xref: /linux/drivers/acpi/processor_idle.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53 
54 /*
55  * Include the apic definitions for x86 to have the APIC timer related defines
56  * available also for UP (on SMP it gets magically included via linux/smp.h).
57  */
58 #ifdef CONFIG_X86
59 #include <asm/apic.h>
60 #endif
61 
62 #include <asm/io.h>
63 #include <asm/uaccess.h>
64 
65 #include <acpi/acpi_bus.h>
66 #include <acpi/processor.h>
67 
68 #define ACPI_PROCESSOR_COMPONENT        0x01000000
69 #define ACPI_PROCESSOR_CLASS            "processor"
70 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
71 ACPI_MODULE_NAME("processor_idle");
72 #define ACPI_PROCESSOR_FILE_POWER	"power"
73 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
74 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
75 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
76 static void (*pm_idle_save) (void) __read_mostly;
77 module_param(max_cstate, uint, 0644);
78 
79 static unsigned int nocst __read_mostly;
80 module_param(nocst, uint, 0000);
81 
82 /*
83  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
84  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
85  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
86  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
87  * reduce history for more aggressive entry into C3
88  */
89 static unsigned int bm_history __read_mostly =
90     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
91 module_param(bm_history, uint, 0644);
92 /* --------------------------------------------------------------------------
93                                 Power Management
94    -------------------------------------------------------------------------- */
95 
96 /*
97  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
98  * For now disable this. Probably a bug somewhere else.
99  *
100  * To skip this limit, boot/load with a large max_cstate limit.
101  */
102 static int set_max_cstate(struct dmi_system_id *id)
103 {
104 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
105 		return 0;
106 
107 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
108 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
109 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
110 
111 	max_cstate = (long)id->driver_data;
112 
113 	return 0;
114 }
115 
116 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
117    callers to only run once -AK */
118 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
119 	{ set_max_cstate, "IBM ThinkPad R40e", {
120 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
122 	{ set_max_cstate, "IBM ThinkPad R40e", {
123 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
125 	{ set_max_cstate, "IBM ThinkPad R40e", {
126 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
128 	{ set_max_cstate, "IBM ThinkPad R40e", {
129 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
131 	{ set_max_cstate, "IBM ThinkPad R40e", {
132 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
134 	{ set_max_cstate, "IBM ThinkPad R40e", {
135 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
137 	{ set_max_cstate, "IBM ThinkPad R40e", {
138 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
140 	{ set_max_cstate, "IBM ThinkPad R40e", {
141 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
143 	{ set_max_cstate, "IBM ThinkPad R40e", {
144 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
146 	{ set_max_cstate, "IBM ThinkPad R40e", {
147 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
149 	{ set_max_cstate, "IBM ThinkPad R40e", {
150 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
152 	{ set_max_cstate, "IBM ThinkPad R40e", {
153 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
155 	{ set_max_cstate, "IBM ThinkPad R40e", {
156 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
158 	{ set_max_cstate, "IBM ThinkPad R40e", {
159 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
161 	{ set_max_cstate, "IBM ThinkPad R40e", {
162 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
164 	{ set_max_cstate, "IBM ThinkPad R40e", {
165 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
167 	{ set_max_cstate, "Medion 41700", {
168 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
169 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
170 	{ set_max_cstate, "Clevo 5600D", {
171 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
173 	 (void *)2},
174 	{},
175 };
176 
177 static inline u32 ticks_elapsed(u32 t1, u32 t2)
178 {
179 	if (t2 >= t1)
180 		return (t2 - t1);
181 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
182 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
183 	else
184 		return ((0xFFFFFFFF - t1) + t2);
185 }
186 
187 static void
188 acpi_processor_power_activate(struct acpi_processor *pr,
189 			      struct acpi_processor_cx *new)
190 {
191 	struct acpi_processor_cx *old;
192 
193 	if (!pr || !new)
194 		return;
195 
196 	old = pr->power.state;
197 
198 	if (old)
199 		old->promotion.count = 0;
200 	new->demotion.count = 0;
201 
202 	/* Cleanup from old state. */
203 	if (old) {
204 		switch (old->type) {
205 		case ACPI_STATE_C3:
206 			/* Disable bus master reload */
207 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
208 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
209 			break;
210 		}
211 	}
212 
213 	/* Prepare to use new state. */
214 	switch (new->type) {
215 	case ACPI_STATE_C3:
216 		/* Enable bus master reload */
217 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
218 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
219 		break;
220 	}
221 
222 	pr->power.state = new;
223 
224 	return;
225 }
226 
227 static void acpi_safe_halt(void)
228 {
229 	current_thread_info()->status &= ~TS_POLLING;
230 	/*
231 	 * TS_POLLING-cleared state must be visible before we
232 	 * test NEED_RESCHED:
233 	 */
234 	smp_mb();
235 	if (!need_resched())
236 		safe_halt();
237 	current_thread_info()->status |= TS_POLLING;
238 }
239 
240 static atomic_t c3_cpu_count;
241 
242 /* Common C-state entry for C2, C3, .. */
243 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
244 {
245 	if (cstate->space_id == ACPI_CSTATE_FFH) {
246 		/* Call into architectural FFH based C-state */
247 		acpi_processor_ffh_cstate_enter(cstate);
248 	} else {
249 		int unused;
250 		/* IO port based C-state */
251 		inb(cstate->address);
252 		/* Dummy wait op - must do something useless after P_LVL2 read
253 		   because chipsets cannot guarantee that STPCLK# signal
254 		   gets asserted in time to freeze execution properly. */
255 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
256 	}
257 }
258 
259 #ifdef ARCH_APICTIMER_STOPS_ON_C3
260 
261 /*
262  * Some BIOS implementations switch to C3 in the published C2 state.
