xref: /linux/drivers/acpi/processor_idle.c (revision a0f97e06a43cf524e616f09e6af3398e1e9c1c5b)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53 
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59 
60 #define ACPI_PROCESSOR_COMPONENT        0x01000000
61 #define ACPI_PROCESSOR_CLASS            "processor"
62 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER	"power"
65 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
67 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
68 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
69 static void (*pm_idle_save) (void) __read_mostly;
70 module_param(max_cstate, uint, 0644);
71 
72 static unsigned int nocst __read_mostly;
73 module_param(nocst, uint, 0000);
74 
75 /*
76  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80  * reduce history for more aggressive entry into C3
81  */
82 static unsigned int bm_history __read_mostly =
83     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
84 module_param(bm_history, uint, 0644);
85 /* --------------------------------------------------------------------------
86                                 Power Management
87    -------------------------------------------------------------------------- */
88 
89 /*
90  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91  * For now disable this. Probably a bug somewhere else.
92  *
93  * To skip this limit, boot/load with a large max_cstate limit.
94  */
95 static int set_max_cstate(const struct dmi_system_id *id)
96 {
97 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 		return 0;
99 
100 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103 
104 	max_cstate = (long)id->driver_data;
105 
106 	return 0;
107 }
108 
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110    callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 	{ set_max_cstate, "IBM ThinkPad R40e", {
113 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
115 	{ set_max_cstate, "IBM ThinkPad R40e", {
116 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
118 	{ set_max_cstate, "IBM ThinkPad R40e", {
119 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
121 	{ set_max_cstate, "IBM ThinkPad R40e", {
122 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
124 	{ set_max_cstate, "IBM ThinkPad R40e", {
125 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
127 	{ set_max_cstate, "IBM ThinkPad R40e", {
128 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
130 	{ set_max_cstate, "IBM ThinkPad R40e", {
131 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
133 	{ set_max_cstate, "IBM ThinkPad R40e", {
134 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
136 	{ set_max_cstate, "IBM ThinkPad R40e", {
137 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
139 	{ set_max_cstate, "IBM ThinkPad R40e", {
140 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
142 	{ set_max_cstate, "IBM ThinkPad R40e", {
143 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
145 	{ set_max_cstate, "IBM ThinkPad R40e", {
146 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
148 	{ set_max_cstate, "IBM ThinkPad R40e", {
149 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
151 	{ set_max_cstate, "IBM ThinkPad R40e", {
152 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
154 	{ set_max_cstate, "IBM ThinkPad R40e", {
155 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
157 	{ set_max_cstate, "IBM ThinkPad R40e", {
158 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
160 	{ set_max_cstate, "Medion 41700", {
161 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
162 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
163 	{ set_max_cstate, "Clevo 5600D", {
164 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
165 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
166 	 (void *)2},
167 	{},
168 };
169 
170 static inline u32 ticks_elapsed(u32 t1, u32 t2)
171 {
172 	if (t2 >= t1)
173 		return (t2 - t1);
174 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
175 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
176 	else
177 		return ((0xFFFFFFFF - t1) + t2);
178 }
179 
180 static void
181 acpi_processor_power_activate(struct acpi_processor *pr,
182 			      struct acpi_processor_cx *new)
183 {
184 	struct acpi_processor_cx *old;
185 
186 	if (!pr || !new)
187 		return;
188 
189 	old = pr->power.state;
190 
191 	if (old)
192 		old->promotion.count = 0;
193 	new->demotion.count = 0;
194 
195 	/* Cleanup from old state. */
196 	if (old) {
197 		switch (old->type) {
198 		case ACPI_STATE_C3:
199 			/* Disable bus master reload */
200 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
201 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
202 			break;
203 		}
204 	}
205 
206 	/* Prepare to use new state. */
207 	switch (new->type) {
208 	case ACPI_STATE_C3:
209 		/* Enable bus master reload */
210 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
211 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
212 		break;
213 	}
214 
215 	pr->power.state = new;
216 
217 	return;
218 }
219 
220 static void acpi_safe_halt(void)
221 {
222 	current_thread_info()->status &= ~TS_POLLING;
223 	/*
224 	 * TS_POLLING-cleared state must be visible before we
225 	 * test NEED_RESCHED:
226 	 */
227 	smp_mb();
228 	if (!need_resched())
229 		safe_halt();
230 	current_thread_info()->status |= TS_POLLING;
231 }
232 
233 static atomic_t c3_cpu_count;
234 
235 /* Common C-state entry for C2, C3, .. */
236 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
237 {
238 	if (cstate->space_id == ACPI_CSTATE_FFH) {
239 		/* Call into architectural FFH based C-state */
240 		acpi_processor_ffh_cstate_enter(cstate);
241 	} else {
242 		int unused;
243 		/* IO port based C-state */
244 		inb(cstate->address);
245 		/* Dummy wait op - must do something useless after P_LVL2 read
246 		   because chipsets cannot guarantee that STPCLK# signal
247 		   gets asserted in time to freeze execution properly. */
248 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
249 	}
250 }
251 
252 #ifdef ARCH_APICTIMER_STOPS_ON_C3
253 
254 /*
255  * Some BIOS implementations switch to C3 in the published C2 state.
