1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * processor_idle - idle state submodule to the ACPI processor driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * - Added processor hotplug support 10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 11 * - Added support for C3 on SMP 12 */ 13 #define pr_fmt(fmt) "ACPI: " fmt 14 15 #include <linux/module.h> 16 #include <linux/acpi.h> 17 #include <linux/dmi.h> 18 #include <linux/sched.h> /* need_resched() */ 19 #include <linux/tick.h> 20 #include <linux/cpuidle.h> 21 #include <linux/cpu.h> 22 #include <linux/minmax.h> 23 #include <linux/perf_event.h> 24 #include <acpi/processor.h> 25 #include <linux/context_tracking.h> 26 27 /* 28 * Include the apic definitions for x86 to have the APIC timer related defines 29 * available also for UP (on SMP it gets magically included via linux/smp.h). 30 * asm/acpi.h is not an option, as it would require more include magic. Also 31 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 32 */ 33 #ifdef CONFIG_X86 34 #include <asm/apic.h> 35 #include <asm/cpu.h> 36 #endif 37 38 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0) 39 40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 41 module_param(max_cstate, uint, 0400); 42 static bool nocst __read_mostly; 43 module_param(nocst, bool, 0400); 44 static bool bm_check_disable __read_mostly; 45 module_param(bm_check_disable, bool, 0400); 46 47 static unsigned int latency_factor __read_mostly = 2; 48 module_param(latency_factor, uint, 0644); 49 50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device); 51 52 struct cpuidle_driver acpi_idle_driver = { 53 .name = "acpi_idle", 54 .owner = THIS_MODULE, 55 }; 56 57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE 58 static 59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate); 60 61 static int disabled_by_idle_boot_param(void) 62 { 63 return boot_option_idle_override == IDLE_POLL || 64 boot_option_idle_override == IDLE_HALT; 65 } 66 67 /* 68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 69 * For now disable this. Probably a bug somewhere else. 70 * 71 * To skip this limit, boot/load with a large max_cstate limit. 72 */ 73 static int set_max_cstate(const struct dmi_system_id *id) 74 { 75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 76 return 0; 77 78 pr_notice("%s detected - limiting to C%ld max_cstate." 79 " Override with \"processor.max_cstate=%d\"\n", id->ident, 80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 81 82 max_cstate = (long)id->driver_data; 83 84 return 0; 85 } 86 87 static const struct dmi_system_id processor_power_dmi_table[] = { 88 { set_max_cstate, "Clevo 5600D", { 89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 91 (void *)2}, 92 { set_max_cstate, "Pavilion zv5000", { 93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 95 (void *)1}, 96 { set_max_cstate, "Asus L8400B", { 97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 99 (void *)1}, 100 {}, 101 }; 102 103 104 /* 105 * Callers should disable interrupts before the call and enable 106 * interrupts after return. 107 */ 108 static void __cpuidle acpi_safe_halt(void) 109 { 110 if (!tif_need_resched()) { 111 raw_safe_halt(); 112 raw_local_irq_disable(); 113 } 114 } 115 116 #ifdef ARCH_APICTIMER_STOPS_ON_C3 117 118 /* 119 * Some BIOS implementations switch to C3 in the published C2 state. 120 * This seems to be a common problem on AMD boxen, but other vendors 121 * are affected too. We pick the most conservative approach: we assume 122 * that the local APIC stops in both C2 and C3. 123 */ 124 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 125 struct acpi_processor_cx *cx) 126 { 127 struct acpi_processor_power *pwr = &pr->power; 128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 129 130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 131 return; 132 133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) 134 type = ACPI_STATE_C1; 135 136 /* 137 * Check, if one of the previous states already marked the lapic 138 * unstable 139 */ 140 if (pwr->timer_broadcast_on_state < state) 141 return; 142 143 if (cx->type >= type) 144 pr->power.timer_broadcast_on_state = state; 145 } 146 147 static void __lapic_timer_propagate_broadcast(void *arg) 148 { 149 struct acpi_processor *pr = arg; 150 151 if (pr->power.timer_broadcast_on_state < INT_MAX) 152 tick_broadcast_enable(); 153 else 154 tick_broadcast_disable(); 155 } 156 157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 158 { 159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 160 (void *)pr, 1); 161 } 162 163 /* Power(C) State timer broadcast control */ 164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, 165 struct acpi_processor_cx *cx) 166 { 167 return cx - pr->power.states >= pr->power.timer_broadcast_on_state; 168 } 169 170 #else 171 172 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 173 struct acpi_processor_cx *cstate) { } 