263  * This seems to be a common problem on AMD boxen, but other vendors
264  * are affected too. We pick the most conservative approach: we assume
265  * that the local APIC stops in both C2 and C3.
266  */
267 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
268 				   struct acpi_processor_cx *cx)
269 {
270 	struct acpi_processor_power *pwr = &pr->power;
271 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
272 
273 	/*
274 	 * Check, if one of the previous states already marked the lapic
275 	 * unstable
276 	 */
277 	if (pwr->timer_broadcast_on_state < state)
278 		return;
279 
280 	if (cx->type >= type)
281 		pr->power.timer_broadcast_on_state = state;
282 }
283 
284 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
285 {
286 #ifdef CONFIG_GENERIC_CLOCKEVENTS
287 	unsigned long reason;
288 
289 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
290 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
291 
292 	clockevents_notify(reason, &pr->id);
293 #else
294 	cpumask_t mask = cpumask_of_cpu(pr->id);
295 
296 	if (pr->power.timer_broadcast_on_state < INT_MAX)
297 		on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
298 	else
299 		on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
300 #endif
301 }
302 
303 /* Power(C) State timer broadcast control */
304 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
305 				       struct acpi_processor_cx *cx,
306 				       int broadcast)
307 {
308 #ifdef CONFIG_GENERIC_CLOCKEVENTS
309 
310 	int state = cx - pr->power.states;
311 
312 	if (state >= pr->power.timer_broadcast_on_state) {
313 		unsigned long reason;
314 
315 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
316 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
317 		clockevents_notify(reason, &pr->id);
318 	}
319 #endif
320 }
321 
322 #else
323 
324 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
325 				   struct acpi_processor_cx *cstate) { }
326 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
327 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
328 				       struct acpi_processor_cx *cx,
329 				       int broadcast)
330 {
331 }
332 
333 #endif
334 
335 static void acpi_processor_idle(void)
336 {
337 	struct acpi_processor *pr = NULL;
338 	struct acpi_processor_cx *cx = NULL;
339 	struct acpi_processor_cx *next_state = NULL;
340 	int sleep_ticks = 0;
341 	u32 t1, t2 = 0;
342 
343 	pr = processors[smp_processor_id()];
344 	if (!pr)
345 		return;
346 
347 	/*
348 	 * Interrupts must be disabled during bus mastering calculations and
349 	 * for C2/C3 transitions.
350 	 */
351 	local_irq_disable();
352 
353 	/*
354 	 * Check whether we truly need to go idle, or should
355 	 * reschedule:
356 	 */
357 	if (unlikely(need_resched())) {
358 		local_irq_enable();
359 		return;
360 	}
361 
362 	cx = pr->power.state;
363 	if (!cx) {
364 		if (pm_idle_save)
365 			pm_idle_save();
366 		else
367 			acpi_safe_halt();
368 		return;
369 	}
370 
371 	/*
372 	 * Check BM Activity
373 	 * -----------------
374 	 * Check for bus mastering activity (if required), record, and check
375 	 * for demotion.
376 	 */
377 	if (pr->flags.bm_check) {
378 		u32 bm_status = 0;
379 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
380 
381 		if (diff > 31)
382 			diff = 31;
383 
384 		pr->power.bm_activity <<= diff;
385 
386 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
387 		if (bm_status) {
388 			pr->power.bm_activity |= 0x1;
389 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
390 		}
391 		/*
392 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
393 		 * the true state of bus mastering activity; forcing us to
394 		 * manually check the BMIDEA bit of each IDE channel.
