xref: /linux/drivers/acpi/processor_idle.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44 
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47 
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER	"power"
54 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59 
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62 
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98    callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100 	{ set_max_cstate, "IBM ThinkPad R40e", {
101 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
103 	{ set_max_cstate, "IBM ThinkPad R40e", {
104 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
105 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
106 	{ set_max_cstate, "IBM ThinkPad R40e", {
107 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
108 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
109 	{ set_max_cstate, "IBM ThinkPad R40e", {
110 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
111 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
112 	{ set_max_cstate, "IBM ThinkPad R40e", {
113 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
115 	{ set_max_cstate, "IBM ThinkPad R40e", {
116 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
118 	{ set_max_cstate, "IBM ThinkPad R40e", {
119 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
121 	{ set_max_cstate, "IBM ThinkPad R40e", {
122 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
124 	{ set_max_cstate, "IBM ThinkPad R40e", {
125 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
127 	{ set_max_cstate, "IBM ThinkPad R40e", {
128 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
130 	{ set_max_cstate, "IBM ThinkPad R40e", {
131 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
133 	{ set_max_cstate, "IBM ThinkPad R40e", {
134 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
136 	{ set_max_cstate, "IBM ThinkPad R40e", {
137 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
139 	{ set_max_cstate, "IBM ThinkPad R40e", {
140 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
142 	{ set_max_cstate, "IBM ThinkPad R40e", {
143 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
145 	{ set_max_cstate, "Medion 41700", {
146 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
147 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
148 	{ set_max_cstate, "Clevo 5600D", {
149 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
150 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
151 	 (void *)2},
152 	{},
153 };
154 
155 static inline u32 ticks_elapsed(u32 t1, u32 t2)
156 {
157 	if (t2 >= t1)
158 		return (t2 - t1);
159 	else if (!acpi_fadt.tmr_val_ext)
160 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
161 	else
162 		return ((0xFFFFFFFF - t1) + t2);
163 }
164 
165 static void
166 acpi_processor_power_activate(struct acpi_processor *pr,
167 			      struct acpi_processor_cx *new)
168 {
169 	struct acpi_processor_cx *old;
170 
171 	if (!pr || !new)
172 		return;
173 
174 	old = pr->power.state;
175 
176 	if (old)
177 		old->promotion.count = 0;
178 	new->demotion.count = 0;
179 
180 	/* Cleanup from old state. */
181 	if (old) {
182 		switch (old->type) {
183 		case ACPI_STATE_C3:
184 			/* Disable bus master reload */
185 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
186 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
187 						  ACPI_MTX_DO_NOT_LOCK);
188 			break;
189 		}
190 	}
191 
192 	/* Prepare to use new state. */
193 	switch (new->type) {
194 	case ACPI_STATE_C3:
195 		/* Enable bus master reload */
196 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
197 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
198 					  ACPI_MTX_DO_NOT_LOCK);
199 		break;
200 	}
201 
202 	pr->power.state = new;
203 
204 	return;
205 }
206 
207 static void acpi_safe_halt(void)
208 {
209 	clear_thread_flag(TIF_POLLING_NRFLAG);
210 	smp_mb__after_clear_bit();
211 	if (!need_resched())
212 		safe_halt();
213 	set_thread_flag(TIF_POLLING_NRFLAG);
214 }
215 
216 static atomic_t c3_cpu_count;
217 
218 static void acpi_processor_idle(void)
219 {
220 	struct acpi_processor *pr = NULL;
221 	struct acpi_processor_cx *cx = NULL;
222 	struct acpi_processor_cx *next_state = NULL;
223 	int sleep_ticks = 0;
224 	u32 t1, t2 = 0;
225 
226 	pr = processors[smp_processor_id()];
227 	if (!pr)
228 		return;
229 
230 	/*
231 	 * Interrupts must be disabled during bus mastering calculations and
232 	 * for C2/C3 transitions.