256  * This seems to be a common problem on AMD boxen, but other vendors
257  * are affected too. We pick the most conservative approach: we assume
258  * that the local APIC stops in both C2 and C3.
259  */
260 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
261 				   struct acpi_processor_cx *cx)
262 {
263 	struct acpi_processor_power *pwr = &pr->power;
264 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
265 
266 	/*
267 	 * Check, if one of the previous states already marked the lapic
268 	 * unstable
269 	 */
270 	if (pwr->timer_broadcast_on_state < state)
271 		return;
272 
273 	if (cx->type >= type)
274 		pr->power.timer_broadcast_on_state = state;
275 }
276 
277 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
278 {
279 #ifdef CONFIG_GENERIC_CLOCKEVENTS
280 	unsigned long reason;
281 
282 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
283 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
284 
285 	clockevents_notify(reason, &pr->id);
286 #else
287 	cpumask_t mask = cpumask_of_cpu(pr->id);
288 
289 	if (pr->power.timer_broadcast_on_state < INT_MAX)
290 		on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
291 	else
292 		on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
293 #endif
294 }
295 
296 /* Power(C) State timer broadcast control */
297 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
298 				       struct acpi_processor_cx *cx,
299 				       int broadcast)
300 {
301 #ifdef CONFIG_GENERIC_CLOCKEVENTS
302 
303 	int state = cx - pr->power.states;
304 
305 	if (state >= pr->power.timer_broadcast_on_state) {
306 		unsigned long reason;
307 
308 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
309 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
310 		clockevents_notify(reason, &pr->id);
311 	}
312 #endif
313 }
314 
315 #else
316 
317 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
318 				   struct acpi_processor_cx *cstate) { }
319 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
320 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
321 				       struct acpi_processor_cx *cx,
322 				       int broadcast)
323 {
324 }
325 
326 #endif
327 
328 /*
329  * Suspend / resume control
330  */
331 static int acpi_idle_suspend;
332 
333 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
334 {
335 	acpi_idle_suspend = 1;
336 	return 0;
337 }
338 
339 int acpi_processor_resume(struct acpi_device * device)
340 {
341 	acpi_idle_suspend = 0;
342 	return 0;
343 }
344 
345 static void acpi_processor_idle(void)
346 {
347 	struct acpi_processor *pr = NULL;
348 	struct acpi_processor_cx *cx = NULL;
349 	struct acpi_processor_cx *next_state = NULL;
350 	int sleep_ticks = 0;
351 	u32 t1, t2 = 0;
352 
353 	/*
354 	 * Interrupts must be disabled during bus mastering calculations and
355 	 * for C2/C3 transitions.
356 	 */
357 	local_irq_disable();
358 
359 	pr = processors[smp_processor_id()];
360 	if (!pr) {
361 		local_irq_enable();
362 		return;
363 	}
364 
365 	/*
366 	 * Check whether we truly need to go idle, or should
367 	 * reschedule:
368 	 */
369 	if (unlikely(need_resched())) {
370 		local_irq_enable();
371 		return;
372 	}
373 
374 	cx = pr->power.state;
375 	if (!cx || acpi_idle_suspend) {
376 		if (pm_idle_save)
377 			pm_idle_save();
378 		else
379 			acpi_safe_halt();
380 		return;
381 	}
382 
383 	/*
384 	 * Check BM Activity
385 	 * -----------------
386 	 * Check for bus mastering activity (if required), record, and check
387 	 * for demotion.
388 	 */
389 	if (pr->flags.bm_check) {
390 		u32 bm_status = 0;
391 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
392 
393 		if (diff > 31)
394 			diff = 31;
395 
396 		pr->power.bm_activity <<= diff;
397 
398 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
399 		if (bm_status) {
400 			pr->power.bm_activity |= 0x1;
401 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
402 		}
403 		/*
404 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
405 		 * the true state of bus mastering activity; forcing us to
406 		 * manually check the BMIDEA bit of each IDE channel.
407 		 */
408 		else if (errata.piix4.bmisx) {
409 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
410 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
411 				pr->power.bm_activity |= 0x1;
412 		}
413 
414 		pr->power.bm_check_timestamp = jiffies;
415 
416 		/*
417 		 * If bus mastering is or was active this jiffy, demote
418 		 * to avoid a faulty transition.  Note that the processor
419 		 * won't enter a low-power state during this call (to this
420 		 * function) but should upon the next.