395 		 */
396 		else if (errata.piix4.bmisx) {
397 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
398 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
399 				pr->power.bm_activity |= 0x1;
400 		}
401 
402 		pr->power.bm_check_timestamp = jiffies;
403 
404 		/*
405 		 * If bus mastering is or was active this jiffy, demote
406 		 * to avoid a faulty transition.  Note that the processor
407 		 * won't enter a low-power state during this call (to this
408 		 * function) but should upon the next.
409 		 *
410 		 * TBD: A better policy might be to fallback to the demotion
411 		 *      state (use it for this quantum only) istead of
412 		 *      demoting -- and rely on duration as our sole demotion
413 		 *      qualification.  This may, however, introduce DMA
414 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
415 		 */
416 		if ((pr->power.bm_activity & 0x1) &&
417 		    cx->demotion.threshold.bm) {
418 			local_irq_enable();
419 			next_state = cx->demotion.state;
420 			goto end;
421 		}
422 	}
423 
424 #ifdef CONFIG_HOTPLUG_CPU
425 	/*
426 	 * Check for P_LVL2_UP flag before entering C2 and above on
427 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
428 	 * detection phase, to work cleanly with logical CPU hotplug.
429 	 */
430 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
431 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
432 		cx = &pr->power.states[ACPI_STATE_C1];
433 #endif
434 
435 	/*
436 	 * Sleep:
437 	 * ------
438 	 * Invoke the current Cx state to put the processor to sleep.
439 	 */
440 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
441 		current_thread_info()->status &= ~TS_POLLING;
442 		/*
443 		 * TS_POLLING-cleared state must be visible before we
444 		 * test NEED_RESCHED:
445 		 */
446 		smp_mb();
447 		if (need_resched()) {
448 			current_thread_info()->status |= TS_POLLING;
449 			local_irq_enable();
450 			return;
451 		}
452 	}
453 
454 	switch (cx->type) {
455 
456 	case ACPI_STATE_C1:
457 		/*
458 		 * Invoke C1.
459 		 * Use the appropriate idle routine, the one that would
460 		 * be used without acpi C-states.
461 		 */
462 		if (pm_idle_save)
463 			pm_idle_save();
464 		else
465 			acpi_safe_halt();
466 
467 		/*
468 		 * TBD: Can't get time duration while in C1, as resumes
469 		 *      go to an ISR rather than here.  Need to instrument
470 		 *      base interrupt handler.
471 		 */
472 		sleep_ticks = 0xFFFFFFFF;
473 		break;
474 
475 	case ACPI_STATE_C2:
476 		/* Get start time (ticks) */
477 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
478 		/* Invoke C2 */
479 		acpi_state_timer_broadcast(pr, cx, 1);
480 		acpi_cstate_enter(cx);
481 		/* Get end time (ticks) */
482 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
483 
484 #ifdef CONFIG_GENERIC_TIME
485 		/* TSC halts in C2, so notify users */
486 		mark_tsc_unstable();
487 #endif
488 		/* Re-enable interrupts */
489 		local_irq_enable();
490 		current_thread_info()->status |= TS_POLLING;
491 		/* Compute time (ticks) that we were actually asleep */
492 		sleep_ticks =
493 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
494 		acpi_state_timer_broadcast(pr, cx, 0);
495 		break;
496 
497 	case ACPI_STATE_C3:
498 
499 		if (pr->flags.bm_check) {
500 			if (atomic_inc_return(&c3_cpu_count) ==
501 			    num_online_cpus()) {
502 				/*
503 				 * All CPUs are trying to go to C3
504 				 * Disable bus master arbitration
505 				 */
506 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
507 			}
508 		} else {
509 			/* SMP with no shared cache... Invalidate cache  */
510 			ACPI_FLUSH_CPU_CACHE();
511 		}
512 
513 		/* Get start time (ticks) */
514 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
515 		/* Invoke C3 */
516 		acpi_state_timer_broadcast(pr, cx, 1);
517 		acpi_cstate_enter(cx);
518 		/* Get end time (ticks) */
519 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
520 		if (pr->flags.bm_check) {
521 			/* Enable bus master arbitration */
522 			atomic_dec(&c3_cpu_count);
523 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
524 		}
525 
526 #ifdef CONFIG_GENERIC_TIME
527 		/* TSC halts in C3, so notify users */
528 		mark_tsc_unstable();
529 #endif
530 		/* Re-enable interrupts */
531 		local_irq_enable();
532 		current_thread_info()->status |= TS_POLLING;
533 		/* Compute time (ticks) that we were actually asleep */
534 		sleep_ticks =
535 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
536 		acpi_state_timer_broadcast(pr, cx, 0);
537 		break;
538 
539 	default:
540 		local_irq_enable();
541 		return;
542 	}
543 	cx->usage++;
544 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
545 		cx->time += sleep_ticks;
546 
547 	next_state = pr->power.state;
548 
549 #ifdef CONFIG_HOTPLUG_CPU
550 	/* Don't do promotion/demotion */
551 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
552 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
553 		next_state = cx;
554 		goto end;
555 	}
556 #endif
557 
558 	/*
559 	 * Promotion?