233 	 */
234 	local_irq_disable();
235 
236 	/*
237 	 * Check whether we truly need to go idle, or should
238 	 * reschedule:
239 	 */
240 	if (unlikely(need_resched())) {
241 		local_irq_enable();
242 		return;
243 	}
244 
245 	cx = pr->power.state;
246 	if (!cx) {
247 		if (pm_idle_save)
248 			pm_idle_save();
249 		else
250 			acpi_safe_halt();
251 		return;
252 	}
253 
254 	/*
255 	 * Check BM Activity
256 	 * -----------------
257 	 * Check for bus mastering activity (if required), record, and check
258 	 * for demotion.
259 	 */
260 	if (pr->flags.bm_check) {
261 		u32 bm_status = 0;
262 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
263 
264 		if (diff > 32)
265 			diff = 32;
266 
267 		while (diff) {
268 			/* if we didn't get called, assume there was busmaster activity */
269 			diff--;
270 			if (diff)
271 				pr->power.bm_activity |= 0x1;
272 			pr->power.bm_activity <<= 1;
273 		}
274 
275 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
276 				  &bm_status, ACPI_MTX_DO_NOT_LOCK);
277 		if (bm_status) {
278 			pr->power.bm_activity++;
279 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
280 					  1, ACPI_MTX_DO_NOT_LOCK);
281 		}
282 		/*
283 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
284 		 * the true state of bus mastering activity; forcing us to
285 		 * manually check the BMIDEA bit of each IDE channel.
286 		 */
287 		else if (errata.piix4.bmisx) {
288 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
289 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
290 				pr->power.bm_activity++;
291 		}
292 
293 		pr->power.bm_check_timestamp = jiffies;
294 
295 		/*
296 		 * Apply bus mastering demotion policy.  Automatically demote
297 		 * to avoid a faulty transition.  Note that the processor
298 		 * won't enter a low-power state during this call (to this
299 		 * funciton) but should upon the next.
300 		 *
301 		 * TBD: A better policy might be to fallback to the demotion
302 		 *      state (use it for this quantum only) istead of
303 		 *      demoting -- and rely on duration as our sole demotion
304 		 *      qualification.  This may, however, introduce DMA
305 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
306 		 */
307 		if (pr->power.bm_activity & cx->demotion.threshold.bm) {
308 			local_irq_enable();
309 			next_state = cx->demotion.state;
310 			goto end;
311 		}
312 	}
313 
314 #ifdef CONFIG_HOTPLUG_CPU
315 	/*
316 	 * Check for P_LVL2_UP flag before entering C2 and above on
317 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
318 	 * detection phase, to work cleanly with logical CPU hotplug.
319 	 */
320 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
321 	    !pr->flags.has_cst && !acpi_fadt.plvl2_up)
322 		cx = &pr->power.states[ACPI_STATE_C1];
323 #endif
324 
325 	cx->usage++;
326 
327 	/*
328 	 * Sleep:
329 	 * ------
330 	 * Invoke the current Cx state to put the processor to sleep.
331 	 */
332 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
333 		clear_thread_flag(TIF_POLLING_NRFLAG);
334 		smp_mb__after_clear_bit();
335 		if (need_resched()) {
336 			set_thread_flag(TIF_POLLING_NRFLAG);
337 			local_irq_enable();
338 			return;
339 		}
340 	}
341 
342 	switch (cx->type) {
343 
344 	case ACPI_STATE_C1:
345 		/*
346 		 * Invoke C1.
347 		 * Use the appropriate idle routine, the one that would
348 		 * be used without acpi C-states.
349 		 */
350 		if (pm_idle_save)
351 			pm_idle_save();
352 		else
353 			acpi_safe_halt();
354 
355 		/*
356 		 * TBD: Can't get time duration while in C1, as resumes
357 		 *      go to an ISR rather than here.  Need to instrument
358 		 *      base interrupt handler.
