xref: /linux/drivers/acpi/processor_idle.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61 
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86 
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98 
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 
101 #else	/* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105 
106 /*
107  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108  * For now disable this. Probably a bug somewhere else.
109  *
110  * To skip this limit, boot/load with a large max_cstate limit.
111  */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 		return 0;
116 
117 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120 
121 	max_cstate = (long)id->driver_data;
122 
123 	return 0;
124 }
125 
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127    callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 	{ set_max_cstate, "IBM ThinkPad R40e", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 	{ set_max_cstate, "IBM ThinkPad R40e", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 	{ set_max_cstate, "IBM ThinkPad R40e", {
166 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 	{ set_max_cstate, "IBM ThinkPad R40e", {
169 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 	{ set_max_cstate, "IBM ThinkPad R40e", {
172 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 	{ set_max_cstate, "IBM ThinkPad R40e", {
175 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 	{ set_max_cstate, "Medion 41700", {
178 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 	{ set_max_cstate, "Clevo 5600D", {
181 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 	 (void *)2},
184 	{},
185 };
186 
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 	if (t2 >= t1)
190 		return (t2 - t1);
191 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 	else
194 		return ((0xFFFFFFFF - t1) + t2);
195 }
196 
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 	if (t2 >= t1)
200 		return PM_TIMER_TICKS_TO_US(t2 - t1);
201 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 	else
204 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206 
207 /*
208  * Callers should disable interrupts before the call and enable
209  * interrupts after return.
210  */
211 static void acpi_safe_halt(void)
212 {
213 	current_thread_info()->status &= ~TS_POLLING;
214 	/*
215 	 * TS_POLLING-cleared state must be visible before we
216 	 * test NEED_RESCHED:
217 	 */
218 	smp_mb();
219 	if (!need_resched()) {
220 		safe_halt();
221 		local_irq_disable();
222 	}
223 	current_thread_info()->status |= TS_POLLING;
224 }
225 
226 #ifndef CONFIG_CPU_IDLE
227 
228 static void
229 acpi_processor_power_activate(struct acpi_processor *pr,
230 			      struct acpi_processor_cx *new)
231 {
232 	struct acpi_processor_cx *old;
233 
234 	if (!pr || !new)
235 		return;
236 
237 	old = pr->power.state;
238 
239 	if (old)
240 		old->promotion.count = 0;
241 	new->demotion.count = 0;
242 
243 	/* Cleanup from old state. */
244 	if (old) {
245 		switch (old->type) {
246 		case ACPI_STATE_C3:
247 			/* Disable bus master reload */
248 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
249 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
250 			break;
251 		}
252 	}
253 
254 	/* Prepare to use new state. */
255 	switch (new->type) {
256 	case ACPI_STATE_C3:
257 		/* Enable bus master reload */
258 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
259 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
260 		break;
261 	}
262 
263 	pr->power.state = new;
264 
265 	return;
266 }
267 
268 static atomic_t c3_cpu_count;
269 
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
272 {
273 	/* Don't trace irqs off for idle */
274 	stop_critical_timings();
275 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
276 		/* Call into architectural FFH based C-state */
277 		acpi_processor_ffh_cstate_enter(cstate);
278 	} else {
279 		int unused;
280 		/* IO port based C-state */
281 		inb(cstate->address);
282 		/* Dummy wait op - must do something useless after P_LVL2 read
283 		   because chipsets cannot guarantee that STPCLK# signal
284 		   gets asserted in time to freeze execution properly. */
285 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
286 	}
287 	start_critical_timings();
288 }
289 #endif /* !CONFIG_CPU_IDLE */
290 
291 #ifdef ARCH_APICTIMER_STOPS_ON_C3
292 
293 /*
294  * Some BIOS implementations switch to C3 in the published C2 state.
295  * This seems to be a common problem on AMD boxen, but other vendors
296  * are affected too. We pick the most conservative approach: we assume
297  * that the local APIC stops in both C2 and C3.
298  */
299 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
300 				   struct acpi_processor_cx *cx)
301 {
302 	struct acpi_processor_power *pwr = &pr->power;
303 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
304 
305 	/*
306 	 * Check, if one of the previous states already marked the lapic
307 	 * unstable
308 	 */
309 	if (pwr->timer_broadcast_on_state < state)
310 		return;
311 
312 	if (cx->type >= type)
313 		pr->power.timer_broadcast_on_state = state;
314 }
315 
316 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
317 {
318 	unsigned long reason;
319 
320 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
321 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
322 
323 	clockevents_notify(reason, &pr->id);
324 }
325 
326 /* Power(C) State timer broadcast control */
327 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
328 				       struct acpi_processor_cx *cx,
329 				       int broadcast)
330 {
331 	int state = cx - pr->power.states;
332 
333 	if (state >= pr->power.timer_broadcast_on_state) {
334 		unsigned long reason;
335 
336 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
337 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
338 		clockevents_notify(reason, &pr->id);
339 	}
340 }
341 
342 #else
343 
344 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
345 				   struct acpi_processor_cx *cstate) { }
346 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
347 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
348 				       struct acpi_processor_cx *cx,
349 				       int broadcast)
350 {
351 }
352 
353 #endif
354 
355 /*
356  * Suspend / resume control
357  */
358 static int acpi_idle_suspend;
359 
360 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
361 {
362 	acpi_idle_suspend = 1;
363 	return 0;
364 }
365 
366 int acpi_processor_resume(struct acpi_device * device)
367 {
368 	acpi_idle_suspend = 0;
369 	return 0;
370 }
371 
372 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
373 static int tsc_halts_in_c(int state)
374 {
375 	switch (boot_cpu_data.x86_vendor) {
376 	case X86_VENDOR_AMD:
377 		/*
378 		 * AMD Fam10h TSC will tick in all
379 		 * C/P/S0/S1 states when this bit is set.
380 		 */
381 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
382 			return 0;
383 		/*FALL THROUGH*/
384 	case X86_VENDOR_INTEL:
385 		/* Several cases known where TSC halts in C2 too */
386 	default:
387 		return state > ACPI_STATE_C1;
388 	}
389 }
390 #endif
391 
392 #ifndef CONFIG_CPU_IDLE
393 static void acpi_processor_idle(void)
394 {
395 	struct acpi_processor *pr = NULL;
396 	struct acpi_processor_cx *cx = NULL;
397 	struct acpi_processor_cx *next_state = NULL;
398 	int sleep_ticks = 0;
399 	u32 t1, t2 = 0;
400 
401 	/*
402 	 * Interrupts must be disabled during bus mastering calculations and
403 	 * for C2/C3 transitions.