174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 175 176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, 177 struct acpi_processor_cx *cx) 178 { 179 return false; 180 } 181 182 #endif 183 184 #if defined(CONFIG_X86) 185 static void tsc_check_state(int state) 186 { 187 switch (boot_cpu_data.x86_vendor) { 188 case X86_VENDOR_HYGON: 189 case X86_VENDOR_AMD: 190 case X86_VENDOR_INTEL: 191 case X86_VENDOR_CENTAUR: 192 case X86_VENDOR_ZHAOXIN: 193 /* 194 * AMD Fam10h TSC will tick in all 195 * C/P/S0/S1 states when this bit is set. 196 */ 197 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 198 return; 199 fallthrough; 200 default: 201 /* TSC could halt in idle, so notify users */ 202 if (state > ACPI_STATE_C1) 203 mark_tsc_unstable("TSC halts in idle"); 204 } 205 } 206 #else 207 static void tsc_check_state(int state) { return; } 208 #endif 209 210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 211 { 212 213 if (!pr->pblk) 214 return -ENODEV; 215 216 /* if info is obtained from pblk/fadt, type equals state */ 217 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 218 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 219 220 #ifndef CONFIG_HOTPLUG_CPU 221 /* 222 * Check for P_LVL2_UP flag before entering C2 and above on 223 * an SMP system. 224 */ 225 if ((num_online_cpus() > 1) && 226 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 227 return -ENODEV; 228 #endif 229 230 /* determine C2 and C3 address from pblk */ 231 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 232 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 233 234 /* determine latencies from FADT */ 235 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency; 236 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency; 237 238 /* 239 * FADT specified C2 latency must be less than or equal to 240 * 100 microseconds. 241 */ 242 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 243 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n", 244 acpi_gbl_FADT.c2_latency); 245 /* invalidate C2 */ 246 pr->power.states[ACPI_STATE_C2].address = 0; 247 } 248 249 /* 250 * FADT supplied C3 latency must be less than or equal to 251 * 1000 microseconds. 252 */ 253 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 254 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n", 255 acpi_gbl_FADT.c3_latency); 256 /* invalidate C3 */ 257 pr->power.states[ACPI_STATE_C3].address = 0; 258 } 259 260 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n", 261 pr->power.states[ACPI_STATE_C2].address, 262 pr->power.states[ACPI_STATE_C3].address); 263 264 snprintf(pr->power.states[ACPI_STATE_C2].desc, 265 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x", 266 pr->power.states[ACPI_STATE_C2].address); 267 snprintf(pr->power.states[ACPI_STATE_C3].desc, 268 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x", 269 pr->power.states[ACPI_STATE_C3].address); 270 271 return 0; 272 } 273 274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 275 { 276 if (!pr->power.states[ACPI_STATE_C1].valid) { 277 /* set the first C-State to C1 */ 278 /* all processors need to support C1 */ 279 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 280 pr->power.states[ACPI_STATE_C1].valid = 1; 281 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 282 283 snprintf(pr->power.states[ACPI_STATE_C1].desc, 284 ACPI_CX_DESC_LEN, "ACPI HLT"); 285 } 286 /* the C0 state only exists as a filler in our array */ 287 pr->power.states[ACPI_STATE_C0].valid = 1; 288 return 0; 289 } 290 291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 292 { 293 int ret; 294 295 if (nocst) 296 return -ENODEV; 297 298 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power); 299 if (ret) 300 return ret; 301 302 if (!pr->power.count) 303 return -EFAULT; 304 305 pr->flags.has_cst = 1; 306 return 0; 307 } 308 309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 310 struct acpi_processor_cx *cx) 311 { 312 static int bm_check_flag = -1; 313 static int bm_control_flag = -1; 314 315 316 if (!cx->address) 317 return; 318 319 /* 320 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 321 * DMA transfers are used by any ISA device to avoid livelock. 322 * Note that we could disable Type-F DMA (as recommended by 323 * the erratum), but this is known to disrupt certain ISA 324 * devices thus we take the conservative approach. 325 */ 326 if (errata.piix4.fdma) { 327 acpi_handle_debug(pr->handle, 328 "C3 not supported on PIIX4 with Type-F DMA\n"); 329 return; 330 } 331 332 /* All the logic here assumes flags.bm_check is same across all CPUs */ 333 if (bm_check_flag == -1) { 334 /* Determine whether bm_check is needed based on CPU */ 335 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 336 bm_check_flag = pr->flags.bm_check; 337 bm_control_flag = pr->flags.bm_control; 338 } else { 339 pr->flags.bm_check = bm_check_flag; 340 pr->flags.bm_control = bm_control_flag; 341 } 342 343 if (pr->flags.bm_check) { 344 if (!pr->flags.bm_control) { 345 if (pr->flags.has_cst != 1) { 346 /* bus mastering control is necessary */ 347 acpi_handle_debug(pr->handle, 348 "C3 support requires BM control\n"); 349 return; 350 } else { 351 /* Here we enter C3 without bus mastering */ 352 acpi_handle_debug(pr->handle, 353 "C3 support without BM control\n"); 354 } 355 } 356 } else { 357 /* 358 * WBINVD should be set in fadt, for C3 state to be 359 * supported on when bm_check is not required. 