359 		 */
360 		sleep_ticks = 0xFFFFFFFF;
361 		break;
362 
363 	case ACPI_STATE_C2:
364 		/* Get start time (ticks) */
365 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
366 		/* Invoke C2 */
367 		inb(cx->address);
368 		/* Dummy op - must do something useless after P_LVL2 read */
369 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
370 		/* Get end time (ticks) */
371 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
372 		/* Re-enable interrupts */
373 		local_irq_enable();
374 		set_thread_flag(TIF_POLLING_NRFLAG);
375 		/* Compute time (ticks) that we were actually asleep */
376 		sleep_ticks =
377 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
378 		break;
379 
380 	case ACPI_STATE_C3:
381 
382 		if (pr->flags.bm_check) {
383 			if (atomic_inc_return(&c3_cpu_count) ==
384 			    num_online_cpus()) {
385 				/*
386 				 * All CPUs are trying to go to C3
387 				 * Disable bus master arbitration
388 				 */
389 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
390 						  ACPI_MTX_DO_NOT_LOCK);
391 			}
392 		} else {
393 			/* SMP with no shared cache... Invalidate cache  */
394 			ACPI_FLUSH_CPU_CACHE();
395 		}
396 
397 		/* Get start time (ticks) */
398 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
399 		/* Invoke C3 */
400 		inb(cx->address);
401 		/* Dummy op - must do something useless after P_LVL3 read */
402 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
403 		/* Get end time (ticks) */
404 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
405 		if (pr->flags.bm_check) {
406 			/* Enable bus master arbitration */
407 			atomic_dec(&c3_cpu_count);
408 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
409 					  ACPI_MTX_DO_NOT_LOCK);
410 		}
411 
412 		/* Re-enable interrupts */
413 		local_irq_enable();
414 		set_thread_flag(TIF_POLLING_NRFLAG);
415 		/* Compute time (ticks) that we were actually asleep */
416 		sleep_ticks =
417 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
418 		break;
419 
420 	default:
421 		local_irq_enable();
422 		return;
423 	}
424 
425 	next_state = pr->power.state;
426 
427 #ifdef CONFIG_HOTPLUG_CPU
428 	/* Don't do promotion/demotion */
429 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
430 	    !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
431 		next_state = cx;
432 		goto end;
433 	}
434 #endif
435 
436 	/*
437 	 * Promotion?
438 	 * ----------
439 	 * Track the number of longs (time asleep is greater than threshold)
440 	 * and promote when the count threshold is reached.  Note that bus
441 	 * mastering activity may prevent promotions.
442 	 * Do not promote above max_cstate.
443 	 */
444 	if (cx->promotion.state &&
445 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
446 		if (sleep_ticks > cx->promotion.threshold.ticks) {
447 			cx->promotion.count++;
448 			cx->demotion.count = 0;
449 			if (cx->promotion.count >=
450 			    cx->promotion.threshold.count) {
451 				if (pr->flags.bm_check) {
452 					if (!
453 					    (pr->power.bm_activity & cx->
454 					     promotion.threshold.bm)) {
455 						next_state =
456 						    cx->promotion.state;
457 						goto end;
458 					}
459 				} else {
460 					next_state = cx->promotion.state;
461 					goto end;
462 				}
463 			}
464 		}
465 	}
466 
467 	/*
468 	 * Demotion?
469 	 * ---------
470 	 * Track the number of shorts (time asleep is less than time threshold)
471 	 * and demote when the usage threshold is reached.
472 	 */
473 	if (cx->demotion.state) {
474 		if (sleep_ticks < cx->demotion.threshold.ticks) {
475 			cx->demotion.count++;
476 			cx->promotion.count = 0;
477 			if (cx->demotion.count >= cx->demotion.threshold.count) {
478 				next_state = cx->demotion.state;
479 				goto end;
480 			}
481 		}
482 	}
483 
484       end:
485 	/*
486 	 * Demote if current state exceeds max_cstate
487 	 */
488 	if ((pr->power.state - pr->power.states) > max_cstate) {
489 		if (cx->demotion.state)
490 			next_state = cx->demotion.state;
491 	}
492 
493 	/*
494 	 * New Cx State?