404 	 */
405 	local_irq_disable();
406 
407 	pr = __get_cpu_var(processors);
408 	if (!pr) {
409 		local_irq_enable();
410 		return;
411 	}
412 
413 	/*
414 	 * Check whether we truly need to go idle, or should
415 	 * reschedule:
416 	 */
417 	if (unlikely(need_resched())) {
418 		local_irq_enable();
419 		return;
420 	}
421 
422 	cx = pr->power.state;
423 	if (!cx || acpi_idle_suspend) {
424 		if (pm_idle_save) {
425 			pm_idle_save(); /* enables IRQs */
426 		} else {
427 			acpi_safe_halt();
428 			local_irq_enable();
429 		}
430 
431 		return;
432 	}
433 
434 	/*
435 	 * Check BM Activity
436 	 * -----------------
437 	 * Check for bus mastering activity (if required), record, and check
438 	 * for demotion.
439 	 */
440 	if (pr->flags.bm_check) {
441 		u32 bm_status = 0;
442 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
443 
444 		if (diff > 31)
445 			diff = 31;
446 
447 		pr->power.bm_activity <<= diff;
448 
449 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
450 		if (bm_status) {
451 			pr->power.bm_activity |= 0x1;
452 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
453 		}
454 		/*
455 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
456 		 * the true state of bus mastering activity; forcing us to
457 		 * manually check the BMIDEA bit of each IDE channel.
458 		 */
459 		else if (errata.piix4.bmisx) {
460 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
461 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
462 				pr->power.bm_activity |= 0x1;
463 		}
464 
465 		pr->power.bm_check_timestamp = jiffies;
466 
467 		/*
468 		 * If bus mastering is or was active this jiffy, demote
469 		 * to avoid a faulty transition.  Note that the processor
470 		 * won't enter a low-power state during this call (to this
471 		 * function) but should upon the next.
472 		 *
473 		 * TBD: A better policy might be to fallback to the demotion
474 		 *      state (use it for this quantum only) istead of
475 		 *      demoting -- and rely on duration as our sole demotion
476 		 *      qualification.  This may, however, introduce DMA
477 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
478 		 */
479 		if ((pr->power.bm_activity & 0x1) &&
480 		    cx->demotion.threshold.bm) {
481 			local_irq_enable();
482 			next_state = cx->demotion.state;
483 			goto end;
484 		}
485 	}
486 
487 #ifdef CONFIG_HOTPLUG_CPU
488 	/*
489 	 * Check for P_LVL2_UP flag before entering C2 and above on
490 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
491 	 * detection phase, to work cleanly with logical CPU hotplug.
492 	 */
493 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
494 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
495 		cx = &pr->power.states[ACPI_STATE_C1];
496 #endif
497 
498 	/*
499 	 * Sleep:
500 	 * ------
501 	 * Invoke the current Cx state to put the processor to sleep.
502 	 */
503 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
504 		current_thread_info()->status &= ~TS_POLLING;
505 		/*
506 		 * TS_POLLING-cleared state must be visible before we
507 		 * test NEED_RESCHED:
508 		 */
509 		smp_mb();
510 		if (need_resched()) {
511 			current_thread_info()->status |= TS_POLLING;
512 			local_irq_enable();
513 			return;
514 		}
515 	}
516 
517 	switch (cx->type) {
518 
519 	case ACPI_STATE_C1:
520 		/*
521 		 * Invoke C1.
522 		 * Use the appropriate idle routine, the one that would
523 		 * be used without acpi C-states.
524 		 */
525 		if (pm_idle_save) {
526 			pm_idle_save(); /* enables IRQs */
527 		} else {
528 			acpi_safe_halt();
529 			local_irq_enable();
530 		}
531 
532 		/*
533 		 * TBD: Can't get time duration while in C1, as resumes
534 		 *      go to an ISR rather than here.  Need to instrument
535 		 *      base interrupt handler.
536 		 *
537 		 * Note: the TSC better not stop in C1, sched_clock() will
538 		 *       skew otherwise.
539 		 */
540 		sleep_ticks = 0xFFFFFFFF;
541 
542 		break;
543 
544 	case ACPI_STATE_C2:
545 		/* Get start time (ticks) */
546 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
547 		/* Tell the scheduler that we are going deep-idle: */
548 		sched_clock_idle_sleep_event();
549 		/* Invoke C2 */
550 		acpi_state_timer_broadcast(pr, cx, 1);
551 		acpi_cstate_enter(cx);
552 		/* Get end time (ticks) */
553 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
554 
555 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
556 		/* TSC halts in C2, so notify users */
557 		if (tsc_halts_in_c(ACPI_STATE_C2))
558 			mark_tsc_unstable("possible TSC halt in C2");
559 #endif
560 		/* Compute time (ticks) that we were actually asleep */
561 		sleep_ticks = ticks_elapsed(t1, t2);
562 
563 		/* Tell the scheduler how much we idled: */
564 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
565 
566 		/* Re-enable interrupts */
567 		local_irq_enable();
568 		/* Do not account our idle-switching overhead: */
569 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
570 
571 		current_thread_info()->status |= TS_POLLING;
572 		acpi_state_timer_broadcast(pr, cx, 0);
573 		break;
574 
575 	case ACPI_STATE_C3:
576 		acpi_unlazy_tlb(smp_processor_id());
577 		/*
578 		 * Must be done before busmaster disable as we might
579 		 * need to access HPET !
580 		 */
581 		acpi_state_timer_broadcast(pr, cx, 1);
582 		/*
583 		 * disable bus master
584 		 * bm_check implies we need ARB_DIS
585 		 * !bm_check implies we need cache flush
586 		 * bm_control implies whether we can do ARB_DIS
587 		 *
588 		 * That leaves a case where bm_check is set and bm_control is
589 		 * not set. In that case we cannot do much, we enter C3
590 		 * without doing anything.