421 		 *
422 		 * TBD: A better policy might be to fallback to the demotion
423 		 *      state (use it for this quantum only) istead of
424 		 *      demoting -- and rely on duration as our sole demotion
425 		 *      qualification.  This may, however, introduce DMA
426 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
427 		 */
428 		if ((pr->power.bm_activity & 0x1) &&
429 		    cx->demotion.threshold.bm) {
430 			local_irq_enable();
431 			next_state = cx->demotion.state;
432 			goto end;
433 		}
434 	}
435 
436 #ifdef CONFIG_HOTPLUG_CPU
437 	/*
438 	 * Check for P_LVL2_UP flag before entering C2 and above on
439 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
440 	 * detection phase, to work cleanly with logical CPU hotplug.
441 	 */
442 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
443 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
444 		cx = &pr->power.states[ACPI_STATE_C1];
445 #endif
446 
447 	/*
448 	 * Sleep:
449 	 * ------
450 	 * Invoke the current Cx state to put the processor to sleep.
451 	 */
452 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
453 		current_thread_info()->status &= ~TS_POLLING;
454 		/*
455 		 * TS_POLLING-cleared state must be visible before we
456 		 * test NEED_RESCHED:
457 		 */
458 		smp_mb();
459 		if (need_resched()) {
460 			current_thread_info()->status |= TS_POLLING;
461 			local_irq_enable();
462 			return;
463 		}
464 	}
465 
466 	switch (cx->type) {
467 
468 	case ACPI_STATE_C1:
469 		/*
470 		 * Invoke C1.
471 		 * Use the appropriate idle routine, the one that would
472 		 * be used without acpi C-states.
473 		 */
474 		if (pm_idle_save)
475 			pm_idle_save();
476 		else
477 			acpi_safe_halt();
478 
479 		/*
480 		 * TBD: Can't get time duration while in C1, as resumes
481 		 *      go to an ISR rather than here.  Need to instrument
482 		 *      base interrupt handler.
483 		 *
484 		 * Note: the TSC better not stop in C1, sched_clock() will
485 		 *       skew otherwise.
486 		 */
487 		sleep_ticks = 0xFFFFFFFF;
488 		break;
489 
490 	case ACPI_STATE_C2:
491 		/* Get start time (ticks) */
492 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
493 		/* Tell the scheduler that we are going deep-idle: */
494 		sched_clock_idle_sleep_event();
495 		/* Invoke C2 */
496 		acpi_state_timer_broadcast(pr, cx, 1);
497 		acpi_cstate_enter(cx);
498 		/* Get end time (ticks) */
499 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
500 
501 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
502 		/* TSC halts in C2, so notify users */
503 		mark_tsc_unstable("possible TSC halt in C2");
504 #endif
505 		/* Compute time (ticks) that we were actually asleep */
506 		sleep_ticks = ticks_elapsed(t1, t2);
507 
508 		/* Tell the scheduler how much we idled: */
509 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
510 
511 		/* Re-enable interrupts */
512 		local_irq_enable();
513 		/* Do not account our idle-switching overhead: */
514 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
515 
516 		current_thread_info()->status |= TS_POLLING;
517 		acpi_state_timer_broadcast(pr, cx, 0);
518 		break;
519 
520 	case ACPI_STATE_C3:
521 		/*
522 		 * disable bus master
523 		 * bm_check implies we need ARB_DIS
524 		 * !bm_check implies we need cache flush
525 		 * bm_control implies whether we can do ARB_DIS
526 		 *
527 		 * That leaves a case where bm_check is set and bm_control is
528 		 * not set. In that case we cannot do much, we enter C3
529 		 * without doing anything.
530 		 */
531 		if (pr->flags.bm_check && pr->flags.bm_control) {
532 			if (atomic_inc_return(&c3_cpu_count) ==
533 			    num_online_cpus()) {
534 				/*
535 				 * All CPUs are trying to go to C3
536 				 * Disable bus master arbitration
537 				 */
538 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
539 			}
540 		} else if (!pr->flags.bm_check) {
541 			/* SMP with no shared cache... Invalidate cache  */
542 			ACPI_FLUSH_CPU_CACHE();
543 		}
544 
545 		/* Get start time (ticks) */
546 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
547 		/* Invoke C3 */
548 		acpi_state_timer_broadcast(pr, cx, 1);
549 		/* Tell the scheduler that we are going deep-idle: */
550 		sched_clock_idle_sleep_event();
551 		acpi_cstate_enter(cx);
552 		/* Get end time (ticks) */
553 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
554 		if (pr->flags.bm_check && pr->flags.bm_control) {
555 			/* Enable bus master arbitration */
556 			atomic_dec(&c3_cpu_count);
557 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
558 		}
559 
560 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
561 		/* TSC halts in C3, so notify users */
562 		mark_tsc_unstable("TSC halts in C3");
563 #endif
564 		/* Compute time (ticks) that we were actually asleep */
565 		sleep_ticks = ticks_elapsed(t1, t2);
566 		/* Tell the scheduler how much we idled: */
567 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
568 
569 		/* Re-enable interrupts */
570 		local_irq_enable();
571 		/* Do not account our idle-switching overhead: */
572 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
573 
574 		current_thread_info()->status |= TS_POLLING;
575 		acpi_state_timer_broadcast(pr, cx, 0);
576 		break;
577 
578 	default:
579 		local_irq_enable();
580 		return;
581 	}
582 	cx->usage++;
583 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
584 		cx->time += sleep_ticks;
585 
586 	next_state = pr->power.state;
587 
588 #ifdef CONFIG_HOTPLUG_CPU
589 	/* Don't do promotion/demotion */
590 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
591 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
592 		next_state = cx;
593 		goto end;
594 	}
595 #endif
596 
597 	/*
598 	 * Promotion?