495 	 * -------------
496 	 * If we're going to start using a new Cx state we must clean up
497 	 * from the previous and prepare to use the new.
498 	 */
499 	if (next_state != pr->power.state)
500 		acpi_processor_power_activate(pr, next_state);
501 }
502 
503 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
504 {
505 	unsigned int i;
506 	unsigned int state_is_set = 0;
507 	struct acpi_processor_cx *lower = NULL;
508 	struct acpi_processor_cx *higher = NULL;
509 	struct acpi_processor_cx *cx;
510 
511 	ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
512 
513 	if (!pr)
514 		return_VALUE(-EINVAL);
515 
516 	/*
517 	 * This function sets the default Cx state policy (OS idle handler).
518 	 * Our scheme is to promote quickly to C2 but more conservatively
519 	 * to C3.  We're favoring C2  for its characteristics of low latency
520 	 * (quick response), good power savings, and ability to allow bus
521 	 * mastering activity.  Note that the Cx state policy is completely
522 	 * customizable and can be altered dynamically.
523 	 */
524 
525 	/* startup state */
526 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
527 		cx = &pr->power.states[i];
528 		if (!cx->valid)
529 			continue;
530 
531 		if (!state_is_set)
532 			pr->power.state = cx;
533 		state_is_set++;
534 		break;
535 	}
536 
537 	if (!state_is_set)
538 		return_VALUE(-ENODEV);
539 
540 	/* demotion */
541 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
542 		cx = &pr->power.states[i];
543 		if (!cx->valid)
544 			continue;
545 
546 		if (lower) {
547 			cx->demotion.state = lower;
548 			cx->demotion.threshold.ticks = cx->latency_ticks;
549 			cx->demotion.threshold.count = 1;
550 			if (cx->type == ACPI_STATE_C3)
551 				cx->demotion.threshold.bm = bm_history;
552 		}
553 
554 		lower = cx;
555 	}
556 
557 	/* promotion */
558 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
559 		cx = &pr->power.states[i];
560 		if (!cx->valid)
561 			continue;
562 
563 		if (higher) {
564 			cx->promotion.state = higher;
565 			cx->promotion.threshold.ticks = cx->latency_ticks;
566 			if (cx->type >= ACPI_STATE_C2)
567 				cx->promotion.threshold.count = 4;
568 			else
569 				cx->promotion.threshold.count = 10;
570 			if (higher->type == ACPI_STATE_C3)
571 				cx->promotion.threshold.bm = bm_history;
572 		}
573 
574 		higher = cx;
575 	}
576 
577 	return_VALUE(0);
578 }
579 
580 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
581 {
582 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
583 
584 	if (!pr)
585 		return_VALUE(-EINVAL);
586 
587 	if (!pr->pblk)
588 		return_VALUE(-ENODEV);
589 
590 	/* if info is obtained from pblk/fadt, type equals state */
591 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
592 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
593 
594 #ifndef CONFIG_HOTPLUG_CPU
595 	/*
596 	 * Check for P_LVL2_UP flag before entering C2 and above on
597 	 * an SMP system.
