xref: /linux/drivers/acpi/processor_idle.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>	/* need_resched() */
40 #include <linux/pm_qos.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61 
62 #define PREFIX "ACPI: "
63 
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD			1	/* 1us */
69 #define C3_OVERHEAD			1	/* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71 
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 static int bm_check_disable __read_mostly;
77 module_param(bm_check_disable, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static int disabled_by_idle_boot_param(void)
83 {
84 	return boot_option_idle_override == IDLE_POLL ||
85 		boot_option_idle_override == IDLE_FORCE_MWAIT ||
86 		boot_option_idle_override == IDLE_HALT;
87 }
88 
89 /*
90  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91  * For now disable this. Probably a bug somewhere else.
92  *
93  * To skip this limit, boot/load with a large max_cstate limit.
94  */
95 static int set_max_cstate(const struct dmi_system_id *id)
96 {
97 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 		return 0;
99 
100 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103 
104 	max_cstate = (long)id->driver_data;
105 
106 	return 0;
107 }
108 
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110    callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 	{ set_max_cstate, "Clevo 5600D", {
113 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
114 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
115 	 (void *)2},
116 	{ set_max_cstate, "Pavilion zv5000", {
117 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
118 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
119 	 (void *)1},
120 	{ set_max_cstate, "Asus L8400B", {
121 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
122 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
123 	 (void *)1},
124 	{},
125 };
126 
127 
128 /*
129  * Callers should disable interrupts before the call and enable
130  * interrupts after return.
131  */
132 static void acpi_safe_halt(void)
133 {
134 	current_thread_info()->status &= ~TS_POLLING;
135 	/*
136 	 * TS_POLLING-cleared state must be visible before we
137 	 * test NEED_RESCHED:
138 	 */
139 	smp_mb();
140 	if (!need_resched()) {
141 		safe_halt();
142 		local_irq_disable();
143 	}
144 	current_thread_info()->status |= TS_POLLING;
145 }
146 
147 #ifdef ARCH_APICTIMER_STOPS_ON_C3
148 
149 /*
150  * Some BIOS implementations switch to C3 in the published C2 state.
151  * This seems to be a common problem on AMD boxen, but other vendors
152  * are affected too. We pick the most conservative approach: we assume
153  * that the local APIC stops in both C2 and C3.
154  */
155 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
156 				   struct acpi_processor_cx *cx)
157 {
158 	struct acpi_processor_power *pwr = &pr->power;
159 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
160 
161 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
162 		return;
163 
164 	if (amd_e400_c1e_detected)
165 		type = ACPI_STATE_C1;
166 
167 	/*
168 	 * Check, if one of the previous states already marked the lapic
169 	 * unstable
170 	 */
171 	if (pwr->timer_broadcast_on_state < state)
172 		return;
173 
174 	if (cx->type >= type)
175 		pr->power.timer_broadcast_on_state = state;
176 }
177 
178 static void __lapic_timer_propagate_broadcast(void *arg)
179 {
180 	struct acpi_processor *pr = (struct acpi_processor *) arg;
181 	unsigned long reason;
182 
183 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
184 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
185 
186 	clockevents_notify(reason, &pr->id);
187 }
188 
189 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
190 {
191 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
192 				 (void *)pr, 1);
193 }
194 
195 /* Power(C) State timer broadcast control */
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 	int state = cx - pr->power.states;
201 
202 	if (state >= pr->power.timer_broadcast_on_state) {
203 		unsigned long reason;
204 
205 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
206 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
207 		clockevents_notify(reason, &pr->id);
208 	}
209 }
210 
211 #else
212 
213 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
214 				   struct acpi_processor_cx *cstate) { }
215 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
216 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
217 				       struct acpi_processor_cx *cx,
218 				       int broadcast)
219 {
220 }
221 
222 #endif
223 
224 /*
225  * Suspend / resume control
226  */
227 static int acpi_idle_suspend;
228 static u32 saved_bm_rld;
229 
230 static void acpi_idle_bm_rld_save(void)
231 {
232 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
233 }
234 static void acpi_idle_bm_rld_restore(void)
235 {
236 	u32 resumed_bm_rld;
237 
238 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
239 
240 	if (resumed_bm_rld != saved_bm_rld)
241 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
242 }
243 
244 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
245 {
246 	if (acpi_idle_suspend == 1)
247 		return 0;
248 
249 	acpi_idle_bm_rld_save();
250 	acpi_idle_suspend = 1;
251 	return 0;
252 }
253 
254 int acpi_processor_resume(struct acpi_device * device)
255 {
256 	if (acpi_idle_suspend == 0)
257 		return 0;
258 
259 	acpi_idle_bm_rld_restore();
260 	acpi_idle_suspend = 0;
261 	return 0;
262 }
263 
264 #if defined(CONFIG_X86)
265 static void tsc_check_state(int state)
266 {
267 	switch (boot_cpu_data.x86_vendor) {
268 	case X86_VENDOR_AMD:
269 	case X86_VENDOR_INTEL:
270 		/*
271 		 * AMD Fam10h TSC will tick in all
272 		 * C/P/S0/S1 states when this bit is set.
