xref: /linux/drivers/acpi/processor_idle.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>	/* need_resched() */
40 #include <linux/pm_qos_params.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61 
62 #define PREFIX "ACPI: "
63 
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER	"power"
68 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
69 #define C2_OVERHEAD			1	/* 1us */
70 #define C3_OVERHEAD			1	/* 1us */
71 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
72 
73 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
74 module_param(max_cstate, uint, 0000);
75 static unsigned int nocst __read_mostly;
76 module_param(nocst, uint, 0000);
77 static int bm_check_disable __read_mostly;
78 module_param(bm_check_disable, uint, 0000);
79 
80 static unsigned int latency_factor __read_mostly = 2;
81 module_param(latency_factor, uint, 0644);
82 
83 /*
84  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
85  * For now disable this. Probably a bug somewhere else.
86  *
87  * To skip this limit, boot/load with a large max_cstate limit.
88  */
89 static int set_max_cstate(const struct dmi_system_id *id)
90 {
91 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
92 		return 0;
93 
94 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
95 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
96 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
97 
98 	max_cstate = (long)id->driver_data;
99 
100 	return 0;
101 }
102 
103 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
104    callers to only run once -AK */
105 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
106 	{ set_max_cstate, "Clevo 5600D", {
107 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
108 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
109 	 (void *)2},
110 	{ set_max_cstate, "Pavilion zv5000", {
111 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
112 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
113 	 (void *)1},
114 	{ set_max_cstate, "Asus L8400B", {
115 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
116 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
117 	 (void *)1},
118 	{},
119 };
120 
121 
122 /*
123  * Callers should disable interrupts before the call and enable
124  * interrupts after return.
125  */
126 static void acpi_safe_halt(void)
127 {
128 	current_thread_info()->status &= ~TS_POLLING;
129 	/*
130 	 * TS_POLLING-cleared state must be visible before we
131 	 * test NEED_RESCHED:
132 	 */
133 	smp_mb();
134 	if (!need_resched()) {
135 		safe_halt();
136 		local_irq_disable();
137 	}
138 	current_thread_info()->status |= TS_POLLING;
139 }
140 
141 #ifdef ARCH_APICTIMER_STOPS_ON_C3
142 
143 /*
144  * Some BIOS implementations switch to C3 in the published C2 state.
145  * This seems to be a common problem on AMD boxen, but other vendors
146  * are affected too. We pick the most conservative approach: we assume
147  * that the local APIC stops in both C2 and C3.
148  */
149 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
150 				   struct acpi_processor_cx *cx)
151 {
152 	struct acpi_processor_power *pwr = &pr->power;
153 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
154 
155 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
156 		return;
157 
158 	if (c1e_detected)
159 		type = ACPI_STATE_C1;
160 
161 	/*
162 	 * Check, if one of the previous states already marked the lapic
163 	 * unstable
164 	 */
165 	if (pwr->timer_broadcast_on_state < state)
166 		return;
167 
168 	if (cx->type >= type)
169 		pr->power.timer_broadcast_on_state = state;
170 }
171 
172 static void __lapic_timer_propagate_broadcast(void *arg)
173 {
174 	struct acpi_processor *pr = (struct acpi_processor *) arg;
175 	unsigned long reason;
176 
177 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
178 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
179 
180 	clockevents_notify(reason, &pr->id);
181 }
182 