360 */ 361 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 362 acpi_handle_debug(pr->handle, 363 "Cache invalidation should work properly" 364 " for C3 to be enabled on SMP systems\n"); 365 return; 366 } 367 } 368 369 /* 370 * Otherwise we've met all of our C3 requirements. 371 * Normalize the C3 latency to expidite policy. Enable 372 * checking of bus mastering status (bm_check) so we can 373 * use this in our C3 policy 374 */ 375 cx->valid = 1; 376 377 /* 378 * On older chipsets, BM_RLD needs to be set 379 * in order for Bus Master activity to wake the 380 * system from C3. Newer chipsets handle DMA 381 * during C3 automatically and BM_RLD is a NOP. 382 * In either case, the proper way to 383 * handle BM_RLD is to set it and leave it set. 384 */ 385 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 386 } 387 388 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length) 389 { 390 int i, j, k; 391 392 for (i = 1; i < length; i++) { 393 if (!states[i].valid) 394 continue; 395 396 for (j = i - 1, k = i; j >= 0; j--) { 397 if (!states[j].valid) 398 continue; 399 400 if (states[j].latency > states[k].latency) 401 swap(states[j].latency, states[k].latency); 402 403 k = j; 404 } 405 } 406 } 407 408 static int acpi_processor_power_verify(struct acpi_processor *pr) 409 { 410 unsigned int i; 411 unsigned int working = 0; 412 unsigned int last_latency = 0; 413 unsigned int last_type = 0; 414 bool buggy_latency = false; 415 416 pr->power.timer_broadcast_on_state = INT_MAX; 417 418 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 419 struct acpi_processor_cx *cx = &pr->power.states[i]; 420 421 switch (cx->type) { 422 case ACPI_STATE_C1: 423 cx->valid = 1; 424 break; 425 426 case ACPI_STATE_C2: 427 if (!cx->address) 428 break; 429 cx->valid = 1; 430 break; 431 432 case ACPI_STATE_C3: 433 acpi_processor_power_verify_c3(pr, cx); 434 break; 435 } 436 if (!cx->valid) 437 continue; 438 if (cx->type >= last_type && cx->latency < last_latency) 439 buggy_latency = true; 440 last_latency = cx->latency; 441 last_type = cx->type; 442 443 lapic_timer_check_state(i, pr, cx); 444 tsc_check_state(cx->type); 445 working++; 446 } 447 448 if (buggy_latency) { 449 pr_notice("FW issue: working around C-state latencies out of order\n"); 450 acpi_cst_latency_sort(&pr->power.states[1], max_cstate); 451 } 452 453 lapic_timer_propagate_broadcast(pr); 454 455 return working; 456 } 457 458 static int acpi_processor_get_cstate_info(struct acpi_processor *pr) 459 { 460 unsigned int i; 461 int result; 462 463 464 /* NOTE: the idle thread may not be running while calling 465 * this function */ 466 467 /* Zero initialize all the C-states info. */ 468 memset(pr->power.states, 0, sizeof(pr->power.states)); 469 470 result = acpi_processor_get_power_info_cst(pr); 471 if (result == -ENODEV) 472 result = acpi_processor_get_power_info_fadt(pr); 473 474 if (result) 475 return result; 476 477 acpi_processor_get_power_info_default(pr); 478 479 pr->power.count = acpi_processor_power_verify(pr); 480 481 /* 482 * if one state of type C2 or C3 is available, mark this 483 * CPU as being "idle manageable" 484 */ 485 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 486 if (pr->power.states[i].valid) { 487 pr->power.count = i; 488 pr->flags.power = 1; 489 } 490 } 491 492 return 0; 493 } 494 495 /** 496 * acpi_idle_bm_check - checks if bus master activity was detected 497 */ 498 static int acpi_idle_bm_check(void) 499 { 500 u32 bm_status = 0; 501 502 if (bm_check_disable) 503 return 0; 504 505 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 506 if (bm_status) 507 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 508 /* 509 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 510 * the true state of bus mastering activity; forcing us to 511 * manually check the BMIDEA bit of each IDE channel. 512 */ 513 else if (errata.piix4.bmisx) { 514 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 515 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 516 bm_status = 1; 517 } 518 return bm_status; 519 } 520 521 static __cpuidle void io_idle(unsigned long addr) 522 { 523 /* IO port based C-state */ 524 inb(addr); 525 526 #ifdef CONFIG_X86 527 /* No delay is needed if we are in guest */ 528 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 529 return; 530 /* 531 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle, 532 * not this code. Assume that any Intel systems using this 533 * are ancient and may need the dummy wait. This also assumes 534 * that the motivating chipset issue was Intel-only. 535 */ 536 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 537 return; 538 #endif 539 /* 540 * Dummy wait op - must do something useless after P_LVL2 read 541 * because chipsets cannot guarantee that STPCLK# signal gets 542 * asserted in time to freeze execution properly 543 * 544 * This workaround has been in place since the original ACPI 545 * implementation was merged, circa 2002. 