xref: /linux/drivers/acpi/processor_idle.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44 
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47 
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER	"power"
54 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59 
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62 
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98 	{set_max_cstate, "IBM ThinkPad R40e", {
99 					       DMI_MATCH(DMI_BIOS_VENDOR,
100 							 "IBM"),
101 					       DMI_MATCH(DMI_BIOS_VERSION,
102 							 "1SET60WW")},
103 	 (void *)1},
104 	{set_max_cstate, "Medion 41700", {
105 					  DMI_MATCH(DMI_BIOS_VENDOR,
106 						    "Phoenix Technologies LTD"),
107 					  DMI_MATCH(DMI_BIOS_VERSION,
108 						    "R01-A1J")}, (void *)1},
109 	{set_max_cstate, "Clevo 5600D", {
110 					 DMI_MATCH(DMI_BIOS_VENDOR,
111 						   "Phoenix Technologies LTD"),
112 					 DMI_MATCH(DMI_BIOS_VERSION,
113 						   "SHE845M0.86C.0013.D.0302131307")},
114 	 (void *)2},
115 	{},
116 };
117 
118 static inline u32 ticks_elapsed(u32 t1, u32 t2)
119 {
120 	if (t2 >= t1)
121 		return (t2 - t1);
122 	else if (!acpi_fadt.tmr_val_ext)
123 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
124 	else
125 		return ((0xFFFFFFFF - t1) + t2);
126 }
127 
128 static void
129 acpi_processor_power_activate(struct acpi_processor *pr,
130 			      struct acpi_processor_cx *new)
131 {
132 	struct acpi_processor_cx *old;
133 
134 	if (!pr || !new)
135 		return;
136 
137 	old = pr->power.state;
138 
139 	if (old)
140 		old->promotion.count = 0;
141 	new->demotion.count = 0;
142 
143 	/* Cleanup from old state. */
144 	if (old) {
145 		switch (old->type) {
146 		case ACPI_STATE_C3:
147 			/* Disable bus master reload */
148 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
149 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
150 						  ACPI_MTX_DO_NOT_LOCK);
151 			break;
152 		}
153 	}
154 
155 	/* Prepare to use new state. */
156 	switch (new->type) {
157 	case ACPI_STATE_C3:
158 		/* Enable bus master reload */
159 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
161 					  ACPI_MTX_DO_NOT_LOCK);
162 		break;
163 	}
164 
165 	pr->power.state = new;
166 
167 	return;
168 }
169 
170 static void acpi_safe_halt(void)
171 {
172 	clear_thread_flag(TIF_POLLING_NRFLAG);
173 	smp_mb__after_clear_bit();
174 	if (!need_resched())
175 		safe_halt();
176 	set_thread_flag(TIF_POLLING_NRFLAG);
177 }
178 
179 static atomic_t c3_cpu_count;
180 
181 static void acpi_processor_idle(void)
182 {
183 	struct acpi_processor *pr = NULL;
184 	struct acpi_processor_cx *cx = NULL;
185 	struct acpi_processor_cx *next_state = NULL;
186 	int sleep_ticks = 0;
187 	u32 t1, t2 = 0;
188 
189 	pr = processors[smp_processor_id()];
190 	if (!pr)
191 		return;
192 
193 	/*
194 	 * Interrupts must be disabled during bus mastering calculations and
195 	 * for C2/C3 transitions.
196 	 */
197 	local_irq_disable();
198 
199 	/*
200 	 * Check whether we truly need to go idle, or should
201 	 * reschedule:
202 	 */
203 	if (unlikely(need_resched())) {
204 		local_irq_enable();
205 		return;
206 	}
207 
208 	cx = pr->power.state;
209 	if (!cx) {
210 		if (pm_idle_save)
211 			pm_idle_save();
212 		else
213 			acpi_safe_halt();
214 		return;
215 	}
216 
217 	/*
218 	 * Check BM Activity
219 	 * -----------------
220 	 * Check for bus mastering activity (if required), record, and check
221 	 * for demotion.