598 	 */
599 	if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
600 		return_VALUE(-ENODEV);
601 #endif
602 
603 	/* determine C2 and C3 address from pblk */
604 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
605 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
606 
607 	/* determine latencies from FADT */
608 	pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
609 	pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
610 
611 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
612 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
613 			  pr->power.states[ACPI_STATE_C2].address,
614 			  pr->power.states[ACPI_STATE_C3].address));
615 
616 	return_VALUE(0);
617 }
618 
619 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
620 {
621 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
622 
623 	/* Zero initialize all the C-states info. */
624 	memset(pr->power.states, 0, sizeof(pr->power.states));
625 
626 	/* set the first C-State to C1 */
627 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
628 
629 	/* the C0 state only exists as a filler in our array,
630 	 * and all processors need to support C1 */
631 	pr->power.states[ACPI_STATE_C0].valid = 1;
632 	pr->power.states[ACPI_STATE_C1].valid = 1;
633 
634 	return_VALUE(0);
635 }
636 
637 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
638 {
639 	acpi_status status = 0;
640 	acpi_integer count;
641 	int current_count;
642 	int i;
643 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
644 	union acpi_object *cst;
645 
646 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
647 
648 	if (nocst)
649 		return_VALUE(-ENODEV);
650 
651 	current_count = 1;
652 
653 	/* Zero initialize C2 onwards and prepare for fresh CST lookup */
654 	for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
655 		memset(&(pr->power.states[i]), 0,
656 				sizeof(struct acpi_processor_cx));
657 
658 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
659 	if (ACPI_FAILURE(status)) {
660 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
661 		return_VALUE(-ENODEV);
662 	}
663 
664 	cst = (union acpi_object *)buffer.pointer;
665 
666 	/* There must be at least 2 elements */
667 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
668 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
669 				  "not enough elements in _CST\n"));
670 		status = -EFAULT;
671 		goto end;
672 	}
673 
674 	count = cst->package.elements[0].integer.value;
675 
676 	/* Validate number of power states. */
677 	if (count < 1 || count != cst->package.count - 1) {
678 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
679 				  "count given by _CST is not valid\n"));
680 		status = -EFAULT;
681 		goto end;
682 	}
683 
684 	/* Tell driver that at least _CST is supported. */
685 	pr->flags.has_cst = 1;
686 
687 	for (i = 1; i <= count; i++) {
688 		union acpi_object *element;
689 		union acpi_object *obj;
690 		struct acpi_power_register *reg;
691 		struct acpi_processor_cx cx;
692 
693 		memset(&cx, 0, sizeof(cx));
694 
695 		element = (union acpi_object *)&(cst->package.elements[i]);
696 		if (element->type != ACPI_TYPE_PACKAGE)
697 			continue;
698 
699 		if (element->package.count != 4)
700 			continue;
701 
702 		obj = (union acpi_object *)&(element->package.elements[0]);
703 
704 		if (obj->type != ACPI_TYPE_BUFFER)
705 			continue;
706 
707 		reg = (struct acpi_power_register *)obj->buffer.pointer;
708 
709 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
710 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
711 			continue;
712 
713 		cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
714 		    0 : reg->address;
715 
716 		/* There should be an easy way to extract an integer... */
717 		obj = (union acpi_object *)&(element->package.elements[1]);
718 		if (obj->type != ACPI_TYPE_INTEGER)
719 			continue;
720 
721 		cx.type = obj->integer.value;
722 
723 		if ((cx.type != ACPI_STATE_C1) &&
724 		    (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
725 			continue;
726 
727 		if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
728 			continue;
729 
730 		obj = (union acpi_object *)&(element->package.elements[2]);
731 		if (obj->type != ACPI_TYPE_INTEGER)
732 			continue;
733 
734 		cx.latency = obj->integer.value;
735 
736 		obj = (union acpi_object *)&(element->package.elements[3]);
737 		if (obj->type != ACPI_TYPE_INTEGER)
738 			continue;
739 
740 		cx.power = obj->integer.value;
741 
742 		current_count++;
743 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
744 
745 		/*
746 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
747 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
748 		 */
749 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
750 			printk(KERN_WARNING
751 			       "Limiting number of power states to max (%d)\n",
752 			       ACPI_PROCESSOR_MAX_POWER);
753 			printk(KERN_WARNING
754 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
755 			break;
756 		}
757 	}
758 
759 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
760 			  current_count));
761 
762 	/* Validate number of power states discovered */
763 	if (current_count < 2)
764 		status = -EFAULT;
765 
766       end:
767 	acpi_os_free(buffer.pointer);
768 
769 	return_VALUE(status);
770 }
771 
772 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
773 {
774 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
775 
776 	if (!cx->address)
777 		return_VOID;
778 
779 	/*
780 	 * C2 latency must be less than or equal to 100
781 	 * microseconds.
