xref: /linux/drivers/acpi/processor_idle.c (revision bd49666974a12f39eb9c74044e0b1753efcd94c4)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86 
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98 
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 
101 #else	/* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105 
106 /*
107  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108  * For now disable this. Probably a bug somewhere else.
109  *
110  * To skip this limit, boot/load with a large max_cstate limit.
111  */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 		return 0;
116 
117 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120 
121 	max_cstate = (long)id->driver_data;
122 
123 	return 0;
124 }
125 
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127    callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 	{ set_max_cstate, "IBM ThinkPad R40e", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 	{ set_max_cstate, "IBM ThinkPad R40e", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 	{ set_max_cstate, "IBM ThinkPad R40e", {
166 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 	{ set_max_cstate, "IBM ThinkPad R40e", {
169 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 	{ set_max_cstate, "IBM ThinkPad R40e", {
172 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 	{ set_max_cstate, "IBM ThinkPad R40e", {
175 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 	{ set_max_cstate, "Medion 41700", {
178 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 	{ set_max_cstate, "Clevo 5600D", {
181 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 	 (void *)2},
184 	{},
185 };
186 
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 	if (t2 >= t1)
190 		return (t2 - t1);
191 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 	else
194 		return ((0xFFFFFFFF - t1) + t2);
195 }
196 
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 	if (t2 >= t1)
200 		return PM_TIMER_TICKS_TO_US(t2 - t1);
201 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 	else
204 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206 
207 /*
208  * Callers should disable interrupts before the call and enable
209  * interrupts after return.
210  */
211 static void acpi_safe_halt(void)
212 {
213 	current_thread_info()->status &= ~TS_POLLING;
214 	/*
215 	 * TS_POLLING-cleared state must be visible before we
216 	 * test NEED_RESCHED:
217 	 */
218 	smp_mb();
219 	if (!need_resched())
220 		safe_halt();
221 	current_thread_info()->status |= TS_POLLING;
222 }
223 
224 #ifndef CONFIG_CPU_IDLE
225 
226 static void
227 acpi_processor_power_activate(struct acpi_processor *pr,
228 			      struct acpi_processor_cx *new)
229 {
230 	struct acpi_processor_cx *old;
231 
232 	if (!pr || !new)
233 		return;
234 
235 	old = pr->power.state;
236 
237 	if (old)
238 		old->promotion.count = 0;
239 	new->demotion.count = 0;
240 
241 	/* Cleanup from old state. */
242 	if (old) {
243 		switch (old->type) {
244 		case ACPI_STATE_C3:
245 			/* Disable bus master reload */
246 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
247 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
248 			break;
249 		}
250 	}
251 
252 	/* Prepare to use new state. */
253 	switch (new->type) {
254 	case ACPI_STATE_C3:
255 		/* Enable bus master reload */
256 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
257 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
258 		break;
259 	}
260 
261 	pr->power.state = new;
262 
263 	return;
264 }
265 
266 static atomic_t c3_cpu_count;
267 
268 /* Common C-state entry for C2, C3, .. */
269 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
270 {
271 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
272 		/* Call into architectural FFH based C-state */
273 		acpi_processor_ffh_cstate_enter(cstate);
274 	} else {
275 		int unused;
276 		/* IO port based C-state */
277 		inb(cstate->address);
278 		/* Dummy wait op - must do something useless after P_LVL2 read
279 		   because chipsets cannot guarantee that STPCLK# signal
280 		   gets asserted in time to freeze execution properly. */
281 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
282 	}
283 }
284 #endif /* !CONFIG_CPU_IDLE */
285 
286 #ifdef ARCH_APICTIMER_STOPS_ON_C3
287 
288 /*
289  * Some BIOS implementations switch to C3 in the published C2 state.
290  * This seems to be a common problem on AMD boxen, but other vendors
291  * are affected too. We pick the most conservative approach: we assume
292  * that the local APIC stops in both C2 and C3.
293  */
294 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
295 				   struct acpi_processor_cx *cx)
296 {
297 	struct acpi_processor_power *pwr = &pr->power;
298 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
299 
300 	/*
301 	 * Check, if one of the previous states already marked the lapic
302 	 * unstable
303 	 */
304 	if (pwr->timer_broadcast_on_state < state)
305 		return;
306 
307 	if (cx->type >= type)
308 		pr->power.timer_broadcast_on_state = state;
309 }
310 
311 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
312 {
313 	unsigned long reason;
314 
315 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
316 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
317 
318 	clockevents_notify(reason, &pr->id);
319 }
320 
321 /* Power(C) State timer broadcast control */
322 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
323 				       struct acpi_processor_cx *cx,
324 				       int broadcast)
325 {
326 	int state = cx - pr->power.states;
327 
328 	if (state >= pr->power.timer_broadcast_on_state) {
329 		unsigned long reason;
330 
331 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
332 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
333 		clockevents_notify(reason, &pr->id);
334 	}
335 }
336 
337 #else
338 
339 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
340 				   struct acpi_processor_cx *cstate) { }
341 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
342 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
343 				       struct acpi_processor_cx *cx,
344 				       int broadcast)
345 {
346 }
347 
348 #endif
349 
350 /*
351  * Suspend / resume control
352  */
353 static int acpi_idle_suspend;
354 
355 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
356 {
357 	acpi_idle_suspend = 1;
358 	return 0;
359 }
360 
361 int acpi_processor_resume(struct acpi_device * device)
362 {
363 	acpi_idle_suspend = 0;
364 	return 0;
365 }
366 
367 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
368 static int tsc_halts_in_c(int state)
369 {
370 	switch (boot_cpu_data.x86_vendor) {
371 	case X86_VENDOR_AMD:
372 		/*
373 		 * AMD Fam10h TSC will tick in all
374 		 * C/P/S0/S1 states when this bit is set.
375 		 */
376 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
377 			return 0;
378 		/*FALL THROUGH*/
379 	case X86_VENDOR_INTEL:
380 		/* Several cases known where TSC halts in C2 too */
381 	default:
382 		return state > ACPI_STATE_C1;
383 	}
384 }
385 #endif
386 
387 #ifndef CONFIG_CPU_IDLE
388 static void acpi_processor_idle(void)
389 {
390 	struct acpi_processor *pr = NULL;
391 	struct acpi_processor_cx *cx = NULL;
392 	struct acpi_processor_cx *next_state = NULL;
393 	int sleep_ticks = 0;
394 	u32 t1, t2 = 0;
395 
396 	/*
397 	 * Interrupts must be disabled during bus mastering calculations and
398 	 * for C2/C3 transitions.