222 	 */
223 	if (pr->flags.bm_check) {
224 		u32 bm_status = 0;
225 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
226 
227 		if (diff > 32)
228 			diff = 32;
229 
230 		while (diff) {
231 			/* if we didn't get called, assume there was busmaster activity */
232 			diff--;
233 			if (diff)
234 				pr->power.bm_activity |= 0x1;
235 			pr->power.bm_activity <<= 1;
236 		}
237 
238 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
239 				  &bm_status, ACPI_MTX_DO_NOT_LOCK);
240 		if (bm_status) {
241 			pr->power.bm_activity++;
242 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
243 					  1, ACPI_MTX_DO_NOT_LOCK);
244 		}
245 		/*
246 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
247 		 * the true state of bus mastering activity; forcing us to
248 		 * manually check the BMIDEA bit of each IDE channel.
249 		 */
250 		else if (errata.piix4.bmisx) {
251 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
252 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
253 				pr->power.bm_activity++;
254 		}
255 
256 		pr->power.bm_check_timestamp = jiffies;
257 
258 		/*
259 		 * Apply bus mastering demotion policy.  Automatically demote
260 		 * to avoid a faulty transition.  Note that the processor
261 		 * won't enter a low-power state during this call (to this
262 		 * funciton) but should upon the next.
263 		 *
264 		 * TBD: A better policy might be to fallback to the demotion
265 		 *      state (use it for this quantum only) istead of
266 		 *      demoting -- and rely on duration as our sole demotion
267 		 *      qualification.  This may, however, introduce DMA
268 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
269 		 */
270 		if (pr->power.bm_activity & cx->demotion.threshold.bm) {
271 			local_irq_enable();
272 			next_state = cx->demotion.state;
273 			goto end;
274 		}
275 	}
276 
277 	cx->usage++;
278 
279 #ifdef CONFIG_HOTPLUG_CPU
280 	/*
281 	 * Check for P_LVL2_UP flag before entering C2 and above on
282 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
283 	 * detection phase, to work cleanly with logical CPU hotplug.
284 	 */
285 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
286 	    !pr->flags.has_cst && acpi_fadt.plvl2_up)
287 		cx->type = ACPI_STATE_C1;
288 #endif
289 	/*
290 	 * Sleep:
291 	 * ------
292 	 * Invoke the current Cx state to put the processor to sleep.
293 	 */
294 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
295 		clear_thread_flag(TIF_POLLING_NRFLAG);
296 		smp_mb__after_clear_bit();
297 		if (need_resched()) {
298 			set_thread_flag(TIF_POLLING_NRFLAG);
299 			local_irq_enable();
300 			return;
301 		}
302 	}
303 
304 	switch (cx->type) {
305 
306 	case ACPI_STATE_C1:
307 		/*
308 		 * Invoke C1.
309 		 * Use the appropriate idle routine, the one that would
310 		 * be used without acpi C-states.
311 		 */
312 		if (pm_idle_save)
313 			pm_idle_save();
314 		else
315 			acpi_safe_halt();
316 
317 		/*
318 		 * TBD: Can't get time duration while in C1, as resumes
319 		 *      go to an ISR rather than here.  Need to instrument
320 		 *      base interrupt handler.