560 	 * ----------
561 	 * Track the number of longs (time asleep is greater than threshold)
562 	 * and promote when the count threshold is reached.  Note that bus
563 	 * mastering activity may prevent promotions.
564 	 * Do not promote above max_cstate.
565 	 */
566 	if (cx->promotion.state &&
567 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
568 		if (sleep_ticks > cx->promotion.threshold.ticks &&
569 		  cx->promotion.state->latency <= system_latency_constraint()) {
570 			cx->promotion.count++;
571 			cx->demotion.count = 0;
572 			if (cx->promotion.count >=
573 			    cx->promotion.threshold.count) {
574 				if (pr->flags.bm_check) {
575 					if (!
576 					    (pr->power.bm_activity & cx->
577 					     promotion.threshold.bm)) {
578 						next_state =
579 						    cx->promotion.state;
580 						goto end;
581 					}
582 				} else {
583 					next_state = cx->promotion.state;
584 					goto end;
585 				}
586 			}
587 		}
588 	}
589 
590 	/*
591 	 * Demotion?
592 	 * ---------
593 	 * Track the number of shorts (time asleep is less than time threshold)
594 	 * and demote when the usage threshold is reached.
595 	 */
596 	if (cx->demotion.state) {
597 		if (sleep_ticks < cx->demotion.threshold.ticks) {
598 			cx->demotion.count++;
599 			cx->promotion.count = 0;
600 			if (cx->demotion.count >= cx->demotion.threshold.count) {
601 				next_state = cx->demotion.state;
602 				goto end;
603 			}
604 		}
605 	}
606 
607       end:
608 	/*
609 	 * Demote if current state exceeds max_cstate
610 	 * or if the latency of the current state is unacceptable
611 	 */
612 	if ((pr->power.state - pr->power.states) > max_cstate ||
613 		pr->power.state->latency > system_latency_constraint()) {
614 		if (cx->demotion.state)
615 			next_state = cx->demotion.state;
616 	}
617 
618 	/*
619 	 * New Cx State?
620 	 * -------------
621 	 * If we're going to start using a new Cx state we must clean up
622 	 * from the previous and prepare to use the new.
623 	 */
624 	if (next_state != pr->power.state)
625 		acpi_processor_power_activate(pr, next_state);
626 }
627 
628 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
629 {
630 	unsigned int i;
631 	unsigned int state_is_set = 0;
632 	struct acpi_processor_cx *lower = NULL;
633 	struct acpi_processor_cx *higher = NULL;
634 	struct acpi_processor_cx *cx;
635 
636 
637 	if (!pr)
638 		return -EINVAL;
639 
640 	/*
641 	 * This function sets the default Cx state policy (OS idle handler).
642 	 * Our scheme is to promote quickly to C2 but more conservatively
643 	 * to C3.  We're favoring C2  for its characteristics of low latency
644 	 * (quick response), good power savings, and ability to allow bus
645 	 * mastering activity.  Note that the Cx state policy is completely
646 	 * customizable and can be altered dynamically.
647 	 */
648 
649 	/* startup state */
650 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
651 		cx = &pr->power.states[i];
652 		if (!cx->valid)
653 			continue;
654 
655 		if (!state_is_set)
656 			pr->power.state = cx;
657 		state_is_set++;
658 		break;
659 	}
660 
661 	if (!state_is_set)
662 		return -ENODEV;
663 
664 	/* demotion */
665 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
666 		cx = &pr->power.states[i];
667 		if (!cx->valid)
668 			continue;
669 
670 		if (lower) {
671 			cx->demotion.state = lower;
672 			cx->demotion.threshold.ticks = cx->latency_ticks;
673 			cx->demotion.threshold.count = 1;
674 			if (cx->type == ACPI_STATE_C3)
675 				cx->demotion.threshold.bm = bm_history;
676 		}
677 
678 		lower = cx;
679 	}
680 
681 	/* promotion */
682 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
683 		cx = &pr->power.states[i];
684 		if (!cx->valid)
685 			continue;
686 
687 		if (higher) {
688 			cx->promotion.state = higher;
689 			cx->promotion.threshold.ticks = cx->latency_ticks;
690 			if (cx->type >= ACPI_STATE_C2)
691 				cx->promotion.threshold.count = 4;
692 			else
693 				cx->promotion.threshold.count = 10;
694 			if (higher->type == ACPI_STATE_C3)
695 				cx->promotion.threshold.bm = bm_history;
696 		}
697 
698 		higher = cx;
699 	}
700 
701 	return 0;
702 }
703 
704 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
705 {
706 
707 	if (!pr)
708 		return -EINVAL;
709 
710 	if (!pr->pblk)
711 		return -ENODEV;
712 
713 	/* if info is obtained from pblk/fadt, type equals state */
714 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
715 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
716 
717 #ifndef CONFIG_HOTPLUG_CPU
718 	/*
719 	 * Check for P_LVL2_UP flag before entering C2 and above on
720 	 * an SMP system.
