret && pr->flags.power) {
1365 		acpi_processor_setup_cpuidle_dev(pr, dev);
1366 		ret = cpuidle_enable_device(dev);
1367 	}
1368 	cpuidle_resume_and_unlock();
1369 
1370 	return ret;
1371 }
1372 
1373 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1374 {
1375 	int cpu;
1376 	struct acpi_processor *_pr;
1377 	struct cpuidle_device *dev;
1378 
1379 	if (disabled_by_idle_boot_param())
1380 		return 0;
1381 
1382 	if (!pr->flags.power_setup_done)
1383 		return -ENODEV;
1384 
1385 	/*
1386 	 * FIXME:  Design the ACPI notification to make it once per
1387 	 * system instead of once per-cpu.  This condition is a hack
1388 	 * to make the code that updates C-States be called once.
1389 	 */
1390 
1391 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1392 
1393 		/* Protect against cpu-hotplug */
1394 		get_online_cpus();
1395 		cpuidle_pause_and_lock();
1396 
1397 		/* Disable all cpuidle devices */
1398 		for_each_online_cpu(cpu) {
1399 			_pr = per_cpu(processors, cpu);
1400 			if (!_pr || !_pr->flags.power_setup_done)
1401 				continue;
1402 			dev = per_cpu(acpi_cpuidle_device, cpu);
1403 			cpuidle_disable_device(dev);
1404 		}
1405 
1406 		/* Populate Updated C-state information */
1407 		acpi_processor_get_power_info(pr);
1408 		acpi_processor_setup_cpuidle_states(pr);
1409 
1410 		/* Enable all cpuidle devices */
1411 		for_each_online_cpu(cpu) {
1412 			_pr = per_cpu(processors, cpu);
1413 			if (!_pr || !_pr->flags.power_setup_done)
1414 				continue;
1415 			acpi_processor_get_power_info(_pr);
1416 			if (_pr->flags.power) {
1417 				dev = per_cpu(acpi_cpuidle_device, cpu);
1418 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1419 				cpuidle_enable_device(dev);
1420 			}
1421 		}
1422 		cpuidle_resume_and_unlock();
1423 		put_online_cpus();
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int acpi_processor_registered;
1430 
1431 int acpi_processor_power_init(struct acpi_processor *pr)
1432 {
1433 	int retval;
1434 	struct cpuidle_device *dev;
1435 
1436 	if (disabled_by_idle_boot_param())
1437 		return 0;
1438 
1439 	acpi_processor_cstate_first_run_checks();
1440 
1441 	if (!acpi_processor_get_power_info(pr))
1442 		pr->flags.power_setup_done = 1;
1443 
1444 	/*
1445 	 * Install the idle handler if processor power management is supported.
1446 	 * Note that we use previously set idle handler will be used on
1447 	 * platforms that only support C1.
1448 	 */
1449 	if (pr->flags.power) {
1450 		/* Register acpi_idle_driver if not already registered */
1451 		if (!acpi_processor_registered) {
1452 			acpi_processor_setup_cpuidle_states(pr);
1453 			retval = cpuidle_register_driver(&acpi_idle_driver);
1454 			if (retval)
1455 				return retval;
1456 			pr_debug("%s registered with cpuidle\n",
1457 				 acpi_idle_driver.name);
1458 		}
1459 
1460 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1461 		if (!dev)
1462 			return -ENOMEM;
1463 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1464 
1465 		acpi_processor_setup_cpuidle_dev(pr, dev);
1466 
1467 		/* Register per-cpu cpuidle_device. Cpuidle driver
1468 		 * must already be registered before registering device
1469 		 */
1470 		retval = cpuidle_register_device(dev);
1471 		if (retval) {
1472 			if (acpi_processor_registered == 0)
1473 				cpuidle_unregister_driver(&acpi_idle_driver);
1474 			return retval;
1475 		}
1476 		acpi_processor_registered++;
1477 	}
1478 	return 0;
1479 }
1480 
1481 int acpi_processor_power_exit(struct acpi_processor *pr)
1482 {
1483 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1484 
1485 	if (disabled_by_idle_boot_param())
1486 		return 0;
1487 
1488 	if (pr->flags.power) {
1489 		cpuidle_unregister_device(dev);
1490 		acpi_processor_registered--;
1491 		if (acpi_processor_registered == 0)
1492 			cpuidle_unregister_driver(&acpi_idle_driver);
1493 	}
1494 
1495 	pr->flags.power_setup_done = 0;
1496 	return 0;
1497 }
1498