183 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
184 {
185 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
186 				 (void *)pr, 1);
187 }
188 
189 /* Power(C) State timer broadcast control */
190 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
191 				       struct acpi_processor_cx *cx,
192 				       int broadcast)
193 {
194 	int state = cx - pr->power.states;
195 
196 	if (state >= pr->power.timer_broadcast_on_state) {
197 		unsigned long reason;
198 
199 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
200 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
201 		clockevents_notify(reason, &pr->id);
202 	}
203 }
204 
205 #else
206 
207 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
208 				   struct acpi_processor_cx *cstate) { }
209 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
210 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
211 				       struct acpi_processor_cx *cx,
212 				       int broadcast)
213 {
214 }
215 
216 #endif
217 
218 /*
219  * Suspend / resume control
220  */
221 static int acpi_idle_suspend;
222 static u32 saved_bm_rld;
223 
224 static void acpi_idle_bm_rld_save(void)
225 {
226 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
227 }
228 static void acpi_idle_bm_rld_restore(void)
229 {
230 	u32 resumed_bm_rld;
231 
232 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
233 
234 	if (resumed_bm_rld != saved_bm_rld)
235 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
236 }
237 
238 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
239 {
240 	if (acpi_idle_suspend == 1)
241 		return 0;
242 
243 	acpi_idle_bm_rld_save();
244 	acpi_idle_suspend = 1;
245 	return 0;
246 }
247 
248 int acpi_processor_resume(struct acpi_device * device)
249 {
250 	if (acpi_idle_suspend == 0)
251 		return 0;
252 
253 	acpi_idle_bm_rld_restore();
254 	acpi_idle_suspend = 0;
255 	return 0;
256 }
257 
258 #if defined(CONFIG_X86)
259 static void tsc_check_state(int state)
260 {
261 	switch (boot_cpu_data.x86_vendor) {
262 	case X86_VENDOR_AMD:
263 	case X86_VENDOR_INTEL:
264 		/*
265 		 * AMD Fam10h TSC will tick in all
266 		 * C/P/S0/S1 states when this bit is set.
267 		 */
268 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
269 			return;
270 
271 		/*FALL THROUGH*/
272 	default:
273 		/* TSC could halt in idle, so notify users */
274 		if (state > ACPI_STATE_C1)
275 			mark_tsc_unstable("TSC halts in idle");
276 	}
277 }
278 #else
279 static void tsc_check_state(int state) { return; }
280 #endif
281 
282 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
283 {
284 
285 	if (!pr)
286 		return -EINVAL;
287 
288 	if (!pr->pblk)
289 		return -ENODEV;
290 
291 	/* if info is obtained from pblk/fadt, type equals state */
292 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
293 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
294 
295 #ifndef CONFIG_HOTPLUG_CPU
296 	/*
297 	 * Check for P_LVL2_UP flag before entering C2 and above on
298 	 * an SMP system.
299 	 */
300 	if ((num_online_cpus() > 1) &&
301 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
302 		return -ENODEV;
303 #endif
304 
305 	/* determine C2 and C3 address from pblk */
306 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
307 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
308 
309 	/* determine latencies from FADT */
310 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
311 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
312 
313 	/*
314 	 * FADT specified C2 latency must be less than or equal to
315 	 * 100 microseconds.
316 	 */
317 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
318 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
319 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
320 		/* invalidate C2 */
321 		pr->power.states[ACPI_STATE_C2].address = 0;
322 	}
323 
324 	/*
325 	 * FADT supplied C3 latency must be less than or equal to
326 	 * 1000 microseconds.
