xref: /linux/drivers/acpi/processor_idle.c (revision c41b20e721ea4f6f20f66a66e7f0c3c97a2ca9c2)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define PREFIX "ACPI: "
64 
65 #define ACPI_PROCESSOR_CLASS            "processor"
66 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER	"power"
69 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD			1	/* 1us */
71 #define C3_OVERHEAD			1	/* 1us */
72 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73 
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88  * For now disable this. Probably a bug somewhere else.
89  *
90  * To skip this limit, boot/load with a large max_cstate limit.
91  */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 		return 0;
96 
97 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100 
101 	max_cstate = (long)id->driver_data;
102 
103 	return 0;
104 }
105 
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107    callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 	{ set_max_cstate, "Clevo 5600D", {
110 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 	 (void *)2},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void acpi_safe_halt(void)
122 {
123 	current_thread_info()->status &= ~TS_POLLING;
124 	/*
125 	 * TS_POLLING-cleared state must be visible before we
126 	 * test NEED_RESCHED:
127 	 */
128 	smp_mb();
129 	if (!need_resched()) {
130 		safe_halt();
131 		local_irq_disable();
132 	}
133 	current_thread_info()->status |= TS_POLLING;
134 }
135 
136 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137 
138 /*
139  * Some BIOS implementations switch to C3 in the published C2 state.
140  * This seems to be a common problem on AMD boxen, but other vendors
141  * are affected too. We pick the most conservative approach: we assume
142  * that the local APIC stops in both C2 and C3.
143  */
144 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
145 				   struct acpi_processor_cx *cx)
146 {
147 	struct acpi_processor_power *pwr = &pr->power;
148 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149 
150 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
151 		return;
152 
153 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
154 		type = ACPI_STATE_C1;
155 
156 	/*
157 	 * Check, if one of the previous states already marked the lapic
158 	 * unstable
159 	 */
160 	if (pwr->timer_broadcast_on_state < state)
161 		return;
162 
163 	if (cx->type >= type)
164 		pr->power.timer_broadcast_on_state = state;
165 }
166 
167 static void __lapic_timer_propagate_broadcast(void *arg)
168 {
169 	struct acpi_processor *pr = (struct acpi_processor *) arg;
170 	unsigned long reason;
171 
172 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
173 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
174 
175 	clockevents_notify(reason, &pr->id);
176 }
177 
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
179 {
180 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
181 				 (void *)pr, 1);
182 }
183 
184 /* Power(C) State timer broadcast control */
185 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
186 				       struct acpi_processor_cx *cx,
187 				       int broadcast)
188 {
189 	int state = cx - pr->power.states;
190 
191 	if (state >= pr->power.timer_broadcast_on_state) {
192 		unsigned long reason;
193 
194 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
195 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
196 		clockevents_notify(reason, &pr->id);
197 	}
198 }
199 
200 #else
201 
202 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
203 				   struct acpi_processor_cx *cstate) { }
204 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
205 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
206 				       struct acpi_processor_cx *cx,
207 				       int broadcast)
208 {
209 }
210 
211 #endif
212 
213 /*
214  * Suspend / resume control
215  */
216 static int acpi_idle_suspend;
217 static u32 saved_bm_rld;
218 
219 static void acpi_idle_bm_rld_save(void)
220 {
221 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
222 }
223 static void acpi_idle_bm_rld_restore(void)
224 {
225 	u32 resumed_bm_rld;
226 
227 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
228 
229 	if (resumed_bm_rld != saved_bm_rld)
230 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
231 }
232 
233 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
234 {
235 	if (acpi_idle_suspend == 1)
236 		return 0;
237 
238 	acpi_idle_bm_rld_save();
239 	acpi_idle_suspend = 1;
240 	return 0;
241 }
242 
243 int acpi_processor_resume(struct acpi_device * device)
244 {
245 	if (acpi_idle_suspend == 0)
246 		return 0;
247 
248 	acpi_idle_bm_rld_restore();
249 	acpi_idle_suspend = 0;
250 	return 0;
251 }
252 
253 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
254 static void tsc_check_state(int state)
255 {
256 	switch (boot_cpu_data.x86_vendor) {
257 	case X86_VENDOR_AMD:
258 	case X86_VENDOR_INTEL:
259 		/*
260 		 * AMD Fam10h TSC will tick in all
261 		 * C/P/S0/S1 states when this bit is set.