321 		 */
322 		sleep_ticks = 0xFFFFFFFF;
323 		break;
324 
325 	case ACPI_STATE_C2:
326 		/* Get start time (ticks) */
327 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
328 		/* Invoke C2 */
329 		inb(cx->address);
330 		/* Dummy op - must do something useless after P_LVL2 read */
331 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
332 		/* Get end time (ticks) */
333 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
334 		/* Re-enable interrupts */
335 		local_irq_enable();
336 		set_thread_flag(TIF_POLLING_NRFLAG);
337 		/* Compute time (ticks) that we were actually asleep */
338 		sleep_ticks =
339 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
340 		break;
341 
342 	case ACPI_STATE_C3:
343 
344 		if (pr->flags.bm_check) {
345 			if (atomic_inc_return(&c3_cpu_count) ==
346 			    num_online_cpus()) {
347 				/*
348 				 * All CPUs are trying to go to C3
349 				 * Disable bus master arbitration
350 				 */
351 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
352 						  ACPI_MTX_DO_NOT_LOCK);
353 			}
354 		} else {
355 			/* SMP with no shared cache... Invalidate cache  */
356 			ACPI_FLUSH_CPU_CACHE();
357 		}
358 
359 		/* Get start time (ticks) */
360 		t1 = inl(acpi_fadt.xpm_tmr_blk.address);
361 		/* Invoke C3 */
362 		inb(cx->address);
363 		/* Dummy op - must do something useless after P_LVL3 read */
364 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
365 		/* Get end time (ticks) */
366 		t2 = inl(acpi_fadt.xpm_tmr_blk.address);
367 		if (pr->flags.bm_check) {
368 			/* Enable bus master arbitration */
369 			atomic_dec(&c3_cpu_count);
370 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
371 					  ACPI_MTX_DO_NOT_LOCK);
372 		}
373 
374 		/* Re-enable interrupts */
375 		local_irq_enable();
376 		set_thread_flag(TIF_POLLING_NRFLAG);
377 		/* Compute time (ticks) that we were actually asleep */
378 		sleep_ticks =
379 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
380 		break;
381 
382 	default:
383 		local_irq_enable();
384 		return;
385 	}
386 
387 	next_state = pr->power.state;
388 
389 	/*
390 	 * Promotion?
391 	 * ----------
392 	 * Track the number of longs (time asleep is greater than threshold)
393 	 * and promote when the count threshold is reached.  Note that bus
394 	 * mastering activity may prevent promotions.
395 	 * Do not promote above max_cstate.
396 	 */
397 	if (cx->promotion.state &&
398 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
399 		if (sleep_ticks > cx->promotion.threshold.ticks) {
400 			cx->promotion.count++;
401 			cx->demotion.count = 0;
402 			if (cx->promotion.count >=
403 			    cx->promotion.threshold.count) {
404 				if (pr->flags.bm_check) {
405 					if (!
406 					    (pr->power.bm_activity & cx->
407 					     promotion.threshold.bm)) {
408 						next_state =
409 						    cx->promotion.state;
410 						goto end;
411 					}
412 				} else {
413 					next_state = cx->promotion.state;
414 					goto end;
415 				}
416 			}
417 		}
418 	}
419 
420 	/*
421 	 * Demotion?
422 	 * ---------
423 	 * Track the number of shorts (time asleep is less than time threshold)
424 	 * and demote when the usage threshold is reached.
425 	 */
426 	if (cx->demotion.state) {
427 		if (sleep_ticks < cx->demotion.threshold.ticks) {
428 			cx->demotion.count++;
429 			cx->promotion.count = 0;
430 			if (cx->demotion.count >= cx->demotion.threshold.count) {
431 				next_state = cx->demotion.state;
432 				goto end;
433 			}
434 		}
435 	}
436 
437       end:
438 	/*
439 	 * Demote if current state exceeds max_cstate
440 	 */
441 	if ((pr->power.state - pr->power.states) > max_cstate) {
442 		if (cx->demotion.state)
443 			next_state = cx->demotion.state;
444 	}
445 
446 	/*
447 	 * New Cx State?
448 	 * -------------
449 	 * If we're going to start using a new Cx state we must clean up
450 	 * from the previous and prepare to use the new.