591 		 */
592 		if (pr->flags.bm_check && pr->flags.bm_control) {
593 			if (atomic_inc_return(&c3_cpu_count) ==
594 			    num_online_cpus()) {
595 				/*
596 				 * All CPUs are trying to go to C3
597 				 * Disable bus master arbitration
598 				 */
599 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
600 			}
601 		} else if (!pr->flags.bm_check) {
602 			/* SMP with no shared cache... Invalidate cache  */
603 			ACPI_FLUSH_CPU_CACHE();
604 		}
605 
606 		/* Get start time (ticks) */
607 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
608 		/* Invoke C3 */
609 		/* Tell the scheduler that we are going deep-idle: */
610 		sched_clock_idle_sleep_event();
611 		acpi_cstate_enter(cx);
612 		/* Get end time (ticks) */
613 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
614 		if (pr->flags.bm_check && pr->flags.bm_control) {
615 			/* Enable bus master arbitration */
616 			atomic_dec(&c3_cpu_count);
617 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
618 		}
619 
620 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
621 		/* TSC halts in C3, so notify users */
622 		if (tsc_halts_in_c(ACPI_STATE_C3))
623 			mark_tsc_unstable("TSC halts in C3");
624 #endif
625 		/* Compute time (ticks) that we were actually asleep */
626 		sleep_ticks = ticks_elapsed(t1, t2);
627 		/* Tell the scheduler how much we idled: */
628 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
629 
630 		/* Re-enable interrupts */
631 		local_irq_enable();
632 		/* Do not account our idle-switching overhead: */
633 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
634 
635 		current_thread_info()->status |= TS_POLLING;
636 		acpi_state_timer_broadcast(pr, cx, 0);
637 		break;
638 
639 	default:
640 		local_irq_enable();
641 		return;
642 	}
643 	cx->usage++;
644 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
645 		cx->time += sleep_ticks;
646 
647 	next_state = pr->power.state;
648 
649 #ifdef CONFIG_HOTPLUG_CPU
650 	/* Don't do promotion/demotion */
651 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
652 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
653 		next_state = cx;
654 		goto end;
655 	}
656 #endif
657 
658 	/*
659 	 * Promotion?
660 	 * ----------
661 	 * Track the number of longs (time asleep is greater than threshold)
662 	 * and promote when the count threshold is reached.  Note that bus
663 	 * mastering activity may prevent promotions.
664 	 * Do not promote above max_cstate.
665 	 */
666 	if (cx->promotion.state &&
667 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
668 		if (sleep_ticks > cx->promotion.threshold.ticks &&
669 		  cx->promotion.state->latency <=
670 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
671 			cx->promotion.count++;
672 			cx->demotion.count = 0;
673 			if (cx->promotion.count >=
674 			    cx->promotion.threshold.count) {
675 				if (pr->flags.bm_check) {
676 					if (!
677 					    (pr->power.bm_activity & cx->
678 					     promotion.threshold.bm)) {
679 						next_state =
680 						    cx->promotion.state;
681 						goto end;
682 					}
683 				} else {
684 					next_state = cx->promotion.state;
685 					goto end;
686 				}
687 			}
688 		}
689 	}
690 
691 	/*
692 	 * Demotion?
693 	 * ---------
694 	 * Track the number of shorts (time asleep is less than time threshold)
695 	 * and demote when the usage threshold is reached.
696 	 */
697 	if (cx->demotion.state) {
698 		if (sleep_ticks < cx->demotion.threshold.ticks) {
699 			cx->demotion.count++;
700 			cx->promotion.count = 0;
701 			if (cx->demotion.count >= cx->demotion.threshold.count) {
702 				next_state = cx->demotion.state;
703 				goto end;
704 			}
705 		}
706 	}
707 
708       end:
709 	/*
710 	 * Demote if current state exceeds max_cstate
711 	 * or if the latency of the current state is unacceptable
712 	 */
713 	if ((pr->power.state - pr->power.states) > max_cstate ||
714 		pr->power.state->latency >
715 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
716 		if (cx->demotion.state)
717 			next_state = cx->demotion.state;
718 	}
719 
720 	/*
721 	 * New Cx State?
722 	 * -------------
723 	 * If we're going to start using a new Cx state we must clean up
724 	 * from the previous and prepare to use the new.
725 	 */
726 	if (next_state != pr->power.state)
727 		acpi_processor_power_activate(pr, next_state);
728 }
729 
730 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
731 {
732 	unsigned int i;
733 	unsigned int state_is_set = 0;
734 	struct acpi_processor_cx *lower = NULL;
735 	struct acpi_processor_cx *higher = NULL;
736 	struct acpi_processor_cx *cx;
737 
738 
739 	if (!pr)
740 		return -EINVAL;
741 
742 	/*
743 	 * This function sets the default Cx state policy (OS idle handler).
744 	 * Our scheme is to promote quickly to C2 but more conservatively
745 	 * to C3.  We're favoring C2  for its characteristics of low latency
746 	 * (quick response), good power savings, and ability to allow bus
747 	 * mastering activity.  Note that the Cx state policy is completely
748 	 * customizable and can be altered dynamically.
749 	 */
750 
751 	/* startup state */
752 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
753 		cx = &pr->power.states[i];
754 		if (!cx->valid)
755 			continue;
756 
757 		if (!state_is_set)
758 			pr->power.state = cx;
759 		state_is_set++;
760 		break;
761 	}
762 
763 	if (!state_is_set)
764 		return -ENODEV;
765 
766 	/* demotion */
767 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
768 		cx = &pr->power.states[i];
769 		if (!cx->valid)
770 			continue;
771 
772 		if (lower) {
773 			cx->demotion.state = lower;
774 			cx->demotion.threshold.ticks = cx->latency_ticks;
775 			cx->demotion.threshold.count = 1;
776 			if (cx->type == ACPI_STATE_C3)
777 				cx->demotion.threshold.bm = bm_history;
778 		}
779 
780 		lower = cx;
781 	}
782 
783 	/* promotion */
784 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
785 		cx = &pr->power.states[i];
786 		if (!cx->valid)
787 			continue;
788 
789 		if (higher) {
790 			cx->promotion.state = higher;
791 			cx->promotion.threshold.ticks = cx->latency_ticks;
792 			if (cx->type >= ACPI_STATE_C2)
793 				cx->promotion.threshold.count = 4;
794 			else
795 				cx->promotion.threshold.count = 10;
796 			if (higher->type == ACPI_STATE_C3)
797 				cx->promotion.threshold.bm = bm_history;
798 		}
799 
800 		higher = cx;
801 	}
802 
803 	return 0;
804 }
805 #endif /* !CONFIG_CPU_IDLE */
806 
807 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
808 {
809 
810 	if (!pr)
811 		return -EINVAL;
812 
813 	if (!pr->pblk)
814 		return -ENODEV;
815 
816 	/* if info is obtained from pblk/fadt, type equals state */
817 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
818 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
819 
820 #ifndef CONFIG_HOTPLUG_CPU
821 	/*
822 	 * Check for P_LVL2_UP flag before entering C2 and above on
823 	 * an SMP system.