273 		 */
274 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
275 			return;
276 
277 		/*FALL THROUGH*/
278 	default:
279 		/* TSC could halt in idle, so notify users */
280 		if (state > ACPI_STATE_C1)
281 			mark_tsc_unstable("TSC halts in idle");
282 	}
283 }
284 #else
285 static void tsc_check_state(int state) { return; }
286 #endif
287 
288 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
289 {
290 
291 	if (!pr)
292 		return -EINVAL;
293 
294 	if (!pr->pblk)
295 		return -ENODEV;
296 
297 	/* if info is obtained from pblk/fadt, type equals state */
298 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
299 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
300 
301 #ifndef CONFIG_HOTPLUG_CPU
302 	/*
303 	 * Check for P_LVL2_UP flag before entering C2 and above on
304 	 * an SMP system.
305 	 */
306 	if ((num_online_cpus() > 1) &&
307 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
308 		return -ENODEV;
309 #endif
310 
311 	/* determine C2 and C3 address from pblk */
312 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
313 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
314 
315 	/* determine latencies from FADT */
316 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
317 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
318 
319 	/*
320 	 * FADT specified C2 latency must be less than or equal to
321 	 * 100 microseconds.
322 	 */
323 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
324 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
325 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
326 		/* invalidate C2 */
327 		pr->power.states[ACPI_STATE_C2].address = 0;
328 	}
329 
330 	/*
331 	 * FADT supplied C3 latency must be less than or equal to
332 	 * 1000 microseconds.
333 	 */
334 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
335 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
337 		/* invalidate C3 */
338 		pr->power.states[ACPI_STATE_C3].address = 0;
339 	}
340 
341 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
342 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
343 			  pr->power.states[ACPI_STATE_C2].address,
344 			  pr->power.states[ACPI_STATE_C3].address));
345 
346 	return 0;
347 }
348 
349 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
350 {
351 	if (!pr->power.states[ACPI_STATE_C1].valid) {
352 		/* set the first C-State to C1 */
353 		/* all processors need to support C1 */
354 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
355 		pr->power.states[ACPI_STATE_C1].valid = 1;
356 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
357 	}
358 	/* the C0 state only exists as a filler in our array */
359 	pr->power.states[ACPI_STATE_C0].valid = 1;
360 	return 0;
361 }
362 
363 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
364 {
365 	acpi_status status = 0;
366 	u64 count;
367 	int current_count;
368 	int i;
369 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
370 	union acpi_object *cst;
371 
372 
373 	if (nocst)
374 		return -ENODEV;
375 
376 	current_count = 0;
377 
378 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
379 	if (ACPI_FAILURE(status)) {
380 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
381 		return -ENODEV;
382 	}
383 
384 	cst = buffer.pointer;
385 
386 	/* There must be at least 2 elements */
387 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
388 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
389 		status = -EFAULT;
390 		goto end;
391 	}
392 
393 	count = cst->package.elements[0].integer.value;
394 
395 	/* Validate number of power states. */
396 	if (count < 1 || count != cst->package.count - 1) {
397 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
398 		status = -EFAULT;
399 		goto end;
400 	}
401 
402 	/* Tell driver that at least _CST is supported. */
403 	pr->flags.has_cst = 1;
404 
405 	for (i = 1; i <= count; i++) {
406 		union acpi_object *element;
407 		union acpi_object *obj;
408 		struct acpi_power_register *reg;
409 		struct acpi_processor_cx cx;
410 
411 		memset(&cx, 0, sizeof(cx));
412 
413 		element = &(cst->package.elements[i]);
414 		if (element->type != ACPI_TYPE_PACKAGE)
415 			continue;
416 
417 		if (element->package.count != 4)
418 			continue;
419 
420 		obj = &(element->package.elements[0]);
421 
422 		if (obj->type != ACPI_TYPE_BUFFER)
423 			continue;
424 
425 		reg = (struct acpi_power_register *)obj->buffer.pointer;
426 
427 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
428 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
429 			continue;
430 
431 		/* There should be an easy way to extract an integer... */
432 		obj = &(element->package.elements[1]);
433 		if (obj->type != ACPI_TYPE_INTEGER)
434 			continue;
435 
436 		cx.type = obj->integer.value;
437 		/*
438 		 * Some buggy BIOSes won't list C1 in _CST -
439 		 * Let acpi_processor_get_power_info_default() handle them later
440 		 */
441 		if (i == 1 && cx.type != ACPI_STATE_C1)
442 			current_count++;
443 
444 		cx.address = reg->address;
445 		cx.index = current_count + 1;
446 
447 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
448 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
449 			if (acpi_processor_ffh_cstate_probe
450 					(pr->id, &cx, reg) == 0) {
451 				cx.entry_method = ACPI_CSTATE_FFH;
452 			} else if (cx.type == ACPI_STATE_C1) {
453 				/*
454 				 * C1 is a special case where FIXED_HARDWARE
455 				 * can be handled in non-MWAIT way as well.