399 	 */
400 	local_irq_disable();
401 
402 	pr = processors[smp_processor_id()];
403 	if (!pr) {
404 		local_irq_enable();
405 		return;
406 	}
407 
408 	/*
409 	 * Check whether we truly need to go idle, or should
410 	 * reschedule:
411 	 */
412 	if (unlikely(need_resched())) {
413 		local_irq_enable();
414 		return;
415 	}
416 
417 	cx = pr->power.state;
418 	if (!cx || acpi_idle_suspend) {
419 		if (pm_idle_save)
420 			pm_idle_save();
421 		else
422 			acpi_safe_halt();
423 
424 		local_irq_enable();
425 		return;
426 	}
427 
428 	/*
429 	 * Check BM Activity
430 	 * -----------------
431 	 * Check for bus mastering activity (if required), record, and check
432 	 * for demotion.
433 	 */
434 	if (pr->flags.bm_check) {
435 		u32 bm_status = 0;
436 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
437 
438 		if (diff > 31)
439 			diff = 31;
440 
441 		pr->power.bm_activity <<= diff;
442 
443 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
444 		if (bm_status) {
445 			pr->power.bm_activity |= 0x1;
446 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
447 		}
448 		/*
449 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
450 		 * the true state of bus mastering activity; forcing us to
451 		 * manually check the BMIDEA bit of each IDE channel.
452 		 */
453 		else if (errata.piix4.bmisx) {
454 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
455 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
456 				pr->power.bm_activity |= 0x1;
457 		}
458 
459 		pr->power.bm_check_timestamp = jiffies;
460 
461 		/*
462 		 * If bus mastering is or was active this jiffy, demote
463 		 * to avoid a faulty transition.  Note that the processor
464 		 * won't enter a low-power state during this call (to this
465 		 * function) but should upon the next.
466 		 *
467 		 * TBD: A better policy might be to fallback to the demotion
468 		 *      state (use it for this quantum only) istead of
469 		 *      demoting -- and rely on duration as our sole demotion
470 		 *      qualification.  This may, however, introduce DMA
471 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
472 		 */
473 		if ((pr->power.bm_activity & 0x1) &&
474 		    cx->demotion.threshold.bm) {
475 			local_irq_enable();
476 			next_state = cx->demotion.state;
477 			goto end;
478 		}
479 	}
480 
481 #ifdef CONFIG_HOTPLUG_CPU
482 	/*
483 	 * Check for P_LVL2_UP flag before entering C2 and above on
484 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
485 	 * detection phase, to work cleanly with logical CPU hotplug.
486 	 */
487 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
488 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
489 		cx = &pr->power.states[ACPI_STATE_C1];
490 #endif
491 
492 	/*
493 	 * Sleep:
494 	 * ------
495 	 * Invoke the current Cx state to put the processor to sleep.
496 	 */
497 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
498 		current_thread_info()->status &= ~TS_POLLING;
499 		/*
500 		 * TS_POLLING-cleared state must be visible before we
501 		 * test NEED_RESCHED:
502 		 */
503 		smp_mb();
504 		if (need_resched()) {
505 			current_thread_info()->status |= TS_POLLING;
506 			local_irq_enable();
507 			return;
508 		}
509 	}
510 
511 	switch (cx->type) {
512 
513 	case ACPI_STATE_C1:
514 		/*
515 		 * Invoke C1.
516 		 * Use the appropriate idle routine, the one that would
517 		 * be used without acpi C-states.
518 		 */
519 		if (pm_idle_save)
520 			pm_idle_save();
521 		else
522 			acpi_safe_halt();
523 
524 		/*
525 		 * TBD: Can't get time duration while in C1, as resumes
526 		 *      go to an ISR rather than here.  Need to instrument
527 		 *      base interrupt handler.
528 		 *
529 		 * Note: the TSC better not stop in C1, sched_clock() will
530 		 *       skew otherwise.
531 		 */
532 		sleep_ticks = 0xFFFFFFFF;
533 		local_irq_enable();
534 		break;
535 
536 	case ACPI_STATE_C2:
537 		/* Get start time (ticks) */
538 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
539 		/* Tell the scheduler that we are going deep-idle: */
540 		sched_clock_idle_sleep_event();
541 		/* Invoke C2 */
542 		acpi_state_timer_broadcast(pr, cx, 1);
543 		acpi_cstate_enter(cx);
544 		/* Get end time (ticks) */
545 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
546 
547 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
548 		/* TSC halts in C2, so notify users */
549 		if (tsc_halts_in_c(ACPI_STATE_C2))
550 			mark_tsc_unstable("possible TSC halt in C2");
551 #endif
552 		/* Compute time (ticks) that we were actually asleep */
553 		sleep_ticks = ticks_elapsed(t1, t2);
554 
555 		/* Tell the scheduler how much we idled: */
556 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
557 
558 		/* Re-enable interrupts */
559 		local_irq_enable();
560 		/* Do not account our idle-switching overhead: */
561 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
562 
563 		current_thread_info()->status |= TS_POLLING;
564 		acpi_state_timer_broadcast(pr, cx, 0);
565 		break;
566 
567 	case ACPI_STATE_C3:
568 		acpi_unlazy_tlb(smp_processor_id());
569 		/*
570 		 * Must be done before busmaster disable as we might
571 		 * need to access HPET !
572 		 */
573 		acpi_state_timer_broadcast(pr, cx, 1);
574 		/*
575 		 * disable bus master
576 		 * bm_check implies we need ARB_DIS
577 		 * !bm_check implies we need cache flush
578 		 * bm_control implies whether we can do ARB_DIS
579 		 *
580 		 * That leaves a case where bm_check is set and bm_control is
581 		 * not set. In that case we cannot do much, we enter C3
582 		 * without doing anything.