262 		 */
263 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
264 			return;
265 
266 		/*FALL THROUGH*/
267 	default:
268 		/* TSC could halt in idle, so notify users */
269 		if (state > ACPI_STATE_C1)
270 			mark_tsc_unstable("TSC halts in idle");
271 	}
272 }
273 #else
274 static void tsc_check_state(int state) { return; }
275 #endif
276 
277 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
278 {
279 
280 	if (!pr)
281 		return -EINVAL;
282 
283 	if (!pr->pblk)
284 		return -ENODEV;
285 
286 	/* if info is obtained from pblk/fadt, type equals state */
287 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
288 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
289 
290 #ifndef CONFIG_HOTPLUG_CPU
291 	/*
292 	 * Check for P_LVL2_UP flag before entering C2 and above on
293 	 * an SMP system.
294 	 */
295 	if ((num_online_cpus() > 1) &&
296 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
297 		return -ENODEV;
298 #endif
299 
300 	/* determine C2 and C3 address from pblk */
301 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
302 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
303 
304 	/* determine latencies from FADT */
305 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
306 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
307 
308 	/*
309 	 * FADT specified C2 latency must be less than or equal to
310 	 * 100 microseconds.
311 	 */
312 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
313 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
314 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
315 		/* invalidate C2 */
316 		pr->power.states[ACPI_STATE_C2].address = 0;
317 	}
318 
319 	/*
320 	 * FADT supplied C3 latency must be less than or equal to
321 	 * 1000 microseconds.
322 	 */
323 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
324 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
325 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
326 		/* invalidate C3 */
327 		pr->power.states[ACPI_STATE_C3].address = 0;
328 	}
329 
330 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
331 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
332 			  pr->power.states[ACPI_STATE_C2].address,
333 			  pr->power.states[ACPI_STATE_C3].address));
334 
335 	return 0;
336 }
337 
338 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
339 {
340 	if (!pr->power.states[ACPI_STATE_C1].valid) {
341 		/* set the first C-State to C1 */
342 		/* all processors need to support C1 */
343 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
344 		pr->power.states[ACPI_STATE_C1].valid = 1;
345 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
346 	}
347 	/* the C0 state only exists as a filler in our array */
348 	pr->power.states[ACPI_STATE_C0].valid = 1;
349 	return 0;
350 }
351 
352 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
353 {
354 	acpi_status status = 0;
355 	acpi_integer count;
356 	int current_count;
357 	int i;
358 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
359 	union acpi_object *cst;
360 
361 
362 	if (nocst)
363 		return -ENODEV;
364 
365 	current_count = 0;
366 
367 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
368 	if (ACPI_FAILURE(status)) {
369 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
370 		return -ENODEV;
371 	}
372 
373 	cst = buffer.pointer;
374 
375 	/* There must be at least 2 elements */
376 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
377 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
378 		status = -EFAULT;
379 		goto end;
380 	}
381 
382 	count = cst->package.elements[0].integer.value;
383 
384 	/* Validate number of power states. */
385 	if (count < 1 || count != cst->package.count - 1) {
386 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
387 		status = -EFAULT;
388 		goto end;
389 	}
390 
391 	/* Tell driver that at least _CST is supported. */
392 	pr->flags.has_cst = 1;
393 
394 	for (i = 1; i <= count; i++) {
395 		union acpi_object *element;
396 		union acpi_object *obj;
397 		struct acpi_power_register *reg;
398 		struct acpi_processor_cx cx;
399 
400 		memset(&cx, 0, sizeof(cx));
401 
402 		element = &(cst->package.elements[i]);
403 		if (element->type != ACPI_TYPE_PACKAGE)
404 			continue;
405 
406 		if (element->package.count != 4)
407 			continue;
408 
409 		obj = &(element->package.elements[0]);
410 
411 		if (obj->type != ACPI_TYPE_BUFFER)
412 			continue;
413 
414 		reg = (struct acpi_power_register *)obj->buffer.pointer;
415 
416 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
417 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
418 			continue;
419 
420 		/* There should be an easy way to extract an integer... */
421 		obj = &(element->package.elements[1]);
422 		if (obj->type != ACPI_TYPE_INTEGER)
423 			continue;
424 
425 		cx.type = obj->integer.value;
426 		/*
427 		 * Some buggy BIOSes won't list C1 in _CST -
428 		 * Let acpi_processor_get_power_info_default() handle them later
429 		 */
430 		if (i == 1 && cx.type != ACPI_STATE_C1)
431 			current_count++;
432 
433 		cx.address = reg->address;
434 		cx.index = current_count + 1;
435 
436 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
437 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
438 			if (acpi_processor_ffh_cstate_probe
439 					(pr->id, &cx, reg) == 0) {
440 				cx.entry_method = ACPI_CSTATE_FFH;
441 			} else if (cx.type == ACPI_STATE_C1) {
442 				/*
443 				 * C1 is a special case where FIXED_HARDWARE
444 				 * can be handled in non-MWAIT way as well.