824 	 */
825 	if ((num_online_cpus() > 1) &&
826 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
827 		return -ENODEV;
828 #endif
829 
830 	/* determine C2 and C3 address from pblk */
831 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
832 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
833 
834 	/* determine latencies from FADT */
835 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
836 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
837 
838 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
839 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
840 			  pr->power.states[ACPI_STATE_C2].address,
841 			  pr->power.states[ACPI_STATE_C3].address));
842 
843 	return 0;
844 }
845 
846 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
847 {
848 	if (!pr->power.states[ACPI_STATE_C1].valid) {
849 		/* set the first C-State to C1 */
850 		/* all processors need to support C1 */
851 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
852 		pr->power.states[ACPI_STATE_C1].valid = 1;
853 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
854 	}
855 	/* the C0 state only exists as a filler in our array */
856 	pr->power.states[ACPI_STATE_C0].valid = 1;
857 	return 0;
858 }
859 
860 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
861 {
862 	acpi_status status = 0;
863 	acpi_integer count;
864 	int current_count;
865 	int i;
866 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
867 	union acpi_object *cst;
868 
869 
870 	if (nocst)
871 		return -ENODEV;
872 
873 	current_count = 0;
874 
875 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
876 	if (ACPI_FAILURE(status)) {
877 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
878 		return -ENODEV;
879 	}
880 
881 	cst = buffer.pointer;
882 
883 	/* There must be at least 2 elements */
884 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
885 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
886 		status = -EFAULT;
887 		goto end;
888 	}
889 
890 	count = cst->package.elements[0].integer.value;
891 
892 	/* Validate number of power states. */
893 	if (count < 1 || count != cst->package.count - 1) {
894 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
895 		status = -EFAULT;
896 		goto end;
897 	}
898 
899 	/* Tell driver that at least _CST is supported. */
900 	pr->flags.has_cst = 1;
901 
902 	for (i = 1; i <= count; i++) {
903 		union acpi_object *element;
904 		union acpi_object *obj;
905 		struct acpi_power_register *reg;
906 		struct acpi_processor_cx cx;
907 
908 		memset(&cx, 0, sizeof(cx));
909 
910 		element = &(cst->package.elements[i]);
911 		if (element->type != ACPI_TYPE_PACKAGE)
912 			continue;
913 
914 		if (element->package.count != 4)
915 			continue;
916 
917 		obj = &(element->package.elements[0]);
918 
919 		if (obj->type != ACPI_TYPE_BUFFER)
920 			continue;
921 
922 		reg = (struct acpi_power_register *)obj->buffer.pointer;
923 
924 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
925 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
926 			continue;
927 
928 		/* There should be an easy way to extract an integer... */
929 		obj = &(element->package.elements[1]);
930 		if (obj->type != ACPI_TYPE_INTEGER)
931 			continue;
932 
933 		cx.type = obj->integer.value;
934 		/*
935 		 * Some buggy BIOSes won't list C1 in _CST -
936 		 * Let acpi_processor_get_power_info_default() handle them later
937 		 */
938 		if (i == 1 && cx.type != ACPI_STATE_C1)
939 			current_count++;
940 
941 		cx.address = reg->address;
942 		cx.index = current_count + 1;
943 
944 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
945 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
946 			if (acpi_processor_ffh_cstate_probe
947 					(pr->id, &cx, reg) == 0) {
948 				cx.entry_method = ACPI_CSTATE_FFH;
949 			} else if (cx.type == ACPI_STATE_C1) {
950 				/*
951 				 * C1 is a special case where FIXED_HARDWARE
952 				 * can be handled in non-MWAIT way as well.
953 				 * In that case, save this _CST entry info.
954 				 * Otherwise, ignore this info and continue.
955 				 */
956 				cx.entry_method = ACPI_CSTATE_HALT;
957 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
958 			} else {
959 				continue;
960 			}
961 			if (cx.type == ACPI_STATE_C1 &&
962 					(idle_halt || idle_nomwait)) {
963 				/*
964 				 * In most cases the C1 space_id obtained from
965 				 * _CST object is FIXED_HARDWARE access mode.
966 				 * But when the option of idle=halt is added,
967 				 * the entry_method type should be changed from
968 				 * CSTATE_FFH to CSTATE_HALT.
969 				 * When the option of idle=nomwait is added,
970 				 * the C1 entry_method type should be
971 				 * CSTATE_HALT.
972 				 */
973 				cx.entry_method = ACPI_CSTATE_HALT;
974 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
975 			}
976 		} else {
977 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
978 				 cx.address);
979 		}
980 
981 		if (cx.type == ACPI_STATE_C1) {
982 			cx.valid = 1;
983 		}
984 
985 		obj = &(element->package.elements[2]);
986 		if (obj->type != ACPI_TYPE_INTEGER)
987 			continue;
988 
989 		cx.latency = obj->integer.value;
990 
991 		obj = &(element->package.elements[3]);
992 		if (obj->type != ACPI_TYPE_INTEGER)
993 			continue;
994 
995 		cx.power = obj->integer.value;
996 
997 		current_count++;
998 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
999 
1000 		/*
1001 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1002 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1003 		 */
1004 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1005 			printk(KERN_WARNING
1006 			       "Limiting number of power states to max (%d)\n",
1007 			       ACPI_PROCESSOR_MAX_POWER);
1008 			printk(KERN_WARNING
1009 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1010 			break;
1011 		}
1012 	}
1013 
1014 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1015 			  current_count));
1016 
1017 	/* Validate number of power states discovered */
1018 	if (current_count < 2)
1019 		status = -EFAULT;
1020 
1021       end:
1022 	kfree(buffer.pointer);
1023 
1024 	return status;
1025 }
1026 
1027 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1028 {
1029 
1030 	if (!cx->address)
1031 		return;
1032 
1033 	/*
1034 	 * C2 latency must be less than or equal to 100
1035 	 * microseconds.
1036 	 */
1037 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1038 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1039 				  "latency too large [%d]\n", cx->latency));
1040 		return;
1041 	}
1042 
1043 	/*
1044 	 * Otherwise we've met all of our C2 requirements.
1045 	 * Normalize the C2 latency to expidite policy
1046 	 */
1047 	cx->valid = 1;
1048 
1049 #ifndef CONFIG_CPU_IDLE
1050 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1051 #else
1052 	cx->latency_ticks = cx->latency;
1053 #endif
1054 
1055 	return;
1056 }
1057 
1058 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1059 					   struct acpi_processor_cx *cx)
1060 {
1061 	static int bm_check_flag;
1062 
1063 
1064 	if (!cx->address)
1065 		return;
1066 
1067 	/*
1068 	 * C3 latency must be less than or equal to 1000
1069 	 * microseconds.
1070 	 */
1071 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1072 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1073 				  "latency too large [%d]\n", cx->latency));
1074 		return;
1075 	}
1076 
1077 	/*
1078 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1079 	 * DMA transfers are used by any ISA device to avoid livelock.