583 		 */
584 		if (pr->flags.bm_check && pr->flags.bm_control) {
585 			if (atomic_inc_return(&c3_cpu_count) ==
586 			    num_online_cpus()) {
587 				/*
588 				 * All CPUs are trying to go to C3
589 				 * Disable bus master arbitration
590 				 */
591 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
592 			}
593 		} else if (!pr->flags.bm_check) {
594 			/* SMP with no shared cache... Invalidate cache  */
595 			ACPI_FLUSH_CPU_CACHE();
596 		}
597 
598 		/* Get start time (ticks) */
599 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
600 		/* Invoke C3 */
601 		/* Tell the scheduler that we are going deep-idle: */
602 		sched_clock_idle_sleep_event();
603 		acpi_cstate_enter(cx);
604 		/* Get end time (ticks) */
605 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
606 		if (pr->flags.bm_check && pr->flags.bm_control) {
607 			/* Enable bus master arbitration */
608 			atomic_dec(&c3_cpu_count);
609 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
610 		}
611 
612 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
613 		/* TSC halts in C3, so notify users */
614 		if (tsc_halts_in_c(ACPI_STATE_C3))
615 			mark_tsc_unstable("TSC halts in C3");
616 #endif
617 		/* Compute time (ticks) that we were actually asleep */
618 		sleep_ticks = ticks_elapsed(t1, t2);
619 		/* Tell the scheduler how much we idled: */
620 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
621 
622 		/* Re-enable interrupts */
623 		local_irq_enable();
624 		/* Do not account our idle-switching overhead: */
625 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
626 
627 		current_thread_info()->status |= TS_POLLING;
628 		acpi_state_timer_broadcast(pr, cx, 0);
629 		break;
630 
631 	default:
632 		local_irq_enable();
633 		return;
634 	}
635 	cx->usage++;
636 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
637 		cx->time += sleep_ticks;
638 
639 	next_state = pr->power.state;
640 
641 #ifdef CONFIG_HOTPLUG_CPU
642 	/* Don't do promotion/demotion */
643 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
644 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
645 		next_state = cx;
646 		goto end;
647 	}
648 #endif
649 
650 	/*
651 	 * Promotion?
652 	 * ----------
653 	 * Track the number of longs (time asleep is greater than threshold)
654 	 * and promote when the count threshold is reached.  Note that bus
655 	 * mastering activity may prevent promotions.
656 	 * Do not promote above max_cstate.
657 	 */
658 	if (cx->promotion.state &&
659 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
660 		if (sleep_ticks > cx->promotion.threshold.ticks &&
661 		  cx->promotion.state->latency <=
662 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
663 			cx->promotion.count++;
664 			cx->demotion.count = 0;
665 			if (cx->promotion.count >=
666 			    cx->promotion.threshold.count) {
667 				if (pr->flags.bm_check) {
668 					if (!
669 					    (pr->power.bm_activity & cx->
670 					     promotion.threshold.bm)) {
671 						next_state =
672 						    cx->promotion.state;
673 						goto end;
674 					}
675 				} else {
676 					next_state = cx->promotion.state;
677 					goto end;
678 				}
679 			}
680 		}
681 	}
682 
683 	/*
684 	 * Demotion?
685 	 * ---------
686 	 * Track the number of shorts (time asleep is less than time threshold)
687 	 * and demote when the usage threshold is reached.
688 	 */
689 	if (cx->demotion.state) {
690 		if (sleep_ticks < cx->demotion.threshold.ticks) {
691 			cx->demotion.count++;
692 			cx->promotion.count = 0;
693 			if (cx->demotion.count >= cx->demotion.threshold.count) {
694 				next_state = cx->demotion.state;
695 				goto end;
696 			}
697 		}
698 	}
699 
700       end:
701 	/*
702 	 * Demote if current state exceeds max_cstate
703 	 * or if the latency of the current state is unacceptable
704 	 */
705 	if ((pr->power.state - pr->power.states) > max_cstate ||
706 		pr->power.state->latency >
707 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
708 		if (cx->demotion.state)
709 			next_state = cx->demotion.state;
710 	}
711 
712 	/*
713 	 * New Cx State?
714 	 * -------------
715 	 * If we're going to start using a new Cx state we must clean up
716 	 * from the previous and prepare to use the new.
717 	 */
718 	if (next_state != pr->power.state)
719 		acpi_processor_power_activate(pr, next_state);
720 }
721 
722 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
723 {
724 	unsigned int i;
725 	unsigned int state_is_set = 0;
726 	struct acpi_processor_cx *lower = NULL;
727 	struct acpi_processor_cx *higher = NULL;
728 	struct acpi_processor_cx *cx;
729 
730 
731 	if (!pr)
732 		return -EINVAL;
733 
734 	/*
735 	 * This function sets the default Cx state policy (OS idle handler).
736 	 * Our scheme is to promote quickly to C2 but more conservatively
737 	 * to C3.  We're favoring C2  for its characteristics of low latency
738 	 * (quick response), good power savings, and ability to allow bus
739 	 * mastering activity.  Note that the Cx state policy is completely
740 	 * customizable and can be altered dynamically.
741 	 */
742 
743 	/* startup state */
744 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
745 		cx = &pr->power.states[i];
746 		if (!cx->valid)
747 			continue;
748 
749 		if (!state_is_set)
750 			pr->power.state = cx;
751 		state_is_set++;
752 		break;
753 	}
754 
755 	if (!state_is_set)
756 		return -ENODEV;
757 
758 	/* demotion */
759 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
760 		cx = &pr->power.states[i];
761 		if (!cx->valid)
762 			continue;
763 
764 		if (lower) {
765 			cx->demotion.state = lower;
766 			cx->demotion.threshold.ticks = cx->latency_ticks;
767 			cx->demotion.threshold.count = 1;
768 			if (cx->type == ACPI_STATE_C3)
769 				cx->demotion.threshold.bm = bm_history;
770 		}
771 
772 		lower = cx;
773 	}
774 
775 	/* promotion */
776 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
777 		cx = &pr->power.states[i];
778 		if (!cx->valid)
779 			continue;
780 
781 		if (higher) {
782 			cx->promotion.state = higher;
783 			cx->promotion.threshold.ticks = cx->latency_ticks;
784 			if (cx->type >= ACPI_STATE_C2)
785 				cx->promotion.threshold.count = 4;
786 			else
787 				cx->promotion.threshold.count = 10;
788 			if (higher->type == ACPI_STATE_C3)
789 				cx->promotion.threshold.bm = bm_history;
790 		}
791 
792 		higher = cx;
793 	}
794 
795 	return 0;
796 }
797 #endif /* !CONFIG_CPU_IDLE */
798 
799 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
800 {
801 
802 	if (!pr)
803 		return -EINVAL;
804 
805 	if (!pr->pblk)
806 		return -ENODEV;
807 
808 	/* if info is obtained from pblk/fadt, type equals state */
809 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
810 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
811 
812 #ifndef CONFIG_HOTPLUG_CPU
813 	/*
814 	 * Check for P_LVL2_UP flag before entering C2 and above on
815 	 * an SMP system.