445 				 * In that case, save this _CST entry info.
446 				 * Otherwise, ignore this info and continue.
447 				 */
448 				cx.entry_method = ACPI_CSTATE_HALT;
449 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
450 			} else {
451 				continue;
452 			}
453 			if (cx.type == ACPI_STATE_C1 &&
454 					(idle_halt || idle_nomwait)) {
455 				/*
456 				 * In most cases the C1 space_id obtained from
457 				 * _CST object is FIXED_HARDWARE access mode.
458 				 * But when the option of idle=halt is added,
459 				 * the entry_method type should be changed from
460 				 * CSTATE_FFH to CSTATE_HALT.
461 				 * When the option of idle=nomwait is added,
462 				 * the C1 entry_method type should be
463 				 * CSTATE_HALT.
464 				 */
465 				cx.entry_method = ACPI_CSTATE_HALT;
466 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
467 			}
468 		} else {
469 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
470 				 cx.address);
471 		}
472 
473 		if (cx.type == ACPI_STATE_C1) {
474 			cx.valid = 1;
475 		}
476 
477 		obj = &(element->package.elements[2]);
478 		if (obj->type != ACPI_TYPE_INTEGER)
479 			continue;
480 
481 		cx.latency = obj->integer.value;
482 
483 		obj = &(element->package.elements[3]);
484 		if (obj->type != ACPI_TYPE_INTEGER)
485 			continue;
486 
487 		cx.power = obj->integer.value;
488 
489 		current_count++;
490 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
491 
492 		/*
493 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
494 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
495 		 */
496 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
497 			printk(KERN_WARNING
498 			       "Limiting number of power states to max (%d)\n",
499 			       ACPI_PROCESSOR_MAX_POWER);
500 			printk(KERN_WARNING
501 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
502 			break;
503 		}
504 	}
505 
506 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
507 			  current_count));
508 
509 	/* Validate number of power states discovered */
510 	if (current_count < 2)
511 		status = -EFAULT;
512 
513       end:
514 	kfree(buffer.pointer);
515 
516 	return status;
517 }
518 
519 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
520 					   struct acpi_processor_cx *cx)
521 {
522 	static int bm_check_flag = -1;
523 	static int bm_control_flag = -1;
524 
525 
526 	if (!cx->address)
527 		return;
528 
529 	/*
530 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
531 	 * DMA transfers are used by any ISA device to avoid livelock.
532 	 * Note that we could disable Type-F DMA (as recommended by
533 	 * the erratum), but this is known to disrupt certain ISA
534 	 * devices thus we take the conservative approach.
535 	 */
536 	else if (errata.piix4.fdma) {
537 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
538 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
539 		return;
540 	}
541 
542 	/* All the logic here assumes flags.bm_check is same across all CPUs */
543 	if (bm_check_flag == -1) {
544 		/* Determine whether bm_check is needed based on CPU  */
545 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
546 		bm_check_flag = pr->flags.bm_check;
547 		bm_control_flag = pr->flags.bm_control;
548 	} else {
549 		pr->flags.bm_check = bm_check_flag;
550 		pr->flags.bm_control = bm_control_flag;
551 	}
552 
553 	if (pr->flags.bm_check) {
554 		if (!pr->flags.bm_control) {
555 			if (pr->flags.has_cst != 1) {
556 				/* bus mastering control is necessary */
557 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
558 					"C3 support requires BM control\n"));
559 				return;
560 			} else {
561 				/* Here we enter C3 without bus mastering */
562 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
563 					"C3 support without BM control\n"));
564 			}
565 		}
566 	} else {
567 		/*
568 		 * WBINVD should be set in fadt, for C3 state to be
569 		 * supported on when bm_check is not required.