1080 	 * Note that we could disable Type-F DMA (as recommended by
1081 	 * the erratum), but this is known to disrupt certain ISA
1082 	 * devices thus we take the conservative approach.
1083 	 */
1084 	else if (errata.piix4.fdma) {
1085 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1086 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1087 		return;
1088 	}
1089 
1090 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1091 	if (!bm_check_flag) {
1092 		/* Determine whether bm_check is needed based on CPU  */
1093 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1094 		bm_check_flag = pr->flags.bm_check;
1095 	} else {
1096 		pr->flags.bm_check = bm_check_flag;
1097 	}
1098 
1099 	if (pr->flags.bm_check) {
1100 		if (!pr->flags.bm_control) {
1101 			if (pr->flags.has_cst != 1) {
1102 				/* bus mastering control is necessary */
1103 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1104 					"C3 support requires BM control\n"));
1105 				return;
1106 			} else {
1107 				/* Here we enter C3 without bus mastering */
1108 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1109 					"C3 support without BM control\n"));
1110 			}
1111 		}
1112 	} else {
1113 		/*
1114 		 * WBINVD should be set in fadt, for C3 state to be
1115 		 * supported on when bm_check is not required.
1116 		 */
1117 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1118 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1119 					  "Cache invalidation should work properly"
1120 					  " for C3 to be enabled on SMP systems\n"));
1121 			return;
1122 		}
1123 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1124 	}
1125 
1126 	/*
1127 	 * Otherwise we've met all of our C3 requirements.
1128 	 * Normalize the C3 latency to expidite policy.  Enable
1129 	 * checking of bus mastering status (bm_check) so we can
1130 	 * use this in our C3 policy
1131 	 */
1132 	cx->valid = 1;
1133 
1134 #ifndef CONFIG_CPU_IDLE
1135 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1136 #else
1137 	cx->latency_ticks = cx->latency;
1138 #endif
1139 
1140 	return;
1141 }
1142 
1143 static int acpi_processor_power_verify(struct acpi_processor *pr)
1144 {
1145 	unsigned int i;
1146 	unsigned int working = 0;
1147 
1148 	pr->power.timer_broadcast_on_state = INT_MAX;
1149 
1150 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1151 		struct acpi_processor_cx *cx = &pr->power.states[i];
1152 
1153 		switch (cx->type) {
1154 		case ACPI_STATE_C1:
1155 			cx->valid = 1;
1156 			break;
1157 
1158 		case ACPI_STATE_C2:
1159 			acpi_processor_power_verify_c2(cx);
1160 			if (cx->valid)
1161 				acpi_timer_check_state(i, pr, cx);
1162 			break;
1163 
1164 		case ACPI_STATE_C3:
1165 			acpi_processor_power_verify_c3(pr, cx);
1166 			if (cx->valid)
1167 				acpi_timer_check_state(i, pr, cx);
1168 			break;
1169 		}
1170 
1171 		if (cx->valid)
1172 			working++;
1173 	}
1174 
1175 	acpi_propagate_timer_broadcast(pr);
1176 
1177 	return (working);
1178 }
1179 
1180 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1181 {
1182 	unsigned int i;
1183 	int result;
1184 
1185 
1186 	/* NOTE: the idle thread may not be running while calling
1187 	 * this function */
1188 
1189 	/* Zero initialize all the C-states info. */
1190 	memset(pr->power.states, 0, sizeof(pr->power.states));
1191 
1192 	result = acpi_processor_get_power_info_cst(pr);
1193 	if (result == -ENODEV)
1194 		result = acpi_processor_get_power_info_fadt(pr);
1195 
1196 	if (result)
1197 		return result;
1198 
1199 	acpi_processor_get_power_info_default(pr);
1200 
1201 	pr->power.count = acpi_processor_power_verify(pr);
1202 
1203 #ifndef CONFIG_CPU_IDLE
1204 	/*
1205 	 * Set Default Policy
1206 	 * ------------------
1207 	 * Now that we know which states are supported, set the default
1208 	 * policy.  Note that this policy can be changed dynamically
1209 	 * (e.g. encourage deeper sleeps to conserve battery life when
1210 	 * not on AC).
1211 	 */
1212 	result = acpi_processor_set_power_policy(pr);
1213 	if (result)
1214 		return result;
1215 #endif
1216 
1217 	/*
1218 	 * if one state of type C2 or C3 is available, mark this
1219 	 * CPU as being "idle manageable"
1220 	 */
1221 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1222 		if (pr->power.states[i].valid) {
1223 			pr->power.count = i;
1224 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1225 				pr->flags.power = 1;
1226 		}
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1233 {
1234 	struct acpi_processor *pr = seq->private;
1235 	unsigned int i;
1236 
1237 
1238 	if (!pr)
1239 		goto end;
1240 
1241 	seq_printf(seq, "active state:            C%zd\n"
1242 		   "max_cstate:              C%d\n"
1243 		   "bus master activity:     %08x\n"
1244 		   "maximum allowed latency: %d usec\n",
1245 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1246 		   max_cstate, (unsigned)pr->power.bm_activity,
1247 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1248 
1249 	seq_puts(seq, "states:\n");
1250 
1251 	for (i = 1; i <= pr->power.count; i++) {
1252 		seq_printf(seq, "   %cC%d:                  ",
1253 			   (&pr->power.states[i] ==
1254 			    pr->power.state ? '*' : ' '), i);
1255 
1256 		if (!pr->power.states[i].valid) {
1257 			seq_puts(seq, "<not supported>\n");
1258 			continue;
1259 		}
1260 
1261 		switch (pr->power.states[i].type) {
1262 		case ACPI_STATE_C1:
1263 			seq_printf(seq, "type[C1] ");
1264 			break;
1265 		case ACPI_STATE_C2:
1266 			seq_printf(seq, "type[C2] ");
1267 			break;
1268 		case ACPI_STATE_C3:
1269 			seq_printf(seq, "type[C3] ");
1270 			break;
1271 		default:
1272 			seq_printf(seq, "type[--] ");
1273 			break;
1274 		}
1275 
1276 		if (pr->power.states[i].promotion.state)
1277 			seq_printf(seq, "promotion[C%zd] ",
1278 				   (pr->power.states[i].promotion.state -
1279 				    pr->power.states));
1280 		else
1281 			seq_puts(seq, "promotion[--] ");
1282 
1283 		if (pr->power.states[i].demotion.state)
1284 			seq_printf(seq, "demotion[C%zd] ",
1285 				   (pr->power.states[i].demotion.state -
1286 				    pr->power.states));
1287 		else
1288 			seq_puts(seq, "demotion[--] ");
1289 
1290 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1291 			   pr->power.states[i].latency,
1292 			   pr->power.states[i].usage,
1293 			   (unsigned long long)pr->power.states[i].time);
1294 	}
1295 
1296       end:
1297 	return 0;
1298 }
1299 
1300 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1301 {
1302 	return single_open(file, acpi_processor_power_seq_show,
1303 			   PDE(inode)->data);
1304 }
1305 
1306 static const struct file_operations acpi_processor_power_fops = {
1307 	.owner = THIS_MODULE,
1308 	.open = acpi_processor_power_open_fs,
1309 	.read = seq_read,
1310 	.llseek = seq_lseek,
1311 	.release = single_release,
1312 };
1313 
1314 #ifndef CONFIG_CPU_IDLE
1315 
1316 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1317 {
1318 	int result = 0;
1319 
1320 	if (boot_option_idle_override)
1321 		return 0;
1322 
1323 	if (!pr)
1324 		return -EINVAL;
1325 
1326 	if (nocst) {
1327 		return -ENODEV;
1328 	}
1329 
1330 	if (!pr->flags.power_setup_done)
1331 		return -ENODEV;
1332 
1333 	/*
1334 	 * Fall back to the default idle loop, when pm_idle_save had
1335 	 * been initialized.