456 				 * In that case, save this _CST entry info.
457 				 * Otherwise, ignore this info and continue.
458 				 */
459 				cx.entry_method = ACPI_CSTATE_HALT;
460 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
461 			} else {
462 				continue;
463 			}
464 			if (cx.type == ACPI_STATE_C1 &&
465 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
466 				/*
467 				 * In most cases the C1 space_id obtained from
468 				 * _CST object is FIXED_HARDWARE access mode.
469 				 * But when the option of idle=halt is added,
470 				 * the entry_method type should be changed from
471 				 * CSTATE_FFH to CSTATE_HALT.
472 				 * When the option of idle=nomwait is added,
473 				 * the C1 entry_method type should be
474 				 * CSTATE_HALT.
475 				 */
476 				cx.entry_method = ACPI_CSTATE_HALT;
477 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
478 			}
479 		} else {
480 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
481 				 cx.address);
482 		}
483 
484 		if (cx.type == ACPI_STATE_C1) {
485 			cx.valid = 1;
486 		}
487 
488 		obj = &(element->package.elements[2]);
489 		if (obj->type != ACPI_TYPE_INTEGER)
490 			continue;
491 
492 		cx.latency = obj->integer.value;
493 
494 		obj = &(element->package.elements[3]);
495 		if (obj->type != ACPI_TYPE_INTEGER)
496 			continue;
497 
498 		cx.power = obj->integer.value;
499 
500 		current_count++;
501 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
502 
503 		/*
504 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
505 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
506 		 */
507 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
508 			printk(KERN_WARNING
509 			       "Limiting number of power states to max (%d)\n",
510 			       ACPI_PROCESSOR_MAX_POWER);
511 			printk(KERN_WARNING
512 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
513 			break;
514 		}
515 	}
516 
517 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
518 			  current_count));
519 
520 	/* Validate number of power states discovered */
521 	if (current_count < 2)
522 		status = -EFAULT;
523 
524       end:
525 	kfree(buffer.pointer);
526 
527 	return status;
528 }
529 
530 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
531 					   struct acpi_processor_cx *cx)
532 {
533 	static int bm_check_flag = -1;
534 	static int bm_control_flag = -1;
535 
536 
537 	if (!cx->address)
538 		return;
539 
540 	/*
541 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
542 	 * DMA transfers are used by any ISA device to avoid livelock.
543 	 * Note that we could disable Type-F DMA (as recommended by
544 	 * the erratum), but this is known to disrupt certain ISA
545 	 * devices thus we take the conservative approach.
546 	 */
547 	else if (errata.piix4.fdma) {
548 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
549 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
550 		return;
551 	}
552 
553 	/* All the logic here assumes flags.bm_check is same across all CPUs */
554 	if (bm_check_flag == -1) {
555 		/* Determine whether bm_check is needed based on CPU  */
556 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
557 		bm_check_flag = pr->flags.bm_check;
558 		bm_control_flag = pr->flags.bm_control;
559 	} else {
560 		pr->flags.bm_check = bm_check_flag;
561 		pr->flags.bm_control = bm_control_flag;
562 	}
563 
564 	if (pr->flags.bm_check) {
565 		if (!pr->flags.bm_control) {
566 			if (pr->flags.has_cst != 1) {
567 				/* bus mastering control is necessary */
568 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
569 					"C3 support requires BM control\n"));
570 				return;
571 			} else {
572 				/* Here we enter C3 without bus mastering */
573 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
574 					"C3 support without BM control\n"));
575 			}
576 		}
577 	} else {
578 		/*
579 		 * WBINVD should be set in fadt, for C3 state to be
580 		 * supported on when bm_check is not required.
581 		 */
582 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
583 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
584 					  "Cache invalidation should work properly"
585 					  " for C3 to be enabled on SMP systems\n"));
586 			return;
587 		}
588 	}
589 
590 	/*
591 	 * Otherwise we've met all of our C3 requirements.