570 		 */
571 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
572 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 					  "Cache invalidation should work properly"
574 					  " for C3 to be enabled on SMP systems\n"));
575 			return;
576 		}
577 	}
578 
579 	/*
580 	 * Otherwise we've met all of our C3 requirements.
581 	 * Normalize the C3 latency to expidite policy.  Enable
582 	 * checking of bus mastering status (bm_check) so we can
583 	 * use this in our C3 policy
584 	 */
585 	cx->valid = 1;
586 
587 	cx->latency_ticks = cx->latency;
588 	/*
589 	 * On older chipsets, BM_RLD needs to be set
590 	 * in order for Bus Master activity to wake the
591 	 * system from C3.  Newer chipsets handle DMA
592 	 * during C3 automatically and BM_RLD is a NOP.
593 	 * In either case, the proper way to
594 	 * handle BM_RLD is to set it and leave it set.
595 	 */
596 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
597 
598 	return;
599 }
600 
601 static int acpi_processor_power_verify(struct acpi_processor *pr)
602 {
603 	unsigned int i;
604 	unsigned int working = 0;
605 
606 	pr->power.timer_broadcast_on_state = INT_MAX;
607 
608 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
609 		struct acpi_processor_cx *cx = &pr->power.states[i];
610 
611 		switch (cx->type) {
612 		case ACPI_STATE_C1:
613 			cx->valid = 1;
614 			break;
615 
616 		case ACPI_STATE_C2:
617 			if (!cx->address)
618 				break;
619 			cx->valid = 1;
620 			cx->latency_ticks = cx->latency; /* Normalize latency */
621 			break;
622 
623 		case ACPI_STATE_C3:
624 			acpi_processor_power_verify_c3(pr, cx);
625 			break;
626 		}
627 		if (!cx->valid)
628 			continue;
629 
630 		lapic_timer_check_state(i, pr, cx);
631 		tsc_check_state(cx->type);
632 		working++;
633 	}
634 
635 	lapic_timer_propagate_broadcast(pr);
636 
637 	return (working);
638 }
639 
640 static int acpi_processor_get_power_info(struct acpi_processor *pr)
641 {
642 	unsigned int i;
643 	int result;
644 
645 
646 	/* NOTE: the idle thread may not be running while calling
647 	 * this function */
648 
649 	/* Zero initialize all the C-states info. */
650 	memset(pr->power.states, 0, sizeof(pr->power.states));
651 
652 	result = acpi_processor_get_power_info_cst(pr);
653 	if (result == -ENODEV)
654 		result = acpi_processor_get_power_info_fadt(pr);
655 
656 	if (result)
657 		return result;
658 
659 	acpi_processor_get_power_info_default(pr);
660 
661 	pr->power.count = acpi_processor_power_verify(pr);
662 
663 	/*
664 	 * if one state of type C2 or C3 is available, mark this
665 	 * CPU as being "idle manageable"
666 	 */
667 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
668 		if (pr->power.states[i].valid) {
669 			pr->power.count = i;
670 			if (pr->power.states[i].type >= ACPI_STATE_C2)
671 				pr->flags.power = 1;
672 		}
673 	}
674 
675 	return 0;
676 }
677 
678 #ifdef CONFIG_ACPI_PROCFS
679 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
680 {
681 	struct acpi_processor *pr = seq->private;
682 	unsigned int i;
683 
684 
685 	if (!pr)
686 		goto end;
687 
688 	seq_printf(seq, "active state:            C%zd\n"
689 		   "max_cstate:              C%d\n"
690 		   "maximum allowed latency: %d usec\n",
691 		   pr->power.state ? pr->power.state - pr->power.states : 0,
692 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
693 
694 	seq_puts(seq, "states:\n");
695 
696 	for (i = 1; i <= pr->power.count; i++) {
697 		seq_printf(seq, "   %cC%d:                  ",