816 	 */
817 	if ((num_online_cpus() > 1) &&
818 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
819 		return -ENODEV;
820 #endif
821 
822 	/* determine C2 and C3 address from pblk */
823 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
824 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
825 
826 	/* determine latencies from FADT */
827 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
828 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
829 
830 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
831 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
832 			  pr->power.states[ACPI_STATE_C2].address,
833 			  pr->power.states[ACPI_STATE_C3].address));
834 
835 	return 0;
836 }
837 
838 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
839 {
840 	if (!pr->power.states[ACPI_STATE_C1].valid) {
841 		/* set the first C-State to C1 */
842 		/* all processors need to support C1 */
843 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
844 		pr->power.states[ACPI_STATE_C1].valid = 1;
845 	}
846 	/* the C0 state only exists as a filler in our array */
847 	pr->power.states[ACPI_STATE_C0].valid = 1;
848 	return 0;
849 }
850 
851 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
852 {
853 	acpi_status status = 0;
854 	acpi_integer count;
855 	int current_count;
856 	int i;
857 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
858 	union acpi_object *cst;
859 
860 
861 	if (nocst)
862 		return -ENODEV;
863 
864 	current_count = 0;
865 
866 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
867 	if (ACPI_FAILURE(status)) {
868 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
869 		return -ENODEV;
870 	}
871 
872 	cst = buffer.pointer;
873 
874 	/* There must be at least 2 elements */
875 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
876 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
877 		status = -EFAULT;
878 		goto end;
879 	}
880 
881 	count = cst->package.elements[0].integer.value;
882 
883 	/* Validate number of power states. */
884 	if (count < 1 || count != cst->package.count - 1) {
885 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
886 		status = -EFAULT;
887 		goto end;
888 	}
889 
890 	/* Tell driver that at least _CST is supported. */
891 	pr->flags.has_cst = 1;
892 
893 	for (i = 1; i <= count; i++) {
894 		union acpi_object *element;
895 		union acpi_object *obj;
896 		struct acpi_power_register *reg;
897 		struct acpi_processor_cx cx;
898 
899 		memset(&cx, 0, sizeof(cx));
900 
901 		element = &(cst->package.elements[i]);
902 		if (element->type != ACPI_TYPE_PACKAGE)
903 			continue;
904 
905 		if (element->package.count != 4)
906 			continue;
907 
908 		obj = &(element->package.elements[0]);
909 
910 		if (obj->type != ACPI_TYPE_BUFFER)
911 			continue;
912 
913 		reg = (struct acpi_power_register *)obj->buffer.pointer;
914 
915 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
916 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
917 			continue;
918 
919 		/* There should be an easy way to extract an integer... */
920 		obj = &(element->package.elements[1]);
921 		if (obj->type != ACPI_TYPE_INTEGER)
922 			continue;
923 
924 		cx.type = obj->integer.value;
925 		/*
926 		 * Some buggy BIOSes won't list C1 in _CST -
927 		 * Let acpi_processor_get_power_info_default() handle them later
928 		 */
929 		if (i == 1 && cx.type != ACPI_STATE_C1)
930 			current_count++;
931 
932 		cx.address = reg->address;
933 		cx.index = current_count + 1;
934 
935 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
936 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
937 			if (acpi_processor_ffh_cstate_probe
938 					(pr->id, &cx, reg) == 0) {
939 				cx.entry_method = ACPI_CSTATE_FFH;
940 			} else if (cx.type == ACPI_STATE_C1) {
941 				/*
942 				 * C1 is a special case where FIXED_HARDWARE
943 				 * can be handled in non-MWAIT way as well.
944 				 * In that case, save this _CST entry info.
945 				 * Otherwise, ignore this info and continue.
946 				 */
947 				cx.entry_method = ACPI_CSTATE_HALT;
948 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
949 			} else {
950 				continue;
951 			}
952 		} else {
953 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
954 				 cx.address);
955 		}
956 
957 
958 		obj = &(element->package.elements[2]);
959 		if (obj->type != ACPI_TYPE_INTEGER)
960 			continue;
961 
962 		cx.latency = obj->integer.value;
963 
964 		obj = &(element->package.elements[3]);
965 		if (obj->type != ACPI_TYPE_INTEGER)
966 			continue;
967 
968 		cx.power = obj->integer.value;
969 
970 		current_count++;
971 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
972 
973 		/*
974 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
975 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
976 		 */
977 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
978 			printk(KERN_WARNING
979 			       "Limiting number of power states to max (%d)\n",
980 			       ACPI_PROCESSOR_MAX_POWER);
981 			printk(KERN_WARNING
982 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
983 			break;
984 		}
985 	}
986 
987 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
988 			  current_count));
989 
990 	/* Validate number of power states discovered */
991 	if (current_count < 2)
992 		status = -EFAULT;
993 
994       end:
995 	kfree(buffer.pointer);
996 
997 	return status;
998 }
999 
1000 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1001 {
1002 
1003 	if (!cx->address)
1004 		return;
1005 
1006 	/*
1007 	 * C2 latency must be less than or equal to 100
1008 	 * microseconds.
1009 	 */
1010 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1011 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1012 				  "latency too large [%d]\n", cx->latency));
1013 		return;
1014 	}
1015 
1016 	/*
1017 	 * Otherwise we've met all of our C2 requirements.
1018 	 * Normalize the C2 latency to expidite policy
1019 	 */
1020 	cx->valid = 1;
1021 
1022 #ifndef CONFIG_CPU_IDLE
1023 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1024 #else
1025 	cx->latency_ticks = cx->latency;
1026 #endif
1027 
1028 	return;
1029 }
1030 
1031 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1032 					   struct acpi_processor_cx *cx)
1033 {
1034 	static int bm_check_flag;
1035 
1036 
1037 	if (!cx->address)
1038 		return;
1039 
1040 	/*
1041 	 * C3 latency must be less than or equal to 1000
1042 	 * microseconds.