592 	 * Normalize the C3 latency to expidite policy.  Enable
593 	 * checking of bus mastering status (bm_check) so we can
594 	 * use this in our C3 policy
595 	 */
596 	cx->valid = 1;
597 
598 	cx->latency_ticks = cx->latency;
599 	/*
600 	 * On older chipsets, BM_RLD needs to be set
601 	 * in order for Bus Master activity to wake the
602 	 * system from C3.  Newer chipsets handle DMA
603 	 * during C3 automatically and BM_RLD is a NOP.
604 	 * In either case, the proper way to
605 	 * handle BM_RLD is to set it and leave it set.
606 	 */
607 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
608 
609 	return;
610 }
611 
612 static int acpi_processor_power_verify(struct acpi_processor *pr)
613 {
614 	unsigned int i;
615 	unsigned int working = 0;
616 
617 	pr->power.timer_broadcast_on_state = INT_MAX;
618 
619 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
620 		struct acpi_processor_cx *cx = &pr->power.states[i];
621 
622 		switch (cx->type) {
623 		case ACPI_STATE_C1:
624 			cx->valid = 1;
625 			break;
626 
627 		case ACPI_STATE_C2:
628 			if (!cx->address)
629 				break;
630 			cx->valid = 1;
631 			cx->latency_ticks = cx->latency; /* Normalize latency */
632 			break;
633 
634 		case ACPI_STATE_C3:
635 			acpi_processor_power_verify_c3(pr, cx);
636 			break;
637 		}
638 		if (!cx->valid)
639 			continue;
640 
641 		lapic_timer_check_state(i, pr, cx);
642 		tsc_check_state(cx->type);
643 		working++;
644 	}
645 
646 	lapic_timer_propagate_broadcast(pr);
647 
648 	return (working);
649 }
650 
651 static int acpi_processor_get_power_info(struct acpi_processor *pr)
652 {
653 	unsigned int i;
654 	int result;
655 
656 
657 	/* NOTE: the idle thread may not be running while calling
658 	 * this function */
659 
660 	/* Zero initialize all the C-states info. */
661 	memset(pr->power.states, 0, sizeof(pr->power.states));
662 
663 	result = acpi_processor_get_power_info_cst(pr);
664 	if (result == -ENODEV)
665 		result = acpi_processor_get_power_info_fadt(pr);
666 
667 	if (result)
668 		return result;
669 
670 	acpi_processor_get_power_info_default(pr);
671 
672 	pr->power.count = acpi_processor_power_verify(pr);
673 
674 	/*
675 	 * if one state of type C2 or C3 is available, mark this
676 	 * CPU as being "idle manageable"
677 	 */
678 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
679 		if (pr->power.states[i].valid) {
680 			pr->power.count = i;
681 			if (pr->power.states[i].type >= ACPI_STATE_C2)
682 				pr->flags.power = 1;
683 		}
684 	}
685 
686 	return 0;
687 }
688 
689 /**
690  * acpi_idle_bm_check - checks if bus master activity was detected
691  */
692 static int acpi_idle_bm_check(void)
693 {
694 	u32 bm_status = 0;
695 
696 	if (bm_check_disable)
697 		return 0;
698 
699 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
700 	if (bm_status)
701 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
702 	/*
703 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
704 	 * the true state of bus mastering activity; forcing us to
705 	 * manually check the BMIDEA bit of each IDE channel.
706 	 */
707 	else if (errata.piix4.bmisx) {
708 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
709 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
710 			bm_status = 1;
711 	}
712 	return bm_status;
713 }
714 
715 /**
716  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
717  * @cx: cstate data
718  *
719  * Caller disables interrupt before call and enables interrupt after return.
720  */
721 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
722 {
723 	/* Don't trace irqs off for idle */
724 	stop_critical_timings();
725 	if (cx->entry_method == ACPI_CSTATE_FFH) {
726 		/* Call into architectural FFH based C-state */
727 		acpi_processor_ffh_cstate_enter(cx);
728 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
729 		acpi_safe_halt();
730 	} else {
731 		/* IO port based C-state */
732 		inb(cx->address);
733 		/* Dummy wait op - must do something useless after P_LVL2 read
734 		   because chipsets cannot guarantee that STPCLK# signal
735 		   gets asserted in time to freeze execution properly. */
736 		inl(acpi_gbl_FADT.xpm_timer_block.address);
737 	}
738 	start_critical_timings();
739 }
740 
741 /**
742  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
743  * @dev: the target CPU
744  * @drv: cpuidle driver containing cpuidle state info
745  * @index: index of target state
746  *
747  * This is equivalent to the HALT instruction.