721 	 */
722 	if ((num_online_cpus() > 1) &&
723 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
724 		return -ENODEV;
725 #endif
726 
727 	/* determine C2 and C3 address from pblk */
728 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
729 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
730 
731 	/* determine latencies from FADT */
732 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
733 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
734 
735 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
736 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
737 			  pr->power.states[ACPI_STATE_C2].address,
738 			  pr->power.states[ACPI_STATE_C3].address));
739 
740 	return 0;
741 }
742 
743 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
744 {
745 	if (!pr->power.states[ACPI_STATE_C1].valid) {
746 		/* set the first C-State to C1 */
747 		/* all processors need to support C1 */
748 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
749 		pr->power.states[ACPI_STATE_C1].valid = 1;
750 	}
751 	/* the C0 state only exists as a filler in our array */
752 	pr->power.states[ACPI_STATE_C0].valid = 1;
753 	return 0;
754 }
755 
756 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
757 {
758 	acpi_status status = 0;
759 	acpi_integer count;
760 	int current_count;
761 	int i;
762 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
763 	union acpi_object *cst;
764 
765 
766 	if (nocst)
767 		return -ENODEV;
768 
769 	current_count = 0;
770 
771 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
772 	if (ACPI_FAILURE(status)) {
773 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
774 		return -ENODEV;
775 	}
776 
777 	cst = buffer.pointer;
778 
779 	/* There must be at least 2 elements */
780 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
781 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
782 		status = -EFAULT;
783 		goto end;
784 	}
785 
786 	count = cst->package.elements[0].integer.value;
787 
788 	/* Validate number of power states. */
789 	if (count < 1 || count != cst->package.count - 1) {
790 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
791 		status = -EFAULT;
792 		goto end;
793 	}
794 
795 	/* Tell driver that at least _CST is supported. */
796 	pr->flags.has_cst = 1;
797 
798 	for (i = 1; i <= count; i++) {
799 		union acpi_object *element;
800 		union acpi_object *obj;
801 		struct acpi_power_register *reg;
802 		struct acpi_processor_cx cx;
803 
804 		memset(&cx, 0, sizeof(cx));
805 
806 		element = &(cst->package.elements[i]);
807 		if (element->type != ACPI_TYPE_PACKAGE)
808 			continue;
809 
810 		if (element->package.count != 4)
811 			continue;
812 
813 		obj = &(element->package.elements[0]);
814 
815 		if (obj->type != ACPI_TYPE_BUFFER)
816 			continue;
817 
818 		reg = (struct acpi_power_register *)obj->buffer.pointer;
819 
820 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
821 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
822 			continue;
823 
824 		/* There should be an easy way to extract an integer... */
825 		obj = &(element->package.elements[1]);
826 		if (obj->type != ACPI_TYPE_INTEGER)
827 			continue;
828 
829 		cx.type = obj->integer.value;
830 		/*
831 		 * Some buggy BIOSes won't list C1 in _CST -
832 		 * Let acpi_processor_get_power_info_default() handle them later
833 		 */
834 		if (i == 1 && cx.type != ACPI_STATE_C1)
835 			current_count++;
836 
837 		cx.address = reg->address;
838 		cx.index = current_count + 1;
839 
840 		cx.space_id = ACPI_CSTATE_SYSTEMIO;
841 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
842 			if (acpi_processor_ffh_cstate_probe
843 					(pr->id, &cx, reg) == 0) {
844 				cx.space_id = ACPI_CSTATE_FFH;
845 			} else if (cx.type != ACPI_STATE_C1) {
846 				/*
847 				 * C1 is a special case where FIXED_HARDWARE
848 				 * can be handled in non-MWAIT way as well.
849 				 * In that case, save this _CST entry info.