451 	 */
452 	if (next_state != pr->power.state)
453 		acpi_processor_power_activate(pr, next_state);
454 }
455 
456 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
457 {
458 	unsigned int i;
459 	unsigned int state_is_set = 0;
460 	struct acpi_processor_cx *lower = NULL;
461 	struct acpi_processor_cx *higher = NULL;
462 	struct acpi_processor_cx *cx;
463 
464 	ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
465 
466 	if (!pr)
467 		return_VALUE(-EINVAL);
468 
469 	/*
470 	 * This function sets the default Cx state policy (OS idle handler).
471 	 * Our scheme is to promote quickly to C2 but more conservatively
472 	 * to C3.  We're favoring C2  for its characteristics of low latency
473 	 * (quick response), good power savings, and ability to allow bus
474 	 * mastering activity.  Note that the Cx state policy is completely
475 	 * customizable and can be altered dynamically.
476 	 */
477 
478 	/* startup state */
479 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
480 		cx = &pr->power.states[i];
481 		if (!cx->valid)
482 			continue;
483 
484 		if (!state_is_set)
485 			pr->power.state = cx;
486 		state_is_set++;
487 		break;
488 	}
489 
490 	if (!state_is_set)
491 		return_VALUE(-ENODEV);
492 
493 	/* demotion */
494 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
495 		cx = &pr->power.states[i];
496 		if (!cx->valid)
497 			continue;
498 
499 		if (lower) {
500 			cx->demotion.state = lower;
501 			cx->demotion.threshold.ticks = cx->latency_ticks;
502 			cx->demotion.threshold.count = 1;
503 			if (cx->type == ACPI_STATE_C3)
504 				cx->demotion.threshold.bm = bm_history;
505 		}
506 
507 		lower = cx;
508 	}
509 
510 	/* promotion */
511 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
512 		cx = &pr->power.states[i];
513 		if (!cx->valid)
514 			continue;
515 
516 		if (higher) {
517 			cx->promotion.state = higher;
518 			cx->promotion.threshold.ticks = cx->latency_ticks;
519 			if (cx->type >= ACPI_STATE_C2)
520 				cx->promotion.threshold.count = 4;
521 			else
522 				cx->promotion.threshold.count = 10;
523 			if (higher->type == ACPI_STATE_C3)
524 				cx->promotion.threshold.bm = bm_history;
525 		}
526 
527 		higher = cx;
528 	}
529 
530 	return_VALUE(0);
531 }
532 
533 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
534 {
535 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
536 
537 	if (!pr)
538 		return_VALUE(-EINVAL);
539 
540 	if (!pr->pblk)
541 		return_VALUE(-ENODEV);
542 
543 	memset(pr->power.states, 0, sizeof(pr->power.states));
544 
545 	/* if info is obtained from pblk/fadt, type equals state */
546 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
547 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
548 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
549 
550 	/* the C0 state only exists as a filler in our array,
551 	 * and all processors need to support C1 */
552 	pr->power.states[ACPI_STATE_C0].valid = 1;
553 	pr->power.states[ACPI_STATE_C1].valid = 1;
554 
555 #ifndef CONFIG_HOTPLUG_CPU
556 	/*
557 	 * Check for P_LVL2_UP flag before entering C2 and above on
558 	 * an SMP system.