327 	 */
328 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
329 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
330 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
331 		/* invalidate C3 */
332 		pr->power.states[ACPI_STATE_C3].address = 0;
333 	}
334 
335 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
337 			  pr->power.states[ACPI_STATE_C2].address,
338 			  pr->power.states[ACPI_STATE_C3].address));
339 
340 	return 0;
341 }
342 
343 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
344 {
345 	if (!pr->power.states[ACPI_STATE_C1].valid) {
346 		/* set the first C-State to C1 */
347 		/* all processors need to support C1 */
348 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
349 		pr->power.states[ACPI_STATE_C1].valid = 1;
350 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
351 	}
352 	/* the C0 state only exists as a filler in our array */
353 	pr->power.states[ACPI_STATE_C0].valid = 1;
354 	return 0;
355 }
356 
357 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
358 {
359 	acpi_status status = 0;
360 	u64 count;
361 	int current_count;
362 	int i;
363 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
364 	union acpi_object *cst;
365 
366 
367 	if (nocst)
368 		return -ENODEV;
369 
370 	current_count = 0;
371 
372 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
373 	if (ACPI_FAILURE(status)) {
374 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
375 		return -ENODEV;
376 	}
377 
378 	cst = buffer.pointer;
379 
380 	/* There must be at least 2 elements */
381 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
382 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
383 		status = -EFAULT;
384 		goto end;
385 	}
386 
387 	count = cst->package.elements[0].integer.value;
388 
389 	/* Validate number of power states. */
390 	if (count < 1 || count != cst->package.count - 1) {
391 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
392 		status = -EFAULT;
393 		goto end;
394 	}
395 
396 	/* Tell driver that at least _CST is supported. */
397 	pr->flags.has_cst = 1;
398 
399 	for (i = 1; i <= count; i++) {
400 		union acpi_object *element;
401 		union acpi_object *obj;
402 		struct acpi_power_register *reg;
403 		struct acpi_processor_cx cx;
404 
405 		memset(&cx, 0, sizeof(cx));
406 
407 		element = &(cst->package.elements[i]);
408 		if (element->type != ACPI_TYPE_PACKAGE)
409 			continue;
410 
411 		if (element->package.count != 4)
412 			continue;
413 
414 		obj = &(element->package.elements[0]);
415 
416 		if (obj->type != ACPI_TYPE_BUFFER)
417 			continue;
418 
419 		reg = (struct acpi_power_register *)obj->buffer.pointer;
420 
421 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
422 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
423 			continue;
424 
425 		/* There should be an easy way to extract an integer... */
426 		obj = &(element->package.elements[1]);
427 		if (obj->type != ACPI_TYPE_INTEGER)
428 			continue;
429 
430 		cx.type = obj->integer.value;
431 		/*
432 		 * Some buggy BIOSes won't list C1 in _CST -
433 		 * Let acpi_processor_get_power_info_default() handle them later
434 		 */
435 		if (i == 1 && cx.type != ACPI_STATE_C1)
436 			current_count++;
437 
438 		cx.address = reg->address;
439 		cx.index = current_count + 1;
440 
441 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
442 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
443 			if (acpi_processor_ffh_cstate_probe
444 					(pr->id, &cx, reg) == 0) {
445 				cx.entry_method = ACPI_CSTATE_FFH;
446 			} else if (cx.type == ACPI_STATE_C1) {
447 				/*
448 				 * C1 is a special case where FIXED_HARDWARE
449 				 * can be handled in non-MWAIT way as well.
450 				 * In that case, save this _CST entry info.
451 				 * Otherwise, ignore this info and continue.
452 				 */
453 				cx.entry_method = ACPI_CSTATE_HALT;
454 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
455 			} else {
456 				continue;
457 			}
458 			if (cx.type == ACPI_STATE_C1 &&
459 					(idle_halt || idle_nomwait)) {
460 				/*
461 				 * In most cases the C1 space_id obtained from
462 				 * _CST object is FIXED_HARDWARE access mode.
463 				 * But when the option of idle=halt is added,
464 				 * the entry_method type should be changed from
465 				 * CSTATE_FFH to CSTATE_HALT.
466 				 * When the option of idle=nomwait is added,
467 				 * the C1 entry_method type should be
468 				 * CSTATE_HALT.