698 			   (&pr->power.states[i] ==
699 			    pr->power.state ? '*' : ' '), i);
700 
701 		if (!pr->power.states[i].valid) {
702 			seq_puts(seq, "<not supported>\n");
703 			continue;
704 		}
705 
706 		switch (pr->power.states[i].type) {
707 		case ACPI_STATE_C1:
708 			seq_printf(seq, "type[C1] ");
709 			break;
710 		case ACPI_STATE_C2:
711 			seq_printf(seq, "type[C2] ");
712 			break;
713 		case ACPI_STATE_C3:
714 			seq_printf(seq, "type[C3] ");
715 			break;
716 		default:
717 			seq_printf(seq, "type[--] ");
718 			break;
719 		}
720 
721 		if (pr->power.states[i].promotion.state)
722 			seq_printf(seq, "promotion[C%zd] ",
723 				   (pr->power.states[i].promotion.state -
724 				    pr->power.states));
725 		else
726 			seq_puts(seq, "promotion[--] ");
727 
728 		if (pr->power.states[i].demotion.state)
729 			seq_printf(seq, "demotion[C%zd] ",
730 				   (pr->power.states[i].demotion.state -
731 				    pr->power.states));
732 		else
733 			seq_puts(seq, "demotion[--] ");
734 
735 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
736 			   pr->power.states[i].latency,
737 			   pr->power.states[i].usage,
738 			   (unsigned long long)pr->power.states[i].time);
739 	}
740 
741       end:
742 	return 0;
743 }
744 
745 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
746 {
747 	return single_open(file, acpi_processor_power_seq_show,
748 			   PDE(inode)->data);
749 }
750 
751 static const struct file_operations acpi_processor_power_fops = {
752 	.owner = THIS_MODULE,
753 	.open = acpi_processor_power_open_fs,
754 	.read = seq_read,
755 	.llseek = seq_lseek,
756 	.release = single_release,
757 };
758 #endif
759 
760 /**
761  * acpi_idle_bm_check - checks if bus master activity was detected
762  */
763 static int acpi_idle_bm_check(void)
764 {
765 	u32 bm_status = 0;
766 
767 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
768 	if (bm_status)
769 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
770 	/*
771 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
772 	 * the true state of bus mastering activity; forcing us to
773 	 * manually check the BMIDEA bit of each IDE channel.
774 	 */
775 	else if (errata.piix4.bmisx) {
776 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
777 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
778 			bm_status = 1;
779 	}
780 	return bm_status;
781 }
782 
783 /**
784  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
785  * @cx: cstate data
786  *
787  * Caller disables interrupt before call and enables interrupt after return.
788  */
789 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
790 {
791 	/* Don't trace irqs off for idle */
792 	stop_critical_timings();
793 	if (cx->entry_method == ACPI_CSTATE_FFH) {
794 		/* Call into architectural FFH based C-state */
795 		acpi_processor_ffh_cstate_enter(cx);
796 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
797 		acpi_safe_halt();
798 	} else {
799 		int unused;
800 		/* IO port based C-state */
801 		inb(cx->address);
802 		/* Dummy wait op - must do something useless after P_LVL2 read
803 		   because chipsets cannot guarantee that STPCLK# signal
804 		   gets asserted in time to freeze execution properly. */
805 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
806 	}
807 	start_critical_timings();
808 }
809 
810 /**
811  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
812  * @dev: the target CPU
813  * @state: the state data
814  *
815  * This is equivalent to the HALT instruction.