1043 	 */
1044 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1045 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1046 				  "latency too large [%d]\n", cx->latency));
1047 		return;
1048 	}
1049 
1050 	/*
1051 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1052 	 * DMA transfers are used by any ISA device to avoid livelock.
1053 	 * Note that we could disable Type-F DMA (as recommended by
1054 	 * the erratum), but this is known to disrupt certain ISA
1055 	 * devices thus we take the conservative approach.
1056 	 */
1057 	else if (errata.piix4.fdma) {
1058 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1059 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1060 		return;
1061 	}
1062 
1063 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1064 	if (!bm_check_flag) {
1065 		/* Determine whether bm_check is needed based on CPU  */
1066 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1067 		bm_check_flag = pr->flags.bm_check;
1068 	} else {
1069 		pr->flags.bm_check = bm_check_flag;
1070 	}
1071 
1072 	if (pr->flags.bm_check) {
1073 		if (!pr->flags.bm_control) {
1074 			if (pr->flags.has_cst != 1) {
1075 				/* bus mastering control is necessary */
1076 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1077 					"C3 support requires BM control\n"));
1078 				return;
1079 			} else {
1080 				/* Here we enter C3 without bus mastering */
1081 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082 					"C3 support without BM control\n"));
1083 			}
1084 		}
1085 	} else {
1086 		/*
1087 		 * WBINVD should be set in fadt, for C3 state to be
1088 		 * supported on when bm_check is not required.
1089 		 */
1090 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1091 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1092 					  "Cache invalidation should work properly"
1093 					  " for C3 to be enabled on SMP systems\n"));
1094 			return;
1095 		}
1096 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1097 	}
1098 
1099 	/*
1100 	 * Otherwise we've met all of our C3 requirements.
1101 	 * Normalize the C3 latency to expidite policy.  Enable
1102 	 * checking of bus mastering status (bm_check) so we can
1103 	 * use this in our C3 policy
1104 	 */
1105 	cx->valid = 1;
1106 
1107 #ifndef CONFIG_CPU_IDLE
1108 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1109 #else
1110 	cx->latency_ticks = cx->latency;
1111 #endif
1112 
1113 	return;
1114 }
1115 
1116 static int acpi_processor_power_verify(struct acpi_processor *pr)
1117 {
1118 	unsigned int i;
1119 	unsigned int working = 0;
1120 
1121 	pr->power.timer_broadcast_on_state = INT_MAX;
1122 
1123 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1124 		struct acpi_processor_cx *cx = &pr->power.states[i];
1125 
1126 		switch (cx->type) {
1127 		case ACPI_STATE_C1:
1128 			cx->valid = 1;
1129 			break;
1130 
1131 		case ACPI_STATE_C2:
1132 			acpi_processor_power_verify_c2(cx);
1133 			if (cx->valid)
1134 				acpi_timer_check_state(i, pr, cx);
1135 			break;
1136 
1137 		case ACPI_STATE_C3:
1138 			acpi_processor_power_verify_c3(pr, cx);
1139 			if (cx->valid)
1140 				acpi_timer_check_state(i, pr, cx);
1141 			break;
1142 		}
1143 
1144 		if (cx->valid)
1145 			working++;
1146 	}
1147 
1148 	acpi_propagate_timer_broadcast(pr);
1149 
1150 	return (working);
1151 }
1152 
1153 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1154 {
1155 	unsigned int i;
1156 	int result;
1157 
1158 
1159 	/* NOTE: the idle thread may not be running while calling
1160 	 * this function */
1161 
1162 	/* Zero initialize all the C-states info. */
1163 	memset(pr->power.states, 0, sizeof(pr->power.states));
1164 
1165 	result = acpi_processor_get_power_info_cst(pr);
1166 	if (result == -ENODEV)
1167 		result = acpi_processor_get_power_info_fadt(pr);
1168 
1169 	if (result)
1170 		return result;
1171 
1172 	acpi_processor_get_power_info_default(pr);
1173 
1174 	pr->power.count = acpi_processor_power_verify(pr);
1175 
1176 #ifndef CONFIG_CPU_IDLE
1177 	/*
1178 	 * Set Default Policy
1179 	 * ------------------
1180 	 * Now that we know which states are supported, set the default
1181 	 * policy.  Note that this policy can be changed dynamically
1182 	 * (e.g. encourage deeper sleeps to conserve battery life when
1183 	 * not on AC).
1184 	 */
1185 	result = acpi_processor_set_power_policy(pr);
1186 	if (result)
1187 		return result;
1188 #endif
1189 
1190 	/*
1191 	 * if one state of type C2 or C3 is available, mark this
1192 	 * CPU as being "idle manageable"
1193 	 */
1194 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1195 		if (pr->power.states[i].valid) {
1196 			pr->power.count = i;
1197 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1198 				pr->flags.power = 1;
1199 		}
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1206 {
1207 	struct acpi_processor *pr = seq->private;
1208 	unsigned int i;
1209 
1210 
1211 	if (!pr)
1212 		goto end;
1213 
1214 	seq_printf(seq, "active state:            C%zd\n"
1215 		   "max_cstate:              C%d\n"
1216 		   "bus master activity:     %08x\n"
1217 		   "maximum allowed latency: %d usec\n",
1218 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1219 		   max_cstate, (unsigned)pr->power.bm_activity,
1220 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1221 
1222 	seq_puts(seq, "states:\n");
1223 
1224 	for (i = 1; i <= pr->power.count; i++) {
1225 		seq_printf(seq, "   %cC%d:                  ",
1226 			   (&pr->power.states[i] ==
1227 			    pr->power.state ? '*' : ' '), i);
1228 
1229 		if (!pr->power.states[i].valid) {
1230 			seq_puts(seq, "<not supported>\n");
1231 			continue;
1232 		}
1233 
1234 		switch (pr->power.states[i].type) {
1235 		case ACPI_STATE_C1:
1236 			seq_printf(seq, "type[C1] ");
1237 			break;
1238 		case ACPI_STATE_C2:
1239 			seq_printf(seq, "type[C2] ");
1240 			break;
1241 		case ACPI_STATE_C3:
1242 			seq_printf(seq, "type[C3] ");
1243 			break;
1244 		default:
1245 			seq_printf(seq, "type[--] ");
1246 			break;
1247 		}
1248 
1249 		if (pr->power.states[i].promotion.state)
1250 			seq_printf(seq, "promotion[C%zd] ",
1251 				   (pr->power.states[i].promotion.state -
1252 				    pr->power.states));
1253 		else
1254 			seq_puts(seq, "promotion[--] ");
1255 
1256 		if (pr->power.states[i].demotion.state)
1257 			seq_printf(seq, "demotion[C%zd] ",
1258 				   (pr->power.states[i].demotion.state -
1259 				    pr->power.states));
1260 		else