782 	 */
783 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
784 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
785 				  "latency too large [%d]\n", cx->latency));
786 		return_VOID;
787 	}
788 
789 	/*
790 	 * Otherwise we've met all of our C2 requirements.
791 	 * Normalize the C2 latency to expidite policy
792 	 */
793 	cx->valid = 1;
794 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
795 
796 	return_VOID;
797 }
798 
799 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
800 					   struct acpi_processor_cx *cx)
801 {
802 	static int bm_check_flag;
803 
804 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
805 
806 	if (!cx->address)
807 		return_VOID;
808 
809 	/*
810 	 * C3 latency must be less than or equal to 1000
811 	 * microseconds.
812 	 */
813 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
814 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
815 				  "latency too large [%d]\n", cx->latency));
816 		return_VOID;
817 	}
818 
819 	/*
820 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
821 	 * DMA transfers are used by any ISA device to avoid livelock.
822 	 * Note that we could disable Type-F DMA (as recommended by
823 	 * the erratum), but this is known to disrupt certain ISA
824 	 * devices thus we take the conservative approach.
825 	 */
826 	else if (errata.piix4.fdma) {
827 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
828 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
829 		return_VOID;
830 	}
831 
832 	/* All the logic here assumes flags.bm_check is same across all CPUs */
833 	if (!bm_check_flag) {
834 		/* Determine whether bm_check is needed based on CPU  */
835 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
836 		bm_check_flag = pr->flags.bm_check;
837 	} else {
838 		pr->flags.bm_check = bm_check_flag;
839 	}
840 
841 	if (pr->flags.bm_check) {
842 		/* bus mastering control is necessary */
843 		if (!pr->flags.bm_control) {
844 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
845 					  "C3 support requires bus mastering control\n"));
846 			return_VOID;
847 		}
848 	} else {
849 		/*
850 		 * WBINVD should be set in fadt, for C3 state to be
851 		 * supported on when bm_check is not required.
852 		 */
853 		if (acpi_fadt.wb_invd != 1) {
854 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
855 					  "Cache invalidation should work properly"
856 					  " for C3 to be enabled on SMP systems\n"));
857 			return_VOID;
858 		}
859 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
860 				  0, ACPI_MTX_DO_NOT_LOCK);
861 	}
862 
863 	/*
864 	 * Otherwise we've met all of our C3 requirements.
865 	 * Normalize the C3 latency to expidite policy.  Enable
866 	 * checking of bus mastering status (bm_check) so we can
867 	 * use this in our C3 policy
868 	 */
869 	cx->valid = 1;
870 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
871 
872 	return_VOID;
873 }
874 
875 static int acpi_processor_power_verify(struct acpi_processor *pr)
876 {
877 	unsigned int i;
878 	unsigned int working = 0;
879 
880 #ifdef ARCH_APICTIMER_STOPS_ON_C3
881 	struct cpuinfo_x86 *c = cpu_data + pr->id;
882 	cpumask_t mask = cpumask_of_cpu(pr->id);
883 
884 	if (c->x86_vendor == X86_VENDOR_INTEL) {
885 		on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
886 	}
887 #endif
888 
889 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
890 		struct acpi_processor_cx *cx = &pr->power.states[i];
891 
892 		switch (cx->type) {
893 		case ACPI_STATE_C1:
894 			cx->valid = 1;
895 			break;
896 
897 		case ACPI_STATE_C2:
898 			acpi_processor_power_verify_c2(cx);
899 			break;
900 
901 		case ACPI_STATE_C3:
902 			acpi_processor_power_verify_c3(pr, cx);
903 #ifdef ARCH_APICTIMER_STOPS_ON_C3
904 			if (cx->valid && c->x86_vendor == X86_VENDOR_INTEL) {
905 				on_each_cpu(switch_APIC_timer_to_ipi,
906 						&mask, 1, 1);
907 			}
908 #endif
909 			break;
910 		}
911 
912 		if (cx->valid)
913 			working++;
914 	}
915 
916 	return (working);
917 }
918 
919 static int acpi_processor_get_power_info(struct acpi_processor *pr)
920 {
921 	unsigned int i;
922 	int result;
923 
924 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
925 
926 	/* NOTE: the idle thread may not be running while calling
927 	 * this function */
928 
929 	/* Adding C1 state */
930 	acpi_processor_get_power_info_default_c1(pr);
931 	result = acpi_processor_get_power_info_cst(pr);
932 	if (result == -ENODEV)
933 		acpi_processor_get_power_info_fadt(pr);
934 
935 	pr->power.count = acpi_processor_power_verify(pr);
936 
937 	/*
938 	 * Set Default Policy
939 	 * ------------------
940 	 * Now that we know which states are supported, set the default
941 	 * policy.  Note that this policy can be changed dynamically
942 	 * (e.g. encourage deeper sleeps to conserve battery life when
943 	 * not on AC).