748  */
749 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
750 		struct cpuidle_driver *drv, int index)
751 {
752 	ktime_t  kt1, kt2;
753 	s64 idle_time;
754 	struct acpi_processor *pr;
755 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
756 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
757 
758 	pr = __this_cpu_read(processors);
759 	dev->last_residency = 0;
760 
761 	if (unlikely(!pr))
762 		return -EINVAL;
763 
764 	local_irq_disable();
765 
766 	if (acpi_idle_suspend) {
767 		local_irq_enable();
768 		cpu_relax();
769 		return -EBUSY;
770 	}
771 
772 	lapic_timer_state_broadcast(pr, cx, 1);
773 	kt1 = ktime_get_real();
774 	acpi_idle_do_entry(cx);
775 	kt2 = ktime_get_real();
776 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
777 
778 	/* Update device last_residency*/
779 	dev->last_residency = (int)idle_time;
780 
781 	local_irq_enable();
782 	cx->usage++;
783 	lapic_timer_state_broadcast(pr, cx, 0);
784 
785 	return index;
786 }
787 
788 
789 /**
790  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
791  * @dev: the target CPU
792  * @index: the index of suggested state
793  */
794 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
795 {
796 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
797 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
798 
799 	ACPI_FLUSH_CPU_CACHE();
800 
801 	while (1) {
802 
803 		if (cx->entry_method == ACPI_CSTATE_HALT)
804 			safe_halt();
805 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
806 			inb(cx->address);
807 			/* See comment in acpi_idle_do_entry() */
808 			inl(acpi_gbl_FADT.xpm_timer_block.address);
809 		} else
810 			return -ENODEV;
811 	}
812 
813 	/* Never reached */
814 	return 0;
815 }
816 
817 /**
818  * acpi_idle_enter_simple - enters an ACPI state without BM handling
819  * @dev: the target CPU
820  * @drv: cpuidle driver with cpuidle state information
821  * @index: the index of suggested state
822  */
823 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
824 		struct cpuidle_driver *drv, int index)
825 {
826 	struct acpi_processor *pr;
827 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
828 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
829 	ktime_t  kt1, kt2;
830 	s64 idle_time_ns;
831 	s64 idle_time;
832 
833 	pr = __this_cpu_read(processors);
834 	dev->last_residency = 0;
835 
836 	if (unlikely(!pr))
837 		return -EINVAL;
838 
839 	local_irq_disable();
840 
841 	if (acpi_idle_suspend) {
842 		local_irq_enable();
843 		cpu_relax();
844 		return -EBUSY;
845 	}
846 
847 	if (cx->entry_method != ACPI_CSTATE_FFH) {
848 		current_thread_info()->status &= ~TS_POLLING;
849 		/*
850 		 * TS_POLLING-cleared state must be visible before we test
851 		 * NEED_RESCHED:
852 		 */
853 		smp_mb();
854 
855 		if (unlikely(need_resched())) {
856 			current_thread_info()->status |= TS_POLLING;
857 			local_irq_enable();
858 			return -EINVAL;
859 		}
860 	}
861 
862 	/*
863 	 * Must be done before busmaster disable as we might need to
864 	 * access HPET !
865 	 */
866 	lapic_timer_state_broadcast(pr, cx, 1);
867 
868 	if (cx->type == ACPI_STATE_C3)
869 		ACPI_FLUSH_CPU_CACHE();
870 
871 	kt1 = ktime_get_real();
872 	/* Tell the scheduler that we are going deep-idle: */
873 	sched_clock_idle_sleep_event();
874 	acpi_idle_do_entry(cx);
875 	kt2 = ktime_get_real();
876 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
877 	idle_time = idle_time_ns;
878 	do_div(idle_time, NSEC_PER_USEC);
879 
880 	/* Update device last_residency*/
881 	dev->last_residency = (int)idle_time;
882 
883 	/* Tell the scheduler how much we idled: */
884 	sched_clock_idle_wakeup_event(idle_time_ns);
885 
886 	local_irq_enable();
887 	if (cx->entry_method != ACPI_CSTATE_FFH)
888 		current_thread_info()->status |= TS_POLLING;
889 
890 	cx->usage++;
891 
892 	lapic_timer_state_broadcast(pr, cx, 0);
893 	cx->time += idle_time;
894 	return index;
895 }
896 
897 static int c3_cpu_count;
898 static DEFINE_RAW_SPINLOCK(c3_lock);
899 
900 /**
901  * acpi_idle_enter_bm - enters C3 with proper BM handling
902  * @dev: the target CPU
903  * @drv: cpuidle driver containing state data
904  * @index: the index of suggested state
905  *
906  * If BM is detected, the deepest non-C3 idle state is entered instead.