816  */
817 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
818 			      struct cpuidle_state *state)
819 {
820 	ktime_t  kt1, kt2;
821 	s64 idle_time;
822 	struct acpi_processor *pr;
823 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
824 
825 	pr = __get_cpu_var(processors);
826 
827 	if (unlikely(!pr))
828 		return 0;
829 
830 	local_irq_disable();
831 
832 	/* Do not access any ACPI IO ports in suspend path */
833 	if (acpi_idle_suspend) {
834 		local_irq_enable();
835 		cpu_relax();
836 		return 0;
837 	}
838 
839 	lapic_timer_state_broadcast(pr, cx, 1);
840 	kt1 = ktime_get_real();
841 	acpi_idle_do_entry(cx);
842 	kt2 = ktime_get_real();
843 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
844 
845 	local_irq_enable();
846 	cx->usage++;
847 	lapic_timer_state_broadcast(pr, cx, 0);
848 
849 	return idle_time;
850 }
851 
852 /**
853  * acpi_idle_enter_simple - enters an ACPI state without BM handling
854  * @dev: the target CPU
855  * @state: the state data
856  */
857 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
858 				  struct cpuidle_state *state)
859 {
860 	struct acpi_processor *pr;
861 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
862 	ktime_t  kt1, kt2;
863 	s64 idle_time;
864 	s64 sleep_ticks = 0;
865 
866 	pr = __get_cpu_var(processors);
867 
868 	if (unlikely(!pr))
869 		return 0;
870 
871 	if (acpi_idle_suspend)
872 		return(acpi_idle_enter_c1(dev, state));
873 
874 	local_irq_disable();
875 	current_thread_info()->status &= ~TS_POLLING;
876 	/*
877 	 * TS_POLLING-cleared state must be visible before we test
878 	 * NEED_RESCHED:
879 	 */
880 	smp_mb();
881 
882 	if (unlikely(need_resched())) {
883 		current_thread_info()->status |= TS_POLLING;
884 		local_irq_enable();
885 		return 0;
886 	}
887 
888 	/*
889 	 * Must be done before busmaster disable as we might need to
890 	 * access HPET !
891 	 */
892 	lapic_timer_state_broadcast(pr, cx, 1);
893 
894 	if (cx->type == ACPI_STATE_C3)
895 		ACPI_FLUSH_CPU_CACHE();
896 
897 	kt1 = ktime_get_real();
898 	/* Tell the scheduler that we are going deep-idle: */
899 	sched_clock_idle_sleep_event();
900 	acpi_idle_do_entry(cx);
901 	kt2 = ktime_get_real();
902 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
903 
904 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
905 
906 	/* Tell the scheduler how much we idled: */
907 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
908 
909 	local_irq_enable();
910 	current_thread_info()->status |= TS_POLLING;
911 
912 	cx->usage++;
913 
914 	lapic_timer_state_broadcast(pr, cx, 0);
915 	cx->time += sleep_ticks;
916 	return idle_time;
917 }
918 
919 static int c3_cpu_count;
920 static DEFINE_SPINLOCK(c3_lock);
921 
922 /**
923  * acpi_idle_enter_bm - enters C3 with proper BM handling
924  * @dev: the target CPU
925  * @state: the state data
926  *
927  * If BM is detected, the deepest non-C3 idle state is entered instead.
928  */
929 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
930 			      struct cpuidle_state *state)
931 {
932 	struct acpi_processor *pr;
933 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
934 	ktime_t  kt1, kt2;
935 	s64 idle_time;
936 	s64 sleep_ticks = 0;
937 
938 
939 	pr = __get_cpu_var(processors);
940 
941 	if (unlikely(!pr))
942 		return 0;
943 
944 	if (acpi_idle_suspend)
945 		return(acpi_idle_enter_c1(dev, state));
946 
947 	if (acpi_idle_bm_check()) {
948 		if (dev->safe_state) {
949 			dev->last_state = dev->safe_state;
950 			return dev->safe_state->enter(dev, dev->safe_state);
951 		} else {
952 			local_irq_disable();
953 			acpi_safe_halt();
954 			local_irq_enable();
955 			return 0;
956 		}
957 	}
958 
959 	local_irq_disable();
960 	current_thread_info()->status &= ~TS_POLLING;
961 	/*
962 	 * TS_POLLING-cleared state must be visible before we test
963 	 * NEED_RESCHED:
964 	 */
965 	smp_mb();
966 
967 	if (unlikely(need_resched())) {
968 		current_thread_info()->status |= TS_POLLING;
969 		local_irq_enable();
970 		return 0;
971 	}
972 
973 	acpi_unlazy_tlb(smp_processor_id());
974 
975 	/* Tell the scheduler that we are going deep-idle: */
976 	sched_clock_idle_sleep_event();
977 	/*
978 	 * Must be done before busmaster disable as we might need to
979 	 * access HPET !