599 	 * ----------
600 	 * Track the number of longs (time asleep is greater than threshold)
601 	 * and promote when the count threshold is reached.  Note that bus
602 	 * mastering activity may prevent promotions.
603 	 * Do not promote above max_cstate.
604 	 */
605 	if (cx->promotion.state &&
606 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
607 		if (sleep_ticks > cx->promotion.threshold.ticks &&
608 		  cx->promotion.state->latency <= system_latency_constraint()) {
609 			cx->promotion.count++;
610 			cx->demotion.count = 0;
611 			if (cx->promotion.count >=
612 			    cx->promotion.threshold.count) {
613 				if (pr->flags.bm_check) {
614 					if (!
615 					    (pr->power.bm_activity & cx->
616 					     promotion.threshold.bm)) {
617 						next_state =
618 						    cx->promotion.state;
619 						goto end;
620 					}
621 				} else {
622 					next_state = cx->promotion.state;
623 					goto end;
624 				}
625 			}
626 		}
627 	}
628 
629 	/*
630 	 * Demotion?
631 	 * ---------
632 	 * Track the number of shorts (time asleep is less than time threshold)
633 	 * and demote when the usage threshold is reached.
634 	 */
635 	if (cx->demotion.state) {
636 		if (sleep_ticks < cx->demotion.threshold.ticks) {
637 			cx->demotion.count++;
638 			cx->promotion.count = 0;
639 			if (cx->demotion.count >= cx->demotion.threshold.count) {
640 				next_state = cx->demotion.state;
641 				goto end;
642 			}
643 		}
644 	}
645 
646       end:
647 	/*
648 	 * Demote if current state exceeds max_cstate
649 	 * or if the latency of the current state is unacceptable
650 	 */
651 	if ((pr->power.state - pr->power.states) > max_cstate ||
652 		pr->power.state->latency > system_latency_constraint()) {
653 		if (cx->demotion.state)
654 			next_state = cx->demotion.state;
655 	}
656 
657 	/*
658 	 * New Cx State?
659 	 * -------------
660 	 * If we're going to start using a new Cx state we must clean up
661 	 * from the previous and prepare to use the new.
662 	 */
663 	if (next_state != pr->power.state)
664 		acpi_processor_power_activate(pr, next_state);
665 }
666 
667 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
668 {
669 	unsigned int i;
670 	unsigned int state_is_set = 0;
671 	struct acpi_processor_cx *lower = NULL;
672 	struct acpi_processor_cx *higher = NULL;
673 	struct acpi_processor_cx *cx;
674 
675 
676 	if (!pr)
677 		return -EINVAL;
678 
679 	/*
680 	 * This function sets the default Cx state policy (OS idle handler).
681 	 * Our scheme is to promote quickly to C2 but more conservatively
682 	 * to C3.  We're favoring C2  for its characteristics of low latency
683 	 * (quick response), good power savings, and ability to allow bus
684 	 * mastering activity.  Note that the Cx state policy is completely
685 	 * customizable and can be altered dynamically.