1336 	 */
1337 	if (pm_idle_save) {
1338 		pm_idle = pm_idle_save;
1339 		/* Relies on interrupts forcing exit from idle. */
1340 		synchronize_sched();
1341 	}
1342 
1343 	pr->flags.power = 0;
1344 	result = acpi_processor_get_power_info(pr);
1345 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1346 		pm_idle = acpi_processor_idle;
1347 
1348 	return result;
1349 }
1350 
1351 #ifdef CONFIG_SMP
1352 static void smp_callback(void *v)
1353 {
1354 	/* we already woke the CPU up, nothing more to do */
1355 }
1356 
1357 /*
1358  * This function gets called when a part of the kernel has a new latency
1359  * requirement.  This means we need to get all processors out of their C-state,
1360  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1361  * wakes them all right up.
1362  */
1363 static int acpi_processor_latency_notify(struct notifier_block *b,
1364 		unsigned long l, void *v)
1365 {
1366 	smp_call_function(smp_callback, NULL, 1);
1367 	return NOTIFY_OK;
1368 }
1369 
1370 static struct notifier_block acpi_processor_latency_notifier = {
1371 	.notifier_call = acpi_processor_latency_notify,
1372 };
1373 
1374 #endif
1375 
1376 #else /* CONFIG_CPU_IDLE */
1377 
1378 /**
1379  * acpi_idle_bm_check - checks if bus master activity was detected
1380  */
1381 static int acpi_idle_bm_check(void)
1382 {
1383 	u32 bm_status = 0;
1384 
1385 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1386 	if (bm_status)
1387 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1388 	/*
1389 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1390 	 * the true state of bus mastering activity; forcing us to
1391 	 * manually check the BMIDEA bit of each IDE channel.
1392 	 */
1393 	else if (errata.piix4.bmisx) {
1394 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1395 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1396 			bm_status = 1;
1397 	}
1398 	return bm_status;
1399 }
1400 
1401 /**
1402  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1403  * @pr: the processor
1404  * @target: the new target state
1405  */
1406 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1407 					   struct acpi_processor_cx *target)
1408 {
1409 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1410 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1411 		pr->flags.bm_rld_set = 0;
1412 	}
1413 
1414 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1415 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1416 		pr->flags.bm_rld_set = 1;
1417 	}
1418 }
1419 
1420 /**
1421  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1422  * @cx: cstate data
1423  *
1424  * Caller disables interrupt before call and enables interrupt after return.
1425  */
1426 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1427 {
1428 	/* Don't trace irqs off for idle */
1429 	stop_critical_timings();
1430 	if (cx->entry_method == ACPI_CSTATE_FFH) {
1431 		/* Call into architectural FFH based C-state */
1432 		acpi_processor_ffh_cstate_enter(cx);
1433 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
1434 		acpi_safe_halt();
1435 	} else {
1436 		int unused;
1437 		/* IO port based C-state */
1438 		inb(cx->address);
1439 		/* Dummy wait op - must do something useless after P_LVL2 read
1440 		   because chipsets cannot guarantee that STPCLK# signal
1441 		   gets asserted in time to freeze execution properly. */
1442 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1443 	}
1444 	start_critical_timings();
1445 }
1446 
1447 /**
1448  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1449  * @dev: the target CPU
1450  * @state: the state data
1451  *
1452  * This is equivalent to the HALT instruction.
1453  */
1454 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1455 			      struct cpuidle_state *state)
1456 {
1457 	u32 t1, t2;
1458 	struct acpi_processor *pr;
1459 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1460 
1461 	pr = __get_cpu_var(processors);
1462 
1463 	if (unlikely(!pr))
1464 		return 0;
1465 
1466 	local_irq_disable();
1467 
1468 	/* Do not access any ACPI IO ports in suspend path */
1469 	if (acpi_idle_suspend) {
1470 		acpi_safe_halt();
1471 		local_irq_enable();
1472 		return 0;
1473 	}
1474 
1475 	if (pr->flags.bm_check)
1476 		acpi_idle_update_bm_rld(pr, cx);
1477 
1478 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1479 	acpi_idle_do_entry(cx);
1480 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1481 
1482 	local_irq_enable();
1483 	cx->usage++;
1484 
1485 	return ticks_elapsed_in_us(t1, t2);
1486 }
1487 
1488 /**
1489  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1490  * @dev: the target CPU
1491  * @state: the state data
1492  */
1493 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1494 				  struct cpuidle_state *state)
1495 {
1496 	struct acpi_processor *pr;
1497 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1498 	u32 t1, t2;
1499 	int sleep_ticks = 0;
1500 
1501 	pr = __get_cpu_var(processors);
1502 
1503 	if (unlikely(!pr))
1504 		return 0;
1505 
1506 	if (acpi_idle_suspend)
1507 		return(acpi_idle_enter_c1(dev, state));
1508 
1509 	local_irq_disable();
1510 	current_thread_info()->status &= ~TS_POLLING;
1511 	/*
1512 	 * TS_POLLING-cleared state must be visible before we test
1513 	 * NEED_RESCHED:
1514 	 */
1515 	smp_mb();
1516 
1517 	if (unlikely(need_resched())) {
1518 		current_thread_info()->status |= TS_POLLING;
1519 		local_irq_enable();
1520 		return 0;
1521 	}
1522 
1523 	/*
1524 	 * Must be done before busmaster disable as we might need to
1525 	 * access HPET !