1261 			seq_puts(seq, "demotion[--] ");
1262 
1263 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1264 			   pr->power.states[i].latency,
1265 			   pr->power.states[i].usage,
1266 			   (unsigned long long)pr->power.states[i].time);
1267 	}
1268 
1269       end:
1270 	return 0;
1271 }
1272 
1273 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1274 {
1275 	return single_open(file, acpi_processor_power_seq_show,
1276 			   PDE(inode)->data);
1277 }
1278 
1279 static const struct file_operations acpi_processor_power_fops = {
1280 	.open = acpi_processor_power_open_fs,
1281 	.read = seq_read,
1282 	.llseek = seq_lseek,
1283 	.release = single_release,
1284 };
1285 
1286 #ifndef CONFIG_CPU_IDLE
1287 
1288 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1289 {
1290 	int result = 0;
1291 
1292 
1293 	if (!pr)
1294 		return -EINVAL;
1295 
1296 	if (nocst) {
1297 		return -ENODEV;
1298 	}
1299 
1300 	if (!pr->flags.power_setup_done)
1301 		return -ENODEV;
1302 
1303 	/* Fall back to the default idle loop */
1304 	pm_idle = pm_idle_save;
1305 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1306 
1307 	pr->flags.power = 0;
1308 	result = acpi_processor_get_power_info(pr);
1309 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1310 		pm_idle = acpi_processor_idle;
1311 
1312 	return result;
1313 }
1314 
1315 #ifdef CONFIG_SMP
1316 static void smp_callback(void *v)
1317 {
1318 	/* we already woke the CPU up, nothing more to do */
1319 }
1320 
1321 /*
1322  * This function gets called when a part of the kernel has a new latency
1323  * requirement.  This means we need to get all processors out of their C-state,
1324  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1325  * wakes them all right up.
1326  */
1327 static int acpi_processor_latency_notify(struct notifier_block *b,
1328 		unsigned long l, void *v)
1329 {
1330 	smp_call_function(smp_callback, NULL, 0, 1);
1331 	return NOTIFY_OK;
1332 }
1333 
1334 static struct notifier_block acpi_processor_latency_notifier = {
1335 	.notifier_call = acpi_processor_latency_notify,
1336 };
1337 
1338 #endif
1339 
1340 #else /* CONFIG_CPU_IDLE */
1341 
1342 /**
1343  * acpi_idle_bm_check - checks if bus master activity was detected
1344  */
1345 static int acpi_idle_bm_check(void)
1346 {
1347 	u32 bm_status = 0;
1348 
1349 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1350 	if (bm_status)
1351 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1352 	/*
1353 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1354 	 * the true state of bus mastering activity; forcing us to
1355 	 * manually check the BMIDEA bit of each IDE channel.
1356 	 */
1357 	else if (errata.piix4.bmisx) {
1358 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1359 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1360 			bm_status = 1;
1361 	}
1362 	return bm_status;
1363 }
1364 
1365 /**
1366  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1367  * @pr: the processor
1368  * @target: the new target state
1369  */
1370 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1371 					   struct acpi_processor_cx *target)
1372 {
1373 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1374 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1375 		pr->flags.bm_rld_set = 0;
1376 	}
1377 
1378 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1379 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1380 		pr->flags.bm_rld_set = 1;
1381 	}
1382 }
1383 
1384 /**
1385  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1386  * @cx: cstate data
1387  *
1388  * Caller disables interrupt before call and enables interrupt after return.
1389  */
1390 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1391 {
1392 	if (cx->entry_method == ACPI_CSTATE_FFH) {
1393 		/* Call into architectural FFH based C-state */
1394 		acpi_processor_ffh_cstate_enter(cx);
1395 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
1396 		acpi_safe_halt();
1397 	} else {
1398 		int unused;
1399 		/* IO port based C-state */
1400 		inb(cx->address);
1401 		/* Dummy wait op - must do something useless after P_LVL2 read
1402 		   because chipsets cannot guarantee that STPCLK# signal
1403 		   gets asserted in time to freeze execution properly. */
1404 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1405 	}
1406 }
1407 
1408 /**
1409  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1410  * @dev: the target CPU
1411  * @state: the state data
1412  *
1413  * This is equivalent to the HALT instruction.
1414  */
1415 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1416 			      struct cpuidle_state *state)
1417 {
1418 	u32 t1, t2;
1419 	struct acpi_processor *pr;
1420 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1421 
1422 	pr = processors[smp_processor_id()];
1423 
1424 	if (unlikely(!pr))
1425 		return 0;
1426 
1427 	local_irq_disable();
1428 
1429 	/* Do not access any ACPI IO ports in suspend path */
1430 	if (acpi_idle_suspend) {
1431 		acpi_safe_halt();
1432 		local_irq_enable();
1433 		return 0;
1434 	}
1435 
1436 	if (pr->flags.bm_check)
1437 		acpi_idle_update_bm_rld(pr, cx);
1438 
1439 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1440 	acpi_idle_do_entry(cx);
1441 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1442 
1443 	local_irq_enable();
1444 	cx->usage++;
1445 
1446 	return ticks_elapsed_in_us(t1, t2);
1447 }
1448 
1449 /**
1450  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1451  * @dev: the target CPU
1452  * @state: the state data
1453  */
1454 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1455 				  struct cpuidle_state *state)
1456 {
1457 	struct acpi_processor *pr;
1458 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1459 	u32 t1, t2;
1460 	int sleep_ticks = 0;
1461 
1462 	pr = processors[smp_processor_id()];
1463 
1464 	if (unlikely(!pr))
1465 		return 0;
1466 
1467 	if (acpi_idle_suspend)
1468 		return(acpi_idle_enter_c1(dev, state));
1469 
1470 	local_irq_disable();
1471 	current_thread_info()->status &= ~TS_POLLING;
1472 	/*
1473 	 * TS_POLLING-cleared state must be visible before we test
1474 	 * NEED_RESCHED:
1475 	 */
1476 	smp_mb();
1477 
1478 	if (unlikely(need_resched())) {
1479 		current_thread_info()->status |= TS_POLLING;
1480 		local_irq_enable();
1481 		return 0;
1482 	}
1483 
1484 	acpi_unlazy_tlb(smp_processor_id());
1485 	/*
1486 	 * Must be done before busmaster disable as we might need to
1487 	 * access HPET !