686 	 */
687 
688 	/* startup state */
689 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
690 		cx = &pr->power.states[i];
691 		if (!cx->valid)
692 			continue;
693 
694 		if (!state_is_set)
695 			pr->power.state = cx;
696 		state_is_set++;
697 		break;
698 	}
699 
700 	if (!state_is_set)
701 		return -ENODEV;
702 
703 	/* demotion */
704 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
705 		cx = &pr->power.states[i];
706 		if (!cx->valid)
707 			continue;
708 
709 		if (lower) {
710 			cx->demotion.state = lower;
711 			cx->demotion.threshold.ticks = cx->latency_ticks;
712 			cx->demotion.threshold.count = 1;
713 			if (cx->type == ACPI_STATE_C3)
714 				cx->demotion.threshold.bm = bm_history;
715 		}
716 
717 		lower = cx;
718 	}
719 
720 	/* promotion */
721 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
722 		cx = &pr->power.states[i];
723 		if (!cx->valid)
724 			continue;
725 
726 		if (higher) {
727 			cx->promotion.state = higher;
728 			cx->promotion.threshold.ticks = cx->latency_ticks;
729 			if (cx->type >= ACPI_STATE_C2)
730 				cx->promotion.threshold.count = 4;
731 			else
732 				cx->promotion.threshold.count = 10;
733 			if (higher->type == ACPI_STATE_C3)
734 				cx->promotion.threshold.bm = bm_history;
735 		}
736 
737 		higher = cx;
738 	}
739 
740 	return 0;
741 }
742 
743 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
744 {
745 
746 	if (!pr)
747 		return -EINVAL;
748 
749 	if (!pr->pblk)
750 		return -ENODEV;
751 
752 	/* if info is obtained from pblk/fadt, type equals state */
753 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
754 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
755 
756 #ifndef CONFIG_HOTPLUG_CPU
757 	/*
758 	 * Check for P_LVL2_UP flag before entering C2 and above on
759 	 * an SMP system.
760 	 */
761 	if ((num_online_cpus() > 1) &&
762 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
763 		return -ENODEV;
764 #endif
765 
766 	/* determine C2 and C3 address from pblk */
767 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
768 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
769 
770 	/* determine latencies from FADT */
771 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
772 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
773 
774 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
775 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
776 			  pr->power.states[ACPI_STATE_C2].address,
777 			  pr->power.states[ACPI_STATE_C3].address));
778 
779 	return 0;
780 }
781 
782 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
783 {
784 	if (!pr->power.states[ACPI_STATE_C1].valid) {
785 		/* set the first C-State to C1 */
786 		/* all processors need to support C1 */
787 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
788 		pr->power.states[ACPI_STATE_C1].valid = 1;
789 	}
790 	/* the C0 state only exists as a filler in our array */
791 	pr->power.states[ACPI_STATE_C0].valid = 1;
792 	return 0;
793 }
794 
795 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
796 {
797 	acpi_status status = 0;
798 	acpi_integer count;
799 	int current_count;
800 	int i;
801 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
802 	union acpi_object *cst;
803 
804 
805 	if (nocst)
806 		return -ENODEV;
807 
808 	current_count = 0;
809 
810 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
811 	if (ACPI_FAILURE(status)) {
812 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
813 		return -ENODEV;
814 	}
815 
816 	cst = buffer.pointer;
817 
818 	/* There must be at least 2 elements */
819 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
820 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
821 		status = -EFAULT;
822 		goto end;
823 	}
824 
825 	count = cst->package.elements[0].integer.value;
826 
827 	/* Validate number of power states. */
828 	if (count < 1 || count != cst->package.count - 1) {
829 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
830 		status = -EFAULT;
831 		goto end;
832 	}
833 
834 	/* Tell driver that at least _CST is supported. */
835 	pr->flags.has_cst = 1;
836 
837 	for (i = 1; i <= count; i++) {
838 		union acpi_object *element;
839 		union acpi_object *obj;
840 		struct acpi_power_register *reg;
841 		struct acpi_processor_cx cx;
842 
843 		memset(&cx, 0, sizeof(cx));
844 
845 		element = &(cst->package.elements[i]);
846 		if (element->type != ACPI_TYPE_PACKAGE)
847 			continue;
848 
849 		if (element->package.count != 4)
850 			continue;
851 
852 		obj = &(element->package.elements[0]);
853 
854 		if (obj->type != ACPI_TYPE_BUFFER)
855 			continue;
856 
857 		reg = (struct acpi_power_register *)obj->buffer.pointer;
858 
859 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
860 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
861 			continue;
862 
863 		/* There should be an easy way to extract an integer... */
864 		obj = &(element->package.elements[1]);
865 		if (obj->type != ACPI_TYPE_INTEGER)
866 			continue;
867 
868 		cx.type = obj->integer.value;
869 		/*
870 		 * Some buggy BIOSes won't list C1 in _CST -
871 		 * Let acpi_processor_get_power_info_default() handle them later
872 		 */
873 		if (i == 1 && cx.type != ACPI_STATE_C1)
874 			current_count++;
875 
876 		cx.address = reg->address;
877 		cx.index = current_count + 1;
878 
879 		cx.space_id = ACPI_CSTATE_SYSTEMIO;
880 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
881 			if (acpi_processor_ffh_cstate_probe
882 					(pr->id, &cx, reg) == 0) {
883 				cx.space_id = ACPI_CSTATE_FFH;
884 			} else if (cx.type != ACPI_STATE_C1) {
885 				/*
886 				 * C1 is a special case where FIXED_HARDWARE
887 				 * can be handled in non-MWAIT way as well.