469 				 */
470 				cx.entry_method = ACPI_CSTATE_HALT;
471 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
472 			}
473 		} else {
474 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
475 				 cx.address);
476 		}
477 
478 		if (cx.type == ACPI_STATE_C1) {
479 			cx.valid = 1;
480 		}
481 
482 		obj = &(element->package.elements[2]);
483 		if (obj->type != ACPI_TYPE_INTEGER)
484 			continue;
485 
486 		cx.latency = obj->integer.value;
487 
488 		obj = &(element->package.elements[3]);
489 		if (obj->type != ACPI_TYPE_INTEGER)
490 			continue;
491 
492 		cx.power = obj->integer.value;
493 
494 		current_count++;
495 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
496 
497 		/*
498 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
499 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
500 		 */
501 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
502 			printk(KERN_WARNING
503 			       "Limiting number of power states to max (%d)\n",
504 			       ACPI_PROCESSOR_MAX_POWER);
505 			printk(KERN_WARNING
506 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
507 			break;
508 		}
509 	}
510 
511 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
512 			  current_count));
513 
514 	/* Validate number of power states discovered */
515 	if (current_count < 2)
516 		status = -EFAULT;
517 
518       end:
519 	kfree(buffer.pointer);
520 
521 	return status;
522 }
523 
524 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
525 					   struct acpi_processor_cx *cx)
526 {
527 	static int bm_check_flag = -1;
528 	static int bm_control_flag = -1;
529 
530 
531 	if (!cx->address)
532 		return;
533 
534 	/*
535 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
536 	 * DMA transfers are used by any ISA device to avoid livelock.
537 	 * Note that we could disable Type-F DMA (as recommended by
538 	 * the erratum), but this is known to disrupt certain ISA
539 	 * devices thus we take the conservative approach.
540 	 */
541 	else if (errata.piix4.fdma) {
542 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
544 		return;
545 	}
546 
547 	/* All the logic here assumes flags.bm_check is same across all CPUs */
548 	if (bm_check_flag == -1) {
549 		/* Determine whether bm_check is needed based on CPU  */
550 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
551 		bm_check_flag = pr->flags.bm_check;
552 		bm_control_flag = pr->flags.bm_control;
553 	} else {
554 		pr->flags.bm_check = bm_check_flag;
555 		pr->flags.bm_control = bm_control_flag;
556 	}
557 
558 	if (pr->flags.bm_check) {
559 		if (!pr->flags.bm_control) {
560 			if (pr->flags.has_cst != 1) {
561 				/* bus mastering control is necessary */
562 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
563 					"C3 support requires BM control\n"));
564 				return;
565 			} else {
566 				/* Here we enter C3 without bus mastering */
567 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
568 					"C3 support without BM control\n"));
569 			}
570 		}
571 	} else {
572 		/*
573 		 * WBINVD should be set in fadt, for C3 state to be
574 		 * supported on when bm_check is not required.
575 		 */
576 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
577 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
578 					  "Cache invalidation should work properly"
579 					  " for C3 to be enabled on SMP systems\n"));
580 			return;
581 		}
582 	}
583 
584 	/*
585 	 * Otherwise we've met all of our C3 requirements.
586 	 * Normalize the C3 latency to expidite policy.  Enable
587 	 * checking of bus mastering status (bm_check) so we can
588 	 * use this in our C3 policy
589 	 */
590 	cx->valid = 1;
591 
592 	cx->latency_ticks = cx->latency;
593 	/*
594 	 * On older chipsets, BM_RLD needs to be set
595 	 * in order for Bus Master activity to wake the
596 	 * system from C3.  Newer chipsets handle DMA
597 	 * during C3 automatically and BM_RLD is a NOP.
598 	 * In either case, the proper way to
599 	 * handle BM_RLD is to set it and leave it set.