907  */
908 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
909 		struct cpuidle_driver *drv, int index)
910 {
911 	struct acpi_processor *pr;
912 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
913 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
914 	ktime_t  kt1, kt2;
915 	s64 idle_time_ns;
916 	s64 idle_time;
917 
918 
919 	pr = __this_cpu_read(processors);
920 	dev->last_residency = 0;
921 
922 	if (unlikely(!pr))
923 		return -EINVAL;
924 
925 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
926 		if (drv->safe_state_index >= 0) {
927 			return drv->states[drv->safe_state_index].enter(dev,
928 						drv, drv->safe_state_index);
929 		} else {
930 			local_irq_disable();
931 			if (!acpi_idle_suspend)
932 				acpi_safe_halt();
933 			local_irq_enable();
934 			return -EBUSY;
935 		}
936 	}
937 
938 	local_irq_disable();
939 
940 	if (acpi_idle_suspend) {
941 		local_irq_enable();
942 		cpu_relax();
943 		return -EBUSY;
944 	}
945 
946 	if (cx->entry_method != ACPI_CSTATE_FFH) {
947 		current_thread_info()->status &= ~TS_POLLING;
948 		/*
949 		 * TS_POLLING-cleared state must be visible before we test
950 		 * NEED_RESCHED:
951 		 */
952 		smp_mb();
953 
954 		if (unlikely(need_resched())) {
955 			current_thread_info()->status |= TS_POLLING;
956 			local_irq_enable();
957 			return -EINVAL;
958 		}
959 	}
960 
961 	acpi_unlazy_tlb(smp_processor_id());
962 
963 	/* Tell the scheduler that we are going deep-idle: */
964 	sched_clock_idle_sleep_event();
965 	/*
966 	 * Must be done before busmaster disable as we might need to
967 	 * access HPET !
968 	 */
969 	lapic_timer_state_broadcast(pr, cx, 1);
970 
971 	kt1 = ktime_get_real();
972 	/*
973 	 * disable bus master
974 	 * bm_check implies we need ARB_DIS
975 	 * !bm_check implies we need cache flush
976 	 * bm_control implies whether we can do ARB_DIS
977 	 *
978 	 * That leaves a case where bm_check is set and bm_control is
979 	 * not set. In that case we cannot do much, we enter C3
980 	 * without doing anything.
981 	 */
982 	if (pr->flags.bm_check && pr->flags.bm_control) {
983 		raw_spin_lock(&c3_lock);
984 		c3_cpu_count++;
985 		/* Disable bus master arbitration when all CPUs are in C3 */
986 		if (c3_cpu_count == num_online_cpus())
987 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
988 		raw_spin_unlock(&c3_lock);
989 	} else if (!pr->flags.bm_check) {
990 		ACPI_FLUSH_CPU_CACHE();
991 	}
992 
993 	acpi_idle_do_entry(cx);
994 
995 	/* Re-enable bus master arbitration */
996 	if (pr->flags.bm_check && pr->flags.bm_control) {
997 		raw_spin_lock(&c3_lock);
998 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
999 		c3_cpu_count--;
1000 		raw_spin_unlock(&c3_lock);
1001 	}
1002 	kt2 = ktime_get_real();
1003 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
1004 	idle_time = idle_time_ns;
1005 	do_div(idle_time, NSEC_PER_USEC);
1006 
1007 	/* Update device last_residency*/
1008 	dev->last_residency = (int)idle_time;
1009 
1010 	/* Tell the scheduler how much we idled: */
1011 	sched_clock_idle_wakeup_event(idle_time_ns);
1012 
1013 	local_irq_enable();
1014 	if (cx->entry_method != ACPI_CSTATE_FFH)
1015 		current_thread_info()->status |= TS_POLLING;
1016 
1017 	cx->usage++;
1018 
1019 	lapic_timer_state_broadcast(pr, cx, 0);
1020 	cx->time += idle_time;
1021 	return index;
1022 }
1023 
1024 struct cpuidle_driver acpi_idle_driver = {
1025 	.name =		"acpi_idle",
1026 	.owner =	THIS_MODULE,
1027 };
1028 
1029 /**
1030  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
1031  * device i.e. per-cpu data
1032  *
1033  * @pr: the ACPI processor
1034  */
1035 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
1036 {
1037 	int i, count = CPUIDLE_DRIVER_STATE_START;
1038 	struct acpi_processor_cx *cx;
1039 	struct cpuidle_state_usage *state_usage;
1040 	struct cpuidle_device *dev = &pr->power.dev;
1041 
1042 	if (!pr->flags.power_setup_done)
1043 		return -EINVAL;
1044 
1045 	if (pr->flags.power == 0) {
1046 		return -EINVAL;
1047 	}
1048 
1049 	dev->cpu = pr->id;
1050 
1051 	if (max_cstate == 0)
1052 		max_cstate = 1;
1053 
1054 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1055 		cx = &pr->power.states[i];