888 				 * In that case, save this _CST entry info.
889 				 * That is, we retain space_id of SYSTEM_IO for
890 				 * halt based C1.
891 				 * Otherwise, ignore this info and continue.
892 				 */
893 				continue;
894 			}
895 		}
896 
897 		obj = &(element->package.elements[2]);
898 		if (obj->type != ACPI_TYPE_INTEGER)
899 			continue;
900 
901 		cx.latency = obj->integer.value;
902 
903 		obj = &(element->package.elements[3]);
904 		if (obj->type != ACPI_TYPE_INTEGER)
905 			continue;
906 
907 		cx.power = obj->integer.value;
908 
909 		current_count++;
910 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
911 
912 		/*
913 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
914 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
915 		 */
916 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
917 			printk(KERN_WARNING
918 			       "Limiting number of power states to max (%d)\n",
919 			       ACPI_PROCESSOR_MAX_POWER);
920 			printk(KERN_WARNING
921 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
922 			break;
923 		}
924 	}
925 
926 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
927 			  current_count));
928 
929 	/* Validate number of power states discovered */
930 	if (current_count < 2)
931 		status = -EFAULT;
932 
933       end:
934 	kfree(buffer.pointer);
935 
936 	return status;
937 }
938 
939 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
940 {
941 
942 	if (!cx->address)
943 		return;
944 
945 	/*
946 	 * C2 latency must be less than or equal to 100
947 	 * microseconds.
948 	 */
949 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
950 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
951 				  "latency too large [%d]\n", cx->latency));
952 		return;
953 	}
954 
955 	/*
956 	 * Otherwise we've met all of our C2 requirements.
957 	 * Normalize the C2 latency to expidite policy
958 	 */
959 	cx->valid = 1;
960 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
961 
962 	return;
963 }
964 
965 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
966 					   struct acpi_processor_cx *cx)
967 {
968 	static int bm_check_flag;
969 
970 
971 	if (!cx->address)
972 		return;
973 
974 	/*
975 	 * C3 latency must be less than or equal to 1000
976 	 * microseconds.
977 	 */
978 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
979 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
980 				  "latency too large [%d]\n", cx->latency));
981 		return;
982 	}
983 
984 	/*
985 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
986 	 * DMA transfers are used by any ISA device to avoid livelock.
987 	 * Note that we could disable Type-F DMA (as recommended by
988 	 * the erratum), but this is known to disrupt certain ISA
989 	 * devices thus we take the conservative approach.
990 	 */
991 	else if (errata.piix4.fdma) {
992 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
993 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
994 		return;
995 	}
996 
997 	/* All the logic here assumes flags.bm_check is same across all CPUs */
998 	if (!bm_check_flag) {
999 		/* Determine whether bm_check is needed based on CPU  */
1000 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1001 		bm_check_flag = pr->flags.bm_check;
1002 	} else {
1003 		pr->flags.bm_check = bm_check_flag;
1004 	}
1005 
1006 	if (pr->flags.bm_check) {
1007 		if (!pr->flags.bm_control) {
1008 			if (pr->flags.has_cst != 1) {
1009 				/* bus mastering control is necessary */
1010 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1011 					"C3 support requires BM control\n"));
1012 				return;
1013 			} else {
1014 				/* Here we enter C3 without bus mastering */
1015 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1016 					"C3 support without BM control\n"));
1017 			}
1018 		}
1019 	} else {
1020 		/*
1021 		 * WBINVD should be set in fadt, for C3 state to be
1022 		 * supported on when bm_check is not required.
1023 		 */
1024 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1025 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1026 					  "Cache invalidation should work properly"
1027 					  " for C3 to be enabled on SMP systems\n"));
1028 			return;
1029 		}
1030 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1031 	}
1032 
1033 	/*
1034 	 * Otherwise we've met all of our C3 requirements.