1526 	 */
1527 	acpi_state_timer_broadcast(pr, cx, 1);
1528 
1529 	if (pr->flags.bm_check)
1530 		acpi_idle_update_bm_rld(pr, cx);
1531 
1532 	if (cx->type == ACPI_STATE_C3)
1533 		ACPI_FLUSH_CPU_CACHE();
1534 
1535 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1536 	/* Tell the scheduler that we are going deep-idle: */
1537 	sched_clock_idle_sleep_event();
1538 	acpi_idle_do_entry(cx);
1539 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1540 
1541 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1542 	/* TSC could halt in idle, so notify users */
1543 	if (tsc_halts_in_c(cx->type))
1544 		mark_tsc_unstable("TSC halts in idle");;
1545 #endif
1546 	sleep_ticks = ticks_elapsed(t1, t2);
1547 
1548 	/* Tell the scheduler how much we idled: */
1549 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1550 
1551 	local_irq_enable();
1552 	current_thread_info()->status |= TS_POLLING;
1553 
1554 	cx->usage++;
1555 
1556 	acpi_state_timer_broadcast(pr, cx, 0);
1557 	cx->time += sleep_ticks;
1558 	return ticks_elapsed_in_us(t1, t2);
1559 }
1560 
1561 static int c3_cpu_count;
1562 static DEFINE_SPINLOCK(c3_lock);
1563 
1564 /**
1565  * acpi_idle_enter_bm - enters C3 with proper BM handling
1566  * @dev: the target CPU
1567  * @state: the state data
1568  *
1569  * If BM is detected, the deepest non-C3 idle state is entered instead.
1570  */
1571 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1572 			      struct cpuidle_state *state)
1573 {
1574 	struct acpi_processor *pr;
1575 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1576 	u32 t1, t2;
1577 	int sleep_ticks = 0;
1578 
1579 	pr = __get_cpu_var(processors);
1580 
1581 	if (unlikely(!pr))
1582 		return 0;
1583 
1584 	if (acpi_idle_suspend)
1585 		return(acpi_idle_enter_c1(dev, state));
1586 
1587 	if (acpi_idle_bm_check()) {
1588 		if (dev->safe_state) {
1589 			dev->last_state = dev->safe_state;
1590 			return dev->safe_state->enter(dev, dev->safe_state);
1591 		} else {
1592 			local_irq_disable();
1593 			acpi_safe_halt();
1594 			local_irq_enable();
1595 			return 0;
1596 		}
1597 	}
1598 
1599 	local_irq_disable();
1600 	current_thread_info()->status &= ~TS_POLLING;
1601 	/*
1602 	 * TS_POLLING-cleared state must be visible before we test
1603 	 * NEED_RESCHED:
1604 	 */
1605 	smp_mb();
1606 
1607 	if (unlikely(need_resched())) {
1608 		current_thread_info()->status |= TS_POLLING;
1609 		local_irq_enable();
1610 		return 0;
1611 	}
1612 
1613 	acpi_unlazy_tlb(smp_processor_id());
1614 
1615 	/* Tell the scheduler that we are going deep-idle: */
1616 	sched_clock_idle_sleep_event();
1617 	/*
1618 	 * Must be done before busmaster disable as we might need to
1619 	 * access HPET !
1620 	 */
1621 	acpi_state_timer_broadcast(pr, cx, 1);
1622 
1623 	acpi_idle_update_bm_rld(pr, cx);
1624 
1625 	/*
1626 	 * disable bus master
1627 	 * bm_check implies we need ARB_DIS
1628 	 * !bm_check implies we need cache flush
1629 	 * bm_control implies whether we can do ARB_DIS
1630 	 *
1631 	 * That leaves a case where bm_check is set and bm_control is
1632 	 * not set. In that case we cannot do much, we enter C3
1633 	 * without doing anything.
1634 	 */
1635 	if (pr->flags.bm_check && pr->flags.bm_control) {
1636 		spin_lock(&c3_lock);
1637 		c3_cpu_count++;
1638 		/* Disable bus master arbitration when all CPUs are in C3 */
1639 		if (c3_cpu_count == num_online_cpus())
1640 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1641 		spin_unlock(&c3_lock);
1642 	} else if (!pr->flags.bm_check) {
1643 		ACPI_FLUSH_CPU_CACHE();
1644 	}
1645 
1646 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1647 	acpi_idle_do_entry(cx);
1648 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1649 
1650 	/* Re-enable bus master arbitration */
1651 	if (pr->flags.bm_check && pr->flags.bm_control) {
1652 		spin_lock(&c3_lock);
1653 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1654 		c3_cpu_count--;
1655 		spin_unlock(&c3_lock);
1656 	}
1657 
1658 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1659 	/* TSC could halt in idle, so notify users */
1660 	if (tsc_halts_in_c(ACPI_STATE_C3))
1661 		mark_tsc_unstable("TSC halts in idle");
1662 #endif
1663 	sleep_ticks = ticks_elapsed(t1, t2);
1664 	/* Tell the scheduler how much we idled: */
1665 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1666 
1667 	local_irq_enable();
1668 	current_thread_info()->status |= TS_POLLING;
1669 
1670 	cx->usage++;
1671 
1672 	acpi_state_timer_broadcast(pr, cx, 0);
1673 	cx->time += sleep_ticks;
1674 	return ticks_elapsed_in_us(t1, t2);
1675 }
1676 
1677 struct cpuidle_driver acpi_idle_driver = {
1678 	.name =		"acpi_idle",
1679 	.owner =	THIS_MODULE,
1680 };
1681 
1682 /**
1683  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1684  * @pr: the ACPI processor
1685  */
1686 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1687 {
1688 	int i, count = CPUIDLE_DRIVER_STATE_START;
1689 	struct acpi_processor_cx *cx;
1690 	struct cpuidle_state *state;
1691 	struct cpuidle_device *dev = &pr->power.dev;
1692 
1693 	if (!pr->flags.power_setup_done)
1694 		return -EINVAL;
1695 
1696 	if (pr->flags.power == 0) {
1697 		return -EINVAL;
1698 	}
1699 
1700 	dev->cpu = pr->id;
1701 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1702 		dev->states[i].name[0] = '\0';
1703 		dev->states[i].desc[0] = '\0';
1704 	}
1705 
1706 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1707 		cx = &pr->power.states[i];
1708 		state = &dev->states[count];
1709 
1710 		if (!cx->valid)
1711 			continue;
1712 
1713 #ifdef CONFIG_HOTPLUG_CPU
1714 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1715 		    !pr->flags.has_cst &&
1716 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1717 			continue;
1718 #endif
1719 		cpuidle_set_statedata(state, cx);
1720 
1721 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1722 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1723 		state->exit_latency = cx->latency;
1724 		state->target_residency = cx->latency * latency_factor;
1725 		state->power_usage = cx->power;
1726 
1727 		state->flags = 0;
1728 		switch (cx->type) {
1729 			case ACPI_STATE_C1:
1730 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1731 			if (cx->entry_method == ACPI_CSTATE_FFH)
1732 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1733 
1734 			state->enter = acpi_idle_enter_c1;
1735 			dev->safe_state = state;
1736 			break;
1737 
1738 			case ACPI_STATE_C2:
1739 			state->flags |= CPUIDLE_FLAG_BALANCED;
1740 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1741 			state->enter = acpi_idle_enter_simple;
1742 			dev->safe_state = state;
1743 			break;
1744 
1745 			case ACPI_STATE_C3:
1746 			state->flags |= CPUIDLE_FLAG_DEEP;
1747 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1748 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1749 			state->enter = pr->flags.bm_check ?