546 * 547 * If a profile is pointing to this instruction, please first 548 * consider moving your system to a more modern idle 549 * mechanism. 550 */ 551 inl(acpi_gbl_FADT.xpm_timer_block.address); 552 } 553 554 /** 555 * acpi_idle_do_entry - enter idle state using the appropriate method 556 * @cx: cstate data 557 * 558 * Caller disables interrupt before call and enables interrupt after return. 559 */ 560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx) 561 { 562 perf_lopwr_cb(true); 563 564 if (cx->entry_method == ACPI_CSTATE_FFH) { 565 /* Call into architectural FFH based C-state */ 566 acpi_processor_ffh_cstate_enter(cx); 567 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 568 acpi_safe_halt(); 569 } else { 570 io_idle(cx->address); 571 } 572 573 perf_lopwr_cb(false); 574 } 575 576 /** 577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) 578 * @dev: the target CPU 579 * @index: the index of suggested state 580 */ 581 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index) 582 { 583 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); 584 585 ACPI_FLUSH_CPU_CACHE(); 586 587 while (1) { 588 589 if (cx->entry_method == ACPI_CSTATE_HALT) 590 raw_safe_halt(); 591 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { 592 io_idle(cx->address); 593 } else 594 return; 595 } 596 } 597 598 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr) 599 { 600 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst && 601 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED); 602 } 603 604 static int c3_cpu_count; 605 static DEFINE_RAW_SPINLOCK(c3_lock); 606 607 /** 608 * acpi_idle_enter_bm - enters C3 with proper BM handling 609 * @drv: cpuidle driver 610 * @pr: Target processor 611 * @cx: Target state context 612 * @index: index of target state 613 */ 614 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv, 615 struct acpi_processor *pr, 616 struct acpi_processor_cx *cx, 617 int index) 618 { 619 static struct acpi_processor_cx safe_cx = { 620 .entry_method = ACPI_CSTATE_HALT, 621 }; 622 623 /* 624 * disable bus master 625 * bm_check implies we need ARB_DIS 626 * bm_control implies whether we can do ARB_DIS 627 * 628 * That leaves a case where bm_check is set and bm_control is not set. 629 * In that case we cannot do much, we enter C3 without doing anything. 630 */ 631 bool dis_bm = pr->flags.bm_control; 632 633 instrumentation_begin(); 634 635 /* If we can skip BM, demote to a safe state. */ 636 if (!cx->bm_sts_skip && acpi_idle_bm_check()) { 637 dis_bm = false; 638 index = drv->safe_state_index; 639 if (index >= 0) { 640 cx = this_cpu_read(acpi_cstate[index]); 641 } else { 642 cx = &safe_cx; 643 index = -EBUSY; 644 } 645 } 646 647 if (dis_bm) { 648 raw_spin_lock(&c3_lock); 649 c3_cpu_count++; 650 /* Disable bus master arbitration when all CPUs are in C3 */ 651 if (c3_cpu_count == num_online_cpus()) 652 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 653 raw_spin_unlock(&c3_lock); 654 } 655 656 ct_cpuidle_enter(); 657 658 acpi_idle_do_entry(cx); 659 660 ct_cpuidle_exit(); 661 662 /* Re-enable bus master arbitration */ 663 if (dis_bm) { 664 raw_spin_lock(&c3_lock); 665 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 666 c3_cpu_count--; 667 raw_spin_unlock(&c3_lock); 668 } 669 670 instrumentation_end(); 671 672 return index; 673 } 674 675 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev, 676 struct cpuidle_driver *drv, int index) 677 { 678 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); 679 struct acpi_processor *pr; 680 681 pr = __this_cpu_read(processors); 682 if (unlikely(!pr)) 683 return -EINVAL; 684 685 if (cx->type != ACPI_STATE_C1) { 686 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) 687 return acpi_idle_enter_bm(drv, pr, cx, index); 688 689 /* C2 to C1 demotion. */ 690 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) { 691 index = ACPI_IDLE_STATE_START; 692 cx = per_cpu(acpi_cstate[index], dev->cpu); 693 } 694 } 695 696 if (cx->type == ACPI_STATE_C3) 697 ACPI_FLUSH_CPU_CACHE(); 698 699 acpi_idle_do_entry(cx); 700 701 return index; 702 } 703 704 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev, 705 struct cpuidle_driver *drv, int index) 706 { 707 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); 708 709 if (cx->type == ACPI_STATE_C3) { 710 struct acpi_processor *pr = __this_cpu_read(processors); 711 712 if (unlikely(!pr)) 713 return 0; 714 715 if (pr->flags.bm_check) { 716 u8 bm_sts_skip = cx->bm_sts_skip; 717 718 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */ 719 cx->bm_sts_skip = 1; 720 acpi_idle_enter_bm(drv, pr, cx, index); 721 cx->bm_sts_skip = bm_sts_skip; 722 723 return 0; 724 } else { 725 ACPI_FLUSH_CPU_CACHE(); 726 } 727 } 728 acpi_idle_do_entry(cx); 729 730 return 0; 731 } 732 733 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, 734 struct cpuidle_device *dev) 735 { 736 int i, count = ACPI_IDLE_STATE_START; 737 struct acpi_processor_cx *cx; 738 struct cpuidle_state *state; 739 740 if (max_cstate == 0) 741 max_cstate = 1; 742 743 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 744 state = &acpi_idle_driver.states[count]; 745 cx = &pr->power.states[i]; 746 747 if (!cx->valid) 748 continue; 749 750 per_cpu(acpi_cstate[count], dev->cpu) = cx; 751 752 if (lapic_timer_needs_broadcast(pr, cx)) 753 state->flags |= CPUIDLE_FLAG_TIMER_STOP; 754 755 if (cx->type == ACPI_STATE_C3) { 756 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED; 757 if (pr->flags.bm_check) 758 state->flags |= CPUIDLE_FLAG_RCU_IDLE; 759 } 760 761 count++; 762 if (count == CPUIDLE_STATE_MAX) 763 break; 764 } 765 766 if (!count) 767 return -EINVAL; 768 769 return 0; 770 } 771 772 static int acpi_processor_setup_cstates(struct acpi_processor *pr) 773 { 774 int i, count; 775 struct acpi_processor_cx *cx; 776 struct cpuidle_state *state; 777 struct cpuidle_driver *drv = &acpi_idle_driver; 778 779 if (max_cstate == 0) 780 max_cstate = 1; 781 782 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) { 783 cpuidle_poll_state_init(drv); 784 count = 1; 785 } else { 786 count = 0; 787 } 788 789 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 790 cx = &pr->power.states[i]; 791 792 if (!cx->valid) 793 continue; 794 795 state = &drv->states[count]; 796 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 797 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 798 state->exit_latency = cx->latency; 799 state->target_residency = cx->latency * latency_factor; 800 state->enter = acpi_idle_enter; 801 802 state->flags = 0; 803 804 state->enter_dead = acpi_idle_play_dead; 805 806 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) 807 drv->safe_state_index = count; 808 809 /* 810 * Halt-induced C1 is not good for ->enter_s2idle, because it 811 * re-enables interrupts on exit. Moreover, C1 is generally not 812 * particularly interesting from the suspend-to-idle angle, so 813 * avoid C1 and the situations in which we may need to fall back 814 * to it altogether. 815 */ 816 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr)) 817 state->enter_s2idle = acpi_idle_enter_s2idle; 818 819 count++; 820 if (count == CPUIDLE_STATE_MAX) 821 break; 822 } 823 824 drv->state_count = count; 825 826 if (!count) 827 return -EINVAL; 828 829 return 0; 830 } 831 832 static inline void acpi_processor_cstate_first_run_checks(void) 833 { 834 static int first_run; 835 836 if (first_run) 837 return; 838 dmi_check_system(processor_power_dmi_table); 839 max_cstate = acpi_processor_cstate_check(max_cstate); 840 if (max_cstate < ACPI_C_STATES_MAX) 841 pr_notice("processor limited to max C-state %d\n", max_cstate); 842 843 first_run++; 844 845 if (nocst) 846 return; 847 848 acpi_processor_claim_cst_control(); 849 } 850 #else 851 852 static inline int disabled_by_idle_boot_param(void) { return 0; } 853 static inline void acpi_processor_cstate_first_run_checks(void) { } 854 static int acpi_processor_get_cstate_info(struct acpi_processor *pr) 855 { 856 return -ENODEV; 857 } 858 859 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, 860 struct cpuidle_device *dev) 861 { 862 return -EINVAL; 863 } 864 865 static int acpi_processor_setup_cstates(struct acpi_processor *pr) 866 { 867 return -EINVAL; 868 } 869 870 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */ 871 872 struct acpi_lpi_states_array { 873 unsigned int size; 874 unsigned int composite_states_size; 875 struct acpi_lpi_state *entries; 876 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER]; 877 }; 878 879 static int obj_get_integer(union acpi_object *obj, u32 *value) 880 { 881 if (obj->type != ACPI_TYPE_INTEGER) 882 return -EINVAL; 883 884 *value = obj->integer.value; 885 return 0; 886 } 887 888 static int acpi_processor_evaluate_lpi(acpi_handle handle, 889 struct acpi_lpi_states_array *info) 890 { 891 acpi_status status; 892 int ret = 0; 893 int pkg_count, state_idx = 1, loop; 894 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 895 union acpi_object *lpi_data; 896 struct acpi_lpi_state *lpi_state; 897 898 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer); 899 if (ACPI_FAILURE(status)) { 900 acpi_handle_debug(handle, "No _LPI, giving up\n"); 901 return -ENODEV; 902 } 903 904 lpi_data = buffer.pointer; 905 906 /* There must be at least 4 elements = 3 elements + 1 package */ 907 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE || 908 lpi_data->package.count < 4) { 909 