1035 	 * Normalize the C3 latency to expidite policy.  Enable
1036 	 * checking of bus mastering status (bm_check) so we can
1037 	 * use this in our C3 policy
1038 	 */
1039 	cx->valid = 1;
1040 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1041 
1042 	return;
1043 }
1044 
1045 static int acpi_processor_power_verify(struct acpi_processor *pr)
1046 {
1047 	unsigned int i;
1048 	unsigned int working = 0;
1049 
1050 	pr->power.timer_broadcast_on_state = INT_MAX;
1051 
1052 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1053 		struct acpi_processor_cx *cx = &pr->power.states[i];
1054 
1055 		switch (cx->type) {
1056 		case ACPI_STATE_C1:
1057 			cx->valid = 1;
1058 			break;
1059 
1060 		case ACPI_STATE_C2:
1061 			acpi_processor_power_verify_c2(cx);
1062 			if (cx->valid)
1063 				acpi_timer_check_state(i, pr, cx);
1064 			break;
1065 
1066 		case ACPI_STATE_C3:
1067 			acpi_processor_power_verify_c3(pr, cx);
1068 			if (cx->valid)
1069 				acpi_timer_check_state(i, pr, cx);
1070 			break;
1071 		}
1072 
1073 		if (cx->valid)
1074 			working++;
1075 	}
1076 
1077 	acpi_propagate_timer_broadcast(pr);
1078 
1079 	return (working);
1080 }
1081 
1082 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1083 {
1084 	unsigned int i;
1085 	int result;
1086 
1087 
1088 	/* NOTE: the idle thread may not be running while calling
1089 	 * this function */
1090 
1091 	/* Zero initialize all the C-states info. */
1092 	memset(pr->power.states, 0, sizeof(pr->power.states));
1093 
1094 	result = acpi_processor_get_power_info_cst(pr);
1095 	if (result == -ENODEV)
1096 		result = acpi_processor_get_power_info_fadt(pr);
1097 
1098 	if (result)
1099 		return result;
1100 
1101 	acpi_processor_get_power_info_default(pr);
1102 
1103 	pr->power.count = acpi_processor_power_verify(pr);
1104 
1105 	/*
1106 	 * Set Default Policy
1107 	 * ------------------
1108 	 * Now that we know which states are supported, set the default
1109 	 * policy.  Note that this policy can be changed dynamically
1110 	 * (e.g. encourage deeper sleeps to conserve battery life when
1111 	 * not on AC).
1112 	 */
1113 	result = acpi_processor_set_power_policy(pr);
1114 	if (result)
1115 		return result;
1116 
1117 	/*
1118 	 * if one state of type C2 or C3 is available, mark this
1119 	 * CPU as being "idle manageable"
1120 	 */
1121 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1122 		if (pr->power.states[i].valid) {
1123 			pr->power.count = i;
1124 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1125 				pr->flags.power = 1;
1126 		}
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1133 {
1134 	int result = 0;
1135 
1136 
1137 	if (!pr)
1138 		return -EINVAL;
1139 
1140 	if (nocst) {
1141 		return -ENODEV;
1142 	}
1143 
1144 	if (!pr->flags.power_setup_done)
1145 		return -ENODEV;
1146 
1147 	/* Fall back to the default idle loop */
1148 	pm_idle = pm_idle_save;
1149 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1150 
1151 	pr->flags.power = 0;
1152 	result = acpi_processor_get_power_info(pr);
1153 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1154 		pm_idle = acpi_processor_idle;
1155 
1156 	return result;
1157 }
1158 
1159 /* proc interface */
1160 
1161 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1162 {
1163 	struct acpi_processor *pr = seq->private;
1164 	unsigned int i;
1165 
1166 
1167 	if (!pr)
1168 		goto end;
1169 
1170 	seq_printf(seq, "active state:            C%zd\n"
1171 		   "max_cstate:              C%d\n"
1172 		   "bus master activity:     %08x\n"
1173 		   "maximum allowed latency: %d usec\n",
1174 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1175 		   max_cstate, (unsigned)pr->power.bm_activity,
1176 		   system_latency_constraint());
1177 
1178 	seq_puts(seq, "states:\n");
1179 
1180 	for (i = 1; i <= pr->power.count; i++) {
1181 		seq_printf(seq, "   %cC%d:                  ",
1182 			   (&pr->power.states[i] ==
1183 			    pr->power.state ? '*' : ' '), i);
1184 
1185 		if (!pr->power.states[i].valid) {
1186 			seq_puts(seq, "<not supported>\n");
1187 			continue;
1188 		}
1189 
1190 		switch (pr->power.states[i].type) {
1191 		case ACPI_STATE_C1:
1192 			seq_printf(seq, "type[C1] ");
1193 			break;
1194 		case ACPI_STATE_C2:
1195 			seq_printf(seq, "type[C2] ");
1196 			break;
1197 		case ACPI_STATE_C3:
1198 			seq_printf(seq, "type[C3] ");
1199 			break;
1200 		default:
1201 			seq_printf(seq, "type[--] ");
1202 			break;
1203 		}
1204 
1205 		if (pr->power.states[i].promotion.state)
1206 			seq_printf(seq, "promotion[C%zd] ",
1207 				   (pr->power.states[i].promotion.state -
1208 				    pr->power.states));
1209 		else
1210 			seq_puts(seq, "promotion[--] ");
1211 
1212 		if (pr->power.states[i].demotion.state)
1213 			seq_printf(seq, "demotion[C%zd] ",
1214 				   (pr->power.states[i].demotion.state -
1215 				    pr->power.states));
1216 		else
1217 			seq_puts(seq, "demotion[--] ");
1218 
1219 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1220 			   pr->power.states[i].latency,
1221 			   pr->power.states[i].usage,
1222 			   (unsigned long long)pr->power.states[i].time);
1223 	}
1224 
1225       end:
1226 	return 0;
1227 }
1228 
1229 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1230 {
1231 	return single_open(file, acpi_processor_power_seq_show,
1232 			   PDE(inode)->data);
1233 }
1234 
1235 static const struct file_operations acpi_processor_power_fops = {
1236 	.open = acpi_processor_power_open_fs,
1237 	.read = seq_read,
1238 	.llseek = seq_lseek,
1239 	.release = single_release,
1240 };
1241 
1242 #ifdef CONFIG_SMP
1243 static void smp_callback(void *v)
1244 {
1245 	/* we already woke the CPU up, nothing more to do */
1246 }
1247 
1248 /*
1249  * This function gets called when a part of the kernel has a new latency
1250  * requirement.  This means we need to get all processors out of their C-state,
1251  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1252  * wakes them all right up.