1056 		state_usage = &dev->states_usage[count];
1057 
1058 		if (!cx->valid)
1059 			continue;
1060 
1061 #ifdef CONFIG_HOTPLUG_CPU
1062 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1063 		    !pr->flags.has_cst &&
1064 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1065 			continue;
1066 #endif
1067 
1068 		cpuidle_set_statedata(state_usage, cx);
1069 
1070 		count++;
1071 		if (count == CPUIDLE_STATE_MAX)
1072 			break;
1073 	}
1074 
1075 	dev->state_count = count;
1076 
1077 	if (!count)
1078 		return -EINVAL;
1079 
1080 	return 0;
1081 }
1082 
1083 /**
1084  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1085  * global state data i.e. idle routines
1086  *
1087  * @pr: the ACPI processor
1088  */
1089 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1090 {
1091 	int i, count = CPUIDLE_DRIVER_STATE_START;
1092 	struct acpi_processor_cx *cx;
1093 	struct cpuidle_state *state;
1094 	struct cpuidle_driver *drv = &acpi_idle_driver;
1095 
1096 	if (!pr->flags.power_setup_done)
1097 		return -EINVAL;
1098 
1099 	if (pr->flags.power == 0)
1100 		return -EINVAL;
1101 
1102 	drv->safe_state_index = -1;
1103 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1104 		drv->states[i].name[0] = '\0';
1105 		drv->states[i].desc[0] = '\0';
1106 	}
1107 
1108 	if (max_cstate == 0)
1109 		max_cstate = 1;
1110 
1111 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1112 		cx = &pr->power.states[i];
1113 
1114 		if (!cx->valid)
1115 			continue;
1116 
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1119 		    !pr->flags.has_cst &&
1120 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1121 			continue;
1122 #endif
1123 
1124 		state = &drv->states[count];
1125 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1126 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1127 		state->exit_latency = cx->latency;
1128 		state->target_residency = cx->latency * latency_factor;
1129 
1130 		state->flags = 0;
1131 		switch (cx->type) {
1132 			case ACPI_STATE_C1:
1133 			if (cx->entry_method == ACPI_CSTATE_FFH)
1134 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1135 
1136 			state->enter = acpi_idle_enter_c1;
1137 			state->enter_dead = acpi_idle_play_dead;
1138 			drv->safe_state_index = count;
1139 			break;
1140 
1141 			case ACPI_STATE_C2:
1142 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1143 			state->enter = acpi_idle_enter_simple;
1144 			state->enter_dead = acpi_idle_play_dead;
1145 			drv->safe_state_index = count;
1146 			break;
1147 
1148 			case ACPI_STATE_C3:
1149 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1150 			state->enter = pr->flags.bm_check ?
1151 					acpi_idle_enter_bm :
1152 					acpi_idle_enter_simple;
1153 			break;
1154 		}
1155 
1156 		count++;
1157 		if (count == CPUIDLE_STATE_MAX)
1158 			break;
1159 	}
1160 
1161 	drv->state_count = count;
1162 
1163 	if (!count)
1164 		return -EINVAL;
1165 
1166 	return 0;
1167 }
1168 
1169 int acpi_processor_hotplug(struct acpi_processor *pr)
1170 {
1171 	int ret = 0;
1172 
1173 	if (disabled_by_idle_boot_param())
1174 		return 0;
1175 
1176 	if (!pr)
1177 		return -EINVAL;
1178 
1179 	if (nocst) {
1180 		return -ENODEV;
1181 	}
1182 
1183 	if (!pr->flags.power_setup_done)
1184 		return -ENODEV;
1185 
1186 	cpuidle_pause_and_lock();
1187 	cpuidle_disable_device(&pr->power.dev);
1188 	acpi_processor_get_power_info(pr);
1189 	if (pr->flags.power) {
1190 		acpi_processor_setup_cpuidle_cx(pr);
1191 		ret = cpuidle_enable_device(&pr->power.dev);
1192 	}
1193 	cpuidle_resume_and_unlock();
1194 
1195 	return ret;
1196 }
1197 
1198 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1199 {
1200 	int cpu;
1201 	struct acpi_processor *_pr;
1202 
1203 	if (disabled_by_idle_boot_param())
1204 		return 0;
1205 
1206 	if (!pr)
1207 		return -EINVAL;
1208 
1209 	if (nocst)
1210 		return -ENODEV;
1211 
1212 	if (!pr->flags.power_setup_done)
1213 		return -ENODEV;
1214 
1215 	/*
1216 	 * FIXME:  Design the ACPI notification to make it once per
1217 	 * system instead of once per-cpu.  This condition is a hack
1218 	 * to make the code that updates C-States be called once.