pr_debug("not enough elements in _LPI\n"); 910 ret = -ENODATA; 911 goto end; 912 } 913 914 pkg_count = lpi_data->package.elements[2].integer.value; 915 916 /* Validate number of power states. */ 917 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) { 918 pr_debug("count given by _LPI is not valid\n"); 919 ret = -ENODATA; 920 goto end; 921 } 922 923 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL); 924 if (!lpi_state) { 925 ret = -ENOMEM; 926 goto end; 927 } 928 929 info->size = pkg_count; 930 info->entries = lpi_state; 931 932 /* LPI States start at index 3 */ 933 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) { 934 union acpi_object *element, *pkg_elem, *obj; 935 936 element = &lpi_data->package.elements[loop]; 937 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7) 938 continue; 939 940 pkg_elem = element->package.elements; 941 942 obj = pkg_elem + 6; 943 if (obj->type == ACPI_TYPE_BUFFER) { 944 struct acpi_power_register *reg; 945 946 reg = (struct acpi_power_register *)obj->buffer.pointer; 947 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 948 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) 949 continue; 950 951 lpi_state->address = reg->address; 952 lpi_state->entry_method = 953 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ? 954 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO; 955 } else if (obj->type == ACPI_TYPE_INTEGER) { 956 lpi_state->entry_method = ACPI_CSTATE_INTEGER; 957 lpi_state->address = obj->integer.value; 958 } else { 959 continue; 960 } 961 962 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/ 963 964 obj = pkg_elem + 9; 965 if (obj->type == ACPI_TYPE_STRING) 966 strscpy(lpi_state->desc, obj->string.pointer, 967 ACPI_CX_DESC_LEN); 968 969 lpi_state->index = state_idx; 970 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) { 971 pr_debug("No min. residency found, assuming 10 us\n"); 972 lpi_state->min_residency = 10; 973 } 974 975 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) { 976 pr_debug("No wakeup residency found, assuming 10 us\n"); 977 lpi_state->wake_latency = 10; 978 } 979 980 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags)) 981 lpi_state->flags = 0; 982 983 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags)) 984 lpi_state->arch_flags = 0; 985 986 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq)) 987 lpi_state->res_cnt_freq = 1; 988 989 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state)) 990 lpi_state->enable_parent_state = 0; 991 } 992 993 acpi_handle_debug(handle, "Found %d power states\n", state_idx); 994 end: 995 kfree(buffer.pointer); 996 return ret; 997 } 998 999 /* 1000 * flat_state_cnt - the number of composite LPI states after the process of flattening 1001 */ 1002 static int flat_state_cnt; 1003 1004 /** 1005 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state 1006 * 1007 * @local: local LPI state 1008 * @parent: parent LPI state 1009 * @result: composite LPI state 1010 */ 1011 static bool combine_lpi_states(struct acpi_lpi_state *local, 1012 struct acpi_lpi_state *parent, 1013 struct acpi_lpi_state *result) 1014 { 1015 if (parent->entry_method == ACPI_CSTATE_INTEGER) { 1016 if (!parent->address) /* 0 means autopromotable */ 1017 return false; 1018 result->address = local->address + parent->address; 1019 } else { 1020 result->address = parent->address; 1021 } 1022 1023 result->min_residency = max(local->min_residency, parent->min_residency); 1024 result->wake_latency = local->wake_latency + parent->wake_latency; 1025 result->enable_parent_state = parent->enable_parent_state; 1026 result->entry_method = local->entry_method; 1027 1028 result->flags = parent->flags; 1029 result->arch_flags = parent->arch_flags; 1030 result->index = parent->index; 1031 1032 strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN); 1033 strlcat(result->desc, "+", ACPI_CX_DESC_LEN); 1034 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN); 1035 return true; 1036 } 1037 1038 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0) 1039 1040 static void stash_composite_state(struct acpi_lpi_states_array *curr_level, 1041 struct acpi_lpi_state *t) 1042 { 1043 curr_level->composite_states[curr_level->composite_states_size++] = t; 1044 } 1045 1046 static int flatten_lpi_states(struct acpi_processor *pr, 1047 struct acpi_lpi_states_array *curr_level, 1048 struct acpi_lpi_states_array *prev_level) 1049 { 1050 int i, j, state_count = curr_level->size; 1051 struct acpi_lpi_state *p, *t = curr_level->entries; 1052 1053 curr_level->composite_states_size = 0; 1054 for (j = 0; j < state_count; j++, t++) { 1055 struct acpi_lpi_state *flpi; 1056 1057 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED)) 1058 continue; 1059 1060 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) { 1061 pr_warn("Limiting number of LPI states to max (%d)\n", 1062 ACPI_PROCESSOR_MAX_POWER); 1063 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 