600 	 */
601 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
602 
603 	return;
604 }
605 
606 static int acpi_processor_power_verify(struct acpi_processor *pr)
607 {
608 	unsigned int i;
609 	unsigned int working = 0;
610 
611 	pr->power.timer_broadcast_on_state = INT_MAX;
612 
613 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
614 		struct acpi_processor_cx *cx = &pr->power.states[i];
615 
616 		switch (cx->type) {
617 		case ACPI_STATE_C1:
618 			cx->valid = 1;
619 			break;
620 
621 		case ACPI_STATE_C2:
622 			if (!cx->address)
623 				break;
624 			cx->valid = 1;
625 			cx->latency_ticks = cx->latency; /* Normalize latency */
626 			break;
627 
628 		case ACPI_STATE_C3:
629 			acpi_processor_power_verify_c3(pr, cx);
630 			break;
631 		}
632 		if (!cx->valid)
633 			continue;
634 
635 		lapic_timer_check_state(i, pr, cx);
636 		tsc_check_state(cx->type);
637 		working++;
638 	}
639 
640 	lapic_timer_propagate_broadcast(pr);
641 
642 	return (working);
643 }
644 
645 static int acpi_processor_get_power_info(struct acpi_processor *pr)
646 {
647 	unsigned int i;
648 	int result;
649 
650 
651 	/* NOTE: the idle thread may not be running while calling
652 	 * this function */
653 
654 	/* Zero initialize all the C-states info. */
655 	memset(pr->power.states, 0, sizeof(pr->power.states));
656 
657 	result = acpi_processor_get_power_info_cst(pr);
658 	if (result == -ENODEV)
659 		result = acpi_processor_get_power_info_fadt(pr);
660 
661 	if (result)
662 		return result;
663 
664 	acpi_processor_get_power_info_default(pr);
665 
666 	pr->power.count = acpi_processor_power_verify(pr);
667 
668 	/*
669 	 * if one state of type C2 or C3 is available, mark this
670 	 * CPU as being "idle manageable"
671 	 */
672 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
673 		if (pr->power.states[i].valid) {
674 			pr->power.count = i;
675 			if (pr->power.states[i].type >= ACPI_STATE_C2)
676 				pr->flags.power = 1;
677 		}
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  * acpi_idle_bm_check - checks if bus master activity was detected
685  */
686 static int acpi_idle_bm_check(void)
687 {
688 	u32 bm_status = 0;
689 
690 	if (bm_check_disable)
691 		return 0;
692 
693 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
694 	if (bm_status)
695 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
696 	/*
697 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
698 	 * the true state of bus mastering activity; forcing us to
699 	 * manually check the BMIDEA bit of each IDE channel.
700 	 */
701 	else if (errata.piix4.bmisx) {
702 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
703 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
704 			bm_status = 1;
705 	}
706 	return bm_status;
707 }
708 
709 /**
710  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
711  * @cx: cstate data
712  *
713  * Caller disables interrupt before call and enables interrupt after return.
714  */
715 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
716 {
717 	/* Don't trace irqs off for idle */
718 	stop_critical_timings();
719 	if (cx->entry_method == ACPI_CSTATE_FFH) {
720 		/* Call into architectural FFH based C-state */
721 		acpi_processor_ffh_cstate_enter(cx);
722 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
723 		acpi_safe_halt();
724 	} else {
725 		/* IO port based C-state */
726 		inb(cx->address);
727 		/* Dummy wait op - must do something useless after P_LVL2 read
728 		   because chipsets cannot guarantee that STPCLK# signal
729 		   gets asserted in time to freeze execution properly. */
730 		inl(acpi_gbl_FADT.xpm_timer_block.address);
731 	}
732 	start_critical_timings();
733 }
734 
735 /**
736  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
737  * @dev: the target CPU
738  * @state: the state data
739  *
740  * This is equivalent to the HALT instruction.