944 	 */
945 	result = acpi_processor_set_power_policy(pr);
946 	if (result)
947 		return_VALUE(result);
948 
949 	/*
950 	 * if one state of type C2 or C3 is available, mark this
951 	 * CPU as being "idle manageable"
952 	 */
953 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
954 		if (pr->power.states[i].valid) {
955 			pr->power.count = i;
956 			if (pr->power.states[i].type >= ACPI_STATE_C2)
957 				pr->flags.power = 1;
958 		}
959 	}
960 
961 	return_VALUE(0);
962 }
963 
964 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
965 {
966 	int result = 0;
967 
968 	ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
969 
970 	if (!pr)
971 		return_VALUE(-EINVAL);
972 
973 	if (nocst) {
974 		return_VALUE(-ENODEV);
975 	}
976 
977 	if (!pr->flags.power_setup_done)
978 		return_VALUE(-ENODEV);
979 
980 	/* Fall back to the default idle loop */
981 	pm_idle = pm_idle_save;
982 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
983 
984 	pr->flags.power = 0;
985 	result = acpi_processor_get_power_info(pr);
986 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
987 		pm_idle = acpi_processor_idle;
988 
989 	return_VALUE(result);
990 }
991 
992 /* proc interface */
993 
994 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
995 {
996 	struct acpi_processor *pr = (struct acpi_processor *)seq->private;
997 	unsigned int i;
998 
999 	ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
1000 
1001 	if (!pr)
1002 		goto end;
1003 
1004 	seq_printf(seq, "active state:            C%zd\n"
1005 		   "max_cstate:              C%d\n"
1006 		   "bus master activity:     %08x\n",
1007 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1008 		   max_cstate, (unsigned)pr->power.bm_activity);
1009 
1010 	seq_puts(seq, "states:\n");
1011 
1012 	for (i = 1; i <= pr->power.count; i++) {
1013 		seq_printf(seq, "   %cC%d:                  ",
1014 			   (&pr->power.states[i] ==
1015 			    pr->power.state ? '*' : ' '), i);
1016 
1017 		if (!pr->power.states[i].valid) {
1018 			seq_puts(seq, "<not supported>\n");
1019 			continue;
1020 		}
1021 
1022 		switch (pr->power.states[i].type) {
1023 		case ACPI_STATE_C1:
1024 			seq_printf(seq, "type[C1] ");
1025 			break;
1026 		case ACPI_STATE_C2:
1027 			seq_printf(seq, "type[C2] ");
1028 			break;
1029 		case ACPI_STATE_C3:
1030 			seq_printf(seq, "type[C3] ");
1031 			break;
1032 		default:
1033 			seq_printf(seq, "type[--] ");
1034 			break;
1035 		}
1036 
1037 		if (pr->power.states[i].promotion.state)
1038 			seq_printf(seq, "promotion[C%zd] ",
1039 				   (pr->power.states[i].promotion.state -
1040 				    pr->power.states));
1041 		else
1042 			seq_puts(seq, "promotion[--] ");
1043 
1044 		if (pr->power.states[i].demotion.state)
1045 			seq_printf(seq, "demotion[C%zd] ",
1046 				   (pr->power.states[i].demotion.state -
1047 				    pr->power.states));
1048 		else
1049 			seq_puts(seq, "demotion[--] ");
1050 
1051 		seq_printf(seq, "latency[%03d] usage[%08d]\n",
1052 			   pr->power.states[i].latency,
1053 			   pr->power.states[i].usage);
1054 	}
1055 
1056       end:
1057 	return_VALUE(0);
1058 }
1059 
1060 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1061 {