850 				 * That is, we retain space_id of SYSTEM_IO for
851 				 * halt based C1.
852 				 * Otherwise, ignore this info and continue.
853 				 */
854 				continue;
855 			}
856 		}
857 
858 		obj = &(element->package.elements[2]);
859 		if (obj->type != ACPI_TYPE_INTEGER)
860 			continue;
861 
862 		cx.latency = obj->integer.value;
863 
864 		obj = &(element->package.elements[3]);
865 		if (obj->type != ACPI_TYPE_INTEGER)
866 			continue;
867 
868 		cx.power = obj->integer.value;
869 
870 		current_count++;
871 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
872 
873 		/*
874 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
875 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
876 		 */
877 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
878 			printk(KERN_WARNING
879 			       "Limiting number of power states to max (%d)\n",
880 			       ACPI_PROCESSOR_MAX_POWER);
881 			printk(KERN_WARNING
882 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
883 			break;
884 		}
885 	}
886 
887 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
888 			  current_count));
889 
890 	/* Validate number of power states discovered */
891 	if (current_count < 2)
892 		status = -EFAULT;
893 
894       end:
895 	kfree(buffer.pointer);
896 
897 	return status;
898 }
899 
900 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
901 {
902 
903 	if (!cx->address)
904 		return;
905 
906 	/*
907 	 * C2 latency must be less than or equal to 100
908 	 * microseconds.
909 	 */
910 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
911 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
912 				  "latency too large [%d]\n", cx->latency));
913 		return;
914 	}
915 
916 	/*
917 	 * Otherwise we've met all of our C2 requirements.
918 	 * Normalize the C2 latency to expidite policy
919 	 */
920 	cx->valid = 1;
921 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
922 
923 	return;
924 }
925 
926 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
927 					   struct acpi_processor_cx *cx)
928 {
929 	static int bm_check_flag;
930 
931 
932 	if (!cx->address)
933 		return;
934 
935 	/*
936 	 * C3 latency must be less than or equal to 1000
937 	 * microseconds.
938 	 */
939 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
940 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
941 				  "latency too large [%d]\n", cx->latency));
942 		return;
943 	}
944 
945 	/*
946 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
947 	 * DMA transfers are used by any ISA device to avoid livelock.
948 	 * Note that we could disable Type-F DMA (as recommended by
949 	 * the erratum), but this is known to disrupt certain ISA
950 	 * devices thus we take the conservative approach.
951 	 */
952 	else if (errata.piix4.fdma) {
953 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
954 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
955 		return;
956 	}
957 
958 	/* All the logic here assumes flags.bm_check is same across all CPUs */
959 	if (!bm_check_flag) {
960 		/* Determine whether bm_check is needed based on CPU  */
961 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
962 		bm_check_flag = pr->flags.bm_check;
963 	} else {
964 		pr->flags.bm_check = bm_check_flag;
965 	}
966 
967 	if (pr->flags.bm_check) {
968 		/* bus mastering control is necessary */
969 		if (!pr->flags.bm_control) {
970 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
971 					  "C3 support requires bus mastering control\n"));
972 			return;
973 		}
974 	} else {
975 		/*
976 		 * WBINVD should be set in fadt, for C3 state to be
977 		 * supported on when bm_check is not required.
978 		 */
979 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
980 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
981 					  "Cache invalidation should work properly"
982 					  " for C3 to be enabled on SMP systems\n"));
983 			return;
984 		}
985 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
986 	}
987 
988 	/*
989 	 * Otherwise we've met all of our C3 requirements.