741  */
742 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
743 			      struct cpuidle_state *state)
744 {
745 	ktime_t  kt1, kt2;
746 	s64 idle_time;
747 	struct acpi_processor *pr;
748 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
749 
750 	pr = __get_cpu_var(processors);
751 
752 	if (unlikely(!pr))
753 		return 0;
754 
755 	local_irq_disable();
756 
757 	/* Do not access any ACPI IO ports in suspend path */
758 	if (acpi_idle_suspend) {
759 		local_irq_enable();
760 		cpu_relax();
761 		return 0;
762 	}
763 
764 	lapic_timer_state_broadcast(pr, cx, 1);
765 	kt1 = ktime_get_real();
766 	acpi_idle_do_entry(cx);
767 	kt2 = ktime_get_real();
768 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
769 
770 	local_irq_enable();
771 	cx->usage++;
772 	lapic_timer_state_broadcast(pr, cx, 0);
773 
774 	return idle_time;
775 }
776 
777 /**
778  * acpi_idle_enter_simple - enters an ACPI state without BM handling
779  * @dev: the target CPU
780  * @state: the state data
781  */
782 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
783 				  struct cpuidle_state *state)
784 {
785 	struct acpi_processor *pr;
786 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
787 	ktime_t  kt1, kt2;
788 	s64 idle_time_ns;
789 	s64 idle_time;
790 
791 	pr = __get_cpu_var(processors);
792 
793 	if (unlikely(!pr))
794 		return 0;
795 
796 	if (acpi_idle_suspend)
797 		return(acpi_idle_enter_c1(dev, state));
798 
799 	local_irq_disable();
800 
801 	if (cx->entry_method != ACPI_CSTATE_FFH) {
802 		current_thread_info()->status &= ~TS_POLLING;
803 		/*
804 		 * TS_POLLING-cleared state must be visible before we test
805 		 * NEED_RESCHED:
806 		 */
807 		smp_mb();
808 
809 		if (unlikely(need_resched())) {
810 			current_thread_info()->status |= TS_POLLING;
811 			local_irq_enable();
812 			return 0;
813 		}
814 	}
815 
816 	/*
817 	 * Must be done before busmaster disable as we might need to
818 	 * access HPET !
819 	 */
820 	lapic_timer_state_broadcast(pr, cx, 1);
821 
822 	if (cx->type == ACPI_STATE_C3)
823 		ACPI_FLUSH_CPU_CACHE();
824 
825 	kt1 = ktime_get_real();
826 	/* Tell the scheduler that we are going deep-idle: */
827 	sched_clock_idle_sleep_event();
828 	acpi_idle_do_entry(cx);
829 	kt2 = ktime_get_real();
830 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
831 	idle_time = idle_time_ns;
832 	do_div(idle_time, NSEC_PER_USEC);
833 
834 	/* Tell the scheduler how much we idled: */
835 	sched_clock_idle_wakeup_event(idle_time_ns);
836 
837 	local_irq_enable();
838 	if (cx->entry_method != ACPI_CSTATE_FFH)
839 		current_thread_info()->status |= TS_POLLING;
840 
841 	cx->usage++;
842 
843 	lapic_timer_state_broadcast(pr, cx, 0);
844 	cx->time += idle_time;
845 	return idle_time;
846 }
847 
848 static int c3_cpu_count;
849 static DEFINE_SPINLOCK(c3_lock);
850 
851 /**
852  * acpi_idle_enter_bm - enters C3 with proper BM handling
853  * @dev: the target CPU
854  * @state: the state data
855  *
856  * If BM is detected, the deepest non-C3 idle state is entered instead.
857  */
858 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
859 			      struct cpuidle_state *state)
860 {
861 	struct acpi_processor *pr;
862 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
863 	ktime_t  kt1, kt2;
864 	s64 idle_time_ns;
865 	s64 idle_time;
866 
867 
868 	pr = __get_cpu_var(processors);
869 
870 	if (unlikely(!pr))
871 		return 0;
872 
873 	if (acpi_idle_suspend)
874 		return(acpi_idle_enter_c1(dev, state));
875 
876 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
877 		if (dev->safe_state) {
878 			dev->last_state = dev->safe_state;
879 			return dev->safe_state->enter(dev, dev->safe_state);
880 		} else {
881 			local_irq_disable();
882 			acpi_safe_halt();
883 			local_irq_enable();
884 			return 0;
885 		}
886 	}
887 
888 	local_irq_disable();
889 
890 	if (cx->entry_method != ACPI_CSTATE_FFH) {
891 		current_thread_info()->status &= ~TS_POLLING;
892 		/*
893 		 * TS_POLLING-cleared state must be visible before we test
894 		 * NEED_RESCHED:
895 		 */
896 		smp_mb();
897 
898 		if (unlikely(need_resched())) {
899 			current_thread_info()->status |= TS_POLLING;
900 			local_irq_enable();
901 			return 0;
902 		}
903 	}
904 
905 	acpi_unlazy_tlb(smp_processor_id());
906 
907 	/* Tell the scheduler that we are going deep-idle: */
908 	sched_clock_idle_sleep_event();
909 	/*
910 	 * Must be done before busmaster disable as we might need to
911 	 * access HPET !