1064 break; 1065 } 1066 1067 flpi = &pr->power.lpi_states[flat_state_cnt]; 1068 1069 if (!prev_level) { /* leaf/processor node */ 1070 memcpy(flpi, t, sizeof(*t)); 1071 stash_composite_state(curr_level, flpi); 1072 flat_state_cnt++; 1073 continue; 1074 } 1075 1076 for (i = 0; i < prev_level->composite_states_size; i++) { 1077 p = prev_level->composite_states[i]; 1078 if (t->index <= p->enable_parent_state && 1079 combine_lpi_states(p, t, flpi)) { 1080 stash_composite_state(curr_level, flpi); 1081 flat_state_cnt++; 1082 flpi++; 1083 } 1084 } 1085 } 1086 1087 kfree(curr_level->entries); 1088 return 0; 1089 } 1090 1091 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu) 1092 { 1093 return -EOPNOTSUPP; 1094 } 1095 1096 static int acpi_processor_get_lpi_info(struct acpi_processor *pr) 1097 { 1098 int ret, i; 1099 acpi_status status; 1100 acpi_handle handle = pr->handle, pr_ahandle; 1101 struct acpi_device *d = NULL; 1102 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr; 1103 1104 /* make sure our architecture has support */ 1105 ret = acpi_processor_ffh_lpi_probe(pr->id); 1106 if (ret == -EOPNOTSUPP) 1107 return ret; 1108 1109 if (!osc_pc_lpi_support_confirmed) 1110 return -EOPNOTSUPP; 1111 1112 if (!acpi_has_method(handle, "_LPI")) 1113 return -EINVAL; 1114 1115 flat_state_cnt = 0; 1116 prev = &info[0]; 1117 curr = &info[1]; 1118 handle = pr->handle; 1119 ret = acpi_processor_evaluate_lpi(handle, prev); 1120 if (ret) 1121 return ret; 1122 flatten_lpi_states(pr, prev, NULL); 1123 1124 status = acpi_get_parent(handle, &pr_ahandle); 1125 while (ACPI_SUCCESS(status)) { 1126 d = acpi_fetch_acpi_dev(pr_ahandle); 1127 if (!d) 1128 break; 1129 1130 handle = pr_ahandle; 1131 1132 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID)) 1133 break; 1134 1135 /* can be optional ? */ 1136 if (!acpi_has_method(handle, "_LPI")) 1137 break; 1138 1139 ret = acpi_processor_evaluate_lpi(handle, curr); 1140 if (ret) 1141 break; 1142 1143 /* flatten all the LPI states in this level of hierarchy */ 1144 flatten_lpi_states(pr, curr, prev); 1145 1146 tmp = prev, prev = curr, curr = tmp; 1147 1148 status = acpi_get_parent(handle, &pr_ahandle); 1149 } 1150 1151 pr->power.count = flat_state_cnt; 1152 /* reset the index after flattening */ 1153 for (i = 0; i < pr->power.count; i++) 1154 pr->power.lpi_states[i].index = i; 1155 1156 /* Tell driver that _LPI is supported. */ 1157 pr->flags.has_lpi = 1; 1158 pr->flags.power = 1; 1159 1160 return 0; 1161 } 1162 1163 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi) 1164 { 1165 return -ENODEV; 1166 } 1167 1168 /** 1169 * acpi_idle_lpi_enter - enters an ACPI any LPI state 1170 * @dev: the target CPU 1171 * @drv: cpuidle driver containing cpuidle state info 1172 * @index: index of target state 1173 * 1174 * Return: 0 for success or negative value for error 1175 */ 1176 static int acpi_idle_lpi_enter(struct cpuidle_device *dev, 1177 struct cpuidle_driver *drv, int index) 1178 { 1179 struct acpi_processor *pr; 1180 struct acpi_lpi_state *lpi; 1181 1182 pr = __this_cpu_read(processors); 1183 1184 if (unlikely(!pr)) 1185 return -EINVAL; 1186 1187 lpi = &pr->power.lpi_states[index]; 1188 if (lpi->entry_method == ACPI_CSTATE_FFH) 1189 return acpi_processor_ffh_lpi_enter(lpi); 1190 1191 return -EINVAL; 1192 } 1193 1194 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr) 1195 { 1196 int i; 1197 struct acpi_lpi_state *lpi; 1198 struct cpuidle_state *state; 1199 struct cpuidle_driver *drv = &acpi_idle_driver; 1200 1201 if (!pr->flags.has_lpi) 1202 return -EOPNOTSUPP; 1203 1204 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) { 1205 lpi = &pr->power.lpi_states[i]; 1206 1207 state = &drv->states[i]; 1208 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i); 1209 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN); 1210 state->exit_latency = lpi->wake_latency; 1211 state->target_residency = lpi->min_residency; 1212 state->flags |= arch_get_idle_state_flags(lpi->arch_flags); 1213 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH) 1214 state->flags |= CPUIDLE_FLAG_RCU_IDLE; 1215 state->enter = acpi_idle_lpi_enter; 1216 drv->safe_state_index = i; 1217 } 1218 1219 drv->state_count = i; 1220 1221 return 0; 1222 } 1223 1224 /** 1225 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle 1226 * global state data i.e. idle routines 1227 * 1228 * @pr: the ACPI processor 1229 */ 1230 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) 1231 { 1232 int i; 1233 struct cpuidle_driver *drv = &acpi_idle_driver; 1234 1235 if (!pr->flags.power_setup_done || !pr->flags.power) 1236 return -EINVAL; 1237 1238 drv->safe_state_index = -1; 1239 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) { 1240 drv->states[i].name[0] = '\0'; 1241 drv->states[i].desc[0] = '\0'; 1242 } 1243 1244 if (pr->flags.has_lpi) 1245 return acpi_processor_setup_lpi_states(pr); 1246 1247 return acpi_processor_setup_cstates(pr); 1248 } 1249 1250 /** 1251 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE 1252 * device i.e. per-cpu data 1253 * 1254 * @pr: the ACPI processor 1255 * @dev : the cpuidle device 1256 */ 1257 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr, 1258 struct cpuidle_device *dev) 1259 { 1260 if (!pr->flags.power_setup_done || !pr->flags.power || !dev) 1261 return -EINVAL; 1262 1263 dev->cpu = pr->id; 1264 if (pr->flags.has_lpi) 1265 return acpi_processor_ffh_lpi_probe(pr->id); 1266 1267 return acpi_processor_setup_cpuidle_cx(pr, dev); 1268 } 1269 1270 static int acpi_processor_get_power_info(struct acpi_processor *pr) 1271 { 1272 int ret; 1273 1274 ret = acpi_processor_get_lpi_info(pr); 1275 if (ret) 1276 ret = acpi_processor_get_cstate_info(pr); 1277 1278 return ret; 1279 } 1280 1281 int acpi_processor_hotplug(struct acpi_processor *pr) 1282 { 1283 int ret = 0; 1284 struct cpuidle_device *dev; 1285 1286 if (disabled_by_idle_boot_param()) 1287 return 0; 1288 1289 if (!pr->flags.power_setup_done) 1290 return -ENODEV; 1291 1292 dev = per_cpu(acpi_cpuidle_device, pr->id); 1293 cpuidle_pause_and_lock(); 1294 cpuidle_disable_device(dev); 1295 ret = acpi_processor_get_power_info(pr); 1296 if (!ret && pr->flags.power) { 1297 acpi_processor_setup_cpuidle_dev(pr, dev); 1298 ret = cpuidle_enable_device(dev); 1299 } 1300 cpuidle_resume_and_unlock(); 1301 1302 return ret; 1303 } 1304 1305 int acpi_processor_power_state_has_changed(struct acpi_processor *pr) 1306 { 1307 int cpu; 1308 struct acpi_processor *_pr; 1309 struct cpuidle_device *dev; 1310 1311 if (disabled_by_idle_boot_param()) 1312 return 0; 1313 1314 if (!pr->flags.power_setup_done) 1315 return -ENODEV; 1316 1317 /* 1318 * FIXME: Design the ACPI notification to make it once per 1319 * system instead of once per-cpu. This condition is a hack 1320 * to make the code that updates C-States be called once. 1321 */ 1322 1323 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { 1324 1325 /* Protect against cpu-hotplug */ 1326 cpus_read_lock(); 1327 cpuidle_pause_and_lock(); 1328 1329 /* Disable all cpuidle devices */ 1330 for_each_online_cpu(cpu) { 1331 _pr = per_cpu(processors, cpu); 1332 if (!_pr || !_pr->flags.power_setup_done) 1333 continue; 1334 dev = per_cpu(acpi_cpuidle_device, cpu); 1335 cpuidle_disable_device(dev); 1336 } 1337 1338 /* Populate Updated C-state information */ 1339 acpi_processor_get_power_info(pr); 1340 acpi_processor_setup_cpuidle_states(pr); 1341 1342 /* Enable all cpuidle devices */ 1343 for_each_online_cpu(cpu) { 1344 _pr = per_cpu(processors, cpu); 1345 if (!_pr || !_pr->flags.power_setup_done) 1346 continue; 1347 acpi_processor_get_power_info(_pr); 1348 if (_pr->flags.power) { 1349 dev = per_cpu(acpi_cpuidle_device, cpu); 1350 acpi_processor_setup_cpuidle_dev(_pr, dev); 1351 cpuidle_enable_device(dev); 1352 } 1353 } 1354 cpuidle_resume_and_unlock(); 1355 cpus_read_unlock(); 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int acpi_processor_registered; 1362 1363 int acpi_processor_power_init(struct acpi_processor *pr) 1364 { 1365 int retval; 1366 struct cpuidle_device *dev; 1367 1368 if (disabled_by_idle_boot_param()) 1369 return 0; 1370 1371 acpi_processor_cstate_first_run_checks(); 1372 1373 if (!acpi_processor_get_power_info(pr)) 1374 pr->flags.power_setup_done = 1; 1375 1376 /* 1377 * Install the idle handler if processor power management is supported. 1378 * Note that we use previously set idle handler will be used on 1379 * platforms that only support C1. 1380 */ 1381 if (pr->flags.power) { 1382 /* Register acpi_idle_driver if not already registered */ 1383 if (!acpi_processor_registered) { 1384 acpi_processor_setup_cpuidle_states(pr); 1385 retval = cpuidle_register_driver(&acpi_idle_driver); 1386 if (retval) 1387 return retval; 1388 pr_debug("%s registered with cpuidle\n", 1389 acpi_idle_driver.name); 1390 } 1391 1392 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1393 if (!dev) 1394 return -ENOMEM; 1395 per_cpu(acpi_cpuidle_device, pr->id) = dev; 1396 1397 acpi_processor_setup_cpuidle_dev(pr, dev); 1398 1399 /* Register per-cpu cpuidle_device. Cpuidle driver 1400 * must already be registered before registering device 1401 */ 1402 retval = cpuidle_register_device(dev); 1403 if (retval) { 1404 if (acpi_processor_registered == 0) 1405 cpuidle_unregister_driver(&acpi_idle_driver); 1406 return retval; 1407 } 1408 acpi_processor_registered++; 1409 } 1410 return 0; 1411 } 1412 1413 int acpi_processor_power_exit(struct acpi_processor *pr) 1414 { 1415 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id); 1416 1417 if (disabled_by_idle_boot_param()) 1418 return 0; 1419 1420 if (pr->flags.power) { 1421 cpuidle_unregister_device(dev); 1422 acpi_processor_registered--; 1423 if (acpi_processor_registered == 0) 1424 cpuidle_unregister_driver(&acpi_idle_driver); 1425 1426 kfree(dev); 1427 } 1428 1429 pr->flags.power_setup_done = 0; 1430 return 0; 1431 } 1432