980 	 */
981 	lapic_timer_state_broadcast(pr, cx, 1);
982 
983 	kt1 = ktime_get_real();
984 	/*
985 	 * disable bus master
986 	 * bm_check implies we need ARB_DIS
987 	 * !bm_check implies we need cache flush
988 	 * bm_control implies whether we can do ARB_DIS
989 	 *
990 	 * That leaves a case where bm_check is set and bm_control is
991 	 * not set. In that case we cannot do much, we enter C3
992 	 * without doing anything.
993 	 */
994 	if (pr->flags.bm_check && pr->flags.bm_control) {
995 		spin_lock(&c3_lock);
996 		c3_cpu_count++;
997 		/* Disable bus master arbitration when all CPUs are in C3 */
998 		if (c3_cpu_count == num_online_cpus())
999 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1000 		spin_unlock(&c3_lock);
1001 	} else if (!pr->flags.bm_check) {
1002 		ACPI_FLUSH_CPU_CACHE();
1003 	}
1004 
1005 	acpi_idle_do_entry(cx);
1006 
1007 	/* Re-enable bus master arbitration */
1008 	if (pr->flags.bm_check && pr->flags.bm_control) {
1009 		spin_lock(&c3_lock);
1010 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1011 		c3_cpu_count--;
1012 		spin_unlock(&c3_lock);
1013 	}
1014 	kt2 = ktime_get_real();
1015 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1016 
1017 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1018 	/* Tell the scheduler how much we idled: */
1019 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1020 
1021 	local_irq_enable();
1022 	current_thread_info()->status |= TS_POLLING;
1023 
1024 	cx->usage++;
1025 
1026 	lapic_timer_state_broadcast(pr, cx, 0);
1027 	cx->time += sleep_ticks;
1028 	return idle_time;
1029 }
1030 
1031 struct cpuidle_driver acpi_idle_driver = {
1032 	.name =		"acpi_idle",
1033 	.owner =	THIS_MODULE,
1034 };
1035 
1036 /**
1037  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1038  * @pr: the ACPI processor
1039  */
1040 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1041 {
1042 	int i, count = CPUIDLE_DRIVER_STATE_START;
1043 	struct acpi_processor_cx *cx;
1044 	struct cpuidle_state *state;
1045 	struct cpuidle_device *dev = &pr->power.dev;
1046 
1047 	if (!pr->flags.power_setup_done)
1048 		return -EINVAL;
1049 
1050 	if (pr->flags.power == 0) {
1051 		return -EINVAL;
1052 	}
1053 
1054 	dev->cpu = pr->id;
1055 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1056 		dev->states[i].name[0] = '\0';
1057 		dev->states[i].desc[0] = '\0';
1058 	}
1059 
1060 	if (max_cstate == 0)
1061 		max_cstate = 1;
1062 
1063 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1064 		cx = &pr->power.states[i];
1065 		state = &dev->states[count];
1066 
1067 		if (!cx->valid)
1068 			continue;
1069 
1070 #ifdef CONFIG_HOTPLUG_CPU
1071 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1072 		    !pr->flags.has_cst &&
1073 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1074 			continue;
1075 #endif
1076 		cpuidle_set_statedata(state, cx);
1077 
1078 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1079 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1080 		state->exit_latency = cx->latency;
1081 		state->target_residency = cx->latency * latency_factor;
1082 		state->power_usage = cx->power;
1083 
1084 		state->flags = 0;
1085 		switch (cx->type) {
1086 			case ACPI_STATE_C1:
1087 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1088 			if (cx->entry_method == ACPI_CSTATE_FFH)
1089 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1090 
1091 			state->enter = acpi_idle_enter_c1;
1092 			dev->safe_state = state;
1093 			break;
1094 
1095 			case ACPI_STATE_C2:
1096 			state->flags |= CPUIDLE_FLAG_BALANCED;
1097 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1098 			state->enter = acpi_idle_enter_simple;
1099 			dev->safe_state = state;
1100 			break;
1101 
1102 			case ACPI_STATE_C3:
1103 			state->flags |= CPUIDLE_FLAG_DEEP;
1104 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1105 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1106 			state->enter = pr->flags.bm_check ?