912 	 */
913 	lapic_timer_state_broadcast(pr, cx, 1);
914 
915 	kt1 = ktime_get_real();
916 	/*
917 	 * disable bus master
918 	 * bm_check implies we need ARB_DIS
919 	 * !bm_check implies we need cache flush
920 	 * bm_control implies whether we can do ARB_DIS
921 	 *
922 	 * That leaves a case where bm_check is set and bm_control is
923 	 * not set. In that case we cannot do much, we enter C3
924 	 * without doing anything.
925 	 */
926 	if (pr->flags.bm_check && pr->flags.bm_control) {
927 		spin_lock(&c3_lock);
928 		c3_cpu_count++;
929 		/* Disable bus master arbitration when all CPUs are in C3 */
930 		if (c3_cpu_count == num_online_cpus())
931 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
932 		spin_unlock(&c3_lock);
933 	} else if (!pr->flags.bm_check) {
934 		ACPI_FLUSH_CPU_CACHE();
935 	}
936 
937 	acpi_idle_do_entry(cx);
938 
939 	/* Re-enable bus master arbitration */
940 	if (pr->flags.bm_check && pr->flags.bm_control) {
941 		spin_lock(&c3_lock);
942 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
943 		c3_cpu_count--;
944 		spin_unlock(&c3_lock);
945 	}
946 	kt2 = ktime_get_real();
947 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
948 	idle_time = idle_time_ns;
949 	do_div(idle_time, NSEC_PER_USEC);
950 
951 	/* Tell the scheduler how much we idled: */
952 	sched_clock_idle_wakeup_event(idle_time_ns);
953 
954 	local_irq_enable();
955 	if (cx->entry_method != ACPI_CSTATE_FFH)
956 		current_thread_info()->status |= TS_POLLING;
957 
958 	cx->usage++;
959 
960 	lapic_timer_state_broadcast(pr, cx, 0);
961 	cx->time += idle_time;
962 	return idle_time;
963 }
964 
965 struct cpuidle_driver acpi_idle_driver = {
966 	.name =		"acpi_idle",
967 	.owner =	THIS_MODULE,
968 };
969 
970 /**
971  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
972  * @pr: the ACPI processor
973  */
974 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
975 {
976 	int i, count = CPUIDLE_DRIVER_STATE_START;
977 	struct acpi_processor_cx *cx;
978 	struct cpuidle_state *state;
979 	struct cpuidle_device *dev = &pr->power.dev;
980 
981 	if (!pr->flags.power_setup_done)
982 		return -EINVAL;
983 
984 	if (pr->flags.power == 0) {
985 		return -EINVAL;
986 	}
987 
988 	dev->cpu = pr->id;
989 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
990 		dev->states[i].name[0] = '\0';
991 		dev->states[i].desc[0] = '\0';
992 	}
993 
994 	if (max_cstate == 0)
995 		max_cstate = 1;
996 
997 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
998 		cx = &pr->power.states[i];
999 		state = &dev->states[count];
1000 
1001 		if (!cx->valid)
1002 			continue;
1003 
1004 #ifdef CONFIG_HOTPLUG_CPU
1005 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1006 		    !pr->flags.has_cst &&
1007 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1008 			continue;
1009 #endif
1010 		cpuidle_set_statedata(state, cx);
1011 
1012 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1013 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1014 		state->exit_latency = cx->latency;
1015 		state->target_residency = cx->latency * latency_factor;
1016 		state->power_usage = cx->power;
1017 
1018 		state->flags = 0;
1019 		switch (cx->type) {
1020 			case ACPI_STATE_C1:
1021 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1022 			if (cx->entry_method == ACPI_CSTATE_FFH)
1023 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1024 
1025 			state->enter = acpi_idle_enter_c1;
1026 			dev->safe_state = state;
1027 			break;
1028 
1029 			case ACPI_STATE_C2:
1030 			state->flags |= CPUIDLE_FLAG_BALANCED;
1031 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1032 			state->enter = acpi_idle_enter_simple;
1033 			dev->safe_state = state;
1034 			break;
1035 
1036 			case ACPI_STATE_C3:
1037 			state->flags |= CPUIDLE_FLAG_DEEP;
1038 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1039 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1040 			state->enter = pr->flags.bm_check ?