990 	 * Normalize the C3 latency to expidite policy.  Enable
991 	 * checking of bus mastering status (bm_check) so we can
992 	 * use this in our C3 policy
993 	 */
994 	cx->valid = 1;
995 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
996 
997 	return;
998 }
999 
1000 static int acpi_processor_power_verify(struct acpi_processor *pr)
1001 {
1002 	unsigned int i;
1003 	unsigned int working = 0;
1004 
1005 	pr->power.timer_broadcast_on_state = INT_MAX;
1006 
1007 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1008 		struct acpi_processor_cx *cx = &pr->power.states[i];
1009 
1010 		switch (cx->type) {
1011 		case ACPI_STATE_C1:
1012 			cx->valid = 1;
1013 			break;
1014 
1015 		case ACPI_STATE_C2:
1016 			acpi_processor_power_verify_c2(cx);
1017 			if (cx->valid)
1018 				acpi_timer_check_state(i, pr, cx);
1019 			break;
1020 
1021 		case ACPI_STATE_C3:
1022 			acpi_processor_power_verify_c3(pr, cx);
1023 			if (cx->valid)
1024 				acpi_timer_check_state(i, pr, cx);
1025 			break;
1026 		}
1027 
1028 		if (cx->valid)
1029 			working++;
1030 	}
1031 
1032 	acpi_propagate_timer_broadcast(pr);
1033 
1034 	return (working);
1035 }
1036 
1037 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1038 {
1039 	unsigned int i;
1040 	int result;
1041 
1042 
1043 	/* NOTE: the idle thread may not be running while calling
1044 	 * this function */
1045 
1046 	/* Zero initialize all the C-states info. */
1047 	memset(pr->power.states, 0, sizeof(pr->power.states));
1048 
1049 	result = acpi_processor_get_power_info_cst(pr);
1050 	if (result == -ENODEV)
1051 		result = acpi_processor_get_power_info_fadt(pr);
1052 
1053 	if (result)
1054 		return result;
1055 
1056 	acpi_processor_get_power_info_default(pr);
1057 
1058 	pr->power.count = acpi_processor_power_verify(pr);
1059 
1060 	/*
1061 	 * Set Default Policy
1062 	 * ------------------
1063 	 * Now that we know which states are supported, set the default
1064 	 * policy.  Note that this policy can be changed dynamically
1065 	 * (e.g. encourage deeper sleeps to conserve battery life when
1066 	 * not on AC).
1067 	 */
1068 	result = acpi_processor_set_power_policy(pr);
1069 	if (result)
1070 		return result;
1071 
1072 	/*
1073 	 * if one state of type C2 or C3 is available, mark this
1074 	 * CPU as being "idle manageable"
1075 	 */
1076 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1077 		if (pr->power.states[i].valid) {
1078 			pr->power.count = i;
1079 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1080 				pr->flags.power = 1;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1088 {
1089 	int result = 0;
1090 
1091 
1092 	if (!pr)
1093 		return -EINVAL;
1094 
1095 	if (nocst) {
1096 		return -ENODEV;
1097 	}
1098 
1099 	if (!pr->flags.power_setup_done)
1100 		return -ENODEV;
1101 
1102 	/* Fall back to the default idle loop */
1103 	pm_idle = pm_idle_save;
1104 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1105 
1106 	pr->flags.power = 0;
1107 	result = acpi_processor_get_power_info(pr);
1108 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1109 		pm_idle = acpi_processor_idle;
1110 
1111 	return result;
1112 }
1113 
1114 /* proc interface */
1115 
1116 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1117 {
1118 	struct acpi_processor *pr = seq->private;
1119 	unsigned int i;
1120 
1121 
1122 	if (!pr)
1123 		goto end;
1124 
1125 	seq_printf(seq, "active state:            C%zd\n"
1126 		   "max_cstate:              C%d\n"
1127 		   "bus master activity:     %08x\n"
1128 		   "maximum allowed latency: %d usec\n",
1129 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1130 		   max_cstate, (unsigned)pr->power.bm_activity,
1131 		   system_latency_constraint());
1132 
1133 	seq_puts(seq, "states:\n");
1134 
1135 	for (i = 1; i <= pr->power.count; i++) {
1136 		seq_printf(seq, "   %cC%d:                  ",
1137 			   (&pr->power.states[i] ==
1138 			    pr->power.state ? '*' : ' '), i);
1139 
1140 		if (!pr->power.states[i].valid) {
1141 			seq_puts(seq, "<not supported>\n");
1142 			continue;
1143 		}
1144 
1145 		switch (pr->power.states[i].type) {
1146 		case ACPI_STATE_C1:
1147 			seq_printf(seq, "type[C1] ");
1148 			break;
1149 		case ACPI_STATE_C2:
1150 			seq_printf(seq, "type[C2] ");
1151 			break;
1152 		case ACPI_STATE_C3:
1153 			seq_printf(seq, "type[C3] ");
1154 			break;
1155 		default:
1156 			seq_printf(seq, "type[--] ");
1157 			break;
1158 		}
1159 
1160 		if (pr->power.states[i].promotion.state)
1161 			seq_printf(seq, "promotion[C%zd] ",
1162 				   (pr->power.states[i].promotion.state -
1163 				    pr->power.states));
1164 		else
1165 			seq_puts(seq, "promotion[--] ");
1166 
1167 		if (pr->power.states[i].demotion.state)
1168 			seq_printf(seq, "demotion[C%zd] ",
1169 				   (pr->power.states[i].demotion.state -
1170 				    pr->power.states));
1171 		else
1172 			seq_puts(seq, "demotion[--] ");
1173 
1174 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1175 			   pr->power.states[i].latency,
1176 			   pr->power.states[i].usage,
1177 			   (unsigned long long)pr->power.states[i].time);
1178 	}
1179 
1180       end:
1181 	return 0;
1182 }
1183 
1184 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1185 {
1186 	return single_open(file, acpi_processor_power_seq_show,
1187 			   PDE(inode)->data);
1188 }
1189 
1190 static const struct file_operations acpi_processor_power_fops = {
1191 	.open = acpi_processor_power_open_fs,
1192 	.read = seq_read,
1193 	.llseek = seq_lseek,
1194 	.release = single_release,
1195 };
1196 
1197 #ifdef CONFIG_SMP
1198 static void smp_callback(void *v)
1199 {
1200 	/* we already woke the CPU up, nothing more to do */
1201 }
1202 
1203 /*
1204  * This function gets called when a part of the kernel has a new latency
1205  * requirement.  This means we need to get all processors out of their C-state,
1206  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1207  * wakes them all right up.