1488 	 */
1489 	acpi_state_timer_broadcast(pr, cx, 1);
1490 
1491 	if (pr->flags.bm_check)
1492 		acpi_idle_update_bm_rld(pr, cx);
1493 
1494 	if (cx->type == ACPI_STATE_C3)
1495 		ACPI_FLUSH_CPU_CACHE();
1496 
1497 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1498 	/* Tell the scheduler that we are going deep-idle: */
1499 	sched_clock_idle_sleep_event();
1500 	acpi_idle_do_entry(cx);
1501 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1502 
1503 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1504 	/* TSC could halt in idle, so notify users */
1505 	if (tsc_halts_in_c(cx->type))
1506 		mark_tsc_unstable("TSC halts in idle");;
1507 #endif
1508 	sleep_ticks = ticks_elapsed(t1, t2);
1509 
1510 	/* Tell the scheduler how much we idled: */
1511 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1512 
1513 	local_irq_enable();
1514 	current_thread_info()->status |= TS_POLLING;
1515 
1516 	cx->usage++;
1517 
1518 	acpi_state_timer_broadcast(pr, cx, 0);
1519 	cx->time += sleep_ticks;
1520 	return ticks_elapsed_in_us(t1, t2);
1521 }
1522 
1523 static int c3_cpu_count;
1524 static DEFINE_SPINLOCK(c3_lock);
1525 
1526 /**
1527  * acpi_idle_enter_bm - enters C3 with proper BM handling
1528  * @dev: the target CPU
1529  * @state: the state data
1530  *
1531  * If BM is detected, the deepest non-C3 idle state is entered instead.
1532  */
1533 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1534 			      struct cpuidle_state *state)
1535 {
1536 	struct acpi_processor *pr;
1537 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1538 	u32 t1, t2;
1539 	int sleep_ticks = 0;
1540 
1541 	pr = processors[smp_processor_id()];
1542 
1543 	if (unlikely(!pr))
1544 		return 0;
1545 
1546 	if (acpi_idle_suspend)
1547 		return(acpi_idle_enter_c1(dev, state));
1548 
1549 	if (acpi_idle_bm_check()) {
1550 		if (dev->safe_state) {
1551 			return dev->safe_state->enter(dev, dev->safe_state);
1552 		} else {
1553 			local_irq_disable();
1554 			acpi_safe_halt();
1555 			local_irq_enable();
1556 			return 0;
1557 		}
1558 	}
1559 
1560 	local_irq_disable();
1561 	current_thread_info()->status &= ~TS_POLLING;
1562 	/*
1563 	 * TS_POLLING-cleared state must be visible before we test
1564 	 * NEED_RESCHED:
1565 	 */
1566 	smp_mb();
1567 
1568 	if (unlikely(need_resched())) {
1569 		current_thread_info()->status |= TS_POLLING;
1570 		local_irq_enable();
1571 		return 0;
1572 	}
1573 
1574 	/* Tell the scheduler that we are going deep-idle: */
1575 	sched_clock_idle_sleep_event();
1576 	/*
1577 	 * Must be done before busmaster disable as we might need to
1578 	 * access HPET !
1579 	 */
1580 	acpi_state_timer_broadcast(pr, cx, 1);
1581 
1582 	acpi_idle_update_bm_rld(pr, cx);
1583 
1584 	/*
1585 	 * disable bus master
1586 	 * bm_check implies we need ARB_DIS
1587 	 * !bm_check implies we need cache flush
1588 	 * bm_control implies whether we can do ARB_DIS
1589 	 *
1590 	 * That leaves a case where bm_check is set and bm_control is
1591 	 * not set. In that case we cannot do much, we enter C3
1592 	 * without doing anything.
1593 	 */
1594 	if (pr->flags.bm_check && pr->flags.bm_control) {
1595 		spin_lock(&c3_lock);
1596 		c3_cpu_count++;
1597 		/* Disable bus master arbitration when all CPUs are in C3 */
1598 		if (c3_cpu_count == num_online_cpus())
1599 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1600 		spin_unlock(&c3_lock);
1601 	} else if (!pr->flags.bm_check) {
1602 		ACPI_FLUSH_CPU_CACHE();
1603 	}
1604 
1605 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1606 	acpi_idle_do_entry(cx);
1607 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1608 
1609 	/* Re-enable bus master arbitration */
1610 	if (pr->flags.bm_check && pr->flags.bm_control) {
1611 		spin_lock(&c3_lock);
1612 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1613 		c3_cpu_count--;
1614 		spin_unlock(&c3_lock);
1615 	}
1616 
1617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1618 	/* TSC could halt in idle, so notify users */
1619 	if (tsc_halts_in_c(ACPI_STATE_C3))
1620 		mark_tsc_unstable("TSC halts in idle");
1621 #endif
1622 	sleep_ticks = ticks_elapsed(t1, t2);
1623 	/* Tell the scheduler how much we idled: */
1624 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1625 
1626 	local_irq_enable();
1627 	current_thread_info()->status |= TS_POLLING;
1628 
1629 	cx->usage++;
1630 
1631 	acpi_state_timer_broadcast(pr, cx, 0);
1632 	cx->time += sleep_ticks;
1633 	return ticks_elapsed_in_us(t1, t2);
1634 }
1635 
1636 struct cpuidle_driver acpi_idle_driver = {
1637 	.name =		"acpi_idle",
1638 	.owner =	THIS_MODULE,
1639 };
1640 
1641 /**
1642  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1643  * @pr: the ACPI processor
1644  */
1645 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1646 {
1647 	int i, count = CPUIDLE_DRIVER_STATE_START;
1648 	struct acpi_processor_cx *cx;
1649 	struct cpuidle_state *state;
1650 	struct cpuidle_device *dev = &pr->power.dev;
1651 
1652 	if (!pr->flags.power_setup_done)
1653 		return -EINVAL;
1654 
1655 	if (pr->flags.power == 0) {
1656 		return -EINVAL;
1657 	}
1658 
1659 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1660 		dev->states[i].name[0] = '\0';
1661 		dev->states[i].desc[0] = '\0';
1662 	}
1663 
1664 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1665 		cx = &pr->power.states[i];
1666 		state = &dev->states[count];
1667 
1668 		if (!cx->valid)
1669 			continue;
1670 
1671 #ifdef CONFIG_HOTPLUG_CPU
1672 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1673 		    !pr->flags.has_cst &&
1674 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1675 			continue;
1676 #endif
1677 		cpuidle_set_statedata(state, cx);
1678 
1679 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1680 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1681 		state->exit_latency = cx->latency;
1682 		state->target_residency = cx->latency * latency_factor;
1683 		state->power_usage = cx->power;
1684 
1685 		state->flags = 0;
1686 		switch (cx->type) {
1687 			case ACPI_STATE_C1:
1688 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1689 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1690 			state->enter = acpi_idle_enter_c1;
1691 			dev->safe_state = state;
1692 			break;
1693 
1694 			case ACPI_STATE_C2:
1695 			state->flags |= CPUIDLE_FLAG_BALANCED;
1696 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1697 			state->enter = acpi_idle_enter_simple;
1698 			dev->safe_state = state;
1699 			break;
1700 
1701 			case ACPI_STATE_C3:
1702 			state->flags |= CPUIDLE_FLAG_DEEP;
1703 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1704 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1705 			state->enter = pr->flags.bm_check ?