1041 					acpi_idle_enter_bm :
1042 					acpi_idle_enter_simple;
1043 			break;
1044 		}
1045 
1046 		count++;
1047 		if (count == CPUIDLE_STATE_MAX)
1048 			break;
1049 	}
1050 
1051 	dev->state_count = count;
1052 
1053 	if (!count)
1054 		return -EINVAL;
1055 
1056 	return 0;
1057 }
1058 
1059 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1060 {
1061 	int ret = 0;
1062 
1063 	if (boot_option_idle_override)
1064 		return 0;
1065 
1066 	if (!pr)
1067 		return -EINVAL;
1068 
1069 	if (nocst) {
1070 		return -ENODEV;
1071 	}
1072 
1073 	if (!pr->flags.power_setup_done)
1074 		return -ENODEV;
1075 
1076 	cpuidle_pause_and_lock();
1077 	cpuidle_disable_device(&pr->power.dev);
1078 	acpi_processor_get_power_info(pr);
1079 	if (pr->flags.power) {
1080 		acpi_processor_setup_cpuidle(pr);
1081 		ret = cpuidle_enable_device(&pr->power.dev);
1082 	}
1083 	cpuidle_resume_and_unlock();
1084 
1085 	return ret;
1086 }
1087 
1088 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1089 			      struct acpi_device *device)
1090 {
1091 	acpi_status status = 0;
1092 	static int first_run;
1093 
1094 	if (boot_option_idle_override)
1095 		return 0;
1096 
1097 	if (!first_run) {
1098 		if (idle_halt) {
1099 			/*
1100 			 * When the boot option of "idle=halt" is added, halt
1101 			 * is used for CPU IDLE.
1102 			 * In such case C2/C3 is meaningless. So the max_cstate
1103 			 * is set to one.
1104 			 */
1105 			max_cstate = 1;
1106 		}
1107 		dmi_check_system(processor_power_dmi_table);
1108 		max_cstate = acpi_processor_cstate_check(max_cstate);
1109 		if (max_cstate < ACPI_C_STATES_MAX)
1110 			printk(KERN_NOTICE
1111 			       "ACPI: processor limited to max C-state %d\n",
1112 			       max_cstate);
1113 		first_run++;
1114 	}
1115 
1116 	if (!pr)
1117 		return -EINVAL;
1118 
1119 	if (acpi_gbl_FADT.cst_control && !nocst) {
1120 		status =
1121 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1122 		if (ACPI_FAILURE(status)) {
1123 			ACPI_EXCEPTION((AE_INFO, status,
1124 					"Notifying BIOS of _CST ability failed"));
1125 		}
1126 	}
1127 
1128 	acpi_processor_get_power_info(pr);
1129 	pr->flags.power_setup_done = 1;
1130 
1131 	/*
1132 	 * Install the idle handler if processor power management is supported.
1133 	 * Note that we use previously set idle handler will be used on
1134 	 * platforms that only support C1.
1135 	 */
1136 	if (pr->flags.power) {
1137 		acpi_processor_setup_cpuidle(pr);
1138 		if (cpuidle_register_device(&pr->power.dev))
1139 			return -EIO;
1140 	}
1141 	return 0;
1142 }
1143 
1144 int acpi_processor_power_exit(struct acpi_processor *pr,
1145 			      struct acpi_device *device)
1146 {
1147 	if (boot_option_idle_override)
1148 		return 0;
1149 
1150 	cpuidle_unregister_device(&pr->power.dev);
1151 	pr->flags.power_setup_done = 0;
1152 
1153 	return 0;
1154 }
1155