1253  */
1254 static int acpi_processor_latency_notify(struct notifier_block *b,
1255 		unsigned long l, void *v)
1256 {
1257 	smp_call_function(smp_callback, NULL, 0, 1);
1258 	return NOTIFY_OK;
1259 }
1260 
1261 static struct notifier_block acpi_processor_latency_notifier = {
1262 	.notifier_call = acpi_processor_latency_notify,
1263 };
1264 #endif
1265 
1266 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1267 			      struct acpi_device *device)
1268 {
1269 	acpi_status status = 0;
1270 	static int first_run;
1271 	struct proc_dir_entry *entry = NULL;
1272 	unsigned int i;
1273 
1274 
1275 	if (!first_run) {
1276 		dmi_check_system(processor_power_dmi_table);
1277 		if (max_cstate < ACPI_C_STATES_MAX)
1278 			printk(KERN_NOTICE
1279 			       "ACPI: processor limited to max C-state %d\n",
1280 			       max_cstate);
1281 		first_run++;
1282 #ifdef CONFIG_SMP
1283 		register_latency_notifier(&acpi_processor_latency_notifier);
1284 #endif
1285 	}
1286 
1287 	if (!pr)
1288 		return -EINVAL;
1289 
1290 	if (acpi_gbl_FADT.cst_control && !nocst) {
1291 		status =
1292 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1293 		if (ACPI_FAILURE(status)) {
1294 			ACPI_EXCEPTION((AE_INFO, status,
1295 					"Notifying BIOS of _CST ability failed"));
1296 		}
1297 	}
1298 
1299 	acpi_processor_get_power_info(pr);
1300 
1301 	/*
1302 	 * Install the idle handler if processor power management is supported.
1303 	 * Note that we use previously set idle handler will be used on
1304 	 * platforms that only support C1.
1305 	 */
1306 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1307 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1308 		for (i = 1; i <= pr->power.count; i++)
1309 			if (pr->power.states[i].valid)
1310 				printk(" C%d[C%d]", i,
1311 				       pr->power.states[i].type);
1312 		printk(")\n");
1313 
1314 		if (pr->id == 0) {
1315 			pm_idle_save = pm_idle;
1316 			pm_idle = acpi_processor_idle;
1317 		}
1318 	}
1319 
1320 	/* 'power' [R] */
1321 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1322 				  S_IRUGO, acpi_device_dir(device));
1323 	if (!entry)
1324 		return -EIO;
1325 	else {
1326 		entry->proc_fops = &acpi_processor_power_fops;
1327 		entry->data = acpi_driver_data(device);
1328 		entry->owner = THIS_MODULE;
1329 	}
1330 
1331 	pr->flags.power_setup_done = 1;
1332 
1333 	return 0;
1334 }
1335 
1336 int acpi_processor_power_exit(struct acpi_processor *pr,
1337 			      struct acpi_device *device)
1338 {
1339 
1340 	pr->flags.power_setup_done = 0;
1341 
1342 	if (acpi_device_dir(device))
1343 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1344 				  acpi_device_dir(device));
1345 
1346 	/* Unregister the idle handler when processor #0 is removed. */
1347 	if (pr->id == 0) {
1348 		pm_idle = pm_idle_save;
1349 
1350 		/*
1351 		 * We are about to unload the current idle thread pm callback
1352 		 * (pm_idle), Wait for all processors to update cached/local
1353 		 * copies of pm_idle before proceeding.
1354 		 */
1355 		cpu_idle_wait();
1356 #ifdef CONFIG_SMP
1357 		unregister_latency_notifier(&acpi_processor_latency_notifier);
1358 #endif
1359 	}
1360 
1361 	return 0;
1362 }
1363