559 	 */
560 	if ((num_online_cpus() > 1) && acpi_fadt.plvl2_up)
561 		return_VALUE(-ENODEV);
562 #endif
563 
564 	/* determine C2 and C3 address from pblk */
565 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
566 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
567 
568 	/* determine latencies from FADT */
569 	pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
570 	pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
571 
572 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
574 			  pr->power.states[ACPI_STATE_C2].address,
575 			  pr->power.states[ACPI_STATE_C3].address));
576 
577 	return_VALUE(0);
578 }
579 
580 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
581 {
582 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
583 
584 	memset(pr->power.states, 0, sizeof(pr->power.states));
585 
586 	/* if info is obtained from pblk/fadt, type equals state */
587 	pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
588 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
589 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
590 
591 	/* the C0 state only exists as a filler in our array,
592 	 * and all processors need to support C1 */
593 	pr->power.states[ACPI_STATE_C0].valid = 1;
594 	pr->power.states[ACPI_STATE_C1].valid = 1;
595 
596 	return_VALUE(0);
597 }
598 
599 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
600 {
601 	acpi_status status = 0;
602 	acpi_integer count;
603 	int i;
604 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
605 	union acpi_object *cst;
606 
607 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
608 
609 	if (nocst)
610 		return_VALUE(-ENODEV);
611 
612 	pr->power.count = 0;
613 	for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
614 		memset(&(pr->power.states[i]), 0,
615 		       sizeof(struct acpi_processor_cx));
616 
617 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
618 	if (ACPI_FAILURE(status)) {
619 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
620 		return_VALUE(-ENODEV);
621 	}
622 
623 	cst = (union acpi_object *)buffer.pointer;
624 
625 	/* There must be at least 2 elements */
626 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
627 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
628 				  "not enough elements in _CST\n"));
629 		status = -EFAULT;
630 		goto end;
631 	}
632 
633 	count = cst->package.elements[0].integer.value;
634 
635 	/* Validate number of power states. */
636 	if (count < 1 || count != cst->package.count - 1) {
637 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
638 				  "count given by _CST is not valid\n"));
639 		status = -EFAULT;
640 		goto end;
641 	}
642 
643 	/* We support up to ACPI_PROCESSOR_MAX_POWER. */
644 	if (count > ACPI_PROCESSOR_MAX_POWER) {
645 		printk(KERN_WARNING
646 		       "Limiting number of power states to max (%d)\n",
647 		       ACPI_PROCESSOR_MAX_POWER);
648 		printk(KERN_WARNING
649 		       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
650 		count = ACPI_PROCESSOR_MAX_POWER;
651 	}
652 
653 	/* Tell driver that at least _CST is supported. */
654 	pr->flags.has_cst = 1;
655 
656 	for (i = 1; i <= count; i++) {
657 		union acpi_object *element;
658 		union acpi_object *obj;
659 		struct acpi_power_register *reg;
660 		struct acpi_processor_cx cx;
661 
662 		memset(&cx, 0, sizeof(cx));
663 
664 		element = (union acpi_object *)&(cst->package.elements[i]);
665 		if (element->type != ACPI_TYPE_PACKAGE)
666 			continue;
667 
668 		if (element->package.count != 4)
669 			continue;
670 
671 		obj = (union acpi_object *)&(element->package.elements[0]);
672 
673 		if (obj->type != ACPI_TYPE_BUFFER)
674 			continue;
675 
676 		reg = (struct acpi_power_register *)obj->buffer.pointer;
677 
678 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
679 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
680 			continue;
681 
682 		cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
683 		    0 : reg->address;
684 
685 		/* There should be an easy way to extract an integer... */
686 		obj = (union acpi_object *)&(element->package.elements[1]);
687 		if (obj->type != ACPI_TYPE_INTEGER)
688 			continue;
689 
690 		cx.type = obj->integer.value;
691 
692 		if ((cx.type != ACPI_STATE_C1) &&
693 		    (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
694 			continue;
695 
696 		if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
697 			continue;
698 
699 		obj = (union acpi_object *)&(element->package.elements[2]);
700 		if (obj->type != ACPI_TYPE_INTEGER)
701 			continue;
702 
703 		cx.latency = obj->integer.value;
704 
705 		obj = (union acpi_object *)&(element->package.elements[3]);
706 		if (obj->type != ACPI_TYPE_INTEGER)
707 			continue;
708 
709 		cx.power = obj->integer.value;
710 
711 		(pr->power.count)++;
712 		memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
713 	}
714 
715 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
716 			  pr->power.count));
717 
718 	/* Validate number of power states discovered */
719 	if (pr->power.count < 2)
720 		status = -EFAULT;
721 
722       end:
723 	acpi_os_free(buffer.pointer);
724 
725 	return_VALUE(status);
726 }
727 
728 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
729 {
730 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
731 
732 	if (!cx->address)
733 		return_VOID;
734 
735 	/*
736 	 * C2 latency must be less than or equal to 100
737 	 * microseconds.