1750 					acpi_idle_enter_bm :
1751 					acpi_idle_enter_simple;
1752 			break;
1753 		}
1754 
1755 		count++;
1756 		if (count == CPUIDLE_STATE_MAX)
1757 			break;
1758 	}
1759 
1760 	dev->state_count = count;
1761 
1762 	if (!count)
1763 		return -EINVAL;
1764 
1765 	return 0;
1766 }
1767 
1768 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1769 {
1770 	int ret = 0;
1771 
1772 	if (boot_option_idle_override)
1773 		return 0;
1774 
1775 	if (!pr)
1776 		return -EINVAL;
1777 
1778 	if (nocst) {
1779 		return -ENODEV;
1780 	}
1781 
1782 	if (!pr->flags.power_setup_done)
1783 		return -ENODEV;
1784 
1785 	cpuidle_pause_and_lock();
1786 	cpuidle_disable_device(&pr->power.dev);
1787 	acpi_processor_get_power_info(pr);
1788 	if (pr->flags.power) {
1789 		acpi_processor_setup_cpuidle(pr);
1790 		ret = cpuidle_enable_device(&pr->power.dev);
1791 	}
1792 	cpuidle_resume_and_unlock();
1793 
1794 	return ret;
1795 }
1796 
1797 #endif /* CONFIG_CPU_IDLE */
1798 
1799 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1800 			      struct acpi_device *device)
1801 {
1802 	acpi_status status = 0;
1803 	static int first_run;
1804 	struct proc_dir_entry *entry = NULL;
1805 	unsigned int i;
1806 
1807 	if (boot_option_idle_override)
1808 		return 0;
1809 
1810 	if (!first_run) {
1811 		if (idle_halt) {
1812 			/*
1813 			 * When the boot option of "idle=halt" is added, halt
1814 			 * is used for CPU IDLE.
1815 			 * In such case C2/C3 is meaningless. So the max_cstate
1816 			 * is set to one.
1817 			 */
1818 			max_cstate = 1;
1819 		}
1820 		dmi_check_system(processor_power_dmi_table);
1821 		max_cstate = acpi_processor_cstate_check(max_cstate);
1822 		if (max_cstate < ACPI_C_STATES_MAX)
1823 			printk(KERN_NOTICE
1824 			       "ACPI: processor limited to max C-state %d\n",
1825 			       max_cstate);
1826 		first_run++;
1827 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1828 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1829 				&acpi_processor_latency_notifier);
1830 #endif
1831 	}
1832 
1833 	if (!pr)
1834 		return -EINVAL;
1835 
1836 	if (acpi_gbl_FADT.cst_control && !nocst) {
1837 		status =
1838 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1839 		if (ACPI_FAILURE(status)) {
1840 			ACPI_EXCEPTION((AE_INFO, status,
1841 					"Notifying BIOS of _CST ability failed"));
1842 		}
1843 	}
1844 
1845 	acpi_processor_get_power_info(pr);
1846 	pr->flags.power_setup_done = 1;
1847 
1848 	/*
1849 	 * Install the idle handler if processor power management is supported.
1850 	 * Note that we use previously set idle handler will be used on
1851 	 * platforms that only support C1.
1852 	 */
1853 	if (pr->flags.power) {
1854 #ifdef CONFIG_CPU_IDLE
1855 		acpi_processor_setup_cpuidle(pr);
1856 		if (cpuidle_register_device(&pr->power.dev))
1857 			return -EIO;
1858 #endif
1859 
1860 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1861 		for (i = 1; i <= pr->power.count; i++)
1862 			if (pr->power.states[i].valid)
1863 				printk(" C%d[C%d]", i,
1864 				       pr->power.states[i].type);
1865 		printk(")\n");
1866 
1867 #ifndef CONFIG_CPU_IDLE
1868 		if (pr->id == 0) {
1869 			pm_idle_save = pm_idle;
1870 			pm_idle = acpi_processor_idle;
1871 		}
1872 #endif
1873 	}
1874 
1875 	/* 'power' [R] */
1876 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1877 				 S_IRUGO, acpi_device_dir(device),
1878 				 &acpi_processor_power_fops,
1879 				 acpi_driver_data(device));
1880 	if (!entry)
1881 		return -EIO;
1882 	return 0;
1883 }
1884 
1885 int acpi_processor_power_exit(struct acpi_processor *pr,
1886 			      struct acpi_device *device)
1887 {
1888 	if (boot_option_idle_override)
1889 		return 0;
1890 
1891 #ifdef CONFIG_CPU_IDLE
1892 	cpuidle_unregister_device(&pr->power.dev);
1893 #endif
1894 	pr->flags.power_setup_done = 0;
1895 
1896 	if (acpi_device_dir(device))
1897 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1898 				  acpi_device_dir(device));
1899 
1900 #ifndef CONFIG_CPU_IDLE
1901 
1902 	/* Unregister the idle handler when processor #0 is removed. */
1903 	if (pr->id == 0) {
1904 		if (pm_idle_save)
1905 			pm_idle = pm_idle_save;
1906 
1907 		/*
1908 		 * We are about to unload the current idle thread pm callback
1909 		 * (pm_idle), Wait for all processors to update cached/local
1910 		 * copies of pm_idle before proceeding.
1911 		 */
1912 		cpu_idle_wait();
1913 #ifdef CONFIG_SMP
1914 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1915 				&acpi_processor_latency_notifier);
1916 #endif
1917 	}
1918 #endif
1919 
1920 	return 0;
1921 }
1922