1219 	 */
1220 
1221 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1222 
1223 		cpuidle_pause_and_lock();
1224 		/* Protect against cpu-hotplug */
1225 		get_online_cpus();
1226 
1227 		/* Disable all cpuidle devices */
1228 		for_each_online_cpu(cpu) {
1229 			_pr = per_cpu(processors, cpu);
1230 			if (!_pr || !_pr->flags.power_setup_done)
1231 				continue;
1232 			cpuidle_disable_device(&_pr->power.dev);
1233 		}
1234 
1235 		/* Populate Updated C-state information */
1236 		acpi_processor_setup_cpuidle_states(pr);
1237 
1238 		/* Enable all cpuidle devices */
1239 		for_each_online_cpu(cpu) {
1240 			_pr = per_cpu(processors, cpu);
1241 			if (!_pr || !_pr->flags.power_setup_done)
1242 				continue;
1243 			acpi_processor_get_power_info(_pr);
1244 			if (_pr->flags.power) {
1245 				acpi_processor_setup_cpuidle_cx(_pr);
1246 				cpuidle_enable_device(&_pr->power.dev);
1247 			}
1248 		}
1249 		put_online_cpus();
1250 		cpuidle_resume_and_unlock();
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static int acpi_processor_registered;
1257 
1258 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1259 			      struct acpi_device *device)
1260 {
1261 	acpi_status status = 0;
1262 	int retval;
1263 	static int first_run;
1264 
1265 	if (disabled_by_idle_boot_param())
1266 		return 0;
1267 
1268 	if (!first_run) {
1269 		dmi_check_system(processor_power_dmi_table);
1270 		max_cstate = acpi_processor_cstate_check(max_cstate);
1271 		if (max_cstate < ACPI_C_STATES_MAX)
1272 			printk(KERN_NOTICE
1273 			       "ACPI: processor limited to max C-state %d\n",
1274 			       max_cstate);
1275 		first_run++;
1276 	}
1277 
1278 	if (!pr)
1279 		return -EINVAL;
1280 
1281 	if (acpi_gbl_FADT.cst_control && !nocst) {
1282 		status =
1283 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1284 		if (ACPI_FAILURE(status)) {
1285 			ACPI_EXCEPTION((AE_INFO, status,
1286 					"Notifying BIOS of _CST ability failed"));
1287 		}
1288 	}
1289 
1290 	acpi_processor_get_power_info(pr);
1291 	pr->flags.power_setup_done = 1;
1292 
1293 	/*
1294 	 * Install the idle handler if processor power management is supported.
1295 	 * Note that we use previously set idle handler will be used on
1296 	 * platforms that only support C1.
1297 	 */
1298 	if (pr->flags.power) {
1299 		/* Register acpi_idle_driver if not already registered */
1300 		if (!acpi_processor_registered) {
1301 			acpi_processor_setup_cpuidle_states(pr);
1302 			retval = cpuidle_register_driver(&acpi_idle_driver);
1303 			if (retval)
1304 				return retval;
1305 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1306 					acpi_idle_driver.name);
1307 		}
1308 		/* Register per-cpu cpuidle_device. Cpuidle driver
1309 		 * must already be registered before registering device
1310 		 */
1311 		acpi_processor_setup_cpuidle_cx(pr);
1312 		retval = cpuidle_register_device(&pr->power.dev);
1313 		if (retval) {
1314 			if (acpi_processor_registered == 0)
1315 				cpuidle_unregister_driver(&acpi_idle_driver);
1316 			return retval;
1317 		}
1318 		acpi_processor_registered++;
1319 	}
1320 	return 0;
1321 }
1322 
1323 int acpi_processor_power_exit(struct acpi_processor *pr,
1324 			      struct acpi_device *device)
1325 {
1326 	if (disabled_by_idle_boot_param())
1327 		return 0;
1328 
1329 	if (pr->flags.power) {
1330 		cpuidle_unregister_device(&pr->power.dev);
1331 		acpi_processor_registered--;
1332 		if (acpi_processor_registered == 0)
1333 			cpuidle_unregister_driver(&acpi_idle_driver);
1334 	}
1335 
1336 	pr->flags.power_setup_done = 0;
1337 	return 0;
1338 }
1339