738 	 */
739 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
740 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
741 				  "latency too large [%d]\n", cx->latency));
742 		return_VOID;
743 	}
744 
745 	/*
746 	 * Otherwise we've met all of our C2 requirements.
747 	 * Normalize the C2 latency to expidite policy
748 	 */
749 	cx->valid = 1;
750 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
751 
752 	return_VOID;
753 }
754 
755 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
756 					   struct acpi_processor_cx *cx)
757 {
758 	static int bm_check_flag;
759 
760 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
761 
762 	if (!cx->address)
763 		return_VOID;
764 
765 	/*
766 	 * C3 latency must be less than or equal to 1000
767 	 * microseconds.
768 	 */
769 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
770 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
771 				  "latency too large [%d]\n", cx->latency));
772 		return_VOID;
773 	}
774 
775 	/*
776 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
777 	 * DMA transfers are used by any ISA device to avoid livelock.
778 	 * Note that we could disable Type-F DMA (as recommended by
779 	 * the erratum), but this is known to disrupt certain ISA
780 	 * devices thus we take the conservative approach.
781 	 */
782 	else if (errata.piix4.fdma) {
783 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
784 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
785 		return_VOID;
786 	}
787 
788 	/* All the logic here assumes flags.bm_check is same across all CPUs */
789 	if (!bm_check_flag) {
790 		/* Determine whether bm_check is needed based on CPU  */
791 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
792 		bm_check_flag = pr->flags.bm_check;
793 	} else {
794 		pr->flags.bm_check = bm_check_flag;
795 	}
796 
797 	if (pr->flags.bm_check) {
798 		/* bus mastering control is necessary */
799 		if (!pr->flags.bm_control) {
800 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
801 					  "C3 support requires bus mastering control\n"));
802 			return_VOID;
803 		}
804 	} else {
805 		/*
806 		 * WBINVD should be set in fadt, for C3 state to be
807 		 * supported on when bm_check is not required.
808 		 */
809 		if (acpi_fadt.wb_invd != 1) {
810 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
811 					  "Cache invalidation should work properly"
812 					  " for C3 to be enabled on SMP systems\n"));
813 			return_VOID;
814 		}
815 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
816 				  0, ACPI_MTX_DO_NOT_LOCK);
817 	}
818 
819 	/*
820 	 * Otherwise we've met all of our C3 requirements.
821 	 * Normalize the C3 latency to expidite policy.  Enable
822 	 * checking of bus mastering status (bm_check) so we can
823 	 * use this in our C3 policy
824 	 */
825 	cx->valid = 1;
826 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
827 
828 	return_VOID;
829 }
830 
831 static int acpi_processor_power_verify(struct acpi_processor *pr)
832 {
833 	unsigned int i;
834 	unsigned int working = 0;
835 
836 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
837 		struct acpi_processor_cx *cx = &pr->power.states[i];
838 
839 		switch (cx->type) {
840 		case ACPI_STATE_C1:
841 			cx->valid = 1;
842 			break;
843 
844 		case ACPI_STATE_C2:
845 			acpi_processor_power_verify_c2(cx);
846 			break;
847 
848 		case ACPI_STATE_C3:
849 			acpi_processor_power_verify_c3(pr, cx);
850 			break;
851 		}
852 
853 		if (cx->valid)
854 			working++;
855 	}
856 
857 	return (working);
858 }
859 
860 static int acpi_processor_get_power_info(struct acpi_processor *pr)
861 {
862 	unsigned int i;
863 	int result;
864 
865 	ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
866 
867 	/* NOTE: the idle thread may not be running while calling
868 	 * this function */
869 
870 	result = acpi_processor_get_power_info_cst(pr);
871 	if (result == -ENODEV)
872 		result = acpi_processor_get_power_info_fadt(pr);
873 
874 	if ((result) || (acpi_processor_power_verify(pr) < 2))
875 		result = acpi_processor_get_power_info_default_c1(pr);
876 
877 	/*
878 	 * Set Default Policy
879 	 * ------------------
880 	 * Now that we know which states are supported, set the default
881 	 * policy.  Note that this policy can be changed dynamically
882 	 * (e.g. encourage deeper sleeps to conserve battery life when
883 	 * not on AC).