1107 					acpi_idle_enter_bm :
1108 					acpi_idle_enter_simple;
1109 			break;
1110 		}
1111 
1112 		count++;
1113 		if (count == CPUIDLE_STATE_MAX)
1114 			break;
1115 	}
1116 
1117 	dev->state_count = count;
1118 
1119 	if (!count)
1120 		return -EINVAL;
1121 
1122 	return 0;
1123 }
1124 
1125 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1126 {
1127 	int ret = 0;
1128 
1129 	if (boot_option_idle_override)
1130 		return 0;
1131 
1132 	if (!pr)
1133 		return -EINVAL;
1134 
1135 	if (nocst) {
1136 		return -ENODEV;
1137 	}
1138 
1139 	if (!pr->flags.power_setup_done)
1140 		return -ENODEV;
1141 
1142 	cpuidle_pause_and_lock();
1143 	cpuidle_disable_device(&pr->power.dev);
1144 	acpi_processor_get_power_info(pr);
1145 	if (pr->flags.power) {
1146 		acpi_processor_setup_cpuidle(pr);
1147 		ret = cpuidle_enable_device(&pr->power.dev);
1148 	}
1149 	cpuidle_resume_and_unlock();
1150 
1151 	return ret;
1152 }
1153 
1154 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1155 			      struct acpi_device *device)
1156 {
1157 	acpi_status status = 0;
1158 	static int first_run;
1159 #ifdef CONFIG_ACPI_PROCFS
1160 	struct proc_dir_entry *entry = NULL;
1161 #endif
1162 
1163 	if (boot_option_idle_override)
1164 		return 0;
1165 
1166 	if (!first_run) {
1167 		if (idle_halt) {
1168 			/*
1169 			 * When the boot option of "idle=halt" is added, halt
1170 			 * is used for CPU IDLE.
1171 			 * In such case C2/C3 is meaningless. So the max_cstate
1172 			 * is set to one.
1173 			 */
1174 			max_cstate = 1;
1175 		}
1176 		dmi_check_system(processor_power_dmi_table);
1177 		max_cstate = acpi_processor_cstate_check(max_cstate);
1178 		if (max_cstate < ACPI_C_STATES_MAX)
1179 			printk(KERN_NOTICE
1180 			       "ACPI: processor limited to max C-state %d\n",
1181 			       max_cstate);
1182 		first_run++;
1183 	}
1184 
1185 	if (!pr)
1186 		return -EINVAL;
1187 
1188 	if (acpi_gbl_FADT.cst_control && !nocst) {
1189 		status =
1190 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1191 		if (ACPI_FAILURE(status)) {
1192 			ACPI_EXCEPTION((AE_INFO, status,
1193 					"Notifying BIOS of _CST ability failed"));
1194 		}
1195 	}
1196 
1197 	acpi_processor_get_power_info(pr);
1198 	pr->flags.power_setup_done = 1;
1199 
1200 	/*
1201 	 * Install the idle handler if processor power management is supported.
1202 	 * Note that we use previously set idle handler will be used on
1203 	 * platforms that only support C1.
1204 	 */
1205 	if (pr->flags.power) {
1206 		acpi_processor_setup_cpuidle(pr);
1207 		if (cpuidle_register_device(&pr->power.dev))
1208 			return -EIO;
1209 	}
1210 #ifdef CONFIG_ACPI_PROCFS
1211 	/* 'power' [R] */
1212 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1213 				 S_IRUGO, acpi_device_dir(device),
1214 				 &acpi_processor_power_fops,
1215 				 acpi_driver_data(device));
1216 	if (!entry)
1217 		return -EIO;
1218 #endif
1219 	return 0;
1220 }
1221 
1222 int acpi_processor_power_exit(struct acpi_processor *pr,
1223 			      struct acpi_device *device)
1224 {
1225 	if (boot_option_idle_override)
1226 		return 0;
1227 
1228 	cpuidle_unregister_device(&pr->power.dev);
1229 	pr->flags.power_setup_done = 0;
1230 
1231 #ifdef CONFIG_ACPI_PROCFS
1232 	if (acpi_device_dir(device))
1233 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1234 				  acpi_device_dir(device));
1235 #endif
1236 
1237 	return 0;
1238 }
1239