1706 					acpi_idle_enter_bm :
1707 					acpi_idle_enter_simple;
1708 			break;
1709 		}
1710 
1711 		count++;
1712 		if (count == CPUIDLE_STATE_MAX)
1713 			break;
1714 	}
1715 
1716 	dev->state_count = count;
1717 
1718 	if (!count)
1719 		return -EINVAL;
1720 
1721 	return 0;
1722 }
1723 
1724 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1725 {
1726 	int ret;
1727 
1728 	if (!pr)
1729 		return -EINVAL;
1730 
1731 	if (nocst) {
1732 		return -ENODEV;
1733 	}
1734 
1735 	if (!pr->flags.power_setup_done)
1736 		return -ENODEV;
1737 
1738 	cpuidle_pause_and_lock();
1739 	cpuidle_disable_device(&pr->power.dev);
1740 	acpi_processor_get_power_info(pr);
1741 	acpi_processor_setup_cpuidle(pr);
1742 	ret = cpuidle_enable_device(&pr->power.dev);
1743 	cpuidle_resume_and_unlock();
1744 
1745 	return ret;
1746 }
1747 
1748 #endif /* CONFIG_CPU_IDLE */
1749 
1750 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1751 			      struct acpi_device *device)
1752 {
1753 	acpi_status status = 0;
1754 	static int first_run;
1755 	struct proc_dir_entry *entry = NULL;
1756 	unsigned int i;
1757 
1758 
1759 	if (!first_run) {
1760 		dmi_check_system(processor_power_dmi_table);
1761 		max_cstate = acpi_processor_cstate_check(max_cstate);
1762 		if (max_cstate < ACPI_C_STATES_MAX)
1763 			printk(KERN_NOTICE
1764 			       "ACPI: processor limited to max C-state %d\n",
1765 			       max_cstate);
1766 		first_run++;
1767 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1768 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1769 				&acpi_processor_latency_notifier);
1770 #endif
1771 	}
1772 
1773 	if (!pr)
1774 		return -EINVAL;
1775 
1776 	if (acpi_gbl_FADT.cst_control && !nocst) {
1777 		status =
1778 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1779 		if (ACPI_FAILURE(status)) {
1780 			ACPI_EXCEPTION((AE_INFO, status,
1781 					"Notifying BIOS of _CST ability failed"));
1782 		}
1783 	}
1784 
1785 	acpi_processor_get_power_info(pr);
1786 	pr->flags.power_setup_done = 1;
1787 
1788 	/*
1789 	 * Install the idle handler if processor power management is supported.
1790 	 * Note that we use previously set idle handler will be used on
1791 	 * platforms that only support C1.
1792 	 */
1793 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1794 #ifdef CONFIG_CPU_IDLE
1795 		acpi_processor_setup_cpuidle(pr);
1796 		pr->power.dev.cpu = pr->id;
1797 		if (cpuidle_register_device(&pr->power.dev))
1798 			return -EIO;
1799 #endif
1800 
1801 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1802 		for (i = 1; i <= pr->power.count; i++)
1803 			if (pr->power.states[i].valid)
1804 				printk(" C%d[C%d]", i,
1805 				       pr->power.states[i].type);
1806 		printk(")\n");
1807 
1808 #ifndef CONFIG_CPU_IDLE
1809 		if (pr->id == 0) {
1810 			pm_idle_save = pm_idle;
1811 			pm_idle = acpi_processor_idle;
1812 		}
1813 #endif
1814 	}
1815 
1816 	/* 'power' [R] */
1817 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1818 				  S_IRUGO, acpi_device_dir(device));
1819 	if (!entry)
1820 		return -EIO;
1821 	else {
1822 		entry->proc_fops = &acpi_processor_power_fops;
1823 		entry->data = acpi_driver_data(device);
1824 		entry->owner = THIS_MODULE;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 int acpi_processor_power_exit(struct acpi_processor *pr,
1831 			      struct acpi_device *device)
1832 {
1833 #ifdef CONFIG_CPU_IDLE
1834 	if ((pr->flags.power) && (!boot_option_idle_override))
1835 		cpuidle_unregister_device(&pr->power.dev);
1836 #endif
1837 	pr->flags.power_setup_done = 0;
1838 
1839 	if (acpi_device_dir(device))
1840 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1841 				  acpi_device_dir(device));
1842 
1843 #ifndef CONFIG_CPU_IDLE
1844 
1845 	/* Unregister the idle handler when processor #0 is removed. */
1846 	if (pr->id == 0) {
1847 		pm_idle = pm_idle_save;
1848 
1849 		/*
1850 		 * We are about to unload the current idle thread pm callback
1851 		 * (pm_idle), Wait for all processors to update cached/local
1852 		 * copies of pm_idle before proceeding.
1853 		 */
1854 		cpu_idle_wait();
1855 #ifdef CONFIG_SMP
1856 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1857 				&acpi_processor_latency_notifier);
1858 #endif
1859 	}
1860 #endif
1861 
1862 	return 0;
1863 }
1864