884 	 */
885 	result = acpi_processor_set_power_policy(pr);
886 	if (result)
887 		return_VALUE(result);
888 
889 	/*
890 	 * if one state of type C2 or C3 is available, mark this
891 	 * CPU as being "idle manageable"
892 	 */
893 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
894 		if (pr->power.states[i].valid) {
895 			pr->power.count = i;
896 			if (pr->power.states[i].type >= ACPI_STATE_C2)
897 				pr->flags.power = 1;
898 		}
899 	}
900 
901 	return_VALUE(0);
902 }
903 
904 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
905 {
906 	int result = 0;
907 
908 	ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
909 
910 	if (!pr)
911 		return_VALUE(-EINVAL);
912 
913 	if (nocst) {
914 		return_VALUE(-ENODEV);
915 	}
916 
917 	if (!pr->flags.power_setup_done)
918 		return_VALUE(-ENODEV);
919 
920 	/* Fall back to the default idle loop */
921 	pm_idle = pm_idle_save;
922 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
923 
924 	pr->flags.power = 0;
925 	result = acpi_processor_get_power_info(pr);
926 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
927 		pm_idle = acpi_processor_idle;
928 
929 	return_VALUE(result);
930 }
931 
932 /* proc interface */
933 
934 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
935 {
936 	struct acpi_processor *pr = (struct acpi_processor *)seq->private;
937 	unsigned int i;
938 
939 	ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
940 
941 	if (!pr)
942 		goto end;
943 
944 	seq_printf(seq, "active state:            C%zd\n"
945 		   "max_cstate:              C%d\n"
946 		   "bus master activity:     %08x\n",
947 		   pr->power.state ? pr->power.state - pr->power.states : 0,
948 		   max_cstate, (unsigned)pr->power.bm_activity);
949 
950 	seq_puts(seq, "states:\n");
951 
952 	for (i = 1; i <= pr->power.count; i++) {
953 		seq_printf(seq, "   %cC%d:                  ",
954 			   (&pr->power.states[i] ==
955 			    pr->power.state ? '*' : ' '), i);
956 
957 		if (!pr->power.states[i].valid) {
958 			seq_puts(seq, "<not supported>\n");
959 			continue;
960 		}
961 
962 		switch (pr->power.states[i].type) {
963 		case ACPI_STATE_C1:
964 			seq_printf(seq, "type[C1] ");
965 			break;
966 		case ACPI_STATE_C2:
967 			seq_printf(seq, "type[C2] ");
968 			break;
969 		case ACPI_STATE_C3:
970 			seq_printf(seq, "type[C3] ");
971 			break;
972 		default:
973 			seq_printf(seq, "type[--] ");
974 			break;
975 		}
976 
977 		if (pr->power.states[i].promotion.state)
978 			seq_printf(seq, "promotion[C%zd] ",
979 				   (pr->power.states[i].promotion.state -
980 				    pr->power.states));
981 		else
982 			seq_puts(seq, "promotion[--] ");
983 
984 		if (pr->power.states[i].demotion.state)
985 			seq_printf(seq, "demotion[C%zd] ",
986 				   (pr->power.states[i].demotion.state -
987 				    pr->power.states));
988 		else
989 			seq_puts(seq, "demotion[--] ");
990 
991 		seq_printf(seq, "latency[%03d] usage[%08d]\n",
992 			   pr->power.states[i].latency,
993 			   pr->power.states[i].usage);
994 	}
995 
996       end:
997 	return_VALUE(0);
998 }
999 
1000 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1001 {
1002 	return single_open(file, acpi_processor_power_seq_show,
1003 			   PDE(inode)->data);
1004 }