1208  */
1209 static int acpi_processor_latency_notify(struct notifier_block *b,
1210 		unsigned long l, void *v)
1211 {
1212 	smp_call_function(smp_callback, NULL, 0, 1);
1213 	return NOTIFY_OK;
1214 }
1215 
1216 static struct notifier_block acpi_processor_latency_notifier = {
1217 	.notifier_call = acpi_processor_latency_notify,
1218 };
1219 #endif
1220 
1221 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1222 			      struct acpi_device *device)
1223 {
1224 	acpi_status status = 0;
1225 	static int first_run;
1226 	struct proc_dir_entry *entry = NULL;
1227 	unsigned int i;
1228 
1229 
1230 	if (!first_run) {
1231 		dmi_check_system(processor_power_dmi_table);
1232 		if (max_cstate < ACPI_C_STATES_MAX)
1233 			printk(KERN_NOTICE
1234 			       "ACPI: processor limited to max C-state %d\n",
1235 			       max_cstate);
1236 		first_run++;
1237 #ifdef CONFIG_SMP
1238 		register_latency_notifier(&acpi_processor_latency_notifier);
1239 #endif
1240 	}
1241 
1242 	if (!pr)
1243 		return -EINVAL;
1244 
1245 	if (acpi_gbl_FADT.cst_control && !nocst) {
1246 		status =
1247 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1248 		if (ACPI_FAILURE(status)) {
1249 			ACPI_EXCEPTION((AE_INFO, status,
1250 					"Notifying BIOS of _CST ability failed"));
1251 		}
1252 	}
1253 
1254 	acpi_processor_get_power_info(pr);
1255 
1256 	/*
1257 	 * Install the idle handler if processor power management is supported.
1258 	 * Note that we use previously set idle handler will be used on
1259 	 * platforms that only support C1.
1260 	 */
1261 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1262 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1263 		for (i = 1; i <= pr->power.count; i++)
1264 			if (pr->power.states[i].valid)
1265 				printk(" C%d[C%d]", i,
1266 				       pr->power.states[i].type);
1267 		printk(")\n");
1268 
1269 		if (pr->id == 0) {
1270 			pm_idle_save = pm_idle;
1271 			pm_idle = acpi_processor_idle;
1272 		}
1273 	}
1274 
1275 	/* 'power' [R] */
1276 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1277 				  S_IRUGO, acpi_device_dir(device));
1278 	if (!entry)
1279 		return -EIO;
1280 	else {
1281 		entry->proc_fops = &acpi_processor_power_fops;
1282 		entry->data = acpi_driver_data(device);
1283 		entry->owner = THIS_MODULE;
1284 	}
1285 
1286 	pr->flags.power_setup_done = 1;
1287 
1288 	return 0;
1289 }
1290 
1291 int acpi_processor_power_exit(struct acpi_processor *pr,
1292 			      struct acpi_device *device)
1293 {
1294 
1295 	pr->flags.power_setup_done = 0;
1296 
1297 	if (acpi_device_dir(device))
1298 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1299 				  acpi_device_dir(device));
1300 
1301 	/* Unregister the idle handler when processor #0 is removed. */
1302 	if (pr->id == 0) {
1303 		pm_idle = pm_idle_save;
1304 
1305 		/*
1306 		 * We are about to unload the current idle thread pm callback
1307 		 * (pm_idle), Wait for all processors to update cached/local
1308 		 * copies of pm_idle before proceeding.
1309 		 */
1310 		cpu_idle_wait();
1311 #ifdef CONFIG_SMP
1312 		unregister_latency_notifier(&acpi_processor_latency_notifier);
1313 #endif
1314 	}
1315 
1316 	return 0;
1317 }
1318