1062 	return single_open(file, acpi_processor_power_seq_show,
1063 			   PDE(inode)->data);
1064 }
1065 
1066 static struct file_operations acpi_processor_power_fops = {
1067 	.open = acpi_processor_power_open_fs,
1068 	.read = seq_read,
1069 	.llseek = seq_lseek,
1070 	.release = single_release,
1071 };
1072 
1073 int acpi_processor_power_init(struct acpi_processor *pr,
1074 			      struct acpi_device *device)
1075 {
1076 	acpi_status status = 0;
1077 	static int first_run = 0;
1078 	struct proc_dir_entry *entry = NULL;
1079 	unsigned int i;
1080 
1081 	ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1082 
1083 	if (!first_run) {
1084 		dmi_check_system(processor_power_dmi_table);
1085 		if (max_cstate < ACPI_C_STATES_MAX)
1086 			printk(KERN_NOTICE
1087 			       "ACPI: processor limited to max C-state %d\n",
1088 			       max_cstate);
1089 		first_run++;
1090 	}
1091 
1092 	if (!pr)
1093 		return_VALUE(-EINVAL);
1094 
1095 	if (acpi_fadt.cst_cnt && !nocst) {
1096 		status =
1097 		    acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1098 		if (ACPI_FAILURE(status)) {
1099 			ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1100 					  "Notifying BIOS of _CST ability failed\n"));
1101 		}
1102 	}
1103 
1104 	acpi_processor_get_power_info(pr);
1105 
1106 	/*
1107 	 * Install the idle handler if processor power management is supported.
1108 	 * Note that we use previously set idle handler will be used on
1109 	 * platforms that only support C1.
1110 	 */
1111 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1112 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1113 		for (i = 1; i <= pr->power.count; i++)
1114 			if (pr->power.states[i].valid)
1115 				printk(" C%d[C%d]", i,
1116 				       pr->power.states[i].type);
1117 		printk(")\n");
1118 
1119 		if (pr->id == 0) {
1120 			pm_idle_save = pm_idle;
1121 			pm_idle = acpi_processor_idle;
1122 		}
1123 	}
1124 
1125 	/* 'power' [R] */
1126 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1127 				  S_IRUGO, acpi_device_dir(device));
1128 	if (!entry)
1129 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1130 				  "Unable to create '%s' fs entry\n",
1131 				  ACPI_PROCESSOR_FILE_POWER));
1132 	else {
1133 		entry->proc_fops = &acpi_processor_power_fops;
1134 		entry->data = acpi_driver_data(device);
1135 		entry->owner = THIS_MODULE;
1136 	}
1137 
1138 	pr->flags.power_setup_done = 1;
1139 
1140 	return_VALUE(0);
1141 }
1142 
1143 int acpi_processor_power_exit(struct acpi_processor *pr,
1144 			      struct acpi_device *device)
1145 {
1146 	ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1147 
1148 	pr->flags.power_setup_done = 0;
1149 
1150 	if (acpi_device_dir(device))
1151 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1152 				  acpi_device_dir(device));
1153 
1154 	/* Unregister the idle handler when processor #0 is removed. */
1155 	if (pr->id == 0) {
1156 		pm_idle = pm_idle_save;
1157 
1158 		/*
1159 		 * We are about to unload the current idle thread pm callback
1160 		 * (pm_idle), Wait for all processors to update cached/local
1161 		 * copies of pm_idle before proceeding.
1162 		 */
1163 		cpu_idle_wait();
1164 	}
1165 
1166 	return_VALUE(0);
1167 }
1168