1005 
1006 static struct file_operations acpi_processor_power_fops = {
1007 	.open = acpi_processor_power_open_fs,
1008 	.read = seq_read,
1009 	.llseek = seq_lseek,
1010 	.release = single_release,
1011 };
1012 
1013 int acpi_processor_power_init(struct acpi_processor *pr,
1014 			      struct acpi_device *device)
1015 {
1016 	acpi_status status = 0;
1017 	static int first_run = 0;
1018 	struct proc_dir_entry *entry = NULL;
1019 	unsigned int i;
1020 
1021 	ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1022 
1023 	if (!first_run) {
1024 		dmi_check_system(processor_power_dmi_table);
1025 		if (max_cstate < ACPI_C_STATES_MAX)
1026 			printk(KERN_NOTICE
1027 			       "ACPI: processor limited to max C-state %d\n",
1028 			       max_cstate);
1029 		first_run++;
1030 	}
1031 
1032 	if (!pr)
1033 		return_VALUE(-EINVAL);
1034 
1035 	if (acpi_fadt.cst_cnt && !nocst) {
1036 		status =
1037 		    acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1038 		if (ACPI_FAILURE(status)) {
1039 			ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1040 					  "Notifying BIOS of _CST ability failed\n"));
1041 		}
1042 	}
1043 
1044 	acpi_processor_power_init_pdc(&(pr->power), pr->id);
1045 	acpi_processor_set_pdc(pr, pr->power.pdc);
1046 	acpi_processor_get_power_info(pr);
1047 
1048 	/*
1049 	 * Install the idle handler if processor power management is supported.
1050 	 * Note that we use previously set idle handler will be used on
1051 	 * platforms that only support C1.
1052 	 */
1053 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1054 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1055 		for (i = 1; i <= pr->power.count; i++)
1056 			if (pr->power.states[i].valid)
1057 				printk(" C%d[C%d]", i,
1058 				       pr->power.states[i].type);
1059 		printk(")\n");
1060 
1061 		if (pr->id == 0) {
1062 			pm_idle_save = pm_idle;
1063 			pm_idle = acpi_processor_idle;
1064 		}
1065 	}
1066 
1067 	/* 'power' [R] */
1068 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1069 				  S_IRUGO, acpi_device_dir(device));
1070 	if (!entry)
1071 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1072 				  "Unable to create '%s' fs entry\n",
1073 				  ACPI_PROCESSOR_FILE_POWER));
1074 	else {
1075 		entry->proc_fops = &acpi_processor_power_fops;
1076 		entry->data = acpi_driver_data(device);
1077 		entry->owner = THIS_MODULE;
1078 	}
1079 
1080 	pr->flags.power_setup_done = 1;
1081 
1082 	return_VALUE(0);
1083 }
1084 
1085 int acpi_processor_power_exit(struct acpi_processor *pr,
1086 			      struct acpi_device *device)
1087 {
1088 	ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1089 
1090 	pr->flags.power_setup_done = 0;
1091 
1092 	if (acpi_device_dir(device))
1093 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1094 				  acpi_device_dir(device));
1095 
1096 	/* Unregister the idle handler when processor #0 is removed. */
1097 	if (pr->id == 0) {
1098 		pm_idle = pm_idle_save;
1099 
1100 		/*
1101 		 * We are about to unload the current idle thread pm callback
1102 		 * (pm_idle), Wait for all processors to update cached/local
1103 		 * copies of pm_idle before proceeding.
1104 		 */
1105 		cpu_idle_wait();
1106 	}
1107 
1108 	return_VALUE(0);
1109 }
1110